TÜV NORD EnSys GmbH & Co. KG

Energie- und Systemtechnik

Gutachtliche Stellungnahme zur Standorteignung von Windenergieanlagen im Windpark

Wiesemscheid

Erstellt im Auftrag für

Windpark Wiesemscheid GmbH & Co. KG

Rees

Revision 6

Hamburg, 08.04.2021

Revision	Datum	Änderung
0	06.03.2017	Erste Ausgabe
1	13.04.2017	Einarbeitung der standortspezifischen Lastvergleiche
2	10.10.2018	Änderung der Windparkkonfiguration und Einarbeitung der standortspezifischen Lastvergleiche
3	30.07.2019	Änderung der Nabenhöhen an den WEA 2 und 3 sowie Korrektur des Rotordurchmessers an den WEA 1 bis 3
4	05.11.2019	Neubewertung der Standorteignung unter Verwendung neuer Winddaten am Standort
5	17.01.2020	Einarbeitung des standortspezifischen Lastvergleiches
6	08.04.2021	Änderung des WEA-Typs

Seite 2 von 32 Gutachtliche Stellungnahme zur Standorteignung von Windenergieanlagen im Windpark Wiesemscheid Revision 6, April 2021 Referenz-Nr. 2021-WND-038-CXXIX-R6

Gegenstand: Ermittlung der effektiven Turbulenzintensitäten am Stand-

ort sowie weiterer Windbedingungen zur Beurteilung der Standorteignung von Windenergieanlagen innerhalb des

Windparks Wiesemscheid

Referenz-Nr.: 2021-WND-038-CXXIX-R6

Auftraggeber: Windpark Wiesemscheid GmbH & Co. KG

Wertherbrucher Straße 13 46459 Rees, Deutschland

Vom Auftraggeber eingereichte Unterlagen:

Lageplan des Windparks /24/

 Koordinaten der geplanten WEA /24/ (Koordinatensystem: UTM ETRS89, Zone 32)

- WEA-Spezifikation inkl. Angabe zu Nabenhöhe, Rotordurchmesser und Nennleistung der zu berücksichtigenden WEA /24/
- Höhendaten an den Koordinaten der geplanten WEA /24/
- Auszug zur Häufigkeitsverteilung der Windrichtung und der Windgeschwindigkeit (A- und k-Parameter der Weibullverteilung) /25/
- Ergänzende Angaben zur Standortbeschreibung /24/
- Standortspezifischer Lastvergleich /28/

Seite 3 von 32 Gutachtliche Stellungnahme zur Standorteignung von Windenergieanlagen im Windpark Wiesemscheid Revision 6, April 2021 Referenz-Nr. 2021-WND-038-CXXIX-R6

Die Ausarbeitung der gutachtlichen Stellungnahme erfolgte durch:

Verfasser	Dr. rer. nat. M. Polster Sachverständige	Hamburg, 08.04.2021
Geprüft durch	DiplIng. (FH) O. Röglin Sachverständiger	Hamburg, 08.04.2021

Für weitere Auskünfte:

TÜV NORD EnSys GmbH & Co. KG

Dr. rer. nat. M. Polster Große Bahnstraße 31

22525 Hamburg

Tel.: +49 40 8557 2091 Fax: +49 40 8557 2552

E-Mail: mopolster@tuev-nord.de

Seite 4 von 32 Gutachtliche Stellungnahme zur Standorteignung von Windenergieanlagen im Windpark Wiesemscheid Revision 6, April 2021 Referenz-Nr. 2021-WND-038-CXXIX-R6

Inhaltsverzeichnis

Au	fgabenstellung	5
Gr	undlagen	6
2.1	Nachweis durch vereinfachten Vergleich der Windbedingungen	8
2.2	Nachweis durch Vergleich der Lasten	11
Ra	ndbedingungen	12
3.1	Windparkkonfiguration	12
3.2	Windbedingungen der Auslegung	13
3.3	Winddaten am Standort	14
Du	rchgeführte Untersuchungen	16
4.1	Standortbesichtigung	16
4.2	Komplexität des Geländes	17
4.3	50-Jahreswindgeschwindigkeit auf Nabenhöhe	18
4.4	Mittlere Jahreswindgeschwindigkeit auf Nabenhöhe	19
4.5	Umgebungsturbulenzintensität	20
4.6	Effektive Turbulenzintensität	21
4.7	Weitere Windbedingungen	22
4.7	7.1 Mittlerer Höhenexponent	23
4.7	7.2 Mittlere Luftdichte	23
4.7		
4.7		
4.8		
Zu	sammenfassung und Bewertung	25
Re	chtliche Hinweise	27
Fo	rmelzeichen und Abkürzungen	28
Lit	eratur- und Quellenangaben	30
Zu	sammenfassung aller Windbedingungen	32
	Gr 2.1 2.2 Ra 3.1 3.2 3.3 Du 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.8 Exercises Exercises Exe	2.2 Nachweis durch Vergleich der Lasten Randbedingungen 3.1 Windparkkonfiguration 3.2 Windbedingungen der Auslegung 3.3 Winddaten am Standort Durchgeführte Untersuchungen 4.1 Standortbesichtigung 4.2 Komplexität des Geländes 4.3 50-Jahreswindgeschwindigkeit auf Nabenhöhe 4.4 Mittlere Jahreswindgeschwindigkeit auf Nabenhöhe 4.5 Umgebungsturbulenzintensität 4.6 Effektive Turbulenzintensität 4.7 Weitere Windbedingungen 4.7.1 Mittlerer Höhenexponent 4.7.2 Mittlere Luftdichte 4.7.3 Neigung der Anströmung 4.7.4 Extreme Turbulenzintensität

Seite 5 von 32 Gutachtliche Stellungnahme zur Standorteignung von Windenergieanlagen im Windpark Wiesemscheid Revision 6, April 2021 Referenz-Nr. 2021-WND-038-CXXIX-R6

1 Aufgabenstellung

Am Standort Wiesemscheid (Rheinland-Pfalz) plant der Auftraggeber die Errichtung von drei Windenergieanlagen (WEA 1 bis 3), siehe hierzu Tabelle 1 bzw. Abbildung 1.

Die TÜV NORD EnSys GmbH & Co. KG ist am 23.02.2021 per E-Mail beauftragt worden, die Standorteignung von WEA gemäß Kapitel 16 der DIBt-Richtlinie 2012 /5/ zu betrachten und zu bewerten. Insbesondere ist hierbei der zusätzlich zur Umgebungsturbulenzintensität wirkende Einfluss der Nachlaufsituationen der WEA am Standort untereinander zu untersuchen. Des Weiteren ist bei WEA, für die eine Typenprüfung nach der DIBt-Richtlinie 2012 /5/ vorliegt bzw. anzunehmen ist, ein Vergleich weiterer Windbedingungen am Standort mit den jeweiligen zu Grunde liegenden Auslegungswerten der Typen- bzw. Einzelprüfung durchzuführen. Darüber hinaus ist nach /5/ der Ermittlung der Standortbedingungen eine Standortbesichtigung zu Grunde zu legen.

Nach /5/ wird für eine Prüfung der Standorteignung von WEA das Vorliegen einer gültigen Typen- bzw. Einzelprüfung vorausgesetzt. Die Typen- bzw. Einzelprüfung dient als Standsicherheitsnachweis von Turm und Gründung einer WEA und wird ausgestellt, wenn die in den jeweiligen DIBt-Richtlinien /3/, /4/, /5/ geforderten Dokumente und Berechnungen des Herstellers (insbesondere die Berechnungen der auf Turm und Gründung wirkenden Lasten) durch eine akkreditierte Zertifizierungsstelle geprüft und bestätigt werden. Sollte zum gegenwärtigen Zeitpunkt noch keine Typenbzw. Einzelprüfung für einen bestimmten WEA-Typ vorliegen, so weisen wir unsere Ergebnisse für diese WEA nur unter Vorbehalt aus. Dieser Vorbehalt kann dann entfallen, wenn die in dieser gutachtlichen Stellungnahme zu Grunde gelegten Auslegungswerte durch die Auslegungswerte der mit der Genehmigung eingereichten Typen- bzw. Einzelprüfung abgedeckt werden. Im Folgenden wird nicht mehr ausdrücklich zwischen einer Typen- oder Einzelprüfung unterschieden, sondern vereinfachend nur noch von einer Typenprüfung gesprochen.

Die zu untersuchenden Windbedingungsparameter sind in den jeweiligen DIBt-Richtlinien /3/, /4/, /5/ bzw. /7/, /8/ festgelegt und Bestandteil der Typenprüfung einer WEA. Diese gehen als Basis in die zu berechnenden Auslegungslasten ein, wobei hierbei die Entwurfslebensdauer einer WEA nach /3/, /4/, /5/ mit mindestens 20 Jahren anzunehmen ist.

WEA mit einer Gesamthöhe von mehr als 50m sind genehmigungsbedürftige Anlagen gem. § 4 des Bundes-Immissionsschutzgesetzes (BImSchG) /13/ in Verbindung mit Ziff. 1.6 Spalte 2 des Anhangs zur vierten Verordnung über genehmigungsbedürftige Anlagen (4. BImSchV) /14/. Aufgrund fehlender Kriterien für einen Immissionsgrenzwert für die durch Nachbar-WEA erhöhte Turbulenzbelastung einer WEA können ersatzweise die Kriterien der Standorteignung für eine Turbulenz-Immissionsprognose im Rahmen eines BImSchG-Antrages herangezogen werden. Es wird dabei davon ausgegangen, dass die Reduktion der Lebensdauer von WEA

Seite 6 von 32 Gutachtliche Stellungnahme zur Standorteignung von Windenergieanlagen im Windpark Wiesemscheid Revision 6, April 2021 Referenz-Nr. 2021-WND-038-CXXIX-R6

und deren zusätzliche strukturelle Ermüdung infolge von Immissionen zumutbar sind, solange die Standorteignung der WEA hinsichtlich der Auslegungswerte nachzuweisender Windbedingungen oder hinsichtlich der nachzuweisenden Auslegungslasten gewährleistet bleibt.

Die vorliegende gutachtliche Stellungnahme zur Standorteignung ist daher gleichzeitig eine Turbulenz-Immissionsprognose im Sinne des BImSchG /13/.

2 Grundlagen

WEA sind Umweltbedingungen und elektrischen Einflüssen ausgesetzt, welche die Belastung, die Haltbarkeit und den Betrieb beeinträchtigen können. Die Umweltbedingungen werden weiter in Wind- und andere Umweltbedingungen unterteilt. Für die Integrität der Konstruktion zählen die Windbedingungen zu den primären äußeren Einwirkungen.

Für die Auslegung der WEA im Rahmen einer Typenprüfung nach der jeweils zu Grunde liegenden DIBt-Richtlinie /3/, /4/, /5/ werden Windzonen (WZ) gemäß Windzonenkarte /6/ sowie Turbulenzkategorien gemäß /7/ bzw. /8/ definiert. In Abhängigkeit der gewählten Windzone werden u.a. der Auslegungswert der mittleren Jahreswindgeschwindigkeit vm als auch der Auslegungswert des extremen 10-min-Mittelwertes der Windgeschwindigkeit auf Nabenhöhe mit einem Wiederkehrzeitraum von 50 Jahren (im Folgenden nur noch 50-Jahreswindgeschwindigkeit v50 genannt) definiert.

Durch Definition der Windzone und der Turbulenzkategorie ergeben sich die Windbedingungen der Auslegung und somit auch die Auslegungslasten, die im Rahmen einer Typenprüfung zu Grunde gelegt werden. Die Parameter für die Windgeschwindigkeit und die Turbulenz sind so gewählt, dass sie die meisten Anwendungsfälle erfassen sollen, jedoch bilden sie nicht die genaue Darstellung eines spezifischen Standortes ab. Im Rahmen des Prüfverfahrens können daher durchaus auch Fälle eintreten, in denen die Auslegungslasten der Typenprüfung nicht die standortspezifischen Lasten abdecken und die Typenprüfung folglich nicht mehr anwendbar ist. In diesen Fällen kann ggf. ein neuer Standsicherheitsnachweis für Turm und Gründung im Rahmen einer Einzelprüfung geführt werden.

