4.1 Art und Ausmaß aller luftverunreinigenden Emissionen einschließlich Gerüchen, die voraussichtlich von der Anlage ausgehen werden

Emissionsverursachende Betriebsvorgänge der hier zu betrachtenden Anlage zur Herstellung von Glas einschließlich der dienenden Nebeneinrichtungen sind:

- der Betrieb der beiden neu aufzustellenden Glasschmelzwannen mit Elektroenergie.

- die Beheizung der Verteilerkanäle der Glasformmaschinen für die Wanne 2 mit Gas,

- die Beheizung der Kühlbahnen der Fertigungslinien für die Wanne 2 mit Gas sowie

- die Befüllung der Lagersilos mit staubenden Güter

Hierbei sind der kontinuierliche Betrieb der beiden elektrisch betriebenen Glasschmelzwannen und die damit verbundene Ableitung der entstehenden Abgase über je einen separaten Edelstahlkamin als der wesentlichste Emissionsvorgang anzusehen. Die entstehenden Abgase werden oberhalb der beiden Wannen abgesaugt und in einer Tuchfilteranlage gereinigt, bevor sie über den jeweiligen Kamin abgeleitet werden. Dazu soll für jede der beiden Wannen ein FAV-Saugschlauchfilter vom Typ F 1.60 S /81, Bauart T aufgestellt werden.

Die Ableitung der Abgase von der neuen Wanne 2 erfolgt über den vorhandenen 50 m hohen Edelstahlkamin (Q1). Für die Ableitung der Abgase von der neuen Wanne 3 wird am südöstlichen Ende des Logistikgebäudes ein neuer Edelstahlkamin (Q2) mit einer Austrittshöhe von 46m über Grund errichtet. Die beiden unterschiedlichen Ableithöhen ergeben sich durch das unterschiedliche Höhenniveau des Bestandsgebäudes für die Wanne 2 und des Logistikgebäudes. Die erforderliche Ableithöhe nach TA Luft wurde im Rahmen eines Gutachtens zur Ausbreitung von Luftbeimengungen, Thema: Schornsteinmindesthöhe nach Nr. 5.5 TA Luft im Februar 2023 durch das Büro für Immissionsprognosen Dipl.-Met. André Zorn ermittelt (siehe im Anhang zu diesem Abschnitt beiliegendes Gutachten). Zudem wurde im Februar 2023 durch dieses Büro ein Gutachten zur Ausbreitung von Luftbeimengungen, Thema: Ermittlung und Beurteilung der anlagenbezogenen Immissionen an Luftschadstoffen erarbeitet, in dem der Nachweis erbracht wurde, dass

unter den gegebenen Umständen die resultierenden Belastungen über den Luftpfad

- nicht zu schädlichen Umwelteinwirkungen und sonstigen Gefahren, erheblichen Nachteilen und erheblichen Belästigungen für die Allgemeinheit und die Nachbarschaft führen können oder

- gänzlich irrelevant bleiben

und somit dem geplanten Vorhaben zugestimmt werden kann.

Auch dieses Gutachten ist als Anhang beigefügt.

Antragsteller: SP Spezialglas Piesau GmbH

Aktenzeichen:

Erstelldatum: 16.09.2025 Version: 4 Erstellt mit: ELiA-2.8-b6

Die Beheizung der Verteilerkanäle der Glasformmaschinen und der Kühlbahnen der Fertigungslinien für die Wanne 2 erfolgt auch weiterhin mit Erdgas. Die Anzahl der Verarbeitungslinien und Kühlbahnen für die Wanne 2 verringert sich mit dem beantragten Vorhaben von sechs auf drei Linien. Damit verringern sich auch der notwendige Erdgaseinsatz und die dabei entstehenden Emissionen aus der Erdgasverbrennung, die bisher schon nur von untergeordneter Bedeutung waren. Die drei Verarbeitungslinien und Kühlbahnen für die Wanne 3 werden elektrisch beheizt bzw. können alternativ mit Erdgas beheizt werden.

Die Abgase von der Beheizung der Verarbeitungslinien und Kühlbahnen für die Wanne 2 und die dabei entstehende Abwärme aus den über die gesamte Länge eingehausten Kühlbahnen gelangen über die Auslässe im Kaltendbereich in den Raum, steigen auf Grund der Thermik nach oben und entweichen diffus über die Öffnungen im Bereich des Hallendaches (Feeder) ins Freie. Diese Dachöffnungen werden wie bisher schon je nach Jahreszeit, Außentemperatur und Betrieb der Verarbeitungslinien und Kühlbahnen nach Bedarf geöffnet.

Da es sich hier um diffuse Emissionen von untergeordneter Bedeutung handelt, soll keine weitere Betrachtung erfolgen und sind diese auch nicht im Formblatt im nachfolgenden Abschnitt 4.2 aufgeführt. An den Lagersilos und den Bunkeraufsatzfiltern im Bereich des Gemengehauses sind im Rahmen des hier beantragten Vorhabens keine Änderungen geplant. Ein Nachweis für die Einhaltung des hier relevanten Emissionsgrenzwertes für Gesamtstaub von 20 mg/m³ wurde im Rahmen der Nebenbestimmungen des Genehmigungsbescheides 58/96 vom 14.06.1997 erbracht. In den danach erlassenen Genehmigungsbescheiden wurden dazu keine neuen Nebenbestimmungen erlassen. Zudem handelt es sich bei der Befüllung der Silos um kurzzeitige Vorgänge mit geringen Emissionsmassenströmen. Deshalb sind dazu keine weiteren Ausführungen erforderlich.

Anhang:

- Gutachten zur Ausbreitung von Luftbeimengungen, Thema: Schornsteinmindesthöhe nach Nr. 5.5 TA Luft, Fassung vom 28.02.2023, erarbeitet durch das Büro für Immissionsprognosen Dipl.-Met. André Zorn
- Gutachten zur Ausbreitung von Luftbeimengungen, Thema: Ermittlung und Beurteilung der anlagenbezogenen Immissionen an Luftschadstoffen, Fassung vom 28.02.2023, erarbeitet durch das Büro für Immissionsprognosen Dipl.-Met. André Zorn Anlagen:
 - Schornsteinhöhenberechnung Endstand.pdf
 - Immissionsprognose_Endstand.pdf

Antragsteller: SP Spezialglas Piesau GmbH

Aktenzeichen:

Erstelldatum: 16.09.2025 Version: 4 Erstellt mit: ELiA-2.8-b6

BfIP - Büro für Immissionsprognosen | Dipl.-Met. André Zorn Triftstraße 2 | 99330 Geratal OT Frankenhain Tel. | Fax: (036205) 91273 | 91274 Mobil: (0171) 2889516

e-Post: a.zorn@immissionsprognosen.com

Gutachten zur

Ausbreitung von Luftbeimengungen

Thema: Schornsteinmindesthöhe nach Nr. 5.5. TA Luft Ersatz einer gasbefeuerten Glasschmelzwanne durch zwei vollelektrisch betriebene Glasschmelzwannen Anlage / Vorhaben: Standort: Piesau Auftraggeber: SP Spezialglas Piesau GmbH Piesau | Hüttenring 7 98724 Neuhaus a. Rwg. Bestellung: 502243 / 04.08.2022 Registratur: SHB A2217

28.02.2023

Fassung:

Inhaltsverzeichnis

1	Motivation / Veranlassung	2
2	Fundstellenverzeichnis	
3	Anlage, Vorhaben und Standort	5
4	Anforderungen aus den unmittelbaren baulichen Gegebenheitengemäß Nr. 5.5.2.1 TA Luft und VDI 3781 Blatt 4	
4.1 4.2	Wanne 2 mit Q1 Wanne 3 mit Q2	9 18
5	Anforderungen aus den Emissionengemäß Nr. 5.5.2.2 TA Luft (BESMIN)	 26
6	Anforderungen aus Verdrängung des Windfeldsdurch Bebauung und Bewuchs im Umkreis sowie der geländebedingten Kavität gemäß Nr. 5.5.2.3 TA Luft	
7	Anforderungen aus dem Zusammenwirken mehrerer Quellengemäß Nr. 5.5.2.1 TA Luft (BESMAX)	
8	Anforderungen aus Geruchgemäß Nr. 5.5.1 und Anhang 7 Nr. 2.1 TA Luft	
9	Fazit	34

1 Motivation / Veranlassung

Im Glaswerk Piesau soll eine gasbeheizte Glasschmelzwanne durch zwei Wannen mit vollelektrischer Schmelze ersetzt werden, wofür zusätzlich ein weiterer ¹Schornstein zu errichten ist. Aufgabe dieser Untersuchung ist die Prüfung der Ableithöhe anhand der Anforderungen der Nr. 5.5 TA Luft.

Weitergehende Ermittlungen zu den Emissionen bzw. Immissionen, deren Auswirkungen sowie zu anderen Themen (insbesondere zu sonstigen Gefahren, Brandschutz, Arbeitsschutz und den damit im Zusammenhang stehenden technischen Belangen der Anlagensicherheit) sind nicht Gegenstand dieser Betrachtungen.

Schornstein ist ein historisch gewachsener Begriff in der TA Luft. Für entsprechende Emissionsquellen werden gleichbedeutend auch Bezeichnungen wie z.B. Schlot, Esse, Kamin und Abgasrohr verwendet.

2 Fundstellenverzeichnis

Lit. 1 TA Luft:

Neufassung der Ersten Allgemeinen Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (Technische Anleitung zur Reinhaltung der Luft – TA Luft), 18. August 2021, GMBI 2021, Nr. 48–54, S. 1050-1192;ISSN 0939-4729.

Lit. 2 VDI 3781 Bl.4:

Umweltmeteorologie Ableitbedingungen für Abgase, Kleine und mittlere Feuerungsanlagen sowie andere als Feuerungsanlagen; Juli 2017.

Lit. 3 VDI 3886 Bl.1:

Ermittlung und Bewertung von Gerüchen, Geruchsgutachten, Ermittlung der Notwendigkeit und Hinweise zur Erstellung; September 2019.

Lit. 4 WinSTACC:

Software zur Berechnung der Ableitbedingungen für Abgase nach VDI 3781 Bl.4, Version 1.0.6.5; Ingenieurbüro Lohmeyer GmbH & Co.KG, Mohrenstraße 14, 01445 Radebeul.

Lit. 5 BESMIN & BESMAX:

Schornsteinhöhe nach TA Luft, BESMIN Version 1.0.1 und BESMAX Version 1.0.1; Umweltbundesamt, Dessau-Roßlau und Ingenieurbüro Janicke, Überlingen; Stand 2021.

Lit. 6 Kartengrundlagen:

GooglMaps – GetCapabilities für das geographische Informationssystem QGIS Maps (https://mt1.google.com/vt/lyrs=r&x={x}&y={y}&z={z}),

Satellite (http://www.google.cn/maps/vt?lyrs=s@189&gl=cn&x=x=y=y=z=z).

OSM – OpenStreetMap-Plugin für das geographische Informationssystem QGIS (http://hub.qgis.org/projects/openlayers/wiki).

GDZ – Geodatenservice, Amtlicher, deutschlandweiter Internet-Kartendienst von Bund und Ländern mit Webatlas | TopPlusOpen | DTK200 | DTK500 enthalten im Web Map Service des Geodatenzentrums: Dienstleistungszentrum des Bundes für Geoinformation und Geodäsie (www.geodatenzentrum.de).

TLBG - Geoproxy Freistaat Thüringen, Allgemeine Beschreibung der frei verfügbaren Dienste, Web Map Service - Geobasisdaten -; Thüringer Landesamt für Bodenmanagement und Geoinformation, Hohenwindenstraße 13 a, 99086 Erfurt (https://www.tlbq.thueringen.de/).

GeoSN – Geodatendienste, Geodaten online; Staatsbetrieb Geobasisinformation und Vermessung Sachsen (GeoSN), Postfach 10 02 44, 01072 Dresden (https://www.geodaten.sachsen.de/).

HVBG – Hessische Verwaltung für Bodenmanagement und Geoinformation, Geodaten Dienste-Server (https://hvbg.hessen.de | http://www.gds-srv.hessen.de).

GDI-BY – Landesamt für Digitalisierung, Breitband und Vermessung, Alexandrastraße 4, 80538 München (https://www.gdi.bayern.de).

LVermGeo – Landesamt für Vermessung und Geoinformation Sachsen-Anhalt, Otto-von-Guericke-Straße 15, 39104 Leipzig-Halle (https://www.lvermgeo.sachsenanhalt.de/).

LGB - Landesvermessung und Geobasisinformation Brandenburg, Heinrich-Mann-Allee 103, 14473 Potsdam; OpenData (https://data.geobasis-bb.de/geobasis/daten/).

LGL-BW - Landesamt für Geoinformation und Landentwicklung Baden-Württemberg, Büchsenstraße 54, 70174 Stuttgart (https://www.lgl-bw.de/unsere-themen/Produkte/Open-Data/).

LUBW Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg, Griesbachstraße 1, 76185 Karlsruhe; Kartenservice Schutzgebiete (https://udo.lubw.baden-wuerttemberg.de/public/pages/map/default/index.xhtml).

Lit. 7 Digitale Höhenmodelle:

GlobDEM50 – Deutschland: Digitales Höhenmodell, metSoft GbR - Dr. Klaus Bigalke - Dipl.-Ing. Matthias Rau - Dr. Christoph Winkler, Bottwarbahnstraße 4 - D-74081 Heilbronn.

DGM1, DGM2; DGM20: Digitale Geländemodelle der Landesvermessungen, Thüringer Landesamt für Bodenmanagement und Geoinformation (TLBG) | Staatsbetrieb Geobasisinformation und Vermessung Sachsen (GeoSN).

DGM100: Digitales Geländemodell, Landesamt für Vermessung und Geoinformation Sachsen-Anhalt (LVermGeo).

DGM200: Digitales Geländemodell, Dienstleistungszentrum des Bundes für Geoinformation und Geodäsie (GDZ).

Lit. 8 Digitale Gebäudemodelle:

TLBG - Geoproxy Freistaat Thüringen, Allgemeine Beschreibung der frei verfügbaren Dienste, Web Map Service - Geobasisdaten -; Thüringer Landesamt für Bodenmanagement und Geoinformation, Hohenwindenstraße 13 a, 99086 Erfurt (https://www.tlbg.thueringen.de/).

GeoSN – Geodatendienste, Geodaten online; Staatsbetrieb Geobasisinformation und Vermessung Sachsen (GeoSN), Postfach 10 02 44, 01072 Dresden (https://www.geodaten.sachsen.de/).

Lit. 9 Standortinspektion:

Ortsbegehung und Einschätzung der für die Ausbreitung von Luftbeimengungen bedeutsamen Gegebenheiten, zuletzt am 31.08.2022.

Lit. 10 Messbericht:

Bericht 2234731 über die Durchführung von Emissionsmessungen zu einer Glasschmelzwanne einer Kapazität von 75 t/d mit vollelektrischer Schmelze in Kleintettau; GWA Gesellschaft für Wasser- und Abwasserservice mbH, Niederlassung: Institut für Wasser- und Umweltanalytik, An der Ohratalsperre, 99885 Luisenthal, 30.06.2022; persönliche Mitteilung Thomas Rau, zuletzt am 24.10.2022 (Auftraggeber: HEINZ-Glas Produktions GmbH & Co. KGaA, Glashüttenplatz 1-7, 96355 Kleintettau).

Lit. 11 ZGU-Inhaltsstoff-Analyse:

Prüfbericht zum Laborauftrag Nr. 1672/2022 - Ergänzung 01; Zentrum für Glas- und Umweltanalytik GmbH, Hohe Straße 45, 98693 Ilmenau-Unterpörlitz; Fassung 16.11.2022 (Auftraggeber: HEINZ-Glas Produktions GmbH & Co. KGaA, Glashüttenplatz 1-7, 96355 Kleintettau).

Lit. 12 Planerische und technische Details:

SP Spezialglas Piesau GmbH, Hüttenring 7, 98724 Neuhaus am Rennweg OT Piesau; persönliche Mitteilung Reiner Bock, zuletzt am 27.01.2023. TÜV Thüringen Anlagentechnik GmbH & Co. KG, Service-Center Mittelthüringen, Ichtershäuser Str. 32, 99310 Arnstadt; persönliche Mitteilung Holger Oemus, zuletzt am 23.11.2022.

cm.project.ing GmbH, Helmholtzstraße 24, 52428 Jülich; persönliche Mitteilung Stefan Koschutzki, zuletzt am 27.01.2023.

3 Anlage, Vorhaben und Standort

Im Glaswerk Piesau wird bislang eine gasbeheizte Wanne (W2) mit einer Schmelzleistung von 135 t/d betrieben, deren Abgase über einen 50 m hohen Kamin (Q1) abgeleitet werden.

Im Bereich des vorhandenen Logistikzentrums soll eine elektrisch beheizte Wanne (W3) mit einer Schmelzleistung von 70 t/d und einem eigenen Abgaskamin (Q2) errichtet werden. Die bisher gasbeheizte Wanne wird durch eine zweite elektrisch beheizte Wanne mit einem zur W3 gleichen Emissionsverhalten ersetzt. Zur Ableitung der Abgase von W2 soll die 50 m hohe Q1 weiter verwendet werden (vgl. Abb. 1).

Die eingesetzten Fremdscherben sind weitgehend frei von Verunreinigungen mit organischen Stoffen.

Abb. 1: Draufsicht mit den Positionen des vorhandenen (Q1) und des geplanten (Q2) Abgaskamins sowie des zugehörigen Neubaus zur Wanne 3 | UTM-Georeferenz: 210 x 210 m² von {32656803;5597638} bis {32657013;5597848} | Kartenhintergrund: DOP, TLBG

Der Standort befindet sich im Südwesten von Piesau ca. 650 m ü. NHN (vgl. Abb. 2 und Abb. 3).

Das Gelände ist größtenteils mäßig und verbreitet auch stark gegliedert.

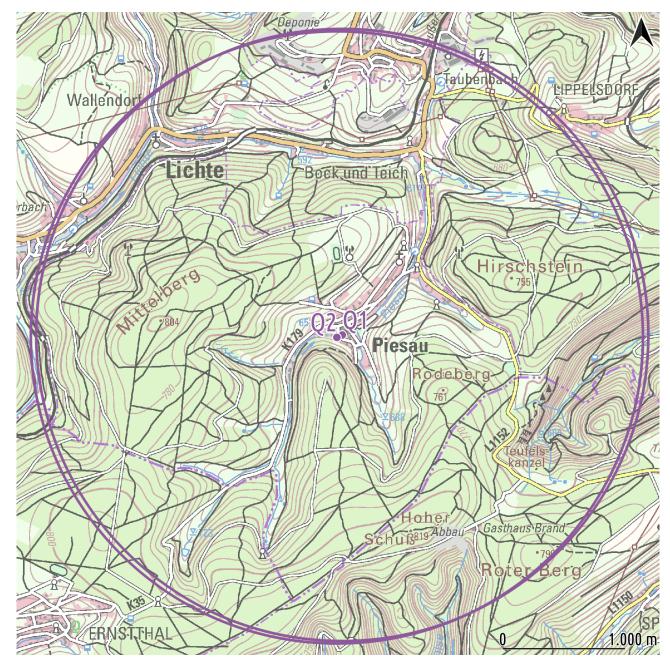
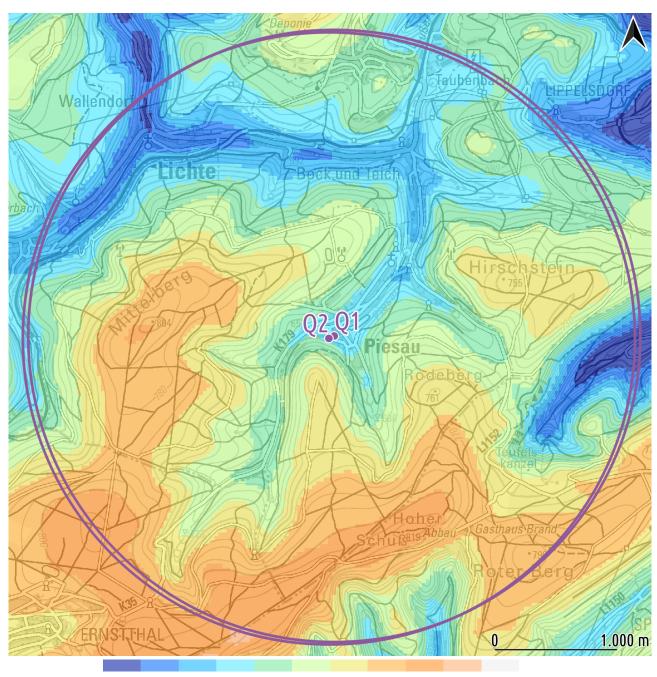



Abb. 2: Standortübersicht und Umkreise mit Radien von jeweils 2500 m um Q1 und Q2 | UTM-Georeferenz: $5252 \times 5252 \times 5252 \times 32654276;5595122$ } bis $\{32659528;5600374\}$ | Kartenhintergrund: DTK50, TLBG

666 700 733 766 800 833 866 900 633 m ü. NHN digitales Höhenmodell DGM200 per Spline-Interpolation übertragen auf Maschen-Abb. 3: weiten von 32 m und Umkreise mit Radien von jeweils 2500 m um Q1 und Q2 | m² von UTM-Georeferenz: 5252 Χ 5252 {32654276;5595122} {32659528;5600374} | Kartenhintergrund: DTK50, TLBG

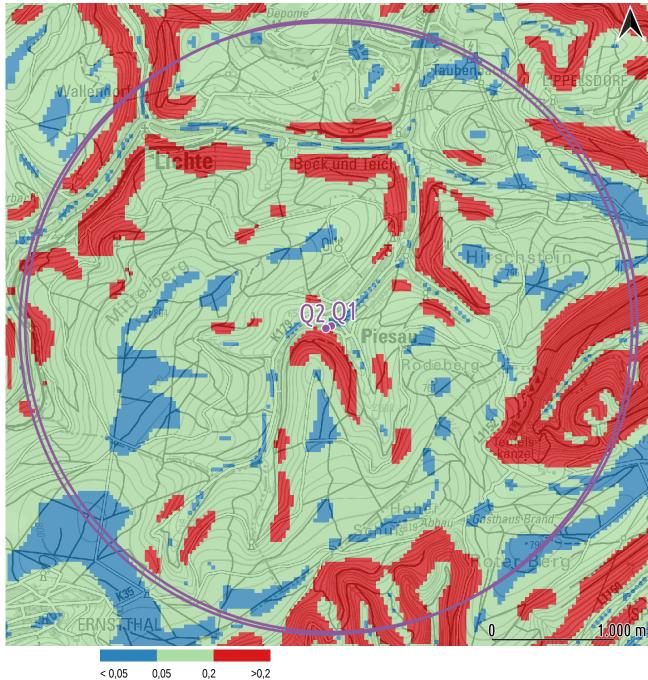


Abb. 4: Geländesteilheit in den Maschenweiten und Umkreise von 32 m mit Radien von jeweils 2500 m um Q1 und Q2 | UTM-Georeferenz: 5252 x 5252 m² von {32654276;5595122} bis {32659528;5600374} | Kartenhintergrund: DTK50, TLBG

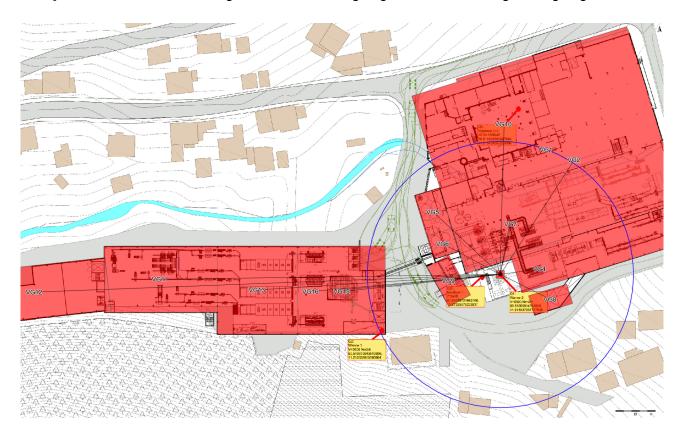
4 Anforderungen aus den unmittelbaren baulichen Gegebenheiten gemäß Nr. 5.5.2.1 TA Luft und VDI 3781 Blatt 4

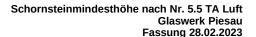
Die entsprechenden Berechnungen zur VDI 3781-4 wurden mit dem Programm WinSTACC [Lit. 4] vorgenommen, wobei softwarebedingt einige Abstraktionen vorgenommen werden mussten bzw. konnten.

So wurden z.B. Dächer bzw. Aufbauten mit geringer Neigung als Flachdächer modelliert insbesondere dann, wenn noch eine Attika vorhanden war. Weiter vom jeweiligen Schornstein entfernte bzw. niedrigere Bauten wurden vernachlässigt oder weniger detailliert berücksichtigt, wenn näher liegende Gebäude bzw. Aufbauten sich höher erstrecken und/oder größere Diagonalen aufweisen.

4.1 Wanne 2 mit Q1

Für Q1 wurde das in Abb. 5 dargestellte Modell vorgelagerter Gebäude zugrunde gelegt.




Abb. 5: Modell vorgelagerter Gebäude mit Einwirkungsbereich (blauer Kreis) um Q1 | Die Beschriftungen zu einzelnen Gebäuden sind ggf. softwareseitig unterdrückt. | Kartenhintergrund: Lageplanauszug

Die Eingangsdaten und Ergebnisse sind dem nachfolgenden Protokoll und Abb. 6 zu entnehmen.

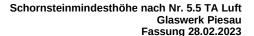
```
******** Programmbibliothek VDI 3781 Blatt 4 · Ableitbedingungen für Abgase *******************
 Programmversion
                                          = 1.0.6.5
 dll-Version
                                          = 1.0.4.6
[Start]
 Datum Rechnung
                                          = 01.12.2022 16:09
 Steuerdatei
                                          = C:\WinSTACC\VDI Input.ini
 Längenangaben
                                          = Meter
 Winke langaben
                                          = Grad
 Leistungsangaben
                                          = Kilowatt
[EmittierendeAnlage]
```



```
Anlagentyp
                                             = Keine Feuerungsanlage
  Input_R
                                             = 50
  Input H B
                                             = 5
  Input H Ue
                                             = 3
\label{eq:hubble} \textbf{H\_U} \  \, \overset{-}{\underline{\textbf{d}}} \text{urch Benutzer vorgegeben (keine Feuerungsanlage / andere Anlage)}
  ΉÜ
                                             = 3
f R durch Benutzer vorgegeben (keine Feuerungsanlage / andere Anlage)
                                             = 50
[Einzelgebäude]
  Länge_1
                                             = 3
  Breite_b
                                             = 3
  Traufhöhe H Traufe
                                             = 1
  Firsthöhe_H_First
                                             = 1
  Dachform
                                             = Flachdach
  Dachhöhe H Dach
                                             = 0
  BreiteGiebelseite b
                                             = 3
  HorizontalerAbstandMündungFirst_a
                                             = 1.5
Berechnung von H_A1...
G1g. 8
  H_A1F
                                             = 4.3
                                             = 0
  а
  alpha
                                             = 0
G1q. 5
  Ĥ 1
                                             = 0.5
G1g. 7
                                             = 0
G1g. 6
  H 2
                                             = 0.5
G1g. 3
  H_S1
                                             = 0.5
G1g. 4
  H A1
H_A1 ist größer als die Höhe von Einzelgebäude und wird daher auf diese Höhe begrenzt:
  H A1
                                             = 1
Berechnung von H_E1...
  H_E1
                                             = 0
[VorgelagertesGebäude1]
  Länge_1
                                             = 85
  Breite_b
                                             = 68
  Traufhöhe H Traufe
                                             = 11
  Firsthöhe_H_First
                                             = 11
  Dachform
                                             = Flachdach
  Dachhöhe H Dach
                                             = 0
  BreiteGiebelseite b
                                             = 68
  H_2V_mit_H_A1F_begrenzen
                                             = nein
  H\ddot{o}he 0 berste Fensterkante\_H\_F
                                             = 0
  WinkelGebäudeMündung_beta
                                             = 133
  AbstandGebäudeMündung_1_A
                                             = 5.7
  Hang lage
                                             = nein
  HöhendifferenzZumEinzelgebäude_Delta_h
  GeschlosseneBauweise
                                             = ja
Berechnung von H A2
Abschnitt 6.2.2.2: Geschlossene Bauweise
  1_RZ
                                             = 66
G1g. 18
  р
                                             = 1
  a 1pha
                                             = 0
G1g. 7
                                             = 0
G1g. 6
  H 2V
                                             = 12.4
G1g. 17
  H_S2
                                             = 22.3
Glg. 19
                                             = 25.3
  H A2
H_E für VorgelagertesGebäude1 wird nicht berücksichtigt, da für die oberste Fensterkante Null eingegeben wurde.
Es wird damit für VorgelagertesGebäude1 kein Fenster oder Lüftungsschlitz im Einwirkungsbereichs berücksichtigt.
  H_E2
                                             = 0
G1g. 16
                                             = 15.8
  1_eff
[VorgelagertesGebäude2]
                                             = 84
  Länge_1
  Breite b
                                             = 67
  Traufhöhe H Traufe
                                             = 9
                                             = 9
  Firsthöhe_H_First
  Dachform
                                             = Flachdach
  Dachhöhe_H_Dach
                                             = 0
  BreiteGiebelseite_b
                                             = 67
  H 2V mit H A1F begrenzen
                                             = nein
  HöheObersteFensterkante H F
```



```
WinkelGebäudeMündung_beta
                                            = 50
  AbstandGebäudeMündung_1_A
                                            = 7.5
  Hang lage
                                            = nein
  HöhendifferenzZumEinzelgebäude Delta h
                                            = 0
  GeschlosseneBauweise
                                            = nein
Berechnung von H_A2
G1g. 16
  1_eff
                                            = 107.4
G1g. 15
  1_RZ
                                            = 47.2
G1g. 18
                                            = 0.99
 р
  alpha
                                            = 0
G1g. 7
                                            = 0
G1g. 6
  H_2V
                                            = 12.2
G1g. 17
  H_S2
                                            = 19.9
G1g. 19
  H A2
                                            = 22.9
H E für VorgelagertesGebäude2 wird nicht berücksichtigt, da für die oberste Fensterkante Null eingegeben wurde.
Es wird damit für VorgelagertesGebäude2 kein Fenster oder Lüftungsschlitz im Einwirkungsbereichs berücksichtigt.
\hbox{[VorgelagertesGeb\"{a}ude3]}
  Länge_1
                                            = 42
  Breite b
                                            = 26
  Traufhöhe_H_Traufe
                                            = 21
  Firsthöhe_H_First
                                            = 21
  Dachform
                                            = Flachdach
  Dachhöhe H Dach
                                            = 0
  BreiteGiebelseite b
                                            = 26
  H 2V mit H_A1F_begrenzen
                                            = nein
  HöheObersteFensterkante H F
                                            = 0
  WinkelGebäudeMündung_beta
                                            = 63
  AbstandGebäudeMündung_1_A
                                            = 4.7
  Hang lage
                                            = nein
  HöhendifferenzZumEinzelgebäude_Delta_h
                                            = 0
  GeschlosseneBauweise
                                            = nein
Berechnung von H_A2
G1g. 16
  1_eff
                                            = 49.2
G1g. 15
1_RZ
                                            = 54.3
G1g. 18
  a 1pha
                                            = 0
G1g. 7
                                            = 0
G1g. 6
  H 2V
G1g. 17
  H_S2
                                            = 24.6
G1g. 19
                                            = 27.6
  H A2
H_E für VorgelagertesGebäude3 wird nicht berücksichtigt, da für die oberste Fensterkante Null eingegeben wurde.
Es wird damit für VorgelagertesGebäude3 kein Fenster oder Lüftungsschlitz im Einwirkungsbereichs berücksichtigt.
  H_E2
                                            = 0
[VorgelagertesGebäude4]
                                            = 18
  Länge 1
  Breite b
                                            = 13
  Traufhöhe H Traufe
                                            = 25
  Firsthöhe_H_First
                                            = 25
  Dachform
                                            = Flachdach
  Dachhöhe H Dach
                                            = 0
  BreiteGiebelseite b
                                            = 13
  H_2V_mit_H_A1F_begrenzen
                                            = nein
  HöheObersteFensterkante_H_F
                                            = 0
  WinkelGebäudeMündung_beta
                                            = 9
  AbstandGebäudeMündung 1 A
                                            = 5.8
  Hang lage
                                            = nein
  HöhendifferenzZumEinzelgebäude_Delta_h
  GeschlosseneBauweise
                                            = nein
Berechnung von H_A2
G1g. 16
                                            = 15.7
  1_eff
G1g. 15
  1_RZ
                                            = 23.7
G1g. 18
                                            = 0.97
  р
  alpha
                                            = 0
```

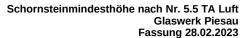


```
G1g. 7
                                            = 0
G1g. 6
  H 2V
                                            = 2.4
G1g. 17
 H_S2
                                            = 25.5
G1g. 19
 H A2
                                            = 28.5
H E für VorgelagertesGebäude4 wird nicht berücksichtigt, da für die oberste Fensterkante Null eingegeben wurde.
Es wird damit für VorgelagertesGebäude4 kein Fenster oder Lüftungsschlitz im Einwirkungsbereichs berücksichtigt.
                                            = 0
[VorgelagertesGebäude5]
  Länge 1
                                            = 16
                                            = 10
  Breite b
  Traufhöhe_H_Traufe
                                            = 25
  Firsthöhe_H_First
                                            = 25
  Dachform
                                            = Flachdach
  Dachhöhe H Dach
                                            = 0
  BreiteGiebelseite_b
                                            = 10
  H_2V_mit_H_A1F_begrenzen
                                            = nein
  HöheObersteFensterkante H F
                                            = 0
  WinkelGebäudeMündung_beta
                                            = 30
  AbstandGebäudeMündung_1_A
                                            = 25.2
  Hang lage
                                            = nein
  HöhendifferenzZumEinzelgebäude_Delta_h
                                            = 0
  GeschlosseneBauweise
                                            = nein
Berechnung von H_A2
G1g. 16
  1_eff
                                            = 16.7
G1g. 15
  1 RZ
                                            = 25
VorgelagertesGebäude5 wird nicht berücksichtigt, da Abstand zur Mündung größer gleich Länge seiner RZ.
H_E für VorgelagertesGebäude5 wird nicht berücksichtigt, da für die oberste Fensterkante Null eingegeben wurde.
Es wird damit für VorgelagertesGebäude5 kein Fenster oder Lüftungsschlitz im Einwirkungsbereichs berücksichtigt.
  H E2
                                            = 0
  alpha
                                            = 0
G1g. 7
                                            = 0
G1g. 6
  H_2V
                                            = 1.8
[VorgelagertesGebäude6]
                                            = 10
  Länge 1
                                            = 9
  Breite b
                                            = 27
  Traufhöhe_H_Traufe
  Firsthöhe_H_First
                                            = 27
  Dachform
                                            = Flachdach
  Dachhöhe H Dach
                                            = 0
  BreiteGiebelseite_b
                                            = 9
  H_2V_mit_H_A1F_begrenzen
                                            = nein
  HöheObersteFensterkante H F
                                            = 45
  WinkelGebäudeMündung beta
  AbstandGebäudeMündung_1_A
                                            = 18.1
  Hang lage
                                            = nein
  {\tt H\"ohendifferenzZumEinzelgeb\"{a}ude\_Delta\_h}
                                            = 0
  GeschlosseneBauweise
                                            = nein
Berechnung von H_A2
G1g. 16
  1_eff
                                            = 13.4
G1g. 15
  1 RZ
                                            = 20.9
G1g. 18
                                            = 0.5
 р
  alpha
                                            = 0
G1g. 7
                                            = 0
G1g. 6
  H_2V
                                            = 1.6
G1g. 17
  H_S2
                                            = 13.3
G1g. 19
  H A2
                                            = 16.3
H E für VorgelagertesGebäude6 wird nicht berücksichtigt, da für die oberste Fensterkante Null eingegeben wurde.
Es wird damit für VorgelagertesGebäude6 kein Fenster oder Lüftungsschlitz im Einwirkungsbereichs berücksichtigt.
  H E2
                                            = 0
[VorgelagertesGebäude7]
  Länge_1
                                            = 37
  Breite b
                                            = 10
  Traufhöhe_H_Traufe
                                            = 25
  Firsthöhe H First
                                            = 25
  Dachform
                                            = Flachdach
```



```
Dachhöhe_H_Dach
                                            = 0
  BreiteGiebelseite_b
                                            = 10
  H 2V mit H A1F begrenzen
                                            = nein
  HöheObersteFensterkante H F
                                            = 0
  WinkelGebäudeMündung_beta
                                            = 61
  AbstandGebäudeMündung_1_A
                                            = 13.6
  Hang lage
                                            = nein
  HöhendifferenzZumEinzelgebäude_Delta_h
                                            = 0
  GeschlosseneBauweise
                                            = nein
Berechnung von H_A2
G1g. 16
  1_eff
                                            = 37.2
Glg. 15
1_RZ
                                            = 47.5
G1g. 18
                                            = 0.96
  р
  a 1 pha
                                            = 0
G1g. 7
                                            = 0
G1g. 6
  H_2V
                                            = 1.8
G1g. 17
  H S2
                                            = 24.7
G1g. 19
                                            = 27.7
H_E für VorgelagertesGebäude7 wird nicht berücksichtigt, da für die oberste Fensterkante Null eingegeben wurde.
Es wird damit für VorgelagertesGebäude7 kein Fenster oder Lüftungsschlitz im Einwirkungsbereichs berücksichtigt.
  H E2
                                            = 0
[VorgelagertesGebäude8]
                                            = 15
  Länge_1
  Breite b
                                            = 7.5
  Traufhöhe H Traufe
                                            = 9
  Firsthöhe_H_First
                                            = 9
                                            = Flachdach
  Dachform
  Dachhöhe H Dach
                                            = 0
                                            = 7.5
  BreiteGiebelseite b
  H_2V_mit_H_A1F_begrenzen
                                            = nein
  H\ddot{o}heObersteFensterkante\_H\_F
                                            = 0
  WinkelGebäudeMündung_beta
                                            = 44
  AbstandGebäudeMündung_1_A
                                            = 15.7
  Hang lage
                                            = nein
  HöhendifferenzZumEinzelgebäude_Delta_h
  GeschlosseneBauweise
                                            = nein
Berechnung von H_A2
G1g. 16
                                            = 15.8
  1_eff
G1g. 15
  1_RZ
                                            = 19.2
G1g. 18
                                            = 0.58
  р
  a lpha
                                            = 0
G1g. 7
                                            = 0
G1a. 6
                                            = 1.4
  H_2V
Glg. 17
  H_S2
                                            = 5
G1g. 19
  H_A2
                                            = 8
H_E für VorgelagertesGebäude8 wird nicht berücksichtigt, da für die oberste Fensterkante Null eingegeben wurde.
Es wird damit für VorgelagertesGebäude8 kein Fenster oder Lüftungsschlitz im Einwirkungsbereichs berücksichtigt.
[VorgelagertesGebäude9]
                                            = 17
  Länge_1
  Breite b
                                            = 9.3
  Traufhöhe_H_Traufe
                                            = 11
  Firsthöhe_H_First
                                            = 15
  Dachform
                                            = SymSatteldach
  Dachhöhe_H_Dach
  BreiteGiebelseite b
  BreiteDachhälfte b1
                                            = 4.7
  HöheObersteFensterkante H F
  WinkelGebäudeMündung_beta
                                            = 69
  AbstandGebäudeMündung_1_A
                                            = 14.5
  Hang lage
                                            = nein
  {\it H\"{o}hendifferenzZumEinzelgeb\"{a}ude\_Delta\_h}
                                            = 0
  GeschlosseneBauweise
                                            = nein
Berechnung von H_A2
G1g. 16
                                            = 19.2
  1 eff
G1g. 15
```



```
1_RZ
                                            = 25.5
G1g. 18
                                            = 0.82
 р
  alpha
                                             = 41
Faktor f interpoliert aus Tabelle 2 Abschnitt 6.2.1.2.2
G1g. 2
  H_2V
                                            = 2.2
G1g. 17
  H_S2
                                            = 13.1
G1g. 19
                                            = 16.1
H E für VorgelagertesGebäude9 wird nicht berücksichtigt, da für die oberste Fensterkante Null eingegeben wurde.
Es wird damit für VorgelagertesGebäude9 kein Fenster oder Lüftungsschlitz im Einwirkungsbereichs berücksichtigt.
[VorgelagertesGebäude10]
  Länge_1
                                            = 20
  Breite b
                                            = 20
  Traufhöhe_H_Traufe
                                            = 21
  Firsthöhe_H_First
                                            = 21
                                            = Flachdach
  Dachform
  Dachhöhe H Dach
                                            = 0
  BreiteGiebelseite b
                                            = 20
  H 2V mit_H_A1F_begrenzen
                                            = nein
  HöheObersteFensterkante H F
                                            = 0
  WinkelGebäudeMündung_beta
                                            = 18
  AbstandGebäudeMündung_1_A
                                            = 46
  Hang lage
                                            = nein
  {\it H\"{o}hendifferenzZumEinzelgeb\"{a}ude\_Delta\_h}
                                            = 0
  GeschlosseneBauweise
Berechnung von H_A2
G1g. 16
  1_eff
                                            = 25.2
G1g. 15
  ĭ_RZ
                                            = 33.9
VorgelagertesGebäude10 wird nicht berücksichtigt, da Abstand zur Mündung größer gleich Länge seiner RZ.
H_E für VorgelagertesGebäude10 wird nicht berücksichtigt, da für die oberste Fensterkante Null eingegeben wurde.
Es wird damit für VorgelagertesGebäude10 kein Fenster oder Lüftungsschlitz im Einwirkungsbereichs berücksichtigt.
  H_E2
                                            = 0
  alpha
G1g. 7
G1g. 6
  H_2V
                                            = 3.6
[VorgelagertesGebäude11]
  Länge_1
                                            = 42.5
  Breite b
                                            = 25
  Traufhöhe_H_Traufe
                                            = 25
  Firsthöhe_H_First
                                            = 25
  Dachform
                                            = Flachdach
  Dachhöhe H Dach
                                            = 0
  BreiteGiebelseite b
                                            = 25
  H 2V mit_H_A1F_begrenzen
                                            = nein
  HöheObersteFensterkante H F
                                            = 0
  WinkelGebäudeMündung_beta
                                            = 1
  AbstandGebäudeMündung_1_A
                                            = 106.6
                                            = nein
  {\it H\"{o}hendifferenzZumEinzelgeb\"{a}ude\_Delta\_h}
                                            = 0
  GeschlosseneBauweise
                                            = nein
Berechnung von H A2
Glg. 16
l_eff
Glg. 15
                                            = 25.7
  1 RZ
                                            = 35.8
VorgelagertesGebäude11 wird nicht berücksichtigt, da Abstand zur Mündung größer gleich Länge seiner RZ.
H_E für VorgelagertesGebäude11 wird nicht berücksichtigt, da das Gebäude außerhalb des Einwirkungsbereichs des Schornsteins liegt.
  H_E2
                                            = 0
  a 1pha
G1g. 7
                                            = 0
G1g. 6
  H 2V
                                            = 4.5
[\,Vorge\,lagertesGeb\"{a}ude\,12\,]
                                            = 55 5
  Länge_1
  Breite b
                                            = 20
  Traufhöhe_H_Traufe
                                            = 9
                                            = 9
  Firsthöhe_H_First
                                            = Flachdach
  Dachform
  Dachhöhe H Dach
                                            = 0
  BreiteGiebelseite b
                                            = 20
```




```
H_2V_mit_H_A1F_begrenzen
                                            = 0
  HöheObersteFensterkante_H_F
  WinkelGebäudeMündung_beta
                                            = 4
  AbstandGebäudeMündung_1_A
                                            = 147.5
  Hang lage
                                            = nein
  H\"{o}hend if ferenz Zum Einzelgeb \"{a}ude\_Delta\_h
                                            = 0
  GeschlosseneBauweise
                                            = nein
Berechnung von H_A2
G1g. 16
  1_eff
                                            = 23.8
G1g. 15
  1 RZ
                                            = 25.1
VorgelagertesGebäude12 wird nicht berücksichtigt, da Abstand zur Mündung größer gleich Länge seiner RZ.
H_E für VorgelagertesGebäude12 wird nicht berücksichtigt, da das Gebäude außerhalb des Einwirkungsbereichs des Schornsteins liegt.
 H E2
                                            = 0
                                            = 0
  alpha
G1g. 7
 f
                                            = 0
G1g. 6
  H_2V
                                            = 3.6
[VorgelagertesGebäude13]
                                            = 33.1
  Länge 1
                                            = 30.5
  Breite b
  Traufhöhe_H_Traufe
                                            = 25
  Firsthöhe_H_First
                                            = 25
  Dachform
                                            = Flachdach
  Dachhöhe H Dach
                                            = 0
  BreiteGiebelseite b
                                            = 30.5
  H_2V_mit_H_A1F_begrenzen
                                            = nein
  H\ddot{o}heObersteFensterkante\_H\_F
                                            = 0
  WinkelGebäudeMündung beta
                                            = 86
  AbstandGebäudeMündung_1_A
                                            = 76.3
  Hang lage
                                            = nein
  HöhendifferenzZumEinzelgebäude_Delta_h
                                            = 0
  GeschlosseneBauweise
                                            = nein
Berechnung von H_A2
G1g. 16
  1_eff
                                            = 35.1
G1g. 15
  1 RZ
                                            = 45.5
VorgelagertesGebäude13 wird nicht berücksichtigt, da Abstand zur Mündung größer gleich Länge seiner RZ.
H_E für VorgelagertesGebäude13 wird nicht berücksichtigt, da das Gebäude außerhalb des Einwirkungsbereichs des Schornsteins liegt.
  H E2
  alpha
                                            = 0
G1g. 7
                                            = 0
G1g. 6
  H_2V
                                            = 5.6
[VorgelagertesGebäude14]
                                            = 33.1
  Länge 1
  Breite b
                                            = 33
  Traufhöhe_H_Traufe
                                            = 33
  Firsthöhe_H_First
                                            = 33
  Dachform
                                            = Flachdach
  Dachhöhe H Dach
                                            = 0
  BreiteGiebelseite_b
                                            = 33
  H_2V_mit_H_A1F_begrenzen
                                            = nein
  HöheObersteFensterkante_H_F
                                            = 0
  WinkelGebäudeMündung_beta
                                            = 84
  AbstandGebäudeMündung 1 A
                                            = 43.5
  Hang lage
                                            = nein
  HöhendifferenzZumEinzelgebäude_Delta_h
                                            = 0
  GeschlosseneBauweise
                                            = nein
Berechnung von H_A2
Glg. 16
  1_eff
                                            = 36.4
G1g. 15
  1_RZ
                                            = 49.9
G1g. 18
                                            = 0.49
 р
  alpha
                                            = 0
G1g. 7
                                            = 0
G1g. 6
 H_2V
                                            = 6
G1g. 17
  H_S2
                                            = 18.1
G1g. 19
                                            = 21.1
H E<sup>-</sup>für VorgelagertesGebäude14 wird nicht berücksichtigt, da für die oberste Fensterkante Null eingegeben wurde.
Es wird damit für VorgelagertesGebäude14 kein Fenster oder Lüftungsschlitz im Einwirkungsbereichs berücksichtigt.
```



```
H E2
                                          = 0
[VorgelagertesGebäude15]
                                          = 11.6
  Länge_1
  Breite b
                                          = 6.4
  {\bf Traufh\ddot{o}he\_H\_Traufe}
                                          = 35
                                          = 35
  Firsthöhe_H_First
  Dachform
                                          = Flachdach
  Dachhöhe_H_Dach
                                          = 0
  BreiteGiebelseite_b
                                          = 6.4
  H_2V_mit_H_A1F_begrenzen
                                          = nein
  HöheObersteFensterkante_H_F
                                          = 0
  WinkelGebäudeMündung beta
                                          = 6
  AbstandGebäudeMündung_1_A
                                          = 54
  Hang lage
                                          = nein
  {\it H\"{o}hendifferenz Zum Einzelgeb\"{a}ude\_Delta\_h}
                                         = 0
  GeschlosseneBauweise
                                          = nein
Berechnung von H_A2
G1g. 16
  1_eff
                                          = 7.6
G1g. 15
  1 RZ
                                          = 12.6
VorgelagertesGebäude15 wird nicht berücksichtigt, da Abstand zur Mündung größer gleich Länge seiner RZ.
H E für VorgelagertesGebäude15 wird nicht berücksichtigt, da das Gebäude außerhalb des Einwirkungsbereichs des Schornsteins liegt.
 _H E2
                                          = 0
  alpha
                                          = 0
G1g. 7
                                          = 0
G1g. 6
  H_2V
                                          = 1.2
[VorgelagertesGebäude16]
  Länge 1
                                          = 6.2
  Breite b
                                          = 6.2
  Traufhöhe_H_Traufe
                                          = 35
  Firsthöhe_H_First
                                          = 35
  Dachform
                                          = Flachdach
  Dachhöhe H Dach
                                          = 0
  BreiteGiebelseite b
                                          = 6.2
  H_2V_mit_H_A1F_begrenzen
                                          = nein
  H\ddot{o}heObersteFensterkante\_H\_F
                                          = 0
  WinkelGebäudeMündung beta
                                          = 5
  AbstandGebäudeMündung_1_A
                                          = 68.4
  Hang lage
                                          = nein
  HöhendifferenzZumEinzelgebäude_Delta_h
                                        = 0
  {\tt Geschlossene Bauweise}
                                          = nein
Berechnung von H_A2
G1g. 16
  1_eff
                                          = 6.7
G1g. 15
  1 RZ
VorgelagertesGebäude16 wird nicht berücksichtigt, da Abstand zur Mündung größer gleich Länge seiner RZ.
H E für VorgelagertesGebäude16 wird nicht berücksichtigt, da das Gebäude außerhalb des Einwirkungsbereichs des Schornsteins liegt.
 H E2
                                          = 0
                                          = 0
 a 1pha
G1g. 7
                                          = 0
G1g. 6
  H_2V
                                          = 1.1
Berechnung der Mündungshöhe H A für den ungestörten Abtransport der Abgase...
                                          = 28.5
Berechnung der Mündungshöhe H_E für die ausreichende Verdünnung der Abgase...
freistehender Schornstein (Firsthöhe kleiner oder gleich 1 m)!
               ---- Mündungshöhe über Grund
```

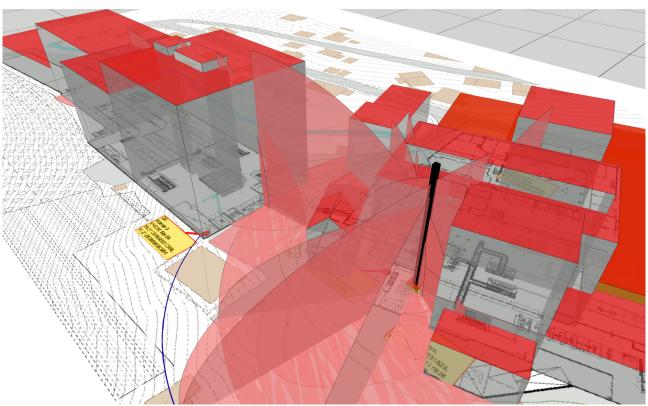



Abb. 6: Schornstein Q1 und gebäudebedingte Rezirkulationszonen | Schrägsicht (Blick nach Nordwesten) | Kartenhintergrund: Lageplanauszug

Als Einwirkungsbereich gilt hier ein Kreis mit einem Radius von 50 m. Die Oberkanten der Fenster in den umliegenden Wohngebäuden sind sämtlich < 15 m ü.Gr., weshalb diesbezüglich keine Korrekturen vorzunehmen sind.

Damit sind infolge der unmittelbaren baulichen Gegebenheiten aufgerundet 30 m über Grund für die Mündungshöhe des Schornsteins Q1 notwendig.

4.2 Wanne 3 mit Q2

Für Q2 wurde das in Abb. 7 dargestellte Modell vorgelagerter Gebäude zugrunde gelegt.

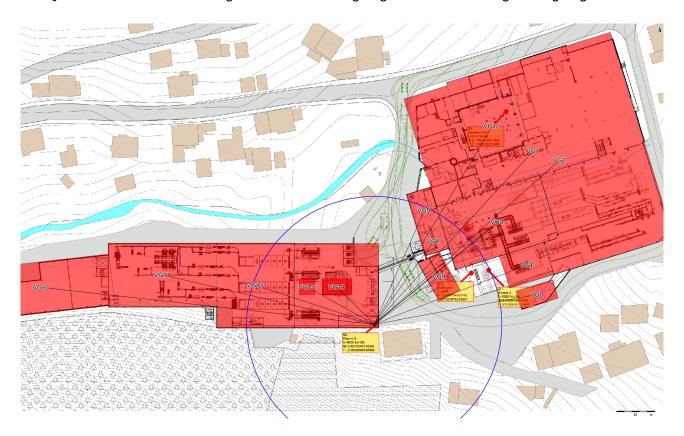
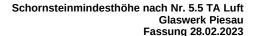
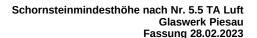



Abb. 7: Modell vorgelagerter Gebäude mit 50 m - Einwirkungsbereich (blauer Kreis) um Q2 | Die Beschriftung zu VG7 wurde softwareseitig unterdrückt. | Kartenhintergrund: Lageplanauszug

Die Eingangsdaten und Ergebnisse sind dem nachfolgenden Protokoll und Abb. 8 zu entnehmen.

```
******* Programmbibliothek VDI 3781 Blatt 4 - Ableitbedingungen für Abgase ********************
  Programmversion
                                           = 1.0.6.5
  dll-Version
                                           = 1.0.4.6
[Start]
                                           = 01.12.2022 16:21
  Datum Rechnung
                                           = C:\WinSTACC\VDI_Input.ini
  Steuerdatei
  Längenangaben
                                           = Meter
  Winke langaben
                                           = Grad
  Leistungsangaben
                                           = Kilowatt
[EmittierendeAnlage]
  Anlagentyp
                                           = Keine Feuerungsanlage
  Input_R
                                           = 50
  {\bf Input\_H\_B}
                                           = 5
  Input H Ue
                                           = 3
H_Ü durch Benutzer vorgegeben (keine Feuerungsanlage / andere Anlage)
R durch Benutzer vorgegeben (keine Feuerungsanlage / andere Anlage)
[Einzelgebäude]
  Länge_1
                                           = 33
  Breite b
                                           = 33
  Traufhöhe_H_Traufe
                                           = 33
  Firsthöhe_H_First
                                           = 33
  Dachform
                                           = Flachdach
  Dachhöhe_H_Dach
                                           = 0
  BreiteGiebelseite_b
                                           = 33
  HorizontalerAbstandMündungFirst_a
Berechnung von H A1...
```

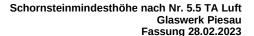




```
H_A1F
                                             = 16.4
                                             = 0
  а
                                             = 0
  a lpha
G1g. 5
 H_1
                                             = 6
G1g. 7
                                             = 0
G1g. 6
  H_2
                                             = 6
G1g. 3
 H_S1
G1g. 4
  H A1
                                             = 9
Berechnung von H_E1...
                                             = 0
  H E1
[VorgelagertesGebäude1]
  Länge_1
                                             = 85
  Breite_b
                                             = 68
  Traufhöhe_H_Traufe
                                             = 11
  Firsthöhe H First
                                             = 11
  Dachform
                                             = Flachdach
  Dachhöhe H Dach
                                             = 0
                                             = 68
  BreiteGiebelseite b
  H_2V_mit_H_A1F_begrenzen
                                             = nein
  H\ddot{o}he 0 berste Fensterkante\_H\_F
                                             = 0
                                             = 30
  WinkelGebäudeMündung_beta
  AbstandGebäudeMündung_1_A
                                             = 42.9
  Hang lage
                                             = nein
  {\it H\"{o}hendifferenz Zum Einzelgeb \"{a}ude\_Delta\_h}
                                             = 0
  GeschlosseneBauweise
                                             = nein
Berechnung von H_A2
Glg. 16
l_eff
                                             = 101.4
G1g. 15
  1_RZ
                                             = 53.7
G1g. 18
                                             = 0.6
 р
  a 1pha
                                             = 0
G1g. 7
G1g. 6
  H 2V
                                             = 12.4
G1g. 17
 H_S2
                                             = -18.9
G1g. 19
 H A2
                                             = -15.9
H_E für VorgelagertesGebäude1 wird nicht berücksichtigt, da für die oberste Fensterkante Null eingegeben wurde.
Es wird damit für VorgelagertesGebäude1 kein Fenster oder Lüftungsschlitz im Einwirkungsbereichs berücksichtigt.
                                             = 0
[VorgelagertesGebäude2]
  Länge_1
                                             = 84
  Breite b
                                             = 67
                                             = 9
  Traufhöhe_H_Traufe
  {\it Firsth\"ohe\_H\_First}
                                             = 9
  Dachform
                                             = Flachdach
  Dachhöhe_H_Dach
                                             = 0
  BreiteGiebelseite_b
                                             = 67
  H_2V_mit_H_A1F_begrenzen
                                             = nein
                                             = 0
  HöheObersteFensterkante H F
                                             = 66
  WinkelGebäudeMündung beta
  AbstandGebäudeMündung_1_A
                                             = 60.2
  Hang lage
                                             = nein
  {\bf H\"{o}hend\"{i}fferenzZumEinzelgeb\"{a}ude\_Delta\_h}
                                             = 0
  GeschlosseneBauweise
                                             = nein
Berechnung von H_A2
G1g. 16
  1_eff
                                             = 104
G1g. 15
  1_RZ
VorgelagertesGebäude2 wird nicht berücksichtigt, da Abstand zur Mündung größer gleich Länge seiner RZ.
H_E für VorgelagertesGebäude2 wird nicht berücksichtigt, da das Gebäude außerhalb des Einwirkungsbereichs des Schornsteins liegt.
  H E2
                                             = 0
                                             = 0
 a 1 pha
G1g. 7
                                             = 0
G1g. 6
  H_2V
                                             = 12.2
[VorgelagertesGebäude3]
                                             = 42
  Länge 1
```



```
Breite_b
                                            = 26
  Traufhöhe_H_Traufe
                                            = 21
  Firsthöhe_H_First
                                            = 21
                                            = Flachdach
  Dachform
  Dachhöhe H Dach
                                            = 0
  BreiteGiebelseite b
                                            = 26
  {\tt H\_2V\_mit\_H\_A1F\_begrenzen}
                                            = nein
  HöheObersteFensterkante_H_F
                                            = 0
  WinkelGebäudeMündung_beta
                                            = 23
  AbstandGebäudeMündung_1_A
                                            = 40
  Hang lage
                                            = nein
  HöhendifferenzZumEinzelgebäude_Delta_h
  GeschlosseneBauweise
                                            = nein
Berechnung von H A2
Glg. 16
 1_eff
                                            = 40.3
G1g. 15
  1_RZ
                                            = 47.7
G1g. 18
 р
                                            = 0.54
  a 1pha
                                            = 0
G1g. 7
                                            = 0
G1q. 6
 H_2V
                                            = 4.7
G1g. 17
 H_S2
                                            = -19
G1g. 19
  H A2
                                            = -16
H_E für VorgelagertesGebäude3 wird nicht berücksichtigt, da für die oberste Fensterkante Null eingegeben wurde.
Es wird damit für VorgelagertesGebäude3 kein Fenster oder Lüftungsschlitz im Einwirkungsbereichs berücksichtigt.
[VorgelagertesGebäude4]
                                            = 18
  Länge_1
                                            = 13
  Breite b
  {\bf Traufh\"ohe\_H\_Traufe}
                                            = 25
  Firsthöhe_H_First
                                            = 25
  Dachform
                                            = Flachdach
  Dachh\"{o}he_H_Dach
                                            = 0
  BreiteGiebelseite_b
                                            = 13
  H 2V mit H A1F begrenzen
                                            = nein
  HöheObersteFensterkante H F
  WinkelGebäudeMündung beta
                                            = 4
  AbstandGebäudeMündung_1_A
                                            = 55
  Hanglage
                                            = nein
  HöhendifferenzZumEinzelgebäude_Delta_h
                                            = 0
  GeschlosseneBauweise
                                            = nein
Berechnung von H A2
G1g. 16
  1_eff
                                            = 14.2
G1g. 15
                                            = 21.8
VorgelagertesGebäude4 wird nicht berücksichtigt, da Abstand zur Mündung größer gleich Länge seiner RZ.
H_E für VorgelagertesGebäude4 wird nicht berücksichtigt, da das Gebäude außerhalb des Einwirkungsbereichs des Schornsteins liegt.
 H E2
                                            = 0
  alpha
                                            = 0
G1g. 7
                                            = 0
G1g. 6
  H_2V
                                            = 2.4
[VorgelagertesGebäude5]
  Länge 1
                                            = 16
  Breite b
                                            = 10
  Traufhöhe H Traufe
                                            = 25
  Firsthöhe_H_First
                                            = 25
  Dachform
                                            = Flachdach
  Dachhöhe_H_Dach
                                            = 0
  BreiteGiebelseite_b
                                            = 10
  H_2V_mit_H_A1F_begrenzen
                                            = nein
  HöheObersteFensterkante_H_F
                                            = 41
  WinkelGebäudeMündung beta
  AbstandGebäudeMündung_1_A
                                            = 41.1
  Hang lage
                                            = nein
  {\bf H\"{o}hendifferenzZumEinzelgeb\"{a}ude\_Delta\_h}
                                            = 0
  GeschlosseneBauweise
                                            = nein
Berechnung von H_A2
G1g. 16
  1_eff
                                            = 18
G1g. 15
```

VorgelagertesGebäude5 wird nicht berücksichtigt, da Abstand zur Mündung größer gleich Länge seiner RZ.




```
H_E für VorgelagertesGebäude5 wird nicht berücksichtigt, da für die oberste Fensterkante Null eingegeben wurde.
Es wird damit für VorgelagertesGebäude5 kein Fenster oder Lüftungsschlitz im Einwirkungsbereichs berücksichtigt.
                                            = 0
  a lpha
G1g. 7
                                           = 0
G1g. 6
  H_2V
                                           = 1.8
[VorgelagertesGebäude6]
  Länge_1
                                            = 10
  Breite b
                                           = 9
                                           = 27
  Traufhöhe H Traufe
  Firsthöhe_H_First
                                           = 27
  Dachform
                                           = Flachdach
  Dachhöhe H Dach
                                           = 0
  BreiteGiebelseite b
                                           = 9
  H_2V_mit_H_A1F_begrenzen
                                           = nein
  HöheObersteFensterkante H F
                                           = 0
  WinkelGebäudeMündung_beta
                                           = 37
  AbstandGebäudeMündung_1_A
                                           = 33.8
  Hang lage
                                           = nein
  HöhendifferenzZumEinzelgebäude_Delta_h
  GeschlosseneBauweise
                                           = nein
Berechnung von H_A2
G1g. 16
  1_eff
                                           = 13.2
G1g. 15
  1 RZ
                                            = 20.6
VorgelagertesGebäude6 wird nicht berücksichtigt, da Abstand zur Mündung größer gleich Länge seiner RZ.
H_E für VorgelagertesGebäude6 wird nicht berücksichtigt, da für die oberste Fensterkante Null eingegeben wurde.
Es wird damit für VorgelagertesGebäude6 kein Fenster oder Lüftungsschlitz im Einwirkungsbereichs berücksichtigt.
  H E2
                                           = 0
  alpha
                                           = 0
G1g. 7
                                           = 0
 f
  H_2V
                                           = 1.6
[VorgelagertesGebäude7]
                                           = 37
  Länge_1
  Breite b
                                           = 10
  Traufhöhe H Traufe
                                           = 25
  Firsthöhe H First
                                           = 25
  Dachform
                                           = Flachdach
  Dachhöhe H Dach
                                           = 0
                                           = 10
  BreiteGiebelseite b
  H_2V_mit_H_A1F_begrenzen
                                           = nein
  HöheObersteFensterkante H F
                                           = 0
  WinkelGebäudeMündung_beta
                                           = 22
  AbstandGebäudeMündung_1_A
                                           = 49.9
  Hang lage
                                           = nein
  HöhendifferenzZumEinzelgebäude Delta h
  GeschlosseneBauweise
                                            = nein
Berechnung von H_A2
G1g. 16
  1_eff
                                           = 23.1
G1g. 15
  1_RZ
                                           = 32.9
VorgelagertesGebäude7 wird nicht berücksichtigt, da Abstand zur Mündung größer gleich Länge seiner RZ.
H_E für VorgelagertesGebäude7 wird nicht berücksichtigt, da für die oberste Fensterkante Null eingegeben wurde.
Es wird damit für VorgelagertesGebäude7 kein Fenster oder Lüftungsschlitz im Einwirkungsbereichs berücksichtigt.
                                           = 0
  H E2
  alpha
                                           = 0
G1g. 7
  f
                                           = 0
G1g. 6
  H 2V
                                           = 1.8
[VorgelagertesGebäude8]
                                           = 15
  Länge_1
  Breite b
                                           = 7.5
  Traufhöhe H Traufe
                                           = 9
  Firsthöhe_H_First
                                           = 9
  Dachform
                                           = Flachdach
  Dachhöhe H Dach
                                           = 0
  BreiteGiebelseite b
                                           = 7.5
  H_2V_mit_H_A1F_begrenzen
                                           = nein
  HöheObersteFensterkante_H_F
                                           = 0
  WinkelGebäudeMündung_beta
                                           = 7
                                           = 57.2
  AbstandGebäudeMündung_1_A
  Hang lage
                                            = nein
  HöhendifferenzZumEinzelgebäude Delta h
```



```
GeschlosseneBauweise
                                            = nein
Berechnung von H_A2
G1g. 16
                                           = 9.3
  1_eff
G1g. 15
 1 RZ
                                           = 12.9
VorgelagertesGebäude8 wird nicht berücksichtigt, da Abstand zur Mündung größer gleich Länge seiner RZ.
H_E für VorgelagertesGebäude8 wird nicht berücksichtigt, da das Gebäude außerhalb des Einwirkungsbereichs des Schornsteins liegt.
  H E2
                                           = 0
  alpha
G1g. 7
                                           = 0
G1g. 6
 H_2V
                                           = 1.4
[VorgelagertesGebäude9]
                                           = 17
  Länge_1
  Breite_b
                                           = 9.3
  Traufhöhe_H_Traufe
                                           = 11
  Firsthöhe_H_First
                                           = 15
  Dachform
                                           = SymSatteldach
  Dachhöhe H Dach
  BreiteGiebelseite b
                                           = 9.3
  BreiteDachhälfte b1
                                           = 4.7
  HöheObersteFensterkante H F
                                           = 0
  WinkelGebäudeMündung_beta
                                           = 82
  AbstandGebäudeMündung_1_A
                                           = 26.9
  Hang lage
                                           = nein
  HöhendifferenzZumEinzelgebäude_Delta_h
                                           = 0
  GeschlosseneBauweise
Berechnung von H_A2
G1g. 16
1_eff
G1g. 15
                                           = 18.1
  1 RZ
                                           = 24.4
VorgelagertesGebäude9 wird nicht berücksichtigt, da Abstand zur Mündung größer gleich Länge seiner RZ.
H_E für VorgelagertesGebäude9 wird nicht berücksichtigt, da für die oberste Fensterkante Null eingegeben wurde.
Es wird damit für VorgelagertesGebäude9 kein Fenster oder Lüftungsschlitz im Einwirkungsbereichs berücksichtigt.
  H E2
                                           = 0
  alpha
                                           = 41
Faktor f interpoliert aus Tabelle 2 Abschnitt 6.2.1.2.2
G1g. 2
  H 2V
                                           = 2.2
[VorgelagertesGebäude10]
                                           = 20
  Länge_1
  Breite b
                                           = 20
  Traufhöhe_H_Traufe
                                           = 21
  Firsthöhe_H_First
                                           = 21
  Dachform
                                           = Flachdach
  Dachhöhe H Dach
  BreiteGiebelseite b
                                           = 20
  H_2V_mit_H_A1F_begrenzen
                                           = nein
  HöheObersteFensterkante H F
                                           = 0
  WinkelGebäudeMündung_beta
                                           = 42
  AbstandGebäudeMündung_1_A
                                           = 76.8
  Hang lage
                                           = nein
  HöhendifferenzZumEinzelgebäude_Delta_h
                                           = 0
  GeschlosseneBauweise
                                            = nein
Berechnung von H_A2
G1g. 16
  1_eff
                                           = 28.2
G1g. 15
1_RZ
                                           = 37
VorgelagertesGebäude10 wird nicht berücksichtigt, da Abstand zur Mündung größer gleich Länge seiner RZ.
H_E für VorgelagertesGebäude10 wird nicht berücksichtigt, da das Gebäude außerhalb des Einwirkungsbereichs des Schornsteins liegt.
 H E2
                                           = 0
  alpha
                                           = 0
G1g. 7
                                           = 0
G1g. 6
  H 2V
                                           = 3.6
[VorgelagertesGebäude11]
                                           = 42.5
  Länge_1
  Breite b
                                           = 25
  Traufhöhe H Traufe
                                           = 25
  Firsthöhe_H_First
                                           = 25
  Dachform
                                           = Flachdach
  Dachhöhe_H_Dach
                                           = 0
                                           = 25
  BreiteGiebelseite b
  H 2V mit H A1F begrenzen
                                           = nein
```



```
H\ddot{o}heObersteFensterkante\_H\_F
                                            = 0
  WinkelGebäudeMündung_beta
                                            = 13
  AbstandGebäudeMündung 1 A
                                            = 63.3
  Hanglage
                                            = nein
  HöhendifferenzZumEinzelgebäude_Delta_h
                                            = 0
  GeschlosseneBauweise
                                            = nein
Berechnung von H_A2
G1g. 16
  1_eff
                                            = 33.9
G1g. 15
  1 RZ
                                            = 44.3
VorgelagertesGebäude11 wird nicht berücksichtigt, da Abstand zur Mündung größer gleich Länge seiner RZ.
H_E für VorgelagertesGebäude11 wird nicht berücksichtigt, da das Gebäude außerhalb des Einwirkungsbereichs des Schornsteins liegt.
  H E2
                                            = 0
                                            = 0
  alpha
G1g. 7
                                            = 0
G1g. 6
  H_2V
                                            = 4.5
[VorgelagertesGebäude12]
                                            = 55.5
  Länge 1
  Breite b
                                            = 20
  Traufhöhe H Traufe
                                            = 9
                                            = 9
  Firsthöhe_H_First
  Dachform
                                            = Flachdach
  Dachhöhe_H_Dach
                                            = 0
  BreiteGiebelseite_b
                                            = 20
  H_2V_mit_H_A1F_begrenzen
                                            = nein
  HöheObersteFensterkante_H_F
                                            = 0
  WinkelGebäudeMündung_beta
                                            = 13
  AbstandGebäudeMündung 1 A
                                            = 102.6
  Hang lage
                                            = nein
  {\bf H\"{o}hendifferenzZumEinzelgeb\"{a}ude\_Delta\_h}
                                            = 0
  GeschlosseneBauweise
                                            = nein
Berechnung von H_A2
G1g. 16
  1_eff
                                            = 32
G1g. 15
  1_RZ
                                            = 29.6
VorgelagertesGebäude12 wird nicht berücksichtigt, da Abstand zur Mündung größer gleich Länge seiner RZ.
H E für VorgelagertesGebäude12 wird nicht berücksichtigt, da das Gebäude außerhalb des Einwirkungsbereichs des Schornsteins liegt.
 H E2
                                            = 0
  alpha
G1g. 7
                                            = 0
 f
G1g. 6
  H_2V
                                            = 3.6
[VorgelagertesGebäude13]
  Länge_1
                                            = 33.1
  Breite b
                                            = 30.5
  Traufhöhe H Traufe
                                            = 27
  Firsthöhe_H_First
                                            = 27
  Dachform
                                            = Flachdach
  Dachhöhe H Dach
                                            = 0
                                            = 30.5
  BreiteGiebelseite b
  H_2V_mit_H_A1F_begrenzen
                                            = nein
  H\ddot{o}heObersteFensterkante\_H\_F
                                            = 0
  WinkelGebäudeMündung_beta
                                            = 72
  AbstandGebäudeMündung_1_A
                                            = 32.8
  Hang lage
                                            = nein
  HöhendifferenzZumEinzelgebäude_Delta_h
                                            = 0
  GeschlosseneBauweise
                                            = nein
Berechnung von H_A2
G1g. 16
                                            = 40.9
  1_eff
G1g. 15
  1_RZ
                                            = 51.9
G1g. 18
                                            = 0.78
 р
  alpha
                                            = 0
G1g. 7
                                            = 0
G1q. 6
 H_2V
                                            = 5.6
G1g. 17
                                            = -7.8
 H_S2
G1g. 19
H_E für VorgelagertesGebäude13 wird nicht berücksichtigt, da für die oberste Fensterkante Null eingegeben wurde.
Es wird damit für VorgelagertesGebäude13 kein Fenster oder Lüftungsschlitz im Einwirkungsbereichs berücksichtigt.
```



```
[VorgelagertesGebäude14]
                                           = 11.6
  Länge 1
  Breite b
                                           = 6.4
  Traufhöhe_H_Traufe
                                           = 35
  Firsthöhe_H_First
                                           = 35
  Dachform
                                           = Flachdach
  Dachhöhe_H_Dach
                                           = 0
  BreiteGiebelseite b
                                           = 6.4
  H_2V_mit_H_A1F_begrenzen
                                           = nein
  HöheObersteFensterkante_H_F
                                           = 0
  WinkelGebäudeMündung_beta
                                           = 45
  AbstandGebäudeMündung_1_A
                                           = 16.2
  Hanglage
                                           = nein
  HöhendifferenzZumEinzelgebäude_Delta_h
                                           = 0
  {\tt Geschlossene Bauweise}
                                           = nein
Berechnung von H_A2
G1g. 16
  1_eff
                                           = 12.7
G1g. 15
  1_RZ
                                            = 20.4
G1g. 18
                                           = 0.61
 р
  alpha
                                           = 0
G1g. 7
                                           = 0
G1g. 6
 H_2V
                                           = 1.2
G1g. 17
  H_S2
                                            = -11
G1g. 19
                                           = -8
 H A2
H E für VorgelagertesGebäude14 wird nicht berücksichtigt, da für die oberste Fensterkante Null eingegeben wurde.
Es wird damit für VorgelagertesGebäude14 kein Fenster oder Lüftungsschlitz im Einwirkungsbereichs berücksichtigt.
                                           = 0
  H E2
[VorgelagertesGebäude15]
  Länge_1
                                           = 6.2
  Breite b
                                           = 6.2
  Traufhöhe_H_Traufe
                                           = 35
  Firsthöhe_H_First
                                           = 35
  Dachform
                                           = Flachdach
  Dachhöhe H Dach
  BreiteGiebelseite b
                                           = 6.2
  H_2V_mit_H_A1F_begrenzen
                                           = nein
  HöheObersteFensterkante H F
                                           = 0
                                           = 29
  WinkelGebäudeMündung_beta
  AbstandGebäudeMündung_1_A
                                           = 26.6
  Hang lage
                                           = nein
  {\tt H\"{o}hendifferenzZumEinzelgeb\"{a}ude\_Delta\_h}
                                          = 0
  GeschlosseneBauweise
                                           = nein
Berechnung von H_A2
G1g. 16
  1_eff
                                           = 8.4
G1g. 15
 1 RZ
                                           = 13.9
VorgelagertesGebäude15 wird nicht berücksichtigt, da Abstand zur Mündung größer gleich Länge seiner RZ.
H_E für VorgelagertesGebäude15 wird nicht berücksichtigt, da für die oberste Fensterkante Null eingegeben wurde.
Es wird damit für VorgelagertesGebäude15 kein Fenster oder Lüftungsschlitz im Einwirkungsbereichs berücksichtigt.
 H_E2
                                           = 0
  alpha
G1g. 7
                                           = 0
G1g. 6
  H_2V
                                           = 1.1
[Ergebnis]
Berechnung der Mündungshöhe H_A für den ungestörten Abtransport der Abgase...
  H_A
Berechnung der Mündungshöhe H_E für die ausreichende Verdünnung der Abgase...
                                           = 0
 H_E
  H M · Mündungshöhe über First
  ···· Mündungshöhe über Grund
                                           = 42
```


Abb. 8: Schornstein Q2 und gebäudebedingte Rezirkulationszonen | Schrägsicht (Blick nach Nordwesten) | Kartenhintergrund: Lageplanauszug

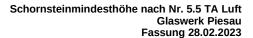
Als Einwirkungsbereich gilt ein Kreis mit einem Radius von 50 m. Die Oberkanten der Fenster in den umliegenden Wohngebäuden sind sämtlich < 15 m ü.Gr., weshalb diesbezüglich keine Korrekturen vorzunehmen sind.

