Anlage 9c

Wasserrechtlicher Antrag zur Einleitung des Oberflächenwassers der Deponie St. Augustin über Versickerung in das Grundwasser

Erweiterung der Deponie Sankt Augustin

Anlage 9c

Wasserrechtlicher Antrag zur Einleitung des Oberflächenwassers der Deponie St. Augustin über Versickerung in das Grundwasser

INHALT

1.	Alle	gemeine	98	4				
	1.1	•	en zum Antragsteller					
	1.2	•	nstand des Antrags					
	1.3	•	der Einleitung					
2.	Ве		e wasserrechtliche Genehmigungen / Verwendete Unterlagen					
3.	Ве	Bestehende Situation						
	3.1	Besch	reibung des vorhandenen Entwässerungssystems	7				
	3.2	Derzei	tige Auslegung der Sickerbecken	8				
		3.2.1	Angaben zu den vorhandenen Grundlagen	8				
		3.2.2	Auslegung der vorhandenen Sickerbecken	9				
4.	Ob	Oberflächenentwässerung nach Abschlus der Mineralstoffdeponie mit aktualisierten Daten						
				10				
	4.1 Beschreibung des geplanten Entwässerungssystems und der wesentlichen ba							
	Änd	erungen		10				
	4.2	Nachw	eis der ausreichenden Größe der bestehenden Sickerbecken I und II	11				
		4.2.1	Einzugsflächen und Regendaten der Sickerbecken im Endzustand	11				
		4.2.2	Nachweis der ausreichenden Bemessung der Sickerbecken zum Endz	ustand				
			der Deponie St. Augustin	14				
		4.2.3	Fazit zum Nachweis der ausreichenden Dimensionierung der besteh	enden				
			Sickerbecken	19				
	4.3	Angab	en zu Planung, Errichtung und Betrieb neuer Anlagen	20				

ABBILDUNGEN

Abbildung 1:	Lage des EVP und der Zentraldeponie Sankt Augustin (Quelle: RSAG)
Abbildung 2:	Lage der Entwässerungsflächen, Sickerbecken und Entwässerungsgräben im aktuel vorhandenen Bauzustand (Quelle: Planfestellung – Lageplan Einzugsgebiete
	Nr.040267-202 vom 16.04.1999) /8/
Abbildung 3:	Lage der Entwässerungsflächen, Sickerbecken und Entwässerungsgräben im
	aktuellen Planungszustand (Quelle: ICP-Plannummer 2309 RSAG III-01-19 - ohne
	Maßstab) /9/
Abbildung 4:	Dimensionierung des Sickerwasserbecken I für den künftigen Planungszustand 18
Abbildung 5:	Ergebnisse der Dimensionierung des Sickerwasserbecken I für den künftigen
	Planungszustand19
Abbildung 6:	Dimensionierung des Sickerwasserbecken I für den künftigen Planungszustand – mi
	dem minimal möglichen k _f -Wert16
Abbildung 7:	Ergebnisse der Dimensionierung des Sickerwasserbecken I für den künftigen
	Planungszustand – mit dem minimal möglichen kr-Wert
Abbildung 8:	Dimensionierung des Sickerwasserbecken II für den künftigen Planungszustand 17
Abbildung 9:	Ergebnisse der Dimensionierung des Sickerwasserbecken II für den künftigen
_	Planungszustand
Abbildung 10:	Dimensionierung des Sickerwasserbecken II für den künftigen Planungszustand –
J	mit dem minimal möglichen k _f -Wert18
Abbildung 11:	Ergebnisse der Dimensionierung des Sickerwasserbecken II für den künftigen
Ü	Planungszustand – mit dem minimal möglichen k _f -Wert
TABELLEN	
Tabelle 1:	Zusammenfassung der grundlegenden Daten zur Auslegung der
	Versickerungsmulde für das Sickerbecken I und II zum aktuellen Bau- und
	Genehmigungszustand /4/
Tabelle 2:	Zusammenfassung der Ergebnisse der bisherigen Auslegung der Sickerbecken I
	und II /4/
Tabelle 3:	Übersicht der den Sickerbecken zugeordneten Entwässerungsteilflächen mit deren
	Größe /9/
Tabelle 4:	Abflussbeiwerte im Vergleich
Tabelle 5:	Vergleich der Durchlässigkeitsbeiwerte kf in m/s alte und neue Berechnung 14
Tabelle 6:	Grundlagendaten der Sickerwasserbecken I und II für die bisherige wie auch
	künftige Auslegung /7/14
Tabelle 7:	Zusammenfassung der Ergebnisse der bisherigen Auslegung im Vergleich zu den
	Ergebnissen der zukünftigen Auslegung der Sickerbecken I und II
ANLAGEN	
Anlage 1	Lageplan – Erweiterung Mineralstoffdeponie Übersicht Entwässerungsflächen
	Plannummer: 2309 RSAG IV-01-19
Anlage 2	KOSTRA-DWD 2020
	für den Ort Siegburg

Anlage 3 Dimensionierung der

Versickerungsmulden I und II nach Arbeitsblatt DWA-A 138

Abkürzungen

ВА	Bauabschnitt	
EntwFl.	Entwässerungsfläche	
EVP	Entsorgungs- und Verwertungspark Sankt Augustin	
KOSTRA	Koordinierte Starkniederschlags-Regionalisierungs-Auswertungen des DWD	

Planverzeichnis

2309 RSAG IV-01-19 Lageplan – Erweiterung Mineralstoffdeponie Übersicht Entwässerungsflächen

1. ALLGEMEINES

1.1 Angaben zum Antragsteller

Auftraggeber / Bauherr

Rhein-Sieg-Abfallwirtschaftsgesellschaft AöR

Geschäftsbereich Technik

Pleiser Hecke 4

53721 Siegburg

Deponie Sankt Augustin

RSAG Entsorgungs- und Verwertungspark Sankt Augustin (EVP)

Auf dem Sand

53757 Sankt Augustin

Ansprechpartner:

Herr Martin Peters: Tel.: 02241 / 306-183

E-Mail: martin.peters@rsag.de

Herr Timo Pötzsch Tel.: 02241 / 306-189

E-Mail: timo.poetzsch@rsag.de

Frau Mirjam Heijne-Cahnbley Tel.: 02241 / 306-190

E-Mail: mirjam.heijne-cahnbley@rsag.de

Fachplanung

Planungsgemeinschaft ICP-RUK

Auf der Breit 11

76227 Karlsruhe

Ansprechpartner:

Herr Gerd Burkhardt Tel.: 0721 / 94477-12

E-Mail: burkhardt@icp-ing.de

Herr Eckhard Haubrich Tel.: 0711 / 90678-10

E-Mail: haubrich@RUK-online.de

1.2 Gegenstand des Antrags

Beantragt wird die Einleitung von nicht verunreinigtem Oberflächenwasser aus den Bereichen 1. bis 4. Bauabschnitt, Altbereich West, Altbereich Ost und einem kleinen Teilstück aus dem 5. Bauabschnitt (Entwässerungsfläche 3 mit 0,54 ha /8/) welches westlich an den Bauabschnitt der Mineralstoffdeponie anschließt in die Versickerungsbecken I und II. Es handelt sich dabei ausschließlich um Wässer, die durch den Niederschlag auf die Deponien entstehen. Die Wässer werden oberhalb der Oberflächenabdichtung gefasst und abgeleitet und kommen nicht mit Abfallstoffen in Kontakt.

