Inhaltsverzeichnis

1.	Gegenstand der Planung	2
2.	Geplantes Entwässerungskonzept	3
3.	Örtliche Verhältnisse	3
3.1 3.1.1 3.1.2 3.1.3	Beschreibung des Entwässerungsgebietes	3 3
3.2 3.2.1 3.2.2 3.2.3 3.2.4	Untergrundverhältnisse Geologische Verhältnisse Baugrundbeschaffenheit Grundwasser Gewässer	4 4 5
3.2.5 3.2.6	WasserschutzgebieteÜberschwemmungsgebiete	
4.	Berechnungsgrundlagen	5
4.1	Ableitung Oberflächenwasser	_
4.1.1	Regenhäufigkeit / Wiederkehrzeiten	
4.1.2	Regenspende	
4.1.3	Spitzenabflussbeiwerte und Versickerungsraten	
4.1.4 4.1.5	Berechnungsmethode	
5.	Ergebnisse der Planung	7
5.1	Ableitung Oberflächenwasser	7
5.1.1	Allgemeines	
5.1.2 5.1.3	Straßenquerschnitt	
5.1.4	VersickerungsmuldenGeschlossene Entwässerung	
5.1.5	Speicherblockrigole	
5.1.6	Entwässerungsabschnitte	
5.2	Einleitungen	12
5.2.1	Notwendigkeit der Behandlung	
5.2.2 5.2.3	Einleitung in den Untergrund Einleitung in das kommunale Kanalnetz	
6.	Bauliche Gestaltung	14
6.1	Versickerungsmulden	14
6.2	Transportmulden	14
6.3	Füllkörperrigole	14
7.	Schriftenverzeichnis	16

Erläuterungsbericht

zum wassertechnischen Fachbeitrag zur Entwässerung des geplanten Neubaus der S 84 Niederwartha – Meißen BA 2.2.

1. Gegenstand der Planung

Das geplante Bauvorhaben umfasst den zweistreifigen Neubau der S 84 beginnend am östlichen Ausbauende des geplanten Knotenpunktes S 84n / Ziegelweg des angrenzenden BA 3 bis zum Anschluss an den 2015 fertiggestellten BA 2.1. Der in dieser Unterlage betrachtete BA 2.2 ist Bestandteil der Neubaumaßnahmen B6 und S84 im Zuge der Elbtalstraße Dresden - Meißen von BAB A4 AS Dresden Altstadt bis B101 in Meißen.

Am östlichen Ausbauende des geplanten Knotenpunktes S 84n / Ziegelweg des angrenzenden BA 3 beginnend wird die geplante Trasse der S 84 im BA 2.2 mit einem Bauwerk über den vorhandenen Knotenpunkt Industriestraße / Am Baggerteich geführt und schwenkt dann in einem großen Bogen zu einer parallelen und geländegleichen Lage zu den Bahnanlagen der DB AG. Dabei werden sowohl die S 82 Dresdner Straße als auch die Kötitzer Straße höhenfrei mit Bauwerken gequert. Östlich der Kötitzer Straße folgt die Trasse ab Bau-km 11+745 dem Anschlussgleis der Firma ThyssenKrupp AG und wird dann in abschnittsweiser Troglage durch das Gewerbegebiet Coswig unter Beachtung der sich in Nutzung befindlichen Gewerbebetriebe weiter bis zum Anschluss an den bereits fertiggestellten BA 2.1 geführt. Die Einmündung des als Verbindungsstraße ausgebauten Verkehrszuges "Nach der Schiffsmühle" wird höhengleich an die S 84n angeschlossen.

Neben dem Straßenbau umfasst das Vorhaben auch Maßnahmen zur Entwässerung der Verkehrsflächen, Lärmschutzmaßnahmen sowie ökologische Ausgleichs- und Ersatzmaßnahmen. Die Länge der Baustrecke beträgt 2,6 km.

Die Neubautrasse der S 84 verläuft im BA 2.2 als anbaufreie Hauptverkehrsstraße vollständig innerhalb bebauter Gebiete. Die Gradientenführung ist durch folgende Zwangspunkte gekennzeichnet:

- Überführung der S 84 über die Industriestraße (Damm bis 8,4 m über GOK)
- höhengleiche Lage im Bereich der Parallellage zu den Gleisanlagen der DB AG von Bau-km 10+800 bis 11+800
- höhenfreie Kreuzung des Verkehrszuges Grenzstraße / An der Walze durch Führung der S 84
 in Troglage (Einschnitt bis 3,0 m unter GOK), Überführung des Verkehrszuges Grenzstraße /
 An der Walze mittels Bauwerk und anschließenden Dammhöhen bis ca. 3,0 m

Die geplante Fahrbahnbreite der S 84 beträgt 8,00 m, beidseitig schließen sich 1,50 m breite Bankette an.

Fließgewässer sind von der Baumaßnahme nicht betroffen.

2. Geplantes Entwässerungskonzept

Im Hinblick auf die Grundwasserneubildungsrate und den Gewässerschutz ist alles anfallende Oberflächenwasser von versiegelten Flächen vorrangig dem Untergrund zuzuführen (Versickerung). Dementsprechend fordert die RAS-Ew, Pkt. 1.2.3 "grundsätzlich eine flächenhafte Versickerung des Straßenoberflächenwassers über die Böschungen oder über die Rasenmulden anzustreben. Hierdurch wird das Wasser an Ort und Stelle während der Bodenpassage durch konzentrationsmindernde Rückhalteund Abbauvorgänge gereinigt und steht der Grundwasserneubildung zur Verfügung".

In der vorliegenden Planung wird dem Grundsatz der vorrangigen Versickerung des auf den Fahrbahnen anfallenden Niederschlagswassers auf Banketten, Böschungen und in Mulden bei entsprechender Flächenverfügbarkeit Rechnung getragen. Für die S 84 trifft dies für die Bereiche zwischen Bau-km 10+320 - 10+815 und 12+245 – 12+327 sowie für die Verbindungsstraße "Nach der Schiffsmühle" zu. Die Versickerung des von der Fahrbahn und dem Gehweg abfließenden Oberflächenwassers der geplanten Erschließungsstraße "Nach der Schiffsmühle" erfolgt mittels einer Rigole mit vorgeschalteter Sedimentationsanlage. In Bereichen, in denen baugrundbedingt oder wegen fehlender Flächenverfügbarkeit keine Versickerung möglich ist, wird das Niederschlagswasser in geschlossenen Leitungssystemen gesammelt und in das Kanalsystem WAB Wasser und Abwasser Betriebsgesellschaft Coswig eingeleitet (S 84 von Bau-km 10+815 bis 12+245 und Verkehrszug An der Walze / Grenzstraße).

Für den Bereich 10+000 bis 10+320 wird bis zur Klärung des Altlastenverdachtes auf dem Flurstück 555/12 von einer geschlossenen Entwässerung mit Übergabe der Wassermengen in den benachbarten 3.BA ausgegangen.

Der geplante Neubau der S 84 ist im BA 2.2 in insgesamt 12 Entwässerungsabschnitte (EA) unterteilt, wobei die Entwässerungsabschnitte EA 01 bis EA 08 die Hauptstrecke der S 84 umfassen, die Entwässerungsabschnitte EA 09 bis EA 12 das nachgeordnete Straßennetz.

Örtliche Verhältnisse

3.1 Beschreibung des Entwässerungsgebietes

3.1.1 Geografische Verhältnisse

Der Untersuchungsraum befindet sich größtenteils im Siedlungsbereich der Stadt Coswig sowie kleinflächig im Siedlungsbereich der Stadt Radebeul.

3.1.2 Topografische Verhältnisse

Das Gelände im Untersuchungsgebiet ist im Wesentlichen durch ebene Flächen gekennzeichnet. Es erreicht Höhen zwischen rd. 107,5 und 110,5 m ü. DHHN 92 (NHN).

3.1.3 Flächennutzung

Die Nutzung ist städtisch geprägt. Es herrschen stark anthropogen überprägten Flächennutzungen vor: Größtenteils verläuft die Trasse über ehemalige Bahnanlagen sowie über Industrie- und Gewerbeflächen.

3.2 Untergrundverhältnisse

3.2.1 Geologische Verhältnisse

Das Gebiet von Coswig gehört regionalgeologisch zur Sächsischen Kreidesenke innerhalb der Elbtalzone. Das Grundgebirge wird hier durch kreidezeitliche Sedimente charakterisiert, welche in Form von Sand- sowie Ton-, Schluff- und Mergelsteinen vorhanden sind.

Das Grundgebirge wird von umfangreichen quartären Ablagerungen bedeckt, welche hauptsächlich aus fluviatilen und glazialfluviatilen Sanden und Kiesen der Weichsel-, Saale- und Elster-Kaltzeiten bestehen. Diese sandig-kiesigen Schichten (Talsande bzw. –kiese) erreichen an der Untersuchungsstrecke Mächtigkeiten von >15 m. Überdeckt werden diese durch eine 1...2 m mächtige Schicht Tallehm als jüngster natürlicher Horizont, welcher meist als sandiger Schluff vorkommt. Im gesamten Industriegebiet von Coswig ist außerdem mit anthropogenen Ablagerungen infolge der langjährigen industriellen Nutzung des Geländes zu rechnen.

3.2.2 Baugrundbeschaffenheit

Im Ergebnis der durchgeführten Baugrunderkundungen wurden folgende Horizonte angetroffen:

Schicht 0 Straßen- und Wegebefestigungen

Schicht 1 Auffüllungen

Schicht 2 Tallehm

Schicht 3 Sand, enggestuft

Schicht 4 Kies, weitgestuft

Der Baugrund wird im gesamten Streckenverlauf bis in eine Tiefe von 15 m unter GOK durch hauptsächlich sandig-kiesige Böden (Elbsande- und –kiese) der Bodengruppen SE und SU nach DIN 18196 charakterisiert. Diese Böden werden an der Geländeoberfläche lediglich von Auffüllungen und Tallehm überdeckt. Dieser leicht bis mittelplastische Tallehm (Schicht 2) bildet den jüngsten natürlichen Horizont und gilt gemäß DIN 18796 als sandiger bis stark sandiger sowie toniger bis stark toniger Schluff (UL, UM, TL, TM, SU*, ST*). Der Tallehm wurde nur in geringen Mächtigkeiten von 0,4...3,5 m (Ø 1,0...2,0 m) erkundet und ist für Versickerungszwecke ungeeignet ($k_f = 5 \times 10^{-7}$ m/s).

Die Wasserdurchlässigkeit der im Planungsabschnitt durchgehend anzutreffenden Elbsande der Schicht 3 wurden zwischen rd. $k_f = 1,8\cdot 10^{-5}$ bis $1,0\cdot 10^{-4}$ m/s ermittelt. Sie sind damit für die Versickerung von Niederschlagswasser als gut bis sehr gut geeignet einzustufen.

3.2.3 Grundwasser

Die quartären Sande und Kiese bilden einen großräumigen, zusammenhängenden Hauptgrundwasserleiter. Der erkundete Grundwasserspiegel befindet sich zwischen 102,5...104 m NHN (4...7 m unter GOK). Die im Streckenverlauf vorherrschenden Grundwasserverhältnisse sind als überwiegend frei (ungespannt) zu beschreiben. Als Bemessungsgrundwasserstand gilt ein HGW von 102,8 – 105.0 m HNH.

3.2.4 Gewässer

Einziges Fließgewässer im Untersuchungsgebiet stellt der Lockwitzbach dar. An dessen vorhandener Querung der Industriestraße erfolgt keine Änderung. Die S 84 quert die Industriestraße bei Bau-km 10+300 mit einem Brückenbauwerk. Eine Einleitung von Oberflächenwasser in den Lockwitzbach ist nicht vorgesehen.

3.2.5 Wasserschutzgebiete

Gemäß Auskunft des Sächsischen Landesamtes für Umwelt, Landwirtschaft und Verkehr sind keine Wasserschutzgebiete (Stand 13.12.2016) von der Maßnahme betroffen.

3.2.6 Überschwemmungsgebiete

An der Kötitzer Straße gibt es einen Berührungspunkt mit dem festgesetzten Überschwemmungsgebiete der Elbe (Stand 22.08.2014). Die S 84 wird mit dem Brückenbauwerk BW 3, welches in Parallellage zur bereits vorhandenen Eisenbahnüberführung geplant wird, über die Kötitzer Straße überführt. Mit der Baumaßnahme ergeben sich keine Veränderungen der Abflußverhältnisse. Lediglich während der Errichtung des Brückenbauwerkes sind ggf. Vorsorgemaßnahmen (Hochwassermaßnahmeplan) zu treffen.