Damit sind infolge der unmittelbaren baulichen Gegebenheiten 42 m über Grund für die Mündungshöhe des Schornsteins Q2 notwendig.

5 Anforderungen aus den Emissionen gemäß Nr. 5.5.2.2 TA Luft (BESMIN)

Maßstab für eine ausreichende Verdünnung der Abgase ist die maximale bodennahe Konzentration jedes emittierten, in Anhang 6 der TA Luft aufgeführten Stoffes in einer stationären Ausbreitungssituation. Die Schornsteinhöhe ist so zu bemessen, dass diese Konzentration den S-Wert nicht überschreitet.

In Tab. 1 sind maximal mögliche Schadstoffemissionen einer Schmelzwanne auf der Grundlage von Emissionswerten der TA Luft zusammengestellt, wobei die Abgasrandbedingungen (3500 m³i.N.tr./h | ca. 5000 m³i.B./h | tq = 55°C) anhand von Erfahrungswerten aus Messungen an einer vergleichbaren Anlage einer Kapazität von 75 t/d Schmelzleistung (vgl. [Lit. 10]) in konservativer Abschätzung hergeleitet wurden.


Allein aus dem Umstand, dass Emissionswerte in der TA Luft enthalten sind, resultiert keinesfalls zwangsläufig, dass auch entsprechende Emissionen auftreten. Diese können bereits durch die Wirksamkeit von Einrichtungen zur Emissionsminderung, die Zusammensetzung von Brenn- oder Einsatzstoffen oder die Prozessbedingungen in der Praxis mit ausreichender Sicherheit ausgeschlossen sein (vgl. 5.3.2.1 TA Luft).

Tab. 1 Schadstoffemissionen einer Schmelzwanne auf der Grundlage von Emissionswerten der TA Luft

Anforderungen der TAL 5.4.2.8.1a/2a	Bemerkung	S	Emissionskon- zentration	Q	Q/S	
für	mit Bezug zur Schornsteinhöhe	[mg/m³]	[mg/m³]	[kg/h]	[10e6 m³/h]	
NO2 0,3 kg je t geschmolzenes Glas	NOx vollständig als NO2 da kein brennstoffbedingtes NOx	0,10	250	0,87500	8,8	
SOx k.A. für Elektrowannen	Einzelfestlegung hier analog zu Q/S bei NO2	0,14	350	1,22500	8,8	
PM (Staub)	Standard	0,08	10	0,03500	0,4	
Hg im Staub	gilt bei Fremdscherbeneinsatz anzustre- ben ist jedoch ein Zielwert von 0,01 mg/m³	0,00013	0,05	0,00018	1,3	
Pb	Sonderregelung hebelt TAL 5.2.2 KI.II praktisch aus	0,0025	0,8	0,00280	1,1	
TAL 5.2.2 KI.II	Se zur Produktqualität erforderlich	0,05	3	0,01050	0,2	
TAL 5.2.2 KI.II+KI.III	liefert einen geringeren Beitrag als Stoffe nach TAL 5.2.2 KI.II	0,1	4	0,01400	0,1	
TAL 5.2.2 KI.I+KI.II+KI.III	TAL 5.2.2 KI.I+KI.III+KI.III liefert einen geringeren Beitrag als Stoffe nach TAL 5.2.2 KI.II		4	0,01400	0,1	
HF	Minimierungsgebot	0,0018	5	0,01750	9,7	
HCI	Minimierungsgebot	0,1	20	0,07000	0,7	
СО	kein brennstoffbedingtes CO	7,5	100	0,35000	0,0	
As innerhalb TAL 5.2.7.1.1 Kl.I	bei Ausschöpfung des Klassenwerts	0,00016	0,5	0,00175	10,9	
Cd innerhalb TAL 5.2.7.1.1 Kl.I bei Ausschöpfung des Klassenwerts		0,00013	0,5	0,00175	13,5	
Ni innerhalb TAL 5.2.7.1.1 KI.II	bei Ausschöpfung des Klassenwerts	0,00052	0,5	0,00175	3,4	
TI innerhalb TAL 5.2.2 Kl.I bei Ausschöpfung des Klassenwerts			0,01	0,00004	0,1	

Hierbei wurden insbesondere gemäß der Betreiberangaben folgende Sachverhalte berücksichtigt:

- Nitratläuterung findet nicht (mehr) statt.
- NOx | Konventionelle Brennstoffe werden im Normalbetrieb nicht eingesetzt, weshalb hier davon ausgegangen wird, dass die Stickstoffoxide praktisch sämtlich als Dioxid anfallen.
- SOx | Mit diesem Ansatz für die Emissionskonzentration resultieren lediglich solche Anforderungen zur Schornsteinhöhe, die nicht über die aus den Stickstoffoxiden hinausgehen. In der Praxis dürften deutlich geringere Emissionen zu erwarten sein.
- Cd | Z.B. für Färbung erforderliche Verbindungen werden nicht eingesetzt.
- Se | Der Emissionswert ist erh\u00f6ht, weil f\u00fcr die Produktqualit\u00e4t Selen erforderlich ist.

- Hg | Der Emissionswert gilt für den Einsatz von Fremdscherben und bezieht sich auf dessen Anteil im Staub. Zu gasförmigen bzw. filtergängigen Zustandsformen liegen keine Informationen vor.
- As, Cd, Ni, TI | Bei Ausschöpfung des Klassenwerts müssen die in den jeweiligen Stoffgruppen noch enthaltenen anderen Komponenten zwangsläufig entfallen. In der Praxis werden üblicherweise jedoch die Klassenwerte bei weitem nicht ausgeschöpft.
- TAL 5.2.7.1.1 KI.I | Die verwendeten Cobalt-Verbindungen sind nicht wasserlöslich und fallen daher nicht in diese Stoffgruppe. Arsen und Cadmium sind spezifisch geregelt. Andere Stoffe dieser Klasse werden nicht gehandhabt. Daher braucht diese Klasse bei der Schornsteinhöhenberechnung nicht als solche berücksichtigt werden.
- TAL 5.2.7.1.1 Kl.II bzw. Kl.III | Soweit Stoffe dieser Klassen vorkommen, ist die Relation zwischen dem Emissionswert und dem S-Wert niedriger als die in der o.g. Tabelle ersichtlichen, weshalb diesbezüglich nicht näher darauf eingegangen werden muss.

Aus Tab. 1 geht hervor, dass (nur) der Parameter Cd maßgeblich ist, soweit damit der Klassenwert der Emissionskonzentration ausschöpft wird.

Legt man jedoch die maximal möglichen Masseanteile der immissionsseitig begrenzten Metall-Verbindungen bzw. Metalle aus der ²ZGU-Inhaltsstoff-Analyse gemäß [Lit. 11] zugrunde, sind diesbezüglich deutlich niedrigere Emissionen zu erwarten (vgl. Tab.2).

Tab.2 maximal ³mögliche Emissionskonzentrationen für immissionsseitig begrenzte Metall-Verbindungen bzw. Metalle

	<u> </u>	
	maximaler Masseanteil gemäß	maximal ³ mögliche
	ZGU-Inhaltsstoff-Analyse	Emissionskonzentration [mg/m³]
As	0,0001	0,001
Pb	0,0004	0,004
Cd	0,0003	0,003
Ni	0,001	0,01
Hg	< 0,000005	< 0,000005
ΤΪ	0,0001	0,001

Aufgrund verschiedener Innendurchmesser im Mündungsniveau (dq = 1,0 m) der Schornsteine resultieren an Q1 und Q2 auch Unterschiede in der Abgasdynamik sowie bei den emissionsbedingten Anforderungen an die Schornsteinhöhe (vgl. Abb. 9).

Diese Analyse kann auch im Sinne der Nr. 5.3.2.1 TA Luft als Nachweis gelten, dass durch die Zusammensetzung der Einsatzstoffe sowie die Prozessbedingungen die betreffenden Emissionsbegrenzungen hinreichend eingehalten werden und damit Einzelmessungen nach Absatz 1 unterbleiben können.

Dies ist auch nur insoweit möglich, wie die betreffenden Stoffe tatsächlich anteilig mit dem Staub ausgetragen und nicht überproportional mit der Schmelze immobilisiert werden.

Stoff Cadmium	▼ S	1,3E-4	mg/m	1 ³			
missionsmassenstrom	eq	0,0017	kg/h				
nnendurchmesser	dq	0,40	m				
Austrittsgeschwindigkeit		11,1	m/s				
Austrittstemperatur	tq	55	°C				
Vasserbeladung	zq	Θ	kg/(k	g tr)			
Schornsteinhöhe berechnen							
Berechnete Schornsteinhöhe hb 9,3 m							
Durchgeführte Berechnur	ngen Zwi	schenerge	bnisse				
Stoff	S	eq	dq	vq	tq	zq	hb
Cadmium	1,3E-4	1,75E-03	1,0	1,8	55	0,0000	12,7
Cadmium	1.3E-4	1,75E-03	0,4	11,1	55	0,0000	9,3

Q1 mit dq = 1,0 m vq = 1,8 m/s Q2 mit dq = 0,4 m

vq = 11,1 m

Abb. 9: Eingangsdaten und Berechnungsergebnisse für Q1 und Q2 gemäß BESMIN

Für die gegebenen 4 Abgasrandbedingungen resultieren für Q1 mit dq = 1,0 m | vq = 1,8 m/s | tq = 55 $^{\circ}$ C also hb = 12,7 m und für Q2 mit dq = 0,4 m | vq = 11,1 m/s | tq = 55 $^{\circ}$ C also hb = 9,3 m.

Das heißt, die Ergebnisse sind nicht nur von den Emissionen abhängig sondern auch vom Innendurchmesser (dq) und den Abgasrandbedingungen (vq, tq).

Eine Verminderung des Innendurchmessers und die damit einhergehende Erhöhung der Austrittsgeschwindigkeit führt zwar zu einer geringeren emissionsbedingten Schornsteinhöhe jedoch nur in gewissen Grenzen auch zu einer niedrigeren Gesamthöhe unter Berücksichtigung von Bebauung und Bewuchs, wie weiter unten zu sehen sein wird.

Anforderungen aus Verdrängung des Windfelds durch Bebauung und Bewuchs im Umkreis sowie der geländebedingten Kavität gemäß Nr. 5.5.2.3 TA Luft

Die Bestimmung der Schornsteinhöhe nach Nummer 5.5.2.2 TA Luft setzt voraus, dass das Windfeld bei der Anströmung des Schornsteins nicht wesentlich durch geschlossene Bebauung und/oder geschlossenen Bewuchs nach oben verdrängt wird und dass die Schornsteinmündung nicht in einer geländebedingten Kavitätszone des Windfelds liegt.

Maßgeblich für die Verdrängung des Windfelds durch Bebauung oder Bewuchs ist das Innere eines Kreises um den Schornstein mit dem Radius der 15-fachen Schornsteinhöhe gemäß Nummer 5.5.2.2, mindestens aber mit dem Radius 150 m. Innerhalb dieses Kreises ist der Bereich mit geschlossener vorhandener oder nach einem Bebauungsplan zulässiger Bebauung oder geschlossenem Bewuchs zu ermitteln, der fünf Prozent der Fläche des genannten Kreises umfasst und in dem die Bebauung oder der Bewuchs die größte mittlere Höhe über Grund aufweist (sog. 5 %-Hürde). Dieser Betrag ist dann auf die nach Nummer 5.5.2.2 bestimmte Schornsteinhöhe zu addieren. Einzelstehende höhere Objekte werden hierbei 5vernachlässigt.

⁴ Hierbei wurde für das Mündungsniveau ein typischer Luftdruck von 932 hPa entsprechend der internationalen Höhenformel berücksichtigt.

Solche sind ggf. schon im Vorfeld nach VDI 3781 Bl.4 berücksichtigt worden.

Hierzu wurde ein Gebäudemodell nach dem in der Ausbreitungsrechnung nach TA Luft üblichen Verfahren mit folgenden Besonderheiten hergestellt (vgl Abb. 11):

- Über dem Basisniveau von 0 bis 3 m ü.Gr. hinaus wurde die vertikale Erstreckung bis zum Erreichen der baulichen Obergrenze alle 2 m gestuft.
- Sobald in einer Schicht der Flächenanteil von 5 % erreicht bzw. überschritten wird, wurden alle weiteren Gebäude, die nur bis in diese Schicht reichen, vernachlässigt, weil lediglich das höchste Niveau mit mindestens 5 % maßgebend ist.
- Für jeden Schornstein werden lediglich die Gebäude innerhalb des Kreisfläche mit dem Radius von 15 x hb ausgewertet.

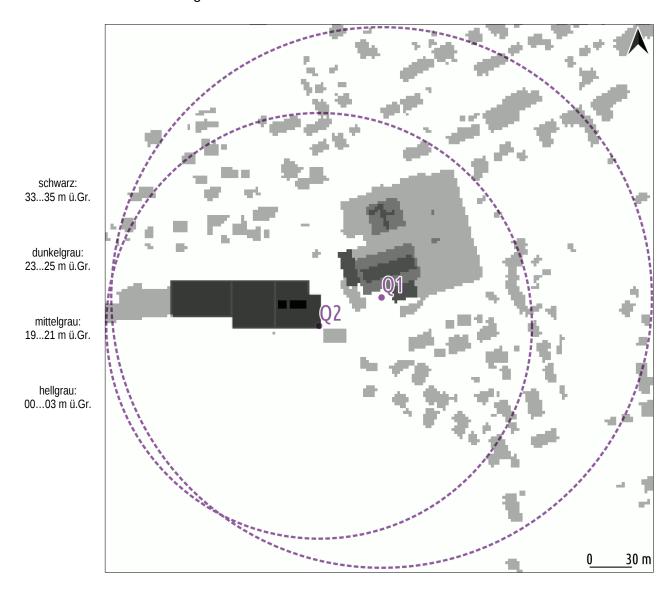


Abb. 10: Flächen mit Bebauung in verschieden Höhenstufen im Umkreis von 190,5 m (= 15 x 12,7 m) bei Q1 und 150 m Q2 um den jeweiligen Schornstein | UTM-Georeferenz: $387 \times 387 \text{ m}^2 \text{ von } \{32656740;5597544\} \text{ bis } \{32657127;5597931\}$

Die Flächenanteile mit Bebauung betragen in den Niveaus

- 19...21 m rund 5 % und 21...23 m rund 4 % im Umkreis von 190,5 bei Q1
- 23...25 m rund 6 % und 25...27 m rund 3 % im Umkreis von 150 bei Q2

weshalb für die Verdrängung des Windfelds (nur) infolge der Bebauung 21 m bei Q1 und 25 m bei Q2 anzusetzen sind.

Bewuchs kann jedoch nicht vernachlässigt werden. Dieser weist hier je nach Baumart, Alter, Schadensereignissen (wie z.B. Windbruch und Borkenkäferbefall), forstlicher Bewirtschaftung und Bestandsdichte keine einheitliche Höhe auf. Während die Spitzenhöhen einzelner Exemplare schon mal 40 m ü.Gr. erreichen können, dürfen 20 bis 25 m ü.Gr. als typisches Niveau des geschlossenen Kronenraums gelten, welches maßgeblich für die Verdrängung des Windfelds ist.

Dieses macht ganz offensichtlich mehr als 5 % des Flächenanteils in den beiden o.g. Umkreisen (vgl. Abb. 11) aus, weshalb diesbezüglich ein Zuschlag von 25 m auf die emissionsbedingten Schornsteinhöhen anzubringen ist.

Abb. 11: Flächen mit Bewuchs im Umkreis von 190,5 m (= 15 x 12,7 m) bei Q1 und 150 m bei Q2 um den jeweiligen Schornstein | UTM-Georeferenz: 387 x 387 m² von {32656740;5597544} bis {32657127;5597931} | Kartenhintergrund: DOP, TLBG

In unebenem Gelände wird der Schornstein mit der nach TA Luft Nr. 5.5.2.2 bestimmten, gegebenenfalls um Bebauung und Bewuchs korrigierten Schornsteinhöhe betrachtet. Liegt der Landschaftshorizont, von der Mündung des Schornsteins aus gesehen, über der Horizontalen und ist sein (vertikaler) Winkel zur Horizontalen in einem (horizontal) mindestens 20 Grad breiten Richtungssektor größer als 15°, so ist die Schornsteinhöhe so weit zu erhöhen, bis dieser (vertikale) Winkel kleiner oder gleich 15° ist.

Aus Abb. 12 geht hervor, dass der Landschaftshorizont die Schornsteinmündung nicht um 15° übersteigt, weshalb diesbezüglich keine Korrektur anzubringen ist.

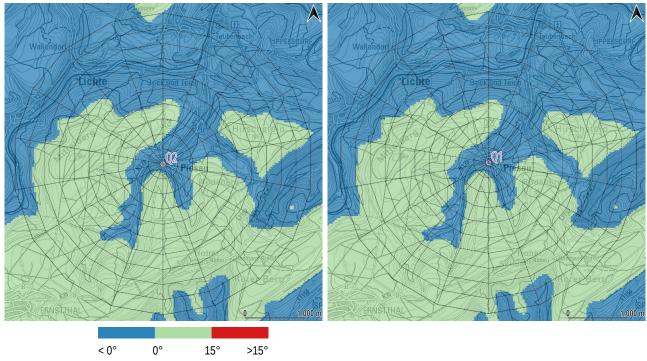


Abb. 12: Vertikaler Winkel zwischen den Schornsteinmündungen und dem Landschaftshorizont in Maschenweiten von 32 m sowie Netz mit horizontal ausgerichteten 20°-Sektoren | UTM-Georeferenz: jeweils 5252 x 5252 m² von {32654276;5595122} bis {32659528;5600374} | Kartenhintergrund: DTK50, TLBG

Damit erfordern die Verdrängung des Windfelds durch Bebauung und Bewuchs im Umkreis Schornsteinhöhen von rund:

- 38 m ü.Gr. bei Q1 und
- 34 m ü.Gr. bei Q2,

wobei die geländebedingte Kavität diesbezüglich keine weitere Korrektur erfordert.

7 Anforderungen aus dem Zusammenwirken mehrerer Quellen gemäß Nr. 5.5.2.1 TA Luft (BESMAX)

Bei mehreren Schornsteinen einer Anlage ist die Einhaltung des S-Werts gemäß TA Luft Nr. 5.5.2.2 durch Überlagerung der Konzentrationsfahnen der Schornsteine zu prüfen. Bestehende Schornsteine der Anlage sind dabei mit dem halben Emissionsmassenstrom zu berücksichtigen.

Die Eingangsdaten und Berechnungsergebnisse für das Zusammenwirken von Q1 und Q2 sind beispielhaft für Cadmium in Abb. 13 und Abb. 14 zusammengestellt, wobei hier von einer wechselseitigen Halbierung der Emissionen abgesehen wurde.

■ BESMAX - Version 1.0.1								
Maximale bodennahe Konzentration nach Nr. 5.5.2.1 TA Luft (2021)								
Bezeichnung der Quelle nq		Q1		Q2	+			
Emissionsmassenstrom eq	0,00	175	Θ,0	90175	kg/h			
x-Koordinate xq	6	935		6891	m			
y-Koordinate yq	7	738		7718	m			
Schornsteinbauhöhe hb		50		46	m			
Innendurchmesser dq		1,0		0,4	m			
Austrittsgeschwindigkeit vq		1,8		11,1	m/s			
Austrittstemperatur tq		55		55	°C			
Wasserbeladung zq		Θ,Θ		0,0	kg/(kg tr)			
Maximale Konzentration berechnen								
Maximale bodennahe Kor	nzentra	tion:						
Maximaler Konzentrationswe	rt cm	1,936e-08 g/m³						
Unsicherheit des Maximalwertes dm			Θ,7	%				
x-Koordinate des Maximalwei	rtes xm	7698,8 m						
y-Koordinate des Maximalwei	rtes ym	8361,4 m		m				
Stabilitätsklasse	3,1 KM		KM					
Windgeschwindigkeit		1,0 m/s						
Windrichtung ra			230,0	Grad				
Emissionsquellen und berechnete Konzentration abspeichern								
KI, Ua: 3,1 1,0 ▼ Ra: 230 Tick: 282,843 Cref: 1,936e-08 Grafik								

Abb. 13: Eingangsdaten und Berechnungsergebnisse gemäß BESMAX

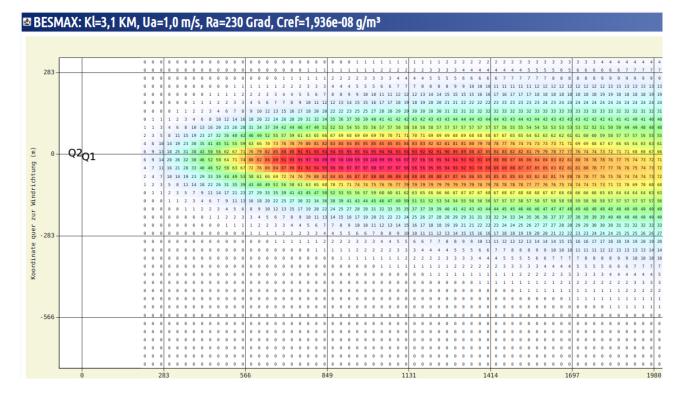


Abb. 14: Abgasfahnenüberlagerung von Q1 und Q2 gemäß BESMAX

Für Cadmium resultiert eine maximale Immissionskonzentration von 1,936x10⁻⁸ g/m³ bzw. 0,00001936 mg/m³, was nur 15 % des S-Werts (0,00013 mg/m³) entspricht. Die Relationen sind bei allen anderen berücksichtigten Stoffen unter den gegebenen Umständen ohnehin günstiger, weshalb diesbezüglich keine weitere Korrektur anzubringen ist.

8 Anforderungen aus Geruch gemäß Nr. 5.5.1 und Anhang 7 Nr. 2.1 TA Luft

Im Zusammenhang mit der Herstellung von Glas sind allgemein gültige Emissionsfaktoren zu Geruch bislang weder in technischen Richtlinien und Normen gelistet noch anderweitig in Standard-Literatur veröffentlicht.

Auch sind die betreffenden Anlagen nicht in der Tabelle A1 im Anhang der VDI 3886 Bl.1 enthalten.

Aufgrund der mit dem geplanten Vorhaben gehandhabten Stoffe besteht auch kein konkreter Anlass, dass Geruchsemissionen mit nicht nur irrelevanten Auswirkungen zu erwarten sind.

Daher erübrigen sich diesbezüglich weitergehende Betrachtungen.

Fazit

Im Glaswerk Piesau soll eine gasbeheizte Glasschmelzwanne durch zwei Wannen mit vollelektrischer Schmelze ersetzt werden, wofür zusätzlich ein weiterer Schornstein zu errichten ist.

Hierfür wurde die Einhaltung der Anforderungen der Nr. 5.5 TA Luft zur Ableithöhe überprüft.

Aus den durchgeführten Untersuchungen geht hervor, dass unter den gegebenen Bedingungen im Zusammenhang mit dem geplanten Vorhaben

- die Höhe des vorhandenen Schornsteins von 50 m ü.Gr. für Q1 ausreicht sowie
- als Höhe des neu zu errichtenden Schornsteins mindestens 42 m ü.Gr. erforderlich jedoch 46 m ü.Gr. für Q2 zu empfehlen ist, weil damit die Weiterverwendung des Q2 bei erwartbaren Steigerungen der Schmelzleistung mit jeder Erneuerung der Glasschmelzwannen besser gewährleistet und so auch nachhaltiger ist.

Diese Dokumentation ist eine Sachverständigenmeinung. Die Gültigkeit erlischt, soweit sich Ermittlungsgrundlagen bzw. Beurteilungskriterien ändern und / oder Abweichungen von den verwendeten Eingangsdaten auftreten.

Eine genehmigungsrechtliche Verbindlichkeit getroffener Aussagen bzw. abgegebener Empfehlungen wird ausschließlich durch die zuständige Behörde hergestellt.

Durch die Deutsche Meteorologische Gesellschaft als Beratender Meteorologe für das Arbeitsgebiet

gen" anerkannt.

BfIP - Büro für Immissionsprognosen | Dipl.-Met. André Zorn Triftstraße 2 | 99330 Geratal OT Frankenhain Tel. | Fax: (036205) 91273 | 91274 Mobil: (0171) 2889516

e-Post: a.zorn@immissionsprognosen.com

Gutachten zur

Ausbreitung von Luftbeimengungen

Thema: Ermittlung und Beurteilung der anlagenbezogenen Immissionen an Luftschadstoffen Anlage / Vorhaben: Ersatz einer gasbefeuerten Glasschmelzwanne durch zwei vollelektrisch betriebene Glasschmelzwannen **Standort:** Piesau Auftraggeber: SP Spezialglas Piesau GmbH Piesau | Hüttenring 7 98724 Neuhaus a. Rwg. Bestellung: 502243 / 04.08.2022 Registratur: IP A2217

28.02.2023

Fassung:

IP_A2217 Seite 2

Immissionen an Luftschadstoffen Glaswerk Piesau Fassung 28.02.2023

Inhaltsverzeichnis

1	Motivation / Veranlassung	3
2	Fundstellenverzeichnis	4
3	Anlage, Vorhaben und Standort	7
4	Anforderungen an die Luftqualität (Beurteilungskriterien)	10
5	Ausbreitungsrechnung mit LASAT	11
5.1	Methodik	11
5.2	Quellenkonfiguration, Bebauung / Bewuchs und Rauigkeit	
5.3	Genauigkeit	
5.4	Rechen- und Beurteilungsgebiet, Auswerteraster, Beurteilungspunkte	
5.5	Geländeeinfluss und Position des Anemometers	
6	Immissionen	
7	Fazit	22
•	. ~=	

Anhang: Eingangsdaten und Berechnungsergebnisse zu LASAT (13 Seiten)

ZGU-Inhaltsstoff-Analyse (3 Seiten)

Übertragbarkeitsprüfung meteorologischer Daten (25 Seiten)

1 Motivation / Veranlassung

Im Glaswerk Piesau soll eine gasbeheizte Glasschmelzwanne durch zwei Wannen mit vollelektrischer Schmelze ersetzt werden, wofür zusätzlich ein weiterer ¹Schornstein zu errichten ist. Aufgabe dieser Untersuchung ist

- eine Prüfung der Übertragbarkeit meteorologischer Daten (QPR) und Erstellung einer Zeitreihe zur Anwendung im Rahmen der TA Luft anhand von Messungen zu den Windverhältnissen an nahe gelegenen Wetterstationen und/oder synthetischen Daten zu RegionalwindSimulationen unter Berücksichtigung lokaler Kaltluftflüsse im Sinne der VDI 3783 BI.20;
- die Aufbereitung der emissionstechnischen Daten und die Umsetzung ggf. variabler Quellstärken in entsprechende Zeitreihen;
- die Erarbeitung der erforderlichen Modelle für Gelände und ggf. Bebauung bzw. sonstige Ausbreitungshindernisse zur Durchführung der Berechnungen;
- die Prognose der resultierenden Immissionen zu o.g. Luftbeimengungen durch Ausbreitungsrechnung nach VDI 3945 BI.3 mit LASAT 3.4 im Rahmen der Anwendungsvoraussetzungen von AUSTAL;
- die grafische Darstellung der Ergebnisse zu den entscheidungserheblichen Immissionen;
- die Beurteilung der Immissionen anhand der TA Luft.

Weitergehende Ermittlungen zu den Emissionen bzw. Immissionen, deren Auswirkungen sowie zu anderen Themen (insbesondere zu sonstigen Gefahren, Brandschutz, Arbeitsschutz und den damit im Zusammenhang stehenden technischen Belangen der Anlagensicherheit) sind nicht Gegenstand dieser Betrachtungen.

Schornstein ist ein historisch gewachsener Begriff in der TA Luft. Für entsprechende Emissionsquellen werden gleichbedeutend auch Bezeichnungen wie z.B. Schlot, Esse, Kamin und Abgasrohr verwendet.

2 Fundstellenverzeichnis

Lit. 1 TA Luft:

Neufassung der Ersten Allgemeinen Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (Technische Anleitung zur Reinhaltung der Luft – TA Luft), 18. August 2021, GMBI 2021, Nr. 48–54, S. 1050-1192;ISSN 0939-4729.

Lit. 2 BUBE-Online:

Fachhilfe für Emissionserklärungen (11. BImSchV), BUBE-Online, Betriebliche Umweltdatenberichterstattung; Bund-/ Länder Kooperation VKoopUIS; "Elektronisches PRTR-Erfassungs- und Berichtsystem" (ePRTR); Version 2.1 vom 31. Mai 2016; Software - Version 1.1.38 vom 31.05.2016

Lit. 3 AUSTAL & Programmbeschreibungen:

Ing.-Büro Janicke; Lagrangesches Partikelmodell nach VDI 3945 Blatt 3, (https://www.umweltbundesamt.de/themen/luft/regelungen-strategien/ausbreitungsmodelle-fuer-anlagenbezogene/uebersicht).

Version 2.6.11-LI-x | Stand 2014-06-26 Version 3.1.2-LI-x | Stand 2021-08-09

Lit. 4 LASAT & Programmbeschreibungen:

Lagrangesches Partikelmodell nach VDI 3945 Bl.3: Dispersion Model, Reference Book, Working Book Version 3.4.24-64LI17-m4 | Stand 18.08.2020; Janicke Consulting, Environmental Physics, Hermann-Hoch-Weg 1, 88662 Überlingen, Germany (www.janicke.de).

- Lit. 5 Fachgespräch zur Festlegung der Rauigkeitslänge bei Berücksichtigung von Gebäuden durch vertikale Verschmierung der Emissionsquellen sowie zur Emissionsermittlung nach VDI 3790-3 mit iMA Richter & Röckle GmbH & Co. KG, Eisenbahnstr. 43, Freiburg 79098; Dipl.-Met. Claus-Jürgen Richter zuletzt im April 2020; Dr. Frank Braun zuletzt im Juli 2020.
- Lit. 6 VDI 3781 Bl.4:

Umweltmeteorologie Ableitbedingungen für Abgase, Kleine und mittlere Feuerungsanlagen sowie andere als Feuerungsanlagen; Juli 2017.

Lit. 7 VDI 3783 Bl.13:

Umweltmeteorologie, Qualitätssicherung in der Immissionsprognose, Anlagenbezogener Immissionsschutz, Ausbreitungsrechnung gemäß TA Luft; Januar 2010.

Lit. 8 VDI 3783 Bl.15.1:

Umweltmeteorologie, Vereinfachte Abstandsbestimmung für die Konzentration und Deposition von Luftbeimengungen, Emission von NO_X , SO_2 und NH_3 aus bodennahen Quellen; August 2019.

Lit. 9 Planerische und technische Details:

SP Spezialglas Piesau GmbH, Hüttenring 7, 98724 Neuhaus am Rennweg OT Piesau; persönliche Mitteilung Reiner Bock, zuletzt am 27.01.2023.

TÜV Thüringen Anlagentechnik GmbH & Co. KG, Service-Center Mittelthüringen, Ichtershäuser Str. 32, 99310 Arnstadt; persönliche Mitteilung Holger Oemus, zuletzt am 23.11.2022.

cm.project.ing GmbH, Helmholtzstraße 24, 52428 Jülich; persönliche Mitteilung Stefan Koschutzki, zuletzt am 27.01.2023.

Lit. 10 Kartengrundlagen:

GooglMaps – GetCapabilities für das geographische Informationssystem QGIS Maps (https://mt1.google.com/vt/lyrs=r&x={x}&y={y}&z={z}),

 $Satellite \ (http://www.google.cn/maps/vt?lyrs=s@189\&gl=cn&x=\{x\}\&y=\{y\}\&z=\{z\}).$

OSM – OpenStreetMap-Plugin für das geographische Informationssystem QGIS (http://hub.qgis.org/projects/openlayers/wiki).

GDZ – Geodatenservice, Amtlicher, deutschlandweiter Internet-Kartendienst von Bund und Ländern mit Webatlas | TopPlusOpen | DTK200 | DTK500 enthalten im Web Map Service des Geodatenzentrums: Dienstleistungszentrum des Bundes für Geoinformation und Geodäsie (www.geodatenzentrum.de).

TLBG - Geoproxy Freistaat Thüringen, Allgemeine Beschreibung der frei verfügbaren Dienste, Web Map Service - Geobasisdaten -; Thüringer Landesamt für Bodenmanagement und Geoinformation, Hohenwindenstraße 13 a, 99086 Erfurt (https://www.tlbg.thueringen.de/).

GeoSN – Geodatendienste, Geodaten online; Staatsbetrieb Geobasisinformation und Vermessung Sachsen (GeoSN), Postfach 10 02 44, 01072 Dresden (https://www.geodaten.sachsen.de/).

HVBG – Hessische Verwaltung für Bodenmanagement und Geoinformation, Geodaten Dienste-Server (https://hvbg.hessen.de | http://www.gds-srv.hessen.de).

GDI-BY – Landesamt für Digitalisierung, Breitband und Vermessung, Alexandrastraße 4, 80538 München (https://www.gdi.bayern.de).

LVermGeo – Landesamt für Vermessung und Geoinformation Sachsen-Anhalt, Otto-von-Guericke-Straße 15, 39104 Leipzig-Halle (https://www.lvermgeo.sachsenanhalt.de/).

LGB - Landesvermessung und Geobasisinformation Brandenburg, Heinrich-Mann-Allee 103, 14473 Potsdam; OpenData (https://data.geobasis-bb.de/geobasis/daten/).

LGL-BW - Landesamt für Geoinformation und Landentwicklung Baden-Württemberg, Büchsenstraße 54, 70174 Stuttgart (https://www.lgl-bw.de/unsere-themen/Produkte/Open-Data/).

LUBW Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg, Griesbachstraße 1, 76185 Karlsruhe; Kartenservice Schutzgebiete (https://udo.lubw.baden-wuerttemberg.de/public/pages/map/default/index.xhtml).

Lit. 11 Digitale Höhenmodelle:

GlobDEM50 – Deutschland: Digitales Höhenmodell, metSoft GbR - Dr. Klaus Bigalke - Dipl.-Ing. Matthias Rau - Dr. Christoph Winkler, Bottwarbahnstraße 4 - D-74081 Heilbronn.

DGM1, DGM2; DGM20: Digitale Geländemodelle der Landesvermessungen, Thüringer Landesamt für Bodenmanagement und Geoinformation (TLBG) | Staatsbetrieb Geobasisinformation und Vermessung Sachsen (GeoSN).

DGM100: Digitales Geländemodell, Landesamt für Vermessung und Geoinformation Sachsen-Anhalt (LVermGeo).

DGM200: Digitales Geländemodell, Dienstleistungszentrum des Bundes für Geoinformation und Geodäsie (GDZ).

Lit. 12 Digitale Gebäudemodelle:

TLBG - Geoproxy Freistaat Thüringen, Allgemeine Beschreibung der frei verfügbaren Dienste, Web Map Service - Geobasisdaten -; Thüringer Landesamt für Bodenmanagement und Ge/immissionsprognosen.comoinformation, Hohenwindenstraße 13 a, 99086 Erfurt (https://www.tlbg.thueringen.de/).

GeoSN – Geodatendienste, Geodaten online; Staatsbetrieb Geobasisinformation und Vermessung Sachsen (GeoSN), Postfach 10 02 44, 01072 Dresden (https://www.geodaten.sachsen.de/).

Lit. 13 Messberichte:

Bericht 2234731 über die Durchführung von Emissionsmessungen zu einer Glasschmelzwanne einer Kapazität von 75 t/d mit vollelektrischer Schmelze in Kleintettau; GWA Gesellschaft für Wasser- und Abwasserservice mbH, Niederlassung: Institut für Wasser- und Umweltanalytik, An der Ohratalsperre, 99885 Luisenthal, 30.06.2022; persönliche Mitteilung Thomas Rau, zuletzt am 24.10.2022 (Auftraggeber: HEINZ-Glas Produktions GmbH & Co. KGaA, Glashüttenplatz 1-7, 96355 Kleintettau).

Bericht 1616209 über die/immissionsprognosen.com Durchführung von Emissionsmessungen zu einer Glasschmelzwanne einer Kapazität von 135 t/d in Piesau; GWA Gesellschaft für Wasser- und Abwasserservice mbH, Niederlassung: Institut für Wasser- und Umweltanalytik, An der Ohratalsperre, 99885 Luisenthal, 22.03.2016 (Auftraggeber: SP Spezialglas Piesau GmbH, Piesau | Hüttenring 7, 98724 Neuhaus a. Rwg.) incl. persönliche Mitteilung Thomas Rau, zuletzt am 24.02.2023.

Lit. 14 Standortinspektion:

Ortsbegehung und Einschätzung der für die Ausbreitung von Luftbeimengungen bedeutsamen Gegebenheiten, zuletzt am 31.08.2022.

3 Anlage, Vorhaben und Standort

Im Glaswerk Piesau wird bislang eine gasbeheizte Wanne (W2) mit einer Schmelzleistung von 135 t/d betrieben, deren Abgase über einen 50 m hohen Kamin (Q1) abgeleitet werden.

Im Bereich des vorhandenen Logistikzentrums soll eine elektrisch beheizte Wanne (W3) mit einer Schmelzleistung von 70 t/d und einem eigenen Abgaskamin (Q2) errichtet werden. Die bisher gasbeheizte Wanne wird durch eine zweite elektrisch beheizte Wanne mit einem zur W3 gleichen Emissionsverhalten ersetzt. Zur Ableitung der Abgase von W2 soll die 50 m hohe Q1 weiter verwendet werden (vgl. Abb. 1).

Die eingesetzten Fremdscherben sind weitgehend frei von Verunreinigungen mit organischen Stoffen.

In Tab. 1 sind maximal mögliche Schadstoffemissionen der Schmelzwannen auf der Grundlage von Emissionswerten der TA Luft zusammengestellt, wobei die Abgasrandbedingungen anhand von Erfahrungswerten aus Messungen (vgl. [Lit. 13]) in konservativer Abschätzung hergeleitet wurden. Für das geplante Vorhaben stammen die Daten von einer vergleichbaren Anlage einer Kapazität von 75 t/d Schmelzleistung.

Tab. 1 Schadstoffemissionen (in der Notation für die Ausbreitungsrechnung) für Stoffe, für die auch Immissionswerte in der TA Luft enthalten sind

A la sua a alvusa susile	04 (1-4)	04 (Dlass)	00 (Dlass)
Abgasdynamik	Q1 (Ist)		Q2 (Plan)
bezogen auf [t/d]	135	70	70
Ø _i [m]	1,00	1,00	0,40
Volumenstrom i.B. [m³/h]	24300	5000	5000
Volumenstrom i.N.tr. [m³/h]	7500	3500	3500
Luftdruck in ca. 700 m ü.NHN [hPa]	932	932	932
Austrittstemperatur [°C]	360	55	55
Austrittsgeschwindigkeit [m/s]	8,6	1,8	11,1
Konzentrationen	mg/m³	mg/m³	mg/m³
nox	1000	250	250
no	521,74	0	0
no2	200	250	250
so2	800	350	350
f	4,75	4,75	4,75
pm	20	10	10
Emissionen	g/s	g/s	g/s
nox	2,0833E+0	2,4306E-1	2,4306E-1
no	1,0870E+0	0,0000E+0	0,0000E+0
no2	4,1667E-1	2,4306E-1	2,4306E-1
so2	1,6667E+0	3,4028E-1	3,4028E-1
f	9,8958E-3	4,6181E-3	4,6181E-3
pm	4,1667E-2	9,7222E-3	9,7222E-3
pm-1	2,5000E-2	5,8333E-3	,
pm-2	1,0417E-2	2,4306E-3	2,4306E-3
pm-3	6,2500E-3	1,4583E-3	1,4583E-3

Hierbei wurden insbesondere folgende Sachverhalte berücksichtigt:

- Der Volumenstrom i.N.tr. für den Ist-Zustand ist auf einen Sauerstoffgehalt von 8 % im Abgas bezogen.
- nox | Für den Verbrennungsprozess im Ist-Zustand wird ein originärer NO2-Anteil von 20 % innerhalb der Stickoxide zugrunde gelegt. Da im Plan-Zustand konventionelle Brennstoffe nicht eingesetzt werden, werden sämtliche Stickstoffoxide als Dioxid angenommen. Die Konzentration im Plan-Zustand entspricht 0,3 kg je t geschmolzenes Glas.

- so2 | Mit diesem Ansatz der Emissionskonzentration für den Plan-Zustand resultieren lediglich solche Anforderungen zur Schornsteinhöhe, die nicht über die aus den Stickstoffoxiden hinausgehen. In der Praxis dürften deutlich geringere Emissionen zu erwarten sein.
- f | Dieser Ansatz entspricht 5 mg/m³ an HF.
- pm-1, pm-2 und pm-3 | Die Aufteilung des pm auf die einzelnen Fraktionen folgt der bei den Emissionserklärungen in BUBE-Online üblichen Vorgehensweise.
- Die immissionsseitig begrenzten anorganischen Metall-Verbindungen bzw. Metalle As, Cd, Ni und Tl im Staub, deren Emissionen nicht individuell sondern lediglich innerhalb bestimmter Stoffklassen festgelegt sind, kommen in den Einsatzstoffen lediglich in Spuren vor oder sind darin gänzlich nicht nachweisbar, wie aus der ZGU-Inhaltsstoff-Analyse im Anhang hervorgeht. Im Produktionsprozess können diese ohnehin nicht wie einst bei der Verbrennung von schwerem Heizöl hinzu kommen. Damit sind dahingehende Emissionen im signifikanten Umfang nach Maßgabe der praktischen Vernunft auszuschließen. Gleiches gilt für Quecksilber(-verbindungen), welches wie auch Blei(-verbindungen) im Sinne von Nr. 5.4.2.8.1a/2a der TA Luft als staubförmige anorganische Stoffe individuell begrenzt ist. All diese Stoffe brauchen bei der Ausbreitungsrechnung nicht separat berücksichtigt zu werden, weil diese immissionsseitig anhand ihrer jeweiligen Anteile betrachtet werden können.
- Zu gasförmigen Zustandsformen bzw. Verbindungen von Quecksilber im Sinne der Tabellen 12 und 13 des Anhangs 2 der TA Luft liegen keine Informationen vor. Diesbezüglich sind in der TA Luft weder emissionsseitige Begrenzungen enthalten, noch wurden bislang entsprechende Ermittlungen vorgenommen. Daher kann hier davon ausgegangen werden, dass diese Komponenten auch wirkungsseitig keine Bedeutung erlangen können und nachfolgend nicht betrachtet werden brauchen.

UTM-Georeferenz: $210 \times 210 \text{ m}^2$ von $\{32656803;5597638\}$ bis $\{32657013;5597848\}$

Abb. 1: Draufsicht mit den Positionen des vorhandenen (Q1) und des geplanten (Q2) Abgaskamins sowie des zugehörigen Neubaus zur Wanne 3 | Kartenhintergrund: DOP, TLBG

Der Standort befindet sich im Südwesten von Piesau ca. 650 m ü. NHN (vgl. Abb. 2). Das Gelände ist größtenteils mäßig und verbreitet auch stark gegliedert. Weitere Einzelheiten hierzu sind im Anhang "Übertragbarkeitsprüfung meteorologischer Daten zur Anwendung im Rahmen der TA Luft" zu diesem Dokument enthalten.

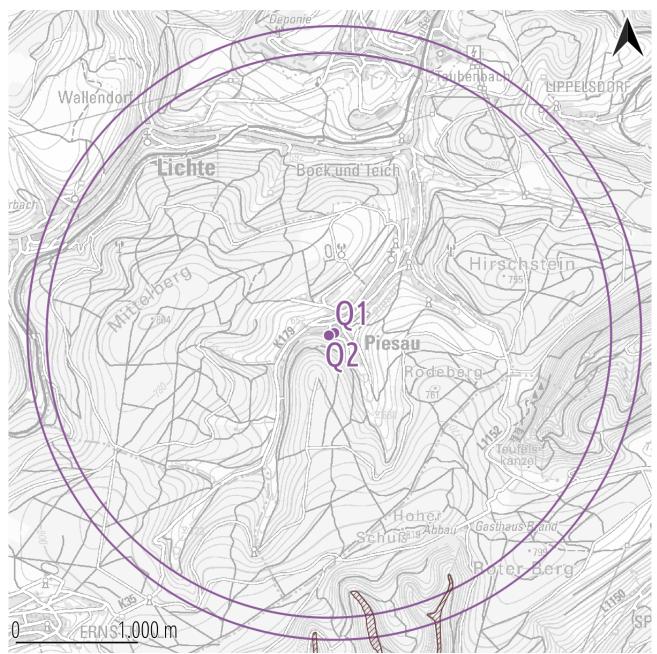


Abb. 2: Standortübersicht | UTM-Georeferenz: 5248 x 5248 m² von {32654276;5595126} bis {32659524;5600374} mit den Positionen der beiden Abgaskamine Q1 bzw. Q2 und deren Umkreise 50 x hq sowie den Gebieten von gemeinschaftlicher Bedeutung gemäß Anhang 8 TA Luft (braun schraffiert) am südlichen Rand | Zu gegenüber Stickstoffdepositionen empfindlichen Pflanzen und Ökosystemen im Sinne von Anhang 9 der TA Luft liegen keine Informationen vor. | Kartenhintergrund: DTK, TLBG

Typische Werte für die Hintergrund-Belastung, welche für den Ist-Zustand repräsentativ sind, sind nachfolgend zusammengestellt.

```
* PMdep: 0,04 g/m²/d | As: 0,2 \mug/m²/d | Pb: 2 \mug/m²/d | Cd: 0,07 \mug/m²/d | Ni: 2 \mug/m²/d 

* S0: 2 \mug/m³ | N0: 6 \mug/m³ | PM<sub>10</sub>: 8 \mug/m³ | ** PM<sub>25</sub>: 6 \mug/m³ 

*** Hg: 0,1 \mug/m²/d | f: 0,1 \mug/m³
```

^{*} hergeleitet aus aktuell verfügbaren Messergebnissen der zurückliegenden fünf Jahre an der Station Neuhaus a.Rwg. Bornhügel (vgl.: http://www.tlug-jena.de/luftaktuell)

^{**}unter Berücksichtigung der Relation PM₂₅/PM₁₀ an der Station Hummelshain (vgl.: http://www.tlug-jena.de/luftaktuell)

^{***} hergeleitet aus Modellrechnungen (vgl.: https://www.umweltbundesamt.de/daten/luft/schwermetalldepositionen#ge-samtdepositionen-von-quecksilber-)

^{****} ad hoc - Ansatz (Schätzung), da keine geeigneten Werte recherchierbar

4 Anforderungen an die Luftqualität (Beurteilungskriterien)

Die Beurteilung der Auswirkungen von Belastungen durch Luftschadstoffe erfolgt i.Allg. anhand der Kriterien der TA Luft. Hierin sind entsprechende Maßstäbe als

- IRS Irrelevanz-Schwellen für den Beitrag des geplanten Vorhabens (Zusatzbelastung);
- IJW Immissions-Jahreswerte, die nicht überschritten werden dürfen;
- ITW Immissions-Tageswerte, die für eine bestimmte Anzahl Tage im Jahr unbegrenzt überschritten werden dürfen:
- ISW Immissions-Stundenwerte, die für eine bestimmte Anzahl Stunden im Jahr unbegrenzt überschritten werden dürfen,

enthalten. Die Immissionswerte IJW, ITW und ISW gelten als Grenzwerte für die zulässige (gesamte) Belastung. Eine Anwendung der Kriterien für Tages- bzw. Stundenwerte (ITW bzw. ISW) erfordert räumlich und zeitlich repräsentative Messreihen mit der passenden Auflösung, welche synchron zu der bei der Immissionsprognose verwendeten Zeitreihe der Ausbreitungssituationen verlaufen müssen. Entsprechende Verfahren zur Prüfung der Übertragbarkeit, wenn keine formal gemäß der TA Luft-Nrn. 4.6.2 und 4.6.3 ermittelten Kenngrößen zur Vorbelastung vorliegen, sind bislang lediglich für meteorologische Parameter mit der VDI 3783 Bl.20 geregelt, weshalb hier nicht näher darauf eingegangen wird. In der nachfolgenden Tabelle sind die Immissionswerte der TA Luft für solche Komponenten mit Bezug zur ²Aufgabenstellung zusammengestellt.

Tab.2 Beurteilungskriterien der TA Luft

Tab.2 Beurteilu	ngsknienen der 1A Luit	ı					
Komponente	Vorgabe zum Schutz	Abk.	Dimension	IJW	TA Luft	IRS	TA Luft
Fein-Staub bis 10 μm		PM10		40	Nr.4.2	1,2	
Feinst-Staub bis 2,5 μm	der menschlichen	PM25		25	Nr.4.2	0,75	
Schwefeldioxid	Gesundheit	SO2	μg/m³	50	Nr.4.2	1,5	Nr.4.2.2
Stickstoffdioxid		NO2] [40	Nr.4.2	1,2	
Blei		PB] [0,5	Nr.4.2	0,015	
Schwefeldioxid	von Ökosystemen	SO2	μg/m³	³ 20	Nr.4.4.1	2	Nr.4.4.3
Stickstoffoxide, angegeben als Stickstoffdioxid	und der Vegetation	NOx	μg/m³	30	Nr.4.4.1	3	Nr.4.4.3
Fluorwasserstoff und gasförmige anorganische Fluorverbindungen, angegeben als Fluor	vor erheblichen Nachteilen	F	μg/m³	0,4	Nr.4.4.2	0,04	Nr.4.4.3
Fluorwasserstoff und gasförmige anorganische Fluorverbindungen, angegeben als Fluor	vor erheblichen Nachteilen durch Schädigung sehr empfindlicher Tiere, Pflanzen und Sachgüter	F	μg/m³	0,3	Nr.4.4.2	0,04	Nr.4.4.3
Staubniederschlag, nichtgefährdend	vor erheblichen Belästigungen oder erheblichen Nachteilen	PM	g/m²d	0,35	Nr.4.3.1.1	0,0105	Nr.4.3.1.2
Arsen Blei Cadmium Quecksilber	von Kinderspielflächen und Wohngebieten	AS PB CD HG	μg/m²d	4 100 2 1	Nr.4.5.1	0,2 5 0,1 0,05	Nr.4.5.2
Arsen Blei Cadmium Quecksilber	von Ackerflächen	AS PB CD HG	μg/m²d	1170 185 2,5 30	Nr.4.8		-
Arsen Blei Cadmium Quecksilber	von Grünland	AS PB CD HG	μg/m²d	60 1900 32 3	Nr.4.8		-
eutrophierender Stickstoff bzw. Säureäquivalente	von Gebieten mit gemeinschaftlicher Bedeutung	N N+S	kg/(ha*a) keq/(ha*a)			0,3 0,04	Anhang 8
eutrophierender Stickstoff	vor erheblichen Nachteilen durch Schädigung empfindlicher Pflanzen und Ökosysteme	N	kg/(ha*a)	÷	k	5	Anhang 9

^{*} Es sind geeignete Immissionswerte heranzuziehen, deren Überschreitung durch die Gesamtbelastung hinreichende Anhaltspunkte für das Vorliegen erheblicher Nachteile durch Schädigung empfindlicher Pflanzen und Ökosysteme wegen Stickstoffdepositionen liefert. Diese sind jedoch durch die TA Luft gegenwärtig weder unmittelbar definiert noch mit einem entsprechenden Ermittlungsverfahren herleitbar.

Abgesehen von den gewichteten Summen N und N+S mit eigener Bildungsvorschrift schließen die Vorgaben für einzelne chemische Elemente jeweils auch deren Verbindungen ein.

² Die TA Luft gibt Immissionswerte nicht für jede Komponente vor, für die auch Emissionswerte festgelegt sind (z.B. CO, Cges, Cl).

³ zusätzlich auch in der Wintersaison 01.10. bis 31.03.

5 Ausbreitungsrechnung mit LASAT

5.1 Methodik

Zur Berechnung der Ausbreitung von Luftbeimengungen dient LASAT als Prognosemodell auf der Grundlage der TA Luft. Damit kann insbesondere auch der von Bebauung und Bewuchs ausgehende Einfluss auf das turbulente Windfeld sowie gegliedertes Gelände berücksichtigt werden. Lokale ⁴Senken für Luftbeimengungen sind jedoch noch nicht unmittelbar erfassbar. Weitere Einzelheiten sind der TA Luft bzw. den Internet-Seiten des Herstellers zu entnehmen.

Die entsprechenden Ansätze werden nachfolgend detailliert begründet. Soweit Vorgaben bzw. Konventionen zur Anwendung kommen, die in der TA Luft, der VDI 3783 Blatt 13 bzw. den Beschreibungen zu AUSTAL und LASAT erläutert sind, wird darauf hier nicht näher eingegangen.

Ergänzend zu den Standard-Luftbeimengungen wurde nachfolgend zusätzlich der Schadstoff

pm25 für Feinst-Partikel (PM_{2.5})

definiert, welchem die Eigenschaften von pm-1 zugewiesen wurden.

Die Eingangsdaten und Ergebnisse sind zur Wahrung der Übersichtlichkeit im vorliegenden Dokument hier nur auszugsweise protokolliert. Bei Bedarf werden sämtliche Dateien zur Ausbreitungsrechnung vom Bearbeiter in elektronisch lesbarer Form zur Verfügung gestellt. Bei den ggf. mit "?" markierten Positionen handelt es sich jeweils um einen situationsabhängigen bzw. zeitlich variablen Parameter, der aus einer gesonderten Datei bzw. Spalte einer zugehörigen Zeitreihe aufgerufen wird. Deren statistische Eigenschaften sind - wie auch die zur meteorologischen Reihe - dem Protokoll zu Aaser.log im Anhang zu entnehmen.

Bei offen liegenden Oberflächen bzw. überwiegend offenen Bauwerken hängt die Quellstärke zumeist von der Windgeschwindigkeit ab. Gemäß Nr. 2 des Anhangs 2 der TA Luft ist dies entsprechend zu berücksichtigen, was mit etablierten Standards z.B. im Sinne von Nr. 3.6 der Programmbeschreibung zu AUSTAL (Vers. 3.1) mit dem arithmetischen Mittel der Wurzel der Windgeschwindigkeitswerte als Bezugsgröße oder ggf. direkt nach dem Formelwerk für Windabtrag der VDI 3790 Bl.3 vorgenommen werden kann. Dies kann, soweit Haldenabwehung zu berücksichtigen ist, auch derart erfolgen, dass erst bei Windgeschwindigkeiten FF > 5 m/s die Emissionen einsetzten und diese dann direkt proportional zu dem Ausdruck (FF - 5 m/s)^{1/2} mit der Windgeschwindigkeit zunehmen. Dies ist hier jedoch nicht erforderlich.

Die Berechnungen wurden zur Ermittlung der ⁵Zusatzbelastung für den Ist- und den Plan-Zustand vorgenommen.

5.2 Quellenkonfiguration, Bebauung / Bewuchs und Rauigkeit

Die Referenzierung der Emissionsquellen erfolgte mit einem geographischen Informationssystem in Annäherung an die tatsächlichen Gegebenheiten.

Beträgt die Schornsteinbauhöhe mehr als das 1,7-fache der Gebäudehöhen, ist die Berücksichtigung der Bebauung durch eine geeignet gewählte Rauigkeitslänge und Verdrängungshöhe ausreichend. Bei geringerer Schornsteinbauhöhe

 können die Einflüsse der Bebauung auf das Windfeld und die Turbulenzstruktur mit Hilfe des diagnostischen Windfeldmodells für Gebäudeumströmung berücksichtigt werden, welches in TALDIA zu AUSTAL und LPRWND zu LASAT integriert ist, soweit sich die immissionsseitig relevanten Aufpunkte außerhalb des unmittelbaren Einflussbereiches der quellnahen Gebäude insbesondere außerhalb der Rezirkulationszonen befinden.

So ist z.B. die Wirkung von Immissionsschutz-Bepflanzung nicht nur auf die rauigkeitsinduzierte Turbulenz und die damit verbundene stärkere Durchmischung beschränkt. Hinzu kommen noch insbesondere die unmittelbare Bindung von Luftbeimengungen infolge erhöhter Feuchtigkeit im Blattraum; der mikrobielle Abbau auf der Blatt-, Zweig- bzw. Stammoberfläche; der verbesserte chemische Umsatz durch Freisetzung aktivierten Sauerstoffs im Zusammenhang mit der Photosynthese sowie die stoffwechselbedingte Blattatmung selbst. Je dichter und tiefer bzw. breiter (oft genügen schon wenige Dekameter) ein Grüngürtel ist, um so ausgeprägter ist der Effekt der Immissionsminderung. Hinsichtlich der Quantifizierung besteht jedoch noch Forschungsbedarf, weshalb hier noch keine allgemein gültigen Auslegungswerte angegeben werden können.

Diese ist mit der aktuellen Fassung der TA Luft inzwischen als vorhabenbedingte Änderung definiert.

• sollte anderenfalls hierfür der Einsatz eines prognostischen Windfeldmodells für Gebäudeumströmung, das den Anforderungen der Richtlinie VDI 3783 Blatt 9 (Ausgabe Mai 2017) genügt, geprüft werden.

Gebäude, deren Entfernung vom Schornstein größer als das Sechsfache ihrer Höhe und größer als das Sechsfache der Schornsteinbauhöhe ist, können diesbezüglich vernachlässigt werden. Sofern die Gebäudegeometrie in einem diagnostischen oder prognostischen Windfeldmodell auf Quaderform reduziert wird, ist als Höhe des Quaders die Firsthöhe des abzubildenden Gebäudes zu wählen.

Alternativ hierzu kann Bebauung und Bewuchs durch vertikales Verschmieren der Emissionsquellen im Sinne von Nr. 4.9.2 der VDI 3783 Bl. 13 abgebildet werden, wobei thermischer bzw. dynamischer Auftrieb zu vernachlässigen sind. Die vertikale Ausdehnung darf sich jedoch nicht ausschließlich nach den Quellen selbst richten sondern muss agf. unter Berücksichtigung der typischen Höhe der turbulenzgenerierenden Strömungshindernisse festgelegt werden. Dem liegt die Vorstellung zugrunde, dass sich im Lee von derartigen Strömungshindernissen entsprechende Wirbel ausbilden, welche die Emissionen betroffener Quellen zunächst aufnehmen (Rezirkulationszonen). Die Ausbreitung erfolgt dann mit der übergeordneten Strömung, soweit diese Wirbel von den Hindernissen weggetragen werden (im ferneren Nachlauf sowie mit der ungestörten Strömung). Von ausschlaggebender Bedeutung sind die Geometrien derjenigen Strömungshindernisse, in deren Rezirkulationszonen (vgl. VDI 3782 Bl.4) hinein die Freisetzungen aus den Emissionsquellen erfolgen. Das führt im Nahbereich jedoch tendenziell zur Überschätzung der Immissionsbelastung. Gemäß VDI 3783 Bl. 13 wäre zwar auch bei diesem indirekten Vorgehen eine geringere Rauigkeit anzusetzen, was jedoch nicht sachgerecht sein kann, weil damit die objektiv vorhandene Wirkung der durch Gebäude und sonstige Strömungshindernisse verursachten Turbulenz gänzlich unterdrückt wird. Darüber hinaus kann hierbei nicht identifiziert werden, welche Gebäude herausgerechnet und welche enthalten sind. Diese Einschätzung wird in Fachkreisen auch von Kollegen so geteilt (vgl. [Lit. 3]).

Für die nachfolgenden Untersuchungen wurde die Bebauung in dem in Abb. 3 umrandeten Bereich direkt modelliert.

Abb. 3: Bereich (lila umrandet) mit direkt modellierter Bebauung (schwarz hervorgehoben) um die Emissionsquelle Q1 und Q2 | Kartengrundlage: DTK, TLBG

In diesem Zusammenhang war zu prüfen, inwieweit die mit dem Standard-Datensatz zu AUSTAL gelieferten Daten noch aktuell sind oder ggf. angepasst werden müssen. Unter den gegebenen Umständen waren für die vorhandenen bzw. vorgesehenen Nutzungen einige Modifikationen der Klassifizierungen im Rauigkeitskataster zur aktuellen Programmversion erforderlich, wie aus der nachfolgenden Abbildung hervorgeht.

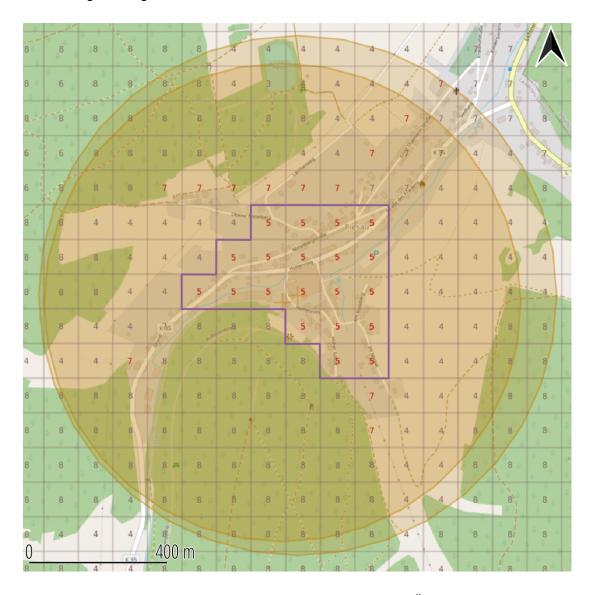


Abb. 4: Rauigkeitsklassen nach TA Luft (rote Ziffern markieren ⁶Änderungen gegenüber dem Standard der aktuellen Programmversion von AUSTAL) | UTM-Georeferenz: 1588 x 1588 m² von {32656141;5596939} bis {32657729;5598527} | Kartenhintergrund: OSM

Hieraus resultiert ein (klassierter) z0-Wert von 1,0 m sowohl für den Ist- als auch für den Plan-Zustand.

Einzelheiten zur programmtechnischen Umsetzung mit Zuordnung von Koordinaten und Geometrien sind insbesondere in der Tabelle unter sources.def im Anhang Eingangsdaten und Berechnungsergebnisse zu LASAT enthalten.

Diese wurden nur für solche Flächenelemente vorgenommen, die Einfluss auf die Berechnungen haben.

5.3 Genauigkeit

Die modellbedingte statistische Streuung der für Gase bzw. Partikel berechneten Werte soll i.Allg. beim

- Jahres-Immissionskennwert 3 % des jeweiligen IJW bzw.
- Tages-Immissionskennwert 30 % des jeweiligen ITW

nicht überschreiten. Liegen die Beurteilungspunkte an den Orten der maximalen Zusatzbelastung, braucht die statistische Unsicherheit nicht gesondert berücksichtigt zu werden. Andernfalls sind die berechneten Jahres-, Tages- und Stunden-Immissionskennwerte um die jeweilige statistische Unsicherheit zu erhöhen. Die relative statistische Unsicherheit des Stunden-Immissionskennwerts ist dabei der relativen statistischen Unsicherheit des Tages-Immissionskennwerts gleichzusetzen.

Systematische Effekte (insbesondere bei der Ermittlung der Geruchsstundenhäufigkeit) können im Wesentlichen nur von Geometrien und Frachten sehr unterschiedlicher Quellen herrühren. Bei einer einzelnen Quelle ist i.Allg. die Qualitätsstufe Rate = 2 ausreichend.

Hier wurde der Parameter Rate auf 48 (vgl. Definition unter substances.def) erhöht, womit diesbezüglich kein weiterer Korrekturbedarf besteht, weil die rechenverfahrensspezifischen statistischen Unsicherheiten schon gegenüber denen bei der Ermittlung der Emissionen vernachlässigbar sind.

5.4 Rechen- und ⁷Beurteilungsgebiet, Auswerteraster, Beurteilungspunkte

Das Raster zur Berechnung von Konzentration und Deposition ist so zu wählen, dass Ort und Betrag der Immissionsmaxima mit hinreichender Sicherheit bestimmt werden können. Dies ist in der Regel der Fall, wenn die horizontale Maschenweite die Schornsteinbauhöhe nicht überschreitet. In Quellentfernungen größer als dem 10fachen der Schornsteinbauhöhe kann die horizontale Maschenweite proportional größer gewählt werden. Bemessungsgrundlage hierfür ist also der Parameter Hq (und nicht Cq). Die formale Anwendung der o.g. Regel für die Maschenweite führt bei Hq = 0 m zwangsläufig zu einer mathematisch sinnlosen Aufrasterung des Rechengebiets.

Daher gehört zum Standard der seitens des UBA bereitgestellten AUSTAL-Version die untere Begrenzung der Maschenweite auf 16 m für hq \leq 16 m, soweit nicht noch Gebäude mit feineren Strukturen explizit zu modellieren sind.

Im Übrigen befinden sich Immissionsmaxima bei diffusen oder nicht allzu hoch vertikal verschmierten Quellen mit Hq = 0 m praktisch in bzw. unmittelbar neben den Maschen, in denen sich auch die Emissionsquellen selbst befinden. Dadurch sind Ort und Betrag der Immissionsmaxima mit hinreichender Sicherheit auch schon bei Maschenweiten von 16 m bestimmbar.

Hier wurde das Rechengebiet genestet und für eine präzisere Abgrenzung mit hoher Auflösung im Nahbereich um die Emissionsquellen (vgl. Abb. 5) ausgelegt:

- dd128: 9344 x 6784 m² von {32650948;5594358} bis {32660292;5601142}
- dd064: 5760 x 5760 m² von {32654020;5594870} bis {32659780;5600630}
- dd032: 5248 x 5248 m² von {32654276;5595126} bis {32659524;5600374}
- dd016: 1152 x 1152 m² von {32656324;5597174} bis {32657476;5598326}
- dd008: 896 x 896 m² von {32656452;5597302} bis {32657348;5598198}
- dd004: 768 x 672 m² von {32656516;5597414} bis {32657284;5598086}
- dd002: 704 x 608 m² von {32656548;5597446} bis {32657252;5598054}

Zur punkt- bzw. flächenhaften Bewertung sei hier unmittelbar auf diese Rechennetze und die Gültigkeit der Ergebnisse für die jeweiligen Maschen verwiesen. Ein mehr oder weniger willkürlich gewähltes Auswerteraster von z.B. 50 m führt zu Glättungen bzw. Verschmierungen in den Immissionsfeldern, welche nicht atmosphärenphysikalischer sondern lediglich arithmetischer Natur sind und daher Irritationen bei der Beurteilung mit sich bringen können.

Das Beurteilungsgebiet für Gerüche ist nach Anhang 7 TA Luft i.Allg. so festzulegen, dass der kleinste Abstand vom Rand des Anlagengeländes bis zur äußeren Grenze des Beurteilungsgebietes mindestens 600 m beträgt. Das Auswerteraster hat nach dem Standard eine Kantenlänge von 250 m aufzuweisen. Die dabei zugrunde zu legende Geometrie sollte denselben praktischen Erwägungen folgen, welche auch bei einer Immissionsrasterbegehung zu entsprechenden Festlegungen führen würden.

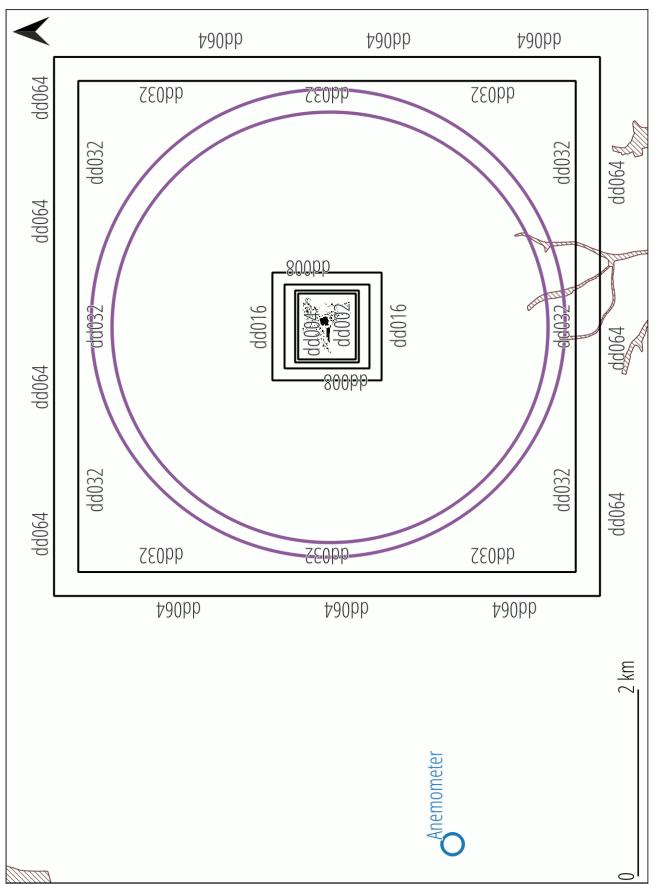


Abb. 5: Rechennetze mit der direkt modellierten Bebauung im Kern, der Lage der Gebiete von gemeinschaftlicher Bedeutung (braun schraffiert), der Position des Anemometers zur verwendeten Ausbreitungsklassenzeitreihe und den Umkreisen von 50 x hq um Q1 bzw. Q2

5.5 Geländeeinfluss und Position des Anemometers

Bei den hier durchzuführenden Untersuchungen wurde die Ausbreitungsklassenzeitreihe an der zugehörigen Anemometer-Position entsprechend des Anhangs (vgl. Abb. 5) verwendet.

Das Geländemodell wurde aus dem DGM200 per Spline-Interpolation für die Rechennetze hergeleitet, worin die topographischen Gegebenheiten sich hinreichend gut widerspiegeln. Den Ausführungen im Anhang Übertragbarkeitsprüfung meteorologischer Daten zur Anwendung im Rahmen der TA Luft folgend, führen die verbreitet auftretenden kritischen Geländesteigungen eher zu einer Überschätzung der anlagenbezogenen Belastung.

Insofern können ausgehend von der originalen Position des Anemometers die Einschränkungen des Windfeldmodells LPRWND, welches dem LASAT vorgeschaltet ist, bei der weiteren Übertragung der meteorologischen Information auf das gesamte Rechengebiet unter den gegebenen Bedingungen kaum zu Fehlbeurteilungen führen.

6 Immissionen

Die Struktur der Verteilung der resultierenden Immissionen ist in Abb. 6 bis Abb. 13 im Raster von 2 m für einen Kernbereich des Rechengebiets von 873 x 873 m² von {32656572;5597360} bis {32657445;5598233} zusammengestellt. Darüber hinaus ist die Belastung ohnehin irrelevant. Die Farbskalierung orientiert sich an den jeweiligen Irrelevanz-Schwellen und Immissions-Jahreswerten und berücksichtigt dabei auch die im Abschnitt 3 zusammengestellten typischen Werte für die Immissionsbelastung im Ist-Zustand.

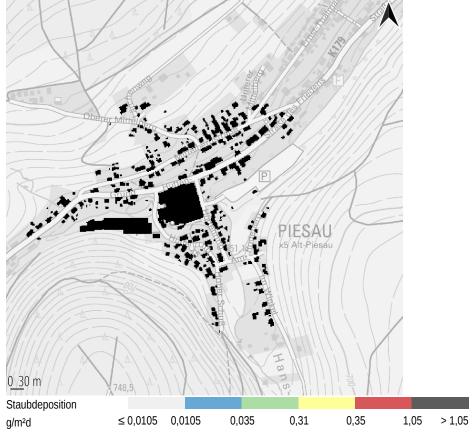


Abb. 6: Zusatzbelastung der Staubdeposition | Kartenhintergrund: DTK, TLBG

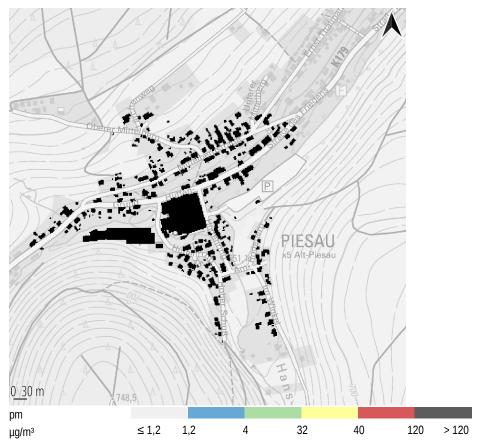


Abb. 7: Zusatzbelastung der Konzentration an Fein-Staub | Kartenhintergrund: DTK, TLBG

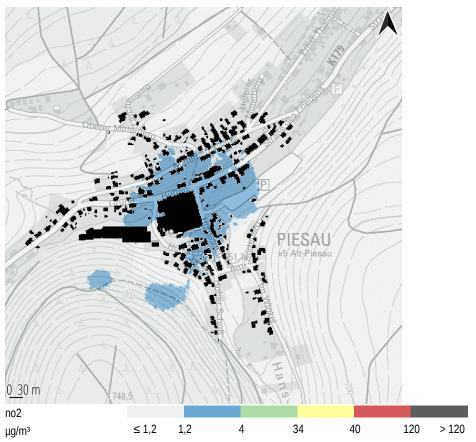


Abb. 8: Zusatzbelastung der Konzentration an Stickstoffdioxid | Kartenhintergrund: DTK, TLBG

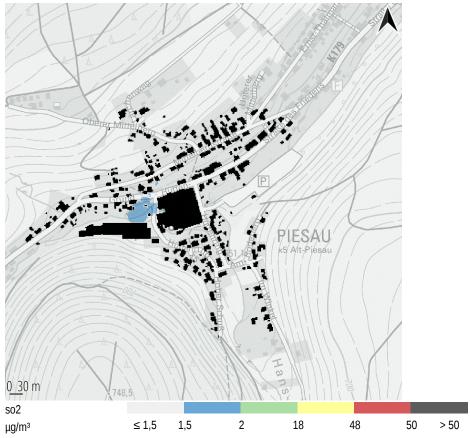


Abb. 9: Zusatzbelastung der Konzentration an Schwefeldioxid | Kartenhintergrund: DTK, TLBG

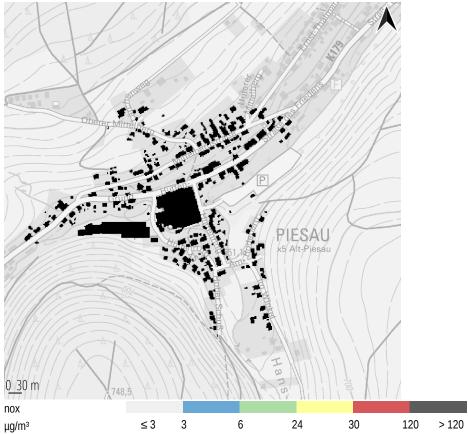


Abb. 10: Zusatzbelastung der Konzentration an Stickstoffoxiden, angegeben als Stickstoffdioxid | Kartenhintergrund: DTK, TLBG

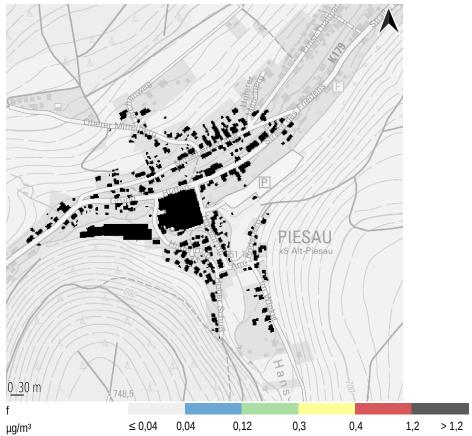


Abb. 11: Zusatzbelastung der Konzentration an Fluor | Kartenhintergrund: DTK, TLBG

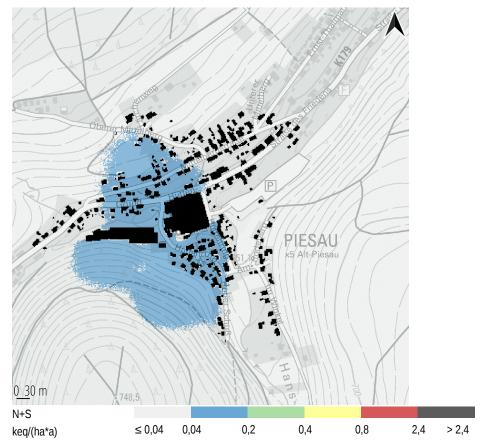


Abb. 12: Zusatzbelastung der Säureäquivalente | Kartenhintergrund: DTK, TLBG

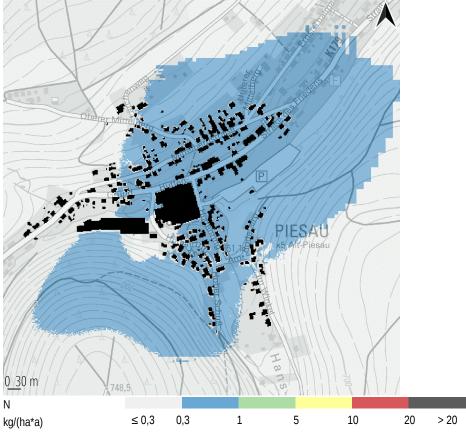


Abb. 13: Gesamtzusatzbelastung der Stickstoffdepositionen | Kartenhintergrund: DTK, TLBG

Hieraus geht hervor, dass die

- · Zusatzbelastung durch Staubdepositionen allerorts irrelevant ist;
- Zusatzbelastung durch Fein-Staub allerorts irrelevant ist;
- Zusatzbelastung durch Feinst-Staub allerorts irrelevant ist;
- Zusatzbelastung durch Stickstoffdioxid weitgehend irrelevant ist und angesichts einer Hintergrundbelastung von 6 µg/m³ das Überschreiten des entsprechenden Immissions-Jahreswerts ausgeschlossen werden kann;
- Zusatzbelastung durch Schwefeldioxid weitgehend irrelevant ist und angesichts einer Hintergrundbelastung von 2 μg/m³ das Überschreiten des entsprechenden Immissions-Jahreswert ausgeschlossen werden kann;
- Zusatzbelastung durch Stickstoffoxide, angegeben als Stickstoffdioxid allerorts irrelevant ist:
- Zusatzbelastung durch Fluorwasserstoff und gasförmige anorganische Fluorverbindungen, angegeben als Fluor allerorts irrelevant ist;
- Gebiete von gemeinschaftlicher Bedeutung sich im Sinne von Anhang 8 der TA Luft nicht in einem Einwirkbereich befinden, d.h., nicht von einer Zusatzbelastung durch Säureäquivalente > 0,04 keq/(ha*a) betroffen sein können;
- Anlage im Plan-Zustand nicht in erheblichem Maße zur Stickstoffdeposition im Sinne von Anhang 9 der TA Luft beiträgt, weil die Gesamtzusatzbelastung nicht mehr als 5 kg Stickstoff pro Hektar und Jahr beträgt, womit auch eine weitergehende Betrachtung diesbezüglich empfindlicher Pflanzen und Ökosysteme entfallen kann.