1.3 Zweck der Einleitung

Die RSAG als kommunaler Entsorger im Rhein-Sieg-Kreis betreibt die Abfallanlagen am Standort Sankt Augustin. Zu diesem Standort gehören der derzeit in Betrieb befindliche Entsorgungs- und

Verwertungspark Sankt Augustin (EVP) mit der aktuell betriebenen Mineralstoffdeponie (Bauabschnitt 5) und dem im Bau befindlichen neuen Kompostwerk mit Vergärungsanlage. Die Mineralstoffdeponie dient der Ablagerung von DK-II-Abfällen (Deponieklasse II gem. Deponieverordnung). Des Weiteren befindet sich am Standort die ehemalige Zentraldeponie.

Bis auf den bisher nur temporär abgedichteten 4. Bauabschnitt (BA 4) wurden die weiteren Abschnitte der Zentraldeponie bereits an der Oberfläche abgedichtet. Siehe hierzu Abbildung 1.

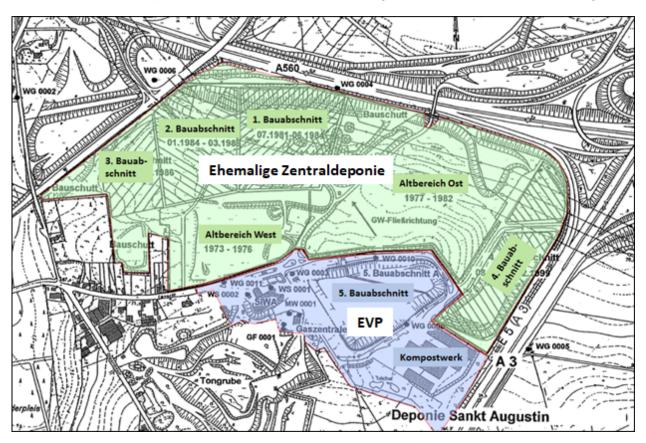


Abbildung 1: Lage des EVP und der Zentraldeponie Sankt Augustin (Quelle: RSAG)

Die RSAG hat sich entschlossen, an diesem Standort eine Kapazitätserweiterung zur Schaffung neuen Deponievolumens im DK-II-Standard vorzunehmen, wodurch die Weiternutzung dieses Standortes sichergestellt werden soll. Es soll ein Deponievolumen von ca. 486.600 m³ neu geschaffen werden. Durch die geplante Erweiterung der Mineralstoffdeponie wird die derzeitige Zufahrtsstraße zum östlichen Bereich des Geländes und insbesondere zur Kompostierungs- und Vergärungsanlage überbaut.

Gleichzeitig zur Erweiterung der Mineralstoffdeponie wird die Oberflächenabdichtung des Bauabschnitts 4 der Zentraldeponie geplant und beantragt.

Die bestehende Oberflächenentwässerung muss dementsprechend leicht angepasst werden. Zur Oberflächenentwässerung der gesamten Flächen dient ein System mit Gräben und Kanälen zu zwei Regenwasserversickerungsbecken und dem Langgraben.

Der Antrag für die Regenwasserversickerung ist Bestandteil dieses Berichtes. Für die Direkteinleitung in den Langgraben wurde ein separater Antrag eingereicht. Große Teile der bestehenden Entwässerungseinrichtungen bleiben unverändert und werden daher als Bestandsbauwerke betrachtet und nicht erneut bemessen. Dieser Erläuterungsbericht beschreibt die bestehenden Einrichtungen für die Fassung und Ableitung der Oberflächenwässer daher nur zur Orientierung und der Vollständigkeit halber.

Gegenstand dieses Antrages ist im Rahmen der Erweiterung und Umplanung der erneute Antrag auf Regenwasserversickerung über das Sickerbecken I und Sickerbecken II. Für beide Sickerbecken wird mit den aktuellen Regendaten und den geringfügig geänderten Flächengrößen der Nachweis des ausreichenden Rückhaltevolumens erbracht.

2. BESTEHENDE WASSERRECHTLICHE GENEHMIGUNGEN / VERWENDETE UN-TERLAGEN

Für die Deponie liegen zahlreiche Genehmigungen vor. Für diesen wasserrechtlichen Antrag sind folgende Dokumente und Genehmigungen relevant. Alle weiteren verwendeten Dokumente sind ebenso im Folgenden aufgeführt.

Verwendet wurden:

- /1/ Änderungsbescheid Verlängerung der Einleiterlaubnis, Az.: 52.03.09-0001/23/8.14-WE-Wie, 14.02.2023
- /2/ Änderungsbescheid, Az.: 52.03.09-0001/20/8.14-WE-Wie, 18.11.2020
- /3/ Ånderungsbescheid Einleitung von Oberflächenwasser in den Untergrund, Zentraldeponie Sankt Augustin, Az.: 52.2 1 .1(8.1 4)49/80-Bi, 13.07.2000
- /4/ Entwurfsplanung Erweiterung Mineralstoffdeponie Sankt Augustin Ausgabe 04.2023, Planungsgemeinschaft ICP-RUK
- /5/ KOSTRA-Daten 2020 für den Standort Siegburg
- /6/ Erläuterungsbericht Sanierung der vorhandenen Oberflächenabdichtung im Altbereich, Ingenieurbüro Jürgen Kreuzer, Lohmar, den 16.04.1999
- /7/ Lageplan Einzugsgebiete (Plannummer: 040267-202), erstellt vom Ingenieurbüro Jürgen Kreuzer, Lohmar, den 16.04.1999
- /8/ Lageplan Erweiterung Mineralstoffdeponie Übersicht Entwässerungsflächen (Plannummer: 2309 RSAG III-01-19), Planungsgemeinschaft ICP-RUK, Karlsruhe, März 2023

3. BESTEHENDE SITUATION

3.1 Beschreibung des vorhandenen Entwässerungssystems

Die bestehende Oberflächenentwässerung wurde vom Ingenieurbüro Jürgen Kreuzer geplant und ist genehmigt worden /6/. Im Folgenden wird der Bestand orientierend zusammengefasst dargestellt. Details können der Planung /6/ entnommen werden.

Das gesamte Oberflächenwasser des Geländes der ehemaligen Zentraldeponie und des Entsorgungs- und Verwertungsparks Sankt Augustin (siehe Abb. 1) wird entweder dem Langgraben zugeleitet, der bei Niederpleis in den Pleisbach mündet, oder zu zwei Versickerungsbecken geführt und dort dem Grundwasser zugeleitet. Die Teile, die in den Langgraben entwässern sind nicht Gegenstand dieses Antrags. In diesem Antrag werden ausschließlich die Oberflächenwasser betrachtet, die den Sickerbecken zugeleitet werden. Die entsprechenden Gräben und Kanäle sind in der Abbildung 3 und im Lageplan Nr. 2309 RSAG III-01-19 mit roter Farbe gekennzeichnet. Die dem Langgraben zugeleiteten Gräben sind violett gezeichnet.

Die bisher an die Sickerbecken angeschlossenen Flächen können der Abbildung 2 entnommen werden. Die über die Sickerbecken zu entwässernden Flächen ändern sich durch die Erweiterung der Mineralstoffdeponie nur geringfügig. Eine Darstellung der Änderungen folgt in Kapitel 4.