4. Berechnungsgrundlagen

4.1 Ableitung Oberflächenwasser

4.1.1 Regenhäufigkeit / Wiederkehrzeiten

Die Wiederkehrzeit bestimmt das gewünschte Maß an Sicherheit gegen Überstauung der Entwässerungsanlage. Laut RAS-Ew kann im Regelfall bei der Bemessung von Straßenentwässerungseinrichtungen von folgenden Regenhäufigkeiten ausgegangen werden:

- Entwässerung von Fahrbahnflächen über Mulden, Seitengräben oder Rohrleitungen:

		11 = 1	1 – 1 a
-	Straßentiefpunkte	n = 0,2	T = 5 a
-	Trogstrecken mit Straßentiefpunkt	n = 0,1	T = 10 a
-	Versickerungsmulden	n = 1	T = 1 a

4.1.2 Regenspende

Für die Bemessung der Entwässerungsanlagen wurde die Regenspende entsprechend dem KOSTRA-DWD 2010R, Rasterfeld Spalte 65, Zeile 53 Coswig (SN) mit entsprechenden Häufigkeiten angesetzt. Daraus ergeben sich folgende Regenspenden:

 $= 114,4 \text{ l/(s} \cdot \text{ha})$ **r**_{15:n=1} $= 183,2 \text{ l/(s} \cdot \text{ha})$ $r_{15;n=0,2}$ $= 259.9 I/(s \cdot ha)$ r_{10;n=0,1}

Spitzenabflussbeiwerte und Versickerungsraten 4.1.3

Die spezifischen Abflussbeiwerte (\(\ps\)) bzw. Versickerraten (qs) werden in Anlehnung an die RAS-Ew 2005 gewählt und betragen für:

 $\psi_{S} = 0.9$ Bankett $qs = 150 I/(s \cdot ha)$ Dammböschung $qs = 150 I/(s \cdot ha)$ Einschnittböschung $q_S = 100 \text{ l/(s·ha)}$

Transportmulden/-gräben $q_S = 150 I/(s \cdot ha)$

Versickerungsmulden/-gräben $\psi_S = 1.0 \text{ und}$

 $k_{f,u} = 5.6*10^{-6}$ m/s bzw. $k_f = 1.12*10^{-5}$

Zuflüsse von Außeneinzugsgebieten zur Straßenentwässerung sind aufgrund der überwiegend sehr geringen Geländeneigungen im Verhältnis zu den Oberflächenabflüssen der befestigten Verkehrsflächen vernachlässigbar gering.

4.1.4 Berechnungsmethode

Fahrbahnflächen

Die Ermittlung der Regenwassermengen erfolgt nach dem Zeitbeiwertverfahren gemäß RAS-Ew 2005, Punkt 1.3.2.2.

Die hydraulischen Berechnungen wurden mit dem Verfahren nach Manning/Strickler durchgeführt.

4.1.5 **Betriebliche Rauheit**

Die betriebliche Rauheit kb ist ein Pauschalwert, in dem die kontinuierlichen Energieverluste infolge Wandreibung und die lokalen Strömungswiderstände, die ebenfalls Energieverluste bewirken, zusammengefasst sind. Lokale Verluste werden z. B. hervorgerufen durch

- Lageungenauigkeiten (Sohldurchbiegungen, Versätze in Muffenverbindungen)
- Zuläufe
- Änderungen der Fließrichtungen

Für die hydraulische Dimensionierung der Entwässerungsleitungen findet durchgängig der k₀-Wert = 0,5 mm für Kunststoffrohre nach RAS-EW Anwendung.

5. Ergebnisse der Planung

5.1 Ableitung Oberflächenwasser

5.1.1 Allgemeines

Das geplante Vorhaben ist im Hinblick auf die Straßenentwässerung in insgesamt 12 Entwässerungsabschnitte unterteilt, für die jeweils Einleitstellen und Einleitmengen bzw. Versickerungsmengen ausgewiesen werden. Die Trennung der Abschnitte erfolgt in der Regel an Hochpunkten der Trasse oder an Einleitpunkten in das Kanalnetz. Eine Übersicht der Entwässerungsabschnitte ist in Unterlage 18.2.2 – Lageplan Wassertechnischer Fachbeitrag – enthalten.

Die S 84 verläuft vom Bauanfang kommend in Dammlage bis sie ab ca. Bau-km 10+800 in geländegleicher Lage zur Bahnstrecken geführt wird. Ab Bau-km 11+905 verläuft die S 84 in Troglage und kreuzt die umzuverlegende Grenzstraße niveaufrei. Im weiteren Verlauf liegt die Gradiente geländenah und schließt in Einschnittslage an den bereits fertiggestellten BA 2.1 an.

5.1.2 Straßenguerschnitt

Folgende Straßenquerschnitte kommen zur Anwendung:

Straße	Fahrbahnbreite	Randausbildung westlich / nördlich	Randausbildung östlich / südlich
S 84	8,00 m	1,50 m Bankett	1,50 m Bankett
Nach der Schiffsmühle / Verbindungsstraße	6,50 m	1,50 m Bankett	2,50 m Gehweg
Grenzstraße / An der Walze	8,00 m einschl. beidseitig Radfahrstreifen	0,50 m Bankett	2,50 m Gehweg
Nach der Schiffsmühle / Erschließungsstraße	6,50 m	2,50 m Gehweg	0,75 m Bankett

Der Verkehrszug An der Walze / Grenzstraße erhält ein Dachprofil, alle anderen Fahrbahnen werden mit einseitiger Querneigung ausgebildet.

5.1.3 Versickerungsmulden

Soweit möglich ist die Entwässerung der Fahrbahnen durch breitflächige Ableitung über Bankett und Böschungen vorgesehen. Am Böschungsfuß der S 84 und der Verbindungsstraße "Nach der Schiffsmühle" werden Mulden (i.d.R. 2,00 m breit, 0,40 m tief) angeordnet, in denen das Wasser aufgefangen wird und dort weiter versickern kann bzw. ab Bau-km 12+450 der S 84 abgeleitet wird (Transportmulde). Die Mulden werden mit 20 cm Oberboden angedeckt. Da die für die Versickerung als gut bis sehr gut eingestuften Sande der Schicht 3 von einer 0,4-3,5 m (\emptyset 1,0...2,0 m) dicken Schicht Tallehm

überdeckt werden ist die Herstellung von ca. 0,70 m breiten und i.M. 2,50 m tiefen Sickerschlitzen vorgesehen. Diese sind bis OK Schicht 3 mit Kies-Sand-Gemisch (filterstabil) zu verfüllen. Aufgrund der Tiefenlage empfiehlt sich der Einsatz von Grabenfräsen.

Die Versickerungsmulden folgen i.d.R. der vorhandenen Geländeneigung und erhalten Erdschwellen im Abstand von ca. 10 m.

5.1.4 Geschlossene Entwässerung

Wenn aufgrund der Fahrbahnquerneigung der S 84 und der direkt angrenzenden Bahnanlagen von Bau-km 10+800 bis 11+900 bzw. im Bereich der sich anschließende Troglage die breitflächige Ableitung nicht möglich ist, wird das Wasser in der Bordrinne gesammelt und über Abläufe, Schächte und Rohrleitungen abgeleitet. Gleiches gilt für den Verkehrszug An der Walze / Grenzstraße sowie für die Erschließungsstraße "Nach der Schiffsmühle".

Die Straßenablaufabstände ergeben sich aus der vorhandenen Längs- und Querneigung der Verkehrs- anlage und der zu entwässernden Flächen. Die Ablaufabstände in den Bordrinnen wurden gemäß den Bemessungstabellen der RAS-Ew (Pkt. 1.4.3) ermittelt. Zur Optimierung der Ablaufabstände wurde von einer vollständigen Systemauslastung unter Berücksichtigung einer zulässigen Wasserspiegelbreite (sh. Pkt. 5.6.1) ausgegangen.

5.1.5 Speicherblockrigole

Das über Straßenabläufe, Schächte und einen neuen Regenwasserkanal gesammelte Oberflächenwasser der Erschließungsstraße "Nach der Schiffsmühle" wird auf Grund fehlender Flächenverfügbarkeit in einer Speicherblockrigole mit vorgeschalteter Sedimentationsanlage versickert (sh. Pkt 6.3).

5.1.6 Entwässerungsabschnitte

Im Folgenden wird die vorgesehene entwässerungstechnische Lösung einzeln für die jeweiligen Entwässerungsabschnitte (EA) beschrieben. Der Ausbaubereich ist in insgesamt 12 Entwässerungsabschnitte unterteilt, wobei die Entwässerungsabschnitte EA 1 bis EA 8 die Hauptstrecke der S 84 umfassen, die Entwässerungsabschnitte EA 9 bis EA 12 das nachgeordnete Netz.

Entwässerungsabschnitt 10.1 (S 84 Bau-km 10+000 – 10+338,5)

Der Entwässerungsabschnitt 10.1 (EA10.1) umfasst den Trassenabschnitt vom Baubeginn bis einschließlich Brückenfläche des Bauwerkes BW 1. Die S 84 verläuft in diesem Bereich in Dammlage. Der in 1,0 m Tiefe anstehende Sandboden (Schicht 3) ist versickerungsfähig, jedoch sollte gemäß Baugrundgutachten aufgrund des Verdachtes auf Altlasten auf dem Gelände des derzeit überbauten Bereichs (Lederfabrik / Flurstück 555/12) keine Versickerung am Dammfuß vorgesehen werden. Belastbare Aussagen bezüglich der Altlasten und damit eine Prüfung der Versickerung des Oberflächenwassers analog EA 2 können erst nach erfolgter Baufeldfreimachung gemacht werden. Deshalb wird von

Bauanfang bis einschließlich Brückenfläche des Bauwerkes BW 1 das Niederschlagswasser über Abläufe gesammelt und einer Rohrleitung dem Vorfluter im anschließenden BA 3 übergeben. Übergabepunkt und Einleitmenge wurden abgestimmt.

Die Planumsentwässerung in Dammlage erfolgt über das Heranführen der Frostschutzschicht bis an die Böschung.

Entwässerungsabschnitt 10.2 (S 84 Bau-km 10+338,5 – 10+834)

Von Bau-km 10+338,5 bis 10+834 erfolgt eine offene, breitflächige Entwässerung der Fahrbahnflächen über die Bankette und die Dammböschungen. Am Dammfuß werden Versickerungsmulden mit Erdschwellen und Sickerschlitzen (i.M. 2,50 m tief) angeordnet. Es erfolgt eine vollständige Versickerung.

Die Planumsentwässerung in Dammlage erfolgt über das Heranführen der Frostschutzschicht bis an die Böschung.

Entwässerungsabschnitt 10.3 (S 84 Bau-km 10+834-11+015) / Entwässerungsabschnitt 10.4 (S 84 Bau-km 11+015-11+297) / Entwässerungsabschnitt 10.5 (S 84 Bau-km 11+297-11+905)

Die S 84 verläuft in diesem Bereich parallel und geländegleich zu den Bahnanlagen der DB AG mit einem Abstand von ≥ 7,05 m (Fahrbahnrand S 84 – Gleisachse). Dabei werden sowohl die S 82 Dresdner Straße als auch die Kötitzer Straße höhenfrei mit Bauwerken gequert. Östlich der Kötitzer Straße folgt die Trasse ab Bau-km 11+745 dem Anschlussgleis der Firma ThyssenKrupp AG. Die Trassenlage der S 84 im Bereich der Entwässerungsabschnitte EA 10.3 bis einschl. EA 10.5 erfordert die Anlage einer einseitigen Querneigung in Richtung Bahngelände und die Anordnung von Hochborden für die Fahrbahnentwässerung. Das von der Fahrbahn abfließende Oberflächenwasser wird über Straßenabläufe gesammelt und mittels Rohrleitungen DN 250 bis DN 300 in das bestehende Kanalnetz der WAB Coswig abgeleitet. Es sind 3 Einleitstellen geplant. Die Einleitstellen wurden mit der WAB Coswig abgestimmt und sind der Unterlage 18.2.2 zu entnehmen.

Die Berechnung der Straßenablaufabstände erfolgte gemäß Pkt. 5.1.4 unter Ansatz einer Wasserspiegelbreite von 0,85 m (davon 0,50 m Randstreifen) ausgegangen. Damit ergeben sich in Abhängigkeit der Längs- und Querneigung, der Wasserspiegelbreite und zu der entwässernden Fläche Ablaufabstände von 10 m bis 27 m (s. Unterlage 18.2.2.3).

Die Planumsentwässerung erfolgt über Sickerstränge mit Sickerrohrleitung und deren Anschluss an die Abläufe.

Entwässerungsabschnitt 10.6 (S 84 Bau-km 11+905 – 12+250)

Der EA 10.6 umfasst den Bereich der Trogstrecke der S 84 durch das Gewerbegebiet Coswig. Das von der Fahrbahn und den Banketten abfließende Oberflächenwasser wird in eine Bordrinne und Straßenabläufen gesammelt und über eine Sammelleitung DN 250 bis DN 400 bei Bau-km 11+900 in das bestehende Kanalnetz der WAB Coswig abgeleitet. Wegen fehlender Flächenverfügbarkeit im Bereich

der Kranbahn der Walzengießerei Coswig bei Bau-km 12+233 wird der aus dem Trogbereich kommende Hochbord bis Bau-km 12+250 verlängert.

Die Berechnung der Straßenablaufabstände erfolgte analog EA 3 bis EA 5.

Die Planumsentwässerung erfolgt über Sickerstränge mit Sickerrohrleitung und deren Anschluss an die Abläufe.