Aufgrund der Unterschiede in der Abgasdynamik zwischen Ist- und Plan-Zustand sind die jeweiligen Maxima der Immissionsbelastung nicht notwendigerweise deckungsgleich, weshalb die in den Protokollen zu den Rechenläufen ausgewiesenen Maxima nicht ohne Weiteres miteinander verglichen werden dürfen. Daher wurden aus den jeweiligen Differenzen zwischen Plan- und Ist-Zustand als maximale Zusatzbelastung

PMdep: $+49,16 \mu g/m^2/d$ | PM: $+0,04171 \mu g/m^3$

im Rechennetz mit der Maschenweite von 32 m ermittelt. Mit diesem Raster zur Berechnung von Konzentration und Deposition wird

- einerseits im Sinne der Nr. 8 des Anhangs 2 der TA Luft die horizontale Maschenweite durch die Schornsteinbauhöhe nicht überschritten, wodurch Ort und Betrag der Immissionsmaxima mit hinreichender Sicherheit bestimmt werden können und
- andererseits im Sinne von Nr. 4.6.2.6 TA Luft vermieden, dass die Ergebnisse nur für einen sehr kleinen Bereich repräsentativ sind, welche in der messtechnischen Praxis ohnehin nicht mit verhältnismäßigem Aufwand aufgelöst bzw. nachgewiesen werden können.

Legt man die maximal möglichen Masseanteile der immissionsseitig begrenzten Metall-Verbindungen bzw. Metalle aus der ⁸ZGU-Inhaltsstoff-Analyse (vgl. Anhang) zugrunde wird ersichtlich, dass diese Stoffe nur eine irrelevante Zusatzbelastungen mit sich bringen können (vgl. Tab.3).

Tab.3 maximal ⁹mögliche Zusatzbelastung für immissionsseitig begrenzte Metall-Verbindungen bzw. Metalle

	maximaler Masseanteil gemäß ZGU-Inhaltsstoff-Analyse	Irrelevanzschwelle	maximal ⁹ mögliche Zusatzbelastung
As	0,0001	0,2 μg/m²/d	0,005 μg/m²/d
Pb	0,0004	5 μg/m²/d 0,015 μg/m³	0,02 μg/m²/d 0,00002 μg/m³
Cd	0,0003	0,1 μg/m²/d	0,015 μg/m²/d
Ni	0,001	0,75 μg/m²/d	0,05 μg/m²/d
Hg	< 0,0000005	0,05 μg/m²/d	< 0,000025 μg/m²/d
TI	0,0001	0,1 μg/m²/d	0,005 μg/m²/d

Da sich die maximalen Masseanteile der ZGU-Inhaltsstoff-Analyse auf einzelne Einsatzstoffe und nicht auf das eingesetzte Gemenge als Ganzes beziehen, dürfte die maximal mögliche Zusatzbelastung teilweise noch deutlich geringer als in Tab.3 ausgewiesen ausfallen. Mit Blick auf die verfahrensbedingten Unsicherheiten erübrigen sich jedoch weitergehende Diskussionen.

Diese Analyse kann auch im Sinne der Nr. 5.3.2.1 TA Luft als Nachweis gelten, dass durch die Zusammensetzung der Einsatzstoffe sowie die Prozessbedingungen die betreffenden Emissionsbegrenzungen hinreichend eingehalten werden und damit Einzelmessungen nach Absatz 1 unterbleiben können.

Dies ist auch nur insoweit möglich, wie die betreffenden Stoffe tatsächlich anteilig mit dem Staub ausgetragen und nicht überproportional mit der Schmelze immobilisiert werden.

7 Fazit

Im Glaswerk Piesau soll eine gasbeheizte Glasschmelzwanne durch zwei Wannen mit vollelektrischer Schmelze ersetzt werden. Hierzu wurden die resultierenden Immissionen ermittelt.

Aus den durchgeführten Untersuchungen geht hervor, dass unter den gegebenen Umständen die resultierenden Belastungen über den Luftpfad

- nicht zu schädlichen Umwelteinwirkungen und sonstigen Gefahren, erheblichen Nachteilen und erheblichen Belästigungen für die Allgemeinheit und die Nachbarschaft führen können oder
- gänzlich irrelevant bleiben

und somit dem geplanten Vorhaben zugestimmt werden kann.

Diese Dokumentation ist eine Sachverständigenmeinung. Die Gültigkeit erlischt, soweit sich Ermittlungsgrundlagen bzw. Beurteilungskriterien ändern und / oder Abweichungen von den verwendeten Eingangsdaten auftreten.

Eine genehmigungsrechtliche Verbindlichkeit getroffener Aussagen bzw. abgegebener Empfehlungen wird ausschließlich durch die zuständige Behörde hergestellt.

r. to

Durch die Deutsche Meteorologische Gesellschaft als Beratender Meteorologe für das Arbeitsgebiet "Ausbreitung von Luftbeimengungen" anerkannt.

Anhang: Eingangsdaten und Berechnungsergebnisse zu LASAT (13 Seiten)

ZGU-Inhaltsstoff-Analyse (3 Seiten)

Übertragbarkeitsprüfung meteorologischer Daten (25 Seiten)

Inhalte der *.def-Dateien:

```
Name = gas
 Unit = g
 Rate = 48
 Vsed = 0
! SUBSTANCE |
                  Vdep
                          Rfak Rexp
       so2 | 1.000e-02 2.000e-05 1.00
       no |
             5.000e-04 0.000e+00
                                 1.00
       no2
             3.000e-03 1.000e-07
                                  1.00
       nox | 0.000e+00 0.000e+00
                                 1.00
             0.000e+00 0.000e+00
                                  1.00
       hg | 5.000e-03 1.000e-04
                                  0.70
      hgÕ |
             3.000e-04 0.000e+00
                                  1.00
      pm25 | 1.000e-03 3.000e-05
                                  0.80
      pm-1 | 1.000e-03 3.000e-05
                                  0.80
      pm-2 | 1.000e-02 1.500e-04 0.80
 Name = pm3
 Unit = g
 Rate = 48
 Vsed = 0.04
             Vdep
! SUBSTANCE |
                         Rfak Rexp
      pm-3 | 5.000e-02 4.400e-04 0.80
```

LI	!	Name		Χq	Yo	ı l	Hq	Dq	Aq	Bq	Cq	Wq	Vq	Tt
 -	Q 	Q1	6935	.0 7	738.0	50	.0	1.000	0.0	0.0	0.0	0.0	8.6	360
	=	defin	ition o	f em	nissio	n sou	rce	s =====	======		===== s	ources	. def	
		Name		Χq	Yo	1 1	Hq	Dq	Aq	Bq	Cq	Wq	۷q	Tt
	١.	Q1	6935	.0 7	738.0	50	. 0	1.000	0.0	0.0	0.0	0.0	1.8	55
L_P-46	Q						_					0.0	44 4	55

N 03

N 02

N 01 |

5

Eingangsdaten und Berechnungsergebnisse Glaswerk Piesau Fassung 28.02.2023

3

8

112

192

352

= definition of calculation grid ========== grid.def Refy = 559000045 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101 103 105 120 150 200 300 400 500 600 700 800 1000 1200 1500 } Nzd = 1Flags = +NESTED+BODIES' Netze fuer Ausbreitungsrechnung ! NM | N1 Ni Nt Dd Nz Xmin Rf Nx Ny Ymin N 07 | 3 128 73 53 948 4358 0.5 90 64 4020 N 06 2 3 90 4870 0.5 64 N 05 3 32 164 64 4276 5126 3 164 0.5 72 72 64 7174 N 04 3 16 6324 0.5

112

304

64

52

6452

6516

6548

	! SO	OURCE	gas.pm25	gas.pm·1	gas.pm-2	pm3.pm-3	gas . no	gas.no2	gas.so2	gas.nox	gas . f
L_I	E	Q1	2.5000E-2	2.5000E-2	1.0417E-2	6.2500E-3	1.0870E+0	4.1667E-1	1.6667E+0	2.0833E+0	9.8958E-3
	- de	finition	of emission rate	es ======	em	issions.def					
	= de	efinition					gas . no	gas . no 2	gas.so2	gas.nox	gas.f
	= de	OURCE	gas.pm25	gas.pm-1	gas.pm-2	pm3.pm-3	gas.no	gas . no 2	gas.so2	gas . nox	gas . f
L_P-46	= de						gas.no O	gas.no2 2.4306E-1	gas.so2 3.4028E-1	gas.nox 2.4306E-1	gas . f 4 . 6181E - 3

7302

7414

7446

0.5

1.0

1.0

======= met lib.def	======== metlib.def
- LPRAKT: original time series /home/andre/Projekte/A2217_Piesau/L_I/work///	- LPRAKT: original time series /home/andre/Projekte/A2217_Piesau/L_P-46/work///
az_Piesau.akt	az_Piesau.akt
- formal time series for the creation of a wind field library	- formal time series for the creation of a wind field library
Version = 5.3 boundary layer version	Version = 5.3 boundary layer version
ZO = 1.000 'surface roughness length (m)	ZO = 1.000 ' surface roughness length (m)
DO = 6.000 'displacement height (m)	DO = 6.000 ' displacement height (m)
Xa = 1367.0 'anemometer (measurement) x-position (m)	Xa = 1367.0 anemometer (measurement) x-position (m)
Ya = 6424.0 'anemometer (measurement) y-position (m)	Ya = 6424.0 'anemometer (measurement) y-position (m)
Ha = 21.6 'anemometer (measurement) height above ground (m)	Ha = 21.6 ' anemometer (measurement) height above ground (m)
Ua = ? wind velocity (m/s)	Ua = ? 'wind velocity (m/s)
Ra = ? wind direction (deg)	Ra = ? wind direction (deg)
KM = ? stability class according to Klug/Manier	KM = ? 'stability class according to Klug/Manier
ZgMean = 675 'average terrain height (m) Wind = ? 'index of the wind field written out	ZgMean = 675 ' average terrain height (m) Wind = ? ' index of the wind field written out
WindLib = ~//LPRWND_I.lib ' name of the wind field library	WindLib = ~//LPRWND P.lib ' name of the wind field library
! T1 T2 Ua Ra KM Wind	! T1 T2 Ua Ra KM Wind
- (s) (s) (m/s) (deg) (K/M) (1)	- (s) (s) (m/s) (deg) (K/M) (1)
Z 0 1 1.737 10 1 1001	Z 0 1 1.737 10 1 1001
Z 1 2 1.737 20 1 1002	Z
Z	Z
Z 4 5 1.737 50 1 1005	Z 4 5 1.737 50 1 1005
Z 5 6 1.737 60 1 1006	Z 5 6 1.737 60 1 1006
Z 6 7 1.737 70 1 1007	Z 6 7 1.737 70 1 1007
Z 7 8 1.737 80 1 1008	Z 7 8 1.737 80 1 1008
Z 8 9 1.737 90 1 1009	Z 8 9 1.737 90 1 1009
Z 9 10 1.737 100 1 1010	Z 9 10 1.737 100 1 1010
Z	Z
Z	Z
Z 13 14 1.737 140 1 1014	Z 13 14 1.737 140 1 1014
Z 14 15 1.737 150 1 1015	Z 14 15 1.737 150 1 1015
Z 15 16 1.737 160 1 1016	Z 15 16 1.737 160 1 1016
<u>:</u>	<u> </u>
Z	Z 197 198 2.794 180 5 6018 Z 198 199 2.794 190 5 6019
Z	Z
Z 200 201 2.794 210 5 6021	Z 200 201 2.794 210 5 6021
Z 201 202 2.794 220 5 6022	Z 201 202 2.794 220 5 6022
Z 202 203 2.794 230 5 6023	Z 202 203 2.794 230 5 6023
Z 203 204 2.794 240 5 6024	Z 203 204 2.794 240 5 6024
Z 204 205 2.794 250 5 6025	Z 204 205 2.794 250 5 6025
Z 205 206 2.794 260 5 6026	Z 205 206 2.794 260 5 6026
Z 206 207 2.794 270 5 6027 Z 207 208 2.794 280 5 6028	Z 206 207 2.794 270 5 6027 Z 207 208 2.794 280 5 6028
Z 207 208 2.794 280 5 6028 Z 208 209 2.794 290 5 6029	Z 207 208 2.794 280 5 6028 Z 208 209 2.794 290 5 6029
Z 209 210 2.774 270 5 6027 Z 209 210 2.794 300 5 6030	Z 209 210 2.794 300 5 6030
Z 210 211 2.794 310 5 6031	Z 210 211 2.794 310 5 6031
Z 211 212 2.794 320 5 6032	Z 211 212 2.794 320 5 6032
Z 212 213 2.794 330 5 6033	Z 212 213 2.794 330 5 6033
Z 213 214 2.794 340 5 6034	Z 213 214 2.794 340 5 6034
Z 214 215 2.794 350 5 6035	Z 214 215 2.794 350 5 6035
Z 215 216 2.794 360 5 6036	Z 215 216 2.794 360 5 6036

			L_I							L_P-4	16			
Btype = BOX							Btype = BO	X						
Name	Хb	Yb	Ab	Bb	Cb	Wb ' Nr	! Name	Хb	Yb	Ab	Bb	Сь	Wb	' Nr.
box003	6923.78	7747.71	37.24	10.06	25.00	17.02 3	B box001	6870.60	7729.46	11.64	6.33	35.00	0.13	1
box004	6931.91	7804.25	20.31	3.38	25.00	-73.27 4	B box002	6861.55	7729.44	6.37	6.31	35.00	0.37	' 3
box005	6911.25	7744.99	9.44	8.89	27.00	16.90 5	B box003	6923.78	7747.71	37.24	10.06	25.00	17.02	
box006	7133.22	7930.64	21.26	13.24	11.00	40.68 6	B box004	6931.91	7804.25	20.31	3.38	25.00	-73.27	5
box007	7148.50	7526.21	14.58	8.90	13.00	-73.46 7	B box005	6911.25	7744.99	9.44	8.89	27.00	16.90	
box008	7156.77	7948.90	12.85	8.64	15.00	45.24 8	B box006	7133.22	7930.64	21.26	13.24	11.00	40.68	' 6
box009	7161.88	7961.84	5.49	2.40	7.00	-44.12 9	B box007	7148.50	7526.21	14.58	8.90	13.00	-73.46	' 7
box010	7163.17	7970.33	8.10	5.28	9.00	-136.35 10	B box008	7156.77	7948.90	12.85	8.64	15.00	45.24	' 8
box011	7168.69	7970.64	6.11	4.57	7.00	136.67 11	B box009	7161.88	7961.84	5.49	2.40	7.00	-44.12	' 9
box012	7163.92	7978.44	4.98	2.87	3.00	-135.98 12	B box010	7163.17	7970.33	8.10	5.28	9.00	-136.35	' 10
box013	7147.26	7969.79	6.72	6.27	7.00	-48.37 13	B box011	7168.69	7970.64	6.11	4.57	7.00	136.67	' 11
box014	7177.42	7971.13	11.26	8.57	9.00	48.57 14	B box012	7163.92	7978.44	4.98	2.87	3.00	-135.98	12
box015	7189.25	7965.24	5.93	1.42	5.00	-42.80 15	B box013	7147.26	7969.79	6.72	6.27	7.00	-48.37	
box016	7182.37	7944.40	11.13	9.17	15.00	46.71 16	B box014	7177.42	7971.13	11.26	8.57	9.00	48.57	14
box017	7187.31	7948.00	2.20	1.13	9.00	46.84 17	B box015	7189.25	7965.24	5.93	1.42	5.00	-42.80	
box018	7188.81	7949.60 7975.69	2.70	1.12	3.00	46.86 18 20.59 19	B box016	7182.37	7944.40 7948.00	11.13	9.17	15.00	46.71	' 16
box019 box020	7137.63 7132.74	7977.00	7.16 11.29	3.60 9.42	11.00 13.00	24.11 ' 20	B box018	7187.31 7188.81	7949.60	2.20 2.70	1.13	9.00 3.00	46.84 46.86	17
box021	7133.57	7987.69	6.20	4.46	7.00	23.92 2	B box019	7137.63	7975.69	7.16	3.60	11.00	20.59	19
box022	7115.74	7984.54	12.01	8.60	11.00	46.53 2	B box020	7132.74	7977.00	11.29	9.42	13.00	24.11	
box023	7124.27	7993.49	6.00	5.98	3.00	47.32 23	B box021	7133.57	7987.69	6.20	4.46	7.00	23.92	' 21
box024	7083.90	7974.11	4.77	4.98	5.00	27.40 24	B box022	7115.74	7984.54	12.01	8.60	11.00	46.53	' 22
box025	7088.14	7976.30	7.79	5.02	7.00	29.49 25	B box023	7124.27	7993.49	6.00	5.98	3.00	47.32	23
box026	7090.56	7972.07	9.21	4.88	11.00	29.40 26	B box024	7083.90	7974.11	4.77	4.98	5.00	27.40	
box027	7098.60	7976.59	9.22	8.14	13.00	-150.64 27	B box025	7088.14	7976.30	7.79	5.02	7.00	29.49	25
box028	7098.60	7976.60	3.53	1.48	5.00	-61.13 28	B box026	7090.56	7972.07	9.21	4.88	11.00	29.40	
box029	7089.93	7954.79	10.66	5.90	3.00	24.61 29	B box027	7098.60	7976.59	9.22	8.14	13.00	-150.64	27
box030	7095.44	7939.67	15.77	7.99	15.00	26.33 30	B box028	7098.60	7976.60	3.53	1.48	5.00	-61.13	
box031 box032	7083.04 7074.45	7968.88 7966.63	6.55 3.08	4.66 2.70	3.00 7.00	138.91 3	B box029 B box030	7089.93 7095.44	7954.79 7939.67	10.66 15.77	5.90 7.99	3.00 15.00	24.61 26.33	29
box033 box034	7065.91 7072.40	7955.05 7958.79	8.79 8.60	7.48	13.00 13.00	-58.65 33 -60.08 34	B box031 B box032	7083.04 7074.45	7968.88 7966.63	6.55 3.08	4.66 2.70	3.00 7.00	138.91 -56.95	31
box035	7062.52	7960.92	6.77	6.81	11.00	-60.06 ' 35	B box033	7065.91	7955.05	8.79	7.48	13.00	-58.65	' 33
box036	7056.07	7981.65	10.17	6.37	9.00	-55.55 36	B box034	7072.40	7958.79	8.60	6.81	13.00	-60.08	34
box037	7056.37	7981.85	5.79	4.80	3.00	34.45 37	B box035	7062.52	7960.92	6.77	6.23	11.00	-60.06	35
box038	7042.60	7986.10	5.54	5.25	5.00	-57.90 ' 38	B box036	7056.07	7981.65	10.17	6.37	9.00	- 55 . 55	36
box039	7053.38	7968.50	7.71	5.57	3.00	124.51 ' 39	B box037	7056.37	7981.85	5.79	4.80	3.00	34 . 45	
box040	7056.51	7963.57	5.85	3.97	3.00	122.44 ' 40	B box038	7042.60	7986.10	5.54	5.25	5.00	-57.90	38
box041	7061.32	7963.63	5.64	4.11	5.00	120.87 ' 41	B box039	7053.38	7968.50	7.71	5.57	3.00	124.51	
box042	7049.56	7950.45	4.67	3.71	7.00	30.33 42	B box040	7056.51	7963.57	5.85	3.97	3.00	122.44	' 40
box043	7053.36	7943.96	10.43	7.52	11.00	30.31 43	B box041	7061.32	7963.63	5.64	4.11	5.00	120.87	' 41
box044 box045	7063.12 7058.99	7949.67 7919.43	11.31 11.58	6.81	3.00 15.00	-149.68 44 28.01 4	B box042 B box043	7049.56 7053.36	7950.45 7943.96	4.67 10.43	3.71 7.52	7.00 11.00	30.33	42
box046	7071.27	7927.16	5.35	5.08	5.00	31.06 ' 46	B box044	7063.12	7949.67	11.31	6.81	3.00	-149.68	' 44
box047	7077.48	7929.81	6.51	6.15	7.00	28.71 47	B box045	7058.99	7919.43	11.58	10.81	15.00	28.01	45
box048	7080.18	7938.44	6.27	3.45	7.00	-61.35 48	B box046	7071.27	7927.16	5.35	5.08	5.00	31.06	46
box049	7089.26	7937.54	5.67	3.44	7.00	125.44 ' 49	B box047	7077.48	7929.81	6.51	6.15	7.00	28.71	47
box050	7090.14	7929.45	4.08	4.03	5.00	35.55 ' 50	B box048	7080.18	7938.44	6.27	3.45	7.00	-61.35	48
box051	7086.88	7912.00	6.36	5.19	3.00	37.69 ' 51	B box049	7089.26	7937.54	5.67	3.44	7.00	125.44	· 49
box052	7079.60	7915.86	7.50	6.18	5.00	-149.03 ' 52	B box050	7090.14	7929.45	4.08	4.03	5.00	35.55	
box053	7071.84	7901.52	7.39	5.49	9.00	115.93 53	B box051	7086.88	7912.00	6.36	5.19	3.00	37.69	51
box054	7074.70	7894.56	4.29	3.89	7.00	33.40 54	B box052	7079.60	7915.86	7.50	6.18	5.00	-149.03	52
box055	7079.24	7887.32	10.20	8.54	13.00	32.67 55	B box053	7071.84	7901.52	7.39	5.49	9.00	115.93	53
box056	7074.58	7884.49	5.45	3.80	3.00	31.38 56	B box054	7074.70	7894.56	4.29	3.89	7.00	33.40	
box057 box058	7055.76 7040.89	7914.38 7913.34	7.09 10.02	4.96 8.12	5.00 13.00	117.47 57 27.97 58	B box055 B box056	7079.24 7074.58	7887.32 7884.49	10.20 5.45	8.54 3.80	13.00	32.67 31.38	55
box059	7029.47	7927.31	6.18	5.12	13.00	29.61 59	B box057	7055.76	7914.38	7.09	4.96	5.00	117.47	57
box060	7032.37	7944.57	4.76	3.57	5.00	29.56 60	B box058	7040.89	7913.34	10.02	8.12	13.00	27.97	58
box061	7023.41	7939.52	5.89	3.61	7.00	29.42 6	B box059	7029.47	7927.31	6.18	5.12	13.00	29.61	59
box062	7014.81	7943.44	5.02	5.30	3.00	25.57 62	B box060	7032.37	7944.57	4.76	3.57	5.00	29.56	60
box063	7003.52	7938.73	7.81	5.34	9.00	29.46 63	B box061	7023.41	7939.52	5.89	3.61	7.00	29.42	
box064	7012.05	7951.11	5.00	4.69	7.00	30.95 64	B box062	7014.81	7943.44	5.02	5.30	3.00	25.57	62
box065	7014.33	7933.10	1.59	1.52	11.00	29.88 65	B box063	7003.52	7938.73	7.81	5.34	9.00	29.46	
box066	7019.49	7919.99	6.77	5.95	3.00	29.45 66	B box064	7012.05	7951.11	5.00	4.69	7.00	30.95	64
box067	7026.03	7907.77	9.74	6.37	9.00	26.60 67	B box065	7014.33	7933.10	1.59	1.52	11.00	29.88	
box068 box069	7017.67 7016.53	7900.92 7903.71	7.60 4.91	7.93 3.94	11.00 9.00	22.29 68 112.14 69	B box066 B box067	7019.49 7026.03	7919.99 7907.77	6.77 9.74	5.95 6.37	3.00 9.00	29.45	66
box070	7007.90	7905.50	3.05	0.83	5.00	22.20 ' 70	B box068	7017.67	7900.92	7.60	7.93	11.00	26.60 22.29	' 68
box071 box072	7011.99 7004.18	7896.98 7893.52	1.85 2.21	1.45	3.00 3.00	22.87 71	B box070	7016.53 7007.90	7903.71 7905.50	4.91 3.05	3.94 0.83	9.00 5.00	112.14 22.20	' 69 ' 70
box073	6989.66	7936.24	5.89	6.06	3.00	49.55 ' 73	B box071	7011.99	7896.98	1.85	1.45	3.00	22.87	' 71
box074	6984.34	7940.55	11.60	9.16	9.00	49.29 ' 74	B box072	7004.18	7893.52	2.21	1.60	3.00	22.91	' 72
box075	6966.66	7933.14	6.88	3.32	3.00	48.83 ' 75	B box073	6989.66	7936.24	5.89	6.06	3.00	49.55	' 73
box076	6953.86	7947.83	4.33	4.05	5.00	-44.68 ' 76	B box074	6984.34	7940.55	11.60	9.16	9.00	49.29	' 74
box077	6944.63	7935.47	6.22	5.13	3.00	43.45 ' 77	B box075	6966.66	7933.14	6.88	3.32	3.00	48.83	' 75
box078	6925.27	7939.97	9.05	7.64	9.00	2.30 ' 78	B box076	6953.86	7947.83	4.33	4.05	5.00	-44.68	' 76
box079	6934.02	7947.93	2.61	1.69	7.00	92.26 79	B box077	6944.63	7935.47	6.22	5.13	3.00	43.45	77
box080	6937.04	7940.45	11.13	2.73	9.00	92.37 80	B box078	6925.27	7939.97	9.05	7.64	9.00	2.30	
box081 box082	6919.80 6854.26	7980.47 7994.70	6.12 7.80	4.10 6.08	5.00 5.00	28.31 8 -57.18 8	B box079 B box080	6934.02 6937.04	7947.93 7940.45	2.61 11.13	1.69	7.00 9.00	92.26 92.37	79
box083	6831.66	7999.72	6.65	5.56	7.00	-58.66 83	B box081	6919.80	7980.47	6.12	4.10	5.00	28.31	' 81
box084	6819.76	7993.10	8.83	2.34	3.00	-59.20 84	B box082	6854.26	7994.70	7.80	6.08	5.00	-57.18	' 82
box085	6821.26	7983.74	6.79	3.50	3.00	-59.01 85	B box083	6831.66	7999.72	6.65	5.56	7.00	-58.66	' 83
box086	6862.44	7972.15	6.02	6.00	3.00	33.98 86	B box084	6819.76	7993.10	8.83	2.34	3.00	-59.20	' 84
box087	6874.79	7965.85	5.73	3.71	3.00	33.65 ' 87	B box085	6821.26	7983.74	6.79	3.50	3.00	-59.01	' 85
box088 box089	6876.37 6877.87	7963.46 7961.33	5.73 5.33	2.86	3.00 3.00	33.41 88 35.24 89	B box087	6862.44 6874.79	7972.15 7965.85	6.02 5.73	6.00 3.71	3.00 3.00	33.98 33.65	86
box090 box091	6842.46 6848.44	7930.00 7929.82	5.98 4.67	5.16 3.30	7.00 3.00	-3.49 90 -4.12 9	B box088 B box089	6876.37 6877.87	7963.46 7961.33	5.73 5.33	2.86	3.00 3.00	33.41 35.24	88
box092	6802.21	7953.38	6.04	3.60	3.00	81.62 ' 92	B box090	6842.46	7930.00	5.98	5.16	7.00	-3.49	' 90
box093	6848.63	7939.55	9.20	8.56	11.00	-4.22 ' 93	B box091	6848.44	7929.82	4.67	3.30	3.00	-4.12	' 91
box094	6863.72	7949.51	5.35	3.33	3.00	73.28 94	B box092	6802.21	7953.38	6.04	3.60	3.00	81.62	92
box095	6864.76	7948.75	8.95	5.92	5.00	-15.02 95	B box093	6848.63	7939.55	9.20	8.56	11.00	-4.22	
box096 box097	6880.27 6876.53	7942.29 7947.14	6.12 7.38	2.46 4.53	3.00 7.00	127.63 96	B box094 B box095	6863.72 6864.76	7949.51 7948.75	5.35 8.95	3.33 5.92	3.00 5.00	73.28 - 15.02	94
box098	6886.22	7934.47	9.19	8.57	11.00	36.81 ' 98	B box096	6880.27	7942.29	6.12	2.46	3.00	127.63	' 96
box099 box100	6884.60 6897.06	7944.01 7933.85	1.85 6.05	1.54 5.58	9.00 7.00	37.24 99 -52.33 10	B box098	6876.53 6886.22	7947.14 7934.47	7.38 9.19	4.53 8.57	7.00 11.00	-52.44 36.81	97
box101	6901.91	7918.65	11.04	8.95	9.00	37.66 10	B box099	6884.60	7944.01	1.85	1.54	9.00	37.24	99
box102	6923.67	7922.21	5.80	3.06	3.00	33.21 10	B box100	6897.06	7933.85	6.05	5.58	7.00	-52.33	
box103	6917.00	7913.52	8.00	3.33	3.00	30.25 ' 10	B box101	6901.91	7918.65	11.04	8.95	9.00	37.66	101
box104	6924.80	7918.04	3.28	1.02	5.00	120.17 ' 10	B box102	6923.67	7922.21	5.80	3.06	3.00	33.21	
box105	6917.00	7913.52	8.94	9.16	9.00	-59.89 10	B box103	6917.00	7913.52	8.00	3.33	3.00	30.25	103
box106	6956.71	7917.16	5.17	3.01	3.00	-63.96 10	B box104	6924.80	7918.04	3.28	1.02	5.00	120.17	
box 107	6968.62	7914.36	5.12	4.92	5.00	22.76 10	B box105	6917.00	7913.52	8.94	9.16	9.00	-59.89	105
box 108	6975.10	7924.49	5.58	2.98	3.00	170.26 10	B box106	6956.71	7917.16	5.17	3.01	3.00	-63.96	
box109	6951.26	7889.13	10.90	8.85	9.00	32.27 ' 10	B box107	6968.62	7914.36	5.12	4.92	5.00	22.76	' 107
box110 box111	6960.48 6966.38	7894.95 7905.03	10.04 5.97	9.31 4.54	11.00 5.00	28.96 11	B box108 B box109	6975.10 6951.26	7924.49 7889.13	5.58 10.90	2.98 8.85	3.00 9.00	170.26 32.27	108
box112	6981.37	7906.46	9.98	7.39	15.00	117.08 ' 11	B box110	6960.48	7894.95	10.04	9.31	11.00	28.96	110
box113	6976.83	7915.35	9.98	7.29	13.00	-62.90 ' 11	B box111	6966.38	7905.03	5.97	4.54	5.00	-61.12	

B box115	6982.91	7907.28	4.92	3.14	3.00	-58.14 ' 115	B box113	6976.83	7915.35	9.98	7.29	13.00	-62.90 ' 113
B box116	6966.13	7885.35	4.47	2.97	5.00	-65.22 116	B box114	6978.21	7904.76	4.46	2.02	3.00	-63.30 114
B box117	6949.74	7878.21	8.85	8.64	11.00	-69.02 117	B box115	6982.91	7907.28	4.92	3.14	3.00	-58.14 115
B box118 B box119	6957.81 6936.77	7881.30 7863.77	8.26 9.13	3.57 7.96	11.00 13.00	-68.99 118 26.40 119	B box116 B box117	6966.13 6949.74	7885.35 7878.21	4.47 8.85	2.97 8.64	5.00 11.00	-65.22 116 -69.02 117
B box120	6941.40	7874.96	7.96	4.23	13.00	-63.50 120	B box118	6957.81	7881.30	8.26	3.57	11.00	-68.99 118
B box121 B box122	6949.36	7841.87	8.46	7.56	11.00	-71.72 121 17.89 122	B box119	6936.77	7863.77	9.13	7.96	13.00	26.40 119 -63.50 120
B box122 B box123	6959.14 6987.48	7836.17 7846.22	9.63 7.59	8.44 4.52	11.00 3.00	17.89 122 113.35 123	B box120 B box121	6941.40 6949.36	7874.96 7841.87	7.96 8.46	4.23 7.56	13.00 11.00	-63.50 120 -71.72 121
B box124	6987.48	7846.22	7.27	7.97	9.00	21.92 124	B box122	6959.14	7836.17	9.63	8.44	11.00	17.89 ' 122
B box125 B box126	6994.22 6998.23	7848.94 7859.21	7.61 7.90	8.00 4.47	9.00 5.00	22.92 125 -67.68 126	B box123 B box124	6987 . 48 6987 . 48	7846.22 7846.22	7.59 7.27	4.52 7.97	3.00 9.00	113.35 123 21.92 124
B box127	6988.46	7855.23	6.95	1.77	3.00	22.16 127	B box125	6994.22	7848.94	7.61	8.00	9.00	22.92 125
B box128	6989.63	7865.63	5.03	4.06	7.00	-72.06 128	B box126	6998.23	7859.21	7.90	4.47	5.00	-67.68 126
B box129 B box130	6996.32 6999.88	7861.63 7863.72	4.08 5.51	3.60 2.90	7.00 3.00	20.23 129 23.46 130	B box127 B box128	6988.46 6989.63	7855.23 7865.63	6.95 5.03	1.77 4.06	3.00 7.00	22.16 127 -72.06 128
B box131	7012.21	7853.70	17.40	15.49	11.00	25.70 ' 131	B box129	6996.32	7861.63	4.08	3.60	7.00	20.23 ' 129
B box132 B box133	7027.89 7025.35	7861.24 7872.95	5.63 15.32	6.21 7.05	7.00 13.00	25.70 ' 132 25.86 ' 133	B box130 B box131	6999.88 7012.21	7863.72 7853.70	5.51 17.40	2.90 15.49	3.00 11.00	23.46 130 25.70 131
B box134	7039.57	7872.80	9.30	9.10	13.00	22.10 134	B box132	7012.21	7861.24	5.63	6.21	7.00	25.70 132
B box135	7081.46	7875.63	11.55	2.24	7.00	-61.31 ' 135	B box133	7025.35	7872.95	15.32	7.05	13.00	25.86 133
B box136 B box137	7091.86 7088.17	7861.16 7867.95	8.85 24.22	7.73 10.66	7.00 15.00	29.09 136 29.07 137	B box134 B box135	7039.57 7081.46	7872.80 7875.63	9.30 11.55	9.10 2.24	13.00 7.00	22.10 134 -61.31 135
B box138	7104.42	7888.72	7.94	1.46	7.00	-61.32 138	B box136	7091.86	7861.16	8.85	7.73	7.00	29.09 ' 136
B box139	7059.79	7866.40	6.26	2.06	9.00	-64.59 139	B box137 B box138	7088.17	7867.95	24.22	10.66	15.00	29.07 137
B box140 B box141	7062.48 7065.67	7860.74 7858.88	3.06 10.05	2.07 9.35	3.00 13.00	-63.73 140 25.52 141	B box138 B box139	7104.42 7059.79	7888.72 7866.40	7.94 6.26	1.46 2.06	7.00 9.00	-61.32 138 -64.59 139
B box142	7080.13	7850.55	8.13	6.46	5.00	23.29 142	B box140	7062.48	7860.74	3.06	2.07	3.00	-63.73 ' 140
B box143 B box144	7081.69 7082.64	7846.92 7844.71	6.92 6.82	3.95 2.41	3.00 3.00	23.31 ' 143 23.94 ' 144	B box141 B box142	7065.67 7080.13	7858.88 7850.55	10.05 8.13	9.35 6.46	13.00 5.00	25.52 141 23.29 142
B box145	7045.88	7849.62	15.40	8.21	13.00	25.79 145	B box143	7081.69	7846.92	6.92	3.95	3.00	23.31 143
B box146 B box147	7049.25 7000.68	7843.06 7824.24	8.27 10.68	7.38 10.30	5.00 13.00	26.74 ' 146 17.56 ' 147	B box144 B box145	7082.64 7045.88	7844.71 7849.62	6.82 15.40	2.41 8.21	3.00 13.00	23.94 144 25.79 145
B box148	6999.90	7824.24 7819.70	6.57	4.09	5.00	17.56 147	B box145	7045.88 7049.25	7849.62 7843.06	8.27	7.38	5.00	26.74 146
B box149	7015.58	7833.19	6.00	6.00	5.00	24.86 ' 149	B box147	7000.68	7824.24	10.68	10.30	13.00	17.56 ' 147
B box150 B box151	7020.51 7032.77	7837.26 7833.10	8.73 6.37	8.02 6.23	15.00 11.00	26.77 150 30.76 151	B box148 B box149	6999.90 7015.58	7819.70 7833.19	6.57 6.00	4.09 6.00	5.00 5.00	17.56 148 24.86 149
B box152	7002.76	7804.29	5.90	3.68	7.00	14.31 ' 152	B box150	7020.51	7837.26	8.73	8.02	15.00	26.77 ' 150
B box153 B box154	7014.43 7095.48	7793.97 7831.69	5.52 4.81	4.10 4.46	3.00 5.00	16.82 153 32.21 154	B box151 B box152	7032.77 7002.76	7833.10 7804.29	6.37 5.90	6.23 3.68	11.00 7.00	30.76 151 14.31 152
B box155	7115.48	7802.41	10.55	6.20	5.00	37.23 ' 155	B box153	7014.43	7793.97	5.52	4.10	3.00	16.82 ' 153
B box156	7143.31	7771.66	5.66	3.28	3.00	-18.24 156 -27.91 157	B box154	7095.48	7831.69	4.81	4.46	5.00	32.21 154
B box157 B box158	7134.68 7130.94	7760.25 7753.18	8.98 8.98	4.39 8.01	5.00 3.00	-27.91 157 -27.91 158	B box155 B box156	7115.48 7143.31	7802.41 7771.66	10.55 5.66	6.20 3.28	5.00 3.00	37.23 155 -18.24 156
B box159	7109.60	7740.45	5.91	5.84	7.00	-20.82 159	B box157	7134.68	7760.25	8.98	4.39	5.00	- 27 . 91 ' 157
B box160 B box161	7110.07 7103.61	7725.38 7726.10	9.17 5.66	8.29 1.82	11.00 7.00	67.20 160 -22.67 161	B box158 B box159	7130.94 7109.60	7753.18 7740.45	8.98 5.91	8.01 5.84	3.00 7.00	-27.91 158 -20.82 159
B box162	7123.45	7718.43	7.13	6.61	3.00	77.57 162	B box160	7110.07	7725.38	9.17	8.29	11.00	67.20 160
B box163 B box164	7114.80	7704.40	6.01	6.04	3.00	·9.92 163	B box161 B box162	7103.61	7726.10	5.66	1.82	7.00	-22.67 161
B box164 B box165	7134.01 7138.09	7688.33 7703.48	11.10 6.69	7.65 5.23	11.00 7.00	88.77 ' 164 -91.23 ' 165	B box162 B box163	7123.45 7114.80	7718.43 7704.40	7.13 6.01	6.61 6.04	3.00 3.00	77.57 162 -9.92 163
B box166	7137.57	7692.56	5.58	4.25	9.00	-1.22 ' 166	B box164	7134.01	7688.33	11.10	7.65	11.00	88.77 ' 164
B box167 B box168	7114.44 7115.70	7686.06 7679.44	7.40 7.40	5.08 6.74	5.00 13.00	10.78 ' 167 10.80 ' 168	B box165 B box166	7138.09 7137.57	7703.48 7692.56	6.69 5.58	5.23 4.25	7.00 9.00	-91.23 165 -1.22 166
B box169	7115.70	7679.44	10.34	7.40	11.00	-79.24 ' 169	B box167	7114.44	7686.06	7.40	5.08	5.00	10.78 ' 167
B box170 B box171	7129.10 7127.22	7677.52 7654.67	5.85 11.26	5.40 8.32	7.00 9.00	101.68 ' 170 102.54 ' 171	B box168 B box169	7115.70 7115.70	7679.44 7679.44	7.40 10.34	6.74 7.40	13.00 11.00	10.80 168 79.24 169
B box172	7128.79	7661.36	5.07	2.98	7.00	103.11 172	B box170	7113.70	7677.52	5.85	5.40	7.00	101.68 170
B box173	7107.31	7655.48	5.27	3.50	3.00	-78.54 173	B box171	7127.22	7654.67	11.26	8.32	9.00	102.54 171
B box174 B box175	7104.02 7100.07	7654.81 7647.98	5.28 5.82	3.35 3.15	3.00 3.00	-77.92 ' 174 101.83 ' 175	B box172 B box173	7128.79 7107.31	7661.36 7655.48	5.07 5.27	2.98 3.50	7.00 3.00	103.11 172 -78.54 173
B box176	7096.90	7647.79	5.44	3.31	3.00	100.69 176	B box174	7104.02	7654.81	5.28	3.35	3.00	-77.92 ' 174
B box177 B box178	7134.31 7139.42	7641.22 7642.29	8.84 3.88	8.10 3.62	13.00 11.00	11.88 ' 177 -75.94 ' 178	B box175 B box176	7100.07 7096.90	7647.98 7647.79	5.82 5.44	3.15 3.31	3.00 3.00	101.83 175 100.69 176
B box 179	7135.87	7637.46	5.63	5.65	7.00	-78.38 179	B box177	7134.31	7641.22	8.84	8.10	13.00	11.88 177
B box180	7137.89	7627.72	6.66	4.32	9.00	13.48 180	B box178	7139.42	7642.29	3.88	3.62	11.00	-75.94 178
B box181 B box182	7143.49 7143.79	7633.32 7629.13	4.14 4.17	2.72 3.39	7.00 5.00	-77.91 ' 181 -77.98 ' 182	B box179 B box180	7135.87 7137.89	7637.46 7627.72	5.63 6.66	5.65 4.32	7.00 9.00	-78.38 179 13.48 180
B box183	7066.31	7775.45	6.55	3.41	5.00	-75.08 ' 183	B box181	7143.49	7633.32	4.14	2.72	7.00	-77.91 ' 181
B box184 B box185	7025.03 7032.58	7755.80 7765.92	11.61 6.38	9.59 4.64	9.00 3.00	30.36 184 26.61 185	B box182 B box183	7143.79 7066.31	7629.13 7775.45	4.17 6.55	3.39 3.41	5.00 5.00	-77.98 182 -75.08 183
B box 186	7043.09	7759.99	7.60	4.36	5.00	42.73 186	B box 184	7025.03	7755.80	11.61	9.59	9.00	30.36 184
B box187 B box188	7042.89	7748.46	6.31	3.79	3.00	34.19 ' 187 -61.12 ' 188	B box185 B box186	7032.58	7765.92	6.38	4.64	3.00	26.61 185
B box188 B box189	7020.70 7027.04	7748.31 7736.45	9.39 8.10	7.85 4.06	13.00 3.00	-61.12 ' 188 27.81 ' 189	B box186 B box187	7043.09 7042.89	7759.99 7748.46	7.60 6.31	4.36 3.79	5.00 3.00	42.73 186 34.19 187
B box190	7028.95	7732.93	9.09	4.01	7.00	27.30 ' 190	B box188	7020.70	7748.31	9.39	7.85	13.00	-61.12 ' 188
B box191 B box192	7028.95 7052.89	7732.93 7724.86	7.77 7.00	7.08 5.10	11.00 5.00	-62.28 191 29.69 192	B box189 B box190	7027.04 7028.95	7736.45 7732.93	8.10 9.09	4.06 4.01	3.00 7.00	27.81 189 27.30 190
B box193	7054.10	7725.54	4.63	3.73	5.00	-60.24 193	B box191	7028.95	7732.93	7.77	7.08	11.00	-62.28 ' 191
B box194 B box195	7036.44 7043.23	7718.64 7709.83	9.20 4.93	7.31 1.67	11.00 5.00	-64.90 ' 194 25.97 ' 195	B box192 B box193	7052.89 7054.10	7724.86 7725.54	7.00 4.63	5.10 3.73	5.00 5.00	29.69 192 -60.24 193
B box196	7044.69	7700.95	9.88	7.13	11.00	-64.17 196	B box194	7036.44	7718.64	9.20	7.31	11.00	-64.90 194
B box197 B box198	7046.23 7060.19	7697.77 7711.82	9.46 13.45	7.54 3.41	11.00 7.00	27.44 197 -98.12 198	B box195 B box196	7043.23 7044.69	7709.83 7700.95	4.93 9.88	1.67 7.13	5.00 11.00	25.97 195 -64.17 196
B box199	7051.10	7689.11	5.18	1.74	9.00	7.46 ' 199	B box197	7046.23	7697.77	9.46	7.54	11.00	27 . 44 ' 197
B box200 B box201	7048.74 7052.48	7688.80 7677.78	8.06 5.41	7.57 3.34	11.00 3.00	-82.50 200 7.84 201	B box198 B box199	7060.19 7051.10	7711.82	13.45 5.18	3.41 1.74	7.00 9.00	98.12 198 7.46 199
B box201	7052.48	7675.72	10.22	3.75	5.00	-70.17 202	B box200	7048.74	7689.11 7688.80	8.06	7.57	11.00	82.50 200
B box203	7034.72	7671.64	19.66	10.08	13.00	-74.42 203	B box201	7052.48	7677.78	5.41	3.34	3.00	7.84 201
B box204 B box205	7042.17 7054.23	7631.17 7644.94	15.94 8.95	8.86 3.13	11.00 5.00	19.54 204 -70.63 205	B box202 B box203	7059.05 7034.72	7675.72 7671.64	10.22 19.66	3.75 10.08	5.00 13.00	-70.17 202 -74.42 203
B box206	7006.99	7739.25	10.29	5.36	3.00	-34.71 206	B box204	7042.17	7631.17	15.94	8.86	11.00	19.54 ' 204
B box207 B box208	6979.35 6987.79	7715.12 7718.26	7.31 10.39	6.58 7.12	5.00 9.00	-0.12 207 2.48 208	B box205 B box206	7054.23 7006.99	7644.94 7739.25	8.95 10.29	3.13 5.36	5.00 3.00	-70.63 205 -34.71 206
B box209	7000.00	7721.28	6.04	5.47	5.00	-15.23 209	B box207	6979.35	7715.12	7.31	6.58	5.00	-0.12 207
B box210 B box211	7008.57 7009.78	7720.58 7717.49	5.46	1.97	3.00	21.42 210 21.48 211	B box208 B box209	6987.79 7000.00	7718.26 7721.28	10.39	7.12 5.47	9.00	2.48 208 -15.23 209
B box211 B box212	7006.31	7717.49 7716.13	5.46 3.73	3.31 1.28	11.00 7.00	21.47 ' 212	B box209 B box210	7008.57	7721.28 7720.58	6.04 5.46	1.97	5.00 3.00	21.42 ' 210
B box213	7003.85	7705.89	15.23	8.63	13.00	21.32 ' 213	B box211	7009.78	77 17 . 49	5.46	3.31	11.00	21.48 ' 211
B box214 B box215	7007.81 7014.12	7700.05 7702.76	8.97 11.04	6.49 6.18	3.00 15.00	-83.92 214 -85.74 215	B box212 B box213	7006.31 7003.85	7716.13 7705.89	3.73 15.23	1.28 8.63	7.00 13.00	21.47 212 21.32 213
B box216	7020.72	7699.40	7.05	2.52	5.00	-83.61 216	B box214	7007.81	7700.05	8.97	6.49	3.00	-83.92 214
B box217 B box218	7009.43 7028.72	7691.35 7704.29	3.74 5.33	5.53 2.80	5.00 3.00	-87.43 217 -86.52 218	B box215 B box216	7014.12 7020.72	7702.76 7699 40	11.04 7.05	6.18 2.52	15.00 5.00	-85.74 215 -83.61 216
B box218 B box219	6973.36	7694.80	7.59	6.30	7.00	20.13 219	B box217	7020.72	7699.40 7691.35	3.74	5.53	5.00	-87.43 217
B box220	6983.20	7697.20	16.35	9.76	13.00	20.49 220	B box218	7028.72	7704.29	5.33	2.80	3.00	-86.52 ' 218
B box221 B box222	6983.13 6895.11	7707.63 7705.24	6.79 14.96	2.46 9.90	7.00 7.00	20.92 221 5.82 222	B box219 B box220	6973.36 6983.20	7694.80 7697.20	7.59 16.35	6.30 9.76	7.00 13.00	20.13 219 20.49 220
B box223	6952.77	7709.13	9.28	6.10	9.00	-75.69 223	B box221	6983.13	7707.63	6.79	2.46	7.00	20.92 ' 221
B box224 B box225	6920.58 6923.54	7695.62 7687.12	8.13 8.05	3.87 6.04	5.00 7.00	-95.46 224 -6.26 225	B box222 B box223	6895.11 6952.77	7705.24 7709.13	14.96 9.28	9.90 6.10	7.00 9.00	5.82 222 -75.69 223
B box226	6928.96	7666.58	8.53	7.90	11.00	70.75 226	B box224	6920.58	7695.62	8.13	3.87	5.00	-95.46 224
B box227	6940.93	7664.91	5.40	1.37	3.00	-34.64 227	B box225	6923.54	7687.12	8.05	6.04	7.00	-6.26 225
B box228 B box229	6944.41 6950.39	7664.18 7656.45	4.63 6.12	3.28 3.67	9.00 3.00	55.38 228 -28.41 229	B box226 B box227	6928.96 6940.93	7666.58 7664.91	8.53 5.40	7.90 1.37	11.00 3.00	70.75 226 -34.64 227
B box230	6962.42	7649.01	8.44	3.63	3.00	-25.10 230	B box228	6944.41	7664.18	4.63	3.28	9.00	55.38 228
B box231 B box232	6971.73 6963.58	7649.00 7676.57	8.98 9.14	8.79 2.09	11.00 3.00	66.99 231 148.80 232	B box229 B box230	6950.39 6962.42	7656.45 7649.01	6.12 8.44	3.67 3.63	3.00 3.00	-28.41 229 -25.10 230
B box233	6958.11	7685.17	8.76	1.41	7.00	58.80 ' 233	B box231	6971.73	7649.00	8.98	8.79	11.00	66.99 ' 231
B box234	6963.58	7676.57	13.29	9.14	13.00	59.42 234	B box232	6963.58	7676.57	9.14	2.09	3.00	148.80 ' 232
B box235 B box236	6965.11 6963.27	7665.56 7669.63	5.72 10.78	1.89 9.12	9.00 11.00	-40.70 235 -40.70 236	B box233 B box234	6958.11 6963.58	7685.17 7676.57	8.76 13.29	1.41 9.14	7.00 13.00	58.80 233 59.42 234
							1						

B box237	6972.56	7663.91	8.26	7.38	9.00	-40.92 237	B box235	6965.11	7665.56	5.72	1.89	9.00	-40.70	235
B box238	6977.38	7669.51	6.37	2.61	3.00	-40.79 238	B box236	6963.27	7669.63	10.78	9.12	11.00	-40.70	236
B box239	6972.98	7661.79	2.84	1.33	7.00	-40.95 239	B box237	6972.56	7663.91	8.26	7.38	9.00	-40.92	237
B box240 B box241	6999.88 7002.14	7677.41 7664.51	4.55 6.41	4.61 5.93	3.00 7.00	14.12 ' 240 15.82 ' 241	B box238 B box239	6977.38 6972.98	7669.51 7661.79	6.37 2.84	2.61 1.33	3.00 7.00	- 40.79 - 40.95	238
B box242	7008.30	7666.26	6.46	5.92	7.00	15.98 ' 242	B box240	6999.88	7677.41	4.55	4.61	3.00	14.12	' 240
B box243 B box244	7006.00 7016.15	7662.11 7668.38	4.36	3.37	5.00 3.00	16.79 243 32.22 244	B box241 B box242	7002.14 7008.30	7664.51	6.41	5.93 5.92	7.00 7.00	15.82 15.98	241
B box244	7011.25	7654.89	3.31 4.23	2.36 2.47	3.00	-23.22 245	B box243	7006.30	7666.26 7662.11	6.46 4.36	3.37	5.00	16.79	242
B box246	7017.06	7656.27	9.55	7.10	7.00	27.17 ' 246	B box244	7016.15	7668.38	3.31	2.36	3.00	32.22	' 244
B box247 B box248	7023.13 7019.80	7649.16 7654.97	8.18 7.69	6.69 2.41	7.00 7.00	27.79 247 29.08 248	B box245 B box246	7011.25 7017.06	7654.89 7656.27	4.23 9.55	2.47 7.10	3.00 7.00	· 23 . 22 27 . 17	245
B box249	7017.00	7648.67	6.59	5.66	5.00	-65.01 249	B box247	7023.13	7649.16	8.18	6.69	7.00	27.79	247
B box250	7007.27	7642.29	5.77	4.93	3.00	33.37 ' 250	B box248	7019.80	7654.97	7.69	2.41	7.00	29.08	' 248
B box251 B box252	6992.99 6984.24	7644.43 7644.40	8.74 5.16	12.01 5.60	3.00 3.00	50.43 251 -39.57 252	B box249 B box250	7023.81 7007.27	7648.67 7642.29	6.59 5.77	5.66 4.93	5.00 3.00	-65.01 33.37	249
B box253	6989.43	7640.11	5.60	1.57	9.00	50.43 253	B box251	6992.99	7644.43	8.74	12.01	3.00	50.43	251
B box254	6991.04	7638.78	6.63	2.09	9.00	50.44 254	B box252	6984.24	7644.40	5.16	5.60	3.00	- 39 . 57	252
B box255 B box256	6994.28 7010.17	7640.52 7637.90	8.44 15.54	5.97 10.17	7.00 15.00	-57.68 255 -65.28 256	B box253 B box254	6989.43 6991.04	7640.11 7638.78	5.60 6.63	1.57 2.09	9.00 9.00	50.43 50.44	253
B box257	7021.20	7623.87	5.71	1.82	9.00	24.72 257	B box255	6994.28	7640.52	8.44	5.97	7.00	-57.68	255
B box258	7033.17	7619.33	9.13	5.85	9.00	114.72 258	B box256	7010.17	7637.90	15.54	10.17	15.00	- 65 . 28	256
B box259 B box260	7008.26 7020.22	7626.45 7598.26	9.14 10.32	6.53 9.11	3.00 11.00	-65.26 259 -74.38 260	B box257 B box258	7021.20 7033.17	7623.87 7619.33	5.71 9.13	1.82 5.85	9.00 9.00	24.72 114.72	257
B box261	7023.00	7588.32	10.02	9.11	3.00	-74.38 261	B box259	7008.26	7626.45	9.14	6.53	3.00	-65.26	259
B box262	7020.10	7593.91	2.58	1.29	3.00	-74.37 262	B box260	7020.22	7598.26	10.32	9.11	11.00	-74.38	260
B box263 B box264	7022.56 7032.17	7585.11 7597.54	3.30 4.32	1.29 4.32	3.00 3.00	-74.39 263 15.86 264	B box261 B box262	7023.00 7020.10	7588.32 7593.91	10.02 2.58	9.11 1.29	3.00 3.00	·74.38 ·74.37	261
B box265	7100.76	7603.90	5.95	2.39	3.00	13.21 265	B box263	7022.56	7585.11	3.30	1.29	3.00	-74.39	263
B box266	7120.74	7600.54	13.76	9.53	11.00	15.13 266	B box264	7032.17	7597.54	4.32	4.32	3.00	15.86	264
B box267 B box268	7115.66 7126.70	7589.81 7593.57	9.15 9.61	3.00 9.13	5.00 9.00	16.82 267 -77.13 268	B box265 B box266	7100.76 7120.74	7603.90 7600.54	5.95 13.76	2.39 9.53	3.00 11.00	13.21 15.13	265
B box269	7137.56	7555.79	10.03	9.18	13.00	17.29 ' 269	B box267	7115.66	7589.81	9.15	3.00	5.00	16.82	267
B box270	7132.42	7561.04	6.54	3.37	3.00	-72.80 270 -74.20 271	B box268	7126.70	7593.57 7555 70	9.61	9.13	9.00	-77.13	268
B box271 B box272	7111.97 7123.00	7540.49 7528.72	14.04 9.32	6.82 1.11	7.00 7.00	-76.30 271 103.68 272	B box269 B box270	7137.56 7132.42	7555.79 7561.04	10.03 6.54	9.18 3.37	13.00 3.00	17.29 -72.80	269
B box273	7119.72	7537.52	6.69	4.72	7.00	13.68 ' 273	B box271	7111.97	7540.49	14.04	6.82	7.00	-76.30	' 271
B box274 B box275	7139.06 7141.74	7542.76 7548.82	6.35 11.41	4.24 9.13	3.00 11.00	-75.61 274 -74.06 275	B box272 B box273	7123.00 7119.72	7528.72 7537.52	9.32 6.69	1.11 4.72	7.00 7.00	103.68 13.68	272
B box276	7149.30	7533.62	5.99	2.94	5.00	15.65 276	B box274	7139.06	7542.76	6.35	4.24	3.00	-75.61	' 274
B box277	7150.10	7526.68	7.23	1.68	5.00	16.58 277	B box275	7141.74	7548.82	11.41	9.13	11.00	-74.06	275
B box278 B box279	7146.55 6878.76	7520.84 7906.28	4.09 4.21	3.39 5.21	3.00 5.00	-73.45 278 -69.99 279	B box276 B box277	7149.30 7150.10	7533.62 7526.68	5.99 7.23	2.94 1.68	5.00 5.00	15.65 16.58	276
B box280	6897.65	7895.51	7.38	3.20	3.00	22.99 ' 280	B box278	7146.55	7520.84	4.09	3.39	3.00	-73.45	278
B box281 B box282	6877.87	7891.33	11.58	4.12	5.00	-66.99 281	B box279 B box280	6878.76	7906.28	4.21	5.21	5.00	-69.99 22.99	279
B box282 B box283	6889.69 6905.91	7881.18 7884.48	6.88 5.05	6.10 5.10	5.00 7.00	24.88 282 26.12 283	B box280 B box281	6897.65 6877.87	7895.51 7891.33	7.38 11.58	3.20 4.12	3.00 5.00	-66.99	280
B box284	6901.62	7882.30	4.35	2.38	3.00	-63.78 284	B box282	6889.69	7881.18	6.88	6.10	5.00	24.88	282
B box285 B box286	6906.83 6902.72	7871.78 7877.22	7.93 2.93	7.39	11.00 5.00	26.59 285 -63.79 286	B box283 B box284	6905.91 6901.62	7884.48 7882.30	5.05 4.35	5.10 2.38	7.00 3.00	26.12 -63.78	283
B box287	6886.51	7874.55	11.54	1.25 8.38	13.00	-63.20 287	B box285	6906.83	7871.78	7.93	7.39	11.00	26.59	285
B box288	6895.76	7874.82	3.72	1.25	5.00	-63.10 288	B box286	6902.72	7877.22	2.93	1.25	5.00	-63.79	' 286
B box289 B box290	6886.51 6867.03	7874.55 7854.68	3.97 12.64	3.57 8.40	7.00 7.00	26.22 289 19.90 290	B box287 B box288	6886.51 6895.76	7874.55 7874.82	11.54 3.72	8.38 1.25	13.00 5.00	-63.20 -63.10	287
B box291	6858.01	7851.42	9.59	8.87	3.00	19.89 291	B box289	6886.51	7874.55	3.72	3.57	7.00	26.22	289
B box292	6848.63	7860.45	6.30	3.90	7.00	22.85 292	B box290	6867.03	7854.68	12.64	8.40	7.00	19.90	290
B box293 B box294	6850.25 6882.13	7858.09 7851.64	5.03 10.81	3.10 6.67	3.00 3.00	19.37 293 21.53 294	B box291 B box292	6858.01 6848.63	7851.42 7860.45	9.59 6.30	8.87 3.90	3.00 7.00	19.89 22.85	291
B box295	6895.45	7857.17	7.66	3.62	3.00	115.96 295	B box293	6850.25	7858.09	5.03	3.10	3.00	19.37	293
B box296	6895.39	7857.29	6.27	6.25	3.00	26.52 296	B box294	6882.13	7851.64	10.81	6.67	3.00	21.53	294
B box297 B box298	6890.66 6883.66	7838.99 7844.03	8.92 7.59	7.53 4.36	13.00 13.00	25.93 ' 297 -66.10 ' 298	B box295 B box296	6895.45 6895.39	7857.17 7857.29	7.66 6.27	3.62 6.25	3.00 3.00	115.96 26.52	295
B box299	6902.74	7844.87	8.10	7.10	11.00	25.53 299	B box297	6890.66	7838.99	8.92	7.53	13.00	25.93	297
B box300	6904.50	7841.21	8.08	4.06	11.00	24.69 300	B box298	6883.66	7844.03	7.59	4.36	13.00	- 66 . 10	298
B box301 B box302	6899.81 6914.41	7851.34 7852.19	3.03 6.46	1.16 5.34	3.00 7.00	25.79 ' 301 29.38 ' 302	B box299 B box300	6902.74 6904.50	7844.87 7841.21	8.10 8.08	7.10 4.06	11.00 11.00	25.53 24.69	299
B box303	6873.62	7820.76	9.98	7.71	15.00	56.22 303	B box301	6899.81	7851.34	3.03	1.16	3.00	25.79	301
B box304	6867.09	7824.87	10.05	5.60	13.00	57.88 304	B box302	6914.41	7852.19	6.46	5.34	7.00	29.38	302
B box305 B box306	6864.36 6884.13	7823.12 7822.64	5.57 11.58	2.94 5.70	11.00 7.00	-29.27 305 -169.53 306	B box303 B box304	6873.62 6867.09	7820.76 7824.87	9.98 10.05	7.71 5.60	15.00 13.00	56.22 57.88	303
B box307	6876.44	7813.49	7.56	1.99	3.00	9.01 ' 307	B box305	6864.36	7823.12	5.57	2.94	11.00	- 29 . 27	' 305
B box308 B box309	6805.24 6803.44	7865.86 7861.21	13.53 7.06	2.80 3.85	3.00 7.00	14.79 ' 308 -78.89 ' 309	B box306 B box307	6884.13 6876.44	7822.64 7813.49	11.58 7.56	5.70 1.99	7.00 3.00	-169.53 9.01	306
B box310	6807.15	7862.27	7.39	4.39	5.00	-78.81 310	B box308	6805.24	7865.86	13.53	2.80	3.00	14.79	308
B box311	6812.43	7857.56	7.41	3.97	5.00	10.05 311	B box309	6803.44	7861.21	7.06	3.85	7.00	-78.89	309
B box312 B box313	6809.69 6808.64	7837.62 7846.19	10.63 5.32	8.63 3.81	13.00 7.00	6.99 ' 312 6.99 ' 313	B box310 B box311	6807.15 6812.43	7862.27 7857.56	7.39 7.41	4.39 3.97	5.00 5.00	·78.81 10.05	' 310 ' 311
B box314	6821.69	7842.23	5.03	3.97	3.00	0.83 ' 314	B box312	6809.69	7837.62	10.63	8.63	13.00	6.99	' 312
B box315 B box316	6795.25	7831.50	9.44	7.18	11.00	10.51 315	B box313 B box314	6808.64	7846.19 7842.23	5.32	3.81	7.00	6.99	313
B box316 B box317	6803.81 6821.97	7817.47 7821.83	8.50 9.27	6.32 7.11	7.00 13.00	10.67 ' 316 4.23 ' 317	B box314 B box315	6821.69 6795.25	7842.23 7831.50	5.03 9.44	3.97 7.18	3.00 11.00	0.83 10.51	314
B box318	6830.76	7827.40	4.90	3.30	5.00	-84.73 ' 318	B box316	6803.81	7817.47	8.50	6.32	7.00	10.67	' 316
B box319 B box320	6836.24 6810.78	7827.78 7806.51	5.97 9.62	4.80 8.13	7.00 15.00	-83.71 ' 319 5.88 ' 320	B box317 B box318	6821.97 6830.76	7821.83 7827.40	9.27 4.90	7.11 3.30	13.00 5.00	4.23 -84.73	317 318
B box321	6814.98	7815.10	3.26	1.50	7.00	5.75 ' 321	B box319	6836.24	7827.78	5.97	4.80	7.00	-83.71	' 319
B box322 B box323	6819.48	7815.55 7808.48	4.05	2.06 5.50	5.00 3.00	-83.91 322 7.15 323	B box320 B box321	6810.78 6814.98	7806.51	9.62	8.13 1.50	15.00 7.00	5.88	320
B box323 B box324	6838.96 6844.64	7808.48 7815.25	5.63 6.02	3.80	3.00	7.15 323 -82.43 324	B box321 B box322	6814.98 6819.48	7815.10 7815.55	3.26 4.05	2.06	7.00 5.00	5.75 -83.91	321
B box325	6763.73	7806.97	10.30	8.12	11.00	1.23 ' 325	B box323	6838.96	7808.48	5.63	5.50	3.00	7.15	' 323
B box326 B box327	6757.12 6776.22	7806.64 7807.43	6.64 5.55	5.33 2.21	11.00 7.00	2.87 326 95.99 327	B box324 B box325	6844.64 6763.73	7815.25 7806.97	6.02 10.30	3.80 8.12	3.00 11.00	-82.43 1.23	324
B box328	6717.23	7803.01	6.44	5.75	5.00	-19.08 ' 328	B box326	6757.12	7806.64	6.64	5.33	11.00	2.87	' 326
B box329	6692.96	7792.49	6.21	4.38	5.00	44.88 329	B box327	6776.22	7807.43	5.55	2.21	7.00	95.99	327
B box330 B box331	6692.32 6693.86	7783.31 7781.74	13.11 13.11	6.05 2.20	11.00 7.00	44.65 330 44.72 331	B box328 B box329	6717.23 6692.96	7803.01 7792.49	6.44 6.21	5.75 4.38	5.00 5.00	- 19.08 44.88	328
B box332	6700.89	7774.59	13.13	10.03	9.00	44.44 ' 332	B box330	6692.32	7783.31	13.11	6.05	11.00	44.65	' 330
B box333	6705.03 4701.45	7789.09	7.45	5.23	7.00	-45.43 333 -45.43 324	B box331	6693.86	7781.74	13.11	2.20	7.00	44.72	331
B box334 B box335	6701.65 6686.62	7792.52 7777.61	2.18 8.06	1.05 6.13	3.00 9.00	-45.43 334 44.99 335	B box332 B box333	6700.89 6705.03	7774.59 7789.09	13.13 7.45	10.03 5.23	9.00 7.00	44.44 -45.43	332
B box336	6743.67	7779.04	10.79	8.96	11.00	121.08 ' 336	B box334	6701.65	7792.52	2.18	1.05	3.00	-45.43	334
B box337	6751.60	7793.30 7774.78	9.68 4.95	9.11	13.00	-79.56 337 -48.41 338	B box335	6686.62	7777.61	8.06	6.13	9.00	44.99	335
B box338 B box339	6767.90 6790.47	7769.65	4.95 7.54	3.15 5.51	5.00 7.00	14.31 338	B box336 B box337	6743.67 6751.60	7779.04 7793.30	10.79 9.68	8.96 9.11	11.00 13.00	121.08 -79.56	336
B box340	6788.38	7783.41	10.02	8.99	13.00	-1.03 ' 340	B box338	6767.90	7774.78	4.95	3.15	5.00	-48.41	' 338
B box341 B box342	6812.03 6812.03	7787.77 7787.77	10.16	8.13 4.33	13.00	2.51 ' 341 -87.35 ' 342	B box339 B box340	6790.47 6788.38	7769.65 7783.41	7.54	5.51 8.99	7.00	14.31	339
B box342 B box343	6812.03 6820.95	7787.77 7782.51	6.43 7.13	4.33 5.80	11.00 11.00	-87.35 342 -84.92 343	B box340 B box341	6788.38 6812.03	7783.41 7787.77	10.02 10.16	8.99 8.13	13.00 13.00	-1.03 2.51	340
B box344	6840.12	7786.74	6.46	2.82	5.00	-83.58 ' 344	B box342	6812.03	7787.77	6.43	4.33	11.00	-87.35	' 342
B box345 B box346	6842.97 6851.56	7786.66 7785.20	9.06 6.17	7.03 4.06	9.00 5.00	-84.31 345 -83.72 346	B box343 B box344	6820.95 6840.12	7782.51 7786.74	7.13 6.46	5.80 2.82	11.00 5.00	-84.92 -83.58	343
B box346	6843.51	7799.95	8.12	5.51	11.00	-78.84 347	B box344	6840.12	7786.74	9.06	7.03	9.00	-83.58	344
B box348	6850.69	7791.97	9.66	9.21	11.00	11.08 ' 348	B box346	6851.56	7785.20	6.17	4.06	5.00	-83.72	' 346
B box349 B box350	6858.61 6878.22	7801.88 7786.93	4.52 6.92	3.49 2.47	5.00 3.00	-79.08 ' 349 9.01 ' 350	B box347 B box348	6843.51 6850.69	7799.95 7791.97	8.12 9.66	5.51 9.21	11.00 11.00	·78.84 11.08	347 348
B box351	6890.80	7778.20	1.49	0.54	3.00	31.94 ' 351	B box349	6858.61	7801.88	4.52	3.49	5.00	-79.08	' 349
B box352	6892.69	7777.60	1.22	0.92	1.00	-92.26 ' 352	B box350	6878.22	7786.93	6.92	2.47	3.00	9.01	' 350
B box353 B box354	6884.96 6720.31	7769.26 7759.10	4.85 13.12	4.74 8.51	3.00 11.00	-49.91 ' 353 44.16 ' 354	B box351 B box352	6890.80 6892.69	7778.20 7777.60	1.49 1.22	0.54 0.92	3.00 1.00	31.94 -92.26	351 352
B box355	6714.58	7765.40	12.63	1.25	5.00	43.90 ' 355	B box353	6884.96	7769.26	4.85	4.74	3.00	-49.91	' 353
B box356	6724.65	7773.51	1.10	1.13	5.00	43.85 ' 356	B box354	6720.31	7759.10	13.12	8.51	11.00	44.16	354
B box357 B box358	6726.97 6713.86	7754.17 7753.02	5.05 13.29	3.37 4.57	3.00 7.00	37.76 ' 357 -56.36 ' 358	B box355 B box356	6714.58 6724.65	7765.40 7773.51	12.63 1.10	1.25 1.13	5.00 5.00	43.90 43.85	355
										•				

								_								
box359	6725.56	7744.57	4.12	3.57	5.00	36.33	359	В	box357	6726.97	7754.17	5.05	3.37	3.00	37.76	357
B box360	6704.06	7746.06	12.20	8.55	5.00	48.34	' 360	В	box358	6713.86	7753.02	13.29	4.57	7.00	-56.36	358
B box361	6696.59	7737.93	7.12	5.33	5.00	43.84	' 361	B	box359	6725.56	7744.57	4.12	3.57	5.00	36.33	' 359
B box362	6680.53	7753.83	9.72	7.88	11.00	45.98	' 362	B	box360	6704.06	7746.06	12.20	8.55	5.00	48.34	' 360
B box363	6681.63	7766.30	4.12	1.70	7.00	-44.06	' 363	В	box361	6696.59	7737.93	7.12	5.33	5.00	43.84	' 361
B box364	6671.64	7760.29	5.13	3.38	5.00	46.33	' 364	В	box362	6680.53	7753.83	9.72	7.88	11.00	45.98	362
B box365	6662.51	7768.93	3.89	2.75	3.00	59.67	' 365	В	box363	6681.63	7766.30	4.12	1.70	7.00	-44.06	' 363
B box366	6669.91	7747.79	4.95	5.08	9.00	37.06	' 366	В	box364	6671.64	7760.29	5.13	3.38	5.00	46.33	' 364
B box367	6663.38	7737.89	11.13	9.19	3.00	36.52	' 367	В	box365	6662.51	7768.93	3.89	2.75	3.00	59.67	' 365
B box368	6640.74	7725.10	15.29	7.87	11.00	35.11	' 368	В	box366	6669.91	7747.79	4.95	5.08	9.00	37.06	' 366
B box369	6642.38	7701.63	6.25	4.89	7.00	34.69	' 369	В	box367	6663.38	7737.89	11.13	9.19	3.00	36.52	' 367
B box370	6623.71	7710.36	13.71	8.89	3.00	42.69	370	В	box368	6640.74	7725.10	15.29	7.87	11.00	35.11	368
box371	6615.60	7713.44	7.76	3.95	3.00	-47.85	371	В	box369	6642.38	7701.63	6.25	4.89	7.00	34.69	369
box372	6629.49	7724.37	2.37	1.68	3.00	- 47 . 60	372	B	box370	6623.71	7710.36	13.71	8.89	3.00	42.69	370
B box373	6627.00	7711.61	1.86	1.31	3.00	42.05	373	B	box371	6615.60	7713.44	7.76	3.95	3.00	- 47 . 85	371
box374	6786.95	7727.06	73.04	22.69	9.00	0.11	374	В	box372	6629.49	7724.37	2.37	1.68	3.00	- 47 . 60	372
box375	6843.85	7721.18	16.05	5.99	9.00	0.11	375	B	box373	6627.00	7711.61	1.86	1.31	3.00	42.05	373
box376	6858.59	7714.52	3.00	2.51	3.00	- 105.76	376	B	box374	6786.95	7717.06	73.04	22.69	9.00	0.11	374
box377	6945.42	7682.24	8.75	8.04	11.00	42.81	377	B	box375	6843.85	7721.18	16.05	5.99	9.00	0.11	375
box377	6957.20	7689.13	4.77	3.78	3.00	84.38	377	B	box375 box376	6858.59	7714.52	3.00	2.51	3.00	-105.76	376
	7022.19	7552.69	8.11	8.44	11.00	-75.08	379	B		6945.42	7682.24	8.75	8.04	11.00	42.81	376
								B	box377							
	7026.79	7544.44	10.81	6.92	9.00	-76.00	380	1 -	box378	6957.20	7689.13	4.77	3.78	3.00	84.38	378
box381	7023.35	7543.56	10.79	3.55	7.00	-75.54	381	B	box379	7022.19	7552.69	8.11	8.44	11.00	-75.08	
box382	7031.56	7534.49	5.43	4.70	9.00	-76.05	382	B	box380	7026.79	7544.44	10.81	6.92	9.00	-76.00	380
box383	7033.56	7526.39	4.66	2.91	3.00	14.53	383	В	box381	7023.35	7543.56	10.79	3.55	7.00	-75.54	381
box384	7031.48	7522.12	9.69	6.17	13.00	-83.03	384	B	box382	7031.56	7534.49	5.43	4.70	9.00	-76.05	382
box385	7024.65	7515.54	4.60	4.24	3.00	7.82	385	В	box383	7033.56	7526.39	4.66	2.91	3.00	14.53	383
box386	7040.25	7503.27	5.47	2.50	3.00	- 106.03	386	B	box384	7031.48	7522.12	9.69	6.17	13.00	-83.03	384
box387	6970.00	7812.83	18.93	11.60	9.00	16.84	' 387	B	box385	7024.65	7515.54	4.60	4.24	3.00	7.82	' 385
box388	6948.78	7818.76	11.23	2.45	5.00	16.54	' 388	В	box386	7040.25	7503.27	5.47	2.50	3.00	-106.03	' 386
box389	6949.54	7816.34	18.41	2.53	7.00	17.37	' 389	B	box387	6970.00	7812.83	18.93	11.60	9.00	16.84	' 387
box390	6937.44	7812.58	12.67	2.70	7.00	17.27	' 390	B	box388	6948.78	7818.76	11.23	2.45	5.00	16.54	' 388
box391	6929.20	7810.06	8.62	4.97	7.00	17.00	' 391	B	box389	6949.54	7816.34	18.41	2.53	7.00	17.37	' 389
box392	6906.73	7802.89	23.59	2.61	7.00	17.69	392	В	box390	6937.44	7812.58	12.67	2.70	7.00	17.27	' 390
box393	6918.36	7797.60	17.24	6.03	9.00	-72.77	' 393	В	box391	6929.20	7810.06	8.62	4.97	7.00	17.00	' 391
box394	6923.77	7774.90	7.86	6.03	7.00	17.44	394	В	box392	6906.73	7802.89	23.59	2.61	7.00	17.69	392
box395	6903.86	7769.01	16.23	9.57	25.00	-72.96	395	В	box393	6918.36	7797.60	17.24	6.03	9.00	-72.77	393
box396	6984.74	7785.72	24.64	12.12	11.00	-73.01	396	В	box394	6923.77	7774.90	7.86	6.03	7.00	17.44	394
box397	6905.13	7749.73	7.62	4.43	7.00	-72.89	' 397	В	box395	6903.86	7769.01	16.23	9.57	25.00	-72.96	395
box398	6735.89	7770.35	5.14	2.58	5.00	22.78	398	В	box396	6984.74	7785.72	24.64	12.12	11.00	-73.01	396
box399	6746.48	7779.17	5.36	3.42	5.00	-72.85	399	В	box397	6905.13	7749.73	7.62	4.43	7.00	-72.89	397
box400	6754.34	7776.92	3.81	3.08	5.00	13.92	400	В	box398	6735.89	7770.35	5.14	2.58	5.00	22.78	398
box401	6742.75	7789.15	4.45	3.26	3.00	-69.63	401	В	box399	6746.48	7779.17	5.36	3.42	5.00	-72.85	399
				2.20	2.00	27.00		B	box400	6754.34	7776.92	3.81	3.08	5.00	13.92	400
								B	box401	6742.75	7789.15	4.45	3.26	3.00	-69.63	401
								١	DOX-701	0,42.73	7707.13	4.45	0.20	0.00	- 07.00	701