Das anfallende Niederschlagswasser wird mit dem Gefälle des Geländes in den über die Deponie verlaufenden vorwiegend offene Gräben gesammelt und jeweils zu einem von zwei Sickerbecken abgeleitet. Teilweise finden verrohrte Überleitungen zwischen einzelnen Flächenabschnitten unterhalb der über die Deponie verlaufenden Straßen statt. In den Sickerbecken wird das Oberflächenwasser durch Versickerung dem natürlichen Wasserkreislauf wieder zugeführt.

Das Sickerbecken I befindet sich nordwestlich der Deponieflächen jenseits der Hauptstraße. Die Zuleitung des Oberflächenwassers zum Sickerbecken I erfolgt verrohrt unter der Hauptstraße hindurch. Das Sickerbecken II liegt direkt am nördlichen Rand der Deponie. Direkt in der Ecke zwischen der Hauptstraße und der Autobahn A 560.

Die Ableitung des Oberflächenwassers erfolgt für unbefestigte Flächen direkt in eines der Sickerbecken. Die anfallenden Oberflächenwasser aus bituminös befestigten Flächen, werden zunächst einem Trennbauwerk zugeführt und mechanisch aufbereitet. Die Aufbereitung erfolgt für das Sickerbecken I und die zugeordneten Flächen über das Regenklärbecken I mit dem anschließendem Absetzbecken I. Die dem Sickerbecken II zugeordneten Flächen werden nach dem Trennbauwerk ausschließlich über das Regenklärbecken II aufbereitet und dann dem Sickerbecken II zugeführt.

Die folgende Abbildung 2 zeigt die Teilflächen der Deponie, die Flächengefälle sowie die Lage der Sickerbecken.

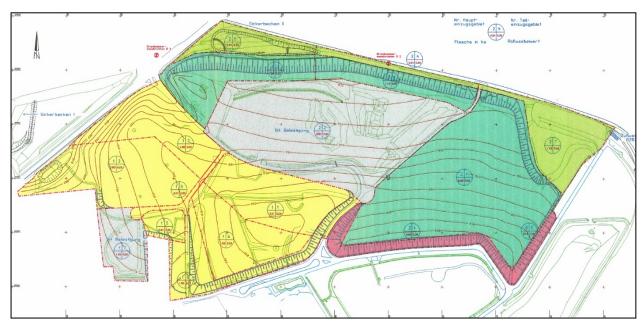


Abbildung 2: Lage der Entwässerungsflächen, Sickerbecken und Entwässerungsgräben im aktuell vorhandenen Bauzustand (Quelle: Planfeststellung – Lageplan Einzugsgebiete Nr.040267-202 vom 16.04.1999) /7/

3.2 Derzeitige Auslegung der Sickerbecken

3.2.1 Angaben zu den vorhandenen Grundlagen

Für die Berechnungen zur aktuell geltenden wasserrechtlichen Genehmigung wurde eine Regenspende von $r_{15, n=1}$ von 115 l/(s x ha) für die Auslegung der Sickerbecken verwendet. Diese Angabe ist auf Seite 25 des Erläuterungsbericht des Ingenieurbüro Jürgen Kreuzer /6/, sowie auch in den Berechnungen des genannten Berichts zu finden. Die maßgebende Regenhäufigkeit für die Bemessung der Versickerungsbecken wurde dabei mit n=0,05 angegeben.

In der bisherigen Auslegung der Sickerbecken I und II wurden als Abflussbeiwerte gemäß dem Arbeitsblatt A 118 Spitzenabflussbeiwerte von $\Psi=0.9$ für bituminös befestigte Flächen und $\Psi=0.2-0.3$ für unbefestigte Flächen in Abhängigkeit von der Geländeneigung den Berechnungen zugrunde gelegt.

Als Grundlage für die Berechnung der Oberflächenabflüsse sind die zu entwässernden Flächen aufzulisten und mit den entsprechenden Abflussbeiwerten zu versehen. Dabei ist auch die Fließstrecke zu den Sickerbecken zu beachten. Hier sind bei den Auflistungen des Erläuterungsbericht des Ingenieurbüro Jürgen Kreuzer einige Punkte nicht eindeutig zuzuordnen.

Auf den Seiten 52 und 58 des Erläuterungsberichts sind sortiert nach Sickerbecken die verschiedenen Teilflächen der Berechnung mit ihrer Größe und dem verwendeten Abflussbeiwert aufgeführt.

Für das Sickerbecken I und II wurden bei den Berechnungen zur Auslegung der vorhandenen Sickerbecken, zusammenfassend die in der folgenden

Tabelle 1 dargestellten Werte verwendet.

Tabelle 1: Zusammenfassung der grundlegenden Daten zur Auslegung der Versickerungsmulde für das Sickerbecken I und II zum aktuellen Bau- und Genehmigungszustand /6/

	Sickerbecken I	Sickerbecken II
Regenereignis	r ₁₅ , n=1 mit einer Regenspend genereignis von 115 l/(s x ha)*	
Gesamtgröße der bituminös befestigten Flächen in ha	1,25	10,84
Abflussbeiwert Ψ für die bituminös befestigte Flächen	0,9	0,9
Gesamtgröße der unbefestigten Flächen in ha	10,88	11,21
Abflussbeiwert Ψ für die unbefestigten Flächen	0,2 - 0,3	0,2 - 0,3
Gesamtgröße Flächen mit sonstigen Abflussbeiwerten in ha		1,72
Abflussbeiwert Ψ für die unbefestigten Flächen		0,45
Gesamtfläche in ha	12,13	23,77

^{*} Konstanten umgerechnet von einem 5-jährigen auf ein 20-jähriges Ereignis

3.2.2 Auslegung der vorhandenen Sickerbecken

Bei der Auslegung der Sickerbecken zum bisherigen Planungs- und Bauzustand durch den Erläuterungsbericht des Ingenieurbüro Jürgen Kreuzer /6/, wurden für die bauliche Auslegungen, die in der Tabelle 2 aufgeführten Ergebnisse zum benötigten Wassereinstauvolumen ermittelt. Mit einer Fläche des Sickerbeckens I von 1.770 m² und 3.300 m² bei dem Sickerbecken II ergibt sich somit eine maximale Wassertiefe von 0,42 m für das Sickerbecken I und 0,67 m für das Sickerbecken II bei einem 20-jährigen Regenereignis. Die maximal mögliche Einstauhöhe wurde dabei planerisch und bautechnisch auf eine Höhe von 1,24 m für das Sickerbecken I und 1,42 m für das Sickerbecken II umgesetzt. Der Durchlässigkeitswert der gesättigten Zone wurde dabei in dem Erläuterungsbericht des Ingenieurbüro Jürgen Kreuzer mit 1,0 x 10⁻³ m/s für das Sickerbecken I und 3,6 x 10⁻⁴ für das Sickerbecken II angegeben.