Im Rahmen einer Typenprüfung nach der DIBt-Richtlinie 2004 /4/ sind die Auslegungswerte der Turbulenzintensität mindestens für die Turbulenzkategorie A nach DIN EN 61400-1:2004 /7/ nachzuweisen. In der DIBt-Richtlinie 2012 /5/ wird die im Vergleich zu /4/ (bzw. /7/) nahezu identische Turbulenzkategorie A nach DIN EN 61400-1:2011 /8/ nur noch empfohlen. Im Rahmen einer Typenprüfung können daher auch grundsätzlich andere Auslegungswerte der Turbulenzintensität, wie z.B. die niedrigeren Auslegungswerte der Turbulenzkategorien B oder C, zu Grunde gelegt werden. Darüber hinaus können WEA für Fälle mit besonderen Wind- oder externen Bedingungen als S-Klasse definiert werden, in der die Auslegungswerte gesondert vom WEA-Hersteller anzugeben sind.

Seite 7 von 32 Gutachtliche Stellungnahme zur Standorteignung von Windenergieanlagen im Windpark Wiesemscheid Revision 6, April 2021 Referenz-Nr. 2021-WND-038-CXXIX-R6

Die Bewertung der Standorteignung nach /5/ ist für WEA anzuwenden, für die eine Typenprüfung nach der DIBt-Richtlinie 2012 /5/ vorliegt bzw. anzunehmen ist. Ziel dieser Bewertung ist es, die Anwendbarkeit der Typenprüfung auf den konkreten Standort bereits vor der Errichtung einer WEA nachzuweisen. Für diesen Nachweis werden gemäß Kapitel 16.2 der DIBt-Richtlinie 2012 /5/ zwei vereinfachte Vergleiche als Alternative zu dem in der DIN EN 61400-1:2011 /8/ genannten Verfahren beschrieben:

- 1. Nachweis durch Vergleich der Windbedingungen am Standort mit den jeweiligen Windbedingungen der Typenprüfung (siehe Kapitel 2.1).
- Nachweis durch Vergleich der standortspezifischen Betriebsfestigkeitslasten und/oder der Extremlasten mit den Auslegungslasten der Typenprüfung (siehe Kapitel 2.2).

Des Weiteren ist nach /5/ der Ermittlung der Standortbedingungen eine Standortbesichtigung zu Grunde zu legen. Beide vereinfachten Vergleiche dürfen gemäß /5/ nur dann angewandt werden, sofern der Standort nach DIN EN 61400-1:2011 /8/ als nicht orografisch komplex anzusehen ist. Ist der Standort hingegen orografisch komplex, so sind für den Nachweis der Integrität der Konstruktion mindestens die folgenden Windbedingungen für den Standort zu ermitteln /8/:

- 50-Jahreswindgeschwindigkeit v₅₀,
- Häufigkeitsverteilung der Windgeschwindigkeit (Dichtefunktion) im Bereich von 0,2 bis 0,4v_{ref} (bzw. v_m bis 2v_m nach /10/),
- Turbulenzintensität der Umgebung und der im Nachlauf benachbarter WEA auf Nabenhöhe von 0,2 bis 0,4vref (bzw. vm bis 2vm nach /10/),
- Höhenexponent α für das exponentielle Windprofil,
- mittlere Dichte der Luft ρ für Windgeschwindigkeiten ≥ v_{Nenn},
- Neigung der Anströmung φιnkl.,
- extreme Turbulenzintensität.

Für den Nachweis der Integrität der WEA in Bezug auf den Auslegungswert der Turbulenzintensität nach /8/ bzw. /10/ ist in aller Regel ein Windgeschwindigkeitsbereich von 5 bis 20m/s für alle Windzonen gemäß Windzonenkarte /6/ abdeckend. Sollte sich nach einer der beiden Richtlinien /8/ bzw. /10/ ein größerer Windgeschwindigkeitsbereich ergeben, werden die effektiven Turbulenzintenitäten entsprechend für den erweiterten Bereich betrachtet. Auch der Bereich der Häufigkeitsverteilung der Windgeschwindigkeit (Dichtefunktion) erfolgt abdeckend für beide Richtlinien.

Bei WEA, für die eine Typenprüfung nach der DIBt-Richtlinie 2004 /4/ vorliegt, erfolgt gemäß Kapitel 6.3.3 der DIBt-Richtlinie 2004 /4/ die Bewertung der Standorteignung allein durch den Nachweis der Standsicherheit hinsichtlich der Auslegungswerte der Turbulenzintensität. Verglichen mit dem Verfahren nach /4/ ist eine Bewertung nach /5/ somit deutlich umfangreicher.

Seite 8 von 32 Gutachtliche Stellungnahme zur Standorteignung von Windenergieanlagen im Windpark Wiesemscheid Revision 6, April 2021 Referenz-Nr. 2021-WND-038-CXXIX-R6

2.1 Nachweis durch vereinfachten Vergleich der Windbedingungen

Ist der Standort nach DIN EN 61400-1:2011 als nicht orografisch komplex anzusehen, so kann die Standorteignung von WEA, die nach der DIBt-Richtlinie 2012 /5/ zu betrachten und zu bewerten sind, nach dem Verfahren gemäß Kapitel 16.2.b der DIBt-Richtlinie 2012 /5/ durch einen vereinfachten Vergleich der folgenden standortspezifischen Windbedingungen mit den Windbedingungen der Auslegung gemäß Typenprüfung erfolgen:

- mittlere Jahreswindgeschwindigkeit auf Nabenhöhe v_m,
- effektive Turbulenzintensität leff auf Nabenhöhe zwischen Windgeschwindigkeiten von 0,2 und 0,4vref,
- Windzone des Standortes gemäß Windzonenkarte /6/ oder falls diese nicht durch die Windzone der Auslegung gemäß Typenprüfung abgedeckt wird die 50-Jahreswindgeschwindigkeit v₅₀.

Der Ermittlung dieser Standortbedingungen ist für WEA, die nach der DIBt-Richtlinie 2012 /5/ zu betrachten und zu bewerten sind, eine Standortbesichtigung zu Grunde zu legen /5/ (siehe Kapitel 4.1).

Werden die Windbedingungen am Standort durch die Windbedingungen der Typenprüfung abgedeckt, ist die Standorteignung der WEA (auch hinsichtlich des Einflusses der WEA untereinander) nachgewiesen. Sollten hingegen eine oder mehrere Windbedingungen am Standort die Windbedingungen der Typenprüfung nicht abdecken, so kann die Standorteignung der WEA ggf. auf Basis eines standortspezifischen Lastvergleiches der Betriebsfestigkeitslasten und/oder auf Basis eines Lastvergleiches der Extremlasten nachgewiesen werden (siehe Kapitel 2.2).

Die Bewertung der Standorteignung bei WEA, die nach der DIBt-Richtlinie 2004 /4/ zu betrachten und zu bewerten sind oder für die eine Typenprüfung nach der DIBt-Richtlinie 1995 /3/ vorliegt, kann weiterhin gemäß Kapitel 6.3.3 der DIBt-Richtlinie 2004 /4/ durchgeführt werden. Für diese WEA ist demnach standortspezifisch zu untersuchen, ob durch lokale Turbulenzerhöhungen infolge der Einflüsse benachbarter WEA die Auslegungswerte der Turbulenzintensität überschritten werden, also ob die Standsicherheit hinsichtlich der Auslegungswerte der Turbulenzintensität gewährleistet ist. Je nach Bewertungsstatus der WEA wird von uns hierbei eine aufgrund der Komplexität des Geländes erhöhte Umgebungsturbulenz berücksichtigt oder nicht (siehe Kapitel 4.2).

Benachbarte WEA üben untereinander nur auf die Turbulenzintensität und nicht auf die übrigen Windbedingungen einen lasterhöhenden Einfluss aus. Von daher liegt es nahe, dass für WEA, die als Vorbelastung in die Berechnung eingehen und nach der DIBt-Richtlinie 2012 /5/ zu betrachten und zu bewerten sind, analog zur DIBt-Richtlinie 2004 /4/ nur die lokalen Turbulenzerhöhungen infolge der Einflüsse benachbarter WEA zu bewerten sind. Genau genommen deckt die Turbulenzintensität die im vereinfachten Verfahren der DIBt-Richtlinie 2012 /5/ genannten Betriebsfestigkeitslasten jedoch nicht vollständig ab. Gesetzt den Fall, dass sich durch den Zubau

Seite 9 von 32 Gutachtliche Stellungnahme zur Standorteignung von Windenergieanlagen im Windpark Wiesemscheid Revision 6, April 2021 Referenz-Nr. 2021-WND-038-CXXIX-R6

die Turbulenzbelastung an WEA, die nach /5/ zu betrachten und zu bewerten sind und als Vorbelastung in die Berechnung eingehen, erhöht, ist demnach auch die Bestimmung der mittleren Jahreswindgeschwindigkeit v_m erforderlich. In Hinsicht auf Extremlasten setzen wir für WEA, die als Vorbelastung in die Berechnung eingehen und nach /5/ zu betrachten und zu bewerten sind, einen abdeckenden Vergleich der 50-Jahreswindgeschwindigkeit v₅₀ bzw. einen abdeckenden Lastvergleich der Extremlasten voraus.

Während die Windgeschwindigkeit am Standort durch benachbarte WEA nicht erhöht wird, nimmt die Belastung infolge lokaler Turbulenzerhöhungen, die auf die einzelne WEA im Windpark einwirkt, zu. Dieser Einfluss ist dann nach /4/ bzw. /5/ zu berücksichtigen, wenn der auf den Rotordurchmesser D bezogene dimensionslose Abstand s_i der jeweils größeren WEA zur benachbarten WEA für typische küstennahe Standorte ($v_{50} \ge 45 \text{m/s}$) kleiner gleich fünf und für typische Binnenstandorte ($v_{50} \le 40 \text{m/s}$) kleiner gleich acht beträgt. In der Betrachtung der Turbulenzbelastung weisen wir dabei konservativ immer die Ergebnisse im Einflussbereich bis 8D, bezogen auf den jeweils größeren Rotordurchmesser der benachbarten WEA, aus.

In /15/ ist das Verfahren nach Frandsen (2007) beschrieben, um den Einfluss mehrerer, unterschiedlich weit entfernter WEA unter Berücksichtigung der Häufigkeit der Nachlaufsituationen zu bewerten. Das dort verwendete Modell wird sowohl im nationalen als auch im internationalen Regelwerk empfohlen /4/, /5/ bzw. /8/, /9/. Die Bewertung in /15/ erfolgt mit Hilfe einer effektiven Turbulenzintensität leff und stellt für jede Windgeschwindigkeit die mittlere Turbulenzintensität dar, die über die gesamte Lebensdauer der WEA die gleiche Materialermüdung verursacht, wie die am Standort auftretenden variierenden Turbulenzintensitäten. Sie bewertet die Belastung durch die Umgebungsturbulenzintensität und die zusätzlich durch Nachlaufeffekte induzierte Belastung. Die effektive Turbulenzintensität leff ist eine materialspezifische Ersatzgröße und somit abhängig vom zu Grunde gelegten materialspezifischen Exponenten der Wöhlerlinie m.

Bei der Bestimmung der effektiven Turbulenzintensität leff ist nach /4/, /5/ bzw. /8/ für die Umgebungsturbulenz eine entsprechende Unsicherheit zu berücksichtigen (siehe Kapitel 4.5).

Gegenüber der in /15/ dargestellten Form des Berechnungsverfahrens verwenden wir das dort beschriebene Verfahren nach Frandsen (2007) zur Ermittlung der Turbulenzerhöhungen in der Nachlaufströmung benachbarter WEA mit zwei Modifikationen, welche im Folgenden erläutert werden.