		L_ I				L_ P-46	
Btype = POLY		Btype = POLY		Btype = POLY		Btype = POLY	
Cb = 13.0		Cb = 13.0		Cb = 13.0		Cb = 7.0	
Name	Xb Yb	! Name	Xb Yb	! Name	Xb Yb	! Name	Xb Yb
bpo1001	6916.6 7726.8	B bpo1031	6883.2 7829.4	B bpo1001	6916.6 7726.8	B bpo1029	6635.5 7735.2
bpo1001	6908.0 7742.5	B bpo1031	6894.2 7830.9	B bpo1001	6908.0 7742.5	B bpo 1029	6631.6 7732.2
bpo1001	6906.3 7746.0	B bpo 1031	6894.9 7826.9	B bpo1001	6906.3 7746.0	B bpo 1029	6630.2 7734.1
bpo1001	6905.1 7749.7	B bpo 1031	6893.6 7826.7	B bpo1001	6905.1 7749.7	B bpo 1029	6629.4 7733.3
bpo1001	6909.4 7751.0	B bpo 1031	6894.0 7824.2	B bpo1001	6909.4 7751.0	B bpo 1029	6624.6 7739.6
bpo1001	6903.9 7769.0	B bpo 1031	6896.7 7824.6	B bpo1001	6903.9 7769.0	B bpo 1029	6629.4 7743.3
bpo1001	6913.0 7771.8	B bpo 1031	6897.3 7819.6	B bpo1001	6913.0 7771.8	B bpo 1029	6635.5 7735.2
bpo1001	6913.1 7771.7	B bpo1031	6895.6 7819.4	B bpo1001	6913.1 7771.7		
bpo1001	6931.3 7777.3	B bpo1031	6895.4 7821.5	B bpo1001	6931.3 7777.3		
bpo1001	6929.9 7781.7	B bpo1031	6894.4 7821.4	B bpo1001	6929.9 7781.7	Btype = POLY	
bpo1001	6929.4 7781.6	B bpo1031	6894.9 7818.5	B bpo1001	6929.4 7781.6	Cb = 9.0	
bpo1001	6929.0 7782.9	B bpo1031	6884.9 7817.0	B bpo1001	6929.0 7782.9	! Name	Xb Yb
bpo1001	6924.1 7799.4	B bpo 1031		B bpo1001	6924.1 7799.4		
bpo1001 bpo1001	6918.4 7797.6			B bpo1001	6918.4 7797.6	B bpo1030	6769.7 7844.6
bpo1001	6915.8 7805.8			B bpo1001	6915.8 7805.8	B bpo 1030	6768.1 7854.3
bpo1001	6929.2 7810.1	Btype = POLY		B bpo1001	6929.2 7810.1	B bpo 1030	6779.8 7856.6
bpo1001	6933.2 7811.3	Cb = 9.0		B bpo1001	6933.2 7811.3	B bpo 1030	6781.0 7850.7
bpo1001	6937.5 7812.6	! Name	Xb Yb	B bpo1001	6937.5 7812.6	B bpo 1030	6778.8 7850.3
bpo1001	6939.5 7813.2			B bpo1001	6939.5 7813.2	B bpo 1030	6779.5 7846.5
bpo1001	6942.9 7814.2	B bpo 1032	6968.9 7953.1	B bpo1001	6942.9 7814.2	B bpo 1030	6769.7 7844.6
bpo1001	6949.6 7816.3	B bpo 1032	6967.6 7954.5	B bpo1001	6949.6 7816.3	+-	
bpo1001	6967.5 7822.0	B bpo 1032	6963.2 7950.6	B bpo1001	6967.5 7822.0		
bpo1001	6966.9 7824.0	B bpo 1032	6958.9 7955.3	B bpo1001	6966.9 7824.0	Btype = POLY	
bpo1001	6984.6 7829.4	B bpo 1032	6963.2 7959.3	B bpo1001	6984.6 7829.4	Cb = 13.0	
bpo1001	6997.0 7789.5	B bpo 1032	6962.8 7959.8	B bpo1001	6997.0 7789.5	! Name	Xb Yb
bpo1001	6996.3 7789.3	B bpo 1032	6970.3 7966.4	B bpo1001	6996.3 7789.3	. name	10
bpo1001	7006.8 7754.4	B bpo1032	6976.3 7959.8	B bpo1001	7006.8 7754.4	B bpo1031	6883.2 7829.4
bpo1001	7001.9 7749.8	B bpo 1032		B bpo1001	7001.9 7749.8	B bpo1031	6894.2 7830.9
bpo1001	6968.0 7739.4			B bpo1001	6968.0 7739.4	B bpo1031	6894.9 7826.9
bpo1001	6958.3 7726.7			B bpo1001	6958.3 7726.7	B bpo1031	6893.6 7826.7
bpo1001	6948.8 7723.8	Btype = POLY		B bpo1001	6948.8 7723.8	B bpo1031	6894.0 7824.2
bpo1001	6946.6 7730.9	Cb = 5.0		B bpo1001	6946.6 7730.9	B bpo1031	6896.7 7824.6
bpo1001	6959.4 7734.8	! Name	Xb Yb	B bpo1001	6959.4 7734.8	B bpo1031	6897.3 7819.6
bpo1001	6961.3 7737.2		AD 10	B bpo1001	6961.3 7737.2	B bpo1031	6895.6 7819.4
bpo1001	6960.7 7739.5	B bpo 1033	6889.4 7894.0	B bpo1001	6960.7 7739.5	B bpo1031	6895.4 7821.5
bpo1001	6943.3 7734.2	B bpo 1033	6886.5 7893.0	B bpo1001	6943.3 7734.2	B bpo1031	6894.4 7821.4
bpo1001	6940.1 7744.7	B bpo1033	6885.4 7896.4	B bpo1001	6940.1 7744.7	B bpo1031	6894.9 7818.5
bpo1001	6922.8 7739.4	B bpo 1033	6883.0 7895.6	B bpo1001	6922.8 7739.4	B bpo1031	6884.9 7817.0
bpo1001	6920.3 7747.7	B bpo1033	6881.9 7899.8	B bpo1001	6920.3 7747.7	B bpo1031	6883.2 7829.4
bpo1001	6911.3 7745.0	B bpo1033	6886.9 7901.5	B bpo1001	6911.3 7745.0	p pho.021	1027.4
bpo1001	6911.6 7743.9	B bpo1033	6889.4 7894.0	B bpo1001	6911.6 7743.9		************
bpo1001	6916.9 7745.8			B bpo1001	6916.9 7745.8	Btype = POLY	
bpo1001	6921.7 7736.7			B bpo1001	6921.7 7736.7	Cb = 9.0	
bpo1001	6923.0 7737.5	Btype = POLY		B bpo1001	6923.0 7737.5	! Name	Xb Yb
bpo1001	6924.1 7735.4	Cb = 7.0		B bpo1001	6924.1 7735.4	; name	AU IU
bpo1001	6922.8 7734.7	! Name	Xb Yb	B bpo1001	6922.8 7734.7	B bpo 1032	6968.9 7953.1
bpo1001	6924.6 7731.3	; name	AD 1D	B bpo1001	6924.6 7731.3	B bpo1032	6967.6 7954.5
bpo1001	6916.6 7726.8	B bpo1034	6928.3 7905.8	B bpo1001	6916.6 7726.8	B bpo1032	6963.2 7950.6
	0710.0 //20.0	B bpo1034	6926.6 7908.7		0710.0 //20.0	B bpo1032	6958.9 7955.3
		B bpo1034	6929.4 7910.3	1		B bpo1032	6963.2 7959.3
Btype = POLY		B bpo1034	6926.9 7914.5	Btype = POLY		B bpo1032	6962.8 7959.8
Cb = 9.0		B bpo1034	6929.9 7916.3	Cb = 9.0		B bpo1032	6970.3 7966.4
Name	Xb Yb	B bpo1034	6934.0 7909.2	! Name	Xb Yb	B bpo1032	6976.3 7959.8
	AD TD	B bpo1034	6928.3 7905.8		AD 1D	B bpo1032	6968.9 7953.1
+							

bpo1002	6911.2 7745.0		B bpo1002	6911.2 7745.0		
bpo1002 bpo1002	6909.4 7751.0 6903.9 7769.0	Btype = POLY Cb = 9.0	B bpo1002 B bpo1002	6909.4 7751.0 6903.9 7769.0	Btype = POLY Cb = 5.0	
bpo1002	6913.0 7771.8	! Name Xb Yb	B bpo1002	6913.0 7771.8	! Name	Xb Yb
bpo1002	6913.1 7771.7		B bpo1002	6913.1 7771.7		
bpo1002	6923.8 7774.9	B bpo 1035 7002.3 7894.5	B bpo1002	6923.8 7774.9	B bpo 1033	6889.4 7894.0
bpo1002 bpo1002	6922.1 7780.4 6923.0 7780.5	B bpo1035 6999.2 7902.0 B bpo1035 7011.0 7906.8	B bpo1002 B bpo1002	6922.1 7780.4 6923.0 7780.5	B bpo 1033 B bpo 1033	6886.5 7893.0 6885.4 7896.4
bpo1002	6923.7 7781.2	B bpo1035 7011.0 7700.0	B bpo1002	6923.7 7781.2	B bpo 1033	6883.0 7895.6
bpo1002	6923.8 7782.1	B bpo1035 7016.5 7903.7	B bpo1002	6923.8 7782.1	B bpo 1033	6881.9 7899.8
bpo1002 bpo1002	6923.4 7782.9	B bpo 1035 7017.7 7900.9	B bpo1002	6923.4 7782.9	B bpo1033	6886.9 7901.5
bpo1002 bpo1002	6922.8 7783.3 6922.0 7783.3	B bpo1035 7009.8 7897.6 B bpo1035 7010.9 7895.0	B bpo1002 B bpo1002	6922.8 7783.3 6922.0 7783.3	B bpo 1033	6889.4 7894.0
bpo1002	6921.3 7782.9	B bpo1035 7010.7 7874.2	B bpo1002	6921.3 7782.9		
bpo1002	6920.9 7782.2	B bpo1035 7008.0 7896.9	B bpo1002	6920.9 7782.2	Btype = POLY	
bpo1002	6911.2 7779.4	B bpo1035 7002.3 7894.5	B bpo1002	6911.2 7779.4	Cb = 7.0	
bpo1002 bpo1002	6908.3 7782.6 6906.7 7802.9		B bpo1002 B bpo1002	6908.3 7782.6 6906.7 7802.9	! Name	Xb Yb
bpo1002	6906.2 7805.4	Btype = POLY	B bpo1002	6906.2 7805.4	·	6928.3 7905.8
bpo1002	6928.4 7812.5	Cb = 9.0	B bpo1002	6928.4 7812.5	B bpo1034	6926.6 7908.7
bpo1002	6927.7 7814.8	! Name Xb Yb	B bpo1002	6927.7 7814.8	B bpo1034	6929.4 7910.3
bpo1002 bpo1002	6936.0 7817.4 6936.7 7815.1	B bpo1036 6998.6 7915.2	B bpo1002 B bpo1002	6936.0 7817.4 6936.7 7815.1	B bpo1034 B bpo1034	6926.9 7914.5 6929.9 7916.3
bpo1002	6948.8 7818.8	B bpo1036 6994.1 7924.1	B bpo1002	6948.8 7818.8	B bpo1034	6934.0 7909.2
bpo1002	6948.0 7821.2	B bpo1036 7002.9 7928.5	B bpo1002	6948.0 7821.2	B bpo1034	6928.3 7905.8
bpo1002	6965.9 7827.1	B bpo1036 7007.4 7919.6	B bpo1002	6965.9 7827.1	+-	
bpo1002 bpo1002	6966.9 7824.0	B bpo1036 6998.6 7915.2	B bpo1002	6966.9 7824.0	Da DOLY	
bpo1002 bpo1002	6984.6 7829.4 6997.0 7789.5		B bpo1002 B bpo1002	6984.6 7829.4 6997.0 7789.5	Btype = POLY Cb = 9.0	
bpo1002	6996.3 7789.3	Btype = POLY	B bpo1002	6996.3 7789.3	! Name	Xb Yb
bpo1002	7006.8 7754.4	Cb = 9.0	B bpo1002	7006.8 7754.4		
bpo1002	7001.9 7749.8	! Name Xb Yb	B bpo1002	7001.9 7749.8	B bpo 1035	7002.3 7894.5
bpo1002	6968.0 7739.4	B bpo1037 7139.6 7989.4	B bpo1002 B bpo1002	6968.0 7739.4 6958 3 7726 7	B bpo1035	6999.2 7902.0
bpo1002 bpo1002	6958.3 7726.7 6948.8 7723.8	B bpo1037 7139.6 7989.4 B bpo1037 7137.4 7994.3	B bpo1002 B bpo1002	6958.3 7726.7 6948.8 7723.8	B bpo 1035 B bpo 1035	7011.0 7906.8 7012.9 7902.2
bpo1002	6946.6 7730.9	B bpo1037 7140.0 7995.5	B bpo1002	6946.6 7730.9	B bpo 1035	7016.5 7903.7
bpo1002	6959.4 7734.8	B bpo1037 7138.4 7997.7	B bpo1002	6959.4 7734.8	B bpo 1035	7017.7 7900.9
bpo1002	6961.3 7737.2	B bpo1037 7145.6 8003.2	B bpo1002	6961.3 7737.2	B bpo1035	7009.8 7897.6
bpo1002 bpo1002	6960.7 7739.5 6943.3 7734.2	B bpo1037 7150.1 7997.5 B bpo1037 7139.6 7989.4	B bpo1002 B bpo1002	6960.7 7739.5 6943.3 7734.2	B bpo 1035 B bpo 1035	7010.9 7895.0 7009.1 7894.2
bpo1002	6940.1 7744.7	B DP01037 7137.6 7767.4	B bpo1002	6940.1 7744.7	B bpo 1035	7008.0 7896.9
bpo1002	6922.8 7739.4		B bpo1002	6922.8 7739.4	B bpo 1035	7002.3 7894.5
bpo1002	6920.3 7747.7	Btype = POLY	B bpo1002	6920.3 7747.7	+-	•••••
		Cb = 9.0 ! Name Xb Yb			Btype = POLY	
Btype = POLY			Btype = POLY		Cb = 9.0	
Cb = 15.0		B bpo1038 7192.0 7931.1	Cb = 15.0		! Name	
Name	Xb Yb	B bpo1038 7186.6 7935.7 B bpo1038 7197.0 7948.0	! Name	Xb Yb	·	/000 / 701E 2
bpo1003	6916.6 7726.8	B bpo1038 7177.0 7748.0 B bpo1038 7202.4 7943.5	B bpo1003	6916.6 7726.8	B bpo 1036 B bpo 1036	6998.6 7915.2 6994.1 7924.1
bpo1003	6908.0 7742.5	B bpo1038 7192.0 7931.1	B bpo1003	6908.0 7742.5	B bpo1036	7002.9 7928.5
bpo1003	6911.6 7743.9		B bpo1003	6911.6 7743.9	B bpo1036	7007.4 7919.6
bpo1003	6916.9 7745.8	. DOLY	B bpo1003	6916.9 7745.8		6998.6 7915.2
	6924.6 7731.3 6916.6 7726.8	Btype = POLY Cb = 9.0	B bpo1003 B bpo1003	6924.6 7731.3 6916.6 7726.8	+.	
		! Name Xb Yb			Btype = POLY	
					Cb = 9.0	
Btype = POLY Cb = 15.0		B bpo1039 7179.7 7922.4 B bpo1039 7175.3 7927.0	Btype = POLY Cb = 15.0		! Name	Xb Yb
Name	Xb Yb	B bpo1039 7180.5 7931.9	! Name	Xb Yb	B bpo 1037	7139.6 7989.4
		B bpo1039 7184.8 7927.3			B bpo1037	7137.4 7994.3
	6906.5 7786.7	B bpo 1039 7179.7 7922.4	B bpo1004	6906.5 7786.7	B bpo1037	7140.0 7995.5
	6907.9 7786.8 6908.2 7783.5		B bpo1004 B bpo1004	6907.9 7786.8 6908.2 7783.5	B bpo 1037 B bpo 1037	7138.4 7997.7 7145.6 8003.2
bpo1004	6906.7 7783.3	Btype = POLY	B bpo1004	6906.7 7783.3	B bpo 1037	7150.1 7997.5
	6906.5 7786.7	Cb = 9.0	B bpo1004	6906.5 7786.7	B bpo 1037	7139.6 7989.4
		! Name Xb Yb				
Btype = POLY		B bpo1040 7196.2 7960.7	Btype = POLY		Btype = POLY	
Cb = 21.0		B bpo1040 7190.2 7966.3	Cb = 21.0		Cb = 9.0	
Name		B bpo1040 7199.3 7976.2 B bpo1040 7205.3 7970.6	! Name	Xb Yb	! Name	Xb Yb
bpo1005	6903.9 7769.0	B bpo1040 7196.2 7960.7	B bpo1005	6903.9 7769.0	B bpo 1038	7192.0 7931.1
bpo1005	6913.0 7771.8		B bpo1005	6913.0 7771.8	B bpo 1038	7186.6 7935.7
bpo1005	6915.4 7764.0	· n. ne	B bpo1005	6915.4 7764.0	B bpo 1038	7197.0 7948.0
bpo1005 bpo1005	6956.0 7777.0 6962.7 7753.2	Btype = POLY Cb = 7.0	B bpo1005 B bpo1005	6956.0 7777.0 6962.7 7753.2	B bpo 1038 B bpo 1038	7202.4 7943.5 7192.0 7931.1
bpo1005	6962.7 7753.2 6962.0 7751.4	! Name Xb Yb	B bpo1005	6962.0 7751.4		/192.0 /931.1
bpo1005	6922.8 7739.5		B bpo1005	6922.8 7739.5		
bpo1005	6917.7 7756.2	B bpo1041 6830.4 7781.7	B bpo1005	6917.7 7756.2	Btype = POLY	
bpo1005	6908.6 7753.5 6903.9 7769.0	B bpo1041 6829.5 7790.0 B bpo1041 6835.6 7790.6	B bpo1005 B bpo1005	6908.6 7753.5 6903.9 7769.0	Cb = 9.0 ! Name	Xb Yb
	6903.9 //69.0	B bpo1041 6835.6 //90.6 B bpo1041 6835.2 7795.1		6903.9 //69.0	! Name	AD YD
· ·		B bpo1041 6838.7 7795.5			B bpo 1039	7179.7 7922.4
Stype = POLY		B bpo1041 6839.6 7786.7	Btype = POLY		B bpo 1039	7175.3 7927.0
b = 21.0	VL VI	B bpo1041 6840.1 7786.8	Cb = 21.0	VI. VI.	B bpo1039	7180.5 7931.9
Name	Xb Yb	B bpo1041 6840.6 7782.7 B bpo1041 6830.4 7781.7	! Name	Xb Yb	B bpo 1039 B bpo 1039	7184.8 7927.3 7179.7 7922.4
bpo1006	6929.4 7781.6	B DP01041 6830.4 //81./	B bpo1006	6929.4 7781.6		/1/9./ /922.4
	6923.3 7802.2		B bpo1006	6923.3 7802.2		
bpo1006	6945.9 7809.2	Btype = POLY	B bpo1006	6945.9 7809.2	Btype = POLY	
bpo1006		Cb = 7.0	B bpo1006	6952.2 7788.8	Cb = 9.0	VI. ***
bpo1006 bpo1006	6952.2 7788.8	! Name Xb Yb	B bpo1006	6929.4 7781.6	! Name	Xb Yb
bpo1006 bpo1006 bpo1006	6952.2 7788.8 6929.4 7781.6	: Raile AD 1D				
bpo1006 bpo1006 bpo1006	6929.4 7781.6				B bpo 1040	7196.2 7960.7
bpo1006 bpo1006 bpo1006	6929.4 7781.6	B bpo1042 6821.7 7796.3 B bpo1042 6828.4 7796.9	Btype = POLY		B bpo 1040	7190.2 7966.3
bpo1006 bpo1006 bpo1006 bpo1006 type = POLY b = 21.0	6929.4 7781.6	B bpo1042 6821.7 7796.3 B bpo1042 6828.4 7796.9 B bpo1042 6828.9 7794.0	Btype = POLY Cb = 21.0	VI. SI	B bpo1040 B bpo1040	7190.2 7966.3 7199.3 7976.2
bpo1006 bpo1006 bpo1006 + Stype = POLY Cb = 21.0	6929.4 7781.6 	B bpo1042 6821.7 7796.3 B bpo1042 6828.4 7796.9 B bpo1042 6828.9 7794.0 B bpo1042 6825.3 7793.4	Btype = POLY Cb = 21.0 ! Name	Xb Yb	B bpo 1040 B bpo 1040 B bpo 1040	7190.2 7966.3 7199.3 7976.2 7205.3 7970.6
bpo1006 bpo1006 bpo1006 type = POLY b = 21.0	6929.4 7781.6 	B bpo1042 6821.7 7796.3 B bpo1042 6828.4 7796.9 B bpo1042 6828.9 7794.0 B bpo1042 6825.3 7793.4 B bpo1042 6825.3 7792.4	Btype = POLY Cb = 21.0 ! Name		B bpo1040 B bpo1040 B bpo1040 B bpo1040	7190.2 7966.3 7199.3 7976.2
bpo1006 bpo1006 bpo1006 + Stype = POLY Cb = 21.0	6929.4 7781.6 	B bpo1042 6821.7 7796.3 B bpo1042 6828.4 7796.9 B bpo1042 6828.9 7794.0 B bpo1042 6825.3 7793.4	Btype = POLY Cb = 21.0 ! Name	Xb Yb 6970.0 7775.9 6969.0 7779.4	B bpo 1040 B bpo 1040 B bpo 1040 B bpo 1040	7190.2 7966.3 7199.3 7976.2 7205.3 7970.6 7196.2 7960.7
bpo1006 bpo1006 bpo1006 bpo1006 bpo1006 bpo1006 bpo1007 bpo100	Xb Yb 6970.0 7775.9 6969.0 7779.4 6974.4 7781.0	B bpo1042 6821.7 7796.3 B bpo1042 6828.4 7796.9 B bpo1042 6828.9 7794.0 B bpo1042 6825.3 7793.4 B bpo1042 6825.3 7793.4 B bpo1042 6824.0 7792.3 B bpo1042 6824.1 7789.7 B bpo1042 6824.1 7789.7	Btype = POLY Cb = 21.0 ! Name	6970.0 7775.9 6969.0 7779.4 6974.4 7781.0	B bpo1040 B bpo1040 B bpo1040 B bpo1040 B bpo1040	7190.2 7966.3 7199.3 7976.2 7205.3 7970.6 7196.2 7960.7
bpo1006 bpo1006 bpo1006 bpo1006 bpo1006 bpo1006 bpo1007 bpo100	Xb Yb 6970.0 7775.9 6969.0 7775.4	B bpo1042 6821.7 7796.3 B bpo1042 6828.4 7796.9 B bpo1042 6828.9 7794.0 B bpo1042 6828.9 7794.0 B bpo1042 6825.3 7793.4 B bpo1042 6825.3 7792.4 B bpo1042 6824.0 7792.3 B bpo1042 6824.1 7789.7	Btype = POLY Cb = 21.0 ! Name B bpo1007 B bpo1007	6970.0 7775.9 6969.0 7779.4	B bpo 1040 B bpo 1040 B bpo 1040 B bpo 1040	7190.2 7966.3 7199.3 7976.2 7205.3 7970.6 7196.2 7960.7

+-		Btype = POLY		B bpo1041 6830.4 7781.7
Btype = POLY		Cb = 7.0	Btype = POLY	B bpo1041 6829.5 7790.0
Cb = 21.0 ! Name	Xb Y	! Name Xb Yb	Cb = 21.0 Name Xb Yb	B bpo1041 6835.6 7790.6 B bpo1041 6835.2 7795.1
		B bpo1043 6768.9 7779.3	: Name AD 1D	B bpo1041 6838.7 7795.5
B bpo1008	6969.6 7796.1	B bpo 1043 6767.9 7785.1	B bpo1008 6969.6 7796.1	B bpo1041 6839.6 7786.7
B bpo1008 B bpo1008	6968.9 7798.8 6972.7 7799.8	B bpo1043 6771.0 7785.7 B bpo1043 6770.5 7787.8	B bpo1008 6968.9 7798.8 B bpo1008 6972.7 7799.8	B bpo1041 6840.1 7786.8 B bpo1041 6840.6 7782.7
3 bpo1008 3 bpo1008	6973.4 7797.1	B bpo1043 6770.5 7787.8 B bpo1043 6773.1 7788.3	B bpo1008 6972.7 7799.8 B bpo1008 6973.4 7797.1	B bpo1041 6840.6 7782.7 B bpo1041 6830.4 7781.7
bpo1008	6969.6 7796.1	B bpo1043 6773.6 7786.1	B bpo1008 6969.6 7796.1	
+		B bpo1043 6774.0 7786.1		•
Btype = POLY		B bpo1043 6774.9 7780.3 B bpo1043 6768.9 7779.3	Btype = POLY	Btype = POLY Cb = 7.0
Cb = 25.0		B BP01043 0700.7 7777.3	Cb = 25.0	! Name Xb Yb
Name	Xb Y		! Name Xb Yb	
		Btype = POLY	D 1 1000 1 (040 0 7704 0	B bpo1042 6821.7 7796.3
bpo1009 bpo1009	6943.3 7734.2 6940.1 7744.7	Cb = 9.0 ! Name Xb Yb	B bpo1009 6943.3 7734.2 B bpo1009 6940.1 7744.7	B bpo1042 6828.4 7796.9 B bpo1042 6828.9 7794.0
bpo1009	6957.5 7750.0		B bpo1009 6957.5 7750.0	B bpo1042 6825.3 7793.4
bpo1009	6960.7 7739.5	B bpo1044 6961.2 7701.6	B bpo1009 6960.7 7739.5	B bpo1042 6825.3 7792.4
	6943.3 7734.2	B bpo1044 6958.7 7710.6 B bpo1044 6963.3 7711.8	B bpo1009 6943.3 7734.2	B bpo1042 6824.0 7792.3 B bpo1042 6824.1 7789.7
		B bpo1044 6963.0 7713.2		B bpo1042 6822.1 7789.3
Btype = POLY		B bpo 1044 6964.6 7713.7	Btype = POLY	B bpo 1042 6821.7 7796.3
Cb = 25.0	VI. VI	B bpo1044 6964.5 7714.1	Cb = 25.0	
Name	Xb Y	B bpo1044 6969.4 7715.4 B bpo1044 6972.2 7704.4	! Name Xb Yb	Btype = POLY
bpo1010	6939.4 7795.3	B bpo1044 6961.2 7701.6	B bpo1010 6939.4 7795.3	Cb = 7.0
bpo1010	6938.6 7798.2		B bpo1010 6938.6 7798.2	! Name Xb Yb
bpo1010 bpo1010	6944.1 7799.9 6945.0 7796.9	Btype = POLY	B bpo1010 6944.1 7799.9 B bpo1010 6945.0 7796.9	B bpo1043 6768.9 7779.3
	6939.4 7795.3	Cb = 5.0	B bpo1010 6939.4 7795.3	B bpo1043 6768.9 7779.3 B bpo1043 6767.9 7785.1
+		! Name Xb Yb		B bpo1043 6771.0 7785.7
D4		D b1045 1044 7077	, DALLIN BOLK	B bpo1043 6770.5 7787.8
Btype = POLY Cb = 25.0		B bpo1045 6964.4 7857.1 B bpo1045 6968.2 7858.8	Btype = POLY Cb = 25.0	B bpo1043 6773.1 7788.3 B bpo1043 6773.6 7786.1
Name	Xb Y	B bpo1045 6766.2 7636.6 B bpo1045 6969.7 7855.3	! Name Xb Yb	B bpo1043 6774.0 7786.1
		B bpo1045 6966.0 7853.6		B bpo1043 6774.9 7780.3
	6926.9 7796.3	B bpo1045 6964.4 7857.1	B bpo1011 6926.9 7796.3	B bpo1043 6768.9 7779.3
bpo1011 bpo1011	6925.9 7799.6 6931.6 7801.3		B bpo1011 6925.9 7799.6 B bpo1011 6931.6 7801.3	
	6932.6 7798.0	Btype = POLY	B bpo1011 6932.6 7798.0	Btype = POLY
bpo1011	6926.9 7796.3	Cb = 7.0	B bpo1011 6926.9 7796.3	Cb = 9.0
		! Name Xb Yb		! Name Xb Yb
Btype = POLY		B bpo1046 6970.0 7840.9	Btype = POLY	B bpo1044 6961.2 7701.6
Cb = 9.0		B bpo1046 6965.4 7839.4	Cb = 9.0	B bpo1044 6958.7 7710.6
Name	Xb Y	B bpo1046 6962.7 7847.5	! Name Xb Yb	B bpo1044 6963.3 7711.8
bpo1012	6734.4 7719.4	B bpo1046 6967.3 7849.1 B bpo1046 6970.0 7840.9	B bpo1012 6734.4 7719.4	B bpo1044 6963.0 7713.2 B bpo1044 6964.6 7713.7
bpo1012	6733.0 7732.4	B DP01040 0770.0 7040.7	B bpo1012 6733.0 7732.4	B bpo1044 6764.6 7713.7 B bpo1044 6964.5 7714.1
bpo1012	6760.4 7735.5	•	B bpo1012 6760.4 7735.5	B bpo1044 6969.4 7715.4
bpo1012	6759.6 7742.2	Btype = POLY	B bpo1012 6759.6 7742.2	B bpo1044 6972.2 7704.4
bpo1012 bpo1012	6786.9 7745.3 6787.3 7727.1	Cb = 7.0 ! Name Xb Yb	B bpo1012 6786.9 7745.3 B bpo1012 6787.3 7727.1	B bpo1044 6961.2 7701.6
bpo1012	6787.5 7725.4	: Name AD 1D	B bpo1012 6787.5 7725.4	
	6734.4 7719.4	B bpo 1047 7068.9 7858.4	B bpo1012 6734.4 7719.4	Btype = POLY
		B bpo1047 7067.6 7861.6	+	Cb = 5.0
Btype = POLY		B bpo1047 7074.1 7864.5 B bpo1047 7070.8 7871.3	Btype = POLY	! Name Xb Yb
Cb = 7.0		B bpo1047 7075.4 7873.5	Cb = 7.0	B bpo1045 6964.4 7857.1
Name	Xb Y	B bpo1047 7079.5 7865.0	! Name Xb Yb	B bpo1045 6968.2 7858.8
bpo1013	6749.6 7734.3	B bpo1047 7082.2 7866.2 B bpo1047 7084.9 7859.7	B bpo1013 6749.6 7734.3	B bpo1045 6969.7 7855.3 B bpo1045 6966.0 7853.6
bpo1013	6748.8 7741.8	B bpo1047 7084.7 7657.7 B bpo1047 7077.6 7856.5	B bpo1013 6748.8 7741.8	B bpo1045 6766.0 7653.6 B bpo1045 6964.4 7857.1
bpo1013	6759.3 7746.6	B bpo1047 7076.6 7858.8	B bpo1013 6759.3 7746.6	
bpo1013	6764.9 7748.1	B bpo 1047 7074.9 7858.0	B bpo1013 6764.9 7748.1	Ptyme = DOLY
bpo1013 bpo1013	6765.5 7742.9 6759.6 7742.2	B bpo1047 7073.7 7860.7 B bpo1047 7068.9 7858.4	B bpo1013 6765.5 7742.9 B bpo1013 6759.6 7742.2	Btype = POLY Cb = 7.0
bpo1013	6760.4 7735.5	B Bp01047 7000.7 7630.4	B bpo1013 6760.4 7735.5	! Name Xb Yb
	6749.6 7734.3	· n	B bpo1013 6749.6 7734.3	
		Btype = POLY Cb = 7.0		B bpo1046 6970.0 7840.9 B bpo1046 6965.4 7839.4
Stype = POLY		! Name Xb Yb	Btype = POLY	B bpo1046 6763.4 7637.4 B bpo1046 6962.7 7847.5
b = 15.0			Cb = 25.0	B bpo1046 6967.3 7849.1
Name	Xb Y	B bpo 1048 7044.6 7959.1	! Name Xb Yb	B bpo1046 6970.0 7840.9
bpo1017	7104.6 7906.8	B bpo1048 7049.3 7962.0 B bpo1048 7051.8 7957.9	B bpo1014 6786.9 7724.6	
bpo1017	7097.9 7915.6	B bpo 1048 7057.5 7961.4	B bpo1014 6786.9 7749.8	Btype = POLY
bpo1017	7099.5 7916.8	B bpo1048 7060.5 7956.4	B bpo1014 6829.2 7749.8	Cb = 7.0
bpo1017	7098.0 7918.8	B bpo 1048 7058.8 7955.3	B bpo1014 6829.2 7724.6 B bpo1014 6786.9 7724.6	! Name Xb Yb
bpo1017 bpo1017	7119.2 7935.0 7120.7 7933.0	B bpo1048 7058.6 7955.7 B bpo1048 7053.6 7952.8	B bpo1014 6786.9 7724.6	B bpo1047 7068.9 7858.4
bpo1017	7122.2 7934.0	B bpo1048 7051.7 7956.0		B bpo1047 7067.6 7861.6
bpo1017	7128.9 7925.3	B bpo 1048 7047.7 7953.7	Btype = POLY	B bpo1047 7074.1 7864.5
bpo1017 bpo1017	7122.6 7920.5 7121.6 7921.7	B bpo1048 7044.6 7959.1	Cb = 27.0 ! Name Xb Yb	B bpo1047 7070.8 7871.3 B bpo1047 7075.4 7873.5
bpo1017	7109.8 7912.9		: Name AD TD	B bpo1047 7075.4 7873.5 B bpo1047 7079.5 7865.0
bpo1017	7110.9 7911.6	Btype = POLY	B bpo1015 6829.2 7716.6	B bpo1047 7082.2 7866.2
bpo1017	7104.6 7906.8	Cb = 7.0	B bpo1015 6829.2 7749.8	B bpo1047 7084.9 7859.7
		! Name Xb Yb	B bpo1015 6859.8 7749.8 B bpo1015 6859.8 7749.7	B bpo1047 7077.6 7856.5 B bpo1047 7076.6 7858.8
		B bpo1049 7071.3 7958.2	B bpo1015 6859.8 7749.7	B bpo1047 7076.6 7858.8 B bpo1047 7074.9 7858.0
· ·		B bpo1049 7068.5 7963.0	B bpo1015 6829.2 7716.6	B bpo1047 7073.7 7860.7
Stype = POLY				B bpo1047 7068.9 7858.4
Stype = POLY Cb = 13.0 Name				
3type = POLY Cb = 13.0 Name		B bpo1049 7068.9 7969.1	Ptyme = BOLV	
Btype = POLY Cb = 13.0 Name 	7027.6 7932.1	B bpo 1049 7068.9 7969.1 B bpo 1049 7073.3 7972.2	. Btype = POLY Cb = 33.0	
Btype = POLY Cb = 13.0 Name	7027.6 7932.1 7023.4 7939.5 7041.4 7949.7	B bpo1049 7068.9 7969.1 B bpo1049 7073.3 7972.2 B bpo1049 7076.6 7968.2 B bpo1049 7076.3 7967.7	Cb = 33.0 ! Name Xb Yb	Btype = POLY Cb = 7.0
Btype = POLY Cb = 13.0 Name bpo1018 bpo1018 bpo1018 bpo1018	7027.6 7932.1 7023.4 7939.5 7041.4 7949.7 7048.5 7936.7	B bpo1049 7068.9 7969.1 B bpo1049 7073.3 7972.2 B bpo1049 7076.6 7968.2 B bpo1049 7076.3 7967.7 B bpo1049 7078.3 7962.2	Cb = 33.0 Name Xb Yb	Btype = POLY Cb = 7.0 ! Name Xb Yb
Btype = POLY Cb = 13.0 Name bpo1018 bpo1018 bpo1018	7027.6 7932.1 7023.4 7939.5 7041.4 7949.7	B bpo1049 7068.9 7969.1 B bpo1049 7073.3 7972.2 B bpo1049 7076.6 7968.2 B bpo1049 7076.3 7967.7	Cb = 33.0 ! Name Xb Yb	Btype = POLY Cb = 7.0

Btype = POLY Cb = 11.0	Btype = POLY Cb = 9.0 ! Name Xb Yb	B bpo1016 6883.2 7740.9 B bpo1016 6892.8 7740.9 B bpo1016 6892.8 7716.6 B bpo1016 6859.7 7716.6	B bpo1048 7051.8 7957.9 B bpo1048 7057.5 7961.4 B bpo1048 7060.5 7956.4 B bpo1048 7058.8 7955.3
Name Xb Yb Name Yb Name Yb Name Nam	B bpo1050 6947.2 7877.0 B bpo1050 6949.7 7878.2 B bpo1050 6952.7 7870.5 B bpo1050 6952.3 7870.3		B bpo1048 7058.6 7955.7 B bpo1048 7053.6 7952.8 B bpo1048 7051.7 7956.0 B bpo1048 7047.7 7953.7
B bpo1019 7002.1 7937.9 B bpo1019 7010.3 7942.6 B bpo1019 7011.6 7940.3 B bpo1019 7010.6 7939.8	B bpo1050 6954.1 7866.3 B bpo1050 6952.4 7865.5 B bpo1050 6947.2 7877.0	Name Xb Yb	B bpo1048 7044.6 7959.1 Btype = POLY
B bpo1019 7014.3 7933.0 B bpo1019 7018.5 7935.5 B bpo1019 7022.4 7928.5 B bpo1019 7016.6 7925.1	. Btype = POLY Cb = 5.0 ! Name Xb Yb	B bpo1017 7099.5 7916.8 B bpo1017 7099.5 7918.8 B bpo1017 7119.2 7935.0 B bpo1017 7120.7 7933.0	Cb = 7.0 ! Name Xb Yb
B bpo1019 7017.2 7924.1 B bpo1019 7013.9 7922.2 B bpo1019 7013.2 7923.3 B bpo1019 7012.4 7922.8 B bpo1019 7004.9 7936.2	B bpo1051 6919.6 7954.6 B bpo1051 6924.6 7954.9 B bpo1051 6924.9 7950.8 B bpo1051 6922.8 7950.6 B bpo1051 6923.0 7947.6 B bpo1051 6920.1 7947.3	B bpo1017 7122.2 7934.0 B bpo1017 7128.9 7925.3 B bpo1017 7122.6 7920.5 B bpo1017 7121.6 7921.7 B bpo1017 7109.8 7912.9 B bpo1017 7109.9 7911.6 B bpo1017 7104.6 7906.8	B bpo1049 7068.5 7963.0 B bpo1049 7071.4 7964.9 B bpo1049 7078.8 7969.1 B bpo1049 7073.3 7972.2 B bpo1049 7076.6 7968.2 B bpo1049 7076.3 7967.7 B bpo1049 7078.3 7962.2
Btype = POLY Cb = 7.0 ! Name Xb Yb	B bpo1051 6919.6 7954.6	Btype = POLY	B bpo1049 7071.3 7958.2
B bpo1020 7042.5 7950.2 B bpo1020 7036.5 7946.9 B bpo1020 7034.7 7950.0	Btype = POLY Cb = 3.0 ! Name Xb Yb	Cb = 13.0 ! Name Xb Yb 	Btype = POLY Cb = 9.0 ! Name Xb Yb
B bpo1020 7032.3 7948.6 B bpo1020 7023.3 7963.7 B bpo1020 7026.9 7965.9 B bpo1020 7021.5 7975.0 B bpo1020 7024.2 7977.8 B bpo1020 7042.5 7950.2	B bpo1052 6970.5 7940.4 B bpo1052 6968.4 7941.9 B bpo1052 6972.9 7947.9 B bpo1052 6975.0 7946.2 B bpo1052 6970.5 7940.4	B bpo1018 7023.4 7939.5 B bpo1018 7041.4 7949.7 B bpo1018 7048.5 7936.7 B bpo1018 7043.9 7934.2 B bpo1018 7041.0 7939.5 B bpo1018 7027.6 7932.1	B bpo1050 6947.2 7877.0 B bpo1050 6949.7 7878.2 B bpo1050 6952.7 7870.5 B bpo1050 6952.3 7870.3 B bpo1050 6954.1 7866.3 B bpo1050 6952.4 7865.5
. Btype = POLY Cb = 5.0	. Btype = POLY Cb = 7.0 ! Name Xb Yb	Btype = POLY Cb = 11.0	B bpo1050 6947.2 7877.0
Name Xb Yb Name Xb Yb Name Name	B bpo1053 7037.4 7724.2 B bpo1053 7035.2 7728.3	Name Xb Yb Name Yb Name Yb Name Yb Name Name	Cb = 5.0 ! Name Xb Yb
B bpo1021 7006.4 7970.2 B bpo1021 7011.5 7960.9 B bpo1021 7012.2 7961.2 B bpo1021 7013.9 7957.7 B bpo1021 7011.8 7956.4 B bpo1021 7009.5 7960.5	B bpo1053 7046.7 7734.3 B bpo1053 7048.8 7730.0 B bpo1053 7037.4 7724.2	B bpo1019 7003.5 7935.4 B bpo1019 7002.1 7937.9 B bpo1019 7010.3 7942.6 B bpo1019 7011.6 7940.3 B bpo1019 7011.6 7939.8 B bpo1019 7014.3 7933.0	B bpo1051 6919.6 7954.6 B bpo1051 6924.6 7954.9 B bpo1051 6924.9 7950.8 B bpo1051 6922.8 7950.6 B bpo1051 6923.0 7947.6 B bpo1051 6920.1 7947.3
B bpo1021 7008.0 7959.7 B bpo1021 7003.2 7968.5	Cb = 9.0 ! Name Xb Yb 	B bpo1019 7018.5 7935.5 B bpo1019 7022.4 7928.5 B bpo1019 7016.6 7925.1 B bpo1019 7017.2 7924.1	B bpo1051 6919.6 7954.6 Btype = POLY
Btype = POLY Cb = 9.0 ! Name Xb Yb	B bpo1054 7023.4 7690.1 B bpo1054 7023.9 7687.1 B bpo1054 7025.6 7687.3	B bpo1019 7013.9 7922.2 B bpo1019 7013.2 7923.3 B bpo1019 7012.4 7922.8	Cb = 3.0 ! Name Xb Yb
B bpo1022 6827.7 7979.8 B bpo1022 6824.3 7985.5 B bpo1022 6826.4 7986.8	B bpo1054 7026.6 7680.5 B bpo1054 7019.9 7679.3 B bpo1054 7018.4 7689.3	B bpo1019 7004.9 7936.2 Btype = POLY	B bpo1052 6970.5 7940.4 B bpo1052 6968.4 7941.9 B bpo1052 6972.9 7947.9 B bpo1052 6975.0 7946.2
B bpo1022 6821.8 7994.3 B bpo1022 6831.4 8000.2 B bpo1022 6837.8 7989.7 B bpo1022 6835.9 7988.6	. Btype = POLY Cb = 3.0 ! Name Xb Yb	Cb = 7.0 ! Name Xb Yb 	B bpo1052 6970.5 7940.4 + Btype = POLY
B bpo1022 6837.7 7985.8 B bpo1022 6827.7 7979.8	B bpo1055 6983.9 7667.4 B bpo1055 6986.8 7669.5 B bpo1055 6988.9 7666.5	B bpo1020 7036.5 7946.9 B bpo1020 7034.7 7950.0 B bpo1020 7032.3 7948.6 B bpo1020 7023.3 7963.7	Cb = 7.0 ! Name Xb Yb
Btype = POLY	B bpo1055 6986.6 7663.8 B bpo1055 6983.9 7667.4	B bpo1020 7026.9 7965.9 B bpo1020 7021.5 7975.0 B bpo1020 7025.5 7977.8 B bpo1020 7042.5 7977.2	B bpo1053 7035.2 7728.3 B bpo1053 7046.7 7734.3 B bpo1053 7048.8 7730.0 B bpo1053 7037.4 7724.2
B bpo1023 6872.2 7986.9 B bpo1023 6866.8 7993.7 B bpo1023 6879.5 8003.6 B bpo1023 6884.8 7996.9	Btype = POLY Cb = 9.0 ! Name Xb Yb		Btype = POLY Cb = 9.0
B bpo1023 6872.2 7986.9 	B bpo1056 6955.2 7666.3 B bpo1056 6950.7 7659.8 B bpo1056 6941.7 7666.0 B bpo1056 6946.2 7672.5	Name Xb Yb Yb Name Name Yb Name Nam	! Name Xb Yb
Cb = 7.0 Name Xb Yb Name Kab Yb Name Kab Yb	B bpo1056 6955.2 7666.3 Btype_=_POLY	B bpo1021 7011.5 7960.9 B bpo1021 7012.2 7961.2 B bpo1021 7013.9 7957.7 B bpo1021 7011.8 7956.4	B bpo1054 7023.9 7687.1 B bpo1054 7025.6 7687.3 B bpo1054 7026.6 7680.5 B bpo1054 7019.9 7679.3
B bpo1024 6882.9 7995.4 B bpo1024 6884.8 7996.9 B bpo1024 6880.9 8001.9 B bpo1024 6884.9 8005.0 B bpo1024 6887 7998.8	Cb = 3.0 ! Name Xb Yb 	B bpo1021 7009.5 7960.5 B bpo1021 7008.0 7959.7 B bpo1021 7003.2 7968.5	B bpo1054 7018.4 7689.3 Btype = POLY Cb = 3.0
B bpo1024 6889.7 7998.8 B bpo1024 6883.7 7994.2 	B bpo1057 7026.6 7777.0 B bpo1057 7033.8 7781.5 B bpo1057 7038.9 7774.3 B bpo1057 7030.2 7769.9	Btype = POLY Cb = 9.0 ! Name Xb Yb	! Name Xb YbB bpo1055 6983.9 7667.4
Cb = 7.0 	Btype = POLY Cb = 7.0	B bpo1022 6827.7 7979.8 B bpo1022 6824.3 7985.5 B bpo1022 6826.4 7986.8	B bpo1055 6986.8 7669.5 B bpo1055 6988.9 7666.5 B bpo1055 6986.6 7663.8 B bpo1055 6983.9 7667.4
B bpo1025 6866.8 7993.7 B bpo1025 6864.7 7996.4 B bpo1025 6877.3 8006.4 B bpo1025 6879.5 8003.7 B bpo1025 6866.8 7993.7	Name Xb Yb Yb Yb Yb Yb Yb Yb	B bpo1022 6821.8 7994.3 B bpo1022 6831.4 8000.2 B bpo1022 6837.8 7989.7 B bpo1022 6835.9 7988.6 B bpo1022 6837.7 7985.8 B bpo1022 6827.7 7979.8	Btype = POLY Cb = 9.0 ! Name Xb Yb
Btype = POLY	B bpo1058 7026.0 7747.4 B bpo1058 7022.3 7754.3	B bpo1022 6827.7 7979.8	B bpo1056 6955.2 7666.3 B bpo1056 6950.7 7659.8

bpo1026 6950.3 7938.5 Name Xb		0 = 9.0 Name	Хb		Yb		Stype = POLY		
Depol 1026 6994 4 7992 2 B Depol 105 7054 3 7755 1							b = 3.0		
Depol 1026 6994 4 7992 2 B Depol 105 7054 3 7755 1		bpo1026	6950.3	7938.5		!	Name	Xb)
Depol 1026 6994 4 7992 2 B Depol 105 7054 3 7755 1		bpo1026	6945.2	7943.9					
Depol 1026 6994 4 7992 2 B Depol 105 7054 3 7755 1		hno1026	6947 9	7946 6		R	hno 1059	7049 5	7752 8
Depol 1026 6994 4 7992 2 B Depol 105 7054 3 7755 1		bpo1026	4945 8	79/18 6		R	hno 1059	7047 5	7756 1
Btype = POLY Cb = 9.0		bp01020	(0/43.0	7052.0		, D	bp01057	7047.3	7750.1
Btype = POLY Cb = 9.0		bp01026				D	bpo 1057	7052.3	7755.0
Btype = POLY Cb = 9.0 Name Xb		bpo 1026				В	bpo 1059	/054.3	//55./
Cb = 9.0		pp01020							
Cb = 9.0	Rt	vne = POLY				٠.	Styne = POLY		
Name Xb									
bpo1027			Χb		Yb			Χh	,
bpo1027									
Depol Depo							l 10/0	7044 0	7740 /
Depol Depo						В	ppo 1060	7041.0	7742.0
Depol Depo		bpo102/	7066.8	8000.0		В	bpo 1060	7039.9	//45.0
Depol Depo		bpo1027	7076.9	8006.7		В	bpo 1060	7046.0	7748.0
Depol Depo		bpo1027				В	bpo 1060	7047.1	7745.5
Depol Depo		bpo1027	7076.2			В	bpo 1060	7041.0	7742.6
Brype = POLY		bpo1027	7076.6	7992.4					
Brype = POLY		bpo1027							
Btype = POLY		bpo1027					Rtyne - POLY		
Name Xb Xb									
Btype = POLY B bpo 1061 7138 1 7704 5 5 5 5 5 5 5 5 5								Xb	,
Depol 1028 7022.3 7879.2	В.	DOLV					10/4	7120 1	7704 5
Depol 1028 7022.3 7879.2						В	ppo 106 1	7138.1	7/04.5
Depol 1028 7022.3 7879.2						В	bpo 1061	/13/.9	/695./
Disposition Total Total Total Disposition Total Disposition Total Disposition Dispositation Disposition Disposition Disposition Disposition		Name	Xb		Yb	В	bpo 1061	7129.0	7695.9
Depol 1028 7022.3 7879.2						В	bpo 1061	7129.2	7704.7
Depol 1028 7022.3 7879.2		bpo1028	7025.2	7866.8		В	bpo 1061	7138.1	7704.5
Depol 1028 7025.3 7873.0 Btype = POLY Depol 1028 7039.6 7872.8 Name Xb Depol 1028 7039.6 7872.8 Name Xb Depol 1028 7039.6 7872.8 Name Xb Depol 1028 7025.2 7866.8 Name Xb Depol 1028 7025.2 7866.8 Name Xb Depol 1029 6975.3 9 7694.2 Depol 1029 6975.3 9 7694.2 Depol 1029 6975.3 9 7699.2 Depol 1029 6975.3 9 7699.2 Depol 1029 6975.3 9 7699.2 Depol 1029 6975.3 9 7689.2 Depol 1029 6975.3 9 7689.3 Depol 1029 6975.3 9 7689.3 Depol 1029 6975.3 9 7697.3 Depol 1029 6975.3 9 7697.3 Depol 1029 6975.3 9 7735.2 Depol 1029 6975.3 9 7855.4 Depol 1029 6977.4 7859.2 Depol 1029 6977.8 7856.6 Depol 1020 6977.9 7855.3 Depol 1020 6977.9 7856.6 Depol 1020 6977.9 7856.6 Depol 1020 6977.9 7856.6 Depol 1020 6977.9 7864.6		hno1028	7019 8	7878 N					
Depol 1028 7025.3 7873.0 Btype = POLY Depol 1028 7039.6 7872.8 Name Xb Depol 1028 7039.6 7872.8 Name Xb Depol 1028 7039.6 7872.8 Name Xb Depol 1028 7025.2 7866.8 Name Xb Depol 1028 7025.2 7866.8 Name Xb Depol 1029 6975.3 9 7694.2 Depol 1029 6975.3 9 7694.2 Depol 1029 6975.3 9 7699.2 Depol 1029 6975.3 9 7699.2 Depol 1029 6975.3 9 7699.2 Depol 1029 6975.3 9 7689.2 Depol 1029 6975.3 9 7689.3 Depol 1029 6975.3 9 7689.3 Depol 1029 6975.3 9 7697.3 Depol 1029 6975.3 9 7697.3 Depol 1029 6975.3 9 7735.2 Depol 1029 6975.3 9 7855.4 Depol 1029 6977.4 7859.2 Depol 1029 6977.8 7856.6 Depol 1020 6977.9 7855.3 Depol 1020 6977.9 7856.6 Depol 1020 6977.9 7856.6 Depol 1020 6977.9 7856.6 Depol 1020 6977.9 7864.6		bpo1028	7022 3	7879 2					
Depol 1028 7036.8 7878.5 Cb = 7.0		bpo1028	7025 3	7873 N			Rtyne - PNI Y		
Depoil 7025.2 7866.8		bpo1028	7036.8	7878 5					
Depoil 7025.2 7866.8		bpo1020	7030.6	7872 8				Yh	
B bpo1062 6496.4 7694.1 Btype = POLY B bpo1062 6953.9 7694.2 Btype = POLY B bpo1062 6953.9 7694.2 Btype = POLY B bpo1062 6957.7 7693.9 Btype = POLY B bpo1062 6957.2 7689.2 Btype = POLY B bpo1062 6957.8 7689.2 Btype = POLY B bpo1062 6951.8 7689.2 Btype = POLY B bpo1062 6946.4 7694.1 Btype = POLY B bpo1062 6946.4 7694.1 Btype = POLY B bpo1029 6630.2 7734.1 Btype = POLY B bpo1029 6629.4 7733.3 Btype = POLY B bpo1029 6629.5 7735.2 Btype = POLY B bpo1063 6797.4 7859.2 Btype = POLY B bpo1063 6800.3 7859.6 Btype = POLY B bpo1063 6800.7 7855.4 Btype = POLY B bpo1063 6797.4 7859.2 Btype = POLY Btype = POLY Btype		bp01020	7007.0	70/2.0					
B type = POLY		pp01020	7025.2	/000.0					
B type = POLY						В	bpo 1062	6946.4	7694.1
B type = POLY						В	bpo 1062	6953.9	7694.2
bpo1029 6631.6 7732.2 Btype = POLY Btype = POLY B Bpo1029 6632.6 7734.1 Btype = POLY B Bpo1029 6624.6 7739.6 Cb = 5.0 Btype = POLY Cb = 5.0 B Bpo1029 6629.4 7743.3 B Btype = POLY B Bpo1063 6797.4 7859.2 B Bpo1063 6797.4 7859.2 B Bpo1063 6800.3 7859.6 Btype = POLY B Bpo1063 6800.3 7855.8 Btype = POLY B Bpo1063 6800.7 7855.8 B Bpo1063 6797.9 7855.4 B Bpo1063 6797.9 7855.4 B Bpo1030 6768.1 7854.3 Bpo1030 6778.8 7850.3 Bpo1030 6778.8 7850.3 Bpo1030 6778.8 7850.3 Bpo1030 6778.8 7850.3 Bpo1030 6779.7 7844.6 Bpo1030 6779.8 7854.5 Bpo1030 6779.8 7856.6 Bpo1030 6779.8 7850.3 Bpo1030 6779.8 7850.3 Bpo1030 6779.7 7844.6 Bpo1030 6769.7 7844.6 Bpo1030 Bpo1030 6769.7 7844.6 Bpo1030 Bpo1030 6769.7 7844.6 Bpo1030 Bpo1030 6769.7 7844.6 Bpo1030 Bpo	Bt	ype = POLY				В	bpo 1062	6957.7	7693.9
bpo1029 6631.6 7732.2 Btype = POLY Btype = POLY B Bpo1029 6632.6 7734.1 Btype = POLY B Bpo1029 6624.6 7739.6 Cb = 5.0 Btype = POLY Cb = 5.0 B Bpo1029 6629.4 7743.3 B Btype = POLY B Bpo1063 6797.4 7859.2 B Bpo1063 6797.4 7859.2 B Bpo1063 6800.3 7859.6 Btype = POLY B Bpo1063 6800.3 7855.8 Btype = POLY B Bpo1063 6800.7 7855.8 B Bpo1063 6797.9 7855.4 B Bpo1063 6797.9 7855.4 B Bpo1030 6768.1 7854.3 Bpo1030 6778.8 7850.3 Bpo1030 6778.8 7850.3 Bpo1030 6778.8 7850.3 Bpo1030 6778.8 7850.3 Bpo1030 6779.7 7844.6 Bpo1030 6779.8 7854.5 Bpo1030 6779.8 7856.6 Bpo1030 6779.8 7850.3 Bpo1030 6779.8 7850.3 Bpo1030 6779.7 7844.6 Bpo1030 6769.7 7844.6 Bpo1030 Bpo1030 6769.7 7844.6 Bpo1030 Bpo1030 6769.7 7844.6 Bpo1030 Bpo1030 6769.7 7844.6 Bpo1030 Bpo	Ck	0 = 7.0				В	bpo 1062	6957.2	7689.1
bpo1029 6631.6 7732.2 Btype = POLY Btype = POLY B Bpo1029 6632.6 T733.3 Btype = POLY B Bpo1029 6624.6 7739.6 Cb = 5.0 B Bpo1029 6629.4 7743.3 Mame Xb B Bpo1029 6635.5 7735.2 B Bpo1063 6797.4 7859.2 B Bpo1063 6800.3 7859.6 Btype = POLY B Bpo1063 6800.3 7859.6 Btype = POLY B Bpo1063 6800.7 7855.8 B Bpo1063 6797.9 7855.4 B Bpo1030 6768.1 7854.3 B Bpo1030 6778.8 7850.3 Bpo1030 6778.8 7850.3 Bpo1030 6778.8 7850.3 Bpo1030 6778.8 7850.3 Bpo1030 6779.7 7844.6 Bpo1030 6778.8 7850.3 Bpo1030 6779.8 7854.5 Bpo1030 6779.7 7844.6 Bpo1030 6779.8 7856.6 Bpo1030 6779.8 7850.3 Bpo1030 6779.8 7850.3 Bpo1030 6779.7 7844.6 Bpo1030 6769.7 7844.6 Bpo1030 Bpo1030 6769.7 7844.6 Bpo1030 Bpo1030 6769.7 7844.6 Bpo1030 Bpo1030 6769.7 7844.6 Bpo1030 Bpo1030 Bpo1030 Bpo1030 Bpo1030 Bpo1030 Bpo1030 Bpo1030		Name	Xb		Yb	В	bpo 1062	6953.8	7689.2
bpo1029 6631.6 7732.2 Btype = POLY Btype = POLY B Bpo1029 6632.6 7734.1 Btype = POLY B Bpo1029 6624.6 7739.6 Cb = 5.0 Btype = POLY Cb = 5.0 B Bpo1029 6629.4 7743.3 B Btype = POLY B Bpo1063 6797.4 7859.2 B Bpo1063 6797.4 7859.2 B Bpo1063 6800.3 7859.6 Btype = POLY B Bpo1063 6800.3 7855.8 Btype = POLY B Bpo1063 6800.7 7855.8 B Bpo1063 6797.9 7855.4 B Bpo1063 6797.9 7855.4 B Bpo1030 6768.1 7854.3 Bpo1030 6778.8 7850.3 Bpo1030 6778.8 7850.3 Bpo1030 6778.8 7850.3 Bpo1030 6778.8 7850.3 Bpo1030 6779.7 7844.6 Bpo1030 6779.8 7854.5 Bpo1030 6779.8 7856.6 Bpo1030 6779.8 7850.3 Bpo1030 6779.8 7850.3 Bpo1030 6779.7 7844.6 Bpo1030 6769.7 7844.6 Bpo1030 Bpo1030 6769.7 7844.6 Bpo1030 Bpo1030 6769.7 7844.6 Bpo1030 Bpo1030 6769.7 7844.6 Bpo1030 Bpo						В	bpo 1062	6951.8	7688.2
bpo1029 6631.6 7732.2 Btype = POLY Btype = POLY B Bpo1029 6632.6 7734.1 Btype = POLY B Bpo1029 6624.6 7739.6 Cb = 5.0 Btype = POLY Cb = 5.0 B Bpo1029 6629.4 7743.3 B Btype = POLY B Bpo1063 6797.4 7859.2 B Bpo1063 6797.4 7859.2 B Bpo1063 6800.3 7859.6 Btype = POLY B Bpo1063 6800.3 7855.8 Btype = POLY B Bpo1063 6800.7 7855.8 B Bpo1063 6797.9 7855.4 B Bpo1063 6797.9 7855.4 B Bpo1030 6768.1 7854.3 Bpo1030 6778.8 7850.3 Bpo1030 6778.8 7850.3 Bpo1030 6778.8 7850.3 Bpo1030 6778.8 7850.3 Bpo1030 6779.7 7844.6 Bpo1030 6779.8 7854.5 Bpo1030 6779.8 7856.6 Bpo1030 6779.8 7850.3 Bpo1030 6779.8 7850.3 Bpo1030 6779.7 7844.6 Bpo1030 6769.7 7844.6 Bpo1030 Bpo1030 6769.7 7844.6 Bpo1030 Bpo1030 6769.7 7844.6 Bpo1030 Bpo1030 6769.7 7844.6 Bpo1030 Bpo						R	bno 1062	6946 4	7694 1
Depol 1029 6630 . 2		hno1020	4421 4	7722 2			200100Z	0,40.4	, 0, 7, 1
B		SPU1027	(/20.0	7724 -					
bpo1029 6635.5		ppo 1029	0030.2	7734.1		٠.			
bpo1029 6635.5		ppo 1029	6629.4	1133.3					
bpo1029 6635.5 7/35.2 B bpo1063 6797.4 7859.2 Btype = POLY B bpo1063 6800.3 7859.6 Btype = POLY B bpo1063 6800.7 7855.4 Name Xb Yb B bpo1063 6797.4 7859.2		bpo1029	6624.6	1739.6					
bpo1029 6635.5		bpo1029	6629.4	7743.3					
B bpo1063 6797, 4 7859, 2 Btype = POLY		bpo1029	6635.5	7735.2					
Btype = P0LY						В	bpo 1063	6797.4	7859.2
Btype = P0LY 8 bpo1063 6800.7 7855.8 Cb = 9.0 8 bpo1063 6797.9 7855.8 Name Xb Yb 8 bpo1063 6797.4 7859.2 bpo1030 6769.7 7844.6 5 7859.2 bpo1030 6778.8 7850.3 7850.7 bpo1030 6781.0 7850.7 7850.3 bpo1030 6778.8 7850.3 bpo1030 6769.7 7844.6 bpo1030 6769.7 7844.6									
Lb = 9.0 B bpo1063 6797.9 7855.4 B bpo1063 6797.4 7855.2 B bpo1030 6769.7 7844.6 bpo1030 6769.7 7854.3 bpo1030 6781.0 7850.7 bpo1030 6788.1 7850.7 bpo1030 6778.8 7850.3 bpo1030 6778.8 7850.3 bpo1030 6779.8 7850.3 bpo1030 6779.7 7844.6	Bt	vpe = POIY					bpo 1063	6800.7	
bpo1030 6769.7 7844.6 bpo1030 6768.1 7854.3 bpo1030 6779.8 7856.6 bpo1030 6781.0 7850.7 bpo1030 6778.8 7850.3 bpo1030 6779.5 7846.5 bpo1030 6769.7 7844.6						B	hno 1063	6797 9	7855 4
bpo1030 6769.7 7844.6 bpo1030 6768.1 7854.3 bpo1030 6779.8 7856.6 bpo1030 6781.0 7850.7 bpo1030 6778.8 7850.3 bpo1030 6779.5 7846.5 bpo1030 6769.7 7844.6			VI.		٧h	D	bpo 1042	4707 /	7050 2
bpo1030 6769.7 7844.6 bpo1030 6768.1 7854.3 bpo1030 6779.8 7856.6 bpo1030 6778.8 7850.7 bpo1030 6778.8 7850.3 bpo1030 6779.5 7846.5 bpo1030 6769.7 7844.6							nho (000	V///.4	
bpo1030 6779.8 7856.6 bpo1030 6781.0 7850.7 bpo1030 6778.8 7850.3 bpo1030 6779.5 7846.5 bpo1030 6769.7 7844.6		bpo1030	6769.7	7844.6			·		
bpo1030 6779.8 7856.6 bpo1030 6781.0 7850.7 bpo1030 6778.8 7850.3 bpo1030 6779.5 7846.5 bpo1030 6769.7 7844.6		bpo1030	6768.1	7854.3					
bpo1030 6781.0 7850.7 bpo1030 6778.8 7850.3 bpo1030 6779.5 7846.5 bpo1030 6769.7 7844.6									
bpo1030 6778.8 7850.3 bpo1030 6779.5 7846.5 bpo1030 6769.7 7844.6		hno1030	6781 P	7850.7					
ppo1030 677.8.6 7690.3 bpo1030 677.5 7846.5 bpo1030 6769.7 7844.6		5001000	4770 0	7050.7					
bpo1030 6769.7 7844.6		DP01030	6//8.8	700.3					
ppo1U3U 6/69./ /844.6		ppo 1030	6//9.5	/846.5					

	Btype = POLY Cb = 9.0			B B
į.		Хb	Yb	В
ŀ				
	bpo1023	6872.2 7986 6866.8 7993 6879.5 8003 6884.8 7996 6872.2 7986	5.9	
В	bpo1023	6866.8 7993	3.7	Bt
B B	bpo 1023	68/9.5 8003	3.6	Cb !
В	bpo 1023	6884.8 /776	. 9	:
				В
١.				В
	Btype = POLY			В
l.	Cb = 7.0			В
!		Хb	Yb	В
P.	hno102/	6883.7 7994 6882.9 7995 6884.8 7996 6880.9 8001 6884.9 7996 6883.7 7996		
R	bpo1024	6882 9 7995	. 4	Bt
В	bpo1024	6884.8 7996	5.9	Cb
В	bpo1024	6880.9 8001	1.9	!
В	bpo1024	6884.9 8005	5.0	
В	bpo1024	6889.7 7998	3.8	В
В	bpo1024	6883.7 7994	1.2	В
	+-			B B
	Btype = POLY			B B
	Cb = 7.0			
!	Name	Хb	Yb	
				Bt
В	bpo1025	6866.8 7993	3.7	Cb
B	bpo1025	6864.7 7996	. 4	!
B	bpo 1025	6866.8 7993 6864.7 7996 6877.3 8006 6879.5 8003 6866.8 7993	. 4	В
D R	bpo 1025	6866 R 7993)./ } 7	В
				В
١.				В
	Btype = POLY			В
	Cb = 9.0			
	Name		Yb	
				Bt
B B	bpo 1026	6950.3 /938	0.5	Cb !
В	bpo1026	6947 9 7946	5.6	:
В	bpo1026	6950.3 7938 6945.2 7943 6947.9 7946 6945.8 7948 6949.4 7952 6956.9 7944 6950.3 7938	3.6	В
В	bpo1026	6949.4 7952	2.2	В
В	bpo1026	6956.9 7944	1.8	В
В	bpo1026	6950.3 7938	3.5	В
•	+-			В
•	Btype = POLY			
	Ch = 9 N			Bt
!		Хb	Yb	Cb
				!
В	bpo1027	7072.9 7990	1.9	
В	bpo1027	7066.8 8000	0.0	В
B B	bpo 102/	70/0.7 8006)./ } N	B B
В	bpo 1027	7076.2 7998	3.0	В
В	bpo1027	7076.6 7992	2.4	В
В	bpo1027	7074.5 7991	1.0	
В	bpo1027	7072.9 7990 7066.8 8000 7076.9 8000 7083.4 7998 7076.2 7993 7076.6 7992 7074.5 7991 7074.0 7990 7072.9 7990	1.7	
В	bpo1027	7072.9 7990	1.9	Bt
	+-			Cb
	Btype = POLY			!
	Cb = 9.0			В
į.	Name	Хb	Yb	В
	-			В
В				В
В	bpo1028	7019.8 7878		В
В		7022.3 7879		В
В	bpo 1028	7025.3 7873 7036.8 7878		В
B B				
В		7025.2 7866		Bt
				Cb
				!
				В
				В
				В
				B B
				ь

В	bpo 1056	6941.	7	7666	0	
В	bpo 1056	6946.	2	7672	5	
В	bpo 1056	6955.	2	7666	3	
•	Davina - DOLV					
	Btype = POLY Cb = 3.0					
į	Name		Χb			Yb
_						
В	bpo 1057 bpo 1057 bpo 1057 bpo 1057 bpo 1057	7030.	2	7769	9	
В	bpo 1057	7026.	6	7777	0	
В	bpo 1057	7033.	В	7781.	5	
D	bpo 1057	7038.	7	7740	٥	
			<u>.</u>		٠.	
	Btype = POLY					
	Cb = 7.0		vı			w
!			Xb			Yb
В	bpo 1058	7022.	3	7754	3	
В	bpo 1058	7028.	7	7758	0	
В	bpo 1058	7032.	В	7751.	4	
В	bpo 1058	7026.	0	7747	4	
В	bpo 1058 bpo 1058 bpo 1058 bpo 1058 bpo 1058	7022.	3	7754	3	
•	+.					
•	Btype = POLY					
	Cb = 3.0		W			w
!						Yb
В	bpo 1059	7049	5	7752	8	•
В	bpo 1059 bpo 1059 bpo 1059 bpo 1059 bpo 1059	7047.	5	7756	1	
В	bpo 1059	7052.	3	7759	0	
В	bpo 1059	7054.	3	7755	7	
В	bpo 1059	7049.	5	7752	8	
						••
•	Btype = POLY					
	Cb = 3.0					
!			Хb			Yb
D	hno 1040	70/1	 n	77/12	,	
D R	hno 1060	7041.	9	7745	n	
В	bpo 1060	7046.	Ď	7748	0	
В	bpo 1060	7047.	1	7745	5	
В	bpo 1060 bpo 1060 bpo 1060 bpo 1060 bpo 1060	7041.	0	7742	6	
•	+-					• •
•	Btype = POLY					
	Cb = 9.0					
!	Name					Yb
-	+					
P	bpo 1061	7138.	1	7/05	5	
В	bpo 1061	7129	,	7695	9	
В	bpo 1061	7129	2	7704	7	
В	bpo 1061 bpo 1061 bpo 1061 bpo 1061 bpo 1061	7138.	1	7704	5	
-	+-					
•	Btype = POLY					
	Cb = 7.0					
!	Name		Χb			Yb
B B	bpo 1062 bpo 1062 bpo 1062 bpo 1062 bpo 1062 bpo 1062	6946.	4	7694	1	
B	bpo 1062	6953.	7	7699	9	
В	bpo 1062	6957	2	7689	1	
В	bpo 1062	6953.	В	7689	2	
В	bpo 1062	6951.	В	7688	2	
В	bpo 1002	0/40.	•	/0/4	•	
•	+.					
•	Btype = POLY					
	Cb = 5.0					
!	Name		Χb			Yb
R	hno 1063			7859		
В	bpo 1042	4000	າ	7050	4	
В	bpo 1063	6800.	7	7855	8	
В	bpo 1063 bpo 1063 bpo 1063	6797.	9	7855	4	
	1 10/0	/707	4	7859	2	
В	bpo 1063	0/7/.	4	/03/	-	

Inhalt der Datei: Anaser.log (Zeitreihenanalyse mit AMASER) ANS 9~ 2023-02-27 10:39:50 Anaser, Version 1.2.0 startet ANS 9~ Einfache Analyse von Zeitreihen (DMNA, DEF). ANS 9~ Copyright (C) Janicke Consulting, Ueberlingen, Germany, 2012-2017
ANS 8~ Datei "/home/andre/Projekte/A2217_Piesau/L_I/work/variable.def" wird gelesen... ANS 9~ ANS 9~ <0 >0 Spalte Werte Ungültig =0 Max Mittelwert Mittelwert>=0 Mittelwert>0 -0,0000e+00 224 2,7720e-04 ANS 9~ R2 8760 0 0 8536 1,4200e-03 2,7011e-04 2,7011e-04 ANS 9~ R1 8760 0 8536 0 224 -9,2590e-04 0,0000e+00 -1,7614e-04 0,0000e+00 0,0000e+00 ANS 9~ ANS $9 \sim 2023 \cdot 02 \cdot 27 + 10 : 39 : 50$ Anaser beendet ANS 9~ 2023-02-27 10:41:02 Anaser, Version 1.2.0 startet L_I ANS 9~ Einfache Analyse von Zeitreihen (DMNA, DEF). ANS 9~ Copyright (C) Janicke Consulting, Ueberlingen, Germany, 2012-2017 $\textbf{ANS 8- Datei "/home/andre/Projekte/A2217_Piesau/L_I/work/meteo.def" wird gelesen...}$ ANS 9~ ANS 9~ Werte Ungültig <0 Spalte >0 =0 Min Max Mittelwert Mittelwert>=0 Mittelwert>0 8760 4,0303e+00 ANS 9~ Ua 8760 0 0 7,0000e-01 1,2300e+01 4,0303e+00 4,0303e+00 ANS 9~ Ra 8760 O 0 8760 n 1,0000e+00 3,6000e+02 1,9837e+02 1,9837e+02 1,9837e+02 ANS 9~ KM 8760 0 0 8536 224 0,0000e+00 5,0000e+00 2,9775e+00 2,9775e+00 3,0557e+00 ANS 9~ 1349 7411 0,0000e+00 2,0000e+01 1,3640e-01 1,3640e-01 8,8577e-01 Prec 8760 ANS 9~ ANS 9~ 2023-02-27 10:41:02 Anaser beendet ANS 9~ 2023-02-27 10:42:08 Anaser, Version 1.2.0 startet ANS 9~ Einfache Analyse von Zeitreihen (DMNA, DEF). ANS 9~ Copyright (C) Janicke Consulting, Ueberlingen, Germany, 2012-2017
ANS 8~ Datei "/home/andre/Projekte/A2217_Piesau/L_P-46/work/variable.def" wird gelesen... ANS 9~ Werte Ungültig ANS 9~ Spalte <0 >0 =0 Mittelwert Mittelwert>=0 Mittelwert>0 ANS 9~ R2 8760 Õ 0 8536 224 -0,0000e+00 1,4200e-03 2,7011e-04 2,7011e-04 2,7720e-04 ANS 9~ R1 8760 0 8536 0 224 -9,2590e-04 0,0000e+00 -1,7614e-04 0,0000e+00 0,0000e+00 ANS 9~ ANS 9~ 2023-02-27 10:42:08 Anaser beendet ANS 9~ 2023-02-27 10:42:37 Anaser, Version 1.2.0 startet L_P-46 ANS 9~ Einfache Analyse von Zeitreihen (DMNA, DEF). ANS 9~ Copyright (C) Janicke Consulting, Ueberlingen, Germany, 2012-2017 ANS 8~ Datei "/home/andre/Projekte/A2217_Piesau/L_P-46/work/meteo.def" wird gelesen... ANS 9~ ANS 9~ Spalte Werte Ungültig <0 >N =0 Mittelwert Mittelwert>=0 Mittelwert>0 ANS 9~ Ua 8760 0 8760 0 7,0000e-01 1,2300e+01 4,0303e+00 4,0303e+00 4,0303e+00 ANS 9~ 8760 8760 0 1,0000e+00 3,6000e+02 1,9837e+02 1,9837e+02 1,9837e+02 Ra 0 0 ANS 9~ KM 8760 0 0 8536 224 0,0000e+00 5,0000e+00 2,9775e+00 2,9775e+00 3,0557e+00 Prec ANS 9~ 8760 1349 7411 0,0000e+00 2,0000e+01 1,3640e-01 1,3640e-01 8,8577e-01 ANS 9~ ANS 9~ 2023-02-27 10:42:37 Anaser beendet