Tabelle 2: Zusammenfassung der Ergebnisse der bisherigen Auslegung der Sickerbecken I und II /6/

Parameter	Sickerbecken I	Sickerbecken II	
Durchlässigkeitsbeiwert der gesättigten Zone in m/s	1,0 x 10 ⁻³	3,6 x 10 ⁻⁴	
Benötigtes Speichervolumen in m³	741,60	2360,19	
Wassertiefe in m	0,42	0,67	
Umgesetzte maximale Einstauhöhe in m	1,24	1,42	

4. OBERFLÄCHENENTWÄSSERUNG NACH ABSCHLUS DER MINERALSTOFFDE-PONIE MIT AKTUALISIERTEN DATEN

4.1 Beschreibung des geplanten Entwässerungssystems und der wesentlichen baulichen Änderungen

Durch die geplante Erweiterung der Mineralstoffdeponie verändern sich die Einzugsgebiete für das Sickerbecken II in einem Bereich. Hier entfällt ein Einzugsgebiet (Entwässerungsfläche 2) mit einer Fläche von 0,54 ha, während ein anderes Einzugsgebiet (Entwässerungsfläche 3) mit einer Fläche von ebenfalls 0,54 ha hinzukommt. Die Gesamtfläche der an die entsprechenden Gräben und das Sickerbecken II angeschlossenen Einzugsgebiete bleibt gleich.

Die Gesamtsummen der Flächen, von welchen nach Bauabschluss die Oberflächenwasser den Sickerbecken zugeführt werden, und weitere in diesen Bereichen stattgefundenen Änderungen werden im Folgenden beschrieben und in

Tabelle 3 zusammenfassend dargestellt.

Bei der ursprünglichen Berechnung zur Auslegung des Sickerbecken II wurden noch 10,84 ha als bituminös befestigte Flächen angesetzt, die auf Los 5 geplant wurden. Diese bituminöse Befestigung wurde jedoch nicht ausgeführt. Stattdessen wurde die Fläche begrünt. Für die aktuelle Bemessung des Sickerbeckens II werden somit alle Flächen als unbefestigte Flächen angesetzt, ausgenommen die Entwässerungsflächen 5 und 9 mit einer Gesamtfläche von 1,15 ha.

4.2 Nachweis der ausreichenden Größe der bestehenden Sickerbecken I und II

4.2.1 Einzugsflächen und Regendaten der Sickerbecken im Endzustand

Für den Nachweis der Sickerbecken I und II im geplanten Endzustand der Deponie werden im Folgenden die verwendeten Grundlagendaten benannt.

Die Abbildung 3 zeigt die zukünftigen Teilflächen der Deponie nach Bauabschluss der aktuellen Planung. Die Abbildung ist auch als Plan 2309 RSAG III-01-19 in Anlage 1 angefügt.

In der folgenden Tabelle 3 sind die in Abbildung 3 gezeigten Teilflächen den jeweils zugeordneten Sickerbecken mit ihrer Größe und Art der Oberflächenbeschaffenheit aufgeführt.

Dabei ist anzumerken, dass die Entwässerungsfläche 5 mit einer Größe von 0,45 ha gesondert zu betrachten ist. Von ihrer Lage würde diese Fläche dem Einzugsbereich des Sickerbecken II zugeordnet werden. Da die Entwässerungsfläche 5 weitestgehend eine asphaltierte Sicherungsfläche beinhaltet, wird das Niederschlagswasser dieser Fläche nicht der Versickerung zugeführt. Sondern über ein Pumpwerk in den Schmutzwasserkanal ableitet.

Tabelle 3: Übersicht der den Sickerbecken zugeordneten Entwässerungsteilflächen mit deren Größe /8/

	Sickerb	ecken I	Sickerbecken II		
Art der Fläche	Flächenbe- zeichnung	Flächengröße	Flächenbe- zeichnung	Flächengröße	Gesamtflächen- größe
bituminös befestigte Fläche	EntwFl. 13	1,0 ha	EntwFl. 9	0,70 ha	0,7 ha
unbefestigte Fläche	EntwFl. 12	10,9 ha	EntwFl. 3 EntwFl. 4 EntwFl. 6 EntwFl. 7 EntwFl. 8 EntwFl. 10 EntwFl. 11	0,54 ha 3,66 ha 2,24 ha 5,36 ha 0,46 ha 7,24 ha 2,14 ha	21,64 ha
Gesamt		11,9 ha			22,34 ha

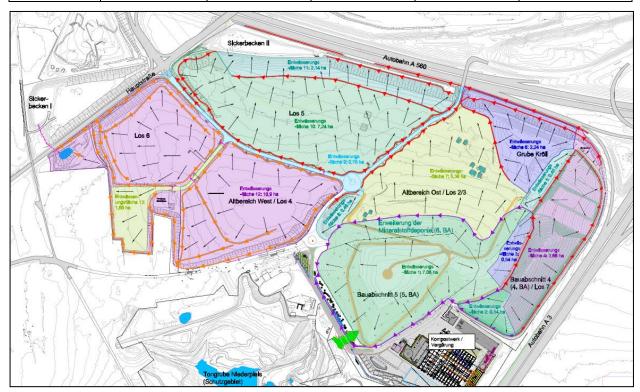


Abbildung 3: Lage der Entwässerungsflächen, Sickerbecken und Entwässerungsgräben im aktuellen Planungszustand (Quelle: ICP-Plannummer 2309 RSAG IV-01-19 - ohne Maßstab) /8/

In der bisherigen Auslegung /6/ der Sickerbecken I und II wurden als Abflussbeiwerte gemäß dem Arbeitsblatt A 118 Spitzenabflussbeiwerte von $\Psi=0.9$ für bituminös befestigte Flächen und $\Psi=0.2-0.3$ für unbefestigte Flächen in Abhängigkeit von der Geländeneigung den Berechnungen zugrunde gelegt.

Für die Berechnungen zur Prüfung der Sickerbeckenkapazität mit den aktuellen Wetterdaten und den planerischen Änderungen der Deponie St. Augustin werden Spitzenabflussbeiwerte von $\Psi = 0.9$ für bituminös befestigte Flächen und $\Psi = 0.15$ für unbefestigte Flächen verwendet. Da

die unbefestigte Fläche der Entwässerungsfläche 4 (Teilfläche des Bauabschnitts 4) ein größeres Flächengefälle ausweist als die anderen unbefestigten Flächen, wurde für diese ein Spitzenabflussbeiwert von $\Psi = 0,25$ verwendet.

Tabelle 4: Abflussbeiwerte im Vergleich

Art der Flächen	Bisherige Auslegung Erläuterungsbericht Ingenieurbüro Jürgen Kreuzer /6/	Aktuelle Berechnung Lageplan Erweiterung Mineral- stoffdeponie Übersichtsplan Ent- wässerungsflächen, Plannum- mer: 2309 RSAG III-01-19
bituminös befestigte Flächen	$\Psi = 0.9$	$\Psi = 0.9$
unbefestigte Flächen	$\Psi = 0.2 - 0.3$	Ψ = 0,15-0,25

Die Reduktion des Spitzenabflussbeiwert der unbefestigten Flächen von $\Psi=0,2-0,3$ auf $\Psi=0,15-0,25$ wird aufgrund der Tatsache festgelegt, dass die Rekultivierungsschicht der Oberflächenabdichtung von Deponien eine hohe Wasserrückhaltekapazität aufweisen muss. Dies und der zwischenzeitlich dichte Bewuchs stehen dem zeitnahen schnellen Abfließen von Oberflächenwasser entgegen. Zudem wurde berücksichtigt, dass die meisten Teilflächen der Deponie ein eher geringes Flächengefälle in Bezug auf den Oberflächenaufbau inkl. Bewuchs aufweisen.