Entwässerungsabschnitt 10.7 (S 84 Bau-km 12+250 – 12+350)

Die S 84 verläuft im EA 10.7 nahezu geländegleich. Aufgrund fehlender Flächenverfügbarkeit wird zwischen Bau-km 12+328 und 12+390 der Einbau einer Winkelstützwand am Bankettaußenrand erforderlich. Das von der Fahrbahn abfließende Oberflächenwasser wird über das Bankett den Versickerungsmulden zugeführt, im Bereich der Winkelstützwand erfolgt dies durch die Anordnung eines Hochbordes am Fahrbahnrand mit Ableitung über eine Pflastermulde in die Versickerungsmulde. Aufgrund der größeren angeschlossenen Entwässerungsfläche im Knotenpunktbereich wird die Mulde (rechts) von Bau-km 12+250 bis 12+327 abweichend von der Regelausführung mit einer Breite von 2,50 m und einer Tiefe von 0,50 m ausgebildet. Aus dem gleichen Grund wird die Mulde am linken Fahrbahnrand der S 84 im Knotenpunktbereich in die einmündende Verbindungsstraße "Nach der Schiffsmühle" verlängert und bis Bau-km 12+327 ohne Erdschwellen und ohne Längsneigung in der Muldensohle bei einer Muldenbreite von 3,00 m geplant. Alle Versickerungsmulden erhalten Sickerschlitzen (i.M. 3,00 m tief) und mit Ausnahme des genannten Bereiches Erdschwellen im Abstand von ca. 10,0 m. Es erfolgt eine vollständige Versickerung.

Die Planumsentwässerung erfolgt über durch das Heranführen der Frostschutzschicht bis an die Sickerschlitze.

Entwässerungsabschnitt 10.8 (S 84 Bau-km 12+350 – 12+605,9)

Der Entwässerungsabschnitt EA 10.8 umfasst den letzten Trassenabschnitt der S 84 im Bauabschnitt BA 2.2 bis zum Anschluss an den bereits fertiggestellten BA 2.1. Von etwa Geländegleichlage wechselt die Trasse in Richtung Bauende in Einschnittslage. Unter Beachtung der in diesem Abschnitt ungünstigen Untergrundverhältnisse und der sich in Nutzung befindlichen Gewerbebetriebe stehen keine ausreichenden Flächen für eine vollständige Versickerung des von der Fahrbahn abfließenden Oberflächenwassers zur Verfügung. Die nicht versickerten Wassermengen werden über eine neu zu verlegendenden Sammelleitung DN 250 mit Anschluss an den vorhandenen Regenwasserkanal des BA 2.1 abgeleitet.

Zwischen Bau-km 12+350 und 12+390 sowie Bau-km 12+476 und 12+487 (Bereich Winkelstützwände) wird ein Hochbord am Fahrbahnrand angeordnet und das von der Fahrbahn abfließende Oberflächenwasser über Straßenabläufe der neu zu verlegendenden Sammelleitung DN 250 zugeführt. In den weiteren Teilbereichen des EA 10.8 erfolgt die Fahrbahnentwässerung breitflächig über Bankette und Bö-

schungen in Transportmulden am Böschungsfuß bzw. bei Einschnittslage am Bankettrand. Über Ablaufschächte erfolgt die Ableitung des Oberflächenwassers, welches nicht auf den Banketten, Böschungen und Mulden versickert, in den o.g. Kanal DN 250.

Die Planumsentwässerung erfolgt über Sickerstränge mit Sickerrohrleitung und deren Anschluss an die geplante Sammelleitung.

Entwässerungsabschnitt 10.9 (Verbindungsstraße "Nach der Schiffsmühle")

Die Entwässerung der Fahrbahn und des Gehweges der Verbindungsstraße "Nach der Schiffsmühle" zwischen Bau-km 10+073 und Bauende erfolgt über eine offene, breitflächige Entwässerung über die Bankette und die z.T. vorhandenen Dammböschungen in die Versickerungsmulden (2,00 m breit, 0,40 m tief, Erdschwellen alle 10 m). Zwischen Bau-km 10+045 und 10+075 kann aufgrund der angrenzenden Bebauung und der befestigten Zufahrt der Firma Entlackung und Service GmbH keine Versickerung erfolgen. Das anfallende Oberflächenwasser wird über eine gepflasterte Muldenrinne der zwischen dem Einmündungsbereich zur S 84 und dem Beginn der Werkszufahrt einer Versickerungsmulde zugeführt. Diese wird 3,00 m breit und 0,50 m tief ohne Erdschwellen und ohne Längsneigung in der Muldensohle ausgebildet, um eine Verteilung des ab Bau-km 10+075 abfließenden Oberflächenwassers zu ermöglichen. Der anstehende Baugrund erfordert in beiden Muldenabschnitten Sickerschlitze mit einer Tiefe von ca. 3,00 m. Es erfolgt eine vollständige Versickerung.

Die Planumsentwässerung erfolgt durch heranführen der Frostschutzschicht bis an die Schickerschlitze unterhalb der Versickerungsmulden.

Entwässerungsabschnitt 10.10 (Erschließungsstraße "Nach der Schiffsmühle")

Beginnend an der Einmündung an der geplanten Verbindungsstraße "Nach der Schiffsmühle" schwenkt die Achse auf eine ehemalige Gleistrasse, führt auf dieser geländegleich durch die beidseitig angrenzenden Gewerbeflächen und endet mit einem Wendehammer. Bestandteil des EA 10.10 sind weiterhin der einseitig geplante Gehweg an der Verbindungsstraße sowie die von diesem abgehende Zufahrtstraße.

Das auf den befestigten Flächen abfließende Oberflächenwasser wird in einer Bordrinne und Straßenabläufe gefasst und in dem neu zu verlegenden Regenwasserkanal gesammelt. Ab Bau-km 10+043 bis Bauende ist die Anlage einer Pendelrinne wegen fehlender Längsneigung erforderlich.

Da auf Grund fehlender Flächenverfügbarkeit innerhalb des bebauten Gewerbegebietes keine Mulden vorgesehen werden können, erfolgt eine Versickerung in einer unter der Wendeanlage angeordneten Füllkörperrigole nach DWA mit einem Speichervolumen ca. 235 m³ (ca. 22,80 m * 8,00 m * 1,30 m). Die Dimensionierung der Rigole erfolgt gemäß DWA-A 117 für eine Regenhäufigkeit n = 0,2. Die Sohle der Füllkörperrigole und damit die geplante Höhe des Versickerungshorizontes liegt bei ca. 4,20 m unter Geländehöhe. Ein hinreichender Abstand zum Grundwasser (vorh. Abstand HGW > 5,20 m) ist bei dieser Lösung gegeben. Vorgeschaltet wird eine Sedimentationsanlage zur Gewährleistung der erforderlichen Vorbehandlung.

Die Planumsentwässerung erfolgt über Sickerstränge mit Sickerrohrleitung und deren Anschluss an die Abläufe.

Entwässerungsabschnitt 10.11 und 10.12 (Umverlegung An der Walze / Grenzstraße)

Die Entwässerung des umzuverlegenden Verkehrszuges An der Walze / Grenzstraße erfolgt wie im Bestand aufgrund des Dachprofils beidseitig über Bordrinnen und Straßenabläufe. Diese werden an das bestehende, z.T. umverlegte Kanalnetz der WAB Coswig angeschlossen. Im Bereich der Überführung der S 84 wird beidseitig in den Brückenrampen eine Rohrleitungen DN 250 verlegt und an das Kanalnetz angeschlossen. Die Einleitgenehmigung wurde beim Versorgungsunternehmen beantragt. Die Einleitstellen ist der Unterlage 18.2.2 zu entnehmen.

Die Berechnung der Straßenablaufabstände erfolgte gemäß Pkt. 5.1.4 unter Ansatz einer Wasserspiegelbreite von 0,50 m, bei Unterschreitung der Mindestlängsneigung für Bordrinnen von 0,5 % mit 0,70 m. Damit ergeben sich Ablaufabstände von 10 m bis 25 m (s. Unterlage 18.2.2.3). Auf die Anlage von Pendelrinnen wurde verzichtet, da beidseitig 1,50 m breite Schutzstreifen für Radfahrer Bestandteil der geplanten Fahrbahn sind. In diesen Bereichen werden Straßenabläufe im Abstand von 10 m vorgesehen.

Die Planumsentwässerung außerhalb der Dammlage erfolgt über Sickerstränge mit Sickerrohrleitung und deren Anschluss an die Abläufe. In Dammlage wird die Frostschutzschicht bis an die Böschung herangeführt.

5.2 Einleitungen

5.2.1 Notwendigkeit der Behandlung

Gemäß RAS-Ew sind die Straßenoberflächenwässer von Straßen mit ≥ 2000 Kfz/24h vor der Einleitung in den Vorfluter einer Behandlung zuzuführen. Behandlung im Sinne der Richtlinie ist auch die sachgerechte Versickerung der Straßenoberflächenwässer.

5.2.2 Einleitung in den Untergrund

Große Teile des Oberflächenwassers der Verkehrsanlage werden in Versickerungsmulden versickert und damit in das Grundwasser eingeleitet. Überwiegend erfolgt der breitflächige Zufluss über Bankette und Böschungen in Versickerungsmulden. Im EA 10.10 wird gesammeltes Wasser über eine Füllkörperrigole versickert. In beiden Fällen muss der Nachweis der Behandlungswirkung gemäß Merkblatt DWA – M 153 erbracht werden.

Muldenversickerung

Für die Bewertung der Einleitung hinsichtlich des Merkblattes DWA-M 153 wurde der Einfluss aus der Luft im Einflussbereich von Straßen mit mittlerem Verkehrsaufkommen (L2) mit 2 Bewertungspunkten, für Fahrflächen (F5) als Straßen mit bis zu 15.000 Kfz/Tag - mit höherer Verschmutzung angenommen.

Die Bewertung der Einleitung hinsichtlich des Merkblattes DWA-M 153 (Unterlage 18.2.3) zeigt auf, dass der ermittelte Emissionswert der Einleitungen für den Entwässerungsabschnitt 10.2 (S 84 Bau-km 10+338,5 – 10+834) unter Berücksichtigung der Versickerung durch eine 20 cm dicke bewachsene Oberbodenschicht und einem Verhältnis AU : AS <= 5:1 (angeschlossene, undurchlässige Fläche zur Versickerungsfläche) von 5,8 kleiner ist als der erforderliche Gewässerpunkt für das Schutzbedürfnis Grundwasser von 10,0. Eine nachhaltige Beeinflussung des Grundwassers ist demzufolge nicht gegeben.

In den Entwässerungsabschnitten 10.7 (S 84 Bau-km 12+250 – 12+350), 10.8 (S 84 Bau-km 12+350 – 12+605,9) und 10.9 (Verbindungsstraße Nach der Schiffsmühle) beträgt das Verhältnis der angeschlossenen, undurchlässigen Fläche zur Versickerungsfläche von AU : AS > 5:1 bis ≤ 15:1. Neben der Versickerung durch eine 20 cm dicke bewachsene Oberbodenschicht wird hier bei der Nachweisführung zusätzlich die Versickerung durch die unter der Mulde liegenden Bodenpassage gemäß DWA-M 153 Pkt. 6.2.2 berücksichtigt. Möglich ist dies durch den vorhandenen Flurabstand zum Grundwasser von > 5,0 m. Es ergibt sich ein Emissionswert von 4,6, der kleiner ist als der erforderliche Gewässerpunkt für das Schutzbedürfnis Grundwasser von 10,0 und eine nachhaltige Beeinflussung des Grundwassers ausschließt.

Rigiolenversickerung

Bei einer Verkehrsstärke von < 500 Kfz/Tag in der Erschließungsstraße "Nach der Schiffsmühle" wurde der Einfluss aus der Luft im Einflussbereich von Straßen mit geringem Verkehrsaufkommen (L1) mit 1 Bewertungspunkt, für Fahrflächen (F4) als Straßen von 300 – 5.000 Kfz/Tag - mit mittlerer Verschmutzung angenommen.

Die erforderliche Behandlungswirkung wird durch die der Füllkörperrigole vorgeschaltete Sedimentationsanlage des Typ D24c (Anlage mit Dauerstau mit max. $v_s = 10 \text{m/h}$ ($r_{krit} = 45 \text{ l/(s*ha)}$) sowie die Ausbildung der Straßenabläufe mit Nassschlammfang erreicht. Die Bewertung der Einleitung hinsichtlich des Merkblattes DWA-M 153 (Unterlage 18.2.2.2) ergibt einen ermittelten Emissionswert der Einleitungen von 9 und ist damit kleiner ist als der erforderliche Gewässerpunkt für das Schutzbedürfnis Grundwasser von 10,0. Eine nachhaltige Beeinflussung des Grundwassers ist demzufolge nicht gegeben.

5.2.3 Einleitung in das kommunale Kanalnetz

Einleitungen über geschlossene Rohrleitungen in die vorhandene Regenwasserkanalisation sind in den Entwässerungsabschnitten EA 3, EA 4, EA 5, EA 6, EA 8, EA 11 und EA 12 geplant. Die Behandlung der Straßenoberflächenwässer erfolgt in dem Fall in den zentralen kommunalen Anlagen. Der Nachweis nach Merkblatt DWA-M 153 ist nicht erforderlich.