Inhalt der Datei: Lprgrd.log

```
GRD 9~ 2023-02-27 10:36:39 Lprgrd, Version 1.2.12 startet
                 GRD 9~ Übertragung von Netzdaten auf LASAT-Netze
                 GRD 9~ Copyright (C) Janicke Consulting, Ueberlingen, Germany, 2011-2020
                 GRD 8~ Datei "/home/andre/Projekte/dgm200_A.asc" wird eingelesen ...
GRD 8~ Datei "/home/andre/Projekte/dgm200_A.asc" eingelesen
                 GRD 8~ Datei "/home/andre/Projekte/A2217_Piesau/L_I/work/srfa011.dmna" ausgeschrieben
L_I
                 \label{eq:grb_approx} \textit{GRD 8$\sim$ Datei "/home/andre/Projekte/A2217\_Piesau/L\_I/work/srfa021.dmna" ausgeschrieben}
                 \label{eq:cross_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_cont
                 \label{eq:grb_approx} \textbf{GRD 8- Datei "/home/andre/Projekte/A2217\_Piesau/L\_I/work/srfa041.dmna" ausgeschrieben}
                 GRD 8~ Datei "/home/andre/Projekte/A2217_Piesau/L_I/work/srfa051.dmna" ausgeschrieben
                 GRD 8~ Datei "/home/andre/Projekte/A2217 Piesau/L I/work/srfa061.dmna" ausgeschrieben
                 GRD 8~ Datei "/home/andre/Projekte/A2217_Piesau/L_I/work/srfa071.dmna" ausgeschrieben
                 GRD 9~ 2023-02-27 10:36:43 Lprgrd beendet
                 GRD 9~ 2023-02-27 10:38:07 Lprgrd, Version 1.2.12 startet
                 GRD 9~ Übertragung von Netzdaten auf LASAT-Netze
                 GRD 9~ Copyright (C) Janicke Consulting, Ueberlingen, Germany, 2011-2020
                 GRD 8~ Datei "/home/andre/Projekte/dgm200_A.asc" wird eingelesen ...
GRD 8~ Datei "/home/andre/Projekte/dgm200_A.asc" eingelesen
                 GRD 8~ Datei "/home/andre/Projekte/A2217_Piesau/L_P-46/work/srfa011.dmna" ausgeschrieben
                 GRD 8~ Datei "/home/andre/Projekte/A2217_Piesau/L_P-46/work/srfa021.dmna" ausgeschrieben
                 GRD 8~ Datei "/home/andre/Projekte/A2217_Piesau/L_P-46/work/srfa031.dmna" ausgeschrieben
                 GRD 8~ Datei "/home/andre/Projekte/A2217 Piesau/L P-46/work/srfa041.dmna" ausgeschrieben
                 GRD 8~ Datei "/home/andre/Projekte/A2217 Piesau/L P-46/work/srfa051.dmna" ausgeschrieben
                 GRD 8~ Datei "/home/andre/Projekte/A2217_Piesau/L_P-46/work/srfa061.dmna" ausgeschrieben GRD 8~ Datei "/home/andre/Projekte/A2217_Piesau/L_P-46/work/srfa071.dmna" ausgeschrieben
                 GRD 9~ 2023-02-27 10:38:10 Lprgrd beendet
```

<u>Inhalt der Datei:</u> lprakt.log

```
[ICC version = Intel(R) C++ gcc 4.8 mode (1700)]
                                                                                                 [ICC version = Intel(R) C++ gcc 4.8 mode (1700)]

[compile options = -m64 -03 -qopenmp -fp-model source ]

lprakt_3.4.10 2020-08-18 17:18:22
[compile options = -m64 ·03 ·qopenmp ·fp·model source]

lprakt_3.4.10 2020·08·18 17:18:22
2022-12-12 23:10:34 ------
                                                                                                2022-12-22 22:00:15 ------
/home/andre/Projekte/A2217_Piesau/L_I/work/
                                                                                                 /home/andre/Projekte/A2217_Piesau/L_P-46/work/
-i../../az_Piesau.akt
-a1367,6424
                                                                                                 -i../../az_Piesau.akt
-a1367,6424
- V5.3
                                                                                                 · V5 . 3
-B~../../LPRWND_I.lib
-z1.0
                                                                                                 -B~../../LPRWND_P.lib
-z1.0
- 136
                                                                                                 - 136
                                                                                                 .u0.75,0.7
-u0 75.0 7
lprakt. version 3.4.10 of 2020-08-18 17:18:22
                                                                                                 lprakt, version 3.4.10 of 2020-08-18 17:18:22
conversion of a meteo time series into meteo.def
                                                                                                 conversion of a meteo time series into meteo.def
AKTerm /home/andre/Projekte/A2217_Piesau/L_I/work/../../az_Piesau.akt with 8760
                                                                                                 AKTerm /home/andre/Projekte/A2217_Piesau/L_P-46/work/../../az_Piesau.akt with 8760
                                                                                                 lines, format 3
lines, format 3
anemometer height set to 21.60 m
                                                                                                 anemometer height set to 21.60 m
terrain offset set to 675 m
8760 hourly means written
availability of data 96.5 %
                                                                                                 terrain offset set to 675 m
                                                                                                8760 hourly means written
                                                                                                 availability of data 96.5 %
class weight (%) <ua> (m/s)
1 2.0 1.7
2 10.8 2.3
                                                                                                class weight (%) <ua> (m/s)
1 2.0 1.7
                           1.74
                                                                                                                            1.74
                                                                                                  1
                                                                                                               10.8
                            4.70
3.2
              14.5
                           3.59
                                                                                                3.2
                                                                                                               14.5
                                                                                                                            3.59
                                                                                                                6.0
               6 0
                           3 00
                                                                                                                            3 00
                            2.79
total precipitation 1194.90 mm in 1349.00 hours
                                                                                                 total precipitation 1194.90 mm in 1349.00 hours
```


<u> Inhalt der Datei:</u> lasat.log

```
[ICC version = Intel(R) C++ gcc 4.8 mode (1700)]

[compile options = -m64 -03 -qopenmp -fp-model source ]

lasat_3.4.24 2020-08-18 17:18:09
                                                                                                                      [ICC version = Intel(R) C++ gcc 4.8 mode (1700)]

[compile options = -m64 -03 -qopenmp -fp-model source ]

lasat_0.4.24 2020-08-18 17:18:09
                                                                                                                           Dispersion Model LASAT, Version 3.4.24-64LI17-m4
Copyright (c) L. Janicke, 1989-2020
     Dispersion Model LASAT, Version 3.4.24-64LI17-m4
     Copyright (c) L. Janicke, 1989-2020
     {\bf Licence}/{\bf U} \colon \ {\bf Buero} \ \ {\bf fuer} \ \ {\bf Immissionsprognosen} \ \ {\bf Zorn} \, , \ \ {\bf Frankenhain} \,
                                                                                                                           {\bf Licence}/{\bf U} \colon \ {\bf Buero} \ \ {\bf fuer} \ \ {\bf Immissionsprognosen} \ \ {\bf Zorn}, \ \ {\bf Frankenhain}
     Working directory: /home/andre/Projekte/A2121_Piesau/L_W3-SBB/work/
                                                                                                                           Working directory: /home/andre/Projekte/A2121_Piesau/L_W3-WAH/work/
    Program is running on simulant 32 processors available, 5 used
                                                                                                                           Program is running on simulant
                                                                                                                           32 processors available, 5 used
Program creation date: 2020-08-18 17:18:09
                                                                                                                      Program creation date: 2020-08-18 17:18:09
Total Emissions:
                                                                                                                      Total Emissions:
                                                                                                                                                  2.025746e+07 g
1.189033e+07 g
                            2.025746e+07 g
           gas.so2 :
                                                                                                                                  gas.so2 :
                            1.189033e+07 a
             gas.no
                                                                                                                                   gas.no :
                                                                                                                                  gas.no2 :
gas.nox :
                                                                                                                                                  2.025747e+06 g
            gas.no2
                            2 025747e+06
                            2.025746e+07 g
            gas.nox
                                                                                                                                   gas.f :
gas.hg :
              gas.f
                            8.113898e+05 a
                                                                                                                                                   8.113898e+05 g
             gas . hg
                            8.540895e+02 g
                                                                                                                                                   8.540895e+02 g
                            7.686900e+03 a
                                                                                                                                                   7.686900e+03 g
            gas.hg0
                                                                                                                                  gas.hg0 :
                            1.024920e+06 g
1.024920e+06 g
                                                                                                                                                   1.024920e+06 g
1.024920e+06 g
          gas.pm25
                                                                                                                                 gas.pm25
          gas.pm-1
                                                                                                                                 gas.pm-1:
                                                                                                                                 gas.pm-2 :
pm3.pm-3 :
                            4.270605e+05
                                                                                                                                                   4.270605e+05
          pm3.pm-3 :
                            2.562300e+05 g
                                                                                                                                                  2.562300e+05 g
2022-02-25 13:25:15 program lasat finished
                                                                                                                      2022-02-25 13:23:58 program lasat finished
```

<u>Inhalt der Datei:</u> loprep.txt

```
2022-12-14 23:35:42 LOPREP 1.1.10
                                                                                                                                                                                                                     2022-12-25 04:18:36 LOPREP 1.1.10
 Auswertung der Ergebnisse für "/home/andre/Projekte/A2217 Piesau/L I"
                                                                                                                                                                                                                     Auswertung der Ergebnisse für "/home/andre/Projekte/A2217 Piesau/L P-46"
             DEP: Jahres-/Langzeitmittel der gesamten Deposition DRY: Jahres-/Langzeitmittel der trockenen Deposition
                                                                                                                                                                                                                                 DEP: Jahres-/Langzeitmittel der gesamten Deposition DRY: Jahres-/Langzeitmittel der trockenen Deposition
                                                                                                                                                                                                                                 WET: Jahres-/Langzeitmittel der nossen Deposition
JOD: Jahres-/Langzeitmittel der Konzentration/Geruchsstundenhäufigkeit
             WET: Jahres-/Langzeitmittel der nassen Deposition
JOO: Jahres-/Langzeitmittel der Konzentration/Geruchsstundenhäufigkeit
             Inn: Höchstes Tagesmittel der Konzentration mit nn Überschreitunger
                                                                                                                                                                                                                                  Tnn: Höchstes Tagesmittel der Konzentration mit nn Überschreitunger
             Snn: Höchstes Stundenmittel der Konzentration mit nn Überschreitungen
                                                                                                                                                                                                                                  Snn: Höchstes Stundenmittel der Konzentration mit nn Überschreit
 Maximalwerte, Deposition
                                                                                                                                                                                                                      Maximalwerte, Deposition
                                                                                                                                                                                                                                DEP 0,000e+00 kg/(ha*a) (+/- 0,0%)
DRY 0,000e+00 kg/(ha*a) (+/- 0,0%)
WET 0,000e+00 kg/(ha*a) (+/- 0,0%)
DEP 3,388e+00 kg/(ha*a) (+/- 1,0%) bei x= 7039 m, y= 7841 m (1:246,198)
DRY 3,387e+00 kg/(ha*a) (+/- 1,0%) bei x= 7039 m, y= 7841 m (1:246,198)
           DEP 5,799e-01 kg/(ha*a) (+/- 1,3%) bei x= 7039 m, y= 7841 m (1:246,198) DRY 5,799e-01 kg/(ha*a) (+/- 1,3%) bei x= 7039 m, y= 7841 m (1:246,198) WET 0,000e+00 kg/(ha*a) (+/- 0,0%)
          MET 0,000e+00 kg/(ha*a) (+/- 0,0%) DEP 1,431e+00 kg/(ha*a) (+/- 1,3%) bei x= 7039 m, y= 7841 m (1:246,198) DRY 1,431e+00 kg/(ha*a) (+/- 1,3%) bei x= 7039 m, y= 7841 m (1:246,198) MET 6,234e-02 kg/(ha*a) (+/- 0,0%) bei x= 6935 m, y= 7737 m (1:194,146) DEP 1,861e-03 g/(m²*d) (+/- 0,0%) bei x= 6935 m, y= 7737 m (1:194,146) DRY 1,364e-04 g/(m²*d) (+/- 0,0%) bei x= 7039 m, y= 7841 m (1:246,198) MET 1,854e-03 g/(m²*d) (+/- 0,0%) bei x= 6935 m, y= 7337 m (1:194,146) DEP 5,075e+01 kg/(ha*a) (+/- 0,0%) bei x= 6935 m, y= 7737 m (1:194,146) DRY 1,707e+01 kg/(ha*a) (+/- 1,2%) bei x= 6935 m, y= 7841 m (1:246,198) MET 4,986e+01 kg/(ha*a) (+/- 0,0%) bei x= 6935 m, y= 7737 m (1:194,146)
 NO2
                                                                                                                                                                                                                      NO2 DEP
                                                                                                                                                                                                                                           3,388+00 kg/(ha'a) (+/· 1,0%) bei x=7039 m, y=7841 m (1:246,198) 3,387+00 kg/(ha'a) (+/· 1,0%) bei x=7039 m, y=7841 m (1:246,198) 3,798e-02 kg/(ha'a) (+/· 0,0%) bei x=6935 m, y=7737 m (1:194,146) 4,926e-04 g/(m''a'd) (+/· 0,0%) bei x=6935 m, y=7737 m (1:194,146) 1,386e-04 g/(m''a'd) (+/· 0,0%) bei x=7039 m, y=7841 m (1:246,198) 4,529e-04 g/(m''a'd) (+/· 0,0%) bei x=7039 m, y=7841 m (1:246,198) 1,505e+01 kg/(ha'a) (+/· 0,0%) bei x=7039 m, y=7841 m (1:246,198) 1,063e+01 kg/(ha'a) (+/· 0,0%) bei x=7039 m, y=7841 m (1:246,198) 1,063e+01 kg/(ha'a) (+/· 0,0%) bei x=7039 m, y=7841 m (1:246,198)
                                                                                                                                                                                                                      NO2
 NO2
PM
PM
PM
SO2
                                                                                                                                                                                                                                 DRY
                                                                                                                                                                                                                     PM
SO2
                                                                                                                                                                                                                                 DEP
 Maximalwerte. Konzentration bei z=1.5 m
                                                                                                                                                                                                                      Maximalwerte. Konzentration bei z=1.5 m
J00 7,451e-02 \mug/m³ (+/- 0,5%) bei x= 7039 m, y= 7841 m (1:246,198) J00 0,000e+00 \mug/m³ (+/- 0,0%) bei x= 7039 m, y= 7841 m (1:246,198) J00 3,840e+00 \mug/m³ (+/- 0,5%) bei x= 7039 m, y= 7841 m (1:246,198) J00 3,922e+00 \mug/m³ (+/- 0,5%) bei x= 7039 m, y= 7841 m (1:246,198) J00 1,300e-01 \mug/m³ (+/- 0,5%) bei x= 7039 m, y= 7841 m (1:246,198) 5,100 9,342e-02 \mug/m³ (+/- 0,5%) bei x= 7039 m, y= 7841 m (1:246,198) J00 5,134e+00 \mug/m³ (+/- 0,5%) bei x= 7039 m, y= 7841 m (1:246,198)
                                                                                                                                                                                                                      NOX JOO
                                                                                                                                                                                                                      PM25 J00
```

ZGU-Inhaltsstoff-Analyse Glaswerk Piesau Fassung 28.02.2023

Zentrum für Glas- und Umweltanalytik

GmbH

Hohe Straße 45, 98693 Ilmenau-Unterpörlitz

Tel.: 03677/8452-0

Fax: 8452-28

E-Mail: lab@zgu.de

Web: www.zgu-ilmenau.de

SP Spezialglas Piesau GmbH z.Hd. Herrn Florian Heinz

Hüttenring 7

98724 Neuhaus a. Rwg.

Ihr Zeichen

Ihre Nachricht vom

Unser Zeichen mda/RS

Ort, Datum

Ilmenau, 16.11.2022

Prüfbericht zum Laborauftrag Nr. 1672/2022 – Ergänzung 01

Kunden-Auftragsnummer: 119397 vom 17.10.2022

Probeneingang am: 19.10.2022

Prüfzeitraum:

von 20.10.2022 bis 16.11.2022

Probenahme: durch Auftraggeber Probenbeschreibung:

18 Rohstoffproben

Zur Bestimmung der Elementgehalte von Bortrioxid, Quecksilber, Fluorid und Chlorid

Ergänzend zur Bestimmung von Arsen, Blei, Cadmium, Nickel und Thallium.

Angewandte Verfahren: Glühverlust an Rohstoffen bis 1.000 °C gem. DIN 51081 : 2002-12 *

Qualitative RFA-Analyse (Screening) gem. DIN 51001: 2003-08 *

Bestimmung des CO₂-Gehaltes in Rohstoffen mittels Titration gem. Hausverfahren

Bestimmung des B₂O₃-Gehaltes mittels ICP-OES direkt aus kalter HF-

Aufschlusslösung gem. DIN 51086-2/-3*

Hg-Bestimmung mittels ICP-OES Hydrid-System gem. ICG/TC2:2009*

Besonderheiten:

* Hierbei handelt es sich um ein akkreditiertes Prüfverfahren.

Die Ergebnisse der Glühverluste und CO2-Bestimmungen mittels Titration sind nicht im Bericht aufgeführt, diese sind zur Skalierung der Komponentengehalte aus den chemischen Analysen erforderlich. Gemäß Kundenwunsch wurden die Bestimmungen von Arsen, Blei, Cadmium, Nickel und Thallium ergänzt. Die vorherigen Ergebnisse bleiben davon unberührt. Der vorangegangene Prüfbericht bleibt weiterhin gültig.

Ergebnisse: siehe folgende Seite(n)

Bearbeiter:

F. Schmidt Dr. R. Schütz

Prüfer: Freigabe: Dr. R. Schütz

Unterschrift:

Marcus Daniel Geschäftsführer

Geschäftsführer: Marcus Daniel

Dieser Prüfbericht umfasst 3 Seite(n).
Die angegebenen Ergebnisse beziehen sich ausschließlich auf die bearbeitete(n) Probe(n). Ohne schriftliche Zustimmung des Zentrums für Glas- und Umweltanalytik ist eine auszugsweise Vervielfältigung dieses Berichtes nicht gestattet. Ohne Unterschrift hat dieser Bericht den Status einer unverbindlichen Vorabinformation. Eine im Prüfbericht angegebene Messunsicherheit ist, außer es ist anders angegeben, die erweiterte kombinierte Standardunsicherheit mit einem Erweiterungsfaktor k = 2. Wir garantieren Ihnen eine Messunsicherheit von maximal 10%, außer es ist anders angegeben.

Akkreditierungsstelle D-PL-18150-01-00

Durch die DAkkS nach DIN EN ISO/IEC 17025 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.

Amtsgericht Jena HRB 304.552 Ums.-St. Ident.-Nr. DE 812386162

Zentrum für Glas- und Umweltanalytik GmbH

Prüfbericht zum Laborauftrag Nr. 1672/2022 - Ergänzung 01

1. Ergebnisse

1.1 Chemische Analyse auf Bortrioxid, Quecksilber, Fluorid und Chlorid

Rohstoff	Bortrioxid B2O3 Gehalt [Ma-%]	Quecksilber Hg Gehalt [ppm]	Chlorid Cl ⁻ Gehalt [Ma-%]	Fluorid F- Gehalt [Ma-%]
Bestimmungs- methode	ICP	ICP	RFA	RFA
Bestimmungsgrenze	0,01 Ma-%	0,5 ppm	0,01 Ma-%	0,05 Ma-%
$Zink selenit-ZnSeO_{3} \\$	< 0,01	< 0,5	0,03	< 0,05
Kobaldoxid – Co ₃ O ₄	< 0,01	< 0,5	0,03	< 0,05
Kalk "Stellacarb" trocken	< 0,01	< 0,5	0,01	< 0,05
Sand "Schlingmeier" trocken	< 0,01	< 0,5	< 0,01	< 0,05
Feldspat	< 0,01	< 0,5	< 0,01	< 0,05
Selen	< 0,01	< 0,5	< 0,01	< 0,05
Bariumselenit – BaSeO ₃	< 0,01	< 0,5	0,27	< 0,05
Kalk "Stellacarb" feucht	< 0,01	< 0,5	< 0,01	< 0,05
Sand "Schlingmeier" feucht	< 0,01	< 0,5	< 0,01	< 0,05
Dolomit	< 0,01	< 0,5	0,03	0,06
Koksgrieß	< 0,01	< 0,5	< 0,01	< 0,05
Magnesiumsulfat – MgSO ₄ * 7 H ₂ O	< 0,01	< 0,5	0,01	< 0,05
Glas-Scherben "KTT"	< 0,01	< 0,5	0,02	< 0,05
Soda "Stockmeier"	< 0,01	< 0,5	0,13	< 0,05
Natriumsulfat – Na ₂ SO ₄	< 0,01	< 0,5	0,02	< 0,05
Erbiumoxid – Er ₂ O ₃	< 0,01	< 0,5	0,02	< 0,05
Fremdscherben "Komi"	0,02	< 0,5	0,04	< 0,05
Soda "Solvay"	< 0,01	< 0,5	0,05	< 0.05

Die Gehalte der einzeln mit RFA gemessenen Komponenten sind in der Summe auf 100% normiert. Diese Normierung erfolgt ebenfalls bei Einrechnung des Glühverlustes und nasschemisch ermittelter Komponenten (z.B. Li $_2$ O, B $_2$ O $_3$, F). Die maximale relative Messunsicherheit (Faktor k = 2, Vertrauensintervall 95 %) der einzelnen Komponenten kann für Komponenten mit einem Gehalt von > 1 Ma-% mit 2 % und für Komponenten mit einem Gehalt < 1 Ma-% mit 10 % abgeschätzt werden.

Seite 2 von 3

ZGU-Inhaltsstoff-Analyse Glaswerk Piesau Fassung 28.02.2023

Zentrum für Glas- und Umweltanalytik GmbH

Prüfbericht zum Laborauftrag Nr. 1672/2022 - Ergänzung 01

1.2 Ergänzung: Chemische Analyse mittels RFA auf Arsen, Blei, Cadmium, Nickel und Thallium

Rohstoff	Arsen (As) Gehalt [Ma-%]	Blei (Pb) Gehalt [Ma-%]	Cadmium (Cd) Gehalt [Ma-%]	Nickel (Ni) Gehalt [Ma-%]	Thallium (Tl) Gehalt [Ma-%]
Bestimmungs- methode	RFA	RFA	RFA	RFA	RFA
Bestimmungsgrenze	0,01 Ma-%	0,01 Ma-%	0,01 Ma-%	0,01 Ma-%	0,01 Ma-%
$Zink selenit-Zn SeO_{3} \\$	< 0,01	0,04	< 0,01	< 0,01	< 0,01
$Kobaldoxid-Co_3O_4\\$	0,01	< 0,01	< 0,01	0,10	0,01
Kalk "Stellacarb" trocken	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
Sand "Schlingmeier" trocken	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
Feldspat	< 0,01	0,01	< 0,01	< 0,01	< 0,01
Selen	0,01	0,02	0,02	< 0,01	< 0,01
Bariumselenit – BaSeO ₃	< 0,01	0,04	< 0,01	0,01	< 0,01
Kalk "Stellacarb" feucht	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
Sand "Schlingmeier" feucht	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
Dolomit	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
Koksgrieß	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
Magnesiumsulfat – MgSO ₄ * 7 H ₂ O	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
Glas-Scherben "KTT"	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
Soda "Stockmeier"	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
Natriumsulfat – Na ₂ SO ₄	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
$Erbiumoxid-Er_2O_3\\$	0,01	0,01	0,03	0,01	< 0,01
Fremdscherben "Komi"	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
Soda "Solvay"	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01

Die Gehalte der einzeln mit RFA gemessenen Komponenten sind in der Summe auf 100% normiert. Diese Normierung erfolgt ebenfalls bei Einrechnung des Glühverlustes und nasschemisch ermittelter Komponenten (z.B. Li₂O, B₂O₃, F). Die maximale relative Messunsicherheit (Faktor k=2, Vertrauensintervall 95 %) der einzelnen Komponenten kann für Komponenten mit einem Gehalt von > 1 Ma-% mit 2 % und für Komponenten mit einem Gehalt < 1 Ma-% mit 10 % abgeschätzt werden.

Seite 3 von 3

BfIP - Büro für Immissionsprognosen | Dipl.-Met. André Zorn Triftstraße 2 | 99330 Geratal OT Frankenhain Tel. | Fax: (036205) 91273 | 91274 Mobil: (0171) 2889516 e-Post: a.zorn@immissionsprognosen.com

Anhang

Übertragbarkeitsprüfung meteorologischer Daten gemäß VDI 3783 BI.20

zur Anwendung im Rahmen der TA Luft

Standort:	Piesau / Neuhaus a.Rwg.
Anlage:	Glasschmelzwannen
Auftraggeber:	SP Spezialglas Piesau GmbH Piesau Hüttenring 7 98724 Neuhaus a. Rwg.
Bestellung:	502243 / 04.08.2022
Registratur:	QPR_A2217
Fassung:	28.02.2023

Inhaltsverzeichnis

1	Motivation / Veraniassung	2
2	Fundstellenverzeichnis	3
3	Anforderungen an die Repräsentativität meteorologischer Daten	6
4	Meteorologische Grundlagen der Ausbreitung von Luftbeimengungen	8
4.1	Anlage, Emissionsquellen und Standort	8
4.2	Zielbereich und Erwartungswerte zum Wind	
4.3	Modellierte bzw. synthetische Daten zum Windfeld	15
4.3.1	Statistisches Windfeldmodell des DWD	15
4.3.2	Regionalwindsimulationen mit METRAS	17
4.4	Mess-Netze und Stationen im Umfeld des zu betrachtenden Standorts	17
4.5	Datengrundlage zum Niederschlag	18
5	Ausbreitungsklassenzeitreihe	19
5.1	Auswahl eines repräsentativen Standorts bzw. Datensatzes	19
5.2	Auswahl eines repräsentativen Jahrs	
5.3	Datenverarbeitung	21
5.4	AKTerm (Auszug)	22
5.5	Häufigkeitsverteilungen	23
5.5.1	Schichtungsstabilität (KM)	23
5.5.2	Windgeschwindigkeit (FF)	
5.5.3	Niederschlag (RR)	
5.5.4	Windrichtung (DD)	24
6	Fazit und Hinweise zur sachgerechten Anwendung Einschränkungen	25
	3	

1 Motivation / Veranlassung

Zur Berechnung der Ausbreitung von Luftbeimengungen, welche von zwei Schornsteinen zu Glasschmelzwannen in Piesau ausgehen, wird eine standortbezogene repräsentative Ausbreitungsklassenzeitreihe benötigt.

Für die Ermittlungen soll nach den Standards der Anwendung im Rahmen der TA Luft vorgegangen werden, wobei hier nasse Depositionen berücksichtigt werden sollen.

Aufgabe dieser Untersuchung ist die:

- Beschreibung der für die Ausbreitung und Auswirkungen von Luftbeimengungen bedeutsamen örtlichen Gegebenheiten im Sinne der VDI 3783 Bl.13;
- Prüfung der Übertragbarkeit meteorologischer Daten;
- Erstellung einer Zeitreihe (AKT) zur Anwendung im Rahmen der TA Luft anhand von Messungen zu den Windverhältnissen an nahe gelegenen Wetterstationen und / oder synthetischen Daten zu Regionalwind-Simulationen unter Berücksichtigung lokaler Kaltluftflüsse im Sinne der VDI 3783 BI.20;
- Dokumentation der Ergebnisse mit Hinweisen zur sachgerechten Anwendung bzw. zu Einschränkungen.

Weitergehende Ermittlungen zu den Emissionen und Immissionen sowie deren Auswirkungen gehören nicht zum Gegenstand dieser Betrachtungen.

Anhang zur IP_A2217

2 Fundstellenverzeichnis

Lit. 1 TA Luft:

Neufassung der Ersten Allgemeinen Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (Technische Anleitung zur Reinhaltung der Luft – TA Luft), 18. August 2021, GMBI 2021, Nr. 48–54, S. 1050-1192;ISSN 0939-4729.

Lit. 2 DWD-Merkblatt:

Bestimmung der in AUSTAL2000 anzugebenden Anemometerhöhe; Dipl.-Met. Joachim Namyslo, Deutscher Wetterdienst, Abteilung Klima- und Umweltberatung; Frankfurter Str. 135, D-63067 Offenbach am Main, Stand: 15.10.2014.

Lit. 3 LASAT & Programmbeschreibungen:

Lagrangesches Partikelmodell nach VDI 3945 BI.3: Dispersion Model, Reference Book, Working Book Version 3.4.24-64LI17-m4 | Stand 18.08.2020; Janicke Consulting, Environmental Physics, Hermann-Hoch-Weg 1, 88662 Überlingen, Germany (www.janicke.de).

Lit. 4 AUSTAL & Programmbeschreibungen:

Ing.-Büro Janicke; Lagrangesches Partikelmodell nach VDI 3945 Blatt 3, (https://www.umweltbundesamt.de/themen/luft/regelungen-strategien/ausbreitungsmodelle-fuer-anlagenbezogene/uebersicht).

Version 2.6.11-LI-x | Stand 2014-06-26 Version 3.1.2-LI-x | Stand 2021-08-09

Lit. 5 KLAM 21:

Berichte des Deutschen Wetterdienstes 227, Das Kaltluftabflussmodell KLAM_21; Dr. Uwe Sievers (Autor), Deutscher Wetterdienst (DWD), Kaiserleistraße 29, 63067 Offenbach am Main; 2005.

Lit. 6 VDI 3782: Umweltmeteorologie

Bl. 6 Atmosphärische Ausbreitungsmodelle, Bestimmung der Ausbreitungsklassen nach Klug/Manier, April 2017.

Lit. 7 VDI 3783: Umweltmeteorologie

Bl. 7 Prognostische mesoskalige Windfeldmodelle - Evaluierung für dynamisch und thermisch bedingte Strömungsfelder, Mai 2017;

Bl. 8 Messwertgestützte Turbulenzparametrisierung für Ausbreitungsmodelle, April 2017;

Bl. 13 Qualitätssicherung in der Immissionsprognose, Anlagenbezogener Immissionsschutz, Ausbreitungsrechnung gemäß TA Luft, Januar 2010;

Bl. 16 Prognostische mesoskalige Windfeldmodelle, Verfahren zur Anwendung in Genehmigungsverfahren nach TA Luft, Juni 2015;

Bl. 20 Übertragbarkeitsprüfung meteorologischer Daten zur Anwendung im Rahmen der TA Luft, März 2017;

Bl. 21 Qualitätssicherung meteorologischer Daten für die Ausbreitungsrechnung nach TA Luft und GIRL, März 2017.

Lit. 8 VDI 3786: Umweltmeteorologie, Meteorologische Messungen

Bl. 2 Wind, Mai 2018;

Bl. 7 Niederschlag, Dezember 2010;

Bl. 13 Messstation, August 2006.

Lit. 9 VDI 3787: Umweltmeteorologie

Bl. 5 Lokale Kaltluft, Dezember 2003.

Lit. 10 VDI 3790: Umweltmeteorologie, Emissionen von Gasen, Gerüchen und Stäuben aus diffusen Ouellen.

Bl. 1: Grundlagen, Juli 2015;

Bl. 2: Deponien, Juni 2017;

Bl. 3: Lagerung, Umschlag und Transport von Schüttgütern, Januar 2010;

Bl. 4: Staubemissionen durch Fahrzeugbewegungen auf gewerblichem/industriellem Betriebsgelände, September 2018.

- Lit. 11 Ginsburg, Th.: Zur Umrechnung von Windverteilungen mit verschiedenen Klasseneinteilungen; Arch. Met. Geoph. Biokl., Ser.B, 20, 101-108 (1972).
- Lit. 12 Transformation von Ausbreitungsklassenstatistiken in entsprechende Zeitreihen für Immissionsprognosen; Büro für Immissionsprognosen, Dipl.-Met. André Zorn, Triftstraße 2, 99330 Frankenhain; Oktober 2013 mit Präzisierungen aus März 2014 (http://www.immissionsprognosen.com).
- Lit. 13 Zorn, A.: Nutzung von Statistiken für Zeitreihen-Rechnungen bei Immissionsprognosen; Fachbeitrag zur METTOOLS X; Deutsche Meteorologische Gesellschaft e.V. (DMG); 25. bis 27. September 2018, Haus der Wissenschaft, TU Braunschweig.
- Lit. 14 Bestimmung von Ausbreitungsklassen nach TA Luft mit Wolkenbedeckungsgraden aus Satellitendaten; 19.03.2015, METTOOLS IX, Offenbach; Vortrag: Joachim Namyslo, Dr. Martin Stengel.
- Lit. 15 RESTNI: UFOPLAN-Projekt "Regionalisierung stündlicher Niederschläge zur Modellierung der nassen Deposition (RESTNI)" FKZ 3710 42 218 2; 2. Fachgespräch zum Projekt RESTNI, Thüringer Landesanstalt für Umwelt und Geologie Jena, 13.03.2014.
- Lit. 16 DWD: Deutscher Wetterdienst Zentrale -, Frankfurter Straße 135, 63067 Offenbach (http://www.dwd.de); Datendienst CDC-Server (ftp://ftp-cdc.dwd.de/).
- Lit. 17 TLBV: Landesamt für Bau und Verkehr in Thüringen (TLBV), Dezernat 43 | Elektround Kommunikationstechnik, Legefelder Hauptstr. 2, 99428 Weimar; persönliche Mitteilung Herr Pabst, Mai 2017.
- Lit. 18 MG: MeteoGroup Deutschland GmbH, Am Studio 20a, 12489 Berlin (http://www.meteogroup.com).
- Lit. 19 UTK: UTK-EcoSens GmbH, Platanenweg 45, 06712 Zeitz (http://www.utk.klima.com); persönliche Mitteilung: Dipl.-Met. Ralph Oestreicher, 05.09.2017.
- Lit. 20 synWSGE | synAKS | synAKT:

Synthetische Windrosen in GoogleEarth auf der Basis von Simulationen mit METRAS; metSoft GbR, Bottwarbahnstraße 4, 74081 Heilbronn; i.V.m.

Synthetische Windstatistiken Baden-Württemberg, Hinweise für Anwender; Auftraggeber: Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg, Griesbachstraße 1, 76185 Karlsruhe, Februar 2007 (http://www.metconumb.de/uploads/media/hinweise fuer anwender.pdf).

Kaltluftberücksichtigung in Immissionsprognosen mit SynAKS oder SynRepAKTerm; METCON, Umweltmeteorologische Beratung Dr. K. Bigalke, 09.09.2014, SynAKS-SynRepAKTerm_und_Kaltluftabfluesse.pdf (http://www.metsoft.de/downloads.html).

Anwenderworkshop "Synthetische Daten und prognostische Windfelder in Ausbreitungsrechnungen nach neuer TA Luft"; Fulda, 14. März 2017; metSoft GbR, Heilbronn.

METRAS-PCL-Workshop, FKZ 3712 43 241 im UFOPLAN des BMUB, Universität Hamburg, 21. bis 23.03.2018 (http://www.mi.uni-hamburg.de/metraspcl).

METRAS-PCL-Workshop im Rahmen der METTOOLS X, Deutsche Meteorologische Gesellschaft e.V. (DMG); 25. bis 27. September 2018, Haus der Wissenschaft, TU Braunschweig.

Daten- und Kartendienst der LUBW; Landesanstalt für Umwelt Baden-Württemberg, Griesbachstraße 1, 76185 Karlsruhe; Kartenservice Luft / Windstatistiken (https://udo.lubw.baden-wuerttemberg.de/public/index.xhtml).

Lit. 21 WindRAH:

Windrosen-Atlas Hessen; Hessisches Landesamt für Naturschutz, Umwelt und Geologie (HLNUG), Rheingaustraße 186, 65203 Wiesbaden; Benutzerhandbuch Stand 28.04.2017 (http://windrosen.hessen.de).

Anhang zur IP_A2217

- Lit. 22 Jahresmittel der Windgeschwindigkeit 10 m über Grund Statistisches Windfeldmodell (SWM) Bezugszeitraum 1981 bis 2000; Deutscher Wetterdienst, Abteilung Klima- und Umweltberatung, Offenbach 2004 (http://www.renewable-energy-concepts.com/german/windenergie/windkarte-deutschland.html | 01.06.2017).
- Lit. 23 Windstudie Thüringen: Ermittlung von Präferenzräumen für die Windenergienutzung in Thüringen; döpel Landschaftsplanung, Maschmühlenweg 8-10, 37073 Göttingen; 10.02.2015 KLI226TUE (Im Auftrag des Thüringer Ministeriums für Infrastruktur und Landwirtschaft, Werner-Seelenbinder-Str. 8, 99096 Erfurt).

Lit. 24 Kartengrundlagen:

GooglMaps – GetCapabilities für das geographische Informationssystem QGIS Maps (https://mt1.google.com/vt/lyrs=r&x={x}&y={y}&z={z}),

Satellite (http://www.google.cn/maps/vt?lyrs=s@189&gl=cn&x=x=y=y=z=z).

OSM – OpenStreetMap-Plugin für das geographische Informationssystem QGIS (http://hub.qgis.org/projects/openlayers/wiki).

GDZ – Geodatenservice, Amtlicher, deutschlandweiter Internet-Kartendienst von Bund und Ländern mit Webatlas | TopPlusOpen | DTK200 | DTK500 enthalten im Web Map Service des Geodatenzentrums: Dienstleistungszentrum des Bundes für Geoinformation und Geodäsie (www.geodatenzentrum.de).

TLBG - Geoproxy Freistaat Thüringen, Allgemeine Beschreibung der frei verfügbaren Dienste, Web Map Service - Geobasisdaten -; Thüringer Landesamt für Bodenmanagement und Geoinformation, Hohenwindenstraße 13 a, 99086 Erfurt (https://www.tlbg.thueringen.de/).

GeoSN – Geodatendienste, Geodaten online; Staatsbetrieb Geobasisinformation und Vermessung Sachsen (GeoSN), Postfach 10 02 44, 01072 Dresden (https://www.geodaten.sachsen.de/).

HVBG – Hessische Verwaltung für Bodenmanagement und Geoinformation, Geodaten Dienste-Server (https://hvbg.hessen.de | http://www.gds-srv.hessen.de).

GDI-BY – Landesamt für Digitalisierung, Breitband und Vermessung, Alexandrastraße 4, 80538 München (https://www.gdi.bayern.de).

LVermGeo – Landesamt für Vermessung und Geoinformation Sachsen-Anhalt, Otto-von-Guericke-Straße 15, 39104 Leipzig-Halle (https://www.lvermgeo.sachsenanhalt.de/).

LGB - Landesvermessung und Geobasisinformation Brandenburg, Heinrich-Mann-Allee 103, 14473 Potsdam; OpenData (https://data.geobasis-bb.de/geobasis/daten/).

LGL-BW - Landesamt für Geoinformation und Landentwicklung Baden-Württemberg, Büchsenstraße 54, 70174 Stuttgart (https://www.lgl-bw.de/unsere-themen/Produkte/Open-Data/).

LUBW Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg, Griesbachstraße 1, 76185 Karlsruhe; Kartenservice Schutzgebiete (https://udo.lubw.baden-wuerttemberg.de/public/pages/map/default/index.xhtml).

Lit. 25 Digitale Höhenmodelle:

GlobDEM50 – Deutschland: Digitales Höhenmodell, metSoft GbR - Dr. Klaus Bigalke - Dipl.-Ing. Matthias Rau - Dr. Christoph Winkler, Bottwarbahnstraße 4 - D-74081 Heilbronn.

DGM1, DGM2; DGM20: Digitale Geländemodelle der Landesvermessungen, Thüringer Landesamt für Bodenmanagement und Geoinformation (TLBG) | Staatsbetrieb Geobasisinformation und Vermessung Sachsen (GeoSN).

DGM100: Digitales Geländemodell, Landesamt für Vermessung und Geoinformation Sachsen-Anhalt (LVermGeo).

DGM200: Digitales Geländemodell, Dienstleistungszentrum des Bundes für Geoinformation und Geodäsie (GDZ).

Lit. 26 Standortinspektion:

Ortsbegehung und Einschätzung der für die Ausbreitung von Luftbeimengungen bedeutsamen Gegebenheiten, zuletzt am 31.08.2022.

3 Anforderungen an die Repräsentativität meteorologischer Daten

Mit der Neufassung der TA Luft (siehe dort Nr. 9.1 im Anhang 2) wurden die Anforderungen zur Repräsentativität meteorologischer Daten wie folgt aktualisiert:

"Meteorologische Daten sind als Stundenmittel anzugeben, wobei Windgeschwindigkeit durch skalare Mittlung und die Windrichtung durch vektorielle Mittlung des Windvektors zu bestimmen ist. Die verwendeten Werte für Windrichtung, Windgeschwindigkeit und Obukhov-Länge oder Ausbreitungsklasse sollen für einen mehrjährigen Zeitraum repräsentativ sein.

Die verwendeten Werte von Windgeschwindigkeit und Windrichtung sollen für den Ort im Rechengebiet, an dem die meteorologischen Eingangsdaten für die Berechnung der meteorologischen Grenzschichtprofile vorgegeben werden, charakteristisch sein. Die Festlegung dieses Ortes und seine Eignung für die Aufgabenstellung sind zu begründen.

Bei der Ausbreitungsrechnung mit nasser Deposition soll der mehrjährige Zeitraum nach Möglichkeit innerhalb des Zeitraums liegen, für den das Umweltbundesamt Niederschlagsdaten bereitstellt. Für den Jahresniederschlag und die Niederschlagshäufigkeit sind für den Standort der Anlage charakteristische Werte zu verwenden.

Liegen keine geeigneten Messungen nach Richtlinie VDI 3783 Blatt 21 ausgerüsteten und betriebenen Messstation im Rechengebiet vor, sind andere geeignete Daten zu verwenden:

- Daten einer Messstation des Deutschen Wetterdienstes oder einer anderen nach Richtlinie VDI 3783 Blatt 21 ausgerüsteten und betriebenen Messstation, deren Übertragbarkeit auf den festgelegten Ort der meteorologischen Eingangsdaten entsprechend Richtlinie VDI 3783 Blatt 20 geprüft wurde, oder
- Daten, die mit Hilfe von ¹Modellen erzeugt wurden. Die Eignung und Qualität der eingesetzten Modelle sowie die Repräsentativität des Datensatzes für den festgelegten Ort der meteorologischen Eingangsdaten sind nachzuweisen.

Messlücken, die nicht mehr als 2 Stundenwerte umfassen, können durch Interpolation geschlossen werden. Die Verfügbarkeit der Daten soll mindestens 90 Prozent der Jahresstunden betragen."

Weiter heißt es in der TA Luft (siehe dort Nr. 9.7 und Nr. 9.8 im Anhang 2):

- "Für die Berechnung der nassen Deposition ist die Ausbreitungsrechnung als Zeitreihenrechnung durchzuführen. Die Niederschlagsintensität ist in mm/h mit einer Nachkommastelle anzugeben.
 - Als Niederschlagszeitreihe sind die für das Bezugsjahr der meteorologischen Daten und den Standort der Anlage vom Umweltbundesamt zur Ausbreitungsrechnung nach TA Luft bereitgestellten Daten zu verwenden."
- "In Gebieten, in denen Einflüsse von lokalen Windsystemen oder anderen meteorologischen Besonderheiten, insbesondere Kaltluftabflüsse zu erwarten sind, sind diese Einflüsse zu prüfen und ggf. zu berücksichtigen (VDI 3787 Blatt 5, Dezember 2003). Die Berücksichtigung von Kaltluftabflüssen oder lokalen Windsystemen ist in der Immissionsprognose zu dokumentieren.
 - Fallbezogen ist zu prüfen, ob einfache Verfahren, wie Abschätzungen oder Screening-Verfahren ausreichen oder ob die Kaltluftabflüsse auf komplexere Weise durch Einbeziehung in die Ausbreitungsrechnung berücksichtigt werden müssen."

Damit trifft die TA Luft erstmalig Festlegungen für den Fall, dass die Übertragbarkeitsprüfung geeignete Daten nicht hervorbringt.

Gemäß VDI 3783 Blatt 13 mit ihren weiterführenden Erläuterungen im Anhang A zu Abschnitt 4.7.1 und Abschnitt 4.7.3 kann die Eignung von übertragenen oder am Standort gemessenen meteorologischen Daten für Berechnungen zur Ausbreitung von Luftbeimengungen anhand der folgenden beispielhaft genannten Kriterien überprüft werden:

- Konsistenz zwischen den Hauptwindrichtungen und den überregionalen Erwartungswerten;
- Widerspiegelung von lokalen orografischen Besonderheiten (z.B. Kanalisierung durch Taleinschnitte oder Gebirgsrücken) in der Windrichtungsverteilung;
- Repräsentanz der Schwachwindhäufigkeiten in Bezug auf die großräumige Landnutzung und auf orografische Besonderheiten (z.B. Hochplateau, Taleinschnitte);
- Einbeziehung von lokalen oder thermischen Windsystemen (z.B. Kaltluftabflüsse);
- Plausibilitätsprüfung anhand von synthetischen Wetterdaten/Windrosen (z.B. aus vorliegenden Windatlanten der Bundesländer).

Liegen am ²Standort einer geplanten Anlage repräsentativ gemessene Winddaten vor (siehe VDI 3786 Blatt 2), sind diese vorrangig zu nutzen. Im Einzelfall (insbesondere in Tallagen) ist zu prüfen, inwieweit diese Daten im Rahmen der Ausbreitungsrechnung auch für die zu betrachtende Quellhöhe anwendbar sind.

Mit der VDI 3783 BI.20 werden Verfahren zur Übertragbarkeitsprüfung meteorologischer Daten zur Anwendung im Rahmen der TA Luft beschrieben:

- Einerseits sind ausgehend von zu erwartenden Werten des Jahresmittels der Windgeschwindigkeit, des primären sowie eines sekundären Richtungsmaximums, optional auch der Richtungsminima für einen sogenannten ³Zielbereich die Messergebnisse verschiedener Stationen in dessen Umfeld zu vergleichen.
- Andererseits ist aus den Daten für den Messort mit guter bzw. hinreichender Übereinstimmung ein Zeitabschnitt von einem Jahr auszuwählen, für den die Summe definierter Abweichungsmaße zu einzelnen meteorologischen Parametern minimal wird.

Die Erwartungswerte können u.A. aus

- der Windklimatologie unter Berücksichtigung der lokalen und regionalen topographischen Gegebenheiten,
- großflächigen Modellrechnungen unter Berücksichtigung ortsaufgelöster Landnutzung und Orographie,
- orientierenden Messungen im Zielbereich

abgeleitet werden. Mit diesem Verfahren ist es jedoch nach wie vor nicht oder nur unzureichend möglich

- lokale Besonderheiten zu berücksichtigen, soweit die Gegebenheiten an dem zu untersuchenden Standort nicht exakt denen an der ausgewählten Bezugswindstation entsprechen;
- die Daten einer Wetterstation auf den konkret zu untersuchenden Standort bzw. dessen Umfeld atmosphärenphysikalisch qualifiziert anzupassen, weil das o.g. Verfahren lediglich zu einer mehr oder weniger begründeten horizontalen Verschiebung führt und die Übertragung auf das Beurteilungsgebiet nach TA Luft bzw. das zugehörige Rechengebiet im AUS-TAL nach wie vor durch ein vorgeschaltetes Windfeldmodell (insbesondere TALDIA) erfolgt;
- zu gewährleisten, dass die Verteilungen von Kombinationen meteorologischer Parameter (z.B. die Windrichtungsverteilungen innerhalb einer jeden Geschwindigkeitsklasse nach TA Luft und innerhalb definierter Klassen der Niederschlagsintensität) repräsentativ sind.

Im weiteren Sinne dürfte darunter das Beurteilungsgebiet nach TA Luft bzw. das zugehörige Rechengebiet im AUSTAL zu verstehen sein.

Hierunter dürfte ein Punkt oder Bereich wiederum im Beurteilungsgebiet nach TA Luft bzw. dem zugehörigen Rechengebiet im AUSTAL zu verstehen sein, für den die gesuchten meteorologischen Daten räumlich repräsentativ sein sollen.

4 Meteorologische Grundlagen der Ausbreitung von Luftbeimengungen

4.1 Anlage, Emissionsquellen und Standort

Die Höhen der Emissionsquellen betragen 45...50 m ü.Gr., wobei hier thermischer und / oder dynamischer Auftrieb noch zu berücksichtigen sind (vgl. Abb. 1).

Abb. 1: Draufsicht mit den Positionen des vorhandenen (Q1) und des geplanten (Q2) Abgaskamins sowie eines zugehörigen Neubaus | UTM-Georeferenz: 210 x 210 m² von {32656803;5597638} bis {32657013;5597848} | Kartenhintergrund: DOP, TLBG

In den nachfolgenden Abbildungen sind auf der Grundlage von [Lit. 24] jeweils im Bereich 9344 x 6784 m² von {32650948;5594358} bis {32660292;5601142} Darstellungen

- zur Topographie (Abb. 2);
- · zur orthogonalen Draufsicht (Abb. 3);
- zum digitalen Höhenmodell (Abb. 4);
- zur Steilheit im digitalen H\u00f6henmodell (Abb. 5);
- zur Rauigkeitslänge z0 nach CORINE (Abb. 6)

enthalten. Hierin ist jeweils auch die Position des Anemometers der Station Neuhaus a.Rwg. des Deutschen Wetterdiensts (DWD) eingetragen, auf welche im Weiteren bzw. bei der Ausbreitungsrechnung noch besonderer Bezug genommen wird.

Das digitale Höhenmodell GlobDEM50 basiert auf Rohdaten der Shuttle Radar Topography Mission von NASA, NIMA, DLR und ASI aus dem Jahr 2000. Es gehört zu dessen Eigenschaften, dass Baukörper (z.B. ausgedehnte Werkhallen) und Bewuchs (z.B. Wald mit hoch gewachsenem Baumbestand) innerhalb der Maschen (hier mit einer Weite von 50 m) aufintegriert wurden und somit im gewissen Umfang auch mehr Informationen über die Oberfläche enthalten sind. Das kann in Abhängigkeit von der Dichte und Höhe von Bebauung und Bewuchs zur Anhebung des Geländeniveaus gegenüber den diesbezüglich bereinigten Geländemodellen führen, wodurch die atmosphärische Strömung dynamisch etwas stärker zum Ausweichen gezwungen wird, soweit diese nicht in Turbulenz verfällt. Das bringt ein etwas realistischeres Abbild in die Modellierung der Windverhältnisse im zu betrachtenden Maßstab mit sich.

Das DGM200 hingegen führt infolge seiner gröberen Maschenweite zu weniger ausdehnten Bereichen mit kritischen Geländesteigungen und passt besser zum Rechennetz der synthetischen Windrosen.

Der Standort befindet sich im Südwesten von Piesau ca. 650 m ü. NHN. Das Gelände ist größtenteils mäßig und verbreitet auch stark gegliedert.

Kritische Geländesteigungen (> 0,2) treten insbesondere an den Hängen tief eingeschnittener Kerbtäler auf.

Insofern können die Anwendungsvoraussetzungen für die Windfeldmodelle TALDIA bzw. LPRWND, welche dem AUSTAL bzw. LASAT vorgeschaltet sind, bei der weiteren Übertragung der meteorologischen Information auf das gesamte Rechengebiet unter den gegebenen Bedingungen nicht von vorneherein als durchweg erfüllt gelten.

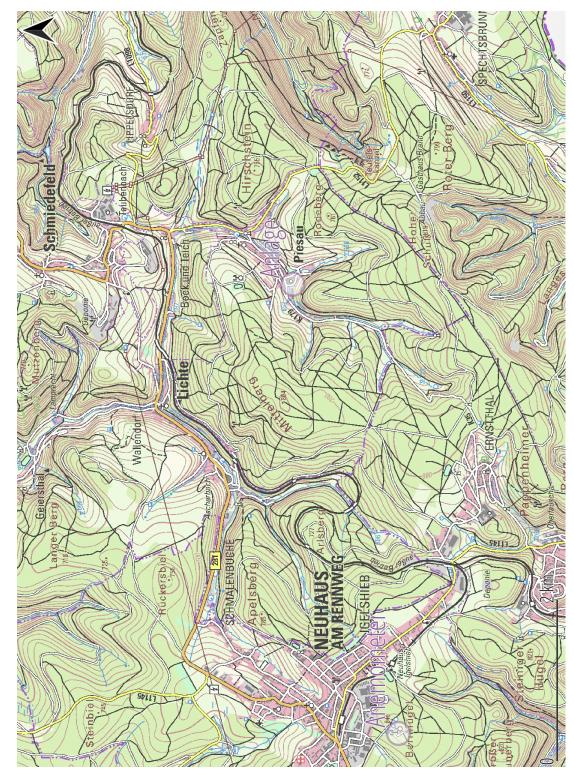


Abb. 2: Topographie | Kartenhintergrund: DTK, TLBG

Abb. 3: orthogonale Draufsicht | Kartenhintergrund: DOP, TLBG

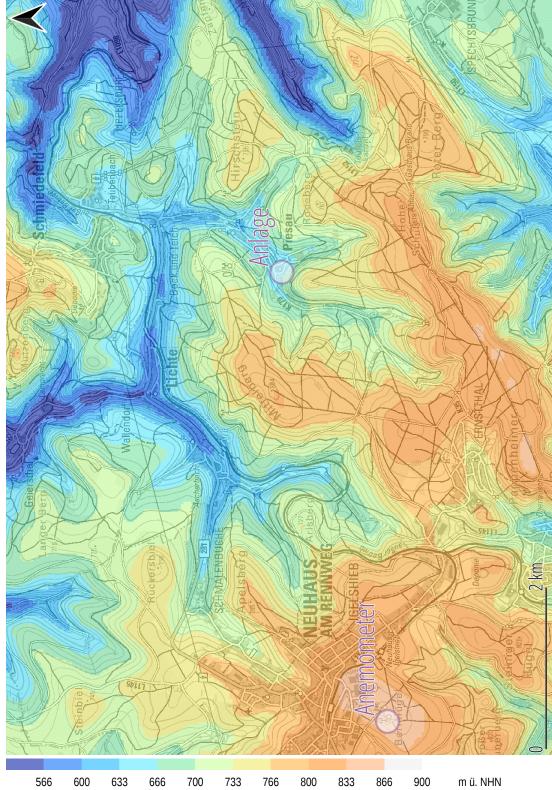


Abb. 4: digitales Höhenmodell DGM200, per Spline-Interpolation übertragen auf eine Maschenweite von 32 m | Kartenhintergrund: DTK, TLBG

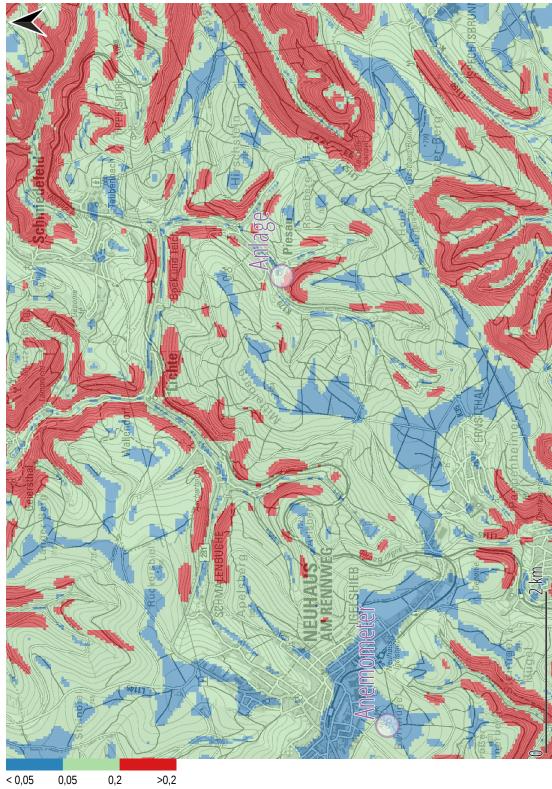


Abb. 5: Geländesteilheit im digitalen Höhenmodell DGM200, per Spline-Interpolation übertragen auf eine Maschenweite von 32 m | Kartenhintergrund: DTK, TLBG

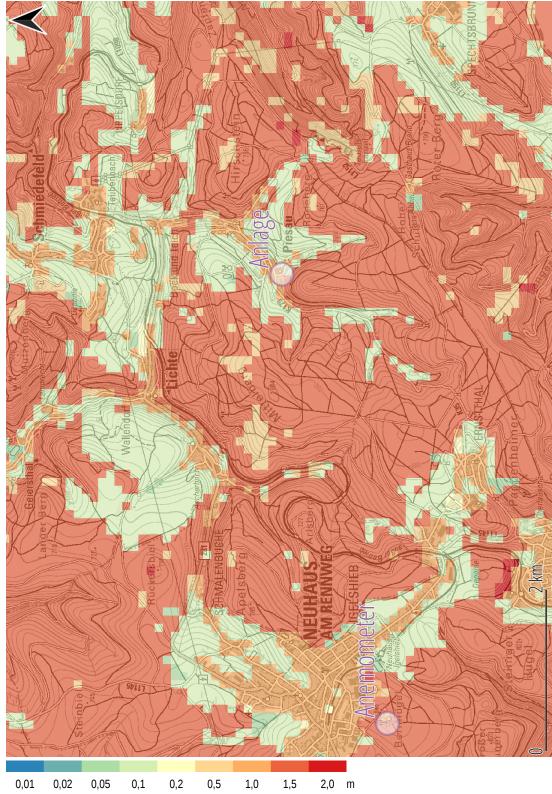


Abb. 6: Rauigkeitslänge z0 nach dem Standard der aktuellen AUSTAL-Version im UTM-Koordinatensystem, Maschenweite 100 m | Kartenhintergrund: DTK, TLBG

Anhang zur IP_A2217

4.2 Zielbereich und Erwartungswerte zum Wind

Entsprechend der Aufgabenstellung ist eine repräsentative Ausbreitungsklassenzeitreihe zu finden, welche die Verhältnisse für das Niveau der Freisetzung der Emissionen in einem Zielbereich im Umkreis der Quellen von ca. 1 km widerspiegelt.

Die Verteilung des übergeordneten Winds ist prinzipiell durch

- ein primäres Häufigkeitsmaximum im SW verbunden mit höheren Geschwindigkeiten;
- ein sekundäres Maximum bei Richtungen um NO verbunden mit niedrigeren Geschwindigkeiten sowie
- · entsprechende Minima im NW und SO

charakterisiert.

Regional kann je nach Höhe und Ausrichtung von Geländeerhebungen bzw. Gebirgen in der atmosphärischen Grenzschicht

- luvseitig eine Drehung der Hauptwindrichtung auf Süd bis Südost infolge der Strömungskonvergenz mit aufsteigenden Luftbewegungen;
- leeseitig eine Drehung der Hauptwindrichtung auf West bis Nordwest infolge der Strömungsdivergenz mit absinkenden Luftbewegungen

erfolgen.

Die topografischen Gegebenheiten lassen hier im Bereich des Kamms des Thüringer Walds

- relativ hohe Windgeschwindigkeiten;
- geringe Häufigkeiten von stabilen Schwachwindlagen bzw. Kaltluftflüssen;
- eine Dominanz des übergeordneten bzw. synoptischen Winds und
- · ansonsten keine regional und/oder lokal verursachten Besonderheiten

erwarten.

4.3 Modellierte bzw. synthetische Daten zum Windfeld

4.3.1 Statistisches Windfeldmodell des DWD

Durch den Deutschen Wetterdienst (DWD) wurde bundesweit das Jahresmittel der Windgeschwindigkeit in 10 m über Grund mit einem statistischen Windfeldmodell (SWM) berechnet (vgl. Lit. 22). Die Ergebnisse für das Umfeld des zu betrachtenden Standorts sind in Abb. 7 dargestellt.

Hiernach wären als jahresdurchschnittliche Geschwindigkeiten 2,7 m/s im Bereich der Anlage zu erwarten, was hier für das Niveau der Freisetzung der Emissionen nicht repräsentativ sein dürfte.

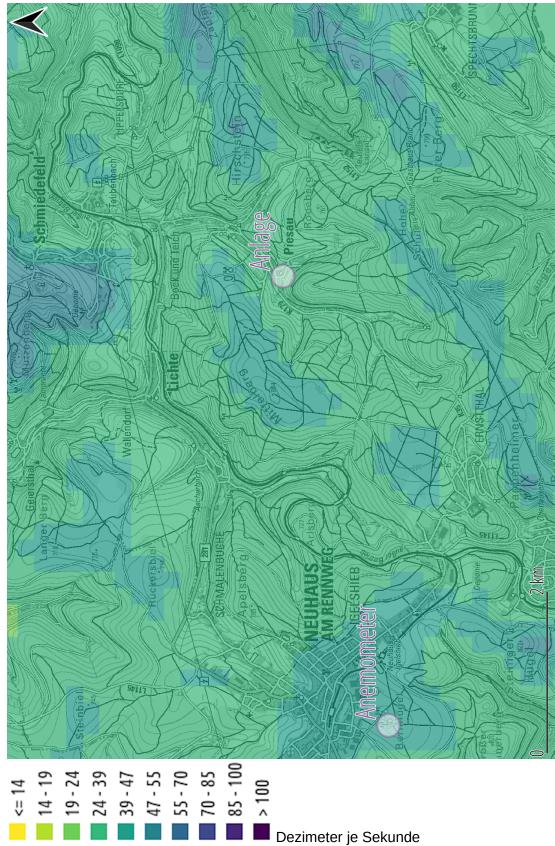


Abb. 7: Windgeschwindigkeitsverteilung nach dem Statistischen Windfeldmodell (SWM) des DWD am Standort, Maschenweite 200 m | Kartenhintergrund: DTK, TLBG

4.3.2 Regionalwindsimulationen mit METRAS

Der regionale und lokale Einfluss der Geländegegebenheiten auf das Strömungsfeld - insbesondere auf die Häufigkeitsverteilungen der Windrichtung und -geschwidigkeit - wurde mit dem Modell METRAS untersucht (vgl. [Lit. 22]). Die Simulationen erfolgten hierbei jeweils für ein 0,5 km - Gitter, womit diese mittlere Windverhältnisse auf Rasterflächen von 500 x 500 m² repräsentieren. Hierin sind regionale (z.B. Berg-Tal-Ausgleichsströmungen) und lokale (z.B. Kaltluftflüsse, Flurwinde) Phänomene bereits hinlänglich enthalten, soweit diese mit dem o.g. Gitter berücksichtigt werden können. Dies stellt gegenwärtig für den zu untersuchenden Standort die Datenbasis mit dem höchsten flächendeckenden Informationsgehalt zu den Windverhältnissen in nahezu optimaler Dichte insbesondere bei der Untersuchung niedriger Emissionsquellen dar.

Die mit METRAS erzeugten synthetischen Wind- bzw. Ausbreitungsklassen-Statistiken basieren auf Reanalyse-Daten, welche aus einer vierdimensionalen Datenassimilation von Messergebnissen zur horizontalen und vertikalen Verteilung meteorologischer Parameter hervorgehen und erfüllen hier sämtliche Kriterien der VDI 3783 Bl. 13 mit ihren weiterführenden Erläuterungen im Anhang A zu Abschnitt 4.7.1 und Abschnitt 4.7.3. Sie stellen damit die am meisten qualifizierte Form der Übertragung von meteorologischen Daten zur Ausbreitungsrechnung auf einen konkreten Standort dar, bei der insbesondere die jeweilige Geländeform und Oberflächenbeschaffenheit berücksichtigt sind. Das zugrunde liegende prognostische mesoskalige Modell ist inzwischen evaluiert nach VDI 3783 Bl.7.

4.4 Mess-Netze und Stationen im Umfeld des zu betrachtenden Standorts

Betreiber von Messnetzen mit Stationen, an denen auch regelmäßig Winddaten ermittelt werden, sind insbesondere:

Deutscher Wetterdienst (DWD)

Landesämter für Bau- und Verkehr (LBV)

Umweltbundesamt (UBA)

- Bundesländer (z.B. TLUBN)
- MeteoGroup (MG)
- UTK–EcoSens GmbH (UTK)

Deren Dichte und Zielsetzung unterscheidet sich z.T. erheblich.

Die Stationen des <u>DWD</u> sind überwiegend für den synoptisch operativen Dienst bzw. für klimatologische Zwecke angelegt, wobei kleinräumige Effekte weitgehend ausgeschlossen werden sollen. Die Qualitätssicherung erfolgt nach den Standards der Weltorganisation für Meteorologie und des DWD entsprechend der einschlägigen Richtlinien bzw. Normen. Die für Verkehr zuständigen <u>Landesämter</u> überwachen an Fernstraßen und auf Brückenbauwerken insbesondere die Windverhältnisse. Die Qualitätssicherung zu den Stationen der LBV's erfolgt zumeist in Zusammenarbeit mit dem DWD. Beim <u>UBA</u> und in den <u>Landesmessnetzen</u> werden die meteorologischen Parameter zur Beschreibung der Randbedingungen im Rahmen der Überwachung der Luftqualität erfasst, wobei letztere zumeist den Einflüssen dichter Bebauung ausgesetzt sind. Die Stationen der <u>MG</u> dienen hingegen vordringlich öffentlichkeitswirksamen Zwecken, ohne den Anforderungen der VDI 3786 bzw. der VDI 3783 Bl. 21 zielgerichtet nachkommen zu wollen. Die Messsysteme der <u>UTK</u> erfüllen zumeist spezielle Aufgaben insbesondere der Umweltmeteorologie auf der Grundlage der dafür gültigen Richtlinien bzw. Normen.

Anhang zur IP_A2217 QPR_A2217 Seite 18 Übertragbarkeitsprüfung meteorologischer Daten zur Anwendung im Rahmen der TA Luft Glaswerk Piesau Fassung 28.02.2023

Die nächstgelegene Wetter-Station des DWD, an der regelmäßig Winddaten ermittelt werden, befindet sich in Neuhaus a.Rwg.. Die technischen Daten sind gemäß DWD (http://www.dwd.de) nachfolgend zusammengestellt:

Station: Neuhaus a.Rwg. | Nr. 03513

Errichtung: vor 2007Entfernung zum Anlagenstandort: ca. 5,6 km

• UTM-Koordinaten: {32651367;5596424}

Höhe der Basis über NHN: 845 m

Rauigkeit: 1,5 m (Corine-Standard)

Messverfahren Wind: Ultraschall 2D
 Windgeberhöhe: 27 m ü.Gr.

Qualitätssicherung: Überprüfung gemäß QS-System DWD
 Besonderheiten: Bergstation im Umfeld hoher Rauigkeit

Diese Angaben gelten bis Mitte 2019. Anschließend wurde die Windgeberhöhe auf 10 m ü.Gr. herabgesetzt, wobei im Umfeld der Station der Baumbestand weiträumig gerodet wurde, was mit einer Verminderung der Rauigkeit einher ging.

Die Anforderungen der VDI 3786 bzw. der VDI 3783 Bl. 21 können hier als hinreichend erfüllt gelten.

Zu Windmessungen in anderen Netzen, mit welchen ggf. den Anforderungen der VDI 3786 in Verbindung mit der VDI 3783 Bl. 21 im Sinne der Aufgabenstellung nachgekommen werden kann, liegen gegenwärtig keine Informationen vor.

4.5 Datengrundlage zum Niederschlag

Der Niederschlag (RR) gehört zu den Parametern mit der größten räumlichen Variabilität. Zur Modellierung der nassen ⁴Deposition werden gegenwärtig vom Umweltbundesamt standortbezogene Niederschlagsreihen für Kalenderjahre von 2006 bis 2015 bereitgestellt. Diese können nur insoweit verwendet werden, wie auch die Windrichtung und -geschwindigkeit repräsentativ in diesen Zeitraum fällt. Andernfalls sind aktuellere Daten der synchronen Reihe zu skalieren.

Hier kann eine Solche vom UBA für den Standort der Anlage angebunden werden, wobei eine Anpassung für den jahresübergreifendenen Zeitraum zu erfolgen hatte, wie weiter unten zu sehen sein wird.

z.B. bei Staub und seinen Inhaltsstoffen, Ammoniak bzw. eutrophierenden Stickstoff | Bei Gerüchen wird ein niederschlagsbedingtes Auswaschen bislang noch nicht berücksichtigt, obwohl entsprechende immissionsmindernde Effekte durchaus vorkommen.

5 Ausbreitungsklassenzeitreihe

5.1 Auswahl eines repräsentativen Standorts bzw. Datensatzes

Selbst bei einer sehr nahe an den Emissionsquellen gelegenen Anemometerposition, wie dies beim Verwenden von mit einem prognostischem Modell gewonnen synthetischen Winddaten möglich wäre, bliebe das ⁵Problem der kritischen Geländesteigungen grundsätzlich bestehen.

Letztere treten insbesondere an Hanglagen der gegenüber der Anlage zumeist deutlich tiefer gelegenen Kerbtäler auf. Hierin bilden sich entweder entsprechende Wirbel-Strukturen in der Dimension der Talquerungen aus oder es reichert sich im Ereignisfall rasch Kaltluft an. Das führt dazu, dass die übergeordnete Strömung nicht bis in Bodennähe durchgreifen kann und somit die Luftbeimengungen aus den hohen Emissionsquellen der zu untersuchenden Anlagen sich nicht bis in Bodennähe einmischen können.

Das heißt, die mit der Prognose ermittelten Immissionen führen eher zu einer Überschätzung der anlagenbezogenen Belastung, womit eine Fehlbeurteilung des geplanten Vorhabens ausgeschlossen werden kann. Insofern kann der Windantrieb an der Stelle der originalen Position belassen und das Rechengebiet bis dorthin ausgedehnt werden.

Somit sind im Rahmen der Aufgabenstellung die an der Station Neuhaus a.Rwg. gewonnenen Messdaten als am besten geeignet anzusehen. Eine Übertragung auf den gesamten Zielbereich kann dann unmittelbar mit den dynamischen Windfeldmodellen TALDIA zu AUSTAL bzw. LPRWND zu LASAT vorgenommen werden.

Dadurch erübrigen sich weitergehende Betrachtungen zur räumlichen Repräsentativität.

5.2 Auswahl eines repräsentativen Jahrs

Die Auswahl einer einzelnen Jahresreihe aus den verfügbaren Daten erfolgt hier gemäß Anhang A3.2 der VDI 3783 BI.20 nach dem dort beschriebenen Verfahren B. Dazu wurden die Windrichtungen in zwölf 30°-Sektoren und die Windgeschwindigkeiten gemäß TA Luft jeweils unter gesonderter Berücksichtigung der (absoluten) Calmen klassiert (vgl. Tab. 1 und Tab. 2).

Infolge der o.g. Inhomogenitäten wurden die Ergebnisse von August 2019 und jünger nicht einbezogen.

Tab. 1 Anzahl der verfügbaren Stundenwerte der Windrichtungen in 30°-Sektoren zzgl. Calmen

Messjahr-Ende	Calmen	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°	360°
2008103123	0	517	847	484	202	216	783	1217	1759	1030	708	434	444
2009103123	0	625	736	520	279	346	752	956	1394	1064	750	707	631
2010103123	0	748	667	297	150	319	1075	1224	1534	768	565	580	833
2011103123	0	592	716	409	236	355	975	1102	1730	952	615	567	511
2012103123	0	501	584	419	207	254	893	1204	1632	1205	930	541	401
2013103123	0	711	873	688	223	231	701	1003	1597	972	664	494	584
2014103123	0	757	549	483	216	343	856	1420	1507	871	532	505	714
2015103123	0	570	636	305	199	388	923	1333	1607	832	570	580	636
2016103123	0	508	561	362	219	346	832	1511	1950	818	636	545	496
2017103123	0	454	510	378	229	359	826	1332	1846	1026	758	596	443
2018103123	0	732	1038	440	281	356	825	1156	1411	775	551	486	606
2019103122	0	399	562	348	207	370	692	732	1006	590	480	667	498
2020103122	-	-	-	-	-	-	-	-	-	-	-	-	-
2021103122	-	-	-	-	-	-	-	-	1	-	-	-	-
2022103123	-	-	-	-	-	-	-	-	-	-	-	-	-
alle Jahre	0	7311	8439	5206	2708	3968	10307	14476	19259	11086	7970	7000	6993

Dieses ist hier jedoch schon für diagnostische Windfeldmodelle weitgehend minimiert: Je höher über Grund sich die Emissionsquellen und der meteorologische Antrieb befinden, desto mehr verliert die Geländesteilheit an Bedeutung.

Tab. 2 Anzahl der verfügbaren Stundenwerte in den Klassen der Windgeschwindigkeiten gemäß TA Luft zzgl. Calmen

Messjahr-Ende	Calmen	< 1,4	1,41,8	1,92,3	2,43,8	3,95,4	5,56,9	7,08,4	8,510,0	> 10,0
2008103123	0	107	281	521	3005	2895	1263	439	94	36
2009103123	0	124	244	570	3459	2982	1083	247	49	2
2010103123	0	146	345	722	3234	2844	1077	295	78	19
2011103123	0	136	338	669	3437	2530	1178	392	61	19
2012103123	0	121	268	580	3094	2833	1268	455	132	20
2013103123	0	204	356	660	3350	2821	1012	277	58	3
2014103123	0	198	478	844	3507	2405	974	283	60	4
2015103123	0	179	387	688	3553	2473	825	306	128	40
2016103123	0	179	402	755	3612	2432	924	338	123	19
2017103123	0	171	371	754	3582	2598	938	254	67	22
2018103123	0	187	478	762	3521	2292	1055	301	55	6
2019103122	0	102	247	534	2615	1821	846	313	62	11
2020103122	-	1	-	1	-	-	1	•	-	-
2021103122	-	-	-	-	-	-	-	-	-	-
2022103123	-	-	-	-	-	-	-	-	-	-
alle Jahre	0	1900	4331	8294	40882	31602	12610	3934	968	202

Für die einzelnen Messjahre sind die separat für die Parameter Windrichtung und Windgeschwindigkeit auf 100 normierten Abweichungsmaße $A_{i,n}$ sowie die gewichtete Beurteilungsgröße BG_n in der nachfolgenden Tabelle zusammengestellt.

Tab. 3 Abweichungsmaße (jeweils normiert auf 100) und Beurteilungsgröße

Messjahr-Ende	Anzahl verfügbarer	Abweichungsmaß Windrichtung	Abweichungsmaß Windgeschwindigkeit	Beurteilungs- größe	Jahresmittel der Wind- geschwindigkeit
	Stundenwerte	A _{1,n}	$A_{2,n}$	BG _n	m/s
2008103123	8641	277	944	444	4,2
2009103123	8760	358	451	382	4,0
2010103123	8760	391	225	349	4,0
2011103123	8760	100	100	100	4,0
2012103123	8771	436	667	494	4,2
2013103123	8741	386	133	323	3,9
2014103123	8753	297	322	303	3,8
2015103123	8579	144	312	186	3,9
2016103123	8784	527	307	472	3,9
2017103123	8757	357	151	305	3,9
2018103123	8657	438	432	437	3,8
2019103122	6551	578	189	480	4,0
2020103122	-	-	-	-	-
2021103122	-	-	-	-	-
2022103123	-	-	-	-	-

Damit bieten sich die Daten des Zeitraums vom 01.11.2010 bis 31.10.2011 mit bestmöglicher Repräsentativität der Windverteilung zur Durchführung von Immissionsprognosen an.

5.3 Datenverarbeitung

Für die Ausbreitungsklassenzeitreihe fanden folgende Daten der Station Neuhaus a.Rwg. des DWD für den o.g. Zeitraum Verwendung:

- · Windrichtung (DD) und -geschwindigkeit (FF) als Stundenwerte;
- Bedeckungsgrad (N) als Stundenwerte.

Die Klug-Manier-Klassen (KM) wurden nach dem in der VDI 3782 Bl. 6 beschriebenen Verfahren ermittelt.

Zur automatischen Bestimmung der bei der Ausbreitungsrechnung anzugebenden Anemometerhöhe (ha) wurde in den Dateikopf die Zuordnung zu den TA Luft-Klassen der Rauigkeitslänge (z0) gemäß DWD-Merkblatt (mit Href = 100 m) eingetragen. Damit lassen sich die Unterschiede in der Oberflächenbeschaffenheit zwischen den Standorten der Erhebung der meteorologischen Daten und der Emissionsguellen ausgleichen.

Entsprechend der Klasseneinteilung der TA Luft wurde die Rauigkeitslänge mit z0 = 1,5 m gemäß dem Corine-Standard am Herkunftsort der Windmessungen festgelegt.

Zur Berücksichtigung des Niederschlags (RR) wurden eine Jahresreihe aus den für den zu untersuchenden Anlagenstandort vom UBA bereitgestellten unskalierten Daten synchronisiert und anschließend auf den entsprechenden Zehnjahresdurchschnitt normiert bzw. skaliert.

Diese wurde anschließend mit der Ausbreitungsklassenzeitreihe im Sinne von Nr. 3.5.2 der Programmbeschreibung zu AUSTAL verknüpft.