Lediglich auf den Flächen des 4. Bauabschnittes wird aufgrund des geplanten Bauprozesses der Bewuchs der Rekultivierungsschicht erst im Laufe der Zeit ausgeprägter sein. Da diese Fläche am weitesten von den Sickerbecken entfernt liegt kann davon ausgegangen werden das die noch nicht so ausgeprägte Begrünung durch die lange Fließstrecke über die bereits gut bewachsenen Flächen ausgeglichen wird. Da in diesem Flächenabschnitt auch das Flächengefälle stärker ausgeprägt ist, als in den anderen Bereichen wurde dieses neben dem zunächst fehlenden Bewuchs in Form von einem größeren Spitzenabflussbeiwert als bei den anderen unbefestigten Flächen berücksichtigt.

Die bisherigen Berechnungen der Sickerbecken I und II wurden mit dem 20-jährigen Regenereignis durchgeführt. Hier wäre eine Reduzierung auf ein 5-jähriges Ereignis nach DWA möglich. Ein 20-jähriges Ereignis liegt dementsprechend auf der sicheren Seite und wurde beibehalten.

Die Regendaten hingegen wurden an die neuen Daten angepasst. Verwendet wurden die Niederschlagsspenden nach KOSTRA-DWD 2020 für den Ort Siegburg /5/, Details sind der Anlage 4 zu entnehmen.

Des Weiteren wurde der Durchlässigkeitsbeiwert der Sickerbecken angepasst. Die bisherige Berechnung /6/ sieht einen Durchlässigkeitsbeiwert von 1 x 10^{-3} m/s vor. Es ist davon auszugehen, dass die belebte Oberbodenzone nach der langjährigen Nutzung eher einen kf-Wert von 5 x 10^{-5} m/s aufweist. Der aktuelle Nachweis der ausreichenden Dimensionierung der Sickerbecken erfolgt daher mit einem kf-Wert von 5 x 10^{-5} m/s.

Der Vergleich der bisherigen und der in der aktuellen Dimensionierung verwendeten Durchlässigkeitsbeiwerte ist in der Tabelle 5 aufgezeigt.

Art der Flächen **Bisherige Auslegung** Aktuelle Berechnung Erläuterungsbericht Lageplan Erweiterung Mineralstoffdeponie Übersichtsplan Ent-Ingenieurbüro Jürgen Kreuzer wässerungsflächen, Plannum-/6/ mer: 2309 RSAG III-01-19 1.0×10^{-3} 5.0×10^{-5} Sickerbecken I 3,6 x 10⁻⁴ $5,0 \times 10^{-5}$ Sickerbecken II

Tabelle 5: Vergleich der Durchlässigkeitsbeiwerte kf in m/s alte und neue Berechnung

Um auf eine messtechnische Überprüfung der tatsächlichen kf-Werte zu verzichten, wurde zusätzlich iterativ der kf-Wert berechnet, für den die bestehenden Sickerbecken noch ausreichend dimensioniert sind.

4.2.2 Nachweis der ausreichenden Bemessung der Sickerbecken zum Endzustand der Deponie St. Augustin

Für die zukünftige Oberflächenentwässerung werden neben den in Kapitel 4.2.1 genannten und aktualisierten Grundlagendaten, auch die bisher bestehenden Daten der Sickerwasserbecken verwendet. Diese sind in der folgenden Tabelle 6 aufgeführt.

Tabelle 6: Grundlagendaten der Sickerwasserbecken I und II für die bisherige wie auch künftige Auslegung /6/

Parameter	Sickerbecken I	Sickerbecken II
Verfügbare Versickerungsfläche in m²	1770	3300
Maximal mögliche Einstauhöhe in m	1,24	1,42

Mit einer Fläche des Sickerbeckens I von 1.770 m² und 3.300 m² bei Sickerbecken II (siehe Tabelle 6) wurde die Auslegung der Sickerbecken für das 20-jährigen Regenereignis wie folgt berechnet. Dabei wurde als Sicherheitszuschlag der Zuschlagsfaktor 1,2 angenommen.

Zusätzlich wurde iterativ ermittelt, bis zu welchem Durchlässigkeitsbeiwert die Sickerbecken mit den aktuellen Wetter- und Flächendaten ausreichend groß dimensioniert wären. Dabei wurde die in Kapitel 3.2.2 genannte und in Tabelle 6 aufgeführten maximale Einstauhöhen der Sickerbecken als weitere Rahmenbedingung verwendet. Die Berechnungen zu beiden Sickerbecken sind in Gänze als Anlage 3 dem Antrag beigefügt.

Die Dimensionierung der Versickerungsmulden erfolgt nach Arbeitsblatt DWA-A 138.

Sickerbecken I – Dimensionierung mit einem k_f-Wert von 5,0 x 10⁻⁵:

 $V = [(A_u + A_S) * 10^{-7} * r_{D(n)} - A_S^* k_f / 2] * D * 60 * f_Z$ Eingabedaten:

Einzugsgebietsfläche	A _E	m ²	119.000
Abflussbeiwert gem. Tabelle 2 (DWA-A 138)	Ψ_{m}	-	0,21
undurchlässige Fläche	Au	m ²	25.350
Versickerungsfläche	As	m ²	1770
Durchlässigkeitsbeiwert der gesättigten Zone	K _f	m/s	5,0E-05
gewählte Regenhäufigkeit	n	1/Jahr	0,05
Zuschlagsfaktor	f _Z	-	1,20

örtliche Regendaten:				
D [min]	r _{D(n)} [l/(s*ha)]			
5	413,3			
10	290,0			
15	228,9			
20	190,0			
30	145,6			
45	110,0			
60	89,4			
90	66,9			
120	54,2			
180	40,2			
240	32,4			
360	23,9			
540	17,7			
720	14,2			
1080	10,5			
1440	8,5			
2880	5,0			
4320	3,7			

Rerechning:

Berechnung:			
V [m³]			
387,6			
534,4			
622,6			
678,3			
757,3			
823,2			
856,2			
888,9			
887,7			
839,5			
753,7			
533,1			
145,9			
0,0			
0,0			
0,0			
0,0			
0,0			

Abbildung 4: Dimensionierung des Sickerwasserbecken I für den künftigen Planungszustand Ergebnisse:

maßgebende Dauer des Bemessungsregens	D	min	90
maßgebende Regenspende	r _{D(n)}	I/(s*ha)	66,9
erforderliches Muldenspeichervolumen	V	m ³	888,9
gewähltes Muldenspeichervolumen	V _{gew}	m ³	888,9
Einstauhöhe in der Mulde	Z _M	m	0,50
Entleerungszeit der Mulde	t _E	h	5,6

Abbildung 5: Ergebnisse der Dimensionierung des Sickerwasserbecken I für den künftigen Planungszustand

Sickerbecken I – Dimensionierung mit dem minimal möglichen k_f-Wert von 4,0 x 10⁻⁶:

Eingabedaten: $V = [(A_u + A_S) * 10^{-7} * r_{D(n)} - A_S * k_f / 2] * D * 60 * f_Z$

A _E	m ²	119.000
Ψ_{m}	-	0,21
A_u	m ²	25.350
As	m^2	1770
k _f	m/s	4,0E-06
n	1/Jahr	0,05
f_Z	-	1,20
	Ψ _m A _u A _s	Ψ _m - A _u m ² A _s m ² k _f m/s n 1/Jahr