In seiner allgemeinen Definition enthält das in /8/ bzw. /15/ beschriebene Verfahren zur Ermittlung der Turbulenzintensität im Nachlauf der WEA einen Schätzwert für den anlagenspezifischen Parameter c_T (Schubbeiwert der WEA). Für die Ermittlung der maximalen Turbulenz im Nachlauf einer WEA auf Nabenhöhe (totale Turbulenzintensität I_T) nach dem Modell von Frandsen (2007), berücksichtigen wir abweichend hierzu die anlagenspezifischen Schubbeiwerte der jeweiligen WEA. Neben einer besseren Abbildung der realen Verhältnisse wird damit auch eine Unterschätzung der im

Seite 10 von 32 Gutachtliche Stellungnahme zur Standorteignung von Windenergieanlagen im Windpark Wiesemscheid Revision 6, April 2021 Referenz-Nr. 2021-WND-038-CXXIX-R6

Nachlauf produzierten Turbulenz in bestimmten Fällen vermieden, da nach unseren Untersuchungen insbesondere für Multi-Megawatt-WEA der Schätzwert für den Schubbeiwert c_T im Bereich des Erreichens der Nennwindgeschwindigkeit v_{Nenn} in der Regel nicht abdeckend ist. Die berechneten oder gemessenen Schubbeiwerte c_T werden uns seitens des WEA-Herstellers zur Verfügung gestellt und werden von uns als richtig vorausgesetzt. Eine Änderung der Schubbeiwerte erfordert eine Neubewertung der Turbulenzbelastung. Liegen uns für insbesondere ältere WEA keine Schubbeiwerte c_T vor, so verwenden wir den in /8/ als allgemeingültig definierten windgeschwindigkeitsabhängigen Wert von $c_T = 7 \text{m/s} / v$. In /1/ sind eine Reihe von weiteren Modellen zur Ermittlung der totalen Turbulenzintensität beschrieben. Diese decken jedoch im Gegensatz zum Modell von Frandsen (2007) die in /1/ durchgeführten Messungen nur teilweise ab und werden daher nicht von uns verwendet. Des Weiteren wird in /4/, /5/ bzw. /8/ bisher nur das Verfahren nach Frandsen empfohlen.

Die zweite Modifikation betrifft die Häufigkeit der jeweiligen Nachlaufsituation, die nach /8/ bzw. /15/ mit 6% angenommen werden kann. Dieser konstanten Häufigkeit liegt die Annahme eines voll ausgebildeten mit erhöhten Turbulenzintensitäten behafteten Nachlaufs (far wake) zu Grunde, der sich typischerweise drei bis fünf Rotordurchmesser hinter der WEA einstellt. Um auch für geringe WEA-Abstände konservative Werte zu erhalten, wird die Häufigkeit der jeweiligen Nachlaufsituation von uns davon abweichend auf Basis der realen geometrischen Verhältnisse im Windpark und unter Berücksichtigung der Häufigkeitsverteilung der Windrichtung und der Windgeschwindigkeit berechnet.

Unter Beachtung eines sich ausdehnenden Nachlaufs wird auch die Verminderung der geometrischen Nachlaufwahrscheinlichkeit aufgrund resultierender Höhenunterschiede zwischen benachbarten WEA berücksichtigt. Die Ermittlung der Höhenunterschiede in vertikaler Richtung erfolgt nach einem konservativen Ansatz unter gleichzeitiger Einbeziehung der WEA-Nabenhöhen sowie der vorhandenen Höhendaten (z.B. /17/, /18/). Die Ausdehnung des Nachlaufs basiert auf einem in /15/ beschriebenen Nachlaufmodell von Frandsen, bei dem sich der Nachlauf in Abhängigkeit des WEA-spezifischen Schubbeiwertes c_T und somit auch windgeschwindigkeitsabhängig erweitert. Insbesondere bei niedrigen Windgeschwindigkeiten weist der Nachlauf im unmittelbaren Nahbereich bereits eine deutlich größere Ausdehnung als der Rotor selbst auf.

Nach /8/ ist eine Reduktion der mittleren Windgeschwindigkeit innerhalb des Windparks und somit auch die hieraus resultierenden lokalen Turbulenzerhöhungen nur bei WEA-Abständen von weniger als 10D in den Berechnungen zu berücksichtigen. Bei einer größeren Entfernung als 10D muss somit nicht mehr von einem turbulenzerhöhenden Einfluss ausgegangen werden. Für jede WEA wird ein turbulenzerhöhender Einfluss daher nur von benachbarten WEA mit einer geringeren Entfernung als 10D berücksichtigt.

Nach unseren Erfahrungen liefern die zur Anwendung kommenden Modelle zur Berechnung der Turbulenzintensität bei WEA-Abständen unterhalb von etwa 2,5D nur begrenzt belastbare Ergebnisse an den der erhöhten Turbulenz der Nachlaufströ-

Seite 11 von 32 Gutachtliche Stellungnahme zur Standorteignung von Windenergieanlagen im Windpark Wiesemscheid Revision 6, April 2021 Referenz-Nr. 2021-WND-038-CXXIX-R6

mung ausgesetzten benachbarten WEA. Bei Einhaltung entsprechender Kriterien können bei Unterschreitungen von 2,5D im Einzelfall dennoch belastbare Aussagen zur Standorteignung getroffen werden. Sollte aus Sicht der nachlaufverursachenden WEA ein WEA-Abstand von ca. 2,0D unterschritten werden, weisen wir die Ergebnisse der effektiven Turbulenzintensität für diese benachbarte WEA nicht mehr aus.

2.2 Nachweis durch Vergleich der Lasten

Werden eine oder mehrere standortspezifische Windbedingungen nicht durch die Windbedingungen der Typenprüfung abgedeckt, so ist es gemäß Kapitel 16.2.c der DIBt-Richtlinie 2012 /5/ ggf. möglich, die Standorteignung der WEA auf Basis eines standortspezifischen Lastvergleiches der Betriebsfestigkeitslasten und/oder auf Basis eines standortspezifischen Lastvergleiches der Extremlasten nachzuweisen. Dieser ist verglichen zum Nachweis durch einen vereinfachten Vergleich der Windbedingungen (siehe Kapitel 2.1) im Allgemeinen sehr aufwändig. Für den Fall, dass die standortspezifischen Lasten unterhalb oder auf dem Niveau der Auslegungslasten liegen, die bei der jeweiligen Typenprüfung der WEA zu Grunde gelegt wurden, ist die Standsicherheit, also auch die Standorteignung der WEA, lastseitig gewährleistet. Sollten die standortspezifischen Lasten oberhalb der Auslegungslasten der Typenprüfung liegen, kann die Standorteignung der betroffenen WEA nicht nachgewiesen werden.

Neben den windgeschwindigkeitsabhängig ermittelten effektiven Turbulenzintensitäten $l_{\rm eff}$ gehen gemäß Kapitel 16.2.a der DIBt-Richtlinie 2012 /5/ weitere Windbedingungen (u.a. auch die standortspezifische, mittlere Jahreswindgeschwindigkeit v_m) als Eingangsgrößen in den Lastvergleich der Betriebsfestigkeitslasten ein. Sind die übrigen Windbedingungen am Standort niedriger als die Windbedingungen der Auslegung, so ist ein Nachweis der Standorteignung trotz Überschreitungen der Auslegungswerte der Turbulenzintensitäten oft möglich. Gemäß Kapitel 16.2.c.i der DIBt-Richtlinie 2012 /5/ müssen im Falle eines Lastvergleiches der Betriebsfestigkeitslasten für WEA, die nach /5/ zu betrachten und zu bewerten sind, die effektiven Turbulenzintensitäten $l_{\rm eff}$ mindestens von $v_{\rm in}$ bis 0,4 $v_{\rm 50}$ vorliegen. Für Windgeschwindigkeiten, bei denen die effektiven Turbulenzintensitäten $l_{\rm eff}$ in dieser gutachtlichen Stellungnahme nicht abgedeckt sind, müssen diese für die Bestimmung der Betriebsfestigkeitslasten als konstant mit dem Wert für die größte ermittelte Windgeschwindigkeit angenommen werden.

Wie in Kapitel 2.1 beschrieben, können die Ergebnisse der effektiven Turbulenzintensität leff bei zu geringen WEA-Abständen nach unseren Erfahrungen nur noch begrenzt belastbar sein. Wird dies durch unsere Einzelfallprüfung bestätigt, empfehlen wir, die von uns ermittelten effektiven Turbulenzintensitäten am Standort nicht im Rahmen eines standortspezifischen Lastvergleiches zu verwenden.

Ist für WEA, die nach der DIBt-Richtlinie 2012 /5/ zu betrachten und zu bewerten sind, ein Lastvergleich auf Basis der Betriebsfestigkeitslasten durchzuführen, sind hierfür die in Kapitel 16.2.a der DIBt-Richtlinie 2012 /5/ aufgeführten Windbedingungen zu ermitteln. Für einen Lastvergleich auf Basis der Extremlasten sind hingegen

Seite 12 von 32 Gutachtliche Stellungnahme zur Standorteignung von Windenergieanlagen im Windpark Wiesemscheid Revision 6, April 2021 Referenz-Nr. 2021-WND-038-CXXIX-R6

extreme Windbedingungen zu ermitteln. Ist der Standort für WEA, für die eine Typenprüfung auf Basis der DIBt-Richtlinie 2012 /5/ zu Grunde gelegt wird, nach DIN EN 61400-1:2011 /8/ als orografisch komplex anzusehen, so ist der Nachweis der Standorteignung für WEA durch den Nachweis der Integrität der Konstruktion nach /8/ durchzuführen. Als ein weiterer zu den in Kapitel 16.2.a der DIBt-Richtlinie 2012 /5/ genannten Windbedingungen muss hierfür die Neigung der Anströmung φ_{lnkl} , sowie die extreme Turbulenzintensität ermittelt werden.

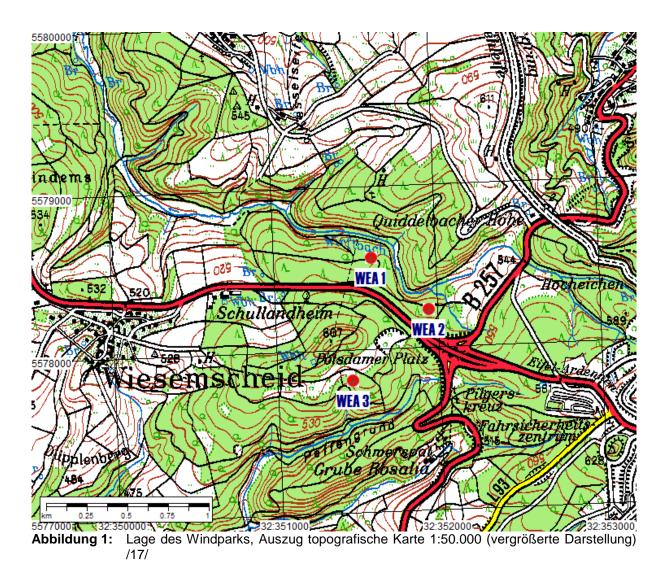
Bei WEA, für die eine Typenprüfung auf Basis der DIBt-Richtlinie 2004 /4/ zu Grunde gelegt wird, darf der Lastvergleich der Betriebsfestigkeitslasten, unabhängig von der Komplexität des Geländes, nach /7/ durchgeführt werden.

3 Randbedingungen

3.1 Windparkkonfiguration

In Tabelle 1 bzw. Abbildung 1 sind die vom Auftraggeber übermittelten Daten zur Windparkkonfiguration dargestellt /24/.

Die Bezeichnung der einzelnen WEA in dieser gutachtlichen Stellungnahme bezieht sich auf die laufende Nummer, die aus Tabelle 1 ersichtlich ist.


Im Rahmen der nachfolgenden Bewertung werden keine Betriebsbeschränkungen von WEA berücksichtigt.