5.4 AKTerm (Auszug)

```
* Ausbreitungsklassenzeitreihe mit Niederschlag erstellt von Dipl. Met. A. Zorn
                                                                                         | www.immissionsprognosen.com
 Datengrundlage 082007...072019: Deutscher Wetterdienst (DWD) www.dwd.de | Werte bearbeitet | Bgn = 100 (VDI3783-20)
* DD+FF+N Neuhaus a.Rw. (DWD-03513) | RR gemaesz UBA skaliert auf 1195 mm/a
                                                                                              1.11.2010 - 31.10.2011
 Lat = +50^{\circ}30'01" | Lon = +011^{\circ}08'04" | Hs = 845 m | ha = 27 m | z0 = 1.500 m
                                                                                               UTM {32651367;5596424}
+ Anemometerhoehen (0.1 m): 40 40 53 71 97 151 216 270 318
                                                                                *(Href=100 m) | UTM {33225888;5601388}
AK 03513 2010 11 01 00 00 1 3 150 034 1 3 1 -999 9 990 1
AK 03513 2010 11 01 01 00 1 3 150 030 1 2 1 -999 9 990 1
AK 03513 2010 11 01 02 00 1 3 100 021 1 2 1 -999 9 990 1
AK 03513 2010 11 01 03 00 1 3 030 023 1 2 1 -999 9 990 1
AK 03513 2010 11 01 04 00 1 3 060 025 1 3 1 -999 9 990 1
AK 03513 2010 11 01 05 00 1 3 100 034 1 3 1 -999 9 990 1
AK 03513 2010 11 01 06 00 1 3 090 032 1 3 1 -999 9 990 1
AK 03513 2010 11 01 07 00 1 3 080 039 1 3 1 -999 9 990 1
AK 03513 2010 11 01 08 00 1 3 110 035 1 3 1 -999 9 990 1
AK 03513 2010 11 01 09 00 1 3 170 030 1 3 1 -999 9 990 1
AK 03513 2010 11 01 10 00 1 3 190 026 1 4 1 -999 9 990 1
AK 03513 2010 11 01 11 00 1 3 280 015 1 4 1 -999 9 990 1
AK 03513 2010 11 01 12 00 1 3 310 011 1 5 1 -999 9 990 1
AK 03513 2010 11 01 13 00 1 3 350 015 1 5 1 -999 9 990 1
AK 03513 2010 11 01 14 00 1 3 360 024 1 3 1 -999 9 990 1
AK 03513 2010 11 01 15 00 1 3 020 023 1 2 1 -999 9 990 1
AK 03513 2010 11 01 16 00 1 3 010 025 1 2 1 -999 9 990 1
AK 03513 2010 11 01 17 00 1 3 010 033 1 3 1 -999 9 990 1
AK 03513 2010 11 01 18 00 1 3 020 032 1 3 1 -999 9 990 1
AK 03513 2010 11 01 19 00 1 3 050 033 1 3 1 -999 9 990 1
AK 03513 2010 11 01 20 00 1 3 040 036 1 3 1 -999 9 990 1
AK 03513 2010 11 01 21 00 1 3 050 033 1 3 1 -999 9 990 1
AK 03513 2010 11 01 22 00 1 3 030 031 1 3 1 -999 9 990 1
AK 03513 2010 11 01 23 00 1 3 020 029 1 3 1 -999 9 990 1
AK 03513 2011 07 04 00 00 1 3 340 051 1 3 2 -999 9 001 1
AK 03513 2011 07 04 01 00 1 3 340 046 1 3 2 -999 9 990 1
AK 03513 2011 07 04 02 00 1 3 350 045 1 3 2 -999 9 990 1
AK 03513 2011 07 04 03 00 1 3 330 033 1 3 2 -999 9 998 1
AK 03513 2011 07 04 04 00 1 3 350 034 1 3 2 -999 9 003 1
AK 03513 2011 07 04 05 00 1 3 360 035 1 4 2 -999 9 990 1
AK 03513 2011 07 04 06 00 1 3 360 034 1 4 2 -999 9 990 1
AK 03513 2011 07 04 07 00 1 3 340 024 1 9 2 -999 9 990 1
AK 03513 2011 07 04 08 00 1 3 330 025 1 9 2 -999 9 990 1
AK 03513 2011 07 04 09 00 1 3 330 022 1 9 2 -999 9 990 1
AK 03513 2011 07 04 10 00 1 3 340 024 1 9 2 -999 9 990 1
AK 03513 2011 07 04 11 00 1 3 330 024 1 9 2 -999 9 990 1
AK 03513 2011 07 04 12 00 1 3 350 032 1 4 2 -999 9 990 1
AK 03513 2011 07 04 13 00 1 3 320 027 1 4 1 -999 9 990 1
AK 03513 2011 07 04 14 00 1 3 320 025 1 4 1 -999 9 990 1
AK 03513 2011 07 04 15 00 1 3 330 025 1 5 1 -999 9 990 1
AK 03513 2011 07 04 16 00 1 3 350 023 1 4 1 -999 9 990 1
AK 03513 2011 07 04 17 00 1 3 360 025 1 4 1 -999 9 990 1
AK 03513 2011 07 04 18 00 1 3 350 025 1 3 1 -999 9 990 1
AK 03513 2011 07 04 19 00 1 3 350 024 1 4 1 -999 9 990 1
AK 03513 2011 07 04 20 00 1 3 020 027 1 9 2 -999 9 990 1
AK 03513 2011 07 04 21 00 1 3 010 025 1 9 2 -999 9 990 1
AK 03513 2011 07 04 22 00 1 3 020 021 1 9 2 -999 9 990 1
AK 03513 2011 07 04 23 00 1 3 020 025 1 9 2 -999 9 990 1
AK 03513 2011 10 31 00 00 1 3 280 025 1 2 1 -999 9 990 1
AK 03513 2011 10 31 01 00 1 3 300 024 1 2 1 -999 9 990 1
AK 03513 2011 10 31 02 00 1 3 320 023 1 2 1 -999 9 990 1
AK 03513 2011 10 31 03 00 1 3 020 026 1 2 1 -999 9 990 1
AK 03513 2011 10 31 04 00 1 3 070 024 1 2 1 -999 9 990 1
AK 03513 2011 10 31 05 00 1 3 070 029 1 9 2 -999 9 990 1
AK 03513 2011 10 31 06 00 1 3 090 038 1 3 1 -999 9 990 1
AK 03513 2011 10 31 07 00 1 3 090 038 1 3 2 -999 9 990 1
AK 03513 2011 10 31 08 00 1 3 120 029 1 3 1 -999 9 990 1
AK 03513 2011 10 31 09 00 1 3 150 026 1 3 1 -999 9 990 1
AK 03513 2011 10 31 10 00 1 3 160 036 1 4 1 -999 9 990 1
AK 03513 2011 10 31 11 00 1 3 180 033 1 5 1 -999 9 990 1
AK 03513 2011 10 31 12 00 1 3 180 020 1 5 1 -999 9 990 1
AK 03513 2011 10 31 13 00 1 3 160 013 1 5 1 -999 9 990 1
AK 03513 2011 10 31 14 00 1 3 140 014 1 2 1 -999 9 990 1
AK 03513 2011 10 31 15 00 1 3 150 009 1 2 1 -999 9 990 1
AK 03513 2011 10 31 16 00 1 3 090 015 1 2 1 -999 9 990 1
AK 03513 2011 10 31 17 00 1 3 090 029 1 2 1 -999 9 990 1
AK 03513 2011 10 31 18 00 1 3 120 024 1 2 1 -999 9 990 1
AK 03513 2011 10 31 19 00 1 3 120 030 1 2 1 -999 9 990 1
AK 03513 2011 10 31 20 00 1 3 130 024 1 2 1 -999 9 990 1
AK 03513 2011 10 31 21 00 1 3 150 021 1 1 1 -999 9 990 1
AK 03513 2011 10 31 22 00 1 3 170 032 1 3 1 -999 9 990 1
AK 03513 2011 10 31 23 00 1 3 170 033 1 3 1 -999 9 990 1
```


5.5 Häufigkeitsverteilungen

5.5.1 Schichtungsstabilität (KM)

Die Schichtungsstabilität wird aus dem Bedeckungsgrad in Verbindung mit der Windgeschwindigkeit hergeleitet und nur recht grob in 6 Klassen ausgedrückt. Die sogenannten Inversionswetterlagen sind stets mit stark stabiler bzw. stabiler Schichtung im Bereich der atmosphärischen Grenzschicht verbunden. Hierbei ist der vertikale Luftaustausch erheblich eingeschränkt.

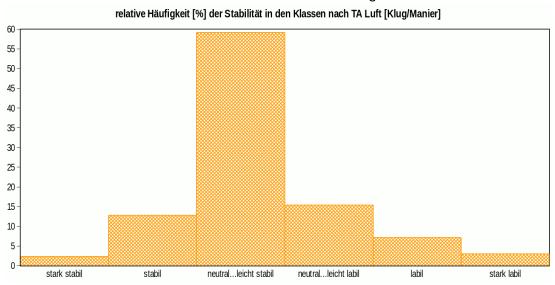


Abb. 8: Häufigkeitsverteilungen der Schichtungsstabilität

5.5.2 Windgeschwindigkeit (FF)

Die Geschwindigkeit wird nach TA Luft in 9 Klassen mit unterschiedlicher Breite eingeteilt. Bei einem sehr häufigen Vorkommen niedriger Geschwindigkeiten (Schwachwindsituationen < 1 m/s) ist eine detaillierte Untersuchung der Standortbesonderheiten erforderlich, dem i.Allg. nur mit der Durchführung von fortlaufenden Messungen der Windverhältnisse im Bereich der Emissionsquellen nachgekommen werden kann. Gemäß Nr. 12 des Anhangs 3 der TA Luft kann eine Häufigkeitsverteilung der stündlichen Ausbreitungssituationen verwendet werden, sofern mittlere Windgeschwindigkeiten von weniger als 1 m/s im Stundenmittel am Standort der Anlage in weniger als 20 % der Jahresstunden auftreten.

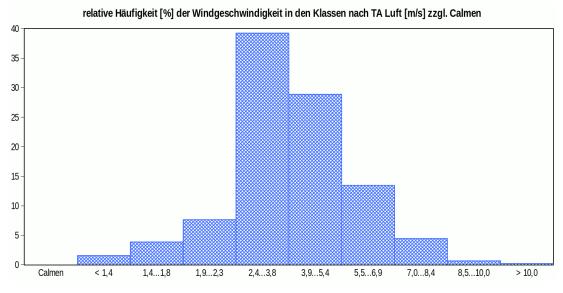


Abb. 9: Häufigkeitsverteilungen der Windgeschwindigkeit

5.5.3 Niederschlag (RR)

Der Niederschlag wird mit den Intensitäten gemäß Nr. 3.5.2 der Programmbeschreibung zu AUS-TAL berücksichtigt, die in Abb. 10 für sechs Klassen ausgewertet wurden. Hinzu kommen noch die Stunden ohne Niederschlag, welche in der nachfolgenden Grafik nicht enthalten sind.

Abb. 10: Häufigkeitsverteilung der Niederschlagsintensität

5.5.4 Windrichtung (DD)

Die Richtung wird der Herkunft des Winds nach in relativen Häufigkeiten für 36 10°-Sektoren (Ost: 9; Süd: 18; West: 27; Nord: 36) den Berechnungen vorgegeben und zumeist auch in zwölf 30°-Sektoren grafisch veranschaulicht. Eine geschwindigkeitsgewichtete Windrichtungsverteilung beschreibt das Potenzial des Transports von Luftbeimengungen. Die Verteilung bei Niederschlag ist maßgeblich für Auswascheffekte und die nasse Deposition. Bei stabiler Schichtung heben sich neben dem synoptisch dominierenden Ostwind bei Hochdruck-Wetterlagen ggf. auch regionale Ausgleichsströmungen, Flurwinde und lokale Kaltluftflüsse heraus.

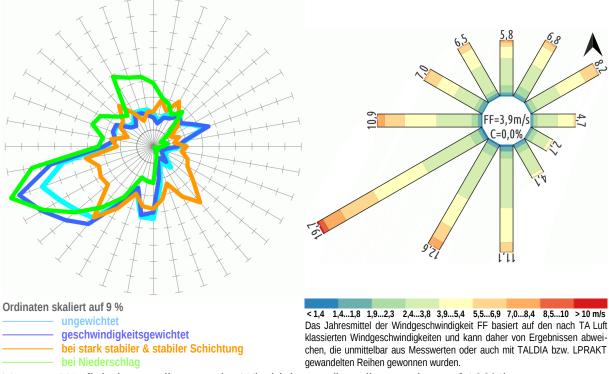


Abb. 11: Häufigkeitsverteilungen der Windrichtung (jeweils normiert auf 100%)

Fazit und Hinweise zur sachgerechten Anwendung | Einschränkungen

Zur Berechnung der Ausbreitung von Luftbeimengungen, welche von zwei Schornsteinen zu Glasschmelzwannen in Piesau ausgehen, wird eine standortbezogene repräsentative Ausbreitungsklassenzeitreihe benötigt.

Aus den durchgeführten Untersuchungen geht hervor, dass für Immissionsprognosen im Rahmen der Aufgabenstellung die mit den Daten des Zeitraums vom 01.11.2010 bis 31.10.2011 begründete Ausbreitungsklassenzeitreihe der Station Neuhaus a.Rwg. des DWD verwendet werden kann. Die effektiven Höhen der Emissionsquellen über Grund bzw. deren vertikale Erstreckungen sollten hierbei 30 m ü.Gr. nicht unterschreiten.

In den Bereichen kritischer Geländesteigungen führen die mit der Prognose ermittelten Immissionen eher zu einer Überschätzung der anlagenbezogenen Belastung, womit eine Fehlbeurteilung des geplanten Vorhabens ausgeschlossen werden kann. Insofern kann der Windantrieb an der Stelle der originalen Position belassen und das Rechengebiet bis dorthin ausgedehnt werden.

Detailliertere Aussagen über die örtlichen Gegebenheiten lassen sich jedoch diesbezüglich nur in einer gesonderten Untersuchung (Sonderfallprüfung mit flächenhafter bzw. quasikontinuierlicher Erhebung verschiedener meteorologischer Parameter insbesondere im Niveau der effektiven Quellhöhen über einen Zeitraum von mindestens einem Jahr) gewinnen, welche im Rahmen dieser Übertragbarkeitsprüfung nicht zu erbringen war.

Diese Dokumentation ist eine Sachverständigenmeinung. Die Gültigkeit erlischt, soweit sich Ermittlungsgrundlagen bzw. Beurteilungskriterien ändern und / oder Abweichungen von den verwendeten Eingangsdaten auftreten.

A. Lo

Durch die Deutsche Meteorologische Gesellschaft als Beratender Meteorologe für das Arbeitsgebiet "Ausbreitung von Luftbeimengungen" anerkannt.

4.2 Betriebszustand und Emissionen von staub-, gas- und aerosolförmigen luftverunreinigenden Stoffen sowie Gerüchen

BE- Nr.	BE-Bezeichnung	Quelle Nummer It.	Betriebszustand (z.B.	Häufigkeit des emissions-	Zeitdauer des	А	bgas-	Emittierter Stoff im Reingas (getrennt nach einzelnen Komponenten)					Ermittlungsart der	
		Fließbild	Anfahrbetrieb, Abfahrbetrieb, Normalbetrieb bei verschiedenen Laststufen) und emissions- verursachender Vorgang	verursachenden Vorganges	emissions- verursach- enden Vorganges	Strom [Nm³ /h]	Temperat ur [°C]	Bezeichnung	Aggreg at- zustand	on nd [mg/m³] bzw. [GE/m³]		[kg/h	senstr om n] bzw. E/h] Max.	Emissionen
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2	Glasschmelzprozes s	Q1	Normalbetrieb	kontinuierlich	max. 8.760 h/a	3.500	55	NOx als NO2	gasförm ig		250		0,875	berechnet
								Selen / Selen	fest		3		0,01	berechnet
								SOx	gasförm ig		350		1,22	berechnet
								Gesamtstaub	fest		10		0,035	berechnet
								Quecksilber	fest		0,05		0,000 2	berechnet
								Blei	fest		0,8		0,003	berechnet
								Fluorwasserst off	gasförm ig		5		0,017	berechnet
								Chlorwasserst off	gasförm ig		20		0,07	berechnet
								Stoffe nach Nr. 5.2.7.1.1 Klasse I TA Luft	fest		0,5		0,002	berechnet

Antragsteller: SP Spezialglas Piesau GmbH

Aktenzeichen:

BE- Nr.	BE-Bezeichnung	Quelle Nummer It.	Betriebszustand (z.B.	Häufigkeit des emissions-	Zeitdauer des	A	bgas-	Emi (getrennt r	ttierter Sto		•		n)	Ermittlungsart der
		Fließbild	Anfahrbetrieb, Abfahrbetrieb, Normalbetrieb bei verschiedenen Laststufen) und emissions-	verursachenden Vorganges	emissions- verursach- enden Vorganges	Strom [Nm³ /h]	Temperat ur [°C]	Bezeichnung	Aggreg at- zustand	Konzentrati on [mg/m³] bzw. [GE/m³]		[kg/h	senstr om n] bzw. iE/h]	Emissionen
			verursachender Vorgang							Min.	Max.	Min.	Max.	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
								Stoffe nach Nr. 5.2.7.1.1 Klasse II TA Luft	fest		0,5		0,002	berechnet
1.7	Glasschmelzprozes s	Q2	Normalbetrieb	kontinuierlich	max. 8.760 h/a	3.500	55	NOx als NO2	gasförm ig		250		0,875	berechnet
								Selen / Selen	fest		3		0,01	berechnet
								SOx	gasförm ig		350		1,22	berechnet
								Gesamtstaub	fest		10		0,035	berechnet
								Quecksilber	fest		0,05		0,000 2	berechnet
								Blei	fest		0,8		0,003	berechnet
								Fluorwasserst off	gasförm ig		5		0,017	berechnet
								_ cc	gasförm ig		20		0,07	berechnet
								Stoffe nach Nr. 5.2.7.1.1 Klasse I TA Luft	fest		0,5		0,002	berechnet

Antragsteller: SP Spezialglas Piesau GmbH Aktenzeichen:

BE- Nr.	BE-Bezeichnung	Quelle Nummer It.	Betriebszustand (z.B.	Häufigkeit des emissions-	Zeitdauer des	A	bgas-			stoff im Reingas zelnen Kompon			n)	Ermittlungsart der
		Fließbild	Anfahrbetrieb, Abfahrbetrieb, Normalbetrieb bei verschiedenen Laststufen) und emissions- verursachender Vorgang	verursachenden Vorganges	emissions- verursach- enden Vorganges	Strom [Nm³ /h]	Temperat ur [°C]	Bezeichnung	Aggreg at- zustand	[mg bz [GE	entrati on n/m³] zw. E/m³] Max.	[kg/h	om i] bzw. E/h]	Emissionen
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
								Stoffe nach Nr. 5.2.7.1.1 Klasse II TA Luft	fest		0,5		0,002	berechnet

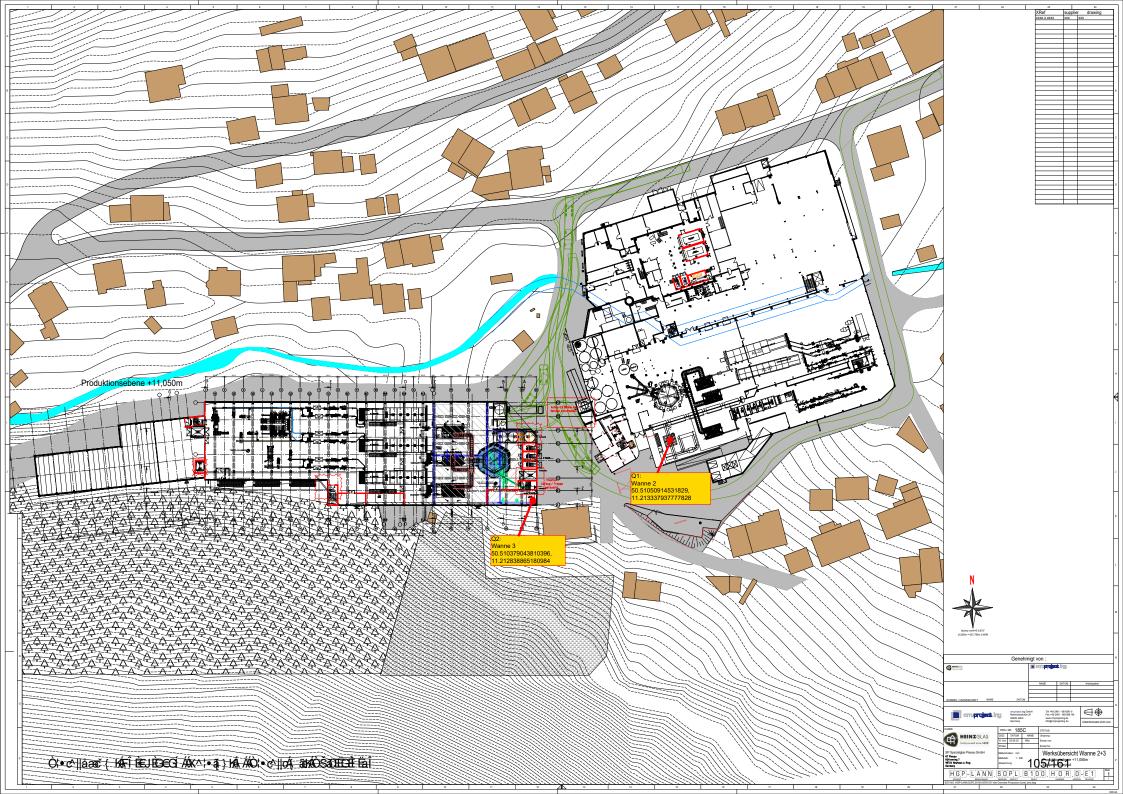
Antragsteller: SP Spezialglas Piesau GmbH

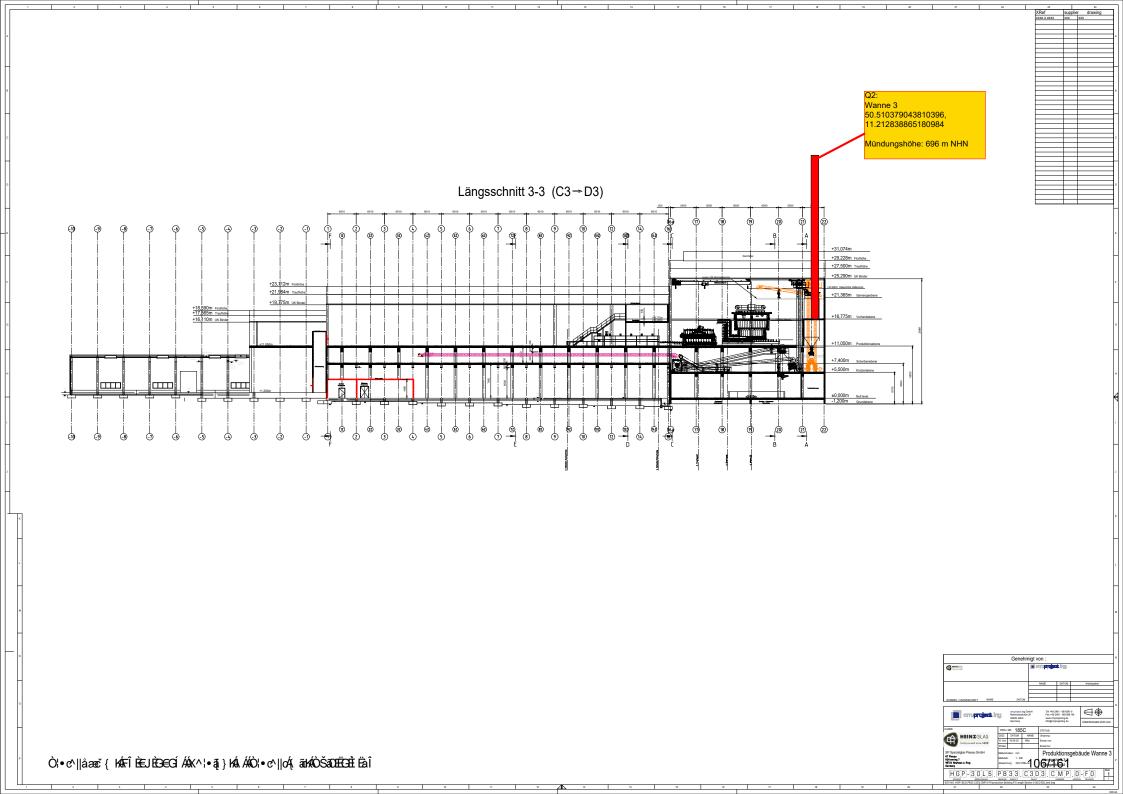
Aktenzeichen:

4.3 Quellenverzeichnis Emissionen von staub-, gas- und aerosolförmigen luftverunreinigenden Stoffen sowie Gerüchen

Quelle Nummer	Art der Quelle	Bauausführung der Quelle		Geographische Höhen [m] Lage						Bei Linien- und Flächenquellen		
lt. Fließbild			Rechts (Ost)wert	Hoch (Nord) wert	über Erd boden	E-Quelle über Gebäude	Gebäudeober kante	max. Bebauung im 50m Umkreis		Läng e [m]	Breite [m]	Winkel zu Nord
1	2	3	4	5	6	7	8	9	10	11	12	13
IC)1	Punktquelle mit vertikalem Austritt und freier Abströmung	Edelstahlkamin	32656935	5597743	50 m		25 m (benachbart. Geb.)	35 m	0,785			
IQ2	Punktquelle mit vertikalem Austritt und freier Abströmung	Edelstahlkamin	32656891	5597718	46 m	17 m	35 m (Dachaufbau)	35 m	0,126			

Antragsteller: SP Spezialglas Piesau GmbH


Aktenzeichen:


4.4 Quellenplan Emissionen von staub-, gas- und aerosolförmigen luftverunreinigenden Stoffen sowie Gerüchen

- Werksübersicht Wanne 2+3 Produktionsebene +11,05 m, Equipment Layout (Darstellung der Emissionsquellen, Zeichn.-Nr. HGP-LANN.S0PL.B100.H0R.0-E1, Maßstab 1 : 300
- Produktionsgebäude Wanne 3, Längsschnitt 3-3, Anlagenlayout, Zeichn.-Nr. HGP-30LS.PB33.C3D3. CMP.0-F0, Maßstab 1 : 200 Anlagen:
 - Emissionsquellen_Draufsicht_Rev05.pdf
 - Emissionsquellen Längsschnitt Wanne 3 Rev05.pdf

Antragsteller: SP Spezialglas Piesau GmbH

Aktenzeichen:

4.5 Betriebszustand und Schallemissionen

In der folgenden Tabelle sind unter der Berücksichtigung des Betriebsablaufs alle relevanten Schallemissionen verursachenden Vorgänge aufgeführt:

В	Betriebszustand		Einsatzzeit		Schallquelle Nummer It.	Schallleistungs-	Messverfahren oder	Schallschutz-
E	(z.B. Normalbetrieb, Teillast, Volllast) und emissions- verursachender Vorgang	Tage /Woche Tage /Monat Tage/Jahr	Std./Tag	Uhrzeit	Fließbild	pegel [dB(A)]	Literaturhinweis	maßnahmen
1	2	3	4	5	6	7	8	9
1	Normalbetrieb,	7 Tage /	siehe Schalltechn.	siehe Schalltechn.	siehe Schalltechn.	siehe Schalltechn.	siehe Schalltechn.	siehe Schalltechn.
	Volllast	Woche	Untersuchung	Untersuchung	Untersuchung	Untersuchung	Untersuchung	Untersuchung
2	Normalbetrieb,	7 Tage /	siehe Schalltechn.	siehe Schalltechn.	siehe Schalltechn.	siehe Schalltechn.	siehe Schalltechn.	siehe Schalltechn.
	Volllast	Woche	Untersuchung	Untersuchung	Untersuchung	Untersuchung	Untersuchung	Untersuchung
3	Normalbetrieb,	7 Tage /	siehe Schalltechn.	siehe Schalltechn.	siehe Schalltechn.	siehe Schalltechn.	siehe Schalltechn.	siehe Schalltechn.
	Volllast	Woche	Untersuchung	Untersuchung	Untersuchung	Untersuchung	Untersuchung	Untersuchung
4	Normalbetrieb,	7 Tage /	siehe Schalltechn.	siehe Schalltechn.	siehe Schalltechn.	siehe Schalltechn.	siehe Schalltechn.	siehe Schalltechn.
	Volllast	Woche	Untersuchung	Untersuchung	Untersuchung	Untersuchung	Untersuchung	Untersuchung
5	Normalbetrieb,	7 Tage /	siehe Schalltechn.	siehe Schalltechn.	siehe Schalltechn.	siehe Schalltechn.	siehe Schalltechn.	siehe Schalltechn.
	Volllast	Woche	Untersuchung	Untersuchung	Untersuchung	Untersuchung	Untersuchung	Untersuchung
6	Normalbetrieb,	7 Tage /	siehe Schalltechn.	siehe Schalltechn.	siehe Schalltechn.	siehe Schalltechn.	siehe Schalltechn.	siehe Schalltechn.
	Volllast	Woche	Untersuchung	Untersuchung	Untersuchung	Untersuchung	Untersuchung	Untersuchung
7	Normalbetrieb,	7 Tage /	siehe Schalltechn.	siehe Schalltechn.	siehe Schalltechn.	siehe Schalltechn.	siehe Schalltechn.	siehe Schalltechn.
	Volllast	Woche	Untersuchung	Untersuchung	Untersuchung	Untersuchung	Untersuchung	Untersuchung

Antragsteller: SP Spezialglas Piesau GmbH

Aktenzeichen:

4.6 Schallimmissionen

Anlagen:

- Textteil_Schall_13-12-2023_neu.pdf
- Schallschutzgutachten 2112876b01c.pdf

Antragsteller: SP Spezialglas Piesau GmbH

Aktenzeichen:

4.6 Schallimmissionen

Das Betriebsgelände der SP Spezialglas Piesau GmbH befindet sich in der Teilfläche MI 1 des Bebauungsplanes "Standortsicherung Glashüttengelände Piesau und Umgebung" vom Januar 2010 und ist dort als Mischgebiet (MI) ausgewiesen. Für die einzelnen Teilflächen sind im vorgenannten Bebauungsplan sowohl für den Tag- als auch den Nachtzeitraum Emissionskontingente ausgewiesen, die bei der Planung von Vorhaben zu berücksichtigen sind.

Die hier zu betrachtende Anlage zur Herstellung von Glas wird rund um die Uhr betrieben. Unterbrechungen treten nur durch Wartungen, Reparaturen oder unvorhergesehene Havarien auf. Dies ist aus technologischer Sicht auch notwendig. Das erneute Anfahren einer abgefahrenen Glasschmelzwanne mit Erstarren des Glases führt zur Zerstörung der Wanne bzw. der Einrichtungen. Die Anlieferung der Roh- und Hilfsstoffe sowie der Abtransport der Fertigware erfolgen dagegen weiterhin ausschließlich während der Tagzeit (06:00 Uhr bis 22:00 Uhr).

Zur Beurteilung der Geräuschimmissionen im Einwirkungsbereich der hier zu betrachtenden Anlage nach Umsetzung der beantragten Änderungen wurde durch die IBAS Ingenieurgesellschaft mbH eine "Schalltechnische Untersuchung zur Geräuscheinwirkung in der Nachbarschaft" erarbeitet. Als maßgebliche Immissionsorte wurden in dieser Betrachtung aufgeführt:

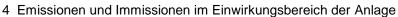
Immissionsort	Vorgabe B-Plan (Immissionskontingent in dB)		
	Tag	Nacht	
IP 1 Hüttenring 13	60	49	
IP 2 Hüttenring 36	60	49	
IP 3 Hüttenring 2	60	49	
IP 4 Hüttenring 6	60	49	
IP 5 Mittelbergstraße 8	58	47	
IP 6 Straße des Friedens 12	60	49	
IP 7 Grund 1	60	49	
IP 8 Grund 5	60	49	
IP 9 Grund 11	60	49	

Tabelle: Immissionskontingente B-Plan für das Glaswerk an den maßgeblichen Immissionsorten

Die Immissionskontingente für die Immissionsorte IP 1 bis IP 5 sind auch im aktuellen Genehmigungsbescheid Nr. 19/16 vom 13.07.2017 aufgeführt. Als relevante Geräuschemissionsquellen der Gesamtanlage einschließlich der beantragten Änderungen wurden in der Schalltechnischen Untersuchung betrachtet:

Genehmigungsantrag nach § 16 BlmSchG

- die Arbeitsgeräusche innerhalb der relevanten Gebäude/Hallen, die beim Anlagenbetrieb in den Raum eingespeist werden und durch die Bauhülle (Fassaden, Dächer und Fenster) nach außen dringen können,
- die Zu- und Abluftöffnungen, Dachlüfter sowie RWA-Anlagen in den Gebäuden/Hallen,
- die beiden Kamine einschließlich der Filteranlagen,
- die Rückkühler und Wärmepumpen,
- der Probebetrieb der Pumpen für die Löschwasserversorgung,
- der LKW-Lieferverkehr einschließlich der Rangiervorgänge (Logistikvorgänge),
- die Be-/Entladevorgänge,
- die Geräusche der Förderbrücke.
- die Geräusche der innerbetrieblichen Transportvorgänge und
- die Parkplatzgeräusche.


Der Antragsgegenstand für das hier beantragte Vorhaben sowie die zeitliche Reihenfolge bzgl. der Ausführung der einzelnen Maßnahmen wurde nach der Erarbeitung der Schalltechnischen Untersuchung noch einmal konkretisiert. Deshalb sind diese beiden Angaben in der Schalltechnischen Untersuchung nicht komplett identisch mit den Angaben im Abschnitt 1 der Antragsunterlagen, was jedoch keine Auswirkungen auf den Umfang der Betrachtungen und die Ergebnisse in der Schalltechnischen Untersuchung hat. Dies soll wie folgt begründet werden:

Die Konkretisierung des Antragsgegenstandes betrifft die Aufstellung je eines Wannenvorsilos für die neuen Wannen 2 und 3 sowie eines Gemengesilos und drei Scherbensilos für die Wanne 3 im Anbau des Logistikgebäudes. Diese Silos werden komplett innerhalb des Gebäudekomplexes aufgestellt, weshalb eine Schallausbreitung auf Grund der Schalldämmwerte des Gebäudes nach außen keine Auswirkung hat.

Weitere Konkretisierungen betreffen die Reduzierung der Lagermenge an oxidierenden Feststoffen und als akut toxisch eingestuften Stoffen und Gemischen sowie die Richtigstellung des genehmigten Flurstücks 462/13 in Flurstück 462/11. Dieser Änderungsgenstand hat keinerlei Auswirkungen auf Schallemissionen. Die Durchführung von Umbaumaßnahmen und Nutzungsänderungen am Bestandsgebäude betreffen lediglich geringfügige Umbaumaßnahmen von Sozial- und Sanitäreinrichtungen und Technikräumen innerhalb des Hüttengebäudes. Damit haben diese ebenfalls schalltechnisch keine Auswirkungen auf das Ergebnis der Schalltechnischen Untersuchung.

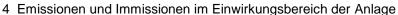
Im Ergebnis der erarbeiteten Schalltechnische Untersuchung wurde zusammenfassend dargelegt, dass auch nach Umsetzung der hier beantragten Änderungen die Immissionsrichtwerte (IRW) gemäß Bauleitplanung an den maßgeblichen Immissionsorten IP 1 bis IP 9 sicher

Genehmigungsantrag nach § 16 BlmSchG

eingehalten werden (siehe die beiden nachfolgenden tabellarischen Zusammenstellungen aus der Schalltechnische Untersuchung, Bericht-Nr. 21.12876-b01c).

Immissionsort	Prognose-Beurteilungspegel (Schmelzwanne 3) [dB(A)] Nacht	Immissionsrichtwert gemäß Bauleitplanung [dB(A)] Nacht
IP 1 Hüttenring 13	46	49
IP 2 Hüttenring 36	35	49
IP 3 Hüttenring 2	37	49
IP 4 Hüttenring 6	43	49
IP 5 Mittelbergstraße 8	42	47
IP 6 Straße des Friedens 12	45	49
IP 7 Grund 1	44	49
IP 8 Grund 5	42	49
IP 9 Grund 11	40	49

Tabelle: berechnete Beurteilungspegel Schmelzwanne 3 einschl. PKW-Stellplätze in der Nachtzeit (Mitwind-Mittelungspegel nach TA Lärm, gerundet auf 0,5 dB)


Am maßgebenden IP 1 resultiert unter Berücksichtigung des messtechnisch ermittelten Beurteilungspegels von 46 dB(A) für die Bestandsanlage ein Summenwert von 49 dB(A).

Immissionsort	Prognose-Beurteilungspegel (Logistik + Wanne 3) [dB(A)] Tag	Immissionsrichtwert gemäß Bauleitplanung [dB(A)] Tag
IP 1 Hüttenring 13	57	60
IP 2 Hüttenring 36	42	60
IP 3 Hüttenring 2	58	60
IP 4 Hüttenring 6	54	60
IP 5 Mittelbergstraße 8	49	58
IP 6 Straße des Friedens 12	43	60
IP 7 Grund 1	53	60
IP 8 Grund 5	49	60
IP 9 Grund 11	48	60

Tabelle: berechnete Beurteilungspegel der Logistikvorgänge und der stationären Anlagen Wanne 3 in der Tagzeit (Mitwind-Mittelungspegel nach TA Lärm, gerundet auf 0,5 dB)

An dem für die Tagzeit maßgebenden IP 3 resultiert mit dem geplanten Änderungsumfang (Wanne 3 + Wanne 2) folgender Summenpegel:

Genehmigungsantrag nach § 16 BlmSchG

Beurteilungspegel Logistik + Wanne 3: 58 dB(A)

Beurteilungspegel Wanne 2: < 49 dB(A)

Summe Tagzeit: < 59 dB(A)

Einzelne Pegelspitzen, die die Immissionsrichtwerte tagsüber um mehr als 30 dB(A) überschreiten, treten nicht auf.

Das in der Schalltechnischen Untersuchung beschriebene Logistikkonzept enthält sämtliche Logistikvorgänge für den Gesamtstandort nach Umsetzung des geplanten Änderungsumfangs. Der LKW-Verkehr erfolgt ausschließlich während der Tagzeit (06:00 Uhr bis 22:00 Uhr) und stellt damit die maßgebende Schallquelle zur Tagzeit dar.

Der LKW-Fahrverkehr erhöht sich gegenüber der Ist-Situation um zwei LKW-Fahrten pro Tag (je ein zusätzlicher LKW für die Anlieferung und den Abtransport). Im Gegenzug entfällt der interne Pendelverkehr vom Hüttengebäude zum Logistikgebäude, da die Fertigwaren durch Fördersysteme innerhalb des Logistikgebäudes direkt der Verpackung zugeführt werden.

Zudem wurde in der Schalltechnischen Untersuchung ausgeführt, dass die Verkehrsgeräusche auf öffentlichen Verkehrsflächen in Bezug auf die in der TA Lärm Ziffer 7.4 genannten Kriterien nicht relevant sind.

Die vorgenannte Schalltechnische Untersuchung vom 02.11.2023 liegt im Anschluss an diese Ausführungen bei.

Anhang:

 Schalltechnische Untersuchung zur Geräuscheinwirkung in der Nachbarschaft (Bericht-Nr. 21.12876-b01c) der IBAS Ingenieurgesellschaft mbH vom 02.11.2023

98724 NEUHAUS AM RENNWEG

OT Piesau, Hüttenring 7

Messung | Beratung | Planung Entwicklung

> Messstelle n. § 29b BlmSchG VMPA-Prüfstelle n. DIN 4109

IBAS Ingenieurgesellschaft mbH

Nibelungenstraße 35 95444 Bayreuth

Telefon 09 21 - 75 74 30 09 21 - 75 74 34 3

info@ibas-mbh.de www.ibas-mbh.de

Datum

Ihr Zeichen Unser Zeichen

> li/he-21.12876-b01c 02.11.2023

SP SPEZIALGLAS PIESAU GMBH, PIESAU ERSATZ DER GASBEFEUERTEN GLASSCHMELZWANNE DURCH ZWEI ELEKTRISCH BETRIEBENE GLASSCHMELZWANNEN IN VERBINDUNG MIT DER ÜBERBAUUNG DES LOGISTIKZENTRUMS

Schalltechnische Untersuchungen zur Geräuscheinwirkung in der Nachbarschaft

Bericht-Nr.: 21.12876-b01c

SP Spezialglas Piesau GmbH Auftraggeber:

OT Piesau, Hüttenring 7

98724 NEUHAUS AM RENNWEG

Ch. Limmer Bearbeitet von:

M. Hofmann

Berichtsumfang: Gesamt 35 Seiten, davon

> Textteil 26 Seiten Anlagen 9 Seiten

Geschäftsführer

HypoVereinsbank Bayreuth

Sparkasse Bayreuth

BIC BYLADEM1SBT

Amtsgericht Bayreuth 113/161 HRB 1743

IBAN DE26 7735 0110 0009 0984 01

USt-IDNr.: DE132360122

Inhaltsübersicht

Seite

1.	Situation und Aufgabenstellung		3	
2.	Gru	ndlagen	4	
	2.1	Unterlagen und Angaben	4	
	2.2	Literatur	5	
3.	Sch	alltechnische Anforderungen	6	
	3.1	Bebauungsplan	6	
	3.2	Immissionsmessungen	8	
4.	Bau	ausführung und maßgebende Schallquellen	9	
	4.1	Bauausführung	9	
	4.2	Schalldruckpegel in Betriebsräumen	11	
	4.3	Lüftungsöffnungen	11	
	4.4	Kamin	13	
	4.5	Rückkühler und Wärmepumpen	13	
	4.6	Probebetrieb Pumpen	13	
	4.7	Logistik	14	
5.	Bere	echnung der Schallemissionen	21	
	5.1	Berechnungsverfahren	21	
	5.2	Berechnungsergebnisse und Beurteilung	22	
6.	Spit	zenpegel	24	
7.	Qua	lität der Prognose	25	
R	7 118:	ammenfassung	26	

1. Situation und Aufgabenstellung

Die Firma SP Spezialglas Piesau GmbH plant für das Glaswerk am Standort Piesau eine wesentlichen Änderung nach § 16 BlmSchG. Vorgesehen ist dabei der Ersatz der gasbefeuerten Glasschmelzwanne durch zwei elektrisch betriebene Glasschmelzwannen in Verbindung mit der Überbauung des Logistikzentrums.

Der Änderungsgegenstand umfasst im Einzelnen:

- Ersatz der gasbefeuerten Glasschmelzwanne mit 135 t/d Schmelzleistung durch zwei elektrisch betriebene Glasschmelzwannen (Wannen 2 und 3) mit je 70 t/d Schmelzleistung;
- Überholung der Verarbeitungslinien 21 bis 24 und 26 mit den zugehörigen Kühlbahnen und Neuzuordnung zu den beiden Glasschmelzwannen;
- Ersatz der Verarbeitungslinie 25 durch eine größere Verarbeitungslinie (Aufstellung und Betrieb einer IS10-Maschine) mit zugehöriger Kühlbahn;
- Überbauung des Logistikzentrums;
- Aufstellung der Wanne 3 mit den zugehörigen Verarbeitungslinien (neue Bezeichnung: Verarbeitungslinien 31, 32 und 33) und zugehörigen Kühlbahnen im Bereich des Logistikzentrums;
- Stilllegung der gasbefeuerten Glasschmelzwanne und Aufstellung der neuen Wanne 2 im Bestandsgebäude und Betrieb dieser Wanne mit den bestehenden Verarbeitungslinien 21, 24 und 26 einschließlich der zugehörigen Kühlbahnen;
- Reinigung der Abluft der beiden neuen Glasschmelzwannen in jeweils einer Tuchfilterentstaubungsanlage und Ableitung über den bestehenden bzw. einen neu zu errichtenden Edelstahlkamin;
- Errichtung einer Förderbrücke vom Gemengehaus zum Logistikzentrum.

Es ist vorgesehen, zunächst das Logistikzentrum zu überbauen und die elektrisch betriebene Glasschmelzwanne 3 zu errichten. Im Zuge der Inbetriebnahme der Wanne 3 wird die bestehende gasbefeuerte Wanne stillgelegt, abgebrochen und durch eine elektrisch betriebene Wanne (Wanne 2) ersetzt.

Um möglichen Konflikten von der Lärmentwicklung her vorzubeugen und den entsprechenden gesetzlichen Anforderungen zu genügen, wird die Erstellung eines schalltechnischen Gutachtens für notwendig erachtet. Dabei ist hinsichtlich der schalltechnischen Anforderungen auf den Bebauungsplan "Standortsicherung Glashüttengelände Piesau und Umgebung" der Gemeinde Piesau, vom 17.07.2010, abzustellen.

Die IBAS Ingenieurgesellschaft mbH wurde mit der Durchführung der schalltechnischen Untersuchungen beauftragt.

2. <u>Grundlagen</u>

2.1 Unterlagen und Angaben

Folgende Unterlagen wurden den Untersuchungen zu Grunde gelegt.

- 2.1.1 Bebauungsplan "Standortsicherung Glashüttengelände Piesau und Umgebung" der Gemeinde Piesau, vom 17.07.2010;
- 2.1.2 IBAS-Bericht Nr. 08.4365-3b, "Bebauungsplan "Standortsicherung Glashüttengelände Piesau und Umgebung" Fachgutachten Geräuschverhältnisse Schalltechnische Untersuchungen und Bewertungen im Rahmen der Aufstellung des Bebauungsplanes", vom 20.07.2009;
- 2.1.3 IBAS-Bericht Nr. 08.4365-b01, "Glaswerk der Firma Heinz Glas GmbH & Co. KG in Piesau, Schalltechnische Untersuchungen zur Überprüfung der schalltechnischen Vorgaben des Genehmigungsbescheides im Zusammenhang mit dem Lieferverkehr", vom 26.11.2008;
- 2.1.4 Geräuschmessung nach Genehmigungsbescheid der Firma SP Spezialglas Piesau GmbH, Messbericht 8121/021/18 der TÜV Thüringen Anlagentechnik GmbH & Co. KG, vom 15.06.2018, SP Spezialglas Piesau GmbH, E-Mail vom 27.10.2021;

- 2.1.6 Logistikkonzept Standort Piesau, cm.project.ing Gmbh, E-Mail vom 15.11.2022;
- 2.1.7 Liste relevanter Schallquellen, cm.project.ing Gmbh, E-Mail vom 17.11.2022;
- 2.1.8 Produktionsgebäude Wanne 3, Entwurfsplanung und Lage der Schallquellen, Stand 11.11.2022, cm.project.ing Gmbh, E-Mail vom 17.11.2022;
- 2.1.9 Ergänzende Angaben zu Betriebszeiten und Kaminhöhen, cm.project.ing Gmbh, E-Mail vom 19.12.2022.

2.2 Literatur

Folgende Normen, Richtlinien und weiterführende Literatur wurden für die Bearbeitung herangezogen.

- 2.2.1 Sechste AVwV vom 26.08.1998 zum Bundes-Immissionsschutzgesetz (Technische Anleitung zum Schutz gegen Lärm - TA Lärm, GMBl. Nr. 26), zuletzt geändert am 01.06.2017 (BAnz AT 08.06.2017 B5);
- 2.2.2 DIN ISO 9613-2, Dämpfung des Schalls bei der Ausbreitung im Freien Teil 2: Allgemeines Berechnungsverfahren, Oktober 1999;
- 2.2.3 DIN 45691, Geräuschkontingentierung, Dezember 2006;
- 2.2.4 DIN EN ISO 12354-4, Berechnung der akustischen Eigenschaften von Gebäuden aus den Bauteileigenschaften – Teil 4: Schallübertragung von Räumen ins Freie, November 2017;
- 2.2.5 DIN 45641, Mittelung von Schallpegeln, Juni 1990;
- 2.2.6 VDI-Richtlinie 3739, Emissionskennwerte technischer Schallquellen Transformatoren, Februar 1999;

- 2.2.7 Parkplatzlärmstudie, Empfehlungen zur Berechnung von Schallemissionen aus Parkplätzen, Autohöfen und Omnibusbahnhöfen sowie von Parkhäusern und Tiefgaragen, 6. überarbeitete Auflage, Bayerisches Landesamt für Umwelt, August 2007;
- 2.2.8 Technischer Bericht zur Untersuchung der Lkw- und Ladegeräusche auf Betriebsgeländen von Frachtzentren, Auslieferungslagern und Speditionen, Hessische Landesanstalt für Umwelt, vom 16.05.1995, aktualisiert mit dem Heft 3, Umwelt und Geologie, Lärmschutz in Hessen, Hessisches Landesamt für Umwelt und Geologie, aus dem Jahr 2005;
- 2.2.9 Leitfaden zur Prognose von Geräuschen bei der Be- und Entladung von Lkw, Landesumweltamt Nordrhein-Westfalen, August 2000;
- 2.2.10 Ströhle, M.: Untersuchung der Geräuschemissionen von dieselgetriebenen Staplern im praktischen Betrieb, FH Stuttgart, Januar 2000.

3. Schalltechnische Anforderungen

3.1 Bebauungsplan

Das Glaswerk liegt in der Teilfläche MI 1 des Bebauungsplanes "Standortsicherung Glashüttengelände Piesau und Umgebung" /2.1.1/, vom 17.07.2010. Dieser setzt für das Hüttengelände und die angrenzenden Bereiche im Ortskern von Piesau ein Mischgebiet fest.

Die schalltechnischen Anforderungen zum Immissionsschutz resultieren aus den Festsetzungen des Bebauungsplanes. Danach wurden im Zuge einer Emissionskontingentierung nach DIN 45691 /2.2.3/ für die Teilflächen MI 1a bis MI 1e folgende Emissionskontingente festgesetzt:

Tabelle 1: Emissionskontingente MI 1 nach DIN 45691 gemäß B-Plan

Teilfläche	Emissionskontingent L _{EK} in dB nach DIN 45691		
	tags	nachts	
MI 1a	66	55	
MI 1b	61	50	
MI 1c	64	53	
MI 1d	61	50	
MI 1e	67	56	

Mit den vorgenannten Emissionskontingenten ergeben sich nachfolgend aufgeführte Immissionskontingente L_{IK} an den maßgebenden Aufpunkten (vgl. /2.1.2/).

Tabelle 2: Immissionskontingente B-Plan für das Glaswerk an den maßgeblichen Immissionsorten

Immissionsort	Vorgabe B-Plan (Immissionskontingent in dB)	
	Tag	Nacht
IP 1, Hüttenring 13	60	49
IP 2, Hüttenring 36	60	49
IP 3, Hüttenring 2	60	49
IP 4, Hüttenring 6	60	49
IP 5, Mittelbergstr. 8	58	47
IP 6, Straße des Friedens 12	60	49
IP 7, Grund 1	60	49
IP 8, Grund 5	60	49
IP 9, Grund 11	60	49

Die Immissionskontingente für die Aufpunkte IP 1 bis IP 5 sind auch im aktuellen Genehmigungsbescheid genannt (vgl. /2.1.4/).

3.2 Immissionsmessungen

Am 04.06. und 05.06.2018 erfolgten durch den TÜV Thüringen schalltechnische Abnahmemessungen zum Nachweis der Einhaltung der Vorgaben aus dem Genehmigungsbescheid. Die Ergebnisse der Immissionsmessungen sind in /2.1.4/ wie folgt zusammengefasst:

" ...

Tabelle 4 Vergleich des Beurteilungspegels L_{r,Nacht} mit dem Immissionsanteil IA_{Nacht}

Immissionsort	L _{r,Nacht} [dB(A)]	IA _{Nacht} [dB(A)]	Vorgabewerte eingehalten?
IO 1 Wohnhaus "Hüttenring 13"	46	49	ja
IO 2 Wohnhaus "Hüttenring 36"	45	49	ja
IO 3 Wohnhaus "Hüttenring 2"	41	49	ja
IO 4 Wohnhaus "Hüttenring 6"	40	49	ja
IO 5 Wohnhaus "Mittelbergstraße 8"	37	47	ja

Gemäß dem Ergebnis in Tabelle 4 werden die zulässigen Immissionsanteile in der Nacht an allen Immissionsorten eingehalten.

..."

Wie die Ergebnisse der Abnahmemessungen zeigen, werden in der maßgebenden Nachtzeit Beurteilungspegel erreicht, die die zulässigen Immissionswerte um mindestens 3 dB unterschreiten. Für das geplante Änderungsvorhaben steht somit ein ausreichendes Immissionskontingent zur Verfügung.

4. <u>Bauausführung und maßgebende Schallquellen</u>

4.1 Bauausführung

Das 36 m hohe Produktionsgebäude für die Wanne 3 wird unmittelbar östlich angrenzend an das Logistikzentrum errichtet. Die Fertigungslinien werden in weiteren neuen Gebäudeteilen westlich der Wanne 3 angeordnet, hierzu wird das Logistikzentrum teilweise überbaut.

Der Neubau des Wannengebäudes wird bis zu einer Höhe von 11 m aus Stahlbetonwänden und in den darüberliegenden Geschossen als Stahlbetonskelett-konstruktionen mit Außenwänden aus doppelschaligen wärmegedämmten Kassettenwänden ausgeführt. Alle Gebäude erhalten Flachdächer.

4.1.1 Fassaden

Die Außenwände des Wannengebäudes werden bis zu einer Höhe von 11 m als Stahlbeton-Wände \geq 15 cm ausgeführt und erreichen ein bewertetes Schalldämm-Maß von $\mathbf{R'_w} \geq$ 51 dB, was schalltechnisch ausreichend ist.

Alle weiteren Fassaden werden als doppelschalige wärmegedämmte Kassettenwand ausgeführt, die folgenden Aufbau aufweist:

- 1 mm Stahlblechkassetten ≥ 100 mm tief

- 100 mm Mineralfaserdämmung als Wärme- /Schalldämmung

- 1 mm Stahltrapezblech

Diese Konstruktion besitzt ein bewertetes Schalldämm-Maß von $R'_w \ge 42 dB$ und erfüllt die schalltechnischen Anforderungen.

4.1.2 Dach

Folgender Dachaufbau ist vorgesehen:

- 10 mm Bitumendichtungsbahnen (dreilagig)
- 100 mm Mineralfaserplatten in trittfester Ausführung,
- PE-Kunststofffolie als Dampfsperre
- 0,88 mm Stahl-Trapezprofil

Hier kann von einem bewerteten Schalldämm-Maß von $R'_w = 42 \text{ dB}$ ausgegangen werden, welches die schalltechnischen Anforderungen erfüllt.

4.1.3 Fenster

Für die Werkstatträume sind Fenster aus zweischaliger Isolierverglasung vorgesehen. Hier wird ein Schalldämm-Maß von $R_w = 29 \text{ dB}$ in Ansatz gebracht.

4.1.4 Rauch- und Wärmeabzugseinrichtungen

In den Fassaden und Dachflächen sind verschiedene Rauch- und Wärmeabzugsklappen erforderlich. Diese werden mit der in /2.1.8/ dargestellten Lage und Größe und einem bewerteten Schalldämm-Maß von $\mathbf{R}_{\mathbf{w}} = \mathbf{18} \ \mathbf{dB}$ angesetzt.

4.2 Schalldruckpegel in Betriebsräumen

Auf Grundlage von Messungen in den Produktionsräumen des bestehenden Glaswerkes /2.1.3/ und der Angaben in /2.1.7/ werden für die Ausbreitungsberechnungen folgende mittlere Raumpegel in den Betriebsräumen in Ansatz gebracht:

-	Wanne 3 / Heißende:	$L_p = r$	102 dB(A),
-	Kaltende	$L_p =$	83 dB(A),
-	Kratzerebene	$L_p =$	85 dB(A),
-	Scherbenebene	$L_p =$	80 dB(A),
-	Kompressorraum	$L_p =$	92 dB(A),
-	Kühlluft /Vakuumpumpenraum	$L_p =$	92 dB(A),
-	Werkstatt	$L_p =$	75 dB(A),
-	Logistiklager	L _p =	75 dB(A).

Die vorstehenden Werte liegen auf der schalltechnisch sicheren Seite.

4.3 Lüftungsöffnungen

Die Abluft aus den Produktionsräumen wird über Lüftungsöffnungen im Dach abgeführt. Die Zuluft strömt über Nachstromöffnungen in der Fassade nach. Die Lüftungsanlagen sind noch nicht im Detail spezifiziert. Um die schalltechnischen Anforderungen einhalten zu können, ist durch den Einbau von Schalldämpfern sicherzustellen, dass folgende Schallleistungspegel der Lüftungsöffnungen nicht überschritten werden:

Tabelle 3: Schallleistungspegel der Zu- und Abluftöffnungen

Schallquelle	Schallleistungspegel L _{WA} [dB(A)]
Lüftungsöffnungen Nord HE E+0	82
Zuluft NS-Trafos, Ostfass. E+1,8	78
Lüftungsöffnung Ost HE E+5,3	81
Lüftungsöffnungen Süd HE E+5,3	82
Lüftungsöffnungen Süd, Kompr. E+7,4	79
Lüftungsöffnungen Süd, Gebläse E+7,4	80
Abluft Vakuumpumpen, Südfass. E+7,4	80
Lüftungsöffnungen_1 Südfass. CE E+11	74
Lüftungsöffnungen_2 Südfass. CE E+11	74
Lüftungsöffnungen Südfass. HE E+11	78
Zuluft Boosting Trafos, Ostfass. E+11	77
Dachlüfter_1, Wanne	84
Dachlüfter_2, Wanne	84
Dachlüfter_1, IS-Maschine	86
Dachlüfter_2, IS-Maschine	86
Dachlüfter_3, IS-Maschine	86
RLT Kaltende Südfassade	80
RLT Sozialräume Südfassade	80

Aus Platzgründen werden die Schalldämpfer z. T. außen vor der Fassade montiert. Um eine unzulässige Schallabstrahlung über die Schalldämpfergehäuse zu vermeiden, sind diese mit einem geeigneten Aufbau zu dämmen. Die Detailauslegung dazu erfolgt im Zuge der Ausführungsplanung.

4.4 Kamin

Die Abluft der Glasschmelzwanne 3 wird mittels einer Tuchfilterentstaubungsanlage (im Gebäude) gereinigt und über einen mindestens 40 m hohen Kamin abgeleitet. Aus schalltechnischer Sicht kann an der Kaminmündung ein Schallleistungspegel von 80 dB(A) zugelassen werden. der bei der Ausleauna Lw_A = Schallschutzmaßnahmen für die Komponenten im Abgassystem zugrunde zu legen ist.

4.5 Rückkühler und Wärmepumpen

An der Südfassade des Logistikzentrums werden Rückkühler und Wärmepumpen aufgestellt. Im Rahmen der schalltechnischen Gesamtplanung können für diese Aggregate unter Berücksichtigung der gut abgeschirmten Aufstellpositionen folgende Schallleistungspegel zugelassen werden, um die schalltechnischen Anforderungen einhalten zu können:

- Rückkühler Wannenkühlung: $L_{WA} = 98 \text{ dB(A)},$ - Rückkühler Scherbenwasserkühlung: $L_{WA} = 98 dB(A)$ Rückkühler TGA: $L_{WA} = 98 dB(A),$

- Wärmepumpen TGA: $L_{WA} = 85 \text{ dB(A)}.$

Die genannten Emissionswerte sind jeweils Summenwerte aller Aggregate und gelten in der Nachtzeit. Für den Betrieb in der Tagzeit sind für die Rückkühler jeweils 5 dB höhere Werte zulässig. Im Rahmen der Detailplanung ist sicherzustellen, dass die vorgenannten Emissionswerte eingehalten werden.

4.6 **Probebetrieb Pumpen**

die Löschwasserversorgung werden elektrische Pumpen installiert, wöchentlich für 15 Minuten im Probebetrieb laufen. Für die Zuluftöffnung in der Südfassade wird ein Schallleistungspegel von $L_{WA} = 100 \text{ dB(A)}$ und eine Einwirkzeit von 15 Minuten während der Tagzeit angesetzt.

4.7 Logistik

4.7.1 Vorbemerkung

Das vorliegende Logistikkonzept /2.1.6/ enthält sämtliche Logistikvorgänge für den Gesamtstandort nach Umsetzung des geplanten Änderungsumfangs (Wanne 2 und Wanne 3). Der Lkw-Verkehr erfolgt ausschließlich zur Tagzeit (06.00 Uhr bis 22.00 Uhr) und stellt damit die maßgebende Schallquelle zur Tagzeit dar.

Den schalltechnischen Berechnungen liegt zugrunde, dass täglich die Anlieferung mit 11 Lkw und der Abtransport mit 14 Lkw erfolgen wird. In Summe werden zukünftig 25 Lkw an- und abfahren. Gegenüber der Ist-Situation bedeutet dies eine Zunahme um insgesamt 2 Lkw täglich (je ein zusätzlicher Lkw bei der Anlieferung und beim Abtransport).

Der interne Pendelverkehr vom bestehenden Hüttengebäude zum Logistikzentrum ist zukünftig nicht mehr erforderlich. Dadurch entfallen täglich 6 interne Fahrten.

Hinsichtlich der Berücksichtigung von Verkehrsgeräuschen auf öffentlichen Verkehrsflächen ist festzustellen, dass die Verkehrsgeräusche in Bezug auf die in der TA Lärm Ziffer 7.4 genannten Kriterien nicht relevant sind. Die Anzahl der An- und Abfahrten steigt von derzeit 2,9 Lkw/h auf zukünftig 3,1 Lkw/h an. Aufgrund der auch weiterhin niedrigen Frequentierung sind entsprechend den Kriterien der Ziffer 7.4 der TA Lärm auch zukünftig keine organisatorischen Maßnahmen zur Verminderung der Verkehrsgeräusche erforderlich.

4.7.2 Beschreibung Logistikumfänge

Derzeit werden die Fertigwaren zunächst mittels Lkw im Pendelverkehr zum benachbarten Logistikzentrum gebracht. Dort werden die Produkte sortiert, für den Abtransport konfektioniert und mit einem Elektrohubwagen auf Lkw verladen.

Zukünftig entfällt der interne Pendelverkehr, da die Fertigwaren der Wanne 3 durch Fördersysteme im Gebäude direkt auf die Ebene 0 ins Logistikzentrum verbracht werden. Die Verladung erfolgt wie bisher an den bestehenden Rampen des Logistikzentrums. Im Bestandsgebäude der zukünftigen Wanne 2 wird ein Logistikbereich neu eingerichtet. Der Abtransport erfolgt hier über die bestehenden Rampen an der Südseite.

Die für die Glasherstellung benötigten Rohstoffe werden mittels Lkw angeliefert. Die Entladung der Lkw findet überwiegend im Bereich des bestehenden Gemengehauses statt. Die Anlieferung umfasst folgende Vorgänge:

- Sand: bis zu 5 Lkw täglich (Muldenkipper);

- Soda, Feldspat, Dolomit etc.: bis zu 5-mal täglich (Silo Lkw);

- Scherben: maximal 1 Lkw täglich (Muldenkipper).

Der Transport der Fertigwaren erfolgt in folgendem Umfang:

- Abtransport Rampe Süd Bestand Montag bis Freitag 7 Lkw, je 24 Paletten;

- Abtransport vom Logistikzentrum: Montag bis Freitag 7 Lkw, je 24 Paletten.

Die Anlieferung von Hilfsstoffen (Verpackungsmaterial/Paletten etc.) geschieht mit je 1 Lkw täglich an der Rampe Nord des bestehenden Hüttengebäudes sowie an der Rampe West des Logistikzentrums. Die Lkw werden mit Elektrohubwagen und (Elektro-)Gabelstaplern entladen.

Sämtliche Lkw-Bewegungen finden ausschließlich während der Tagzeit (06:00 Uhr bis 22:00 Uhr) statt.

Für den innerbetrieblichen Transport kommen Gabelstapler zum Einsatz. Die tägliche Betriebszeit im Freien wird wie bisher /2.1.3/ mit 90 Minuten in Ansatz gebracht.

4.7.3 Be- und Entladegeräusche

Bei der Schallausbreitungsberechnung werden die anhand der Emissionsmessungen ermittelten Schallleistungspegel für die Be- und Entladung von Lkw /2.1.3/ herangezogen. Auf der sicheren Seite liegend wird davon ausgegangen, dass alle in der Betriebsbeschreibung genannten Vorgänge jeweils mit der maximalen Anzahl von Lkw an einem Tag stattfinden. Es wird also ein "worst-case" Szenario betrachtet.

-	Abkippen Muldenkipper (Sand)	L _{WAFTeq,1h}	=	87,5	dB(A)
-	Abkippen Scherben	LWAFTeq,1h	=	102	dB(A)
-	Entladung Silo-Lkw	L _{WAFTeq,1h}	=	95	dB(A)
-	Hubwagen (Überfahrt Innenrampe)	L _{WAFTeq,1h}	=	80	dB(A)

4.7.4 Förderbrücke

Das Gemengehaus wird über eine Förderbrücke an das Logistikzentrum angebunden. Im Rahmen der schalltechnischen Gesamtplanung wird ein längenbezogener Schallleistungspegel von

$$L_{WA}' = 68 dB(A)/m$$

in Ansatz gebracht. Im Zuge der Detailplanung ist sicherzustellen, dass der o.g. Emissionswert eingehalten wird.

4.7.5 Lkw-Fahrgeräusche

Für den Fahrweg der Lkw wird eine Linienschallquelle berücksichtigt. Auf derartigen Ab- bzw. Zufahrten, mit typischer Geschwindigkeit von v ≤ 30 km/h, ist nach /2.2.8/ ein mittlerer längenbezogener Schallleistungspegel bezogen auf einen Lkw pro Stunde von

$$L_{WA}' = 63 dB(A)/m$$

zu berücksichtigen.

4.7.6 Lkw-Standgeräusche

Neben den reinen Fahrgeräuschen wird für die Geräusche der Lkw bei Parkbewegungen gemäß der aktuellen Parkplatzlärmstudie /2.2.7/ (und des dort aufgeführten Ausgangsschallleistungspegels und der Zuschläge $K_{PA} = 14$ dB und $K_{I} = 3$ dB) bezogen auf eine Stunde ein Schallleistungspegel (für Ankommen/Abfahren) von

$$L_{WA} = 83 dB(A)$$

berücksichtigt. Dieser Wert beinhaltet alle Geräuschemissionen, die ein Lkw beim Abbremsen, Anlassen, Anfahren usw. verursacht.

4.7.7 Lkw-Rangiergeräusche

Entsprechend /2.2.8/ ist für das Rangieren von Lkw (auf Betriebsgeländen) ein mittlerer Schallleistungspegel anzusetzen, der ca. 3 ... 5 dB über dem Pegel des Leerlaufgeräusches von 94 dB(A) liegt. Für einen Rangiervorgang mit einer Einwirkzeit von ca. 2 Minuten ergibt sich somit je Lkw ein auf die Stunde bezogener Schallleistungspegel von

$$L_{WA} = 84 \text{ dB(A)}.$$

Dieser Schallleistungspegel wird als Flächenschallquelle jeweils im Rangierbereich der Verladerampe modelliert.

4.7.8 Gabelstapler

Für den Betrieb des Gabelstaplers im Freien wird gemäß /2.2.10/ unter Berücksichtigung einer Hubkraft von ≤ 6 t ein Schallleistungspegel von

$$L_{WA} = 100 dB(A)$$

mit einer Betriebsdauer von 90 Minuten während der Tagzeit angesetzt.

4.7.9 Pkw Stellplätze

Im östlichen Bereich des Werksgeländes stehen wie bisher 140 Stellplätze auf dem Mitarbeiterparkplatz zur Verfügung. Die Besucherstellplätze vor dem Logistikzentrum werden im Zuge der Baumaßnahmen nach Süden verschoben. Dort werden 6 Stellplätze errichtet.

Die Berechnungen der Parkplatzemissionen erfolgen nach der vom Bayerischen Landesamt für Umwelt erstellten Parkplatzlärmstudie /2.2.7/. Es wird das so genannte "zusammengefasste Verfahren" gemäß Ziffer 8.2.1 angewandt. Bei diesem Verfahren werden die Schallemissionen des eigentlichen Parkvorgangs sowie die Emissionen des Such- und Durchfahrverkehrs gemeinsam ermittelt.

Für die Parkplatzfläche ist nach dem "zusammengefassten Verfahren" folgender Schallleistungspegel anzusetzen:

$$L_W = L_{W0} + K_{PA} + K_I + K_D + K_{StrO} + 10 lg (B \cdot N)$$

Hierbei bedeutet:

Lw = Schallleistungspegel;

Lwo = Ausgangsschallleistungspegel für eine Bewegung pro Stunde (63 dB(A));

K_{PA} = Zuschlag für Parkplatzart;

K_I = Zuschlag für Impulshaltigkeit;

K_D = Zuschlag für Such- und Durchfahrverkehr;

K_{StrO} = Zuschlag für Fahrgassen-Oberfläche;

B = Bezugsgröße, die den Parkplatz charakterisiert(z. B. Anzahl der Stellplätze);

N = Bewegungshäufigkeit (Bewegungen je Bezugsgröße und Stunde).

Tabelle 4: Schallleistungspegel der Parkplatzflächen

	Parkplatznutzung			
Kenngrößen	Mitarbeite	rparkplatz	Besuche	parkplatz
	Tag	Nacht	Tag	Nacht
Anzahl Stellplätze B	14	40	(6
Bewegungshäufigkeit N	0,20	0,414	0,25	0
Zuschlag K _{PA} [dB]	0	0	0	-
Zuschlag K _I [dB]	4	4	4	-
Zuschlag K _□ [dB]	5,3	5,3	0	-
Zuschlag K _{StrO} ¹⁾ [dB]	0	0	0	-
Schallleistungspegel L _{WA} [dB(A)] (gerundet auf 0,5 dB(A))	87	90	69	-

¹⁾ Asphalt: $K_{StrO} = 0$

Die o.g. Frequentierungen resultieren aus dem Logistikkonzept /2.1.6/. Dies enthält folgende Angaben:

Im 3 Schicht Betrieb sind 58 Personen pro Schicht beschäftigt. Somit ist mit folgenden Fahrbewegungen in der <u>Nachtzeit</u> zu rechnen:

lauteste Nachtstunde 22.00 Uhr bis 23.00 Uhr:

Abfahrt von 58 Pkw,

bzw.

lauteste Nachtstunde 5.00 Uhr bis 6.00 Uhr:

Ankunft von 58 Pkw.

Unter Berücksichtigung der Beschäftigten in der Tagschicht und im Büro sind für die <u>Tagzeit</u> folgende Bewegungen anzusetzen:

58 Parkbewegungen Abfahrt der Nachtschicht

58 Parkbewegungen Ankunft der Spätschicht

58 Parkbewegungen Abfahrt der Frühschicht

58 Parkbewegungen Ankunft der Nachtschicht

96 Parkbewegungen Ankunft der Tagschicht

96 Parkbewegungen Abfahrt der Tagschicht

12 Parkbewegungen Ankunft Büro/Verwaltung

12 Parkbewegungen Abfahrt Büro/Verwaltung

Insgesamt: 448 Parkbewegungen.

Die an- und abfahrenden Pkw auf dem Firmengrundstück werden mit einer Linienschallquelle von

$$L_{WA}' = 48 dB(A)/m,$$

bezogen auf einen Pkw/h, erfasst.

Dieser Wert ergibt sich unter Berücksichtigung einer Geschwindigkeit von v ≤ 30 km/h.

5. <u>Berechnung der Schallemissionen</u>

5.1 Berechnungsverfahren

Die Berechnung des Schalldruckpegels an den Immissionsorten und die Beurteilung erfolgen nach der TA Lärm /2.2.1/ in Verbindung mit der DIN ISO 9613-2 /2.2.2/. IBAS verwendet für Schallausbreitungsberechnungen das anerkannte und qualitätsgesicherte Programm CadnaA¹.

Es werden alle für die Berechnungen relevanten Gegebenheiten (Lage und Form der Schallquellen, Linien- bzw. horizontale Flächenschallquellen, Immissionsorte, reflektierende/abschirmende Gebäudefassaden, usw.) in den Rechner eingegeben. Insgesamt wird somit ein Modell der zu betrachtenden Wirklichkeit dargestellt. Die den Berechnungen zu Grunde gelegte Berechnungskonfiguration kann den Anlagen im Anhang entnommen werden.

In der DIN ISO 9613-2 wird ein auf alle Schallquellen anwendbares, einheitliches Verfahren für die Berechnung der Schallausbreitung, auch über größere Entfernungen, angegeben. Im vorliegenden Fall wird auf der sicheren Seite liegend der Wert für die meteorologische Korrektur $C_{met} = 0$ dB gesetzt.

Der entsprechende Übersichtsplan mit den Immissionsorten und allen in Ansatz gebrachten Schallquellen befindet sich als Anlage 1 im Anhang. Die Konfigurations-Ausdrucke zu den durchgeführten Ausbreitungsberechnungen sind in den Anlagen im Anhang beigefügt. Hier können die Immissionsanteile einzelner Schallquellen sowie die Basisdaten, wie Schallleistungspegel, Einwirkzeiten, usw., entnommen werden.

Òi• ơ ا|aْæe ¡ Kárî ÈEJÈSEÁSÁKINGERIP KÁGÁKÈRIP SO NA NGERIP KÁGÁKÈRIP SO NA NGERIP KÁGÁKÈRIP SO NA NGERIP KÁGÁKÈRIP SO NA NGERIP KÁGÁKÈRIP SO NGERIP SO N

Version CadnaA 2023 MR 2 (64 Bit); qualitätsgesichert nach DIN 45687:2006-05 (D); Akustik – Software – Erzeugnisse zur Berechnung der Geräuschimmissionen im Freien – Qualitätsanforderungen und Prüfbestimmungen;

5.2 Berechnungsergebnisse und Beurteilung

Mit den vorher angeführten Ausgangsdaten berechnen sich an den relevanten Immissionsorten in der <u>Nachtzeit</u> folgende Beurteilungspegel für die neu hinzukommenden Schallquellen (Wanne 3).

Tabelle 5: berechnete Beurteilungspegel Schmelzwanne 3 einschließlich Pkw-Stellplätze in der Nachtzeit (Mitwind-Mittelungspegel nach TA Lärm, gerundet auf 0,5 dB)

Immissionsort	Prognose-Beurteilungspegel (Schmelzwanne 3) [dB(A)]	Immissionsrichtwert gemäß Bauleitplanung [dB(A)]
	Nacht	Nacht
IP 1, Hüttenring 13	46	49
IP 2, Hüttenring 36	35	49
IP 3, Hüttenring 2	37	49
IP 4, Hüttenring 6	43	49
IP 5, Mittelbergstr. 8	42	47
IP 6, Straße des Friedens 12	45	49
IP 7, Grund 1	44	49
IP 8, Grund 5	42	49
IP 9, Grund 11	40	49

An allen Aufpunkten werden in der Nachtzeit Beurteilungspegel erreicht, die um mindestens 3 dB unter den zulässigen Immissionswerten aus der Bauleitplanung liegen. Zusammen mit den Beurteilungspegeln des Bestandswerkes (vgl. Kapitel 3.2) resultieren Summenpegel (Wanne 3 + Bestand), die die Vorgaben der Bauleitplanung einhalten bzw. unterschreiten. So resultiert am maßgebenden IP 1 unter Berücksichtigung des messtechnisch ermittelten Beurteilungspegels von 46 dB(A) für die Bestandsanlagen ein Summenwert von 49 dB(A).

Mit der Inbetriebnahme der Wanne 3 wird die bestehende gasbefeuerte Wanne stillgelegt und durch eine Elektro-Wanne (Wanne 2) ersetzt. Das durch die Stilllegung der bestehenden Wanne freiwerdende Lärmkontingent steht dann für die neue Wanne 2 zur Verfügung. Die Lärmemissionen der Wanne 2 werden bauartbedingt und aufgrund der niedrigeren Schmelzleistung niedriger liegen als bei der Bestandsanlage. Die Vorgaben aus der Bauleitplanung können somit weiterhin eingehalten werden.

Aufgrund der Betriebsweise (3-Schicht Betrieb) werden von den stationären Anlagen Schallimmissionen verursacht, die zur Tag- und Nachtzeit gleiche Werte erreichen. Zur <u>Tagzeit</u> wirken zusätzlich die Immissionen der Logistik ein. Somit resultieren folgende Beurteilungspegel (Logistik + stationäre Quellen Wanne 3).