örtliche Regendaten:

D [min]	r _{D(n)} [l/(s*ha)]
5	413,3
10	290,0
15	228,9
20	190,0
30	145,6
45	110,0
60	89,4
90	66,9
120	54,2
180	40,2
240	32,4
360	23,9
540	17,7
720	14,2
1080	10,5
1440	8,5
2880	5,0
4320	3,7

Berechnung:

z o. o oag.
V [m³]
402,2
563,7
666,6
736,9
845,3
955,1
1032,1
1152,7
1239,4
1367,1
1457,2
1588,3
1728,7
1812,9
1939,0
2023,0
2077,7
2020,0

Abbildung 6: Dimensionierung des Sickerwasserbecken I für den künftigen Planungszustand – mit dem minimal möglichen k_r-Wert

Ergebnisse:

maßgebende Dauer des Bemessungsregens	D	min	2880
maßgebende Regenspende	r _{D(n)}	l/(s*ha)	5
erforderliches Muldenspeichervolumen	٧	m ³	2077,7
gewähltes Muldenspeichervolumen	V _{gew}	m ³	2077,7
Einstauhöhe in der Mulde	Z _M	m	1,17
Entleerungszeit der Mulde	t _E	h	163,0

Abbildung 7: Ergebnisse der Dimensionierung des Sickerwasserbecken I für den künftigen Planungszustand – mit dem minimal möglichen k_i-Wert

Sickerbecken II – Dimensionierung mit einem k_f-Wert von 5,0 x 10⁻⁵:

 $V = [(A_u + A_s) * 10^{-7} * r_{D(n)} - A_s * k_f / 2] * D * 60 * f_Z$ Eingabedaten:

Einzugsgebietsfläche	A _E	m^2	223.400
Abflussbeiwert gem. Tabelle 2 (DWA-A 138)	Ψ_{m}	-	0,19
undurchlässige Fläche	A_{u}	m^2	42.420
Versickerungsfläche	As	m^2	3300
Durchlässigkeitsbeiwert der gesättigten Zone	k _f	m/s	5,0E-05
gewählte Regenhäufigkeit	n	1/Jahr	0,05
Zuschlagsfaktor	f _Z	-	1,20

D [min]	r _{D(n)} [l/(s*ha)]
10	290,0
15	228,9
20	190,0
30	145,6
45	110,0
60	89,4
90	66,9
120	54,2
180	40,2
240	32,4
360	23,9
540	17,7
720	14,2
1080	10,5
1440	8,5
2880	5,0
4320	3,7
5760	3,0

Berechnung:

V [m ³]
895,2
1041,2
1132,1
1259,7
1362,2
1409,3
1447,4
1428,2
1312,8
1134,1
693,9
0,0
0,0
0,0
0,0
0,0
0,0
0,0
<u> </u>

Abbildung 8: Dimensionierung des Sickerwasserbecken II für den künftigen Planungszustand

Ergebnisse:

maßgebende Dauer des Bemessungsregens	D	min	90
maßgebende Regenspende	r _{D(n)}	l/(s*ha)	66,9
erforderliches Muldenspeichervolumen	٧	m^3	1447,4
gewähltes Muldenspeichervolumen	V _{gew}	m^3	1447,4
Einstauhöhe in der Mulde	z _M	m	0,44
Entleerungszeit der Mulde	t _E	h	4,9

Abbildung 9: Ergebnisse der Dimensionierung des Sickerwasserbecken II für den künftigen Planungszustand

Sickerbecken II – Dimensionierung mit dem minimal möglichen k_f-Wert von 3,0 x 10⁻⁶:

Eingabedaten: $V = [(A_u + A_s) * 10^{-7} * r_{D(n)} - A_s * k_f / 2] * D * 60 * f_Z$

Einzugsgebietsfläche	A _E	m ²	223.400
Abflussbeiwert gem. Tabelle 2 (DWA-A 138)	Ψ_{m}	-	0,19
undurchlässige Fläche	A_{u}	m ²	42.420
Versickerungsfläche	As	m ²	3300
Durchlässigkeitsbeiwert der gesättigten Zone	k _f	m/s	3,0E-06
gewählte Regenhäufigkeit	n	1/Jahr	0,05
Zuschlagsfaktor	f _Z	-	1,20

örtliche Regendaten:

D [min]	r _{D(n)} [l/(s*ha)]
10	290,0
15	228,9
20	190,0
30	145,6
45	110,0
60	89,4
90	66,9
120	54,2
180	40,2
240	32,4
360	23,9
540	17,7
720	14,2
1080	10,5
1440	8,5
2880	5,0
4320	3,7
5760	3,0

Berechnung:

Derceillang.
V [m³]
951,1
1124,9
1243,8
1427,2
1613,4
1744,4
1949,9
2098,2
2317,8
2474,2
2704,0
2953,9
3109,0
3348,0
3516,0
3713,8
3722,0
3635,4

Abbildung 10: Dimensionierung des Sickerwasserbecken II für den künftigen Planungszustand – mit dem minimal möglichen k_i-Wert

Ergebnisse:

maßgebende Dauer des Bemessungsregens	D	min	4320
maßgebende Regenspende	r _{D(n)}	l/(s*ha)	3,7
erforderliches Muldenspeichervolumen	V	m^3	3722,0
gewähltes Muldenspeichervolumen	V _{gew}	m^3	3722,0
Einstauhöhe in der Mulde	z _M	m	1,13
Entleerungszeit der Mulde	t _E	h	208,9

Abbildung 11: Ergebnisse der Dimensionierung des Sickerwasserbecken II für den künftigen Planungszustand – mit dem minimal möglichen k_i-Wert

4.2.3 Fazit zum Nachweis der ausreichenden Dimensionierung der bestehenden Sickerbecken

Die Ergebnisse der Überprüfung der Sickerbecken I und II im Vergleich zwischen dem bisherigen Zustand und dem künftig geplanten Endzustand der Deponie werden im Folgenden gegenübergestellt.

Tabelle 7: Zusammenfassung der Ergebnisse der bisherigen Auslegung im Vergleich zu den Ergebnissen der zukünftigen Auslegung der Sickerbecken I und II

Parameter		Sickerbecken I	Sickerbecken II
Dootond	benötigtes Speichervolumen in m³	741,60	2360,19
Bestand	Wassertiefe in m	0,42	0,67
benötigtes Speichervolumen in m³		888,9	1447,4
Planung	Wassertiefe in m	0,5	0,44
Planung	Durchlässigkeitsbeiwert der gesättigten Zone in m/s	4,0 x 10 ⁻⁶	3,0 x 10 ⁻⁶
kf-Wert minimal	benötigtes Speichervolumen in m³	2077,7	3722,0
	Wassertiefe in m	1,17	1, 13
Bestand & Planung	Maximal mögliche Einstauhöhe in m	1,24	1,42

Wie in Tabelle 7 erkenntlich, ist die Einstauhöhe der aktuellen Planung mit 0,5 m für das Sickerbecken I nur 8 cm über der bisherigen Wassertiefe im Falle eines 20-jährigen Regenereignisses.

Für das Sickerbecken II ist Wassertiefe der künftigen Planung mit 0,44 m für das Sickerbecken II wesentlich geringer als die Wassertiefe der bisherigen Auslegung.