I	fd.	WEA-	Koordinaten [m]			0	-	
	EA- Nr.	Bezeich- nung	Rechts- wert	Hoch- wert	WEA-Typ	P _{Nenn} [MW]	D [m]	NH [m]
\bigoplus	1	WEA 01	351602	5578565	ENERCON E-138 EP3 E2 (OM0s)	4,20	138,25	160,00
\bigoplus	2	WEA 02	351941	5578235	ENERCON E-138 EP3 E2 (OM0s)	4,20	138,25	130,07
\bigoplus	3	WEA 03	351462	5577813	ENERCON E-138 EP3 E2 (OM0s)	4,20	138,25	130,07

 Tabelle 1:
 Windparkkonfiguration (Koordinatensystem: UTM ETRS89, Zone 32)

Seite 13 von 32 Gutachtliche Stellungnahme zur Standorteignung von Windenergieanlagen im Windpark Wiesemscheid Revision 6, April 2021 Referenz-Nr. 2021-WND-038-CXXIX-R6

Der geringste auf den jeweils größeren Rotordurchmesser bezogene dimensionslose Abstand si zwischen zwei WEA, von denen mindestens eine WEA vom Auftraggeber neu geplant ist, liegt bei 3,42D_{ENERCON E-138 EP3 E2}. Dies betrifft die WEA 1 und 2 mit einem Abstand von ca. 473m.

3.2 Windbedingungen der Auslegung

Gemäß des in Kapitel 16.2.b der DIBt-Richtlinie 2012 /5/ beschriebenen vereinfachten Vergleichs der Windbedingungen am Standort auf jeweiliger Nabenhöhe sind für geplante WEA neben der effektiven Turbulenzintensität leff auch die mittlere Jahreswindgeschwindigkeit v_m sowie die Windzone des Standortes gemäß Windzonenkarte /6/ bzw. die 50-Jahreswindgeschwindigkeit v₅₀ mit den jeweiligen Auslegungswerten der Typenprüfung zu vergleichen (siehe Kapitel 2.1). Die Ermittlung und Bewertung dieser Windbedingungen am Standort erfolgt in den nachfolgenden Kapiteln.

In Tabelle 2 sind für die WEA, deren Standorteignung nach der DIBt-Richtlinie 2012 /5/ zu beurteilen ist, die für den vereinfachten Vergleich notwendigen Windbedingun-

Seite 14 von 32 Gutachtliche Stellungnahme zur Standorteignung von Windenergieanlagen im Windpark Wiesemscheid Revision 6, April 2021 Referenz-Nr. 2021-WND-038-CXXIX-R6

gen der Auslegung dargestellt. Hierbei beziehen wir uns wenn möglich auf Dokumente des jeweiligen WEA-Herstellers, denen die jeweiligen Windbedingungen der Auslegung direkt entnommen werden können. Die in Kapitel 8 zitierten Quellenangaben der verwendeten Windbedingungen der Auslegung können ggf. von den Dokumenten, die im späteren Genehmigungsverfahren bei der zuständigen Genehmigungsstelle eingereicht werden, abweichen. Werden die in Tabelle 2 zu Grunde gelegten Auslegungswerte jedoch weiterhin durch die Auslegungswerte der mit der Genehmigung eingereichten Typenprüfung abgedeckt, behalten die in dieser gutachtlichen Stellungnahme getroffenen Aussagen zur Standorteignung von WEA weiterhin Ihre Gültigkeit.

W	fd. EA- Nr.	Windzone (WZ) und Geländekategorie (GK) der Typenprüfung	Turbulenzkategorie nach DIN EN 61400-1:2011		V _{ref} [m/s]	Ref.
\bigoplus	1	WZ 2, GK II /6/	Α	7,71	38,96	/27/
\blacksquare	2	WZ S	A	6,60	37,69	/27/
\bigoplus	3	WZ S	А	6,60	37,69	/27/

Tabelle 2: Auslegungswerte für die nach der DIBt-Richtlinie 2012 /5/ zu beurteilenden WEA

3.3 Winddaten am Standort

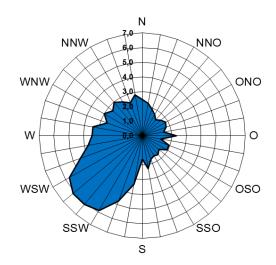
Die relativen Häufigkeiten der Windrichtung und die Weibullverteilung wurden vom Auftraggeber zur Verfügung gestellt /25/ und werden als richtig und repräsentativ für die freie Anströmung am Standort Wiesemscheid vorausgesetzt.

In /25/ sind die Winddaten an den Standorten der WEA 1 bis 3 auf jeweiliger Nabenhöhe angegeben und werden in unseren Berechnungen dementsprechend verwendet. Die Winddaten sind in Tabelle 3 bzw. Abbildung 2 beispielhaft für den Referenzpunkt am Standort der WEA 2 für eine Höhe von 130,0m ü. Grund dargestellt.

Die Bestimmung der standortspezifischen, mittleren Jahreswindgeschwindigkeit v_m am Standort ist für WEA erforderlich, die nach der DIBt-Richtlinie 2012 /5/ zu betrachten und zu bewerten sind, und erfolgt im vorliegenden Fall auf Basis der eingereichten Winddaten /25/.

Richtungssektoren	Relative Häufigkeit [-]	Weibullverteilung			
Kichtungssektoren	(1 ≙ 100%)	A [m/s]	k [-]		
0° (N)	0,0247	5,0	2,71		
10°	0,0225	4,9	2,74		
20°	0,0194	4,9	2,61		
30° (NNO)	0,0167	5,1	2,61		
40°	0,0141	4,9	2,50		

Seite 15 von 32 Gutachtliche Stellungnahme zur Standorteignung von Windenergieanlagen im Windpark Wiesemscheid Revision 6, April 2021 Referenz-Nr. 2021-WND-038-CXXIX-R6



Richtungssektoren	Relative Häufigkeit [-]	Weibullverteilung			
Montangssektoren	(1 ≙ 100%)	A [m/s]	k [-]		
50°	0,0166	5,2	2,57		
60° (ONO)	0,0182	5,4	2,59		
70°	0,0171	5,6	2,78		
80°	0,0149	5,7	2,78		
90° (O)	0,0232	5,7	2,84		
100°	0,0128	5,6	2,62		
110°	0,0191	6,0	2,63		
120° (OSO)	0,0193	6,2	2,67		
130°	0,0147	6,2	2,63		
140°	0,0166	6,2	2,75		
150° (SSO)	0,0159	6,4	2,61		
160°	0,0170	6,9	2,60		
170°	0,0227	6,4	2,43		
180° (S)	0,0160	7,2	2,87		
190°	0,0334	8,0	2,72		
200°	0,0473	8,2	2,60		
210° (SSW)	0,0588	8,1	2,75		
220°	0,0613	7,9	2,77		
230°	0,0614	7,6	2,72		
240° (WSW)	0,0571	7,3	2,66		
250°	0,0445	6,9	2,59		
260°	0,0374	6,9	2,49		
270° (W)	0,0341	6,9	2,56		
280°	0,0341	7,0	2,54		
290°	0,0253	6,8	2,47		
300° (WNW)	0,0298	6,7	2,58		
310°	0,0263	6,6	2,76		
320°	0,0295	6,2	2,69		
330° (NNW)	0,0267	5,8	2,69		
340°	0,0237	5,6	2,76		
350°	0,0281	5,4	2,79		
Gesamt (alle Sektoren)	1,0003	6,7	2,45		
mittlere Jahreswindgesc	hwindigkeit v _m [m/s]	6	,0		

Tabelle 3: Winddaten am Standort Wiesemscheid (Bezugshöhe 130,0m ü. Grund) /25/

Seite 16 von 32 Gutachtliche Stellungnahme zur Standorteignung von Windenergieanlagen im Windpark Wiesemscheid Revision 6, April 2021 Referenz-Nr. 2021-WND-038-CXXIX-R6

Abbildung 2: Relative Häufigkeit der Windrichtung am Standort Wiesemscheid in Prozent (Bezugshöhe 130,0m ü. Grund) /25/

4 Durchgeführte Untersuchungen

4.1 Standortbesichtigung

Gemäß der DIBt-Richtlinie 2012 /5/ ist der Ermittlung der Standortbedingungen eine Standortbesichtigung zu Grunde zu legen. Die Gegebenheiten vor Ort müssen entsprechend aufgenommen und anhand von Fotos der Standortumgebung (360° Rundumansicht) dokumentiert werden.

Während der Standortbesichtigung sollen einzelne, ausgeprägte Hindernisse in der nahen Umgebung der zu bewertenden WEA, die sich in Form erhöhter Turbulenzen auf benachbarte WEA auswirken können und durch eine übliche Rauigkeitsklassifizierung (siehe Kapitel 4.5) i.d.R. nicht erfasst werden können, aufgenommen werden. Des Weiteren muss zur Ermittlung der 50-Jahreswindgeschwindigkeit auf Nabenhöhe v50 die Geländekategorie (GK) nach DIN EN 1991-1-4/NA /6/ bestimmt werden. Zu den ausgeprägten Hindernissen, die bei der Ermittlung der Umgebungsturbulenzintensität gesondert zu bewerten sind, zählen insbesondere

- große Einzelstrukturen (z.B. Gebäude, Türme, o.ä.),
- ausgeprägte Waldkanten,
- steile bzw. grobe Geländekanten (z.B. Abhänge, Tagebau, o.ä.).

Die Standortbesichtigung wurde von Frau C. Würtz der Dunoair Windpark Planung GmbH am 30.03.2021 durchgeführt und die Gegebenheiten vor Ort entsprechend aufgenommen und dokumentiert /26/. Anhand der Dokumentation aus /26/ wurden in der unmittelbaren Umgebung des Standortes keine ausgeprägten Hindernisse festgestellt.

Seite 17 von 32 Gutachtliche Stellungnahme zur Standorteignung von Windenergieanlagen im Windpark Wiesemscheid Revision 6, April 2021 Referenz-Nr. 2021-WND-038-CXXIX-R6

Das Gelände am Standort lässt sich nach DIN EN 1991-1-4 bzw. DIN EN 1991-1-4/NA /6/ in GK II bis III einordnen.

4.2 Komplexität des Geländes

In der nachfolgenden Ermittlung der effektiven Turbulenzintensität erfolgt die Bewertung der Komplexität des Geländes für alle zu bewertenden WEA nach IEC 61400-1, Ed. 4 /10/.

In orografisch strukturiertem Gelände können große Höhendifferenzen und Geländesteigungen zu erhöhten Umgebungsturbulenzen führen. Die Kriterien zur Bewertung der Komplexität des Geländes durch Definition von insgesamt 37 an das Gelände angenäherten Ebenen sind in der IEC 61400-1, Ed. 4 /10/ erläutert. In Abhängigkeit der Neigung der angenäherten Ebenen und der vertikalen Abweichung zwischen den angenäherten Ebenen und der tatsächlichen Geländeorografie sowie des jeweiligen Anteils der Windenergie aus diesem Sektor, ergeben sich Indizes für die Geländeneigung und für die vertikale Geländeabweichung. Überschreitet mindestens einer der Indizes die in Tabelle 4 aufgeführten Grenzwerte, so gilt das Gelände als komplex und es muss für den Nachweis der Integrität der Konstruktion mit Bezug auf die Winddaten für diesen Sektor eine Erhöhung der longitudinalen Komponente der Umgebungsturbulenzintensität durch Multiplikation mit einem Turbulenzstrukturparameter C_{CT} erfasst werden /10/. Je nachdem, welches Limit hierbei überschritten wird, ergibt sich eine Komplexitätskategorie von L, M oder H, der ein entsprechender Turbulenzstrukturparameter von $C_{CT} = 1,05$ (L), 1,10 (M) oder 1,15 (H) zuzuordnen ist.