Tabelle 6: berechnete Beurteilungspegel der Logistikvorgänge und der stationären Anlagen Wanne 3 in der Tagzeit (Mitwind-Mittelungspegel nach TA Lärm, gerundet auf 0,5 dB)

Immissionsort	Prognose-Beurteilungspegel (Logistik + Wanne 3) [dB(A)]	Immissionsrichtwerte gemäß Bauleitplanung [dB(A)]
	Tag	Tag
IP 1, Hüttenring 13	57	60
IP 2, Hüttenring 36	42	60
IP 3, Hüttenring 2	58	60
IP 4, Hüttenring 6	54	60
IP 5, Mittelbergstr. 8	49	58
IP 6, Straße des Friedens 12	43	60
IP 7, Grund 1	53	60
IP 8, Grund 5	49	60
IP 9, Grund 11	48	60

Die Beurteilungspegel zur Tagzeit (Logistik + Wanne 3) liegen um mindesten 2 dB unter den zulässigen Immissionswerten für das Gesamtwerk. Damit ist sichergestellt, dass in Summe mit den Bestandsanlagen (vgl. Kapitel 3.2) bzw. mit der zukünftigen Wanne 2 die Vorgaben weiterhin eingehalten werden können.

An dem für die Tagzeit maßgebenden IP 3 resultiert mit dem geplanten Änderungsumfang (Wanne 3 + Wanne 2) folgender Summenpegel:

Beurteilungspegel Logistik + Wanne 3: 58 dB(A)

Beurteilungspegel Wanne 2: < 49 dB(A)

Summe Tagzeit < 59 dB(A)

6. Spitzenpegel

Um auch kurzzeitig auftretende Geräuschspitzen in die Beurteilung einzubeziehen wird das so genannte "Spitzenpegelkriterium" gemäß Ziffer 6.1 der TA Lärm geprüft. Danach soll vermieden werden, dass Geräuschspitzen den Immissionsrichtwert tags um mehr als 30 dB und nachts um mehr als 20 dB überschreiten.

Bei den Messungen an der Bestandsanlage /2.1.3/ wurde am Gemengehaus bei der Anlieferung mit Muldenkippern ein Schallleistungspegel von L_{WAFmax} = 117 dB(A) ermittelt. Spitzenpegel in dieser Höhe traten während der Messungen nur vereinzelt auf. Die regelmäßig registrierten Pegelspitzen lagen 8 ...10 dB niedriger.

Zur Absicherung der Messergebnisse wird zusätzlich die Studie der Hessischen Landesanstalt für Umwelt /2.2.8/ herangezogen. Die vorgenannte Studie führt aus, dass für Einzelereignisse bei der Entladung von Lkw z. B. durch das Schlagen und Quietschen von Aufbauten, das Öffnen und Schließen der Ladebordwand Schallleistungspegel von $L_{WA} = 99 \dots 125 \ dB(A)$ auftreten können.

Der kürzeste Abstand zu den Wohnhäusern Hüttenring Nr. 6 (IP 4) bzw. Grund 1 (IP 7) und der Rohstoffanlieferung beträgt jeweils ca. 50 m. Legt man diese Entfernung und den oben genannten maximalen Schallleistungspegel von 125 dB(A) zugrunde, so berechnet sich anhand des beschriebenen Berechnungsmodels ein Spitzenpegel von höchstens 84 dB(A).

An den umliegenden Wohngebäuden sind die Immissionsrichtwerte für ein Mischgebiet zugrunde zu legen. Damit ergibt sich gemäß TA Lärm für die Tagzeit ein zulässiger Spitzenpegel von 60 dB(A) + 30 dB = 90 dB(A). Der zulässige Wert wird demnach deutlich unterschritten.

Die Anlieferung am Gemengehaus bleibt unverändert bestehen. Somit ist festzustellen, dass auch zukünftig eine Überschreitung des zulässigen Spitzenpegels ausgeschlossen werden kann. Wie bereits erläutert, liegen die häufiger auftretenden Pegelspitzen mit ca. 70 dB(A) deutlich unter dem berechneten Maximalwert von 84 dB(A).

7. Qualität der Prognose

Die Qualität der Prognose hängt insbesondere von den Eingangsdaten, also den Schallemissionswerten, ab. Hierzu werden die folgenden Ausführungen formuliert:

Die Emissionswerte (Schallleistungspegel) wurden von uns aus den derzeitig bekannten technischen Daten, Messungen und aus gesicherten Erfahrungswerten ermittelt. Bei der Ermittlung der Prognoseeingangsdaten wurden konservative Ansätze berücksichtigt, z. B.

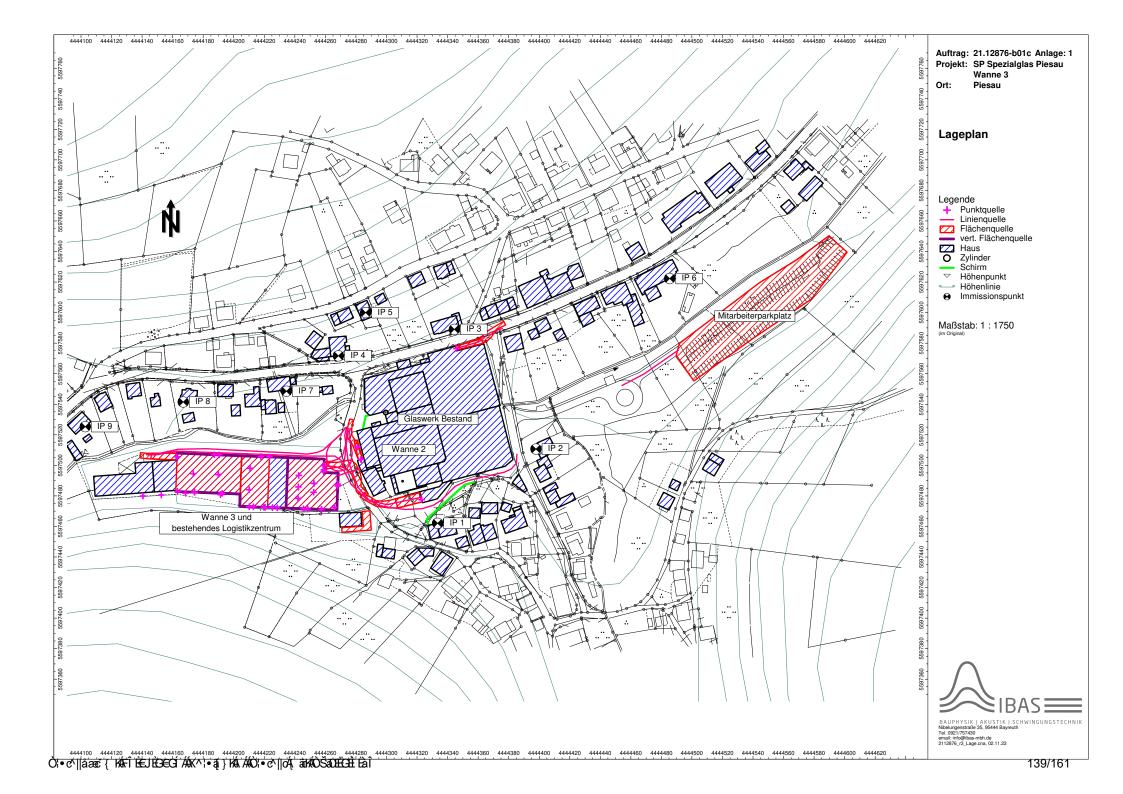
- maximale Betriebszustände,
- zeitgleicher Betrieb aller Anlagenteile in Volllast,
- Schallleistungspegel, die nach dem Stand der Lärmminderungstechnik erreichbar sind.

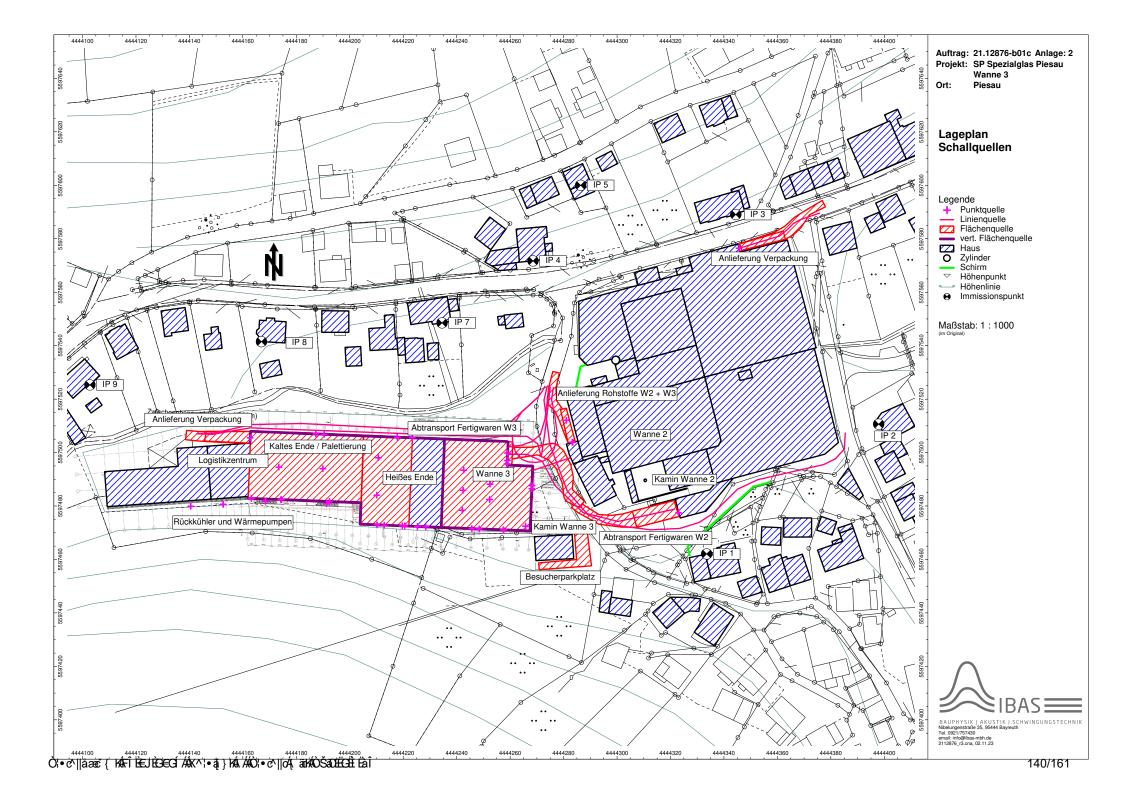
Zusammenfassend wird eingeschätzt, dass die tatsächlich auftretenden Geräuschanteile der Anlage tendenziell unter den berechneten Beurteilungspegeln liegen werden. Voraussetzung dafür ist, dass im Rahmen einer sorgfältigen Anlagenausführung unter schalltechnischen Gesichtspunkten die im Kapitel 4 vorgegebenen Schallleistungspegel eingehalten werden.

8. Zusammenfassung

Die Firma SP Spezialglas Piesau GmbH plant für das Glaswerk am Standort Piesau den Ersatz der gasbefeuerten Schmelzwanne durch zwei elektrisch betriebene Glasschmelzwannen in Verbindung mit der Überbauung des Logistikzentrums.

Anhand von Schallausbreitungsberechnungen nach den einschlägigen Richtlinien wurde unter Berücksichtigung der vorgesehenen Bauausführung sowie der maßgebenden Schallquellen und Betriebszeiten der Beurteilungspegel an den maßgebenden Immissionsorten in der Umgebung des Glaswerkes berechnet.


Die durchgeführten schalltechnischen Untersuchungen haben gezeigt, dass das geplante Vorhaben verträglich mit der Gesamtsituation am Standort ist. Mit den berechneten Beurteilungspegeln für den geplanten Änderungsumfang können die Immissionskontingente der Bauleitplanung weiterhin sicher eingehalten werden.


IBAS GmbH

Dipl.-Ing (FH) M. Hofmann

Dipl.-Ing. (FH) Ch. Limmer

Dieser Bericht darf nur in seiner Gesamtheit vervielfältigt, gezeigt oder veröffentlicht werden. Die Veröffentlichung von Auszügen bedarf der schriftlichen Genehmigung durch die IBAS Ingenieurgesellschaft mbH. Die Ergebnisse beziehen sich nur auf die untersuchten Gegenstände.

EDV-Ausdruck Schallausbreitungsberechnung

Projekt: SP Spezialglas Piesau

Wanne 3

Ort: Piesau

Berechnungskonfiguration

Berechnungskonfig	uration
Parameter	Wert
Allgemein	
Max. Fehler (dB)	0.00
Max. Suchradius (#(Unit,LEN))	10000.00
Mindestabst. Qu-Imm	0.50
Aufteilung	
Rasterfaktor	0.50
Max. Abschnittslänge (#(Unit,LEN))	1000.00
Min. Abschnittslänge (#(Unit,LEN))	1.00
Min. Abschnittslänge (%)	0.00
Proj. Linienquellen	An
Proj. Flächenguellen	An
Bezugszeit	
Zuschlag Tag (dB)	0.00
Zuschlag Ruhezeit (dB)	6.00
Zuschlag Nacht (dB)	0.00
Zuschlag Ruhezeit nur für	Kurgebiet
	reines Wohngebiet
	allg. Wohngebiet
DGM	
Standardhöhe (m)	0.00
Geländemodell	Triangulation
Reflexion	
max. Reflexionsordnung	3
Reflektor-Suchradius um Qu	3000.00
Reflektor-Suchradius um Imm	3000.00
Max. Abstand Quelle - Immpkt	1000.00 6000.00
Min. Abstand Immpkt - Reflektor	1.00 1.00
Min. Abstand Quelle - Reflektor	0.50
Industrie (ISO 9613)	
Seitenbeugung	mehrere Obj
Hin. in FQ schirmen diese nicht ab	An
Abschirmung	ohne Bodendämpf. über Schirm
	Dz mit Begrenzung (20/25)
Schirmberechnungskoeffizienten C1,2,3	3.0 20.0 0.0
Temperatur (#(Unit,TEMP))	10
rel. Feuchte (%)	70
Windgeschw. für Kaminrw. (#(Unit,SPEED))	3.0
Straße (RLS-90)	
Streng nach RLS-90	
Schiene (Schall 03 (2014))	
Fluglärm (???)	
Streng nach AzB	

gerechnet mit Version 2023 MR 2 (64 Bit) 02.11.23 / 2112876_r3.cna

IBAS · Ingenieurgesellschaft für Bauphysik, Akustik und Schwingungstechnik mbH · 95444 Bayreuth

EDV-Ausdruck Schallausbreitungsberechnung

Projekt: SP Spezialglas Piesau

Wanne 3

Ort: Piesau

Bezeichnung	Sel. M.	□	Schallle	Schallleistung Lw	M	Lw / Li		Korrektur	ktur	Schal	Schalldämmung Dämpfung		Einwirkzeit	eit	8	Freq.	Richtw.	Höhe	Ko	Koordinaten	
			Tag A	Tag Abend Nacht	acht Typ	Wert	norm.	Tag Abe	Abend Nacht	-	Fläche	Tag	Ruhe	Nacht					×	>	Z
			dBA) (((dBA) (dBA) (dB/	BA)	10	dB(A) dE	3(A) dB(dB(A) dB(A) dB(A)	2	(m²)	(mim)	(min)	(min)	(dB)	(Hz)		(m)	(E)	(m)	Œ
NRGW Zuluft, Logistik Nord (geschlossen)		iooi	63,0		63,0 Li	i RPL		0,0	0,0	0,0 RWA	16,00	780,00	0 180,00	0 480,00	3,0		(keine)	653,00 a	4444187,32	5597506,99	9 653,00
NRGW Abluft, Logisitk Nord (geschlossen)		i00i			63,0 Li	i RPL		0,0	0,0	0,0 RWA	16,00	780,00			3,0		(keine)	В	4444223,39	5597505,54 657,00	657,0
NRWG Abluft, Logistik Süd (geschlossen)		i00i			64,7 Li			0,0		0,0 RWA	24,00	780,00		0 480,00	3,0		(keine)	a	4444174,25	5597482,41	657,00
Lüftungsöffnungen Nord HE E+0		i00i			82,0 Li	RPHE		0,0	0,0	0,0 SD8_2	20 36,10	780,00	0 180,00	0 480,00	3,0		(keine)	653,00 a	4444258,88	5597495,73	8 653,00
Zuluft NS-Trafos 4x, Ostfass. E+1,8		i00i	78,0	78,0 7	78,0 Lw	v 72		9 0,9	6,0 6,	0,9		780,00	0 180,00	0 480,00	3,0	200	(keine)	654,00 a	4444268,17	5597487,69	9 654,00
Lüftungsöffnung Ost HE E+5,3		i00i	81,6	81,6 8′	31,6 Li	i RPHE		0,0	0,0	0,0 SD20	10,00	780,00	0 180,00	0 480,00	3,0		(keine)	659,00 a	4444258,94	5597497,05	9 659,00
Lüftungsöffnungen Süd HE E+5,3		i00i	81,9	81,9 81	31,9 Li	i RPHE		0,0	0,0	0,0 SD8	20 36,00	780,00	0 180,00	0 480,00	3,0		(keine)	659,00 a	4444245,71	5597471,54	00'659 1
Fenster IS Werkstatt Süd E+5,3	F	iooi	53,9		53,9 Li	i RPW		0,0	0,0	0,0 Fe	4,00	780,00	0 180,00		3,0		(keine)	659,00 a	4444257,55	5597471,07	659,00
NRGW Abuft 1 bis 4, Scherben Nord (geschl.) E+7,4		iooi	6'69		69,9 Li	RPS		0,0	0,0	0,0 RWA	16,00	780,00	0 180,00	0 480,00	3,0		(keine)	661,00 a	4444190,43	5597506,86	3 661,00
NRGW Abuft 5 bis 9, Scherben Nord (geschl.) E+7,4		iooi	6'02		70,9 Li	RPS		0,0	0,0	0,0 RWA	20,00	780,00	0 180,00	0 480,00	3,0		(keine)	661,00 a	4444217,81	5597505,76	661,00
NRGW Zuluft, Scherben Süd (geschlossen) E+7,4		<u>i00</u> :	9'69	9,69	69,6	i RPS		0,0	0,0	0,0 RWA	15,00	780,00	0 180,00	0 480,00	3,0		(keine)	660,00 a	660,00 a 4444192,39	5597481,69	9 660,00
Lüftungsöffnungen Süd, Kompr. E+7,4		<u>i</u>	0,67	79,0 7	79,0 Li				0,0	0,0 SD10		780,00	0 180,00	0 480,00	3,0		(keine)	661,00 a	4444212,89	5597472,84	661,00
Lüftungsöffnungen Süd, Gebläse E+7,4		i00i			80,4 Li	i RPVA		0,0	0,0	0,0 SD10	24,00	780,00	0 180,00	0 480,00	3,0		(keine)	661,00 a	661,00 a 4444225,36	5597472,34	661,00
Abluft Vakuumpumpen, Südfass. E+7,4		iooi		80,08	80,0 Lw	۸ 80			0,0	0,0		780,00	0 180,00	0 480,00	3,0	200	(keine)	662,00 a	4444219,69	5597472,57	, 662,00
Lüftungsöffnungen_1 Südfass. CE E+11		iooi			75,1 Li	RPKE			0,0	0,0 SD5	8,00	780,00	00,081 0	0 480,00	3,0		(keine)	666,00 a	666,00 a 4444174,51	5597482,40	0,999 (
Lüftungsöffnungen_2 Südfass. CE E+11		iooi	75,1		75,1 Li	RPKE			0,0	0,0 SD5	8,00	780,00	0 180,00	0 480,00	3,0		(keine)	666,00 a	4444210,18	5597472,95	9 666,00
Lüftungsöffnungen Südfass. HE E+11		iooi	7.77		77,7 Li	RPHE	_		0,0	0,0 SD8 2	20 13,50	780,00	0 180,00	0 480,00	3,0		(keine)	666,00 a	666,00 a 4444248,43	5597471,43	3 666,00
Fenster Werkstatt Südfass. E+11		i00i	53,9	53,9 5	53,9 Li	i RPW		0,0	0,0	0,0 Fe	4,00	780,00	0 180,00	0 480,00	3,0		(keine)	664,00 a	664,00 a 4444257,43	5597471,07	664,00
Zuluft Boosting Trafos 3x, Ostfass. E+11		iooi	0,77		77,0 Lw	v 72		5,0	5,0 5,	2,0		780,00	0 180,00	0 480,00	3,0	200	(keine)	664,00 a	664,00 a 4444268,12	5597486,50 664,00	664
RLT Kaltende Zu-/Abluft Süd E+11		i00i			80,0 Lw			0,0	0,0	0,0		780,00	0 180,00		3,0			654,00 a	4444220,56	5597472,54	1 654,00
RLT Sozialräume Zu-/Abluft Süd E +5,3		iooi	0'08	80,08	80,0 Lw	۸ 80		0,0	0,0	0,0		780,00	0 180,00	0 480,00	3,0		500 (keine)	657,00 a	4444228,42	5597472,22	657,00
Dachlüffer_1, Wanne		i00i			84,1 Li	i RPHE			0,0	0,0 SD20	18,00	780,00	0 180,00	0 480,00	0,0		(keine)	2,00 g	4444252,50	5597488,17	685,65
Dachlüfter_2, Wanne		i00i			84,1 Li				0,0	0,0 SD20	18,00	780,00		0 480,00	0,0		(keine)	2,00 g	4444252,32	5597482,45	
Dachlüfter_1, IS-Maschine		i00i	0'98		86,0 Li				0,0	0,0 SD10		780,00		0 480,00	0,0		(keine)	2,00 g	4444242,63	5597493,39	685,65
Dachlüffer_2, IS-Maschine		<u>iö</u>	86,0		86,0 Li					0,0 SD10		780,00		0 480,00			(keine)	2,00 g	4444242,39	5597485,87	
Dachlüffer_3, IS-Maschine		i00i	86,0		86,0 Li					0,0 SD10		780,00		0 480,00	0,0		(keine)	2,00 g	2,00 g 444242,09	5597478,39	685,65
RWA_1, Insp./Pallettierung		1001			65,0 Li	i RPKE		0,0	0,0	0,0 RWA	3,00	780,00		0 480,00	0,0		(keine)	1,00 g	4444173,49	5597494,56	675,65
RWA_2, Insp./Pallettierung		i00i			65,0 Li					0,0 RWA	3,00	780,00		0 480,00			(keine)	1,00 g	1,00 g 4444189,94	5597493,97	675,65
RWA_1, Kaltende		<u>i00i</u>			65,0 Li					0,0 RWA	3,00	780,00		0 480,00	0,0		(keine)	1,00 g	4444210,69	5597498,10	
RWA_2, Kaltende	1	<u>iö</u>			65,0 Li	_				0,0 RWA	3,00	780,00					(keine)	1,00 g	1,00 g 4444210,11	5597484,08	
Kamin Wanne 3					80,0 Lw					0,0		780,00	0 180,00		0,0		(keine)	1,00 g	4444265,76	5597472,49	691,60
Rückkühler Wannenkühlung E0			103,0		98,0 Lw					0,0		780,00			0,0		(keine)	4,00 r	4,00 r 4444168,44	5597481,77 654,60	654,
Rückkühler Scherbenwasser E0		_	103,0 1	103,0	98,0 Lw	v RKW		5,0	5,0 0,	0,0		780,00	0 180,00		0,0		(keine)	4,00 r	4444191,33	5597480,89	654,60
Rückkühler TGA E0					98,0 Lw	v RKW		5,0	5,0 0,	0,0		780,00			0,0		(keine)	4,00 r	4,00 r 4444140,56	5597479,89	654,60
Wärmepumpen TGA, E0			85,0	85,0 8	85,0 Lw	w WP		0,0	0,0	0,0		780,00	7	4	0,0		(keine)	2,00 r	4444152,60	5597480,61	652,60
Zuluft Löschwasserpumpen Südfassade E0		1051		100,0 100	0,00 Lw	۷ 100		0,0	0,0	0,0		15,00	00'0 0		3,0	200	(keine)	653,00 a	4444163,22	5597482,85	9 653,00
Lkw Entladung Sand (5/d)		1051	82,5	82,5 87	37,5 Lw	v M755		-5,0	-5,0 0,	0,0		780,00	0 180,00	00'00	3,0		(keine)	0,50 r	4444283,23	5597503,82	651,27
Silo-Lkw Entladung (5/d)		1051			95,0 Lw	v M763		-5,0	-5,0 0,	0,0		780,00			0,0		(keine)		4444280,97	5597512,06	
Lkw Entladung Scherben (1/d)		1021		90,0	02,0 Lw	v M758_2	<u>'</u>	12,0 -12	-12,0 0,	0,0		780,00	0 180,00		0,0		(keine)	0,50 r	4444283,45	5597503,87	651,27
Lkw Beladung Fertigwaren W2 (7/d)		1021	93,3		80,0 Lw	v M771		13,3	13,3 0,	0,0		780,00	0 180,00	00'0	3,0		(keine)	1,00 г	4444323,07	5597477,45	651,
Lkw Beladung Fertigwaren W3 (7/d)		1021	93,3		80,0 Lw	v M771		13,3 1;		0,0		780,00		00'0	3,0		(keine)	_	4444259,06	5597499,81	$\overline{}$
Lkw Entladung Verpackungsmat. W2 (1/d)		1021	84,8		80,0 Lw	v M771		4,8		0,0		780,00			3,0		(keine)	1,00 r	4444345,67	5597576,50	651,09
	_	3	0	•																	

02.11.23 / 2112876_r3.cna

IBAS · Ingenieurgesellschaft für Bauphysik, Akustik und Schwingungstechnik mbH · 95444 Bayreuth

EDV-Ausdruck Schallausbreitungsberechnung

Projekt: SP Spezialglas Piesau

Wanne 3

Ort: Piesau

Bezeichnung Sel.	Σ	ر م	Sel. M. ID Schallleistung Lw	wJ gur		Schallleistung Lw'		_	Lw / Li		Korrektur	ktur	Sch	alldämmung	Schalldämmung Dämpfung		Einwirkzeit	÷	8	Freq.	Richtw.	Bew. Punktquellen	nellen
		<u>"</u>	Tag Abend Nacht	d Nach	١.	Tag Abend Nacht Typ Wert	acht 1	y V	Vert norm.	m.	Tag Abend Nacht	nd Naci	ద	Fläche		Tag	Ruhe	Nacht				Anzahl	Geschw
		(dE	(dBA) (dBA) (dBA)) (dBA		(dBA) (dBA) (c	(dBA)		B	(A) dB(dB(A) dB(A) dB(A) dB(A)	1) dB(/	7	(m²)		(min)	(min)	(min)	(G P)	(Hz)		Tag Abend Nacht	cht (km/h)
Förderbrücke Gemengelager E +24	ੁ:	1031	79,7 79,7	7 79,7	7 68,0	68,0	68,0 Lw		89		0,0	0,	o,			780,00	180,00	180,00 480,00	0,0	200	(keine)		
Fahrstrecke Pkw zum Mitarbeiterparkplatz	ੁ:	102! 78	78,9 78,9	9 82,1	1 62,5	62,5	65,7 Lw'		48	+	14,5 14,5		17,7			780,00		180,00 480,00	0,0	200	(keine)		
Fahrstrecke Lkw Gemengeanlieferung W2+3 (11/d)	ੁ:	102! 79	79,6 79,6	6 81,2	2 61,4	61,4	63,0 Lw		63		-1,6 -1,6	0	o,			780,00	180,00	00'0	0,0	200	(keine)		
Fahrstrecke Lkw Fertigwaren W2, (7/d)	2.	102! 8	81,6 81,6	6 85,2	2 59,4	59,4	63,0 Lw		63	-7	-3,6 -3,6		0,0			780,00	180,00	00'0	0,0	200	(keine)		
Fahrstrecke Lkw Fertigwaren W3, (7/d)	2.	102! 74	74,3 74,3	3 77,9	9 59,4	59,4	63,0 Lw		63	-7	3,6 -3,6		0,0			780,00	180,00	00'0	0,0	200	(keine)		
Fahrstrecke Lkw Verpackungsmaterial W2, (1/d)	2	1021 66	66,1 66,1	1 78,1	1 51,0	51,0	63,0 Lw	_	63	7	-12,0 -12,0		0,0			780,00	180,00	00'0	0,0	200	(keine)		
Fahrstrecke Lkw Verpackungsmaterial W3, (1/d)	2	102! 7	75,7 75,7	7, 87,7	7 51,0	51,0	63,0 Lw	_	63	7	-12,0 -12,0		0,0			780,00	180,00	00'0	0,0	200	(keine)		
Gabelstapler im Freien (1h)	으	10,	102! 100,0 100,0 100,0	0 100,	0 81,3	81,3	81,3 Lw Stapler	-w St	apler		0,0	0,0	o,			90,09	30,00	00'0	0,0		(keine)		

		-																				
Bezeichnung Sel.	Sel. M.	₽	Schallleistung Lw	sistung	_	challleis	Schallleistung Lw"	:,	Lw / Li	<u> </u>		Korrektur		Schalldär	Schalldämmung Dämpfung	ш	Einwirkzeit		중 교	Freq. R	Richtw.	Bew
		Ė	Tag Ab	Abend Nacht		Tag Abe	Abend Nacht Typ	cht Ty	/p Wert	t norm.	. Tag	Abend	Abend Nacht	œ	Fläche	Tag	Ruhe	Nacht				
		ت	(dBA) (d	(dBA) (c	(dBA) (dE	(dBA) (dBA)	3A) (dBA	3A)		dB(A)	(A) dp ((A) dp (dB(A)		(m²)	(min)	(min)	(min)	(db)	(Hz)		Tag
Dach Wanne 3	_	iooi	6'08	6'08	80,9	50,9	20,9	50,9 Li	i RPHE	111	0,0	0,0		0,0 dach1001007,16	1007,16	780,00	180,00	480,00	0,0	٠	(keine)	
Dach Kaltende	_	iooi	0.59	0,59	65,0	37,3 3	37,3 3	37,3 L	i RPKE	111	0,0	0,0		0,0 dach100	597,65	780,00	180,00	480,00	0,0	٠	(keine)	
Dach Pallettierung/Insp.	_	i00	67,5	67,5	67,5	37,3 3	37,3 3	37,3 L	i RPKE		0,0	0,0		0,0 dach100 1050,40	1050,40	780,00	180,00	480,00	0,0	٠	(keine)	
Lkw Rangieren Gemengeanlieferung W2+3	_	1021	82,4	82,4	84,0 6	63,3 6	63,3 64	64,9 Lw	ν 84		-1,6	9,1-	0,0			780,00	180,00	00'0	0,0	500 ((keine)	
Lkw Standgeräusch Gemengeanlieferung W2+3	_	1021	81,4	81,4	83,0 6	9 2'99	99 2,99	68,1 Lw	w 83		-1,6	9,1-	0,0			780,00	180,00	00'0	0,0	500 ((keine)	
Lkw Rangieren Fertigwaren W2	_	1021	80,4	80,4	84,0 5	57,4 5	57,4 67	61,0 Lw	ν 84		-3,6	9'6-9	0,0			780,00	180,00	00'0	0,0	500 ((keine)	
Lkw Standgeräusch Fertigwaren W2	_	1021	79,4	79,4	83,0 5	59,4 5	59,4 63	63,0 Lw	w 83		-3,6	9'83	0,0			780,00	180,00	00'0	0,0	500 ((keine)	
Lkw Rangieren Fertigwaren W3	_	1021	80,4	80,4	84,0 5	57,8 5	57,8 61	61,4 Lw	ν 84		-3,6	9.53,6	0,0			780,00	180,00	00,0	0,0	500 ((keine)	
Lkw Standgeräusch Fertigwaren W2	_	1021	79,4	79,4	83,0 6	67,3 6	67,3 70	70,9 Lw	w 83		-3,6	9,5-	0,0			780,00	780,00 180,00	00,0	0,0	500 (keine)	(eine)	
Lkw Rangieren Verpackungsmaterial W2	_	1021	72,0	72,0	84,0 5	51,3 5	51,3 63	63,3 Lw	۷ 84		-12,0	0'-15'0	0,0			780,00	780,00 180,00	00,0	0,0	500 (keine)	(eine)	
Lkw Standgeräusch Verpackungsmaterial W2	_	1021	71,0	71,0	83,0 5	54,2 5	54,2 66	66,2 Lw	w 83		-12,0	0'-15'0	0,0			780,00	780,00 180,00	00'0	0,0	500 (keine)	(eine)	
Lkw Rangieren Verpackungsmaterial W3	_	1021	72,0	72,0	84,0 5	52,2 5	52,2 6	64,2 Lw	۷ 84		-12,0	0 -12,0	0,0			780,00	780,00 180,00	00'0	0,0	500 ((keine)	
Lkw Standgeräusch Verpackungsmaterial W3	_	1021	71,0	71,0	83,0 5	52,7 5	52,7 6	64,7 Lw	w 83		-12,0	0'-15'0	0,0			780,00	780,00 180,00	00'0	0,0	500 ((keine)	
Pkw Stellplätze, Mitarbeiterparkplatz	_	1051	0,78	87,0	90,0	51,9 5	51,9 5	54,9 Lw	w 63		24,0	0, 24,0	27,0			780,00	780,00 180,00	480,00	0,0	500 ((keine)	
Pkw Stellplätze, Besucher	_	1051	0,69	0'69	63,0 4	48,9	48,9 42	42,9 Lw	w 63		0'9	0'9 0	0,0			780,00	780,00 180,00	00'0	0,0	500 (keine)	(eine)	

02.11.23 / 2112876_r3.cna

IBAS · Ingenieurgesellschaft für Bauphysik, Akustik und Schwingungstechnik mbH · 95444 Bayreuth

02.11.23 / 2112876_r3.cna

EDV-Ausdruck Schallausbreitungsberechnung

Projekt: SP Spezialglas Piesau

Wanne 3

Ort: Piesau

Bezeichnung	Sel. M.	□	Scha	Schallleistung Lw		Schallleistung Lw"	stung L		Ľ	Lw / Li		Korrektur		Schalldä	Schalldämmung Dämpfung	Dämpfung	Ш	Einwirkzeit	+	8 8	Freq.	Richtw
			Tag	Abend Nacht		Tag Ab	Abend Nacht Typ	acht Ty		Wert norm.	-	Tag Aben	Abend Nacht	œ	Fläche		Tag	Ruhe	Nacht			
			(dBA)	(dBA) (d	(dBA) (d	(dBA) (d	(dBA) (d	(dBA)		dB(A)		dB(A) dB(A)	(A) dB(A)		(m²)		(min)	(min)	(min)	(dB)	(Hz)	
Fassade Nord, Kratzer E+5,3		<u>ö</u>	52,9	52,9	52,9	31,7	31,7	31,7 Li	.i RPKR	춙		0,0	0,0 0,0	0,0 StB150	130,76		780,00	180,00	480,00	3,0		keine
Fassade Ost, Kratzer E+5,3		<u>ö</u>	48,6	48,6	48,6	31,7	31,7	31,7 L	Li RPKR	춙		0,0	0,0 0,0	0,0 StB150	48,86		780,00	180,00	480,00	3,0		keine
Fassade Nord, Kratzer E+5,3		<u>io</u>	49,1	1,64	1,64	31,7	31,7	31,7 L	Li RPKR	춙		0,0	0,0 0,0	0,0 StB150	54,28		780,00	180,00	480,00	3,0		(keine)
Fassade Ost, Kratzer E+5,3		<u>ö</u>	50,2	50,2	50,2	31,7	31,7	31,7 L	Li RPKR	춙		0,0	0,0 0,0	0,0 StB150	69,47		780,00	180,00	480,00	3,0		keine
Fassade Ost, Kratzer E+5,3		<u>io</u>	45,8	45,8	45,8	31,7	31,7	31,7 L	Li RPKR	춙		0,0	0,0 0,0	0,0 StB150	25,37		780,00	780,00 180,00	480,00	3,0		(keine)
Fassade Süd, IS-Werkst. E+5,3		<u>ö</u>	46,4	46,4	46,4	26,8	26,8	26,8 L	Li RPW	>		0,0	0,0 0,0	0,0 StB150	90,58		780,00	780,00 180,00 480,00	480,00	3,0		(keine)
Fassade Süd, Kratzer E+5,3		<u>ö</u>	51,6	51,6	51,6	31,7	31,7	31,7 L	Li RPKR	춙		0,0	0,0 0,0	0,0 StB150	97,73		780,00	180,00	480,00	3,0		(keine)
Fassade Nord, Kühlluft/Vakuum E+7,4		<u>ö</u>	60,4	60,4	60,4	41,8	41,8	41,8 Li	i RPVA	Α		0,0	0,0 0,0	0,0 StB150	73,27		780,00	180,00 480,00	480,00	3,0		(keine)
Fassade Süd, Kühlluft/Vakuum E+7,4		<u>ö</u>	59,7	26'5	29,7	41,8	41,8	41,8 L	Li RPVA	Α		0,0	0,0 0,0	0,0 StB150	62,38		780,00	180,00	480,00	3,0		(keine)
Fassade Süd, Kompressorstation E+7,4		<u>ö</u>	55,4	55,4	55,4	37,6	37,6	37,6 L	Li RPKO	Ş		0,0	0,0 0,0	0,0 StB150	59,64		780,00	780,00 180,00 480,00	480,00	3,0		(keine)
Fassade West, Kompressorstation E+7,4	₩.	<u>100</u>	52,7	52,7	52,7	37,6	37,6	37,6 L	Li RPKO	Ş		0,0	0,0 0,0	0,0 StB150	31,83		780,00	180,00	480,00	3,0		(keine)
Fassade Nord, Scherbenebene E+7,4		<u>100i</u>	48,8	48,8	48,8	26,7	26,7	26,7 Li	i RPS	Sc		0,0	0,0 0,0	0,0 StB150	159,75		780,00	180,00	480,00	3,0		(keine)
Fassade Süd, Scherbenebene E+7,4		<u>100</u>	47,1	1,74	47,1	26,7	26,7	26,7 L	Li RPS	Sc		0,0	0,0 0,0	0,0 StB150	107,82		780,00	180,00	480,00	3,0		(keine)
Fassade Nord, Wanne E+11		<u>i00</u>	78,0	78,0	0,87	52,0	52,0	52,0 Li	.i RPHE	里		0,0	0,0 0,0	0,0 Kass100 401,07	401,07		780,00	780,00 180,00 480,00	480,00	3,0		(keine)
Fassade Nord, Wanne E+11		<u>100</u>	74,9	74,9	74,9	52,0	52,0	52,0 Li	.i RPHE	里		0,0	0,0 0,0	0,0 Kass100	195,61		780,00	180,00	480,00	3,0		(keine)
Fassade Ost, Wanne E+11		<u>i00</u>	79,0	0,67	0,67	52,0	52,0	52,0 L	i. RPHE	里		0,0	0,0 0,0	0,0 Kass100	501,59		780,00	180,00	480,00	3,0		(keine)
Fassade Süd, Werkstatt E+11		<u>100</u>	59,5	26'2	59,5	34,4	34,4	34,4 L	Li RPW	Ņ		0,0	0,0 0,0	0,0 Kass100	325,55		780,00	180,00	480,00	3,0		(keine)
Fassade Süd, Wanne E+11		<u>100</u>	77,5	2,77	2,77	52,0	52,0	52,0 L	Li RPHE	里		0,0	0,0 0,0	0,0 Kass100 359,92	359,92		780,00	780,00 180,00	480,00	3,0		(keine)
Fassade West, Wanne E+11		<u>ö</u>	75,6	75,6	9'5'	52,0	52,0	52,0 Li	.i. RPHE	里		0,0	0,0 0,0	0,0 Kass100	230,96		780,00	180,00	480,00	3,0		(keine)
Fassade Nord, Heißende E+11		<u>ö</u>	70,1	70,1	70,1	52,0	52,0	52,0 L	.i. RPHE	里		0,0	0,0 0,0	0,0 Kass100	64,97		780,00	180,00	480,00	3,0		(keine)
Fassade Süd, Heißende E+11		<u>100</u>	6'89	6'89	6,89	52,0	52,0	52,0 L	Li RPHE	里		0,0	0,0 0,0	0,0 Kass100	48,60		780,00	180,00	480,00	3,0		(keine)
Fassade Nord, Kaltende E+11		<u>100i</u>	64,7	64,7	64,7	40,7	40,7	40,7 L	Li RPKE	У		0,0	0,0 0,0	0,0 Kass100 252,74	252,74		780,00	180,00	480,00	3,0		(keine)
Fassaden Nord, Pallettierung/Insp. E+11		<u>100i</u>	68,1	68,1	68,1	40,7	40,7	40,7 L	Li RPKE	У		0,0	0,0 0,0	0,0 Kass100 551,77	551,77		780,00	780,00 180,00 480,00	480,00	3,0		(keine)
Faceaden Siid Dallettierung/Inch F±11		2	0	600	602	707	707	107	1: 001/2	7		0	0	0.01/000100	600 84		780 00	180 00	400	c		(hoine)

02.11.23 / 2112876_r3.cna

IBAS · Ingenieurgesellschaft für Bauphysik, Akustik und Schwingungstechnik mbH · 95444 Bayreuth

EDV-Ausdruck Schallausbreitungsberechnung

Anlage: 3.5 Auftrag: 21.12876-b01c

Projekt: SP Spezialglas Piesau

Wanne 3

Ort: Piesau

)		-													
Bezeichnung	<u>.</u>	Тyр					OKE	avspek	Oktavspektrum (dB)	<u>B</u>					Quelle
			Bew.	31.5	. 63	125	250	200	1000	2000	4000	8000	∢	.⊑	
RP Wanne/Heißende	RPHE	:=	A	47,8	62,1	72,6	82,4	92,4	9,76	97,2	93,7	87,4	102,0	102,8	102,8 IBAS 08.4365/2
RP Kaltende	RPKE	<u>:</u>	4	38,3	47,2	64,9	68,2	74,0	6'92	79,2	73,8	70,3	83,0		86,6 IBAS 08.4365/2
RP Kratzerebene	RPKR	:=	4	38,9	54,7	63,9	73,9	76,5	79,4	78,8	78,3	70,1	85,0		88,9 IBAS 08.4365/2
RP Scherbenebene	RPS	:=	A	33,9	49,7	58,9	68'9	71,5	74,4	73,8	73,3	65,1	80,0	83,9	IBAS 08.4365/2
RP Kompressorraum	RPKO	:=	A	46,4	53,5	66,5	76,7	6,78	9,98	85,9	8,77	65,0	92,0	94,9	IBAS/cmp
RP Kühlluft/Vakuumpumen	RPVA	:=	4	54,4	9,79	6'92	82,7	9,88	86,0	82,2	9'92	68,3	92,0		100,1 IBAS/cmp
RP Werkstatt	RPW	:=	A	27,2	42,5	56,5	0,07	69,5	68,9	65,7	59,6	6'09	75,0	81,2	2 IBAS 08.4365/2
er	RPL	:=	A	35,6	45,8	54,6	56,3	63,1	73,0	8,79	64,1	56,5	75,0	79,7	7 IBAS 16.8857
Gabelstapler	Stapler	<u>×</u>	A	26,3	78,3	89,3	88,7	93,1	93,1	94,6	90,4	82,5	100,0		116,5 HLUG, Heft 1 (Recyclinganlagen) /Stöhle.M
Rückkühler	RKW	>	V	68,5	82,0	87,0	91,0	0,68	95,0	85,5	0,07	51,0	98,0		112,1 IBAS 08.4365/2
Wärmepumpe	WP	×	4	28,7	64,7	70,7	8,77	80,4	79,2	75,4	20,3	66,2	85,0		99,5 IBAS
Kamin	Kamin	3	A	50,5	64,0	0,69	73,0	71,0	0,77	67,5	52,0	33,0	80,0		94,1 IBAS 08.4365/2
Lkw-Entladung Sand	M755	<u>×</u>	A	66,2	64,9	9,07	9'52	79,1	82,4	81,7	79,2	73,6	87,5		105,9 IBAS-Messung 04.11.2008
Lkw-Entladung Scherben (25t)	M758_2		A	67,4	82,9	83,9	6'98	90,4	96,4	97,4	94,4	91,4	102,0	112,0	112,0 IBAS-Messung 04.11.2008
Lkw-Entladung Silo (liegend)	M763	^	4	64,2	8,69	71,1	78,3	84,8	1,78	92,3	86,9	78,2	95,0	104,9	104,9 IBAS-Messung 04.11.2008
Palettenhubwagen Innenrampe (1/h) M771		Lw	4	48,3	56,3	68,3	73,8	74,3	73,8	71,8	65,3	52,3	80,0		91,2 IBAS-Messung 04.11.2008

02.11.23 / 2112876_r3.cna

Bezeichnung	₽				OKt	avspek	Oktavspektrum (dB)	3				Quelle
		31.5	63	125	250	200	1000	1000 2000	4000	8000	₹	
Wand StBeton 15 cm	StB150	31,0	35,0	36,0	38,0	47,0	54,0	0,09	0,89	68,0		51 IBAS N82/DIN 4109
Kass 100MF/StTrpz	Kass100	13,0	15,0	19,0	34,0	42,0	48,0	50,0	51,0	51,0		42 IFBS "R101"
Dach StTrpz/MF100/Bit Dach100	Dach100	13,0	15,0	25,0	30,0	40,0	55,0	63,0	0,09	55,0		42 IFBS "R40"
Fenster	Fe	10,0	15,0	18,0	17,0	24,0	34,0	41,0	35,0	30,0		29 IBAS N415
RWA/Liku	RWA	2,0	10,0	7,0	10,0	15,0	20,0	20,0	17,0	15,0		18 IBAS Standard DK
SD 200/100*500	SD5	1,0	2,0	4,0	12,0	12,0	15,0	11,0	9,0	8,0		13 Herstellerangabe TROX
SD 200/100*1000	SD10	1,0	4,0	10,0	22,0	23,0	26,0	19,0	13,0	11,0		23 Herstellerangabe TROX
SD 200/100*2000	SD20	2,0	0,9	19,0	41,0	43,0	46,0	30,0	18,0	16,0		35 Herstellerangabe TROX
SD 200/80*2000	SD8_20	4,0		8,0 21,0 44,0 49,0	44,0	49,0	50,0	40,0	24,0		41	19,0 41 Herstelllerangabe TROX

02.11.23 / 2112876_r3.cna

IBAS · Ingenieurgesellschaft für Bauphysik, Akustik und Schwingungstechnik mbH · 95444 Bayreuth

Auftrag: 21.12876-b01c

Anlage: 3.6

EDV-Ausdruck Schallausbreitungsberechnung

Projekt: SP Spezialglas Piesau

Wanne 3

Piesau Ort:

661,10 a 444433,53 5597462,08 661,10 654,10 a 4444397,90 5597510,64 654,10 659,10 a 4444294,45 5597589,06 659,10 659,10 a 4444268,56 5597571,71 659,10 666,00 a 4444286,38 5597599,98 666,00 653,00 a 4444485,42 5597622,31 653,00 658,00 a 4444234,51 5597548,53 658,00 658,00 a 4444166,95 5597541,50 658,00

Koordinaten

Œ

(m) (m) 661,10 a 4444333,53

Tag Nacht Gebiet Auto Lärmart

49,0 49,0 49,0 47,0 49,0

Nutzungsart

Immissionspunkte Mitwind-Mittelungspegel nach TA Lärm 1998 in dB(A) Bezeichnung |Sel. |M. |ID| Pegel Lr | Richtwert

02.11.23 / 17:03 / 2112876_r3.cna

Teilsummenpegel Gruppen Mitwind-Mittelungspegel nach TA Lärm 1998 in dB(A)

Bezeichnung N									Te	ilsumm	Teilsummenpegel	-							
		₽	IP 1	IP 2	2	IP 3	3	IP 4		9 dl	5	IP 6	9	1P 7		IP 8	8	P 9	6
		Tag				Tag	Nacht	Tag		Tag					Vacht		Nacht	Tag	Vacht
Root	<u>*</u> .	57,0				58,2	37,2	54,0		49,3					43,8		41,5	6,74	39,5
Gebäude	*00i	45,0				35,0	35,0	42,8		41,0					43,0		40,2	35,5	35,5
Rückkühler		42,6				28,4	23,4	32,3		30,4					30,6		35,0	42,1	37,1
Logistik	i02*	56,5	30,2	41,0	32,9	58,2	32,8	53,6	27,4	48,5	30,1	42,3	45,3	52,3	21,1	48,2	20,7	46,3	21,5
Sonstige	∗£0i	26,1				8,6	9,8	31,4		27,6					33,9		26,3	19,4	19,4

02.11.23 / 2112876_r3.cna

IBAS · Ingenieurgesellschaft für Bauphysik, Akustik und Schwingungstechnik mbH · 95444 Bayreuth