Da die maximal mögliche Wassertiefe beider Becken mit 1,24 m und 1,42 m deutlich über den benötigten Einstauhöhen liegen, besteht hier kein Umplanungsbedarf.

Zudem ist zu berücksichtigen das der für die aktuelle Dimensionierung der Sickerbecken verwendete k_I-Wert von 5,0 x 10⁻⁵ mehr als eine Zehnerpotenz schlechter angenommen wurden als die bisherige Bemessung mit 1,0 x 10⁻³ für das Sickerbecken I und 3,6 x 10⁻⁴ für das Sickerbecken II. Es kann daher davon ausgegangen werden das die tatsächlich vorhandene Durchlässigkeit der gesättigten Zone besser ist als bei der aktuellen Dimensionierung angenommen und folglich auch die entsprechende Wassertiefe nochmals geringer ausfällt.

Als zusätzliche Absicherung wurde für beide Becken die geringste mögliche Durchlässigkeit des Bodens der Sickerbecken iterativ berechnet, bei denen das benötigte Speichervolumen und die Wassertiefe nicht die Kapazitäten der aktuell gebauten Sickerbecken übersteigt. Die k_f-Werte, welche sich hier ergeben haben, liegen mit 4,0 x 10⁻⁶ für das Sickerbecken I und 3,0 x 10⁻⁶ für das Sickerbecken II nochmals deutlich unter der für die aktuelle Dimensionierung angenommene Durchlässigkeit einer belebten Oberbodenzone.

Entsprechend sind die Sickerbecken I und II auch nach Verfüllung und Oberflächenabdichtung der erweiterten Mineralstoffdeponie ausreichend dimensioniert und müssen nicht baulich angepasst werden.

4.3 Angaben zu Planung, Errichtung und Betrieb neuer Anlagen

Es sind keine weiteren bzw. neuen Anlagen geplant.

Karlsruhe/Stuttgart, 15.05.2023

Dipl.-Ing. Gerd Burkhardt

Projektleiter

M. Umw.-Ing. Wibke Fichtel

Anlagen

Anlage 1
Lageplan – Erweiterung Mineralstoffdeponie Übersicht Entwässerungsflächen
Plannummer: 2309 RSAG IV-01-19

Anlage 2 KOSTRA-DWD 2020 für den Ort Siegburg

KOSTRA-DWD 2020

Nach den Vorgaben des Deutschen Wetterdienstes - Hydrometeorologie -

Niederschlagshöhen nach **KOSTRA-DWD 2020**

Rasterfeld : Spalte 104, Zeile 144

Ortsname : Siegburg (NW)

Bemerkung

Dauerstufe D			Nie	derschlagshöhen	hN [mm] je Wied	derkehrintervall	T [a]		
	1 a	2 a	3 a	5 a	10 a	20 a	30 a	50 a	100 a
5 min	6,1	7,4	8,2	9,3	10,8	12,4	13,5	14,8	16,8
10 min	8,5	10,4	11,5	13,0	15,2	17,4	18,9	20,8	23,6
15 min	10,0	12,2	13,6	15,4	17,9	20,6	22,3	24,5	27,8
20 min	11,2	13,6	15,1	17,1	19,9	22,8	24,8	27,3	30,9
30 min	12,8	15,6	17,3	19,6	22,8	26,2	28,4	31,3	35,4
45 min	14,5	17,6	19,6	22,2	25,8	29,7	32,1	35,4	40,1
60 min	15,8	19,2	21,3	24,1	28,1	32,2	35,0	38,5	43,6
90 min	17,6	21,5	23,8	27,0	31,5	36,1	39,1	43,1	48,8
2 h	19,1	23,2	25,8	29,1	34,0	39,0	42,3	46,6	52,7
3 h	21,2	25,8	28,7	32,4	37,8	43,4	47,0	51,8	58,6
4 h	22,8	27,8	30,9	34,9	40,7	46,7	50,6	55,7	63,1
6 h	25,3	30,8	34,2	38,7	45,1	51,7	56,1	61,8	70,0
9 h	28,0	34,1	37,9	42,8	49,9	57,3	62,1	68,4	77,4
12 h	30,1	36,6	40,7	46,0	53,6	61,5	66,7	73,5	83,2
18 h	33,3	40,5	45,0	50,9	59,3	68,1	73,8	81,3	92,0
24 h	35,7	43,5	48,3	54,6	63,7	73,1	79,2	87,3	98,8
48 h	42,4	51,6	57,3	64,8	75,6	86,7	94,0	103,5	117,2
72 h	46,8	57,0	63,3	71,6	83,5	95,8	103,8	114,4	129,5
4 d	50,3	61,2	67,9	76,8	89,6	102,8	111,4	122,7	139,0
5 d	53,1	64,6	71,8	81,1	94,6	108,6	117,7	129,7	146,8
6 d	55,5	67,6	75,0	84,9	99,0	113,6	123,1	135,6	153,5
7 d	57,7	70,2	77,9	88,1	102,8	117,9	127,8	140,8	159,4

Legende

Wiederkehrintervall, Jährlichkeit in [a]: mittlere Zeitspanne, in der ein Ereignis einen Wert einmal erreicht oder

Dauerstufe in [min, h, d]: definierte Niederschlagsdauer einschließlich Unterbrechungen D

Niederschlagshöhe in [mm] hN

KOSTRA-DWD 2020

Nach den Vorgaben des Deutschen Wetterdienstes - Hydrometeorologie -

Niederschlagsspenden nach **KOSTRA-DWD 2020**

Rasterfeld : Spalte 104, Zeile 144

Ortsname : Siegburg (NW)

Bemerkung

Dauerstufe D			Niede	rschlagspenden	rN [l/(s·ha)] je W	iederkehrinterva	IIT [a]		
	1 a	2 a	3 a	5 a	10 a	20 a	30 a	50 a	100 a
5 min	203,3	246,7	273,3	310,0	360,0	413,3	450,0	493,3	560,0
10 min	141,7	173,3	191,7	216,7	253,3	290,0	315,0	346,7	393,3
15 min	111,1	135,6	151,1	171,1	198,9	228,9	247,8	272,2	308,9
20 min	93,3	113,3	125,8	142,5	165,8	190,0	206,7	227,5	257,5
30 min	71,1	86,7	96,1	108,9	126,7	145,6	157,8	173,9	196,7
45 min	53,7	65,2	72,6	82,2	95,6	110,0	118,9	131,1	148,5
60 min	43,9	53,3	59,2	66,9	78,1	89,4	97,2	106,9	121,1
90 min	32,6	39,8	44,1	50,0	58,3	66,9	72,4	79,8	90,4
2 h	26,5	32,2	35,8	40,4	47,2	54,2	58,8	64,7	73,2
3 h	19,6	23,9	26,6	30,0	35,0	40,2	43,5	48,0	54,3
4 h	15,8	19,3	21,5	24,2	28,3	32,4	35,1	38,7	43,8
6 h	11,7	14,3	15,8	17,9	20,9	23,9	26,0	28,6	32,4
9 h	8,6	10,5	11,7	13,2	15,4	17,7	19,2	21,1	23,9
12 h	7,0	8,5	9,4	10,6	12,4	14,2	15,4	17,0	19,3
18 h	5,1	6,3	6,9	7,9	9,2	10,5	11,4	12,5	14,2
24 h	4,1	5,0	5,6	6,3	7,4	8,5	9,2	10,1	11,4
48 h	2,5	3,0	3,3	3,8	4,4	5,0	5,4	6,0	6,8
72 h	1,8	2,2	2,4	2,8	3,2	3,7	4,0	4,4	5,0
4 d	1,5	1,8	2,0	2,2	2,6	3,0	3,2	3,6	4,0
5 d	1,2	1,5	1,7	1,9	2,2	2,5	2,7	3,0	3,4
6 d	1,1	1,3	1,4	1,6	1,9	2,2	2,4	2,6	3,0
7 d	1,0	1,2	1,3	1,5	1,7	1,9	2,1	2,3	2,6