Radius der	Sektor-	Grenzwert (unteres Limit)							
Kreisfläche um die	amplitude der an das Gelän- de angenäher-	Index für Geländenei- gung			Index für vertikale Geländeabweichung				
WEA	ten Ebene	L	М	Н	L	М	Н		
5 • Z _{hub}	360°								
5 • z _{hub}	30°	10°	15°	20°	2 %	4 %	6 %		
10 • z _{hub}		10	15	20	2 /0	4 %	0 /0		
20 • Z _{hub}									

Tabelle 4: Bewertungskriterien der Komplexität des Geländes /10/

Zur Bewertung nach den in Tabelle 4 genannten Kriterien werden auf Basis von Höhendaten /17/ an die Orografie angenäherte geneigte Ebenen nach der Methode der kleinsten Fehlerquadrate definiert.

Die Bewertung der Komplexität des Geländes erfolgt für die WEA 1 bis 3 nach /10/.

Am Standort Wiesemscheid wird an der WEA 3 mindestens eines der in Tabelle 4 genannten Komplexitätskriterien überschritten, so dass der Turbulenzstrukturparameter C_{CT} mit einem Wert von 1,05 zur Erhöhung der longitudinalen Komponente der

Seite 18 von 32 Gutachtliche Stellungnahme zur Standorteignung von Windenergieanlagen im Windpark Wiesemscheid Revision 6, April 2021 Referenz-Nr. 2021-WND-038-CXXIX-R6

Umgebungsturbulenzintensität berücksichtigt wird. Gemäß der DIBt-Richtlinie 2012 /5/ folgt hieraus ebenso, dass die WEA 3 nach DIN EN 61400-1:2011 /8/ nachzuweisen ist und die in Kapitel 2 aufgeführten Windbedingungen ermittelt werden müssen.

Für einen Nachweis der Integrität der Konstruktion durch Lastberechnungen mit Bezug auf standortspezifische Bedingungen nach /8/ kann die Erhöhung der Umgebungsturbulenz durch einen Turbulenzstrukturparameter C_{CT} entfallen, wenn die quer und aufwärts gerichteten Komponenten der Standardabweichung der Turbulenz auf 1,0 bzw. 0,7 (jeweils bezogen auf die longitudinale Komponente der Standardabweichung der Turbulenz) angepasst werden /8/. In den von uns ausgewiesenen Umgebungsturbulenzintensitäten (siehe Kapitel 4.5 oder Kapitel 9) sind daher ggf. anzusetzende Turbulenzstrukturparameter C_{CT} noch nicht berücksichtigt, damit diese potentiell für die Nutzung von standortspezifischen Lastvergleichen verwendet werden können.

An den WEA 1 und 2 wird keines der in Tabelle 4 genannten Komplexitätskriterien überschritten, so dass für diese WEA kein erhöhter Turbulenzstrukturparameter C_{CT} zur Erhöhung der Umgebungsturbulenzintensität berücksichtigt wird. Des Weiteren darf der Nachweis der Standorteignung für WEA, die im Rahmen dieser gutachtlichen Stellungnahme nach der DIBt-Richtlinie 2012 /5/ betrachtet und bewertet werden, nach dem in /5/ beschriebenen vereinfachten Vergleich durchgeführt werden.

4.3 50-Jahreswindgeschwindigkeit auf Nabenhöhe

Gemäß Kapitel 16.2.b.iii der DIBt-Richtlinie 2012 /5/ ist der Vergleich der 50-Jahreswindgeschwindigkeit auf Nabenhöhe v₅₀ zunächst durch einen Vergleich der Windzone des Standortes gemäß Windzonenkarte /6/ mit der Windzone der Auslegung gemäß Typenprüfung möglich. Wird die Windzone des Standortes nicht abgedeckt, so ist die direkte Bestimmung von v₅₀ erforderlich. Wie in Kapitel 2.1 beschrieben, erfolgt ein Vergleich der 50-Jahreswindgeschwindigkeit auf Nabenhöhe v₅₀ nur für geplante WEA, die nach der DIBt-Richtlinie 2012 /5/ betrachtet und bewertet werden und nicht für WEA, die als Vorbelastung in die Berechnung eingehen.

Der Standort Wiesemscheid (Rheinland-Pfalz) liegt nach /21/ in der Windzone 2 gemäß Windzonenkarte /6/. Die Geländekategorie lässt sich gemäß Kapitel 4.1 in GK II bis III einordnen. Für die Ermittlung der 50-Jahreswindgeschwindigkeit auf Nabenhöhe v50 wird konservativ Geländekategorie II angenommen.

Bei WEA, deren Windzone der Auslegung gemäß Typenprüfung (siehe Tabelle 2) nicht die Windzone des Standortes gemäß Windzonenkarte /6/ abdecken bzw. deren Windzone der Auslegung gesondert als S-Klasse angegeben ist, wird die 50-Jahreswindgeschwindigkeit auf Nabenhöhe v₅₀ nach /6/ ermittelt.

In der nachfolgenden Tabelle 5 ist für nachzuweisende WEA die von uns ermittelte 50-Jahreswindgeschwindigkeit auf Nabenhöhe v50 dargestellt.

Seite 19 von 32 Gutachtliche Stellungnahme zur Standorteignung von Windenergieanlagen im Windpark Wiesemscheid Revision 6, April 2021 Referenz-Nr. 2021-WND-038-CXXIX-R6

Lfd. WEA-Nr.		WEA-Typ	P _{Nenn} [MW]	D [m]	NH [m]	v ₅₀ [m/s]
\bigoplus	1	ENERCON E-138 EP3 E2 (OM0s)	4,20	138,25	160,00	38,96
\bigoplus	2	ENERCON E-138 EP3 E2 (OM0s)	4,20	138,25	130,07	37,69
\bigoplus	3	ENERCON E-138 EP3 E2 (OM0s)	4,20	138,25	130,07	37,69

Tabelle 5: 50-Jahreswindgeschwindigkeiten auf Nabenhöhe v₅₀ nach /6/ für nachzuweisende WEA am Standort Wiesemscheid; WZ 2, GK II

4.4 Mittlere Jahreswindgeschwindigkeit auf Nabenhöhe

Für den in /5/ aufgeführten vereinfachten Vergleich der Windbedingungen am Standort mit den jeweiligen Auslegungswerten zur Beurteilung der Standorteignung, ist gemäß Kapitel 16.2.b.i die Bestimmung der mittleren Jahreswindgeschwindigkeit auf Nabenhöhe v_m notwendig. Die Bestimmung von v_m erfolgt für WEA, die nach der DIBt-Richtlinie 2012 /5/ betrachtet und bewertet werden.

Die mittlere Jahreswindgeschwindigkeit auf Nabenhöhe v_m wird auf Basis der eingereichten Winddaten /25/ direkt entnommen bzw. bei geringfügigen Höhendifferenzen umgerechnet (siehe Kapitel 3.3).

In der nachfolgenden Tabelle 6 sind für WEA, die nach der DIBt-Richtlinie 2012 /5/ betrachtet und bewertet werden, die mittleren Jahreswindgeschwindigkeiten auf Nabenhöhe ν_m und die dazugehörigen mittleren Formparameter der Weibullverteilung k dargestellt.

	Lfd. WEA-Typ		P _{Nenn} [MW]	D [m]	NH [m]	v _m [m/s]	k [-]
	1	ENERCON E-138 EP3 E2 (OM0s)	4,20	138,25	160,00	6,5	2,48
\bigcirc	2	ENERCON E-138 EP3 E2 (OM0s)	4,20	138,25	130,07	6,0	2,45
4	3	ENERCON E-138 EP3 E2 (OM0s)	4,20	138,25	130,07	6,7	2,48

Tabelle 6: mittlere Jahreswindgeschwindigkeiten auf Nabenhöhe v_m und zugehörige mittlere Formparameter der Weibullverteilung k für nachzuweisende WEA am Standort Wiesemscheid /25/

Gemäß Kapitel 16.2.b.i der DIBt-Richtlinie 2012 /5/ muss die mittlere Jahreswindgeschwindigkeit auf Nabenhöhe v_m der WEA um mindestens 5% kleiner als gemäß dem Auslegungswert der zu Grunde gelegten Typenprüfung sein. Für mittlere Formparameter der Weibullverteilung $k \ge 2$ ist hingegen auch eine größere mittlere Jahreswindgeschwindigkeit erlaubt, wenn diese noch unterhalb dem Auslegungswert der zu Grunde gelegten Typenprüfung liegt.

Seite 20 von 32 Gutachtliche Stellungnahme zur Standorteignung von Windenergieanlagen im Windpark Wiesemscheid Revision 6, April 2021 Referenz-Nr. 2021-WND-038-CXXIX-R6

4.5 Umgebungsturbulenzintensität

Die Turbulenzintensität definiert allgemein das Verhältnis der Standardabweichung σ der zeitlichen Windgeschwindigkeitsverteilung zu ihrem Mittelwert bezogen auf ein Intervall von 600s (10min). Die Umgebungsturbulenzintensität beschreibt dabei ausschließlich die Turbulenz der freien Strömung ohne den Einfluss von WEA.

Für die spätere Berechnung der effektiven Turbulenzintensität ist nicht die mittlere Umgebungsturbulenzintensität sondern die charakteristische Turbulenzintensität I_{char} /4/ bzw. die repräsentative Turbulenzintensität I_{rep} /5/ zu Grunde zu legen. Die charakteristische Turbulenzintensität ergibt sich dabei aus der Addition der mittleren Umgebungsturbulenzintensität und der Standardabweichung der Umgebungsturbulenzintensität. Da die mittlere Umgebungsturbulenzintensität im Folgenden rechnerisch ermittelt wird, bilden wir die charakteristische Turbulenzintensität gemäß /11/ durch Multiplikation der mittleren Umgebungsturbulenzintensität mit dem Faktor 1,2. Die in /5/ definierte repräsentative Turbulenzintensität I_{rep} (90%-Quantil) ergibt sich aus der Addition der mittleren Umgebungsturbulenzintensität und der 1,28fachen Standardabweichung. Dies entspricht der Multiplikation der rechnerisch ermittelten mittleren Umgebungsturbulenzintensität mit dem Faktor 1,256.

Im Bereich der atmosphärischen Bodengrenzschicht ergibt sich die zu berücksichtigende Umgebungsturbulenzintensität im Wesentlichen aus dem Einfluss der Rauigkeitselemente des Bodens wie Bäumen, Büschen, Bauwerken etc. Hierzu erfolgt eine Typisierung von Geländeoberflächen hinsichtlich ihres Bewuchses, ihrer Bebauung und Nutzung auf Basis detaillierter Satellitendaten zur Bodenbedeckung /1/, wobei Geländeabschnitte bis 25km Entfernung um jeden WEA-Standort einbezogen werden. Ggf. kann die Typisierung auf Basis der amtlichen topografischen Karten /17/ erfolgen bzw. angepasst werden. Den einzelnen Geländeabschnitten werden anschließend Rauigkeitsklassen gemäß den Empfehlungen des für die Kommission der Europäischen Gemeinschaften veröffentlichten Europäischen Windatlanten /16/ zugeordnet. Der Einfluss der verschiedenen Geländeabschnitte wird abhängig vom Abstand zum jeweiligen WEA-Standort in zwölf Richtungssektoren à 30° bewertet, wodurch sich gewichtete mittlere Werte für die Rauigkeiten in den jeweiligen Sektoren ergeben.

Auf Grundlage dieser Rauigkeitsklassifizierung werden von uns die charakteristischen bzw. repräsentativen Turbulenzintensitäten auf Basis der Empfehlungen aus /20/ für jeden einzelnen WEA-Standort bestimmt. Die charakteristischen und repräsentativen Turbulenzintensitäten sind im Gegensatz zu den Rauigkeiten nicht nur richtungsabhängig, sondern auch abhängig von der Windgeschwindigkeit und Höhe über Grund und werden entsprechend programmintern für die verschiedenen Richtungen, Windgeschwindigkeiten und Nabenhöhen ermittelt. Der Windgeschwindigkeitsverlauf orientiert sich dabei am Normalen Turbulenzmodell (NTM) /8/. In der nachfolgenden Tabelle 7 sind beispielhaft die Werte der charakteristischen und repräsentativen Turbulenzintensität für eine Nabenhöhe und Windgeschwindigkeit aufgeführt. Diese Werte berücksichtigen noch keinen ggf. anzusetzenden Turbulenz-

Seite 21 von 32 Gutachtliche Stellungnahme zur Standorteignung von Windenergieanlagen im Windpark Wiesemscheid Revision 6, April 2021 Referenz-Nr. 2021-WND-038-CXXIX-R6

strukturparameter C_{CT} für orografisch komplex anzusehende Standorte zur Erhöhung der Umgebungsturbulenz (siehe Kapitel 4.2).