6. Bauliche Gestaltung

6.1 Versickerungsmulden

Die Versickerungsmulden erhalten eine Regelbreite von 2,00 m und eine Tiefe von 0,4 m. Sie werden mit einer Schicht aus 20 cm Oberboden angedeckt und mit einer Rasenansaat versehen. Bei Ausführung mit Gefälle in der Muldensohle werden die Mulden in regelmäßigen Abständen durch Erdschwellen gemäß RAS-EW unterbrochen. Die Sohlschwellen verhindern ein Abfließen des Wassers in der Mulde und erzwingen so eine Versickerung. Durch den Schwellenscheitel in 30 cm Höhe über der Muldensohle werden sowohl ein ausreichendes Rückhaltevolumen als auch ein Freibord von 10 cm bei Vollfüllung gewährleistet.

Auf Grund der im den Baugrunduntersuchungen erkundeten Tiefenlage der versickerungsfähigen Bodenschichten wird die Herstellung von Sickerschlitze mit einer Breite von 0,70 m unterhalb der Versickerungsmulden erforderlich. Die Sickerschlitze sind bis zur OK der Schicht 3 lt. Baugrundgutachten (Sandhorizont) zu ziehen. Dabei ist von einer mittleren Tiefe von 2,50 m unter GOK auszugehen. Die Sickerschlitze sind mit filterstabilem Kies zu verfüllen. Die Sickerschlitze sind durchgehend anzulegen um eine Verteilung des Wassers in Längsrichtung der Mulde sicherzustellen und damit die ggf. lokal veränderliche Versickerungsfähigkeit des Untergrundes auszugleichen.

6.2 Transportmulden

Die Transportmulden erhalten eine Regelbreite von 2,00 m und eine Tiefe von 0,4 m. Sie werden mit einer Schicht aus 20 cm Oberboden angedeckt und mit einer Rasenansaat versehen.

6.3 Füllkörperrigole

Die vorgesehene Versickerungsanlage mit einer Füllkörperrigole und vorgeschalteter Sedimentationsanlge orientiert sich am System Rigofill inspect in Verbindung mit einer SediPipe- Anlage der Firma FRÄNKISCHE Rohrwerke Gebr. Kirchner GmbH & Co. KG. Diese Systeme erfüllen die in Unterlage 18.1.2.2 (Nachweis der Behandlungswirkung gemäß DWA-M 153) und 18.1.2.4 (Nachweis der Versickerung gemäß DWA-A 138) aufgeführten Berechnungsgrundlagen und verfügen über die erforderlichen Einbauzulassungen, auch für den Einbau unter hochbelasteten Verkehrsflächen.

Die Füllkörperrigole besteht aus hochbelastbaren quaderförmigen Rigolenfüllkörpern mit einem Hohlraumanteil 95 %. Diese sind nahezu widerstandslos dreidimensional durchströmbar, in drei Raumrichtungen anbaubar und kombinierbar. Mit durchgehendem Inspektionstunnel ausgestattet wird eine ständige Kontrolle der Funktionsfähigkeit des gesamten Innenraums einschl. aller statisch relevanten Tragelemente gewährleistet. Die Sedimentationsanlage besteht aus einem Startschacht DN 1000 mit Zulauf (verfügt über Schlamm- und Geröllfang sowie Wartungskonsole), einem Zielschacht DN 1000 mit
Ablauf und Tauchrohr sowie einer zwischenliegenden 24,30 m langen Sedimentationsstrecke DN 600.
Diese Rohrleitung besitzt eine Regenwasser-Reinigungsfunktion für Grob- und Feinstpartikel und daran
gebundene Schadstoffe sowie eine Öl-Abscheidefunktion auch bei Regen- und Löschwasserabflüssen

und gewährleistet damit den Schutz von Boden und Grundwasser vor Umweltschäden. Nach Angaben des Herstellers erfolgt eine Reinigung mit üblicher Kanalspültechnik, wobei von einem Reinigungsintervall von 1 bis 3 Jahren auszugehen ist.

7. Schriftenverzeichnis

- a) Merkblatt DWA-M 153, August 2007, 'Handlungsempfehlungen zum Umgang mit Regenwasser' (Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V., Hennef)
- b) Arbeitsblatt DWA-A 110, August 2006, "Hydraulische Dimensionierung und Leistungsnachweis von Abwasserkanälen und -leitungen" (Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V., Hennef)
- c) Arbeitsblatt DWA-A 117, April 206, "Bemessung von Regenrückhalteräumen", (Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V., Hennef)
- d) Arbeitsblatt DWA-A 118, März 2006, "Hydraulische Bemessung und Nachweis von Entwässerungssystemen" (Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V., Hennef)
- e) Arbeitsblatt DWA-A 138, April 2005, "Planung, Bau und Betrieb von Anlagen zur Versickerung von Niederschlagswasser" (Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V., Hennef)
- f) Richtlinie für die Anlage von Straßen, Teil: Entwässerung RAS-Ew (Ausgabe 2005), FGSV Verlag GmbH, Köln
- g) KOSTRA-Atlas des Deutschen Wetterdienstes 2010R, Starkniederschlagshöhen für Deutschland

Regenspenden n=	1	0,2	0,1
KOSTRA Spalte 65, Zeile 53	l/s*ha	l/s*ha	l/s*ha
r ₁₅	114,4	183,2	
r ₁₀			259,9
r ₅			349,9

Sp	ez.Versickeru	ungsrate					
150	l/s*ha	(Bankett, Wartungsweg					
150	l/s*ha	(Mulde,Grünfl.)					
100	l/s*ha	(Einschnitt)					
150	l/s*ha	(Damm)					

								_						-						I			_			
Bereich	Straße / FB Seite	Bau-km		Gesamtf			acht	Spez.	H	Ared	-			-		n=	Bemessungsabfluss		0, 1, 7		ensionierung	01.		echnung fü		
Achse	Bezeichnung	von bis	Länge	Breite	Fläche	von	bis	Vers	beiwert		Qr	Σ Qr Qr	ΣQr		ΣQr		Zuwachs	Summe	Streckenzufluss	Gefälle		1	V bei	QT/QV	h/d	h
				+ - + -	_		_	rate			(n=1)	(n=1) (n=0,2)		` ' /	(n=0,1)		Q bei n	Q bei n	von / nach Bereich		heit	Vollfüllung	ŭ			Füllhöhe
1	2	3 4	5	6	7	8	9	10	13	17	18	19 23,0	24	25	26	27	28	29	20	30	31 32	33	34	35	36	37
Nr.		[km] [km]	[m]	[m]	[ha]			[l/s*ha]		[ha]	[l/s]	[l/s] [l/s]	[l/s]	[l/s]	[l/s]		(n)	(n)	(Bemerkung)	m/m	mm mm	m3/s	m/s			mm
																						1	1			
	erungsabschnitt 10.1 - Bau-km	10+000 bis Bau-km 1	0+347																		_					
	000 bis 0+338,5 -> Ableitung in Kanal			1																	-					
3000	Brückenkappe BW 01 links	10+228,50 10+347,40	119	2,05	0,024				0,9	0,022		2,52				1	2,52	2,52			-					
3000	FB	10+000,00 10+347,40	347	8,0	0,278					0,250						1	28,60	31,12			_					
3000	Brückenkappe BW 01 rechts	10+228,50 10+347,40	119	2,05	0,024				0,9	0,022	2,52	33,64				1	2,52	33,64			-					
						KS1.01	KS1.06						Ableitung	in BA 3				33,64	→ Ableitung in BA3	0,0153	250 0,5	0,087	1,77	0,39	0,433	108
	linke Seite von 10+000 bis 10+228,5-> V																				+ +					\vdash
3000	Bankett links	10+000 10+228,50	229	1,5	0,034			150			-1,21					1	-1,21	0,00			+ +					\vdash
3000	Damm links	10+000 10+228,50	229	9,3	0,213			150			-7,58	0,00				1	-7,58	0,00			+ +					\vdash
EA 40 4 0		V											keine ant	allenden	Wassern	nengen aus	S EA 1.2	0,00			+ +					
	rechte Seite von 10+000 bis 10+228,5->				2.224			450			4.04							2.22			+ +					\vdash
3000	Bankett rechts	10+000 10+228,50	229	1,5	0,034			150				0,00	\vdash			1	-1,21	0,00		-						
3000	Damm rechts	10+000 10+228,50	229	9,8	0,224			150			-7,97	0,00		-11	101	1	-7,97	0,00		-						4
Future.	anumanah ahmisi 40.0 Bari	10.047 his Day in 1	0.004			I							keine anf	allenden	wassern	nengen aus	S EA 1.3	0,00		-	+					
	serungsabschnitt 10.2 - Bau-km							1			-		1 1			-					+ +					
	rechte Seite von 10+338,5 bis 10+510 ->								0.5	0.4:-	10.55	10.00	\vdash				16	10.77		-						
3000	FB rechts	10+347,40 10+510,00	163	8,0	0,130				0,9		13,38	13,38	\vdash			1	13,38	13,38		-						
3000	Bankett rechts	10+347,40 10+510,00	163	1,5	0,024			150			-0,85	12,53				1	-0,85	12,53			+ +					
3000	Damm rechts	10+347,40 10+510,00	163	12,5	0,203			150			-7,23	5,30				1	-7,23	5,30			-					
3000	Mulde rechts	10+347,40 10+475,00	128	2,0	0,026				1,0		2,97	8,27				1	2,97	8,27			+ +					
3000	Pflastermulde rechts	10+475,00 10+510,00	35	2,0	0,007				0,9	0,006	0,69	8,96				1	0,69	8,96			+ +					
5.1000													vollständ	ige Muld	enversic	kerung		8,96	→ Muldenversickerung		+ +					
	rechte Seite von 10+510 bis 10+773 -> \																2.22				+ +					
3000	FB rechts	10+510,00 10+773,00	263	8,0	0,210				0,9	0,189						1	21,62	21,62			+ +					
3000	Bankett rechts	10+510,00 10+773,00	263	1,5	0,039			150			-1,39	20,23				1	-1,39	20,23			+ +					
3000	Damm rechts	10+510,00 10+773,00	263	8,6	0,226			150				12,19				1	-8,05	12,19			+ +					
3000	Pflastermulde rechts	10+510,00 10+545,00	35	1,0	0,004				0,9		0,46	12,65					0,46	12,65			+ +					-
3000	Mulde rechts	10+545,00 10+773,00	228	2,0	0,046				1,0	0,046	5,26	17,91				1	5,26	17,91			+ +					
				+ +					-	-			vollständ	ige Muld	enversic	kerung		17,91	→ Muldenversickerung		+ +					-
E4 40 0 0		familia la mana di la	D		1.1.				-	-											+ +					-
	rechte Seite von 10+773 bis 10+834 -> \								0.0	0.044	5.00	F 00				_	5.00	5.00			+ + -					
3000	FB rechts	10+773,00 10+834,00	61	8,0	0,049			450	0,9	0,044		5,03				1	5,03	5,03			+ +					+
3000	Bankett rechts	10+773,00 10+834,00	61	1,5	0,009			150			-0,32	4,71				1	-0,32	4,71			+ + -					
3000	Damm rechts	10+773,00 10+834,00	61	2,9	0,018			150	4.0		-0,64	4,07	-			1	-0,64	4,07		-	+					-
3000	Mulde rechts	10+773,00 10+834,00	61	2,0	0,012				1,0	0,012	1,37	5,44				1	1,37	5,44	Mildonosista	-	+					-
 		 		+						\vdash			vollständ	ige Muid	enversick	kerung		5,44	→ Muldenversickerung	-		-				+
EA 10 2.4	linke Seite von 10+322 bis 10+834 -> Ve	reickerung über Bankett .	and Dommh	Öschung						\vdash			++	+	+			<u> </u>		-	+ + -	-		}		
				1,5	0.053			150		\vdash	1.00	0.00	\vdash			1	1.00	0.00		-		-				
3000 3000	Bankett links	10+347,40 10+700,00 10+347,40 10+700,00	353 353	1,5	0,053 0,472			150 150			-1,89 -16,80	0,00	\vdash			- 1	-1,89 -16,80	0,00		-		-				
3000	Böschung links	10+347,40 10+700,00	333	10,4	U,412			150	+	\vdash	-10,80	0,00	kaina anf	allandan	Wassorn	nengen aus		0,00		1	+ + -			-		+
Entwäss	orungoshochnitt 10.2 Bar len	10.024 big Bou km 4	0.015						U	LL		ļ	Keine ani	anenden	wassern	nengen aus	5 LA 2.4	0,00		1	+ + -			-		+
	serungsabschnitt 10.3 - Bau-km von 10+834 bis 11+015 -> Ableitung übe	v Vanal	0+015			1	ı	ı	11		1	T T	1	-	1	1				-	+ + -	-		}		
3000		10+834,00 11+015,00	181	8,00	0,145	+			0,9	0,131		24.0	24,0	+	+	0,2	24,00	24,00		1	+ + -			-		+
3000	Fahrbahn BW-Kappe BW 2.1 rechts	10+834,00 11+015,00 10+847,50 10+918,50	181 71	2,23	0,145 0,016	 				0,131			26,6			0,2	24,00	24,00		-		-				
3000	BW-Kappe BW 2 links	10+847,50 10+918,50	29	2,23	0,016	+			,	0,014			26,6	+	+	0,2	0,92	26,56		1	+ + -			-		+
3000	BW-Kappe BW 2 links	10+986,00 11+015,00	29	2,23	0,006	+				0,005			28,4	+	+	0,2	0,92	28,40		1	+ + -			-		+
3000	DVV-Nappe DVV 2 rectils	10+300,00 11+015,00	23	2,20	0,000	KS2.01	M4B.3-1		0,9	0,005		0,9		n in Kana	I WAB Co		0,92	28,40 28,40	→ Einleitung in Kanal WAB Coswig	0,0051	250 0,5	0,050	1,01	0.57	0.540	100
FΔ 10 3 2	von 10+834 bis 10+986 -> Versickerung					1.02.01	IVI+U.3-1		+	\vdash			Limerculi	y III iXaila	I	Jowing		20,40	→ Liniellung in Nahai WAD Coswig	0,0051	250 0,5	0,050	1,01	0,57	0,542	136
3000		10+834,00 10+986,00	152	1.8	0,027			150	+	\vdash	-0,96	0.00	+ +	+	+	1	-0,96	0,00		1	+ + -			-		+
3000	Wartungsweg links Bankett rechts	10+834,00 10+986,00	152	1,8	0,027			150	+		-0,96	0,00	+ +	+	+	1	-0,96 -0,07	0,00		1	+ + -			-		+
3000	Bankett rechts	10+834,00 10+847,50	68	1,50	0,002			150	+		-0,07		+ +	+	+	1	-0,07	0,00		1	+ + -			-		+
3000	Bankett recnts Berme rechts	10+918,50 10+986,00	68	2,00	0,010			150	+			0,00	+ +	+	+	1	-0,36 -0,50	0,00		1	+ + -			-		+
3000	Dammböschung rechts	10+918,50 10+986,00	68	5,80	0,014			150	+		-1,39		+ +	+	+	1	-0,50 -1,39	0,00		1	+ + -			-		+
3000	Danimboschung rechts	10+310,30 10+300,00	90	3,00	0,000			150	H		-1,38	0,00	keine anf	allenden	Wassern	nengen aus	· · · · · · · · · · · · · · · · · · ·	0,00		1	+ + -					+
<u> </u>		<u> </u>				ļ							Keme and	anciluen	wassern	nengen aus	3 LA 3.2	0,00		1	 	ļ	ļ			