Auftrag: 21.12876-b01c Anlage: 3.7

EDV-Ausdruck Schallausbreitungsberechnung

Projekt: SP Spezialglas Piesau

Wanne 3

Ort: Piesau

Teilpegel

	M.	ID	IP	1	IP	2	IP	3	IP	4	Teilp IP		IP	6	IP	7	IF	8	IP	9
				Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht		Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht
NRGW Zuluft, Logistik Nord (geschlossen)		!00!	-11,4	-11,4	-10,7	-10,7	8,6	8,6	13,1	13,1	11,1	11,1	-14,2	-14,2	17,5	17,5	21,7		16,4	
NRGW Abluft, Logisitk Nord (geschlossen)		!00!	4,9	4,9	-9,4	-9,4	10,7	10,7	18,4	18,4	14,3	14,3	-12,0	-12,0	24,1	24,1	20,8		13,4	
NRWG Abluft, Logistik Süd (geschlossen)		1001	-0,4	-0,4	-12,5		-12,1	-12,1	-8,0	-8,0	-9,9	-9,9	-17,2	-17,2	-4,6	-4,6	-0,8		-1,8	-1,8
Lüftungsöffnungen Nord HE E+0	_	100!	13,6	13,6	4,0	4,0	16,8	16,8 9,0	33,6	33,6	29,3	29,3	-3,9	-3,9	25,5	25,5	22,4	-	17,1	17,1
Zuluft NS-Trafos 4x, Ostfass. E+1,8		!00! !00!	34,9	34,9 29,5	6,3 4,9	6,3 4,9	9,0	10,9	27,5 38,0	27,5	29,6	29,6 33,4	-0,3 -1,6	-0,3	30,8 29,4	30,8 29,4	18,8 26,5		15,6 22,3	
Lüftungsöffnung Ost HE E+5,3 Lüftungsöffnungen Süd HE E+5,3		1001	29,5 34,8	34,8	3,3	3,3	10,9	2,2	7,6	38,0 7,6	33,4 4,9	4,9	-4,7	-1,6 -4,7	11,8	11,8	6,9		2,3	2,4
Fenster IS Werkstatt Süd E+5,3		100!	11,1	11,1	-15,9	-15,9	-19,1	-19,1	-14,3	-14,3	-14,4	-14,4	-4,7	-4,7	-9,8	-9,8	-16,7	-16,7	-19,7	-19,7
NRGW Abuft 1 bis 4, Scherben Nord (geschl.) E+7,4	_	100!	0,3	0,3	-15,9	-13,9	16,1	16,1	22,7	22,7	19,6	19,6	-23,6	-5,8	28,5	28,5	31,7	31,7	24,3	
NRGW Abult 1 bis 4, Scherben Nord (geschi.) E+7,4	_	100!	12,8	12,8	-0,8	-0,8	18,8	18,8	26,5	26,5	22,5	22,5	-3,4	-3,4	32,0	32,0	29,3		22,0	
NRGW Zuluft, Scherben Süd (geschlossen) E+7,4		1001	3,0	3,0	-7,0	-7,0	-6,4	-6,4	-2,3	-2,3	-4,6	-4,6	-11,9	-11,9	1,4	1,4	5,3		2,1	2,1
Lüftungsöffnungen Süd, Kompr. E+7,4	_	1001	30,6	30,6	3,6	3,6	2,7	2,7	7,1	7,1	5,0	5,0	-2,8	-2,8	11,3	11,3	11,4		7,8	7,8
Lüftungsöffnungen Süd, Gebläse E+7,4		100!	33,2	33,2	9,9	9,9	6,7	6,7	11,4	11,4	9,8	9,8	2,2	2,2	17,6	17,6	14,1	14,1	10,7	10,7
Abluft Vakuumpumpen, Südfass. E+7,4		1001	32,4	32,4	6,7	6,7	5,2	5,2	9,3	9,3	7,5	7,5	0,2	0,2	12,3	12,3	13,0		9,7	9,7
Lüftungsöffnungen_1 Südfass. CE E+11		100!	8,8	8,8	-3,3	-3,3	-2,5	-2,5	1,9	1,9	-0,2	-0,2	-8,5	-8,5	5,4	5,4	9,1	9,1	10,2	10,2
_üftungsöffnungen_2 Südfass. CE E+11		1001	26,9	26,9	-0,7	-0,7	-0.7	-0,7	2,9	2,9	0,9	0,9	-7,2	-7,2	10,0	10,0	7,2		4,6	4,6
Lüftungsöffnungen Südfass. HE E+11	_	100!	31,6	31,6	0,9	0,9	-1,8	-1,8	3,8	3,8	1,3	1,3	-8,3	-8,3	11,9	11,9	2,5		-1,9	
Fenster Werkstatt Südfass. E+11		100!	11,0	11,0	-13,0	-13,0	-19,0	-19,0	-13,9	-13,9	-14,0	-14,0	-23,4	-23,4	-9,4	-9,4	-16,6		-19.6	
Zuluft Boosting Trafos 3x, Ostfass. E+11	_	1001	35,4	35,4	8,8	8,8	8,4	8,4	28,2	28,2	30,2	30,2	-0,1	-0,1	31,7	31,7	25,2		21,3	
RLT Kaltende Zu-/Abluft Süd E+11		100!	31,1	31,1	5,8	5,8	5,2	5,2	9,2	9,2	7,3	7,3	0,0	0,0	12,3	12,3	12,9		9,6	
RLT Sozialräume Zu-/Abluft Süd E +5,3		100!	32,5	32,5	6,3	6,3	5,5	5,5	9,5	9,5	7,7	7,7	0,3	0,3	17,7	17,7	12,8		9,5	
Dachlüfter 1, Wanne		100!	18,4	18,4	11,9	11,9	25,8	25,8	17,3	17,3	23,9	23,9	14.9	14,9	17,6	17,6	15,5		11,4	
Dachlüfter 2, Wanne	_	1001	18,6	18,6	11,0	11,0	16,2	16,2	15,3	15,3	20,0	20,0	14,3	14,3	16,5	16,5	15,2		8,0	
Dachlüfter_1, IS-Maschine		1001	18,9	18,9	22,2	22,2	24,8	24,8	24,7	24,7	28,7	28,7	18,9	18,9	23,0	23,0	28,8		28,5	
Dachlüfter_2, IS-Maschine		100!	19,1	19,1	12,3	12,3	20,7	20,7	20,3	20,3	25,6	25,6	18,8	18,8	20,8	20,8	25,2		20,3	
Dachlüfter_3, IS-Maschine		1001	19,8	19,8	12,2	12,2	20,5	20,5	18,1	18,1	22,6	22,6	18,1	18,1	18,6	18,6	18,5		18,9	
RWA_1, Insp./Pallettierung		1001	-7,8	-7,8	-11,1	-11,1	4,8	4,8	7,5	7,5	7,2	7,2	-13,8	-13,8	7,8	7,8	9,1	9,1	8,3	8,3
RWA_2, Insp.// allettierung		1001	-6,9	-6,9	-10,6	-10,6	1,4	1,4	8,2	8,2	7,2	7,2	-13,5	-13,5	8,5	8,5	10,6		7,1	7,1
RWA 1, Kaltende		100!	-5,5	-5,5	-9,3	-9,3	7,2	7,2	10,3	10,3	9,0	9.0	-11,7	-11,7	11,0	11,0	11,4		7,2	7,2
RWA_2, Kaltende		1001	-3,9	-3,9	-9,3	-9,3	-3,7	-3,7	5,8	5,8	7,6	7,6	-10,2	-10,2	5,5	5,5	7,8		3,8	3,8
Kamin Wanne 3		1001	33,9	33,9	23,6		26,4	26,4	26,9	26,9	29,0	29,0	21,1	21,1	20,5	20,5	22,7	22,7	20,0	
Rückkühler Wannenkühlung E0	_	101!	36,7	31,7	23,0	18,2	23,6	18,6	27,4	20,9	25,5	20,5	18,6	13,6	30,6	25,6	34,8		34,3	
Rückkühler Scherbenwasser E0		1011	34,4	29,4	24,1	19,1	24,4	19,4	28,5	23,5	26,4	21,4	19,2	14,2	32,0	27,0	36,2		32,9	
Rückkühler TGA E0		1011	40,2	35,2	22,5	17,5	22,8	17,8	26,3	21,3	24,8	19,8	17,6	12,6	29,6	24,6	34,5		40.6	
Värmepumpen TGA, E0		1031	20,8	20,8	4,4	4,4	4,7	4,7	8,4	8,4	6,6	6,6	-0,2	-0,2	11,3		16,2		17,3	17,3
Zuluft Löschwasserpumpen Südfassade E0		1031	17,8	20,0	4,4	4,4	5,2	4,7	9,0	0,4	7,2	0,0	0,6	-0,2	12,2	11,3	16,2		16,3	17,0
		1021	17,0		10,7		12,9		38,7		22,4		4,9		40,6		33,6		29.4	
_kw Entladung Sand (5/d)		1021											9,4							
Silo-Lkw Entladung (5/d)	_		31,8		14,6		18,7		45,3		31,8		-		47,8		40,4		35,6	
_kw Entladung Scherben (1/d)		102!	21,9		14,7		17,0		43,0		25,5		8,9		44,8		37,7		33,5	
_kw Beladung Fertigwaren W2 (7/d)	_	102!	54,5		29,1		22,4		24,4		21,8		18,2		25,0		21,0		16,0	
kw Beladung Fertigwaren W3 (7/d)		1021	39,1		21,0		29,7		51,0		47,5		16,8		42,9		41,0		38,3	
_kw Entladung Verpackungsmat. W2 (1/d)		!02!	15,4		23,3		58,0		26,8		32,7		15,6		15,1		13,2		9,5	
_kw Entladung Verpackungsmat. W3 (1/d)		1021	9,5		6,8		8,8		14,9		11,3		3,2		17,1		43,4		43,8	
Förderbrücke Gemengelager E +24		1031	24,6	24,6	7,3	7,3	6,3	6,3	31,3	31,3	27,5	27,5	-0,2	-0,2	33,9	33,9	25,8		15,2	15,2
Fahrstrecke Pkw zum Mitarbeiterparkplatz		!02!	19,5	22,7	24,9	28,1	23,7	26,9	18,5	21,7	20,6	23,8	33,6	36,8	7,9	11,1	6,1	9,3	8,9	12,1
Fahrstrecke Lkw Gemengeanlieferung W2+3 (11/d)		1021	21,5		5,3		12,6		35,8		30,7		0,2		37,2		29,6		24,2	
Fahrstrecke Lkw Fertigwaren W2, (7/d)	_	!02!	43,8		39,9		12,8		31,0		25,4		17,1		32,2		24,7		19,4	
Fahrstrecke Lkw Fertigwaren W3, (7/d)		!02!	17,1		-0,2		6,2		31,3		25,5		-5,3		30,8		24,6		19,5	
Fahrstrecke Lkw Verpackungsmaterial W2, (1/d)		!02!	2,4		14,6		33,8		13,2		17,0		-5,7		3,5		0,0		-3,3	
Fahrstrecke Lkw Verpackungsmaterial W3, (1/d)		!02!	14,5		-1,8		19,1		29,2		24,8		-2,9		33,1		33,5		28,1	
Gabelstapler im Freien (1h)		102!	49,3		21,9		20,3		39,4		34,8		11,1		41,0		29,3		26,2	
Dach Wanne 3		!00!	24,2	24,2	18,9	18,9	22,0	22,0	24,3	24,3	24,6	24,6	18,4	18,4	24,0	24,0	22,7	22,7	19,0	
Dach Kaltende	!	!00!	1,4	1,4	-4,6	-4,6	5,2	5,2	9,7	9,7	9,1	9,1	-7,8	-7,8	10,9	10,9	10,8	10,8	5,9	5,9
Dach Pallettierung/Insp.		!00!	-0,5	-0,5	-3,4	-3,4	7,4	7,4	11,2	11,2	10,4	10,4	-7,2	-7,2	13,2	13,2	15,9	15,9	13,5	13,5
kw Rangieren Gemengeanlieferung W2+3	1	!02!	20,0		8,2		14,5		40,3		33,2		3,6		40,4		32,9		28,0	
kw Standgeräusch Gemengeanlieferung W2+3	- 1	!02!	22,2		7,1		10,4		37,2		26,2		0,9		39,3		31,8		26,9	
_kw Rangieren Fertigwaren W2		!02!	42,9		14,7		6,8		17,7		7,1		1,5		24,3		8,2		8,6	
kw Standgeräusch Fertigwaren W2		!02!	43,2		13,3		6,3		7,0		4,6		-0,2		10,4		6,2		0,7	
kw Rangieren Fertigwaren W3		1021	31,2		8,1		9,5		33,1		28,2		1,4		34,8		26,8		21,2	
kw Standgeräusch Fertigwaren W2		!02!	30,5		23,2		27,8		35,5		31,8		18,8		29,5		22,6		19,6	
kw Rangieren Verpackungsmaterial W2	- 1	!02!	9,8		21,4		39,5		19,3		22,1		0,5		10,0		7,4		4,7	
kw Standgeräusch Verpackungsmaterial W2		1021	-0,6		7,4		40,3		19,7		23,1		-0,8		2,4		2,6		-0,4	
		!02!	-6,6		-9,1		11,4		12,2		15,2		-9,4		19,3		33,8		30,5	
kw Rangieren Verpackungsmaterial W3	- 1	!02!	-5,1		-3,6		13,9		19,9		17,2		-2,4		22,9		31,9		30,1	
kw Standgeräusch Verpackungsmaterial W3																	17,3	20,3	18,0	04.6
kw Standgeräusch Verpackungsmaterial W3 Pkw Stellplätze, Mitarbeiterparkplatz		!02!	26,4	29,4	28,2	31,2	28,5	31,5	23,0	26,0	25,9	28,9	41,6	44,6	17,7	20,7	,,0	20,5		21,0
kw Standgeräusch Verpackungsmaterial W3	. !	!02! !02!	26,4 28,0	29,4	28,2 7,4	31,2	28,5 -4,4	31,5		26,0		28,9	41,6 -9,1	44,6	17,7 12,9	20,7	3,9		-8,2	
kw Standgeräusch Verpackungsmaterial W3 Pkw Stellplätze, Mitarbeiterparkplatz	!			29,4 -5,8				31,5 1,4	23,0	26,0	25,9	28,9		44,6 -19,4		20,7			-8,2 2,2	
kw Standgeräusch Verpackungsmaterial W3 Pkw Stellplätze, Mitarbeiterparkplatz Pkw Stellplätze, Besucher	!	!02!	28,0		7,4	-16,4	-4,4		23,0 15,0		25,9 1,2		-9,1		12,9		3,9	8,0		2,2
Lkw Standgeräusch Verpackungsmaterial W3 Pkw Stellplätze, Mitarbeiterparkplatz Pkw Stellplätze, Besucher -assade Nord, Kratzer E+5,3 -assade Ost, Kratzer E+5,3	! !	!02! !00!	28,0 -5,8	-5,8	7,4 -16,4	-16,4 -19,8	-4,4 1,4	1,4	23,0 15,0 10,7	10,7	25,9 1,2 6,8	6,8	-9,1 -19,4	-19,4	12,9 14,5	14,5	3,9 8,0	8,0 -3,0	2,2	2,2 -5,6
Lkw Standgeräusch Verpackungsmaterial W3 Pkw Stellplätze, Mitarbeiterparkplatz Pkw Stellplätze, Besucher =assade Nord, Kratzer E+5,3 =assade Nord, Kratzer E+5,3 =assade Nord, Kratzer E+5,3	! ! !	!02! !00! !00!	28,0 -5,8 2,0	-5,8 2,0	7,4 -16,4 -19,8	-16,4 -19,8 -16,1	-4,4 1,4 -6,4	1,4 -6,4	23,0 15,0 10,7 8,3	10,7 8,3	25,9 1,2 6,8 4,6	6,8 4,6	-9,1 -19,4 -26,5	-19,4 -26,5	12,9 14,5 -1,8	14,5 -1,8	3,9 8,0 -3,0	8,0 -3,0 -2,8	2,2 -5,6	2,2 -5,6 -5,9
kw Standgeräusch Verpackungsmaterial W3 kw Stellplätze, Mitarbeiterparkplatz kw Stellplätze, Besucher Fassade Nord, Kratzer E+5,3 Fassade Ost, Kratzer E+5,3 Fassade Nord, Kratzer E+5,3 Fassade Ost, Kratzer E+5,3	! ! !	102! 100! 100! 100!	28,0 -5,8 2,0 -2,1	-5,8 2,0 -2,1	7,4 -16,4 -19,8 -16,1	-16,4 -19,8 -16,1 -13,9	-4,4 1,4 -6,4 -8,6	1,4 -6,4 -8,6 -16,2	23,0 15,0 10,7 8,3 6,3	10,7 8,3 6,3	25,9 1,2 6,8 4,6 2,6	6,8 4,6 2,6	-9,1 -19,4 -26,5 -25,1	-19,4 -26,5 -25,1	12,9 14,5 -1,8 3,7	14,5 -1,8 3,7	3,9 8,0 -3,0 -2,8	8,0 -3,0 -2,8 -3,7	2,2 -5,6 -5,9	2,2 -5,6 -5,9 -10,6
Lkw Standgeräusch Verpackungsmaterial W3 kw Stellplätze, Mitarbeiterparkplatz Pów Stellplätze, Besucher Fassade Nord, Kratzer E+5,3 Fassade Nord, Kratzer E+5,3 Fassade Nord, Kratzer E+5,3 Fassade St, Kratzer E+5,3	! ! ! !	102! 100! 100! 100! 100!	28,0 -5,8 2,0 -2,1 7,5 4,4	-5,8 2,0 -2,1 7,5	7,4 -16,4 -19,8 -16,1 -13,9	-16,4 -19,8 -16,1 -13,9	-4,4 1,4 -6,4 -8,6 -16,2	1,4 -6,4 -8,6 -16,2	23,0 15,0 10,7 8,3 6,3 2,4	10,7 8,3 6,3 2,4	25,9 1,2 6,8 4,6 2,6 3,0	6,8 4,6 2,6 3,0	-9,1 -19,4 -26,5 -25,1 -23,6	-19,4 -26,5 -25,1 -23,6	12,9 14,5 -1,8 3,7 0,1	14,5 -1,8 3,7 0,1	3,9 8,0 -3,0 -2,8 -3,7	8,0 -3,0 -2,8 -3,7 -24,0	2,2 -5,6 -5,9 -10,6	2,2 -5,6 -5,9 -10,6 -26,9
Lkw Standgeräusch Verpackungsmaterial W3 Pkw Stellplätze, Mitarbeiterparkplatz Pkw Stellplätze, Besucher Fassade Nord, Kratzer E+5,3 Fassade Nord, Kratzer E+5,3 Fassade Nord, Kratzer E+5,3 Fassade Nord, Kratzer E+5,3 Fassade Ost, Kratzer E+5,3 Fassade Ost, Kratzer E+5,3 Fassade Ost, Kratzer E+5,3 Fassade Ost, Kratzer E+5,3 Fassade Süd, IS-Werkst. E+5,3	! ! ! !	102! 100! 100! 100! 100! 100!	28,0 -5,8 2,0 -2,1 7,5 4,4 3,7	-5,8 2,0 -2,1 7,5 4,4	7,4 -16,4 -19,8 -16,1 -13,9 -17,5 -20,7	-16,4 -19,8 -16,1 -13,9 -17,5 -20,7	-4,4 1,4 -6,4 -8,6 -16,2 -22,4	1,4 -6,4 -8,6 -16,2 -22,4 -26,5	23,0 15,0 10,7 8,3 6,3 2,4 -5,5 -19,7	10,7 8,3 6,3 2,4 -5,5	25,9 1,2 6,8 4,6 2,6 3,0 -3,0	6,8 4,6 2,6 3,0 -3,0	-9,1 -19,4 -26,5 -25,1 -23,6 -22,0	-19,4 -26,5 -25,1 -23,6 -22,0	12,9 14,5 -1,8 3,7 0,1 -7,8	14,5 -1,8 3,7 0,1 -7,8 -17,9	3,9 8,0 -3,0 -2,8 -3,7 -24,0 -24,2	8,0 -3,0 -2,8 -3,7 -24,0 -24,2	2,2 -5,6 -5,9 -10,6 -26,9	2,2 -5,6 -5,9 -10,6 -26,9 -27,2
kw Standgeräusch Verpackungsmaterial W3 kw Steliplätze, Mitarbeiterparkplatz kw Steliplätze, Mitarbeiterparkplatz kw Steliplätze, Besucher assade Nord, Kratzer E+5,3 assade Ost, Kratzer E+5,3 assade Ost, Kratzer E+5,3 assade Ost, Kratzer E+5,3 assade Ost, Kratzer E+5,3 assade Süd, IS-Werkst, E+5,3 assade Süd, Kratzer E+5,3	! ! ! ! !	102! 100! 100! 100! 100! 100! 100! 100!	28,0 -5,8 2,0 -2,1 7,5 4,4 3,7 6,7	-5,8 2,0 -2,1 7,5 4,4 3,7 6,7	7,4 -16,4 -19,8 -16,1 -13,9 -17,5 -20,7 -18,4	-16,4 -19,8 -16,1 -13,9 -17,5 -20,7 -18,4	-4,4 1,4 -6,4 -8,6 -16,2 -22,4 -26,5 -21,8	1,4 -6,4 -8,6 -16,2 -22,4 -26,5 -21,8	23,0 15,0 10,7 8,3 6,3 2,4 -5,5 -19,7 -17,5	10,7 8,3 6,3 2,4 -5,5 -19,7 -17,5	25,9 1,2 6,8 4,6 2,6 3,0 -3,0 -19,3 -18,6	6,8 4,6 2,6 3,0 -3,0 -19,3 -18,6	-9,1 -19,4 -26,5 -25,1 -23,6 -22,0 -30,8 -26,6	-19,4 -26,5 -25,1 -23,6 -22,0 -30,8 -26,6	12,9 14,5 -1,8 3,7 0,1 -7,8 -17,9	14,5 -1,8 3,7 0,1 -7,8 -17,9	3,9 8,0 -3,0 -2,8 -3,7 -24,0 -24,2 -18,2	8,0 -3,0 -2,8 -3,7 -24,0 -24,2 -18,2	2,2 -5,6 -5,9 -10,6 -26,9 -27,2 -21,3	2,2 -5,6 -5,9 -10,6 -26,9 -27,2 -21,3
kw Standgeräusch Verpackungsmaterial W3 kw Stellplätze, Mitarbeiterparkplatz kw Stellplätze, Besucher Fassade Nord, Kratzer E+5,3 Fassade Nord, Kratzer E+5,3 Fassade Nord, Kratzer E+5,3 Fassade Ost, Kratzer E+5,3 Fassade Ost, Kratzer E+5,3 Fassade Ost, Kratzer E+5,3 Fassade Süd, IS-Werkst. E+5,3 Fassade Süd, Kratzer E+5,3 Fassade Süd, Kratzer E+5,3 Fassade Nord, Kühlluft/Vakuum E+7,4	! ! ! ! !	102! 100! 100! 100! 100! 100! 100! 100!	28,0 -5,8 2,0 -2,1 7,5 4,4 3,7 6,7 2,0	-5,8 2,0 -2,1 7,5 4,4 3,7 6,7 2,0	7,4 -16,4 -19,8 -16,1 -13,9 -17,5 -20,7 -18,4 -8,0	-16,4 -19,8 -16,1 -13,9 -17,5 -20,7 -18,4 -8,0	-4,4 1,4 -6,4 -8,6 -16,2 -22,4 -26,5 -21,8 9,7	1,4 -6,4 -8,6 -16,2 -22,4 -26,5 -21,8 9,7	23,0 15,0 10,7 8,3 6,3 2,4 -5,5 -19,7 -17,5 17,3	10,7 8,3 6,3 2,4 -5,5 -19,7 -17,5	25,9 1,2 6,8 4,6 2,6 3,0 -3,0 -19,3 -18,6 13,3	6,8 4,6 2,6 3,0 -3,0 -19,3 -18,6 13,3	-9,1 -19,4 -26,5 -25,1 -23,6 -22,0 -30,8 -26,6 -9,8	-19,4 -26,5 -25,1 -23,6 -22,0 -30,8 -26,6 -9,8	12,9 14,5 -1,8 3,7 0,1 -7,8 -17,9 -12,3 22,2	14,5 -1,8 3,7 0,1 -7,8 -17,9 -12,3 22,2	3,9 8,0 -3,0 -2,8 -3,7 -24,0 -24,2 -18,2 18,4	8,0 -3,0 -2,8 -3,7 -24,0 -24,2 -18,2 18,4	2,2 -5,6 -5,9 -10,6 -26,9 -27,2 -21,3 11,3	2,2 -5,6 -5,9 -10,6 -26,9 -27,2 -21,3 11,3
.kw Standgeräusch Verpackungsmaterial W3 *kw Steliplätze, Mitarbeiterparkplatz *kw Steliplätze, Besucher *assade Nord, Kratzer E+5,3 *assade Ost, Kratzer E+5,3 *assade Sud, IS-Werkst. E+5,3 *assade Süd, IS-Werkst. E+5,3 *assade Süd, Kratzer E+5,3 *assade Süd, Kratzer E+5,3 *assade Süd, Kratzer E+7,4 *assade Süd, Kühlluft/Vakuum E+7,4 *assade Süd, Kühlluft/Vakuum E+7,4	! ! ! ! !	102! 100! 100! 100! 100! 100! 100! 100!	28,0 -5,8 2,0 -2,1 7,5 4,4 3,7 6,7 2,0 12,8	-5,8 2,0 -2,1 7,5 4,4 3,7 6,7 2,0	7,4 -16,4 -19,8 -16,1 -13,9 -17,5 -20,7 -18,4 -8,0 -11,2	-16,4 -19,8 -16,1 -13,9 -17,5 -20,7 -18,4 -8,0 -11,2	-4,4 1,4 -6,4 -8,6 -16,2 -22,4 -26,5 -21,8 9,7 -14,1	1,4 -6,4 -8,6 -16,2 -22,4 -26,5 -21,8 9,7 -14,1	23,0 15,0 10,7 8,3 6,3 2,4 -5,5 -19,7 -17,5 17,3 -9,8	10,7 8,3 6,3 2,4 -5,5 -19,7 -17,5 17,3 -9,8	25,9 1,2 6,8 4,6 2,6 3,0 -3,0 -19,3 -18,6 13,3 -11,2	6,8 4,6 2,6 3,0 -3,0 -19,3 -18,6 13,3 -11,2	-9,1 -19,4 -26,5 -25,1 -23,6 -22,0 -30,8 -26,6 -9,8 -18,7	-19,4 -26,5 -25,1 -23,6 -22,0 -30,8 -26,6 -9,8 -18,7	12,9 14,5 -1,8 3,7 0,1 -7,8 -17,9 -12,3 22,2 -5,0	14,5 -1,8 3,7 0,1 -7,8 -17,9 -12,3 22,2 -5,0	3,9 8,0 -3,0 -2,8 -3,7 -24,0 -24,2 -18,2 18,4 -6,9	8,0 -3,0 -2,8 -3,7 -24,0 -24,2 -18,2 18,4 -6,9	2,2 -5,6 -5,9 -10,6 -26,9 -27,2 -21,3 11,3 -10,1	2,2 -5,6 -5,9 -10,6 -26,9 -27,2 -21,3 11,3 -10,1
kw Standgeräusch Verpackungsmaterial W3 kw Stellplätze, Mitarbeiterparkplatz kw Stellplätze, Besucher assade Nord, Kratzer E+5,3 assade Ost, Kratzer E+5,3 assade Süd, Kühlluft/Vakuum E+7,4 assade Süd, Kwilluft/Vakuum E+7,4 assade Süd, Kompressorstation E+7,4		102! 100! 100! 100! 100! 100! 100! 100!	28,0 -5,8 2,0 -2,1 7,5 4,4 3,7 6,7 2,0 12,8 6,8	-5,8 2,0 -2,1 7,5 4,4 3,7 6,7 2,0 12,8 6,8	7,4 -16,4 -19,8 -16,1 -13,9 -17,5 -20,7 -18,4 -8,0 -11,2 -18,1	-16,4 -19,8 -16,1 -13,9 -17,5 -20,7 -18,4 -8,0 -11,2 -18,1	-4,4 1,4 -6,4 -8,6 -16,2 -22,4 -26,5 -21,8 9,7 -14,1 -19,5	1,4 -6,4 -8,6 -16,2 -22,4 -26,5 -21,8 9,7 -14,1 -19,5	23,0 15,0 10,7 8,3 6,3 2,4 -5,5 -19,7 -17,5 17,3 -9,8 -15,4	10,7 8,3 6,3 2,4 -5,5 -19,7 -17,5 17,3 -9,8 -15,4	25,9 1,2 6,8 4,6 2,6 3,0 -3,0 -19,3 -18,6 13,3 -11,2 -17,1	6,8 4,6 2,6 3,0 -3,0 -19,3 -18,6 13,3 -11,2 -17,1	-9,1 -19,4 -26,5 -25,1 -23,6 -22,0 -30,8 -26,6 -9,8 -18,7 -24,0	-19,4 -26,5 -25,1 -23,6 -22,0 -30,8 -26,6 -9,8 -18,7 -24,0	12,9 14,5 -1,8 3,7 0,1 -7,8 -17,9 -12,3 22,2 -5,0 -12,0	14,5 -1,8 3,7 0,1 -7,8 -17,9 -12,3 22,2 -5,0 -12,0	3,9 8,0 -3,0 -2,8 -3,7 -24,0 -24,2 -18,2 18,4 -6,9 -11,3	8,0 -3,0 -2,8 -3,7 -24,0 -24,2 -18,2 18,4 -6,9 -11,3	2,2 -5,6 -5,9 -10,6 -26,9 -27,2 -21,3 11,3 -10,1 -14,5	2,2 -5,6 -5,9 -10,6 -26,9 -27,2 -21,3 11,3 -10,1 -14,5
kw Standgeräusch Verpackungsmaterial W3 kw Stellplätze, Mitarbeiterparkplatz kw Stellplätze, Besucher Fassade Nord, Kratzer E+5,3 Fassade Ost, Kratzer E+5,3 Fassade Süd, IS-Werkst. E+5,3 Fassade Süd, Kratzer E+5,3 Fassade Süd, Kratzer E+5,3 Fassade Süd, Kratzer E+5,3 Fassade Süd, Kratzer E+5,3 Fassade Süd, Kühlluft/Vakuum E+7,4 Fassade Süd, Kühlluft/Vakuum E+7,4 Fassade Süd, Kompressorstation E+7,4 Fassade West, Kompressorstation E+7,4		102! 100! 100! 100! 100! 100! 100! 100!	28,0 -5,8 2,0 -2,1 7,5 4,4 3,7 6,7 2,0 12,8 6,8 -12.8	-5,8 2,0 -2,1 7,5 4,4 3,7 6,7 2,0 12,8 6,8 -12,8	7,4 -16,4 -19,8 -16,1 -13,9 -17,5 -20,7 -18,4 -8,0 -11,2 -18,1 -22,3	-16,4 -19,8 -16,1 -13,9 -17,5 -20,7 -18,4 -8,0 -11,2 -18,1 -22,3	-4,4 1,4 -6,4 -8,6 -16,2 -22,4 -26,5 -21,8 9,7 -14,1 -19,5 -22,3	1,4 -6,4 -8,6 -16,2 -22,4 -26,5 -21,8 9,7 -14,1 -19,5 -22,3	23,0 15,0 10,7 8,3 6,3 2,4 -5,5 -19,7 -17,5 17,3 -9,8 -15,4 -18,2	10,7 8,3 6,3 2,4 -5,5 -19,7 -17,5 17,3 -9,8 -15,4 -18,2	25,9 1,2 6,8 4,6 2,6 3,0 -3,0 -19,3 -18,6 13,3 -11,2 -17,1 -20,5	6,8 4,6 2,6 3,0 -3,0 -19,3 -18,6 13,3 -11,2 -17,1 -20,5	-9,1 -19,4 -26,5 -25,1 -23,6 -22,0 -30,8 -26,6 -9,8 -18,7 -24,0 -27,4	-19,4 -26,5 -25,1 -23,6 -22,0 -30,8 -26,6 -9,8 -18,7 -24,0 -27,4	12,9 14,5 -1,8 3,7 0,1 -7,8 -17,9 -12,3 22,2 -5,0 -12,0 -14,8	14,5 -1,8 3,7 0,1 -7,8 -17,9 -12,3 22,2 -5,0 -12,0 -14,8	3,9 8,0 -3,0 -2,8 -3,7 -24,0 -24,2 -18,2 18,4 -6,9 -11,3 -13,3	8,0 -3,0 -2,8 -3,7 -24,0 -24,2 -18,2 18,4 -6,9 -11,3 -13,3	2,2 -5,6 -5,9 -10,6 -26,9 -27,2 -21,3 11,3 -10,1 -14,5 -16,0	2,2 -5,6 -5,9 -10,6 -26,9 -27,2 -21,3 11,3 -10,1 -14,5 -16,0
Lkw Standgeräusch Verpackungsmaterial W3 kw Steliplätze, Mitarbeiterparkplatz kw Steliplätze, Besucher assade Nord, Kratzer E+5,3 assade Ost, Kratzer E+5,3 assade Sud, IS-Werkst. E+5,3 assade Sud, IS-Werkst. E+5,3 assade Sud, Kratzer E+6,3 assade Sud, Kratzer E+7,4 assade Sud, Kinder E+7,4 assade Sud, Kompressorstation E+7,4 assade West. Kompressorstation E+7,4 assade West. Kompressorstation E+7,4 assade West. Kompressorstation E+7,4 assade Word, Scherbenebene E+7,4		102! 100! 100! 100! 100! 100! 100! 100!	28,0 -5,8 2,0 -2,1 7,5 4,4 3,7 6,7 2,0 12,8 6,8 -12,8 -14,9	-5,8 2,0 -2,1 7,5 4,4 3,7 6,7 2,0 12,8 6,8 -12,8 -14,9	7,4 -16,4 -19,8 -16,1 -13,9 -17,5 -20,7 -18,4 -8,0 -11,2 -18,1 -22,3 -20,9	-16,4 -19,8 -16,1 -13,9 -17,5 -20,7 -18,4 -8,0 -11,2 -18,1 -22,3 -20,9	-4,4 1,4 -6,4 -8,6 -16,2 -22,4 -26,5 -21,8 9,7 -14,1 -19,5 -22,3 -3,6	1,4 -6,4 -8,6 -16,2 -22,4 -26,5 -21,8 9,7 -14,1 -19,5 -22,3 -3,6	23,0 15,0 10,7 8,3 6,3 2,4 -5,5 -19,7 -17,5 17,3 -9,8 -15,4 -18,2 3,1	10,7 8,3 6,3 2,4 -5,5 -19,7 -17,5 17,3 -9,8 -15,4 -18,2 3,1	25,9 1,2 6,8 4,6 2,6 3,0 -3,0 -19,3 -18,6 13,3 -11,2 -17,1 -20,5 -0,2	6,8 4,6 2,6 3,0 -3,0 -19,3 -18,6 13,3 -11,2 -17,1 -20,5 -0,2	-9,1 -19,4 -26,5 -25,1 -23,6 -22,0 -30,8 -26,6 -9,8 -18,7 -24,0 -27,4 -24,4	-19,4 -26,5 -25,1 -23,6 -22,0 -30,8 -26,6 -9,8 -18,7 -24,0 -27,4 -24,4	12,9 14,5 -1,8 3,7 0,1 -7,8 -17,9 -12,3 22,2 -5,0 -12,0 -14,8 8,7	14,5 -1,8 3,7 0,1 -7,8 -17,9 -12,3 22,2 -5,0 -12,0 -14,8 8,7	3,9 8,0 -3,0 -2,8 -3,7 -24,0 -24,2 -18,2 18,4 -6,9 -11,3 10,2	8,0 -3,0 -2,8 -3,7 -24,0 -24,2 -18,2 18,4 -6,9 -11,3 -13,3 10,2	2,2 -5,6 -5,9 -10,6 -26,9 -27,2 -21,3 11,3 -10,1 -14,5 -16,0 2,7	2,2 -5,6 -10,6 -26,9 -27,2 -21,3 11,3 -10,1 -14,5 -16,0 2,7
kw Standgeräusch Verpackungsmaterial W3 kw Stellplatze, Mitarbeiterparkplatz kw Stellplatze, Besucher Fassade Nord, Kratzer E+5,3 Fassade Ost, Kratzer E+5,3 Fassade Süd, Kompressorstation E+7,4 Fassade Süd, Scherbenebene E+7,4 Fassade Nord, Scherbenebene E+7,4 Fassade Süd, Scherbenebene E+7,4		102 100	28,0 -5,8 2,0 -2,1 7,5 4,4 3,7 6,7 2,0 12,8 6,8 -12,8 -14,9 -17,1	-5,8 2,0 -2,1 7,5 4,4 3,7 6,7 2,0 12,8 6,8 -12,8 -14,9 -17,1	7,4 -16,4 -19,8 -16,1 -13,9 -17,5 -20,7 -18,4 -8,0 -11,2 -18,1 -22,3 -20,9 -28,1	-16,4 -19,8 -16,1 -13,9 -17,5 -20,7 -18,4 -8,0 -11,2 -18,1 -22,3 -20,9 -28,1	-4,4 1,4 -6,4 -8,6 -16,2 -22,4 -26,5 -21,8 9,7 -14,1 -19,5 -22,3 -3,6 -27,9	1,4 -6,4 -8,6 -16,2 -22,4 -26,5 -21,8 9,7 -14,1 -19,5 -22,3 -3,6 -27,9	23,0 15,0 10,7 8,3 6,3 2,4 -5,5 -19,7 -17,5 17,3 -9,8 -15,4 -18,2 3,1 -23,8	10,7 8,3 6,3 2,4 -5,5 -19,7 -17,5 17,3 -9,8 -15,4 -18,2 3,1 -23,8	25,9 1,2 6,8 4,6 2,6 3,0 -19,3 -18,6 13,3 -11,2 -17,1 -20,5 -0,2 -25,8	6,8 4,6 2,6 3,0 -3,0 -19,3 -18,6 13,3 -11,2 -17,1 -20,5 -0,2 -25,8	-9,1 -19,4 -26,5 -25,1 -23,6 -22,0 -30,8 -26,6 -9,8 -18,7 -24,0 -27,4 -24,4 -33,0	-19,4 -26,5 -25,1 -23,6 -22,0 -30,8 -26,6 -9,8 -18,7 -24,0 -27,4 -24,4 -33,0	12,9 14,5 -1,8 3,7 0,1 -7,8 -17,9 -12,3 22,2 -5,0 -12,0 -14,8 8,7 -20,2	14,5 -1,8 3,7 0,1 -7,8 -17,9 -12,3 22,2 -5,0 -12,0 -14,8 8,7 -20,2	3,9 8,0 -3,0 -2,8 -3,7 -24,0 -18,2 -18,4 -6,9 -11,3 10,2 -16,5	8,0 -3,0 -2,8 -3,7 -24,0 -24,2 -18,2 18,4 -6,9 -11,3 -13,3 10,2 -16,5	2,2 -5,6 -5,9 -10,6 -26,9 -27,2 -21,3 11,3 -10,1 -14,5 -16.0 2,7 -19,1	2,2 -5,6 -10,6 -26,9 -27,2 -21,3 11,3 -10,1 -14,5 -16,0 2,7 -19,1
kw Standgeräusch Verpackungsmaterial W3 kw Stellplätze, Mitarbeiterparkplatz kw Stellplätze, Besucher Fassade Nord, Kratzer E+5,3 Fassade Ost, Kratzer E+5,3 Fassade Süd, IS-Werkst. E+5,3 Fassade Süd, Kratzer E+5,3 Fassade Süd, Kratzer E+5,3 Fassade Süd, Kühlluft/Vakuum E+7,4 Fassade Süd, Kühlluft/Vakuum E+7,4 Fassade Süd, Kompressorstation E+7,4 Fassade West, Kompressorstation E+7,4 Fassade West, Kompressorstation E+7,4 Fassade Word, Scherbenebene E+7,4 Fassade Süd, Scherbenebene E+7,4 Fassade Süd, Scherbenebene E+7,4 Fassade Nord, Wanne E+11		102 100	28,0 -5,8 2,0 -2,1 7,5 4,4 3,7 6,7 2,0 12,8 6,8 -12,8 -14,9 -17,1 24,3	-5,8 2,0 -2,1 7,5 4,4 3,7 6,7 2,0 12,8 6,8 -12,8 -14,9 -17,1 24,3	7,4 -16,4 -19,8 -16,1 -13,9 -17,5 -20,7 -18,4 -8,0 -11,2 -18,1 -22,3 -20,9 -28,1 18,3	-16,4 -19,8 -16,1 -13,9 -17,5 -20,7 -18,4 -8,0 -11,2 -18,1 -22,3 -20,9 -28,1 18,3	-4,4 1,4 -6,4 -8,6 -16,2 -22,4 -26,5 -21,8 9,7 -14,1 -19,5 -22,3 -3,6 -27,9 28,8	1,4 -6,4 -8,6 -16,2 -22,4 -26,5 -21,8 9,7 -14,1 -19,5 -22,3 -3,6 -27,9 28,8	23,0 15,0 10,7 8,3 6,3 2,4 -5,5 -19,7 -17,5 17,3 -9,8 -15,4 -18,2 3,1 -23,8 35,4	10,7 8,3 6,3 2,4 -5,5 -19,7 -17,5 17,3 -9,8 -15,4 -18,2 3,1 -23,8 35,4	25,9 1,2 6,8 4,6 2,6 3,0 -3,0 -19,3 -18,6 13,3 -11,2 -17,1 -20.5 -0,2 -25,8 32,2	6,8 4,6 2,6 3,0 -3,0 -19,3 -18,6 13,3 -11,2 -17,1 -20,5 -0,2 -25,8 32,2	-9,1 -19,4 -26,5 -25,1 -23,6 -22,0 -30,8 -26,6 -9,8 -18,7 -24,0 -27,4 -24,4 -33,0 15,5	-19,4 -26,5 -25,1 -23,6 -22,0 -30,8 -26,6 -9,8 -18,7 -24,0 -27,4 -24,4 -33,0 15,5	12,9 14,5 -1,8 3,7 0,1 -7,8 -17,9 -12,3 22,2 -5,0 -12,0 -14,8 8,7 -20,2 38,8	14,5 -1,8 3,7 0,1 -7,8 -17,9 -12,3 22,2 -5,0 -12,0 -14,8 8,7 -20,2 38,8	3,9 8,0 -3,0 -2,8 -3,7 -24,0 -24,2 -18,2 18,4 -6,9 -11,3 10,2 -16,5 33,8	8,0 -3,0 -2,8 -3,7 -24,0 -24,2 -18,2 -18,4 -6,9 -11,3 -13,3 10,2 -16,5 33,8	2,2 -5,6 -5,9 -10,6 -26,9 -27,2 -21,3 11,3 -10,1 -14,5 -16.0 2,7 -19,1 28,7	2,2 -5,6 -10,6 -26,9 -27,2 -21,3 -11,3 -10,1 -14,5 -16,0 2,7 -29,7
Lkw Standgeräusch Verpackungsmaterial W3 kw Steliplätze, Mitarbeiterparkplatz kw Steliplätze, Besucher assade Nord, Kratzer E+5,3 assade Ost, Kratzer E+5,3 assade Sud, StWerkst. E+5,3 assade Sud, IS-Werkst. E+5,3 assade Sud, Kratzer E+5,3 assade Sud, Kratzer E+5,3 assade Sud, Kratzer E+5,4 assade Sud, Kratzer E+5,4 assade Sud, Kompressorstation E+7,4 assade West. Kompressorstation E+7,4 assade West. Kompressorstation E+7,4 assade Word, Scherbenebene E+7,4 assade Nord, Scherbenebene E+7,4 assade Nord, Wanne E+11 assade Nord, Wanne E+11		1021 1001	28,0 -5,8 2,0 -2,1 7,5 4,4 3,7 6,7 2,0 12,8 -12,8 -14,9 -17,1 24,3 26,3	-5,8 2,0 -2,1 7,5 4,4 3,7 6,7 2,0 12,8 6,8 -12,8 -14,9 -17,1 24,3 26,3	7,4 -16,4 -19,8 -16,1 -13,9 -17,5 -20,7 -18,4 -8,0 -11,2 -18,1 -22,3 -20,9 -28,1 18,3 21,0	-16,4 -19,8 -16,1 -13,9 -17,5 -20,7 -18,4 -8,0 -11,2 -18,1 -22,3 -20,9 -28,1 18,3 21,0	-4,4 1,4 -6,4 -8,6 -16,2 -22,4 -26,5 -21,8 9,7 -14,1 -19,5 -22,3 -3,6 -27,9 28,8 22,9	1,4 -6,4 -8,6 -16,2 -22,4 -26,5 -21,8 9,7 -14,1 -19,5 -22,3 -3,6 -27,9 28,8 22,9	23,0 15,0 10,7 8,3 6,3 2,4 -5,5 -19,7 -17,5 17,3 -9,8 -15,4 -18,2 3,1 -23,8 35,4 31,7	10,7 8,3 6,3 2,4 -5,5 -19,7 -17,5 17,3 -9,8 -15,4 -18,2 3,1 -23,8 35,4 31,7	25,9 1,2 6,8 4,6 2,6 3,0 -3,0 -19,3 -18,6 13,3 -11,2 -17,1 -20.5 -0,2 -25,8 32,2 29,0	6,8 4,6 2,6 3,0 -3,0 -19,3 -18,6 13,3 -11,2 -17,1 -20,5 -0,2 -25,8 32,2 29,0	-9,1 -19,4 -26,5 -25,1 -23,6 -22,0 -30,8 -26,6 -9,8 -18,7 -24,0 -27,4 -24,4 -33,0 15,5 14,1	-19,4 -26,5 -25,1 -23,6 -22,0 -30,8 -26,6 -9,8 -18,7 -24,0 -27,4 -24,4 -33,0 15,5 14,1	12,9 14,5 -1,8 3,7 0,1 -7,8 -17,9 -12,3 22,2 -5,0 -12,0 -14,8 8,7 -20,2 38,8 29,4	14,5 -1,8 3,7 0,1 -7,8 -17,9 -12,3 22,2 -5,0 -12,0 -14,8 8,7 -20,2 38,8 29,4	3,9 8,0 -3,0 -2,8 -3,7 -24,0 -24,2 -18,2 18,4 -6,9 -11,3 10,2 -16,5 33,8 23,2	8,0 -3,0 -2,8 -3,7 -24,0 -24,2 -18,2 18,4 -6,9 -11,3 -13,3 10,2 -16,5 33,8 23,2	2,2 -5,6 -5,9 -10,6 -26,9 -27,2 -21,3 11,3 -10,1 -14,5 -16,0 2,7 -19,1 28,7 18,4	2,2 -5,6 -10,6 -26,5 -27,2 -21,3 -10,- -14,5 -16,0 2,1 -19,- 28,1 18,4
Lkw Standgeräusch Verpackungsmaterial W3 Pkw Stellplatze, Birabeiterparkplatz Pkw Stellplatze, Besucher Fassade Nord, Kratzer E+5,3 Fassade Ost, Kratzer E+5,3 Fassade Sud, Kratzer E+5,3 Fassade Nord, Kühlluft/Vakuum E+7,4 Fassade Sud, Kompressorstation E+7,4 Fassade West, Kompressorstation E+7,4 Fassade West, Kompressorstation E+7,4 Fassade Nord, Wanne E+11 Fassade Nord, Wanne E+11 Fassade Nord, Wanne E+11		(1021 (100	28,0 -5,8 2,0 -2,1 7,5 4,4 3,7 6,7 2,0 12,8 -12,8 -14,9 -17,1 24,3 26,3 36,7	-5,8 2,0 -2,1 7,5 4,4 3,7 6,7 2,0 12,8 6,8 -12,8 -14,9 -17,1 24,3 26,3 36,7	7,4 -16,4 -19,8 -16,1 -13,9 -17,5 -20,7 -18,4 -8,0 -11,2 -18,1 -22,3 -20,9 -28,1 18,3 21,0 23,7	-16,4 -19,8 -16,1 -13,9 -17,5 -20,7 -18,4 -8,0 -11,2 -18,1 -22,3 -20,9 -28,1 18,3 21,0 23,7	-4,4 1,4 -6,4 -8,6 -16,2 -22,4 -26,5 -21,8 9,7 -14,1 -19,5 -22,3 -3,6 -27,9 28,8 22,9 22,2	1,4 -6,4 -8,6 -16,2 -22,4 -26,5 -21,8 9,7 -14,1 -19,5 -22,3 -3,6 -27,9 28,8 22,9 22,2	23,0 15,0 10,7 8,3 6,3 2,4 -5,5 -19,7 -17,5 17,3 -9,8 -15,4 -18.2 3,1 -23,8 35,4 31,7 30,2	10,7 8,3 6,3 2,4 -5,5 -19,7 -17,5 17,3 -9,8 -15,4 -18,2 3,1 -23,8 35,4 31,7 30,2	25,9 1,2 6,8 4,6 2,6 3,0 -3,0 -19,3 -18,6 13,3 -11,2 -17,1 -20,5 -0,2 -25,8 32,2 29,0 32,0	6,8 4,6 2,6 3,0 -3,0 -19,3 -18,6 13,3 -11,2 -17,1 -20,5 -0,2 -25,8 32,2 29,0 32,0	-9,1 -19,4 -26,5 -25,1 -23,6 -22,0 -30,8 -26,6 -9,8 -18,7 -24,0 -27,4 -24,4 -33,0 15,5 14,1 19,5	-19,4 -26,5 -25,1 -23,6 -22,0 -30,8 -26,6 -9,8 -18,7 -24,0 -27,4 -24,4 -33,0 15,5 14,1 19,5	12,9 14,5 -1,8 3,7 0,1 -7,8 -17,9 -12,3 22,2 -5,0 -12,0 -14,8 8,7 -20,2 38,8 29,4 30,0	14,5 -1,8 3,7 0,1 -7,8 -17,9 -12,3 22,2 -5,0 -12,0 -14,8 8,7 -20,2 38,8 29,4 30,0	3,9 8,0 -3,0 -2,8 -3,7 -24,0 -24,2 -18,2 -11,3 -13,3 10,2 -16,5 33,8 23,2 22,4	8,0 -3,0 -2,8 -3,7 -24,0 -24,2 -18,2 18,4 -6,9 -11,3 10,2 -16,5 33,8 23,2 22,4	2,2 -5,6 -5,9 -10,6 -26,9 -27,2 -21,3 11,3 -10,1 -14,5 -16,0 2,7 -19,1 28,7 18,4 15,5	2,2 -5,6 -10,6 -26,5 -27,2 -21,3 -10,6 -14,5 -16,0 2,7 -19,7 28,7 18,4 15,5
kw Standgeräusch Verpackungsmaterial W3 kw Steliplätze, Mitarbeiterparkplatz kw Steliplätze, Besucher assade Nord, Kratzer E+5,3 assade Ost, Kratzer E+5,3 assade Süd, IS-Werkst. E+5,3 assade Süd, Kratzer E+5,3 assade Süd, Kratzer E+5,3 assade Süd, Kratzer E+5,3 assade Süd, Kühlluft/Vakuum E+7,4 assade Süd, Köhlluft/Vakuum E+7,4 assade Süd, Kompressorstation E+7,4 assade Süd, Kompressorstation E+7,4 assade Nord, Scherbenebene E+7,4 assade Süd, Werkstatt E+11 assade Nord, Wanne E+11 assade Süd, Wanne E+11 assade Süd, Wanne E+11 assade Süd, Wanne E+11		(1021 (100	28,0 -5,8 2,0 -2,1 7,5 4,4 3,7 6,7 2,0 12,8 -12,8 -14,9 -17,1 24,3 26,3 36,7 16,7	-5,8 2,0 -2,1 7,5 4,4 3,7 6,7 2,0 12,8 6,8 -12,8 -14,9 -17,1 24,3 26,3 36,7 16,7	7,4 -16,4 -19,8 -16,1 -13,9 -17,5 -20,7 -18,4 -8,0 -11,2 -18,1 -22,3 -20,9 -28,1 18,3 21,0 23,7 -0,8	-16,4 -19,8 -16,1 -13,9 -17,5 -20,7 -18,4 -8,0 -11,2 -18,1 -22,3 -20,9 -28,1 18,3 21,0 23,7 -0,8	-4,4 1,4 -6,4 -8,6 -16,2 -22,4 -26,5 -21,8 9,7 -14,1 -19,5 -22,3 -3,6 -27,9 28,8 22,9 22,2 -7,9	1,4 -6,4 -8,6 -16,2 -22,4 -26,5 -21,8 9,7 -14,1 -19,5 -22,3 -3,6 -27,9 28,8 22,9 22,2 -7,9	23,0 15,0 10,7 8,3 6,3 2,4 -5,5 -19,7 -17,5 17,3 -9,8 -15,4 -18,2 3,1 -23,8 35,4 31,7 30,2 -3,2	10,7 8,3 6,3 2,4 -5,5 -19,7 -17,5 17,3 -9,8 -15,4 -18,2 3,1 -23,8 35,4 31,7 30,2 -3,2	25,9 1,2 6,8 4,6 2,6 3,0 -3,0 -19,3 -18,6 13,3 -11,2 -17,1 -20,5 -0,2 -25,8 32,2 29,0 32,0 -2,9	6,8 4,6 2,6 3,0 -3,0 -19,3 -18,6 13,3 -11,2 -17,1 -20,5 -0,2 -25,8 32,2 29,0 32,0 -2,9	-9,1 -19,4 -26,5 -25,1 -23,6 -22,0 -30,8 -26,6 -9,8 -18,7 -24,0 -27,4 -24,4 -33,0 15,5 14,1 19,5 -8,5	-19,4 -26,5 -25,1 -23,6 -22,0 -30,8 -26,6 -9,8 -18,7 -24,0 -27,4 -24,4 -33,0 15,5 14,1 19,5 -8,5	12,9 14,5 -1,8 3,7 0,1 -7,8 -17,9 -12,3 22,2 -5,0 -12,0 -14,8 8,7 -20,2 38,8 29,4 30,0 -4,0	14,5 -1,8 3,7 0,1 -7,8 -17,9 -12,3 22,2 -5,0 -12,0 -14,8 8,7 -20,2 38,8 29,4 30,0 -4,0	3,9 8,0 -3,0 -2,8 -3,7 -24,0 -24,2 -18,2 18,4 -6,9 -11,3 10,2 -16,5 33,8 23,2 22,4 -8,2	8,0 -3,0 -2,8 -3,7 -24,0 -24,2 -18,2 18,4 -6,9 -11,3 10,2 -16,5 33,8 23,2 22,4 -8,2	2,2 -5,6 -6,9 -10,6 -26,9 -27,2 -21,3 11,3 -10,1 -14,5 -16,0 2,7 -19,1 28,7 18,4 15,5 -10,1	2,2 -5,6 -10,6 -26,5 -27,2 -21,3 -11,3 -10,7 -14,5 -16,0 2,7 -28,7 18,4 15,5 -10,7
Lkw Standgeräusch Verpackungsmaterial W3 **Rw Stellplätze, Mitarbeiterparkplatz** **Rw Stellplätze, Besucher**		(102 (100	28,0 -5,8 2,0 -2,1 7,5 4,4 3,7 6,7 2,0 12,8 6,8 -12,8 -14,9 -17,1 24,3 26,3 36,7 16,7 33,1	-5,8 2,0 -2,1 7,5 4,4 3,7 6,7 2,0 12,8 6,8 -12,8 -14,9 -17,1 24,3 36,7 16,7 33,1	7,4 -16,4 -19,8 -16,1 -13,9 -17,5 -20,7 -18,4 -8,0 -11,2 -18,1 -22,3 -20,9 -28,1 18,3 21,0 23,7 -0,8 11,6	-16,4 -19,8 -16,1 -13,9 -17,5 -20,7 -18,4 -8,0 -11,2 -18,1 -22,3 -20,9 -28,1 18,3 21,0 23,7 -0,8 11,6	-4,4 1,4 -6,4 -8,6 -16,2 -22,4 -26,5 -21,8 9,7 -14,1 -19,5 -22,3 -27,9 28,8 22,9 22,2 -7,9	1,4 -6,4 -8,6 -16,2 -22,4 -26,5 -21,8 9,7 -14,1 -19,5 -22,3 -3,6 -27,9 28,8 22,9 22,2 -7,9	23,0 15,0 10,7 8,3 6,3 2,4 -5,5 -19,7 -17,5 17,3 -9,8 -15,4 23,1 1-23,8 35,4 31,7 30,2 -3,2	10,7 8,3 6,3 2,4 -5,5 -19,7 -17,5 17,3 -9,8 -15,4 -18,2 3,1 -23,8 35,4 31,7 30,2 -3,2	25,9 1,2 6,8 4,6 2,6 3,0 -19,3 -18,6 13,3 -11,2 -17,1 -20,5 -0,2 -25,8 32,0 32,0 -2,9 10,6	6,8 4,6 2,6 3,0 -3,0 -19,3 -18,6 13,3 -11,2 -17,1 -20,5 -0,2 -25,8 32,2 29,0 32,0 -2,9 10,6	-9,1 -19,4 -26,5 -25,1 -23,6 -22,0 -30,8 -26,6 -9,8 -18,7 -24,0 -27,4 -24,4 -33,0 15,5 14,1 19,5 -8,5 4,8	-19,4 -26,5 -25,1 -23,6 -22,0 -30,8 -18,7 -24,0 -27,4 -24,4 -33,0 15,5 14,1 19,5 -8,5 4,8	12,9 14,5 -1,8 3,7 0,1 -7,8 -17,9 -12,3 22,2 -5,0 -12,0 -14,8 8,7 -20,2 38,8 29,4 30,0 -4,0 15,1	14,5 -1,8 3,7 0,1 -7,8 -17,9 -12,3 22,2 -5,0 -12,0 -14,8 8,7 -20,2 38,8 29,4 30,0 -4,0	3,9 8,0 -3,0 -2,8 -3,7 -24,0 -24,2 -18,2 18,4 -6,9 -11,3 10,2 -16,5 33,8 23,2 22,4 -8,2 10,4	8,0 -3,0 -2,8 -3,7 -24,0 -24,2 -18,2 18,4 -6,9 -11,3 -13,3 10,2 -16,5 33,8 22,4 -8,2	2,2 -5,6 -6,9 -10,6 -26,9 -27,2 -21,3 11,3 -10,1 -14,5 -16,0 2,7 -19,1 28,7 18,4 15,5 -10,1 8,5	2,2,2,2,3,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
Lkw Standgeräusch Verpackungsmaterial W3 Pkw Stellplatze, Mitarbeiterparkplatz Pkw Stellplatze, Besucher Fassade Nord, Kratzer E+5,3 Fassade Ost, Kratzer E+5,3 Fassade Sud, Kratzer E+5,4 Fassade Sud, Kompressorstation E+7,4 Fassade Sud, Kompressorstation E+7,4 Fassade West, Kompressorstation E+7,4 Fassade West, Kompressorstation E+7,4 Fassade West, Kompressorstation E+7,4 Fassade Sud, Scherbenebene E+7,4 Fassade Nord, Wanne E+11 Fassade Sud, Warns E+11		102 100	28,0 -5,8 2,0 -2,1 7,5 4,4 3,7 6,7 2,0 12,8 -14,9 -17,1 24,3 36,7 16,7 33,1 13,6	-5,8 2,0 -2,1 7,5 4,4 3,7 2,0 12,8 6,8 -12,8 -14,9 -17,1 24,3 36,7 16,7 33,1 13,6	7,4 -16,4 -19,8 -16,1 -13,9 -17,5 -20,7 -18,4 -8,0 -11,2 -18,1 -22,3 -20,9 -28,1 18,3 21,0 -3 -1,6 -1,6 -1,6 -1,6 -1,6 -1,6 -1,6 -1,6	-16,4 -19,8 -16,1 -13,9 -17,5 -20,7 -18,4 -8,0 -111,2 -18,1 -22,3 -20,9 -28,1 18,3 21,0 23,7 -0,8 11,6 9,1	-4,4 1,4 -6,4 -8,6 -16,2 -22,4 -26,5 -21,8 9,7 -14,1 -19,5 -2,3 -3,6 -27,9 22,9 22,2 -7,9 7,7	1,4 -6,4 -8,6 -16,2 -22,4 -26,5 -21,8 9,7 -14,1 -19,5 -22,3 -3,6 -27,9 28,8 22,9 22,2 -7,9 7,7	23,0 15,0 10,7 8,3 6,3 2,4 -5,5 17,3 -9,8 -15,4 -18,2 3,1 -23,8 35,4 31,7 30,2 -3,2 11,1 20,2	10,7 8,3 6,3 2,4 -5,5 -19,7 -17,5 17,3 -9,8 -15,4 -18,2 3,1 -23,8 35,4 31,7 30,2 -3,2 11,1 20,2	25,9 1,2 6,8 4,6 2,6 3,0 -19,3 -11,2 -17,1 -20,5 -0,2 -25,8 32,2 29,0 32,0 -2,9 10,6 18,4	6,8 4,6 2,6 3,0 -19,3 -18,6 13,3 -11,2 -17,1 -20,5 -0,2 -25,8 32,2 29,0 32,0 -2,9 10,6 18,4	-9,1 -19,4 -26,5 -25,1 -23,6 -22,0 -30,8 -26,6 -9,8 -18,7 -24,0 -27,4 -24,4 -24,4 -33,0 15,5 14,1 19,5 -8,5 4,8	-19,4 -26,5 -25,1 -23,6 -22,0 -30,8 -26,6 -9,8 -18,7 -24,0 -27,4 -24,4 -33,0 15,5 14,1 19,5 -8,5 4,8 9,2	12,9 14,5 -1,8 3,7 0,1 -7,8 -17,9 -12,3 22,2 -5,0 -12,0 -14,8 8,7 -20,2 38,8 29,4 30,0 -4,0 15,1 28,5	14,5 -1,8 3,7 0,1 -7,8 -17,9 -12,3 22,2 -5,0 -12,0 -14,8 8,7 -20,2 38,8 29,4 30,0 -4,0 15,1 28,5	3,9 8,0 0 -3,0 0 -2,8 8,0 -2,4,0 -2,4,2 2 -18,2 -18,2 -11,3 10,2 -11,3 3,8 33,2 22,4 4,8,2 22,4 4,24,8	8,0 -3,0 -2,8 -3,7 -24,0 -24,2 -18,2 18,4 -6,9 -11,3 10,2 -16,5 33,8 23,2 22,4 -8,2 10,4 24,8	2,2 -5,6 -5,9 -10,6 -26,9 -27,2 -21,3 11,3 -10,1 -14,5 -16,0 2,7 -19,1 28,7 18,4 15,5 -10,1 8,5 17,3	2,2,2,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
Lkw Standgeräusch Verpackungsmaterial W3 **Rw Stellplatze, Märabeiterparkplatz** **Pkw Stellplatze, Besucher** Fassade Nord, Kratzer E+5,3 Fassade Ost, Kratzer E+5,3 Fassade Ost, Kratzer E+5,3 Fassade Ost, Kratzer E+5,3 Fassade Ost, Kratzer E+5,3 Fassade Süd, IS-Werkst. E+5,3 Fassade Süd, IS-Werkst. E+5,3 Fassade Süd, Kratzer E+5,3 Fassade Süd, Kratzer E+5,3 Fassade Süd, Kühlluft/Vakuum E+7,4 Fassade Süd, Kühlluft/Vakuum E+7,4 Fassade Süd, Kompressorstation E+7,4 Fassade Süd, Kompressorstation E+7,4 Fassade West, Kompressorstation E+7,4 Fassade Nord, Scherbenebene E+7,4 Fassade Nord, Scherbenebene E+7,4 Fassade Nord, Wanne E+11 Fassade Süd, Wanne E+11 Fassade Süd, Wanne E+11 Fassade Süd, Wanne E+11 Fassade West, Wanne E+11		(02 (00	28,0 -5,8 2,0 -2,1 7,5 4,4 3,7 6,7 2,0 12,8 6,8 -12,8 -14,9 -17,1 24,3 36,7 16,7 33,1 13,6 14,0	-5,8 2,0 -2,1 7,5 4,4 3,7 6,7 2,0 12,8 6,8 -12,8 -14,9 -17,1 24,3 26,3 36,7 16,7 33,1 13,6 14,0	7,4 -16,4 -19,8 -16,1 -13,9 -17,5 -20,7 -18,4 -8,0 -11,2 -18,1 -22,3 -20,9 -28,1 18,3 21,0 23,7 -0,8 11,6 9,1 4,4	-16,4 -19,8 -16,1 -13,9 -17,5 -20,7 -18,4 -8,0 -11,2 -18,1 -22,3 -20,9 -28,1 18,3 21,0 23,7 -0,8 11,6 9,1 4,4	-4,4 1,4 -6,4 -8,6 -16,2 -22,4 -26,5 -21,8 9,7 -14,1 -19,5 -22,3 -3,6 -27,9 22,8 22,9 22,2 -7,9 7,7,7 15,4 20,0	1,4 -6,4 -8,6 -16,2 -22,4 -26,5 -21,8 9,7 -14,1 -19,5 -22,3 -3,6 -27,9 28,8 22,9 22,2 -7,7 15,4 20,0	23,0 15,0 10,7 8,3 6,3 2,4 -5,5 -19,7 -17,5 17,3 -9,8 -15,4 23,1 -23,8 35,4 31,7 30,2 -3,2 -3,2 2,4 2,4 2,5 3,1 2,4 3,1 3,1 2,4 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1	10,7 8,3 6,3 2,4 -5,5 -19,7 -17,5 17,3 -9,8 -15,4 -18,2 3,1 -23,8 35,4 31,7 30,2 -3,2 11,1 20,2 27,0	25,9 1,2 6,8 4,6 2,6 3,0 -3,0 -19,3 -18,6 13,3 -11,2 -17,1 -20,5 -0,2 29,0 32,0 -29,6 18,4 23,7	6,8 4,6 2,6 3,0 -19,3 -18,6 13,3 -11,2 -17,1 -20,5 -0,2 -25,8 32,2 29,0 32,0 -2,9 10,6 18,4 23,7	-9,1 -19,4 -26,5 -25,1 -23,6 -22,0 -30,8 -26,6 -9,8 -18,7 -24,0 -27,4 -24,4 -33,0 15,5 14,1 19,5 -8,5 4,8 9,2 5,2	-19,4 -26,5 -25,1 -23,6 -22,0 -30,8 -26,6 -9,8 -18,7 -24,0 -27,4 -33,0 15,5 14,1 19,5 -8,5 4,8 9,2 5,2	12,9 14,5 -1,8 3,7 0,1 1-7,8 -17,9 -12,3 22,2 -5,0 -12,0 -14,8 8,7 -20,2 38,8 29,4 30,0 -15,1 28,5 31,6	14,5 -1,8 3,7 0,1 -17,9 -12,3 22,2 -5,0 -12,0 -14,8 8,7 -20,2 38,8 29,4 30,0 -4,0 15,1 28,5 31,6	3,9 8,0 -3,0 -2,8 -3,7 -24,0 -4,8 -2,1 -11,3 -13,3 10,2 -16,5 33,8 23,2 22,4 -8,2 -10,4 -4,2 -8,2 -10,4 -10,	8,0 -3,0 -2,8 -3,7 -24,0 -24,2 -18,2 18,4 -6,9 -11,3 10,2 -16,5 33,8 23,2 22,4 -8,2 10,4 24,8 27,6	2,2 2,5,6,6,9,9,10,6,10,10,10,10,10,10,10,10,10,10,10,10,10,	2,2,2,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
Lkw Standgeräusch Verpackungsmaterial W3 Pkw Stellplätze, Mitarbeiterparkplatz Pkw Stellplätze, Besucher Fassade Nord, Kratzer E+5,3 Fassade Ost, Kratzer E+5,3 Fassade Sud, IS-Werkst. E+5,3 Fassade Sud, IS-Werkst. E+5,3 Fassade Sud, Kratzer E+5,3 Fassade Nord, Kühlluft/Vakuum E+7,4 Fassade Nord, Kühlluft/Vakuum E+7,4 Fassade Sud, Kompressorstation E+7,4 Fassade West, Kompressorstation E+7,4 Fassade Nord, Scherbenebene E+7,4 Fassade Nord, Scherbenebene E+7,4 Fassade Nord, Wanne E+11 Fassade Nord, Wanne E+11 Fassade Süd, Wanne E+11 Fassade Süd, Wanne E+11 Fassade West, Wanne E+11 Fassade West, Wanne E+11 Fassade Nord, Heißende E+11 Fassade Nord, Heißende E+11 Fassade Nord, Heißende E+11 Fassade Nord, Heißende E+11		(02 (00	28,0 -5,8 2,0 -2,1 7,5 6,7 2,0 12,8 6,8 -12,8 -12,9 -17,1 24,3 36,7 16,7 33,1 6,7 33,1 14,0 23,2	-5,8 2,0 -2,1 7,5 4,4 3,7 6,7 2,0 12,8 6,8 -12,8 -14,9 -17,1 24,3 36,7 16,7 33,1 13,6 14,0 23,2	7,4 -16,4 -19,8 -16,1 -13,9 -17,5 -20,7 -18,4 -8,0 -11,2 -23,9 -28,1 18,3 21,0 23,7 -0,8 11,6 4,4 -0,8	-16,4 -19,8 -16,1 -13,9 -17,5 -20,7 -18,4 -8,0 -11,2 -18,1 -22,3 -20,9 -28,1 18,3 21,0 23,7 -0,8 11,6 9,1 4,4 -0,8	-4,4 1,4 -6,4 -8,6 -16,2 -22,4 -26,5 -21,8 9,7 -14,1 -19,5 -22,3 -3,6 -27,9 22,2 -7,9 22,2 -7,9 7,7,7 15,4 20,0 -4,4	1,4 -6,4 -8,6 -16,2 -22,4 -26,5 -21,8 9,7 -14,1 -19,5 -22,3 -3,6 -27,9 28,8 22,9 22,2 -7,9 7,7 15,4 20,0 -4,4	23,0 15,0 10,7 8,3 6,3 2,4 -5,5 -19,7 -17,5 17,3 -9,8 -15,4 -18,2 3,1 -23,8 35,4 31,7 30,2 -3,2 11,1 20,2 27,0 0,4	10,7 8,3 6,3 2,4 -5,5 -19,7 -17,5 17,3 -9,8 -15,4 -18,2 3,1 3-2,3 35,4 31,7 30,2 -3,2 11,1 20,2 27,0 0,4	25,9 1,2 6,8 4,6 3,0 -3,0 -19,3 -18,6 13,3 -11,2 -17,1 -20,5 -0,2 29,0 32,0 -2,9 10,6 18,4 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	6,8 4,6 2,6 3,0 -3,0 -19,3 -18,6 13,3 -11,2 -17,1 -20,5 -0,2 -25,8 32,2 29,0 32,0 -2,9 10,6 18,4 23,7 -0,9	-9,1 -19,4 -26,5 -25,1 -23,6 -22,0 -30,8 -26,6 -9,8 -18,7 -24,0 -27,4 -33,0 15,5 14,1 19,5 -8,5 4,8 9,8 -24,4 -33,0 -27,4 -33,0 -27,4 -33,0 -30,8 -30,	-19,4 -26,5 -25,1 -23,6 -22,0 -30,8 -26,6 -9,8 -18,7 -24,0 -27,4 -24,4 -33,0 15,5 14,1 19,5 -8,5 4,8 9,2 -8,9	12,9 14,5 -1,8 3,7 0,1 -7,8 -17,9 -12,3 22,2 -5,0 -12,0 -14,8 38,8 29,4 30,0 -4,0 15,1 28,5 31,6 7,4	14,5 -1,8 3,7 0,1 -7,8 -17,9 -12,3 22,2 -5,0 -12,0 -14,8 8,7 -20,2 38,8 29,4 30,0 -4,0 -5,5 15,1 15,1 15,1 15,1 15,1 15,1 15,1	3,9 8,0 -3,0 -2,8 -3,7 -24,0 -11,3 -13,3 10,2 -16,5 33,8 23,2 22,4 -8,2 4 24,8 27,6 3,0	8,0 -3,0 -2,4,0 -24,2 -18,2 -18,4 -6,9 -11,3 -13,3 10,2 -16,5 33,8 23,2 22,4 -8,2 10,4 24,8 27,6 3,0	2,2 2-5,6 6-5,9 9-10,6 6-5,9 9-27,2 -21,3 11,3 1-14,5 5-16,0 0,4 15,5 5-10,1 0,4 15,5 5-10,1 0,4 15,5 5-10,1 0,4 15,5 5-10,1 0,4	2,2,2,3,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
Lkw Standgeräusch Verpackungsmaterial W3 **Rw Stellplatze, Märabeiterparkplatz** **Pkw Stellplatze, Besucher** Fassade Nord, Kratzer E+5,3 Fassade Ost, Kratzer E+5,3 Fassade Ost, Kratzer E+5,3 Fassade Ost, Kratzer E+5,3 Fassade Ost, Kratzer E+5,3 Fassade Süd, IS-Werkst. E+5,3 Fassade Süd, IS-Werkst. E+5,3 Fassade Süd, Kratzer E+5,3 Fassade Süd, Kratzer E+5,3 Fassade Süd, Kühlluft/Vakuum E+7,4 Fassade Süd, Kühlluft/Vakuum E+7,4 Fassade Süd, Kompressorstation E+7,4 Fassade Süd, Kompressorstation E+7,4 Fassade West, Kompressorstation E+7,4 Fassade Nord, Scherbenebene E+7,4 Fassade Nord, Scherbenebene E+7,4 Fassade Nord, Wanne E+11 Fassade Süd, Wanne E+11 Fassade Süd, Wanne E+11 Fassade Süd, Wanne E+11 Fassade West, Wanne E+11		(02 (00	28,0 -5,8 2,0 -2,1 7,5 4,4 3,7 6,7 2,0 12,8 6,8 -12,8 -14,9 -17,1 24,3 36,7 16,7 33,1 13,6 14,0	-5,8 2,0 -2,1 7,5 4,4 3,7 6,7 2,0 12,8 6,8 -12,8 -14,9 -17,1 24,3 26,3 36,7 16,7 33,1 13,6 14,0	7,4 -16,4 -19,8 -16,1 -13,9 -17,5 -20,7 -18,4 -8,0 -11,2 -18,1 -22,3 -20,9 -28,1 18,3 21,0 23,7 -0,8 11,6 9,1 4,4	-16,4 -19,8 -16,1 -13,9 -17,5 -20,7 -18,4 -8,0 -11,2 -18,1 -22,3 -20,9 -28,1 18,3 21,0 23,7 -0,8 11,6 9,1 4,4	-4,4 1,4 -6,4 -8,6 -16,2 -22,4 -26,5 -21,8 9,7 -14,1 -19,5 -22,3 -3,6 -27,9 22,8 22,9 22,2 -7,9 7,7,7 15,4 20,0	1,4 -6,4 -8,6 -16,2 -22,4 -26,5 -21,8 9,7 -14,1 -19,5 -22,3 -3,6 -27,9 28,8 22,9 22,2 -7,7 15,4 20,0	23,0 15,0 10,7 8,3 6,3 2,4 -5,5 -19,7 -17,5 17,3 -9,8 -15,4 23,1 -23,8 35,4 31,7 30,2 -3,2 -3,2 2,4 2,4 2,5 3,1 2,4 3,1 3,1 2,4 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1	10,7 8,3 6,3 2,4 -5,5 -19,7 -17,5 17,3 -9,8 -15,4 -18,2 3,1 -23,8 35,4 31,7 30,2 -3,2 11,1 20,2 27,0	25,9 1,2 6,8 4,6 2,6 3,0 -3,0 -19,3 -18,6 13,3 -11,2 -17,1 -20,5 -0,2 29,0 32,0 -29,6 18,4 23,7	6,8 4,6 2,6 3,0 -19,3 -18,6 13,3 -11,2 -17,1 -20,5 -0,2 -25,8 32,2 29,0 32,0 -2,9 10,6 18,4 23,7	-9,1 -19,4 -26,5 -25,1 -23,6 -22,0 -30,8 -26,6 -9,8 -18,7 -24,0 -27,4 -24,4 -33,0 15,5 14,1 19,5 -8,5 4,8 9,2 5,2	-19,4 -26,5 -25,1 -23,6 -22,0 -30,8 -26,6 -9,8 -18,7 -24,0 -27,4 -33,0 15,5 14,1 19,5 -8,5 4,8 9,2 5,2	12,9 14,5 -1,8 3,7 0,1 1-7,8 -17,9 -12,3 22,2 -5,0 -12,0 -14,8 8,7 -20,2 38,8 29,4 30,0 -15,1 28,5 31,6	14,5 -1,8 3,7 0,1 -17,9 -12,3 22,2 -5,0 -12,0 -14,8 8,7 -20,2 38,8 29,4 30,0 -4,0 15,1 28,5 31,6	3,9 8,0 -3,0 -2,8 -3,7 -24,0 -4,8 -2,1 -11,3 -13,3 10,2 -16,5 33,8 23,2 22,4 -8,2 -10,4 -4,2 -8,2 -10,4 -10,	8,0 0 -3,0 0 -2,8 8 -3,7 -24,0 0 -24,2 18,4 4 -11,3 3 10,2 -16,5 33,8 23,2 22,4 8,2 10,4 24,8 3 24,2 3,0 3,0 23,7	2,2 2,5,6,6,9,9,10,6,10,10,10,10,10,10,10,10,10,10,10,10,10,	2,2,2,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,

02.11.23 / 2112876_r3.cna

IBAS · Ingenieurgesellschaft für Bauphysik, Akustik und Schwingungstechnik mbH · 95444 Bayreuth

4.7 Sonstige Emissionen

Geruchsemissionen:

Die Entstehung von Geruchsemissionen kann bei dem hier beantragten Vorhaben vernünftigerweise ausgeschlossen werden. Soweit Fremdscherben zum Einsatz kommen, handelt es sich bei diesen um sauberes Material (sogenanntes PCR-Recyclingglas) aus nachgewiesenen Recyclingströmen. Dazu liegen der Heinz-Glas GmbH & Co. KGaA ein Herkunftsnachweis und eine Scherbenspezifikation von der Fa. KOMI Koppelberg & Migl GmbH in Jettingen (Lieferant für die Fremdscherben) vor (siehe als Anhang beigefügte Schreiben). Dieses PCR-Recycling-glas kommt auch am Standort Piesau zum Einsatz. Deshalb sollen auch dazu keine weiteren Ausführungen erfolgen.

Erschütterungen:

Ebenso treten beim Betrieb der hier zu betrachtenden Anlage zur Herstellung von Glas keine Erschütterungen auf.

Anhang:

- Herkunftsnacheis PCR-Scherbenzukauf, Schreiben der Heinz-Glas GmbH & Co. KGaA vom 28.07.2020 an die Komi Koppelberg & Migl GmbH
- Scherbenspezifikation für PCR-Recyclingglas vom 21.10.2022

Anlagen:

- Herkunftsnachweis PCR-Scherben.pdf
- Scherbenspezifikation KOMI.pdf

Antragsteller: SP Spezialglas Piesau GmbH

Aktenzeichen:

Kleintettau | Germany

HEINZ-GLAS GmbH & Co. KGaA Werk Kleintettau | Glashüttenplatz 1-7 | 96355 Kleintettau | Germany

Komi Koppelberg & Migl GmbH Ringstraße 5-7 71131 Jettingen

28. Juli 2020

Herkunftsnachweis PCR-Scherbenzukauf

Hiermit bestätigt das Unternehmen Komi Koppelberg & Migl GmbH. die HEINZ-GLAS GmbH & Co. KGaA mit sogenannten PCR (post-consumer-recycled) Scherben zu beliefern.

Diese stammen ausschließlich aus nachfolgenden offiziellen Recyclingströmen und dürfen nach DIN ISO 14021 Standard als PCR Scherbe bezeichnet werden:

- Sammlung von Altglas aus Endverbraucherpfandsystemen; Die Entnahme aus dem Umlauf erfolgt bei Abfüllbetrieben in der Qualitätsprüfung.
- Recycling von Flachgläsern aus Endverbraucherentsorgung.
- Recycling von Flachglasabfällen aus Zuschneidebetrieben, die in ihrer Funktion als Retailer einzuordnen sind.

Mit freundlichen Grüßen

Sustainability Management HEINZ-GLAS GmbH & Co.KGaA

Komi Koppelberg & Migl & hbH Unterschrift, Datum, Firmenstempel

HEINZ-GLAS GmbH & Co. KGaA

Werk Kleintellau Glashüttenplatz 1-7 96355 Kleintettau | Germany phone: +49 9269 77 - 0 fax: +49 9269 77 - 333

sales.germany@heinz-glas.com www.heinz-alas.com

Sitz Kleintettau

Registergericht Coburg | HRB 5273 USI.-Id.Nr. DE 255 959 732

Geschäftsführung persönlich haftende Gesellschafterin 1. HEINZ Verwaltungs GmbH Registergericht Coburg | HRB 5186 vertreten durch ihre Geschöftsführer Dipl.-Kff. Carletta Heinz Frank Martin Dr. Jörg Utsch MBA Virginia Elliott

Aufsichtsratsvorsitzender Helmut Laux

Sparkasse Kulmbach-Kronach IBAN DE75 7715 0000 0570 3508 19 BIC BYLADEM I KUB | SWIFT BYLADEMM

HypoVereinsbank Coburg IBAN DE96 7712 0073 0003 4606 90 BIC | SWIFT HYVEDEMM289

Commerzbank Bayreuth IBAN DE60 7734 0076 0134 3300 00 BIC | SWIFT COBADEFF773

Koppelberg & Migl GmbH

Scherbenspezifikation

Produkt und Firmenbezeichnung

Produkt:

PCR-Recyclingglas

Produktbeschreibung:

Ausgangsmaterial Verbundglas weiß und Hohlglas weiß,

Körnung 3-25mm

Zusammensetzung:

Verbundglas 50 % Hohlglas 50 %

Firma:

KOMI Koppelberg & Migl GmbH

(Hersteller und Lieferant)

Ringstr. 5-7, 71131 Jettingen

Telefonnummer:

+49 7452 8884-0

E - Mail:

info@komi.de

Eigenschaft	Min	Max	Einheit
Farbverhältnis Hohlglas-Verbundglas	98,5	99,5	%
Verhältnis von Hohlglas-Verbundglas	50/50	70/30	%
SiO ₂	70,5	73	%
Na ₂ O	12,5	14,5	%
K2O		<0,5	%
MgO	2,7	4,7	%
CaO	8,2	10,2	%
Al2O3	0,4	1,30	%
SO ₃		<0,4	%
Fe ₂ O ₃		<0,5	%
Feuchtigkeit	(1	<u><</u> 2,0	%
Glühverlust		0,20	%
Kömung < 3 mm		10	%
Körnung 4-25 mm		80	%
Körnung >25 mm		10	%
CSP (Keramik, Glaskeramik, Steine, Porzellan		, <3	g/t
Magnetische Metalle		<5	g/t
Nicht magnetische Metalle (Summe) z.B. Aluminium, Blei, Kuper	15	<5	g/t

Lieferant	Werk
KOMI	Spezialglas Piesau GmbH
Datum/Unterschrift: 20. 10.22 Migl 9/6H	Datum/Unterschrift: SP Spezialglas Fiesau GmbH No. 10. 22 Piesay Hüytening 7 98724 Neuhaus a. Rwg.
71131 Jettingen (J. Telefon 0.74.52/ 88.94 -0	398

 $\grave{O}|\bullet @`|| \mathring{a} \not = \& \text{Min} \hat{E} = \hat{E}$

150/161

4.8 Vorgesehene Maßnahmen zur Überwachung aller Emissionen

Die beiden Tuchfilterentstaubungsanlagen und die Bunkeraufsatzfilter werden regelmäßig entsprechend der Herstellervorgaben und den in den Genehmigungsbescheiden aufgeführten Nebenbestimmungen gewartet, gereinigt und ersetzt. Unabhängig davon werden in regelmäßigen Abständen Kontrollgänge durchgeführt, bei denen eventuelle Defekte oder Unregelmäßigkeiten erkannt und abgestellt werden. Letzteres gilt auch für den Betrieb der relevanten Schallquellen wie Lüfter, Pumpen und Ventilatoren. Weitergehende oder fest installierte Überwachungseinrichtungen sind nicht installiert oder vorgesehen.

Antragsteller: SP Spezialglas Piesau GmbH

Aktenzeichen:

4.9 Emissionsgenehmigung gemäß TEHG

Der SP Spezialglas Piesau GmbH liegt eine Genehmigung nach § 4 TEHG vor. Die Anlage ist bei der DEHSt unter dem Aktenzeichen 14250-0051 registriert.

Im Rahmen des hier beantragten Vorhabens sind keine Änderungen bzgl. der TEHG-Genehmigung geplant.

Antragsteller: SP Spezialglas Piesau GmbH

Aktenzeichen:

4.10 Sonstiges

Emissionen während der Bauphase, Ausführungen zur Bauphase:

Ausführungen zum Umfang der durchzuführenden Bautätigkeiten, den dabei geplanten Maßnahmen zur Vermeidung bzw. Minderung von möglichen Luftschadstoff- und Lärmemissionen sowie ergänzende Ausführungen zur Bauphase (z.B. welche Arten von Baumaschinen zum Einsatz kommen) enthalten die beiden Stellungnahmen der cm.project.ing GmbH vom 08.11.2023, die als Anhang zu diesen Ausführungen beigefügt sind. Sie sind als Antworten auf die Nachforderungen der Genehmigungsbehörde vom 27.04.2023 und 25.05.2023 formuliert.

Daraus geht u.a. hervor, dass einer Staubentwicklung während der Rückbauarbeiten durch eine bedarfsgerechte Befeuchtung/Bedüsung mit Wasser vorgebeugt wird. Dies wird bereits in den Ausschreibungsunterlagen für die Rückbauarbeiten so festgeschrieben.

Die Bauarbeiten sollen nur werktags im Zeitraum von 07:00 bis 20:00 Uhr ausgeführt werden, d.h. an Sonn- und Feiertagen sind keine Bautätigkeiten geplant.

Die Bauarbeiten für die Überbauung und Erweiterung des Logistikgebäudes sollen im 2. Quartal 2024 mit der Einrichtung der Baustelle starten und bis spätestens Januar 2026 abgeschlossen sein.

Nähere Ausführungen enthält die als Anhang beigefügte Stellungnahme der cm.project.ing GmbH.

Anlagen:

- zu Punkt 12_HGP_00_Stellungnahme_BImSch_Rev03_gesamt.pdf
- HGP_00_Stellungnahme_BImSch_zur E-Mail vom 25. Mai 2023_01.pdf

Antragsteller: SP Spezialglas Piesau GmbH

Aktenzeichen:

Stellungnahme zum Genehmigungsverfahren

Bauvorhaben der SP Spezialglas Piesau GmbH

Dieses Dokument wurde erstellt von:

cm.project.ing GmbH

REV.	DATUM	ERSTELLT VON	KONTROLLIERT VON	BESTÄTIGT VON	BESCHREIBUNG
02	08.11.2023	NRI			

Sehr geehrte Damen und Herren,

zu Ihrem Schreiben vom 27. April 2022 nehmen wir Stellung zu folgendem Punkt:

Punkt 12) Im Antrag fehlt weitgehend eine Beurteilung zur Bauphase. Welche Maßnahmen werden konkret durchgeführt, welche zusätzlichen Quellen für Emissionen entstehen, dadurch, wie wirken sich diese auf die Schutzgüter aus, welche Maßnahmen zur Minderung der Emissionen, welche durch die Umbaumaßnahmen entstehen, werden, getroffen?

Baumaßnahmen

Rev.:03

I. Rückbaumaßnahme im Bereich der bestehenden Logistikhalle

Hier sind keine massiven, staubbildenden Arbeiten zu erwarten. Im Falle einer Staubentwicklung wird das Bauunternehmen bereits in den Ausschreibungsdokumenten darauf hingewiesen die Entwicklung von Staub mit Wasser / Sprühnebel entgegenzuwirken.

II. <u>Erdarbeiten im vorderen Bereich des Produktionsgebäudes / Bereich des "Heißen Endes"</u>

Auch hier werden im Falle einer Staubentwicklung die in Punkt I. genannten Maßnahmen, umgesetzt.

zu Punkt 12_HGP_00_Stellungnahme_BImSch_Rev03.docx Seite 1 / 4

III. Herstellen von Fundamenten und Rohbauarbeiten

Das Herstellen von Fundamenten bedingt das Setzen von Schalelementen und das Verlegen der Bewehrung.

Der Großteil des Rohbaus wird im Hinblick eines schnellen Baufortschrittes in Fertigteilelementen ausgeführt, so dass zum einen die Baustellenzeit und zum anderen der Baulärm verkürzt wird -> Stahlbetonstützen, Stahlbetonunterzüge, Halbfertigeckenelemente

Ab der Ebene +12,00 m (Produktionsebene) wird das Produktionsgebäude in einer Stahlkonstruktion ausgeführt. Auch hier wird die obere Gebäudestruktur anhand der vorgefertigten Stahlstützen, Stahlunterzüge und Stahldachfachwerk zügig gebaut werden.

Da die Grundwasserlinie laut Bodengutachten in ca. 2 m Tiefe liegt, wird für die Zeit der Erdarbeiten sowie der Erstellung der Fundamente bis zur vollständigen Abbindung eine Grundwasserrückhaltung vorgesehen.

Diese wird das Grundwasser bis Minimum 0,5 m unterhalb der UK der Fundamente halten. Hierzu wird ein separater Antrag bei der unteren Wasserbehörde gestellt (Antrag auf Erteilung oder Änderung einer wasserrechtlichen Erlaubnis gemäß § 8 Wasserhaushaltsgesetz (WHG) für das Entnehmen, Zutage fördern, Zutage leiten und/oder Ableiten1 von Grundwasser nach § 9 Abs. 1 Nr. 5 WHG).

Diese Maßnahmen werden solange durchgeführt bis der verwendet Beton kein wassergefährdender Stoff mehr darstellt (bis zu 6 Wochen nach Gießen des letzten Fundaments).

IV. Wetterfeste Hülle

Die Fassade des Produktionsgebäudes wird ebenfalls mit Hilfe von vorgefertigten Fassadenelementen erstellt. Hierzu wird eine Fassadenkassette an dem Rohbau (Stahlbeton, Stahl) gesetzt, mit Mineralwolle (nicht brennbar) gefüllt und abschließend mit einem Trapezblech geschlossen.

Die Arbeiten werden voraussichtlich mit Hebeanlagen (Steigern) ausgeführt werden.

V. Innenausbau

Der Innenausbau im Produktionsgebäude beschränkt sich auf das Erstellen von speziell für die Glasindustrie benötigten Böden, welche beispielsweise mit Rüttelfliesen und beschichteter, großen Flächen aus hygienischen Gründen hergestellt werden. Diese Arbeiten werden durch die wetterfeste Hülle nur bedingt hörbar sein. Des Weiteren werden im Innenbereich Mauerwerksarbeiten, sowie in Teilen Trockenbauarbeiten durchgeführt.

Durch die unmittelbare Angrenzung der Grundstücke / Wohnbebauung ist es das Ziel den Baustellenbetrieb gemäß der AVV Baulärm den Betrieb von Baumaschinen in ausgewiesenen Wohngebieten auf den Zeitraum von 7:00 bis 20:00 Uhr an Werktagen zu beschränken. Hier sind beispielsweise in 4.1 AVV Baulärm Maßnahmen zur Minderung der Geräusche ausgewiesen.

Rev.:03

¹ Im Folgenden zusammenfassend als "Grundwasserentnahme" bezeichnet

Welche Baumaterialien werden eingesetzt; beinhalten sie wassergefährdende Stoffe?

Die folgenden Baustoffe werden voraussichtlich zum Einsatz kommen:

- Stahlbeton (Fertig-, Halbfertigbetonteile, Ortbeton)
- Fassadenkassetten gedämmt
- Trapezbleche
- Putz
- Kalk-Sand-Stein-Mauerwerk
- Stahl für Dachbinder und Fachwerkträger
- Dampfsperre, mineralische Dämmung, Dachfolie
- Kies, Sand
- Estrich
- Stahlblechtüren
- Rohrrahmentüren
- Kunststoff- / Aluminiumfenster

Die Baumaterialien werden entsprechend der geforderten Anforderungen in den Leistungsverzeichnissen / in der FLB (funktionelle Leistungsbeschreibung) ausgeschrieben.

Wie erfolgt der Schutz des Gewässers bei der Baumaßnahme?

Der zukünftige Generalunternehmen kennt die Gegebenheiten vor Ort und die damit verbunden nötigen Maßnahmen, die zum Schutz des Gewässers zu treffen sind. Folgende Maßnahmen werden vorgesehen.

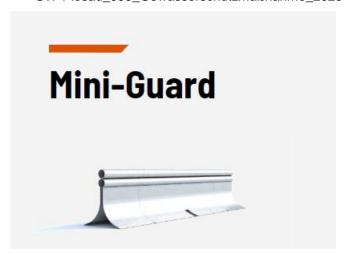
- Einsatz von Bautechnik mit Biodiesel- und Bioölausstattung
- Kontrolle der Technik vor Anfahrt und Einsatz
- Festlegung der Abstellfläche und deren Befestigung
- Regeln der Betankung
- Reparaturen an Geräten und Technik nur in Werkstätten nicht am Baufeld
- Ausstattung der Baustelle mit Ölbindemitteln, Ölbindetüchern sowie Ölsperren (Seton, Denios)
 für das Fließgewässer sowie deren Vorhaltung in ausreichender Menge

Verbleib des Bodenaushubs

Rev.:03

Mögliche Bodenmiete über Aushubmaterial könnte beim zukünftigen Generalunternehmer in Ernstthal erfolgen. Sollte eine Sonder-Entsorgung von kontaminiertem Boden notwendig sein, wird diese fachgerecht erfolgen. Dies kann erst nach der Boden-Beprobung bewertet werden, die im Zuge der Aushubarbeiten erfolgen wird.

zu Punkt 12_HGP_00_Stellungnahme_BImSch_Rev03.docx Seite 3 / 4



Baustellen-Einrichtungsmaßnahmen

Zum Schutz des Gewässers wird entlang der Böschung eine wallähnliche Konstruktion erstellt, die mit Teichfolie versehen wird, um evtl. verschmutztes Oberflächenwasser aufzufangen. An mehreren Stellen wird ein Pumpensumpf vorgesehen, um das Havarie-Wasser zu sammeln, damit es später ordnungsgerecht entsorgt werden kann und somit nicht ins Fließgewässer imitiert. Dies gilt für den nicht asphaltierten Bereich Richtung Bach (Piesau).

Anlage:

- GW-Piesau_005A_Gewässerschutzmaßnahme-mit-Ortho_20231108
- GW-Piesau_005_Gewässerschutzmaßnahme_20231108

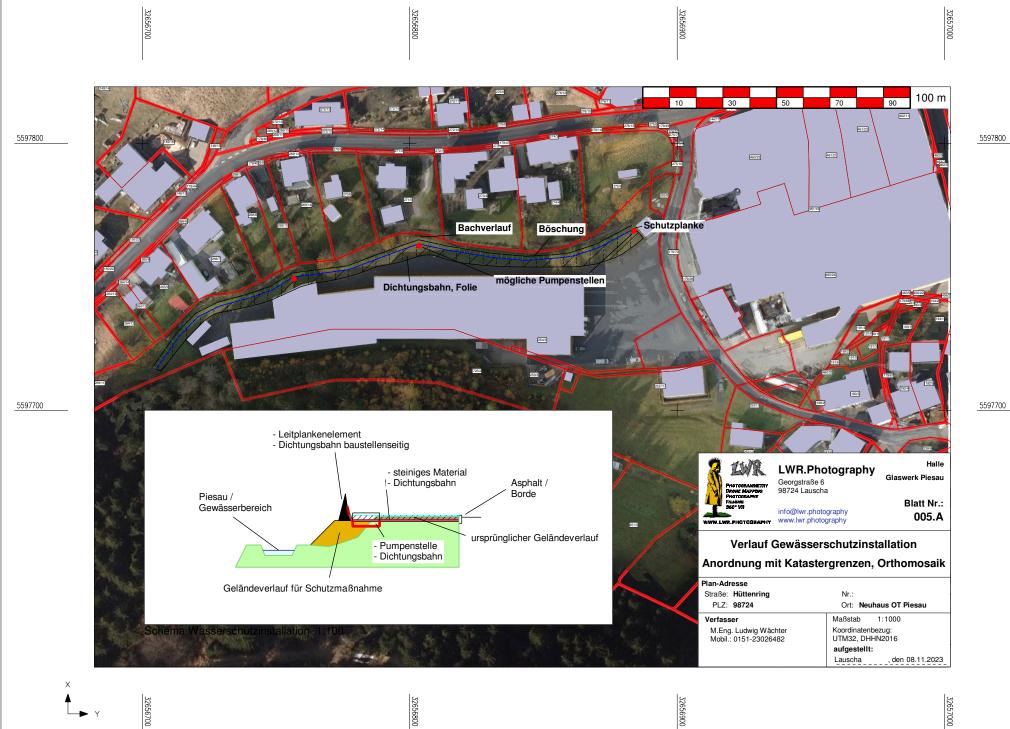
Beispiel für die wallähnliche Konstruktion

Textbeschreibung BE-Fläche herrichten:

Ziel ist die Herstellung einer ebenen Fläche auf Flurstück 253/11 Gemarkung Piesau. Der Grund der Fläche wird mit einer wassergebundenen Tragdeckschicht (Frostschutzschicht) mit einer Stärke von ca. 0,35m hergestellt. Eingeplanter Abstand zu Flächen mit Nachbarbeteiligung sind:

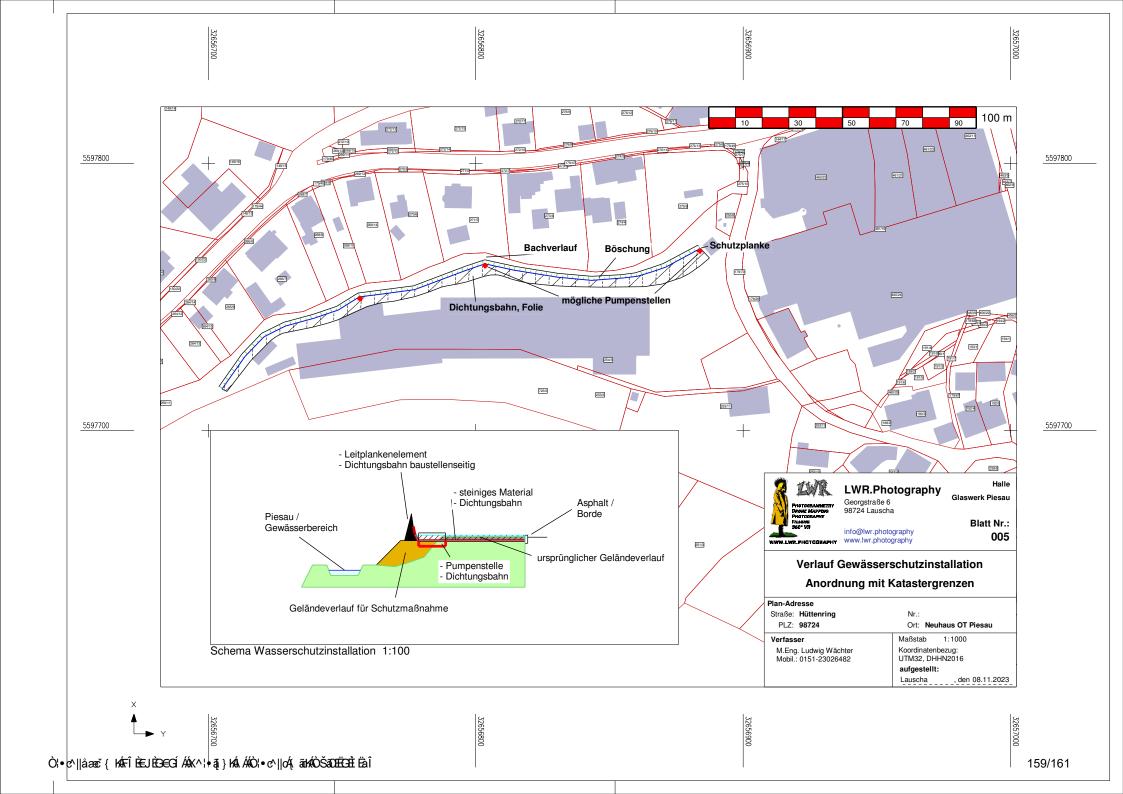
- Im Süden 251/2 und 251/3 2,00m
- Im Osten 253/10 und 253/13 2,00m

Auf die Entsprechenden Abstandsflächen wird eine Absturzsicherung in Form eines fest installierten Metallzaunes gesetzt (Doppelstab-Zaun). Die Böschung wird, da kein Bodengutachten vorhanden ist, vorläufig mit 45° / Verhältnis 1:1 angenommen.


Die tatsächliche Höhendifferenz zu den oben genannten Flurstücken beträgt:

- Im Süden 251/2 und 251/3 i.M. 8,70m
- Im Osten 253/10 und 253/13 auf 0,00m abfallend von 7,50m

Der Bau von Bermen wird nicht angedacht, da eine Absturzsicherung durch den Zaun vorhanden ist und auf OK-Böschung keine Wege angedacht sind.


zu Punkt 12_HGP_00_Stellungnahme_BImSch_Rev03.docx Seite 4 / 4

Rev.:03

Ò;• ¢\|åæĕ { KÁFÎ ÈEJ ÈD€GÍ ÁÁK^;• ã[} KÁL ÁKÒ;• ¢\|ǿ(ãtKÔŠãOEÖÈÈ ËàÎ

158/161

Stellungnahme zum Genehmigungsverfahren

Bauvorhaben der SP Spezialglas Piesau GmbH

Dieses Dokument wurde erstellt von:

cm.project.ing GmbH

REV.	DATUM	ERSTELLT VON	KONTROLLIERT VON	BESTÄTIGT VON	BESCHREIBUNG
01	08.11.2023	NRI			

Sehr geehrte Damen und Herren,

zu Ihren Punkten aus der E-Mail vom 25. Mai 2022 nehmen wir wie folgt Stellung:

- 1. Einhaltung der einschlägigen Immissionsrichtwerte
- 2. Dauer der Bauarbeiten
- 3. Sind Schallschutzmaßnahmen geplant?
- 4. Sind in der Nachtzeit (20.00 bis 7.00 Uhr) und/oder an Sonn- und Feiertagen Arbeiten geplant?
- 5. Welche Baumaschinen werden eingesetzt?

1 Einhaltung der einschlägigen Immissionsrichtwerte

Die Immissionsrichtwerte werden, wie bereits im Kapitel 4.6 beschrieben eingehalten.

2 Dauer der Bauarbeiten

Die Bauarbeiten für den Neubau werden geplant im 2. Quartal 2024 und werden mit der Einrichtung der Baustelle starten. Die Gebäudestruktur wird im 2. Quartal 2025 erstellt sein. Der Innenausbau wird somit voraussichtlich im August 2025 starten können sowie die Installation des Anlagenequipments, wie z. B. der Wannenbau. Vollständig abgeschlossen werden die Maßnahmen im Januar 2026 sein.

Die Bauarbeiten für die Wanne 2 im Bestandsgebäude werden geplant im April 2024 beginnen und nach einer Bauzeit von ca. 6 Monaten im Oktober 2024 abgeschlossen sein.

All diese zeitlichen Angaben unterliegen einer Dynamik, die von Wetterverhältnissen und Lieferzeiten abhängig sind und sich somit eventuellen Veränderungen unterliegen könnten.

3 Sind Schallschutzmaßnahmen geplant?

Durch die unmittelbare Angrenzung der Grundstücke / Wohnbebauung ist es das Ziel den Baustellenbetrieb gemäß der AVV Baulärm den Betrieb von Baumaschinen in ausgewiesenen Wohngebieten auf den Zeitraum von 7:00 bis 20:00 Uhr an Werktagen zu beschränken. Hier

HGP_00_Stellungnahme_BImSch_zur E-Mail vom 25. Mai 2023_01 Seite 1 / 2

Rev.:01

sind beispielsweise in 4.1 AVV Baulärm Maßnahmen zur Minderung der Geräusche ausgewiesen.

Schallschutzmaßnahmen könnten falls nötig durch mobile Schallschutzwände und organisatorische Schutzmaßnahmen (wie z. B. Kennzeichnung von Lärmbereichen, Einweisung und Unterweisung von Beschäftigten) erweitert werden.

4 Sind in der Nachtzeit (20.00 bis 7.00 Uhr) und/oder an Sonn- und Feiertagen Arbeiten geplant?

Es ist keine Nacht- und/oder Sonn- und Feiertagsarbeit geplant, sollten diese dennoch notwendig werden, würde das gesetzlich vorgeschriebene Antragsverfahren zur Genehmigung dieser Maßnahmen erfolgen.

Der Zeitraum einer solchen zusätzlichen Maßnahme würde sich falls nötig auf einen kurzen Zeitraum beschränken.

5 Welche Baumaschinen werden eingesetzt?

- Baustellenkipper
- · Betonmischer bzw. Fahrmischer
- Betonpumpe
- Betonsäge
- Pressluftgeräte
- Rotationsglätter
- Innenrüttler/Außenrüttler
- Vibrationsplatte
- Radlader
- Kettenbagger, Raupenbagger
- Krane (Turmdrehkran, Fahrzeugkran etc.)
- Hebewerkzeuge (Teleskoplader, Arbeitsbühne etc.)
- Kehrmaschinen

Rev.:01