Richtungssektoren	Charakteristische Turbu- lenzintensität [%]	Repräsentative Turbu- lenzintensität [%]
N	13,9	14,5
NNO	15,6	16,3
ONO	14,7	15,4
0	13,9	14,5
OSO	14,2	14,9
SSO	14,3	15,0
S	13,4	14,0
SSW	13,2	13,8
WSW	13,0	13,6
W	13,1	13,7
WNW	13,9	14,5
NNW	14,3	15,0

Tabelle 7: Beispielhafte Werte der charakteristischen und repräsentativen Turbulenzintensität am Standort Wiesemscheid für die Koordinaten 351669 / 5578205 (Koordinatensystem: UTM ETRS89, Zone 32), Bezugswerte: v = 15m/s, z = 130,07m

4.6 Effektive Turbulenzintensität

Das verwendete Berechnungsverfahren für die effektive Turbulenzintensität auf Nabenhöhe ist in Kapitel 2.1 beschrieben. Für den materialspezifischen Exponenten der Wöhlerlinie m wird die Strukturkomponente der WEA mit dem höchsten Exponenten zu Grunde gelegt. Daraus ergibt sich vereinfacht für allgemein gebräuchliche WEA ein Wert von m = 10 /19/ für glasfaserverstärkte Kunststoffe (GFK) mit einem Fasergehalt von mindestens 30 Vol.-% und höchstens 55 Vol.-% /12/. Für kohlenstofffaserverstärkte Kunststoffe (CFK) mit einem Fasergehalt von mindestens 50 Vol.-% und höchstens 60 Vol.-% und einer Epoxidharzmatrix wird ein Wert von m = 14 vorgeschlagen /12/. Bei hiervon abweichenden Fasergehalten oder Matrixharzen müssen ggf. herstellerspezifische materialspezifische Exponenten der Wöhlerlinie verwendet werden. Ebenso können WEA-Hersteller nachweisen, dass auch unter Verwendung geringerer materialspezifischer Exponenten der Wöhlerlinie der Vergleich der Ergebnisse der effektiven Turbulenzintensitäten mit den Auslegungswerten für einen strukturellen Ermüdungsnachweis zulässig ist. In den Ergebnistabellen für die effektiven Turbulenzintensitäten sind WEA, für die ggf. ein von m = 10 abweichender materialspezifischer Exponent zu Grunde gelegt wird, entsprechend markiert (m = x).

Entsprechend der Definition der Turbulenzintensität steigt ihr Wert mit abnehmender Windgeschwindigkeit an. Diesem physikalischen Umstand tragen die DIBt-Richtlinien

Seite 22 von 32 Gutachtliche Stellungnahme zur Standorteignung von Windenergieanlagen im Windpark Wiesemscheid Revision 6, April 2021 Referenz-Nr. 2021-WND-038-CXXIX-R6

2004 /4/ und 2012 /5/ Rechnung, indem sie die Auslegungswerte für die Turbulenzintensität windgeschwindigkeitsabhängig definieren.

Für die WEA 1 bis 3, für die eine Typenprüfung auf Basis der DIBt-Richtlinie 2012 /5/zu Grunde gelegt wird bzw. unter Vorbehalt unterstellt werden kann, sind die windgeschwindigkeitsabhängigen Ergebnisse der effektiven Turbulenzintensität in Tabelle 8 maßgeblich für eine Bewertung der Standorteignung hinsichtlich der Auslegungswerte der Turbulenzintensität. Als Teil der Auslegung bezieht sich die DIBt-Richtlinie 2012 /5/ bzw. /8/ auf die repräsentative Turbulenzintensität I_{rep}.

Der Vergleich der Ergebnisse der effektiven Turbulenzintensität für WEA, die eine Typenprüfung auf Basis der DIBt-Richtlinien 2012 /5/ oder 2004 /4/ besitzen, erfolgt mit den jeweils zu Grunde gelegten Auslegungswerten. Sollten Auslegungswerte von der Turbulenzkategorie A nach /8/ bzw. /7/ abweichen, werden die WEA in Tabelle 8 farblich markiert.

Im Falle von Überschreitungen der Auslegungswerte der Turbulenzintensität, die bei der jeweiligen Typenprüfung der WEA zu Grunde zu legen sind, sind diese in Tabelle 8 jeweils fett und kursiv gedruckt.

DIBt-F	Richtlinie	DIBt 2012							
Windgeschwindigkeit [m/s]		4-6	6-8	8-10	10-12	12-14	14-16	16-18	18-20
Auslegungswert [%] IEC, Ed. 3 /8/ (Kurve A)		29,9	24,8	22,0	20,1	18,9	18,0	17,3	16,7
	Lfd. WEA-Nr.		E	rgebnis	sse [%]	auf NH	der WE	A	
\bigoplus	1	25,1	21,9	20,0	18,0	15,9	14,2	13,1	12,5
\bigcirc	2	26,8	23,4	21,2	19,0	17,0	15,4	14,4	13,6
									13,3

Tabelle 8: Ergebnisse für die effektiven Turbulenzintensitäten auf Nabenhöhe (DIBt 2012 /5/)

4.7 Weitere Windbedingungen

Ist der Standort gemäß den in Kapitel 4.2 durchgeführten Untersuchungen als orografisch komplex anzusehen, so muss der Nachweis der Standorteignung für WEA, für die eine Typenprüfung auf Basis der DIBt-Richtlinie 2012 /5/ zu Grunde gelegt wird, durch den Nachweis der Integrität der Konstruktion nach /8/ durchgeführt werden. Hierfür sind die in Kapitel 2 dargestellten Windbedingungen für den Standort zu ermitteln. Die Bestimmung weiterer Windbedingungen kann ebenso erforderlich sein, wenn eine oder mehrere standortspezifische Windbedingungen des vereinfachten Vergleiches nach der DIBt-Richtlinie 2012 /5/ nicht durch die Windbedingungen der Typenprüfung abgedeckt werden und die Standorteignung der WEA daher auf Basis eines standortspezifischen Lastvergleiches durchgeführt werden soll. Für diesen Vergleich der standortspezifischen Lasten zu den Lastannahmen der Typenprüfung

Seite 23 von 32 Gutachtliche Stellungnahme zur Standorteignung von Windenergieanlagen im Windpark Wiesemscheid Revision 6, April 2021 Referenz-Nr. 2021-WND-038-CXXIX-R6

müssen zusätzlich der mittlere Höhenexponent α sowie die mittlere Dichte der Luft ρ am Standort bestimmt werden. Bei komplexem Gelände ist für WEA, für die eine Typenprüfung auf Basis der DIBt-Richtlinie 2012 /5/ zu Grunde gelegt wird, darüber hinaus die Neigung der Anströmung (Inklinationswinkel) $\phi_{\text{Inkl.}}$ sowie die extreme Turbulenzintensität zu ermitteln. Da die Neigung der Anströmung $\phi_{\text{Inkl.}}$ in Lastvergleichen üblicherweise als weiterer Parameter mit einbezogen wird, ermitteln wir diese auch für die Fälle, in denen der Standort nicht als orografisch komplex anzusehen ist.

Gemäß Kapitel 4.2 ist der Standort der geplanten WEA 3 nach IEC 61400-1, Ed. 4 /10/ als orografisch komplex anzusehen. Der Nachweis der Integrität der Konstruktion nach /8/ kann vorzugsweise durch Vergleich der Windparameter des Standortes mit denen der Auslegung durchgeführt werden. Liegen hierbei die zu vergleichenden standortspezifischen Windparameter unterhalb der jeweiligen Auslegungswerte, kann die Standorteignung für diese WEA nachgewiesen werden. Abweichend von /8/ wird von uns hierbei der Vergleich der Häufigkeitsverteilung der Windgeschwindigkeit (Dichtefunktion) nach der DIBt-Richtlinie 2012 /5/ durchgeführt.

Sollten ein oder mehrere Windparameter am Standort die Windparameter der Typenprüfung nicht abdecken, so kann der Nachweis der Integrität der Konstruktion nach /8/ ggf. durch Lastberechnungen mit Bezug auf standortspezifische Bedingungen durchgeführt werden.

Die von uns ermittelten standortspezifischen Windbedingungen sind für die nach /8/ nachzuweisenden WEA in Kapitel 9 ausgewiesen.

4.7.1 Mittlerer Höhenexponent

Es werden die auf die jeweiligen Nabenhöhen bezogenen mittleren Höhenexponenten α für alle nachzuweisenden WEA am Standort ermittelt und in Kapitel 9 ausgewiesen. Sofern die Auslegungswerte nicht gesondert vom WEA-Hersteller angegeben sind (S-Klasse), ist der mittlere Höhenexponent α im Auslegungsfall gemäß /8/mit 0,2 anzunehmen. Die Ermittlung der standortspezifischen mittleren Höhenexponenten α zur Beschreibung der Windscherung erfolgt auf Basis der am Standort ermittelten Rauigkeitsklassifizierung (siehe Kapitel 4.5).

4.7.2 Mittlere Luftdichte

Es wird die mittlere Luftdichte ρ auf Nabenhöhe für alle nachzuweisenden WEA am Standort ermittelt und in Kapitel 9 ausgewiesen. Sofern die Auslegungswerte nicht gesondert vom WEA-Hersteller angegeben sind (S-Klasse), ist ihr Wert im Rahmen der Auslegung mit $\rho=1,225$ kg/m³ anzunehmen /8/. Die mittlere Luftdichte ρ am Standort soll sich auf Windgeschwindigkeiten oberhalb der Nennwindgeschwindigkeit (v ≥ v_{Nenn}) beziehen /8/. Für deren Ermittlung werden langjährige Messzeitreihen der Temperatur und Luftdichte der DWD-Messstationen verwendet und mit Hilfe des in der Software WAsP implementierten Air Density Calculator /22/ auf den zu beurteilenden Standort übertragen. Die in Kapitel 9 ausgewiesenen, mittleren Luftdichten

Seite 24 von 32 Gutachtliche Stellungnahme zur Standorteignung von Windenergieanlagen im Windpark Wiesemscheid Revision 6, April 2021 Referenz-Nr. 2021-WND-038-CXXIX-R6

ergeben sich entsprechend der Höhe des Standortes ü. NN. zzgl. Nabenhöhe, berechnet auf Basis der meteorologischen DWD-Messstation Nürburg (Entfernung ca. 3,0km, 627,0m Höhe ü. NN., mit einer Temperatur von 7,4°C im Jahresmittel (1981 – 1990)) /23/.

4.7.3 Neigung der Anströmung

Es werden die Neigungen der Anströmung (Inklinationswinkel) φικλι, bezogen auf eine horizontale Ebene, für nachzuweisende WEA auf Basis angenäherter Ebenen des Geländes ermittelt und in Kapitel 9 ausgewiesen. Sofern die Auslegungswerte nicht gesondert vom WEA-Hersteller angegeben sind (S-Klasse), ist gemäß /8/ der Einfluss einer Schräganströmung von bis zu 8° anzunehmen. Abweichend zum Verfahren nach der DIN EN 61400-1:2011 /8/, legen wir für deren Ermittlung nicht die omnidirektionale angenäherte Ebene mit einem Radius von 5•NH zu Grunde (diese umfasst alle Sektoren zusammen, d.h. 360°), sondern unterteilen diese sektoriell in zwölf 30°-Abschnitte. In der anschließenden Summation zur Ermittlung der repräsentativen Neigung der Anströmung φικλι. erfolgt die Gewichtung der jeweiligen Neigungen unter Verwendung der sektoriellen Energieflussdichten. Diese werden auf Basis des in /16/ beschriebenen Verfahrens unter Nutzung der sektoriellen Winddaten am Standort /25/ bestimmt. Der Einfluss thermischer Effekte auf die Neigung der Anströmung (z.B. thermische Aufwinde) wird nicht berücksichtigt.