Davaiah	Straße / FB Seite	Davi Isra		0-	samtfläche	Cabaah	-1	C	A la fluida	A						Damasaumasahflusa			Debudinessi			Davaska	67		
Bereich		Bau-km				Schach		Spez.	Abfluss-	Ared					n=	Bemessungsabfluss	1 -		Rohrdimensio				ung für n		
Achse	Bezeichnung	von bis	Länge	Breite	Fläche	von	bis	Vers	beiwert		Qr	Σ Qr	Qr ΣQr Qr	Σ Qr		Zuwachs	Summe	Streckenzufluss	Gefälle D	N Rau-	Q bei	V bei QT	/QV I	h/d	h
								rate			(n=1)	(n=1) (n=	=0,2) (n=0,2) (n=0,1)	(n=0,1)		Q bei n	Q bei n	von / nach Bereich		heit	Vollfüllung	Vollfüllung		F	Füllhöhe
1	2	3 4	5	6	7	8	9	10	13	17	18	19 2	23,0 24 25	26	27	28	29	20	30 3	1 32	33	34 (5	36	37
Nr.		[km] [km]	[m]	[m]	[ha]			[l/s*ha]		[ha]	[l/s]		[l/s] [l/s] [l/s]	[l/s]		(n)	(n)	(Bemerkung)	m/m m	m mm	m3/s	m/s			mm
	serungsabschnitt 10.4 - Bau-km 1			[]	[]			[#O Haj		[α]	[,, 0]	[,0]		[,,0]		()	()	(Domeritarily)	,		1110/0				
			1+231			1			1				- I	1		1	1		-		+				
	von 11+015 bis 11+297 -> Ableitung übe																								
3000	BW-Kappe BW 2 links	11+015,00 11+021,70	7	2,23	0,001				0,9	0,001	0,11	0,11			1	0,11	0,11								
3000	Fahrbahn	11+015,00 11+297,00	282	8,0	0,226				0.9	0,203	23,22	23,33			1	23,22	23,33								
3000	BW-Kappe BW 2.2 rechts	11+015,00 11+095,00	80	2,23	0,018				0,9	0.016		25,16			1	1,83	25,16								
0000	BW Nappe BW 2.2 reents	111010,00 111000,00	- 00	2,20	0,010	1/00 04	14.04		0,0	0,010	1,00	20,10	Einleitung in RV	/ Kanal W	IAP Coowin	1,00		Field to a large and the second			2 2 4 2			===	
				<u> </u>		KS3.01	M1-21						Elilleitung in Av	V-Namai vv	AB Coswig	_	25,16	→ Einleitung in Kanal WAB Coswig	0,005 25	50 0,5	0,049	1,00 0	51 0	,506	127
EA 10.4.2 ·	von 11+015 bis 11+297 -> Versickerung																								
3000	Bankett rechts	11+095,00 11+297,00	202	1,50	0,030			150			-1,07	0,00			1	-1,07	0,00								
3000	Berme rechts	11+095,00 11+297,00	202	2,00	0,040			150			-1,42	0,00			1	-1,42	0,00								
3000	Dammböschung rechts	11+095,00 11+297,00	202	3,0	0,061			150			-2,17	0,00			1	-2,17	0,00								
														+		· · · · · · · · · · · · · · · · · · ·			-	-	-	-			
3000	Wartungsweg links	11+021,70 11+297,00	275	1,8	0,050			150			-1,78	0,00		ļ		-1,78	0,00								
													keine anfallende	en Wassei	rmengen aus	IS EA 4.2	0,00								
Entwäss	serungsabschnitt 10.5 - Bau-km 1	1+297 bis Bau-km 1	1+905																						
	linke Seite von 11+297 bis 11+905 -> Ab																								
3000	BW-Kappe BW 3 links	11+297,00 11+324,00	27	2,23	0,006				0,9	0,005	0,57	0,57			1	0,57	0,57				+				
																· · · · · · · · · · · · · · · · · · ·	_				-				
3000	BW-Kappe BW 3 rechts	11+297,00 11+324,00	27	2,23	0,006				0,9	0,005	0,69	1,26			1	0,69	1,26								
3000	BW-Kappe BW 3.1 rechts	11+324,00 11+395,00	71	2,23	0,016				0,9	0,014	1,83	3,09			1	1,83	3,09								
3000	Fahrbahn	11+297,00 11+482,70	186	8,0	0,149				0,9	0,134	15,33	15,33			1	15,33	18,42								
3000	Wartungsweg links	11+482,70 11+782,70	300	1,8	0,054			150	- , -		-,		1,8 1,8	1	0,2	1,79	20,21		† †		1	1		 -	$\overline{}$
	ů ů					+		150	0.0	0.040			· · · · · · · · · · · · · · · · · · ·	1					 		+				
3000	Fahrbahn	11+482,70 11+782,70	300	8,0	0,240				0,9	0,216			39,6 41,4	1	0,2	39,57	59,78		 		1		_		
3000	Fahrbahn	11+782,70 11+905,00	122	8,0	0,098				0,9	0,088	10,07	25,40			1	10,07	69,85								
I ——						KS4.01	M2.1-11						Einleitung in RV	/-Kanal W	/AB Coswig		69,85	→ Einleitung in Kanal WAB Coswig	0,007 30	0,5	0,095	1,34 0	74 0	,643	193
			Į I											1				<u> </u>	 						$\overline{}$
EA 10 E 0	von 11+297 bis 11+905 -> Versickerung	üher Bankett und Den	höschung			+							+ +	+	<u> </u>	1	1		 	-	+ -	<u> </u>			
				1.0	0.000			150			1.00	0.00		1	1	-1,03	0.00		 	-	1				\longrightarrow
3000	Wartungsweg links	11+324,00 11+482,70		1,8	0,029			150			-1,03				1	,	0,00				-				
3000	Wartungsweg links	11+782,70 11+905,00	122	1,8	0,022			150			-0,78	0,00			1	-0,78	0,00								
3000	Bankett rechts	11+395,00 11+870,00	475	1,8	0,086			150			-3,06	0,00			1	-3,06	0,00								
3000	Dammböschung rechts	11+395,00 11+823,00	428	3,0	0,128			150			-4,56	0.00			1	-4,56	0,00								
					-,						,	-,	keine anfallende	n Wassel	rmengen aus	<u> </u>	0,00								
EA 10 E 0	11 .070 his 11 .005 Varaiskamma	Show Dombott and Domont	h = a a h										Keine unfunende	1	I au	LA 0.2	0,00				+				
	von 11+870 bis 11+905 -> Versickerung																								
3000	Bankett rechts	11+870,00 11+905,00	35	1,5	0,005			150			-0,18	0,00			1	-0,18	0,00								
3000	Einschnitt rechts	11+870,00 11+905,00	35	1,0	0,004			100			0,06	0,06			1	0,06	0,06								
3000	Mulde rechts	11+870,00 11+905,00	35	2,0	0,007				1,0	0,007	0,80	0,86			1	0,80	0,86	→ Muldenversickerung							
0000	Made reents	111070,00 111000,00	- 00	2,0	0,007				1,0	0,007	0,00	0,00	vollständige Mu	ldem.ees	aleanum n	0,00	0,86	, ividiacity croiciterarig	+		+				
													vollstandige Mu	idenversi	ckerung		0,00				-				
Entwäss	serungsabschnitt 10.6 - Bau-km 1	11+905 bis Bau-km 1	2+250																						
EA 10.6.1 -	rechte Seite von 11+905 bis 12+250 -> A	bleitung über Kanal																							
3000	Fahrbahn	11+905,00 11+871,40	34	8,0	0,027				0.9	0,024	2,75	2.75			1,0	2,75	2,75								
3000	Bankett links	11+871,40 12+171,40	300	1,5	0,045			150	-,-	-,-	, -		4,95	4,9	0,1	4,95	7,70								
					,			130		0.040						,					+				
3000	Fahrbahn Trogbereich	11+871,40 12+171,40	300	8,0	0,240				0,9	0,216			56,14		0,1	56,14	63,84								
3000	Bankett rechts	11+871,40 12+171,40	300	2,00	0,060			150					6,59	67,7	0,1	6,59	70,43								
3000	Fahrbahn	12+171,40 12+250,00	79	8,0	0,063				0,9	0,057	6,52	6,52			1	6,52	76,95								
						K5.01	M2.1-11						Einleitung in RV	/-Kanal W	/AB Coswig		76,95	→ Einleitung in Kanal WAB Coswig	0,004 40	0.5	0,152	1,21 0	51 0	.506	202
EA 10 6 2	2+221,5 bis 2+250 -> Versickerung Seite	nhereiche											T T	1	T .		-,		0,000			.,	• •	,	
			1 0. 1	1 - 1	0.005			450			0.10	0.00		+	.	0.10	0.00		\vdash		+				
3000	Bankett links	11+905,00 11+871,40	34	1,5	0,005			150			-0,18	0,00		1	1	-0,18	0,00		 		1		_		
3000	Bankett links	12+171,40 12+155,00	16	2,00	0,003			150			-0,11	0,00		<u> </u>	1	-0,11	0,00				<u> </u>				
3000	Bankett links	12+190,00 12+250,00	60	1,5	0,009			150			-0,32	0,00			1	-0,32	0,00								
3000	Bankett links	12+190,00 12+250,00	60	2,00	0,012			150							1	-0,43	0,00		i i	1	1	i i			
3000	Bankett rechts	11+905,00 11+871,40	34	2,00	0,007			150	+		-0,25	0,00		1	1	-0,25	0,00		 	1	1 -			- +	$\overline{}$
														+			_		\vdash		+				
3000	Bankett rechts	12+171,40 12+250,00	79	2,00	0,016			150			-0,57	0,00		1	1	-0,57	0,00		 		1		_		
			<u> </u>	<u> </u>		<u> </u>							keine anfallende	en Wassei	rmengen aus	IS EA 6.2	0,00		<u> </u>		<u> </u>				
EA 10.6.3 -	von 2+155 bis 2+190 -> Versickerung üb	er Bankett und Mulde																							
3000	Bankett links	12+155,00 12+190,00	35	1,5	0,005			150			-0,18	0.00		1	1	-0,18	0,00		† †		1	1		 -	
													+ +	1	'		_		 	+	+ +			+	
3000	Einschnitt links	12+155,00 12+190,00	35	1,0	0,004			100	L .		0,06	0,06		 	1	0,06	0,06		\vdash	_					
3000	Mulde links	12+155,00 12+190,00	35	2,0	0,007				1,0	0,007	0,80	0,86			1	0,80	0,86		<u> </u>						
			ı — T										vollständige Mu	Idenversi	ckerung		0,86	→ Muldenversickerung							
Entwäss	serungsabschnitt 10.7 - Bau-km 1	2+250 bis Bau-km 1	2+350.0															-	1 1						\neg
	rechte Seite von 12+250 bis 12+282,45 -:			öschung	und Mulde	T T			ı										 	_	1			- +	$\overline{}$
3000	FB rechts	12+250,00 12+282,45	32	11,3	0,037				0,9	0.033	3,78	3,78		1	1	3,78	3,78			1	1 -	 		+	$\overline{}$
								450	0,5	0,000				+	 '				\vdash		+				
3000	Bankett rechts	12+250,00 12+282,45	32	1,5	0,005			150			-0,18	3,60		1	1	-0,18	3,60		igwdot	_					
3000	Mulde rechts	12+250,00 12+282,45	32	2,3	0,007				1,0	0,007	0,80	4,40		<u> </u>	11	0,80	4,40				<u> </u>		L		
3000	Einschnitt rechts	12+250,00 12+282,45	32	1,0	0,003			100			0,04	4,45			1	0,04	4,45						T		
			†										vollständige Mu	Idenversi	ckerung	· · · · · · · · · · · · · · · · · · ·	4,45	→ Muldenversickerung	i i						
EA 10.70	linke Seite von 12+282,45 bis 12+350 ->	Vereickerung über Berte	att Muldo usa	d Einaah	mitthöschung	+							- CClaridige Ma				.,10	- maidenversionerung	 	-	+ -	- 			-
	<u> </u>				-					L				1	ļ				 		1		_		
3000	FB links	12+282,45 12+350,00	68	13,5	0,091				0,9	0,082	9,38				1	9,38	9,38								
3000	Bankett links	12+290,00 12+350,00	60	1,5	0,009			150	T		-0,32	9,06		1	1	-0,32	9,06		l l =						
3000	Einschnitt links	12+290,00 12+350,00	60	1,0	0,006			100			0,09	9,15			1	0,09	9,15		1 1			1			
3000	Mulde links	12+255,00 12+350,00	95	3,0	0,029				1,0	0,029	3,32	12,47		1	1	3,32	12,47		† †		1				$\overline{}$
3000	INITING III IV2	12+200,000 12+300,000	93	٥,٠	0,023				1,0	0,029	J,JZ	14,41		Literary -		١٠٥٥		M. Ideas	\vdash		+				
			ļ	ļl									vollständige Mu	idenversi	ckerung		12,47	→ Muldenversickerung	 				_		
			<u> </u>	L					l					<u> </u>	<u> </u>						<u> </u>		L		
-									1			•		•		•	•								