4.7.4 Extreme Turbulenzintensität

Erfolgt der Nachweis der Standorteignung aufgrund eines orografisch komplex anzusehen Standortes nach /8/, so muss gemäß dieser Richtlinie neben den bisher ermittelten Windbedingungen auch die extreme Turbulenzintensität am Standort bestimmt werden. Diese wird durch die ermittelte größte maximale Turbulenzintensität im Nachlauf einer WEA auf Nabenhöhe (totale Turbulenzintensität I_T) angegeben /8/.

Für die WEA, für die eine Typenprüfung auf Basis der DIBt-Richtlinie 2012 /5/ zugrunde gelegt wird und deren Standort als orografisch komplex anzusehen ist, sind die windgeschwindigkeitsabhängigen Ergebnisse der extremen Turbulenzintensität in Tabelle 9 dargestellt.

DIBt-Richtlinie		2012									
Windgeschwindigkeit [m/s]		4-6	6-8	8-10	10-12	12-14	14-16	16-18	18-20		
	Lfd. WEA-Nr.	Ergebnisse [%] auf NH der WEA									
\bigoplus	3	32,8	28,3	25,5	23,3	21,3	19,7	18,6	17,8		

Tabelle 9: Ergebnisse für die extremen Turbulenzintensitäten auf Nabenhöhe für nachzuweisende WEA

Seite 25 von 32 Gutachtliche Stellungnahme zur Standorteignung von Windenergieanlagen im Windpark Wiesemscheid Revision 6, April 2021 Referenz-Nr. 2021-WND-038-CXXIX-R6

4.8 Modell- und Datenunsicherheiten

Generell bilden Berechnungsmodelle die Realität nur annähernd ab. Die unter den genannten Randbedingungen ermittelten Ergebnisse können daher nur als Hilfsmittel zur Entscheidungsfindung verwendet werden. Insbesondere sind die Unsicherheiten der Berechnungen bei eng gewählten WEA-Abständen höher einzuschätzen (siehe Kapitel 2.1).

Im Rahmen der durchgeführten Berechnungen wurden teils vereinfachte Annahmen und Randbedingungen getroffen. Sämtliche Vereinfachungen sind dabei stets konservativ gewählt worden.

5 Zusammenfassung und Bewertung

Am Standort Wiesemscheid (Rheinland-Pfalz) plant der Auftraggeber die Errichtung von drei WEA (WEA 1 bis 3).

Die TÜV NORD EnSys GmbH & Co. KG ist am 23.02.2021 per E-Mail beauftragt worden, die Standorteignung von WEA gemäß Kapitel 16 der DIBt-Richtlinie 2012 /5/zu betrachten und zu bewerten. Die Standorteignung ist hierbei ohne weiteren Sicherheitszuschlag nachgewiesen, wenn die nachzuweisenden Windbedingungen am Standort die jeweiligen Auslegungswerte der Typenprüfung nicht überschreiten. Alternativ kann die Standorteignung der WEA auf Basis eines standortspezifischen Lastvergleiches der Betriebsfestigkeitslasten und/oder der Extremlasten nachgewiesen werden (siehe Kapitel 2.2).

Der Nachweis der Standorteignung dient gleichzeitig als Turbulenz-Immissionsprognose im Sinne des BImSchG /13/. Das bedeutet, dass die Immissionen auf WEA zumutbar sind, solange die Standorteignung der WEA hinsichtlich der Auslegungswerte nachzuweisender Windbedingungen oder hinsichtlich der nachzuweisenden Auslegungslasten, nachgewiesen ist.

Der Standort der WEA 3, für die eine Typenprüfung nach der DIBt-Richtlinie 2012 /5/ unterstellt wird, ist nach IEC 61400-1, Ed. 4 /10/ als orografisch komplex anzusehen (siehe Kapitel 4.2). Wie bereits in Kapitel 2 und 4.7 erläutert, kann der Nachweis der Standorteignung daher nicht nach den in /5/ genannten vereinfachten Vergleichen durchgeführt werden, sondern muss durch den Nachweis der Integrität der Konstruktion nach /8/ erfolgen. Im Vergleich der am Standort der WEA 3 zu vergleichenden Windparametern zeigt sich, dass ein oder mehrere Windparameter am Standort die Windparameter der Typenprüfung nicht abdecken. Deren Standorteignung kann daher nur durch den Nachweis der Integrität der Konstruktion durch Lastberechnungen mit Bezug auf standortspezifische Bedingungen nach /8/ nachgewiesen werden. Für die WEA 3 wird somit der vereinfachte Vergleich gemäß DIBt-Richtlinie 2012 /5/ mit Ausnahme des Vergleiches der 50-Jahreswindgeschwindigkeit nicht durchgeführt.

Im Nachfolgenden werden für die zu bewertenden WEA die Auslegungswerte mit den standortspezifischen Windbedingungen verglichen. Bei WEA, für die noch keine

Seite 26 von 32 Gutachtliche Stellungnahme zur Standorteignung von Windenergieanlagen im Windpark Wiesemscheid Revision 6, April 2021 Referenz-Nr. 2021-WND-038-CXXIX-R6

gültige Typenprüfung vorliegt, gelten die Auslegungswerte als vorläufig und die Aussagen zur Standorteignung unter Vorbehalt (siehe Kapitel 3.1).

Vergleich der 50-Jahreswindgeschwindigkeit auf Nabenhöhe v₅₀

Für die geplante WEA 1 zeigt sich im Vergleich mit der Windzone des Standortes, dass diese durch die Windzone der Auslegung der zu Grunde gelegten Typenprüfung abgedeckt wird (siehe Kapitel 4.3).

Für die geplanten WEA 2 und 3 zeigt sich im Vergleich mit der 50-Jahreswindgeschwindigkeit am Standort v₅₀ auf Nabenhöhe, dass diese durch den Auslegungswert der zu Grunde gelegten Typenprüfung abgedeckt wird (siehe Kapitel 4.3).

Vergleich der mittleren Jahreswindgeschwindigkeit auf Nabenhöhe vm

Für die WEA 1 und 2, für die jeweils ein mittlerer Formparameter der Weibullverteilung $k \ge 2$ vorliegt, zeigt sich im Vergleich mit der jeweiligen standortspezifischen mittleren Jahreswindgeschwindigkeit auf Nabenhöhe v_m , dass diese durch den Auslegungswert der jeweils zu Grunde gelegten Typenprüfung abgedeckt wird (siehe Kapitel 4.4).

Vergleich der effektiven Turbulenzintensität auf Nabenhöhe leff

Im Vergleich der windgeschwindigkeitsabhängigen Ergebnisse der effektiven Turbulenzintensitäten I_{eff} am Standort mit den Auslegungswerten der Turbulenzintensität, die bei der jeweiligen Typenprüfung der WEA zu Grunde zu legen sind, zeigen sich an den WEA 1 und 2 keine Überschreitungen (siehe Tabelle 8).

Standortspezifische Lastvergleiche

Für die WEA 3 wurde mit den entsprechenden effektiven Turbulenzintensitäten und den standortspezifischen Windbedingungen als Eingangsparameter durch den WEA-Hersteller ein standortspezifischer Lastvergleich der Betriebsfestigkeitslasten durchgeführt und in /28/ dokumentiert. Der Vergleich der vom WEA-Hersteller ermittelten relativen schädigungsäquivalenten Einstufenkollektive mit den Auslegungslasten am Blattanschluss-, Naben-, Turmkopf- und Turmfußsystem ist für verschiedene Momente in /28/ dargestellt. Der standortspezifische Lastvergleich des WEA-Herstellers ergab für die WEA 3 nach dessen Angaben keine relevanten Überschreitungen, so dass die Standorteignung lastseitig gewährleistet ist. Der vorliegende standortspezifische Lastvergleich wurde auf Plausibilität hinsichtlich der oben genannten Eingangsparameter geprüft. Die Berechnungen des WEA-Herstellers sowie die zum Vergleich herangezogenen Auslegungslasten in /28/ wurden keiner Prüfung unterzogen und werden als richtig vorausgesetzt. Anhand der in /28/ dargestellten Ergebnisse sind die Schlussfolgerungen des WEA-Herstellers zur lastseitigen Standorteignung plausibel. Der standortspezifische Lastvergleich in /28/ wurde TÜV NORD En-Sys GmbH & Co. KG im Rahmen einer Geheimhaltungsvereinbarung vorgelegt.

Seite 27 von 32 Gutachtliche Stellungnahme zur Standorteignung von Windenergieanlagen im Windpark Wiesemscheid Revision 6, April 2021 Referenz-Nr. 2021-WND-038-CXXIX-R6

Zusammenfassung

Abschließend kann festgestellt werden, dass die Standorteignung der am Standort Wiesemscheid betrachteten WEA 1 und 2 nachgewiesen ist. Des Weiteren ist die Standorteignung der WEA 3 unter Berücksichtigung des standortspezifischen Lastvergleiches /28/ nach Aussagen des Herstellers lastseitig nachgewiesen.

6 Rechtliche Hinweise

Die vorliegende gutachtliche Stellungnahme ist nur in ihrer Gesamtheit gültig. Die darin getroffenen Aussagen beziehen sich ausschließlich auf die vorliegenden überlieferten Dokumente.

Die TÜV NORD EnSys GmbH & Co. KG übernimmt keine Gewähr für die Richtigkeit der vom Auftraggeber bzw. Dritter übermittelten Informationen und Angaben und für durch unrichtige Angaben bedingte falsche Aussagen.

Die von TÜV NORD EnSys GmbH & Co. KG erbrachten Leistungen (z.B. Gutachten-, Prüf- und Beratungsleistungen) dürfen nur im Rahmen des vertraglich vereinbarten Zwecks verwendet werden. Vorbehaltlich abweichender Vereinbarungen im Einzelfall, räumt TÜV NORD EnSys GmbH & Co. KG dem Auftraggeber an seinen urheberrechtsfähigen Leistungen jeweils ein einfaches, nicht übertragbares sowie zeitlich und räumlich auf den Vertragszweck beschränktes Nutzungsrecht ein. Weitere Rechte werden ausdrücklich nicht eingeräumt, insbesondere ist der Auftraggeber nicht berechtigt, die Leistungen des Auftragnehmers zu bearbeiten, zu verändern oder nur auszugsweise zu nutzen.

Eine Veröffentlichung der Leistungen über den Rahmen des vertraglich vereinbarten Zwecks hinaus, auch auszugsweise, bedarf der vorherigen schriftlichen Zustimmung von TÜV NORD EnSys GmbH & Co. KG. Eine Bezugnahme auf TÜV NORD EnSys GmbH & Co. KG ist nur bei Verwendung der Leistung in Gänze und unverändert zulässig.

Bei einem Verstoß gegen die vorstehenden Bedingungen ist TÜV NORD EnSys GmbH & Co. KG jederzeit berechtigt, dem Auftraggeber die weitere Nutzung der Leistungen zu untersagen.

Seite 28 von 32 Gutachtliche Stellungnahme zur Standorteignung von Windenergieanlagen im Windpark Wiesemscheid Revision 6, April 2021 Referenz-Nr. 2021-WND-038-CXXIX-R6

7 Formelzeichen und Abkürzungen

WEA	Windenergieanlage(n)	
BlmSchG	Bundes-Immissionsschutzgesetz	
BImSchV	Bundes-Immissionsschutzverordnung	
DWD	Deutscher Wetterdienst	
NH	Nabenhöhe	
WZ	Windzone	
GK	Geländekategorie	
NTM	Normales Turbulenzmodell	
ETM	Extremes Turbulenzmodell	
P_{Nenn}	Nennleistung der jeweiligen WEA	[MW]
D	Rotordurchmesser	[m]
Si	der auf den Rotordurchmesser der jeweils größeren WEA bezogene dimensionslose Abstand von der Turmachse der betrachteten WEA zur Turmachse der benachbarten WEA	[-]
СТ	Schubbeiwert des Rotors	[-]
C_{CT}	Turbulenzstrukturparameter	[-]
l _{eff}	Effektive Turbulenzintensität auf Nabenhöhe	[-]
I _{char}	Charakteristische Turbulenzintensität bei 15m/s	[-]
I_{rep}	Repräsentative Turbulenzintensität bei 15m/s	[-]
I _T	Maximale Turbulenzintensität im Nachlauf einer WEA auf Nabenhöhe (totale Turbulenzintensität)	[-]
Α	Skalierungsparameter der Weibullverteilung	[m/s]
k	Formparameter der Weibullverteilung	[-]
m	Exponent der Wöhlerlinie	[-]
V	Windgeschwindigkeit (allgemein)	[m/s]
V_{m}	Mittlere Jahreswindgeschwindigkeit auf Nabenhöhe	[m/s]
V ₅₀	Extremer 10-min-Mittelwert der Windgeschwindigkeit auf Nabenhöhe mit einem Wiederkehrzeitraum von 50 Jahren am Standort	[m/s]
V_{ref}	Auslegungswert für v ₅₀ auf Nabenhöhe	[m/s]
Vin	Einschaltwindgeschwindigkeit	[m/s]

Seite 29 von 32 Gutachtliche Stellungnahme zur Standorteignung von Windenergieanlagen im Windpark Wiesemscheid Revision 6, April 2021 Referenz-Nr. 2021-WND-038-CXXIX-R6

V _{Nenn}	Nennwindgeschwindigkeit	[m/s]
Z	Höhe über Grund (allgemein)	[m]
Z_{hub}	Nabenhöhe der jeweiligen WEA	[m]
α	Höhenexponent für das exponentielle Windprofil	[-]
φ _{Inkl} .	Inklinationswinkel der Schräganströmung	[°]
ρ	Mittlere Dichte der Luft	[kg/m³]
σ	Standardabweichung der mittleren Windgeschwindigkeit	[m/s]
	Altgrad (Vollkreis ≙ 360)	[°]

Seite 30 von 32 Gutachtliche Stellungnahme zur Standorteignung von Windenergieanlagen im Windpark Wiesemscheid Revision 6, April 2021 Referenz-Nr. 2021-WND-038-CXXIX-R6

8 Literatur- und Quellenangaben

- /1/ European Environmental Agency, CORINE Land Cover 2012 raster data (100m) Version 18 (12/2016); https://www.eea.europa.eu/data-and-maps/data/clc-2012-raster; Kopenhagen; 2016
- Dekker, J.W.M.; Pierik, J.T.G. (Eds.); European Wind Turbine Standards II, ECN Solar & Wind Energy; Petten, Niederlande; 1998
- /3/ Deutsches Institut für Bautechnik (DIBt): Richtlinie für Windkraftanlagen Einwirkungen und Standsicherheitsnachweise für Turm und Gründung; Fassung Juni 1993; DIBt, Berlin; 2. Aufl. 1995
- /4/ Deutsches Institut für Bautechnik (DIBt): Richtlinie für Windenergieanlagen -Einwirkungen und Standsicherheitsnachweise für Turm und Gründung; Fassung März 2004; DIBt, Berlin; 2004
- /5/ Deutsches Institut für Bautechnik (DIBt): Richtlinie für Windenergieanlagen Einwirkungen und Standsicherheitsnachweise für Turm und Gründung; Fassung Oktober 2012; DIBt, Berlin; 2012
- /6/ Deutsches Institut für Normung e.V.; DIN EN 1991-1-4 und nationaler Anhang DIN EN 1991-1-4/NA; Eurocode 1: Einwirkungen auf Tragwerke Teil 1-4: Allgemeine Einwirkungen Windlasten; Deutsche Fassung EN 1991-1-4:2005 + A1:2010 + AC:2010; Berlin; Dezember 2010
- /7/ Deutsches Institut für Normung e.V.; DIN EN 61400-1 (VDE 0127 Teil 1), Windenergieanlagen Teil 1: Sicherheitsanforderungen (IEC 61400-1:1999, modifiziert); Deutsche Fassung EN 61400-1:2004; Berlin; August 2004
- /8/ Deutsches Institut für Normung e.V.; DIN EN 61400-1 (VDE 0127-1), Windenergieanlagen Teil 1: Auslegungsanforderungen (IEC 61400-1:2005 + A1:2010); Deutsche Fassung EN 61400-1:2005 + A1:2010; Berlin; August 2011
- /9/ International Electrotechnical Commission (IEC); IEC 61400-1; Wind turbines -Part 1: Design requirements; Third Edition; August 2005 + Amendment 1: Oktober 2010
- /10/ International Electrotechnical Commission (IEC); IEC 61400-1; Wind energy generation systems Part 1: Design requirements; Edition 4.0; Februar 2019
- /11/ Germanischer Lloyd WindEnergie GmbH; Guideline for the Certification of Wind Turbines; Hamburg; Edition 2003 with Supplement 2004
- /12/ Germanischer Lloyd Industrial Services GmbH; Guideline for the Certification of Wind Turbines; Hamburg; Edition 2010
- /13/ Bundes-Immissionsschutzgesetz in der Fassung der Bekanntmachung vom 17. Mai 2013 (BGBI. I S. 1274), geändert durch Artikel 1 des Gesetzes vom 2. Juli 2013 (BGBI. I S. 1943)

Seite 31 von 32 Gutachtliche Stellungnahme zur Standorteignung von Windenergieanlagen im Windpark Wiesemscheid Revision 6, April 2021 Referenz-Nr. 2021-WND-038-CXXIX-R6

- /14/ Vierte Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verordnung über genehmigungsbedürftige Anlagen 4. BImSchV) vom 2. Mai 2013 (BGBl. I S. 973, 3756)
- /15/ Risø National Laboratory; Frandsen, St. T.; Turbulence and turbulencegenerated structural loading in wind turbine clusters; Wind Energy Department; Risø-R-1188(EN); Roskilde, Dänemark; Januar 2007
- /16/ Risø National Laboratory; European Wind Atlas; Roskilde, Dänemark; 1989
- /17/ TOP50, Amtliche topografische Karten 1:50.000, Amtliches digitales Geländemodell (Auflösung 50m); Landesvermessungsämter der Bundesländer; Deutschland: 2003/2004
- /18/ Jarvis A., H.I. Reuter, A. Nelson, E. Guevara, Hole-filled seamless SRTM data V4.1, International Centre for Tropical Agriculture (CIAT); 08.2008
- /19/ Kunte, A; Turbulenz-Immissionsprognosen vereinheitlicht; WIND-KRAFT Journal; Verlag Natürliche Energien, Ausgabe 4/2009, S.28 bis 30; Seevetal
- /20/ VDI 3783 Blatt 12; Umweltmeteorologie Physikalische Modellierung von Strömungs- und Ausbreitungsvorgängen in der atmosphärischen Grenzschicht; Verein Deutscher Ingenieure; 1999
- /21/ Deutsches Institut für Bautechnik (DIBt); Zuordnung der Windzonen nach Verwaltungsgrenzen; Windzonen_nach_Verwaltungsgrenzen.xls in der Fassung vom 20.04.2015
- /22/ Risø National Laboratory, WAsP 11 (http://www.wasp.dk), Dänemark, 2012
- /23/ Deutscher Wetterdienst, S. Traup, B. Kruse: Wind und Windenergiepotenziale in Deutschland - Winddaten für Windenergienutzer, Version 6, Deutschland 2011
- /24/ Dunoair Windpark Planung GmbH; E-Mail mit beigefügten Koordinaten und Angaben zur WEA-Spezifikation inkl. Angabe zu Nabenhöhe, Rotordurchmesser und Nennleistung der zu berücksichtigenden WEA, Höhendaten an den Koordinaten der geplanten WEA, Lageplan des Windparks; 23.02.2021
- /25/ GEO-NET Umweltconsulting GmbH; Kurzauswertung zu standortbezogenen Weibullverteilungen als Ergebnis der Windanalyse 3 WEA-Standorte Windenergieprojekt Wiesemscheid Rev. 00; Bericht: 1_19_142_KAW_Weibullverteilungen_3WEA-Standorte-WEP-Wiesemscheid_Rev00; Hannover; 17.10.2019
- /26/ Dunoair Windpark Planung GmbH; Dokumentation zur Besichtigung am Standort Wiesemscheid; Trier; 30.03.2021
- /27/ ENERCON GmbH; Technisches Datenblatt General Design Conditions ENERCON Windenergieanlage E-138 EP3 E2 / 4200 kW; Dokument-ID: D0745910-5; Aurich; 29.06.2020
- /28/ ENERCON GmbH; Ergebnisbericht, Standortspezifischer Lastvergleich, Standorteignung Windpark Wiesemscheid, Version 4; Rev. 0; Dokument-ID: D02299448-0.0; Aurich; 19.03.2021

Seite 32 von 32 Gutachtliche Stellungnahme zur Standorteignung von Windenergieanlagen im Windpark Wiesemscheid Revision 6, April 2021 Referenz-Nr. 2021-WND-038-CXXIX-R6

9 Zusammenfassung aller Windbedingungen

WEA 3 (ENERCON E-138 EP3 E2 (OM0s), 4,20 MW, 130,07m NH) / DIBt-Richtlinie 2012											
Effektive Turbulenzintensitäten [%] auf NH der WEA											
Windgeschwindig	3,0	4,0	5,0	0 6,0 7,		,0 8,0		9,0	10,0	11,0	
Auslegungswert [%]	41,9	34,4	29,9	26,9	24,	8	23,2	22,0	21,0	20,1
m = 10		37,2	30,5	26,5	23,8	21,	8	20,1	18,7	17,4	16,3
m = 8		36,9	30,1	26,1	23,4	21,	4	19,7	18,3	17,1	16,1
m = 4		36,4	29,5	25,5	22,7	20,	7	19,0	17,7	16,7	15,9
Windgeschwindig	keit [m/s]	12,0	13,0	14,0	15,0	16,	0	17,0	18,0	19,0	≥20,0
Auslegungswert [%]	19,5	18,9	18,4	18,0	17,	6	17,3	17,0	16,7	16,5
m = 10		15,5	14,9	14,5	14,2	13,	9	13,7	13,5	13,3	13,2
m = 8		15,4	14,9	14,5	14,2	13,	9	13,7	13,5	13,3	13,2
m = 4		15,3	14,8	14,5	14,1	13,	9	13,7	13,5	13,3	13,2
Sektorielle Windbedingungen (Standort ist komplex: C _{CT} = 1,05)											
Richtungs- sektoren	Relative Häufigkeit [-]		Weibullver				α [-]		I _{char} [%]	I _{rep} [%]	φinki. [°]
(1 ≙ 10		0%)	A [m/s]		k [-]		-				
N -			-		-				14,0	14,7	1,3
NNO -			-		-		-		15,6	16,3	2,1
ONO -					-		-		14,8	15,5	2,3
0 -			-		-		-		14,2	14,9	3,1
OSO				•	-		-		14,1	14,8	4,3
SSO			-		-		-		13,7	14,3	5,7
S -		-		•	-		-		13,1	13,7	5,1
SSW -		-		-	-			-	12,8	13,4	6,7
WSW -		-		-	-			-	12,7	13,3	4,3
W		-			-			-	13,4	14,0	0,4
WNW	-		-		-		-		13,2	13,8	1,0
NNW -		-		-	-			-	14,5	15,2	1,1
Gesamt 1,00		0	7,5		2,48		0,32		12,9	13,5	4,0
mittlere Jahreswindgeschwindigkeit auf NH v _m [m/s]						6,7					
50-Jahreswindgeschwindigkeit auf NH v ₅₀ [m/s]						37,69					
mittlere Dichte der Luft ρ auf NH für ν ≥ ν _{Nenn} [kg/m³]						1,158					

 Tabelle 10:
 Zusammenfassung der benötigten Windbedingungen für die WEA 3