Bereich	Straße / FB Seite	Bau-km		G	esamtfläche	Schacht	Spez.	Abfluss-	Ared					n=	Bemessungsabfluss			Rohrdimensi	onierung	1	Bere	chnung für	rn	
Achse	Bezeichnung	von bis	Länge	Breite	Fläche	von bis	Vers	beiwert		Qr	ΣQr	Qr ΣQr Qr	ΣQr		Zuwachs	Summe	Streckenzufluss	Gefälle D	N Ra	u- Q bei		QT/QV	h/d	h
			, and				rate			(n=1)	(n=1)	(n=0,2) (n=0,2) (n=0,	1) (n=0,1)	Q bei n	Q bei n	von / nach Bereich		he	eit Vollfüllung	Vollfüllung			Füllhöhe
1	2	3 4	5	6	7	8 9	10	13	17	18	19	23,0 24 25	26	27	28	29	20	30 3	31 3	2 33	34	35	36	37
Nr.		[km] [km]	[m]	[m]	[ha]		[l/s*ha]		[ha]	[l/s]	[l/s]	[l/s] [l/s] [l/s	[l/s]		(n)	(n)	(Bemerkung)	m/m m	nm m	m m3/s	m/s			mm
Entwäss	erungsabschnitt 10.8 - Bau-km 1	12+350,0 bis Bau-km	12+605,	922																				
	linke / rechte Seite von 12+350 bis 12+60																							
3000	FB links	12+350,00 12+520,70	171	8,0	0,137			0,9	0,123	, , ,				1	14,07	14,07								
3000	Bankett links	12+350,00 12+520,70	171	1,5	0,026		150			-0,93	13,14			1	-0,93	13,14								
3000	Einschnitt links	12+390,00 12+475,00	85	1,8	0,015		100			0,22	13,36			1	0,22	13,36								
3000	Mulde links	12+390,00 12+475,00	85	1,0	0,009			1,0	0,009	1,03	14,39		_	1	1,03	14,39								1
3000	Damm links	12+488,00 12+520,70	33	1,8	0,006		150		l	-0,21	14,18		_	1	-0,21	14,18								1
3000	Mulde links	12+488,00 12+520,70	33	2,0	0,007			1,0	0,007	0,80	14,98		_	1	0,80	14,98								1
3000	FB rechts	12+520,70 12+605,92	85	8,0	0,068			0,9	0,061	-,	21,96			1	6,98	21,96								
3000	Bankett rechts	12+520,70 12+605,92	85	1,5	0,013		150			-0,46	21,49			1	-0,46	21,49								├
3000	Damm rechts	12+520,70 12+567,00	46	1,8	0,008		150			-0,28				1	-0,28	21,21								
3000	Einschnitt rechts	12+567,00 12+605,92	39	1,8	0,007		100	4.0	0.047	0,10	21,31			1	0,10	21,31								
3000	Mulde rechts	12+520,00 12+605,92	86	2,0	0,017			1,0	0,017	1,94	23,25	Finleiture in F	NW Kanal	1	1,94	23,25	F. I. 1. I. I. I.							
							-	-		1	+-+	Einleitung in F	w-Kanal			<u>23,25</u>	→ Einleitung in Kanal	0,004 2	50 0	5 0,044	0,90	0,53	0,518	130
EA 10 9 2	linke / rechte Seite von 12+350 bis 12+60	05 922 -> Versiekerung öl	her Banket	t und Dor	nmhöschung		1	-	H		+ +		-	-	+				_			+		\vdash
3000	Bankett rechts	12+350,00 12+520,70	171	1,5	0,026		150	1	H	-0,93	-0,93		+	1	-0,93	-0,93						+		\vdash
3000	Damm rechts	12+350,00 12+520,70	171	4,7	0,026		150	1	 	-0,93	-0,93		+	1	-0,93 -2,85	-0,93			-			+		\vdash
3000	Bankett links	12+350,00 12+520,70	85	1,5	0,080		150	 		-0,46	-4,24		+	1	-2,85	-3,77			_					$\overline{}$
3000	Damm links	12+520,70 12+605,92	59	3,0	0,013		150	 		-0,46	-4,24		+	1	-0,46	-4,24			_					\vdash
3000	Mulde links	12+580,00 12+605,92	26	2,0	0,005		130	1,0	0,005		-4,31			1	0,57	-4,31								
3000	Walde III NS	12+300,00 12+003,32	20	2,0	0,003			1,0	0,003	0,57	-4,51	keine anfallen	den Wassi	ermengen		0,00								
												Keine ununen	den wass	Cimengen	uus EA 0.4	0,00								
Entwäss	erungsabschnitt 10.9 - Nach der	Schiffemühle / Ache	2100											-										
	Nach der Schiffsmühle von 0+007,5 bis			t Dammh	öschung und Mulde									-										\vdash
3100	FB links	0+7,50 0+77,00	70	15,0				0.9	0,094	10.75	10,75			1	10,75	10,75								
3100	Bankett links	0+7,50 0+71,00	54	1,5	0,008		150	0,5	0,034	-0,28				1	-0,28	10,73								
3100	Damm links	0+7,50 0+50,00	43	0,6	0,003		150			-0,11	10,36			<u> </u>	-0,11	10,36								
3100	Mulde links	0+7,50 0+50,00	43	2,0	0,009		100	1,0	0,009		11,39			1	1,03	11,78								$\overline{}$
3100	Pflastermulde links	0+50,00 0+77,00	27	1,0	0,003			0,9	0,003		11,73			1	0,34	10,81	Muldenversickerung							
				1,0	0,000			,-	, ,,,,,,	-,	,	vollständige N	luldenvers	sickeruna	-,	10,81	g							
EA	10.9.2 - Nach der Schiffsmühle linke Seit	te von 0+077 bis 0+173,5 -	-> Versicke	rung übe	r Bankett, Dammböschung u	ınd Mulde						- January 1				10,01								
3100	FB links	0+77,00 0+173,50	97	7,5	0,072			0,9	0,065	7,44	7,44			1	7,44	7,44								
3100	Gehweg rechts	0+85,00 0+173,50	89	2,5	0,022			0,9	0,020	2,29	9,73			1	2,29	9,73								
3100	Bankett links	0+77,00 0+173,50	97	1,5	0,014		150			-0,50	9,23			1	-0,50	9,23								
3100	Mulde links	0+77,00 0+173,50	97	2,0	0,019			1,0	0,019	2,17	11,40			1	2,17	11,40								
												vollständige N	luldenvers	sickerung		11,40	→ Muldenversickerung							
Entwäss	erungsabschnitt 10.10 - Nach de	er Schiffsmühle / Ach	se 3110	•																				
EA 10.10 -	Nach der Schiffsmühle 0+003,5 bis 0+26	60 -> Versickerung über R	ligole																					
3110	FB	0+3,50 0+227,27	224	6,5	0,145			0,9	0,131	14,99	14,99			1	14,99	14,99								
3110	FB Wendeanlage	0+227,27 0+271,00			0,613			0,9	0,551	63,03	78,02			1	63,03	78,02								
3110	Gehweg links	0+3,50 0+226,46	223	2,5	0,056			0,9	0,050		83,74			1	5,72	83,74								
3192	FB	0+3,25 0+62,50	59	6,0	0,036			0,9	0,032	3,66	87,40			1	3,66	87,40								igsquare
												Einleitung in F	üllkörperr	rigole		87,40	→ Rigolenversickerung							
			<u></u>						 		\sqcup								_					
	erungsabschnitt 10.11 - Grenzst		Bau-km 0	+000 bi	s Bau-km 0+222				 		\sqcup								_					
	Grenzstraße von 0+000 bis 0+222 -> Einl								Ⅱ	1	1 .			ļ										
3910	FB	0+0,00 0+222,00	222	8,0	0,178			0,9			18,30			1	18,30	18,30								igsquare
3910	Gehweg rechts	0+0,00 0+207,20	207	2,5	0,052			0,9			23,68			1	5,38	23,68			_					igwdown
3910	BW-Kappe BW 4Ü rechts	0+207,20 0+222,00	15	2,75	0,004			0,9			24,14			1	0,46	24,14								
3910	BW-Kappe BW 4Ü links	0+192,50 0+222,00	30	0,75	0,002			0,9			24,37			1	0,23	24,37			_					igwdown
3920	FB	0+4,00 0+34,50	31	9,50	0,029			0,9	0,026		27,34			1	2,97	27,34			_					\vdash
3920	Gehweg links	0+4,00 0+34,50	31	2,50	0,008			0,9	0,007	0,80	28,14			1	0,80	28,14			_					\vdash
_									 			Einleitung in k	Canal analo	og Bestand	d / keine Mehrmengen	<u>28,14</u>	→ Einleitung in Kanal WAB Coswig	0,05 2	50 0	5 0,158	3,22	0,18	0,285	71
	erungsabschnitt 10.12 - Grenzst		au-km 0 ₁	-222 bis	Bau-km 0+369,5				 		1						analog Bestand / keine Mehrmengen		_					\vdash
	Grenzstraße von 0+222 bis 0+369,5 -> Ei				T.			1	 	1	1			1					_					$\vdash \vdash$
3910	FB	0+222,00 0+369,50	148	8,0	0,118			0,9			12,13			1	12,13	12,13			_					
3910	Gehweg rechts	0+261,50 0+369,50	108	2,5	0,027			0,9			14,88			1	2,75	14,88			_					
3910	BW-Kappe BW 4Ü rechts	0+222,00 0+261,50	40	2,75				0,9			16,02			1	1,14	16,02			_					\vdash
3910	BW-Kappe BW 4Ü links	0+222,00 0+229,30	7	0,75	0,001			0,9	0,001	0,11	16,13			1	0,11	16,13			_					\vdash
							1	1				Einleitung in h	kanal analo	og Bestand	d / keine Mehrmengen	<u>16,13</u>	→ Einleitung in Kanal WAB Coswig	0,05 2	50 0	5 0,158	3,22	0,1	0,211	53
																	analog Bestand / keine Mehrmengen							
· · · · · · · · · · · · · · · · · · ·						·	<u></u>		_	· <u></u>									_				·	=

Bewertungsverfahren nach Merkblatt DWA-M 153 (August 2007)

Projekt: S84 BA 2.2 (VKE325.1)

Behandlungswirkung der Versickerungsmulden

Entwässerungsabschnitt 10.2 S 84 Bau-km 10+338,5 – 10+834

Gewässer (Tabelle 1a und 1b)	Тур	Gewä	isserpunkte G
GW - ausserhalb von Trinkwassergewinngebieten	G 12	G =	10

	nanteil f_i itel 4)		f t L_i elle 2)		en F_i elle 3)	Abflussbelastung B _i
$A_{u,i}$	f _i	Тур	Punkte	Тур	Punkte	$B_i = f_i \cdot (L_i + F_i)$
-	1,00	L 2	2	F 5	27	29
		-	0	-	0	0
		-	0	-	0	0
		-	0	-	0	0
0,000	∑ = 1,00		Abflussbelas	tung $B = \sum B_{i}$:	B =	29

Ergebnis	B = 29	G = 10	B > G
•			

Bewertung Regenwasserbehandlung erforderlich

maximal zulässiger Durchgangswert D _{max} = G / B :	D _{max} =	0,34
--	--------------------	------

vorgesehene Behandlungsmaßnahme (Tabelle 4a, 4b und 4c)	Тур	Durch	gangswerte D _i
Versickerung; 20cm bewachsenen Oberboden (AU : AS ≤ 5:1)	D2 a	0,20	
-	1	1,00	
-	1	1,00	
Durchgangswert D = Produkt aller D _i (Kapitel 6.2.2) :		D =	0,20

Emissionswert E = B · D	: E=	5,8

Ergebnis	E = 5,8	G = 10	E <= G

Bewertung Nachweis erfüllt

Bewertung

Bewertungsverfahren nach Merkblatt DWA-M 153 (August 2007)

Projekt: S84 BA 2.2 (VKE325.1)

Behandlungswirkung der Versickerungsmulden

Entwässerungsabschnitt 10.7 und 10.8 (S 84 Bau-km 12+250 – 12+350 / 12+350 – 12+605,9)

Erschließungsstraße "Nach der Schiffsmühle"

Gewässer (Tabelle 1a und 1b)			Тур	Gew	ässerpunkte G	
GW - ausser	halb von Trinkw	assergewinng	jebieten	G 12	G =	10
	nanteil f _i		ft L _i elle 2)	Fläche (Tabe	•	Abflussbelastung B
A _{u,i}	f _i	Тур	Punkte	Тур	Punkte	$B_i = f_i \cdot (L_i + F_i)$
-	1,00	L 2	2	F 5	27	29
		-	0	-	0	0
		-	0	-	0	0
		-	0	-	0	0
0,000	∑ = 1,00		Abflussbelas	tung $B = \sum B_{i:}$	B =	29
				1		
Ergebnis	B =	29	G =	10		B > G
Bewertung	_					
			ndlung erford		D _{max} =	0.34
			ndlung erford urchgangswert		D _{max} =	0,34
		zulässiger Du	urchgangswert			0,34 hgangswerte D _i
vorg	maximal	zulässiger Du ndlungsmaßr 4b und 4c)	urchgangswert	D _{max} = G / B :		
vorg (Versickerung; 20	maximal esehene Behar (Tabelle 4a,	zulässiger Dundlungsmaßr 4b und 4c) berboden (AU: At	urchgangswert nahme S > 5:1 bis ≤ 15:1)	D _{max} = G / B :		hgangswerte D _i
vorg (Versickerung; 20	maximal esehene Behar (Tabelle 4a,	zulässiger Dundlungsmaßr 4b und 4c) berboden (AU: At	urchgangswert nahme S > 5:1 bis ≤ 15:1)	D _{max} = G / B : Typ D2 b		hgangswerte D _i
vorg (Versickerung; 20	maximal esehene Behar (Tabelle 4a, 0cm bewachsenen O ter Mulden, Rigolen, So	zulässiger Dundlungsmaßr 4b und 4c) berboden (AU : Atchächten o. ä. (AU :	urchgangswert nahme S > 5:1 bis ≤ 15:1)	D _{max} = G / B : Typ D2 b D4 b -		hgangswerte D _i
vorg (Versickerung; 20	maximal esehene Behar (Tabelle 4a, 0cm bewachsenen O ter Mulden, Rigolen, So	zulässiger Dundlungsmaßr 4b und 4c) berboden (AU : Atchächten o. ä. (AU :	urchgangswert nahme S > 5:1 bis ≤ 15:1) AS > 5:1 bis ≤ 15:1) odukt aller D _i (k	D _{max} = G / B : Typ D2 b D4 b -	Durc	hgangswerte D _i 0,35 0,45
Vorg e Versickerung; 20	maximal esehene Behar (Tabelle 4a, 0cm bewachsenen O ter Mulden, Rigolen, So	zulässiger Dundlungsmaßr 4b und 4c) berboden (AU : Atchächten o. ä. (AU :	urchgangswert nahme S > 5:1 bis ≤ 15:1) AS > 5:1 bis ≤ 15:1) odukt aller D _i (k	Typ D2 b D4 b - (apitel 6.2.2) :	Durc D =	hgangswerte D _i 0,35 0,45 0,16

Nachweis erfüllt

Bewertungsverfahren nach Merkblatt DWA-M 153 (August 2007)

Projekt: S84 BA 2.2

Behandlungswirkung der Rigolenversickerung

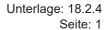
Erschließungsstraße "Nach der Schiffsmühle"

Gewässer (Tabelle 1a und 1b)	Тур	Gewä	isserpunkte G
GW - ausserhalb von Trinkwassergewinngebieten	G 12	G =	10

	nanteil f_i itel 4)		f t L_i elle 2)		en F_i elle 3)	Abflussbelastung B _i
$A_{u,i}$	f _i	Тур	Punkte	Тур	Punkte	$B_i = f_i \cdot (L_i + F_i)$
-	1,00	L 1	1	F 4	19	20
		-	0	-	0	0
		-	0	-	0	0
		-	0	-	0	0
0,000	∑ = 1,00		Abflussbelas	tung $B = \sum B_{i}$:	B =	20

Ergebnis	B = 20	G = 10	B > G
•			

Bewertung Regenwasserbehandlung erforderlich


maximal zulässiger Durchgangswert $D_{max} = G / B$: $D_{max} = 0,50$
--

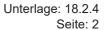
vorgesehene Behandlungsmaßnahme (Tabelle 4a, 4b und 4c)	Тур	Durch	igangswerte D _i
Anlagen mit Dauerstau mit max. vS=10m/h (rkrit =45 l/(s·ha))	D24 c	0,50	
-	-		
Durchgangswert D = Produkt aller D _i (k	D =	0,50	

Emissionswert E = B · D	: E=	10

Ergebnis	E = 10	G = 10	E <= G

Bewertung Nachweis erfüllt

Projekt: S 84 BA 2.2 (VKE325.1)


Entwässerungsabschnitt 2.1 - vollständige Muldenversickerung mit Sickerschlitz

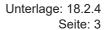
Bau-km 10+347,5 - 10+510

r _{15,n=1}	=	114,4 l/(s ⁻ ha)	-> It. KOSTRA DWD
Q _{r15,n=1}	=	8,96 l/s	-> It. Wassermengenermittlung
A_{red}	=	0,08 ha	$-> Q_{r15,n=1}/r_{15,n=1}$
f_Z	=	1,2 [-]	-> gewählt gem. DWA-A 117
n	=	0,2 [-]	-> gemäß Vorgabe
$k_{f,Untergrund}$	=	0,0000500 m/s	-> k _f -Wert Untergrund
$k_{f,u}$	=	0,0000056 m/s	-> gemäß RAS-Ew
k_f	=	0,0000112 m/s	-> Umrechung gemäß DWA-A138
A_S	=	260 m²	-> L _{vorh.} · b _M

D in min	r _{D,n} in I/(s ⁻ ha)	V in m³
5	296,8	7,79
10	223,2	11,45
15	183,2	13,81
20	156,8	15,45
30	123,3	17,53
45	95	19,15
60	78,1	19,84
90	57,6	19,39
120	46,5	18,38
180	34,3	15,23
240	27,6	11,28
360	20,4	2,36
540	15,1	-12,53
720	12,1	-28,83
1080	9	-62,05
1440	7,2	-97,29
2880	4,2	-243,11
4320	3,1	-391,35

Volumen	V =	20 m ³		
Muldenabmessung	b =	2 m	-> Breite	
	T =	0,4 m	-> Tiefe	
	b _M =	1,33 m	-> wirksame Mulo	denbreite bei z _M
vorhand. Muldenlänge	L _{vorh} =	137 m	-> vorhandene/ g	eplante Muldenlänge
	L _{erf} =	55 m	-> erforderliche M	luldenlänge
Einstauhöhe	z _M =	0,08 m	-> V / A _S	
Entleerungszeit	vorh. t _E =	$2 \cdot z_{M} / k_{f} =$	4,0 h	
	vorh. t _E =	4,0 h	<	24 h

Projekt: S 84 BA 2.2 (VKE325.1)


Entwässerungsabschnitt 2.2 - vollständige Muldenversickerung mit Sickerschlitz

Bau-km 10+510 - 10+773

r _{15,n=1}	=	114,4 l/(s ⁻ ha)	-> It. KOSTRA DWD
Q _{r15,n=1}	=	17,91 l/s	-> It. Wassermengenermittlung
A_{red}	=	0,16 ha	-> Q _{r15,n=1} / r _{15,n=1}
f_Z	=	1,2 [-]	-> gewählt gem. DWA-A 117
n	=	0,2 [-]	-> gemäß Vorgabe
k _{f,Untergrund}	=	0,0000500 m/s	-> k _f -Wert Untergrund
$k_{f,u}$	=	0,0000056 m/s	-> gemäß RAS-Ew
k _f	=	0,0000112 m/s	-> Umrechung gemäß DWA-A138
A_{S}	=	433 m²	-> L _{vorb} · b _M

D in min	r _{D,n} in I/(s ⁻ ha)	V in m³
5	296,8	15,91
10	223,2	23,5
15	183,2	28,47
20	156,8	31,99
30	123,3	36,63
45	95	40,55
60	78,1	42,6
90	57,6	43,05
120	46,5	42,34
180	34,3	38,69
240	27,6	33,41
360	20,4	20,81
540	15,1	-1,14
720	12,1	-25,94
1080	9	-76,75
1440	7,2	-131,63
2880	4,2	-360,93
4320	3,1	-595,11

Volumen	V =	43 m ³		
Muldenabmessung	b =	2 m	-> Breite	
	T =	0,4 m	-> Tiefe	
	b _M =	1,33 m	-> wirksame Mu	ldenbreite bei z _M
vorhand. Muldenlänge	L _{vorh} =	228 m	-> vorhandene/	geplante Muldenlänge
	L _{erf} =	119 m	-> erforderliche	Muldenlänge
Einstauhöhe	z _M =	0,1 m	-> V / A _S	
Entleerungszeit	vorh. t _E =	$2 \cdot z_{M} / k_{f} =$	5,0 h	
	vorh. t _E =	5,0 h	<	24 h

Projekt: S 84 BA 2.2 (VKE325.1)

Entwässerungsabschnitt 2.2 - vollständige Muldenversickerung mit Sickerschlitz

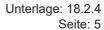
Bau-km 10+773 - 10+834

r _{15,n=1}	=	114,4 l/(s ha)	-> It. KOSTRA DWD
Q _{r15,n=1}	=	5,44 l/s	-> It. Wassermengenermittlung
A_{red}	=	0,05 ha	-> Q _{r15,n=1} / r _{15,n=1}
f_Z	=	1,2 [-]	-> gewählt gem. DWA-A 117
n	=	0,2 [-]	-> gemäß Vorgabe
$\mathbf{k}_{f,Untergrund}$	=	0,0000500 m/s	-> k _f -Wert Untergrund
$k_{f,u}$	=	0,0000056 m/s	-> gemäß RAS-Ew
k _f	=	0,0000112 m/s	-> Umrechung gemäß DWA-A138
A_{s}	=	116 m²	-> L _{vorb} · b _M

D in min	r _{D,n} in I/(s ⁻ ha)	V in m³
5	296,8	4,91
10	223,2	7,28
15	183,2	8,85
20	156,8	9,97
30	123,3	11,49
45	95	12,83
60	78,1	13,6
90	57,6	14,03
120	46,5	14,1
180	34,3	13,56
240	27,6	12,52
360	20,4	9,83
540	15,1	4,85
720	12,1	-1
1080	9	-13,06
1440	7,2	-26,38
2880	4,2	-82,61
4320	3,1	-140,34

Volumen	V =	14 m ³		
Muldenabmessung	b =	2 m	-> Breite	
	T =	0,4 m	-> Tiefe	
	b _M =	1,33 m	-> wirksame Mu	ldenbreite bei z _M
vorhand. Muldenlänge	L _{vorh} =	61 m	-> vorhandene/	geplante Muldenlänge
	L _{erf} =	39 m	-> erforderliche	Muldenlänge
Einstauhöhe	z _M =	0,12 m	-> V / A _S	
Entleerungszeit	vorh. t _E =	$2 \cdot z_M / k_f =$	6,0 h	
	vorh. t _E =	6,0 h	<	24 h

Projekt: S 84 BA 2.2 (VKE325.1)


Entwässerungsabschnitt 10.5.3 und 10.6.3 - vollständige Muldenversickerung mit Sickerschlitz

Bau-km 12+155 - 12+190

r _{15,n=1}	=	114,4 l/(s ⁻ ha)	-> It. KOSTRA DWD
Q _{r15,n=1}	=	0,86 l/s	-> It. Wassermengenermittlung
A _{red}	=	0,01 ha	-> Q _{r15,n=1} / r _{15,n=1}
f_Z	=	1,2 [-]	-> gewählt gem. DWA-A 117
n	=	0,2 [-]	-> gemäß Vorgabe
k _{f,Untergrund}	=	0,0000500 m/s	-> k _f -Wert Untergrund
$k_{f,u}$	=	0,0000056 m/s	-> gemäß RAS-Ew
k_f	=	0,0000112 m/s	-> Umrechung gemäß DWA-A138
A_S	=	66 m²	-> L _{vorh.} · b _M

D in min	r _{D,n} in I/(s ⁻ ha)	V in m³
5	296,8	0,71
10	223,2	1
15	183,2	1,15
20	156,8	1,23
30	123,3	1,27
45	95	1,17
60	78,1	0,97
90	57,6	0,39
120	46,5	-0,24
180	34,3	-1,63
240	27,6	-3,1
360	20,4	-6,14
540	15,1	-10,86
720	12,1	-15,72
1080	9	-25,51
1440	7,2	-35,5
2880	4,2	-75,98
4320	3,1	-116,7

Volumen	V =	1 m ³		
Muldenabmessung	b =	2 m	-> Breite	
	T =	0,4 m	-> Tiefe	
	b _M =	1,33 m	-> wirksame Mul	denbreite bei z _M
vorhand. Muldenlänge	L _{vorh} =	35 m	-> vorhandene/ g	eplante Muldenlänge
	L _{erf} =	4 m	-> erforderliche N	/luldenlänge
Einstauhöhe	z _M =	0,02 m	-> V / A _S	
Entleerungszeit	vorh. t _E =	$2 \cdot z_M / k_f =$	1,0 h	
	vorh. t _E =	1,0 h	<	24 h

Projekt: S 84 BA 2.2 (VKE325.1)

Entwässerungsabschnitt 10.7.1 - vollständige Muldenversickerung mit Sickerschlitz

Bau-km 12+250 - 12+282,45

r _{15,n=1}	=	114,4 l/(s ha)	-> It. KOSTRA DWD
Q _{r15,n=1}	=	4,45 l/s	-> It. Wassermengenermittlung
A_{red}	=	0,04 ha	-> Q _{r15,n=1} / r _{15,n=1}
f_Z	=	1,2 [-]	-> gewählt gem. DWA-A 117
n	=	0,2 [-]	-> gemäß Vorgabe
$k_{f,Untergrund}$	=	0,0000480 m/s	-> k _f -Wert Untergrund
$k_{f,u}$	=	0,0000056 m/s	-> gemäß RAS-Ew
k _f	=	0,0000112 m/s	-> Umrechung gemäß DWA-A138
A_S	=	70 m²	-> L _{vorh.} · b _M

D in min	r _{D,n} in I/(s ⁻ ha)	V in m³
5	296,8	4,02
10	223,2	5,98
15	183,2	7,28
20	156,8	8,23
30	123,3	9,52
45	95	10,71
60	78,1	11,43
90	57,6	11,96
120	46,5	12,21
180	34,3	12,15
240	27,6	11,69
360	20,4	10,25
540	15,1	7,34
720	12,1	3,73
1080	9	-3,81
1440	7,2	-12,36
2880	4,2	-48,98
4320	3,1	-86,81

Volumen	V =	12 m ³		
Muldenabmessung	b =	2,5 m	-> Breite	
	T =	0,5 m	-> Tiefe	
	b _M =	1,53 m	-> wirksame Mul	ldenbreite bei z _M
vorhand. Muldenlänge	L _{vorh} =	32 m	-> vorhandene/ g	geplante Muldenlänge
	L _{erf} =	27 m	-> erforderliche l	Muldenlänge
Einstauhöhe	z _M =	0,17 m	-> V / A _S	
Entleerungszeit	vorh. t _E =	$2 \cdot z_{M} / k_{f} =$	8,4 h	
	vorh. t _E =	8,4 h	<	24 h

Projekt: S 84 BA 2.2 (VKE325.1)


Entwässerungsabschnitt 10.7.2 - vollständige Muldenversickerung mit Sickerschlitz

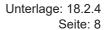
Bau-km 12+282,4 bis 12+350,00

r _{15,n=1}	=	114,4 l/(s·ha)	-> It. KOSTRA DWD
Q _{r15,n=1}	=	12,47 l/s	-> It. Wassermengenermittlung
A_{red}	=	0,11 ha	-> Q _{r15,n=1} / r _{15,n=1}
f_Z	=	1,2 [-]	-> gewählt gem. DWA-A 117
n	=	0,2 [-]	-> gemäß Vorgabe
$k_{f,Untergrund}$	=	0,0000480 m/s	-> k _f -Wert Untergrund
$k_{f,u}$	=	0,0000056 m/s	-> gemäß RAS-Ew
k _f	=	0,0000112 m/s	-> Umrechung gemäß DWA-A138
A_S	=	163 m²	-> L _{vorh} · b _M

D in min	r _{D,n} in I/(s ⁻ ha)	V in m³
5	296,8	11,32
10	223,2	16,87
15	183,2	20,59
20	156,8	23,32
30	123,3	27,09
45	95	30,63
60	78,1	32,89
90	57,6	34,85
120	46,5	36,02
180	34,3	36,79
240	27,6	36,43
360	20,4	34,31
540	15,1	29
720	12,1	21,72
1080	9	6,3
1440	7,2	-11,94
2880	4,2	-91,69
4320	3,1	-174,84

Volumen	V =	37 m ³		
Muldenabmessung	b =	3 m	-> Breite	
	T =	0,5 m	-> Tiefe	
	b _M =	2,01 m	-> wirksame Mul	denbreite bei z _M
vorhand. Muldenlänge	L _{vorh} =	57 m	-> vorhandene/ g	geplante Muldenlänge
	L _{erf} =	50 m	-> erforderliche N	Muldenlänge
Einstauhöhe	z _M =	0,23 m	-> V / A _S	
Entleerungszeit	vorh. t _E =	$2 \cdot z_{M} / k_{f} =$	11,4 h	
	vorh. t _E =	11,4 h	<	24 h

Projekt: S 84 BA 2.2 (VKE325.1)


Entwässerungsabschnitt 9.1 - vollständige Muldenversickerung mit Sickerschlitz

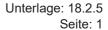
Nach der Schiffsmühle / Bau-km 0+007,5 - 0+077,0

r _{15,n=1}	=	114,4 l/(sˈha)	-> It. KOSTRA DWD
Q _{r15,n=1}	=	10,81 l/s	-> It. Wassermengenermittlung
A_{red}	=	0,09 ha	$-> Q_{r15,n=1}/r_{15,n=1}$
f_Z	=	1,2 [-]	-> gewählt gem. DWA-A 117
n	=	0,2 [-]	-> gemäß Vorgabe
k _{f,Untergrund}	=	0,0000480 m/s	-> k _f -Wert Untergrund
$k_{f,u}$	=	0,0000056 m/s	-> gemäß RAS-Ew
k _f	=	0,0000112 m/s	-> Umrechung gemäß DWA-A138
$A_{\rm S}$	=	101 m²	-> L _{vorb} · b _M

D in min	r _{D,n} in I/(s ⁻ ha)	V in m³
5	296,8	9,93
10	223,2	14,83
15	183,2	18,15
20	156,8	20,59
30	123,3	24,01
45	95	27,3
60	78,1	29,46
90	57,6	31,57
120	46,5	32,98
180	34,3	34,45
240	27,6	34,94
360	20,4	34,68
540	15,1	32,45
720	12,1	28,49
1080	9	19,83
1440	7,2	8,71
2880	4,2	-41,68
4320	3,1	-95,02

Volumen	V =	35 m ³		
Muldenabmessung	b =	3 m	-> Breite	
	T =	0,5 m	-> Tiefe	
	b _M =	2,01 m	-> wirksame Mul	denbreite bei z _M
vorhand. Muldenlänge	L _{vorh} =	50 m	-> vorhandene/ g	geplante Muldenlänge
	L _{erf} =	47 m	-> erforderliche N	/luldenlänge
Einstauhöhe	z _M =	0,35 m	-> V / A _S	
Entleerungszeit	vorh. t _E =	$2 \cdot z_{M} / k_{f} =$	17,4 h	
	vorh. t _E =	17,4 h	<	24 h

Projekt: S 84 BA 2.2 (VKE325.1)


Entwässerungsabschnitt 9.2 - vollständige Muldenversickerung mit Sickerschlitz

Nach der Schiffsmühle / Bau-km 0+077,0 - 0+173,5

r _{15,n=1}	=	114,4 l/(s ⁻ ha)	-> It. KOSTRA DWD
Q _{r15,n=1}	=	11,4 l/s	-> It. Wassermengenermittlung
A_{red}	=	0,10 ha	$-> Q_{r15,n=1} / r_{15,n=1}$
f_Z	=	1,2 [-]	-> gewählt gem. DWA-A 117
n	=	0,2 [-]	-> gemäß Vorgabe
k _{f,Untergrund}	=	0,0000480 m/s	-> k _f -Wert Untergrund
$k_{f,u}$	=	0,0000056 m/s	-> gemäß RAS-Ew
k _f	=	0,0000112 m/s	-> Umrechung gemäß DWA-A138
$A_{\rm S}$	=	177 m²	-> L _{vorb} · b _M

D in min	r _{D,n} in I/(s ⁻ ha)	V in m³
5	296,8	10,32
10	223,2	15,35
15	183,2	18,71
20	156,8	21,14
30	123,3	24,47
45	95	27,54
60	78,1	29,42
90	57,6	30,84
120	46,5	31,54
180	34,3	31,49
240	27,6	30,41
360	20,4	26,96
540	15,1	19,83
720	12,1	10,89
1080	9	-7,78
1440	7,2	-29,03
2880	4,2	-120,27
4320	3,1	-214,62

Volumen	V =	32 m ³		
Muldenabmessung	b =	2 m	-> Breite	
	T =	0,4 m	-> Tiefe	
	b _M =	1,38 m	-> wirksame Mul	denbreite bei z _M
vorhand. Muldenlänge	L _{vorh} =	90 m	-> vorhandene/ g	geplante Muldenlänge
	L _{erf} =	79 m	-> erforderliche N	Muldenlänge
Einstauhöhe	z _M =	0,18 m	-> V / A _S	
Entleerungszeit	vorh. t _E =	$2 \cdot z_M / k_f =$	8,9 h	
	vorh. t _E =	8,9 h	<	24 h

Bemessung von Rigolenversickerung nach Arbeitsblatt DWA-A 138 (April 2005)

Projekt:

S 84 BA 2.2 (VKE325.1)

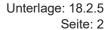
Entwässerungsabschnitt 10.1 - vollständige Rigolenversickerung

Rigolentyp: Speicherblockrigole mit vorgeschalteter Sedimentationsanlage

Nach der Schiffsmühle / Bau-km 0+003,5 - 0+260

Anschlusswerte:

zu entwässernde Fläche	A _{gesamt}	8500 m ²
(mittl.) Abflussbeiwert	Ψ	0,90
undurchlässige Fläche	Au gesamt	7650 m ²
Zuschlagsfaktor	fz	1,15
Regenhäufigkeit	T	5 a
jährliche Überlaufhäufigkeit	n	0,20 1/a
kf - Wert kf-Korrekturfaktor	kf-Wert	1,00E-04 m/s 1,00
Rigolenparameter:		

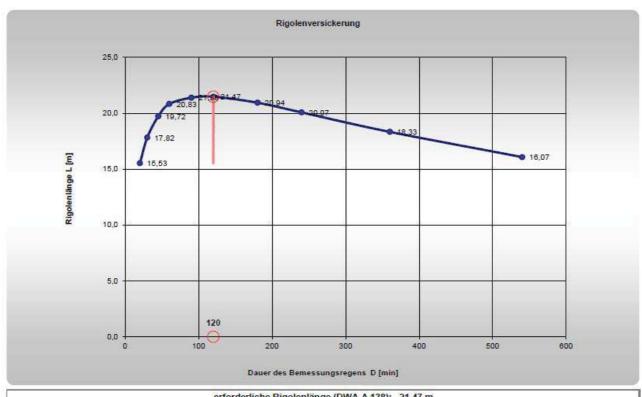

Breite В 8,00 m Höhe Н 1,32 m

Versickerfähigkeit der Seitenflächen versickerfähig

Rigolenmaterial: Speicherblockrigole

		erf. Rigolen-	erf. Rigolen-
Regendauer		volumen	länge
D in min	r _{D,n} in I/(s ⁻ ha)	erf. V in m³	erf. L in m
5	296,70	77,07	7,68
10	223,30	114,28	11,39
15	183,30	138,66	13,82
20	156,70	155,78	15,53
30	123,30	178,74	17,82
45	94,80	197,85	19,72
60	78,10	208,92	20,83
90	57,60	214,50	21,38
120	46,50	215,38	21,47
180	34,30	210,03	20,94
240	27,60	201,36	20,07
360	20,40	183,91	18,33
540	15,10	161,25	16,07
720	12,20	143,29	14,28
1080	9,00	117,02	11,66
1440	7,20	98,52	9,82
2880	4,20	61,19	6,10
4320	3,10	45,31	4,52

maßgebende Regendauer: D = 120 min maßgebende Regenspende: rN = 46,50 I/(s*ha) erforderliches Rigolenvolumen: erf. V = 215,38 m³ erforderliche Rigolenlänge: erf. L = 21,47 m gewählte Rigolenlänge: gew. L = 22,40 m



Ergebnisse der Versickerungsanlage (ohne Berücksichtigung von Überflutungsvolumina), (DWA-A 138):

Gesamtspeicherkoeffizient der Rigole s_{Rigole} 0,95 erforderliches Gesamtspeichervolumen erf. V_{gesamt} 215,38 m³ versickerungswirksame Fläche A_S 199,26 m²

Entleerungszeit vorh. t_E = 6,0 h < 24 h

Graphische Darstellung:

erforderliche Rigolenlänge (DWA-A 138): 21,47 m