Legende

Wiederkehrintervall, Jährlichkeit in [a]: mittlere Zeitspanne, in der ein Ereignis einen Wert einmal erreicht oder

Dauerstufe in [min, h, d]: definierte Niederschlagsdauer einschließlich Unterbrechungen D

Niederschlagsspende in [l/(s·ha)]

KOSTRA-DWD 2020

Nach den Vorgaben des Deutschen Wetterdienstes - Hydrometeorologie -

Toleranzwerte der Niederschlagshöhen und -spenden nach KOSTRA-DWD 2020

: Spalte 104, Zeile 144 Rasterfeld

: Siegburg (NW) Ortsname

Bemerkung

Dauerstufe D			To	oleranzwerte UC	je Wiederkehrin	tervall T [a] in [±9	%]		
	1 a	2 a	3 a	5 a	10 a	20 a	30 a	50 a	100 a
5 min	11	11	11	11	12	12	12	12	13
10 min	11	12	13	14	14	15	16	16	17
15 min	13	14	15	16	17	18	18	18	19
20 min	14	16	16	17	18	19	19	20	20
30 min	15	17	18	19	20	21	21	21	22
45 min	16	18	19	19	21	21	22	22	23
60 min	16	18	19	20	21	21	22	22	23
90 min	16	17	18	19	20	21	22	22	23
2 h	15	17	18	19	20	21	21	22	22
3 h	14	16	17	18	19	20	20	21	21
4 h	14	15	16	17	18	19	20	20	21
6 h	13	15	15	16	17	18	19	19	20
9 h	12	14	14	15	16	17	18	18	19
12 h	12	13	14	15	16	16	17	17	18
18 h	11	12	13	14	15	16	16	16	17
24 h	11	12	13	13	14	15	15	16	16
48 h	11	12	12	13	13	14	14	15	15
72 h	12	12	12	13	13	14	14	14	15
4 d	12	12	13	13	13	14	14	14	15
5 d	13	13	13	13	13	14	14	14	15
6 d	14	13	13	13	14	14	14	14	15
7 d	14	14	14	14	14	14	14	14	15

Legende

Wiederkehrintervall, Jährlichkeit in [a]: mittlere Zeitspanne, in der ein Ereignis einen Wert einmal erreicht oder

Dauerstufe in [min, h, d]: definierte Niederschlagsdauer einschließlich Unterbrechungen

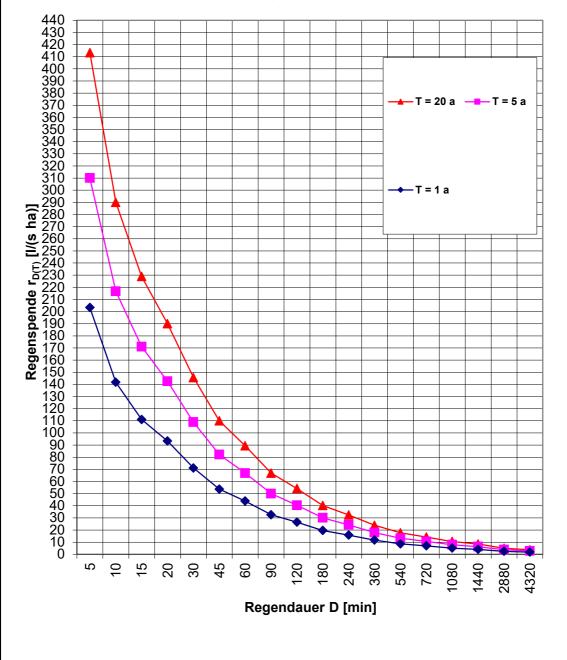
UC Toleranzwert der Niederschlagshöhe und -spende in [±%]

Anlage 3 Dimensionierung der Versickerungsmulden I und II nach Arbeitsblatt DWA-A 138

Örtliche Regendaten zur Bemessung nach Arbeitsblatt DWA-A 138

Datenherkunft / Niederschlagsstation	Siegburg (NW)
Spalten-Nr. KOSTRA-DWD	104
Zeilen-Nr. KOSTRA-DWD	144
KOSTRA-Datenbasis	KOSTRA-DWD
KOSTRA-Zeitspanne	2020

Regendauer D	Regenspende r _{D(T)} [l/(s ha)] für Wiederkehrzeiten						
in [min]	T in [a]						
[min]	1	5	20				
5	203,3	310,0	413,3				
10	141,7	216,7	290,0				
15	111,1	171,1	228,9				
20	93,3	142,5	190,0				
30	71,1	108,9	145,6				
45	53,7	82,2	110,0				
60	43,9	66,9	89,4				
90	32,6	50,0	66,9				
120	26,5	40,4	54,2				
180	19,6	30,0	40,2				
240	15,8	24,2	32,4				
360	11,7	17,9	23,9				
540	8,6	13,2	17,7				
720	7,0	10,6	14,2				
1080	5,1	7,9	10,5				
1440	4,1	6,3	8,5				
2880	2,5	3,8	5,0				
4320	1,8	2,8	3,7				


Sickerbecken I

Bemessungsprogramm ATV-A138.XLS Version 7.4.1 © 2018 - Institut für technisch-wissenschaftliche Hydrologie GmbH Engelbosteler Damm 22, 30167 Hannover, Tel.: 0511-97193-0, Fax: 0511-97193-77, www.itwh.de

Örtliche Regendaten zur Bemessung nach Arbeitsblatt DWA-A 138

Datenherkunft / Niederschlagsstation	Siegburg (NW)
Spalten-Nr. KOSTRA-DWD	104
Zeilen-Nr. KOSTRA-DWD	144
KOSTRA-Datenbasis	KOSTRA-DWD
KOSTRA-Zeitspanne	2020

Regenspendenlinien

Bemessungsprogramm ATV-A138.XLS Version 7.4.1 © 2018 - Institut für technisch-wissenschaftliche Hydrologie GmbH Engelbosteler Damm 22, 30167 Hannover, Tel.: 0511-97193-0, Fax: 0511-97193-77, www.itwh.de

Ermittlung der abflusswirksamen Flächen A_u nach Arbeitsblatt DWA-A 138

Flächentyp	Art der Befestigung mit empfohlenen mittleren Abflussbeiwerten Ψ_{m}	Teilfläche A _{E,i} [m ²]	Ψ _{m,i} gewählt	Teilfläche A _{u,i} [m ²]
Sobrägdoch	Metall, Glas, Schiefer, Faserzement: 0,9 - 1,0			
Schrägdach	Ziegel, Dachpappe: 0,8 - 1,0			
Flachdach	Metall, Glas, Faserzement: 0,9 - 1,0			
(Neigung bis 3°	Dachpappe: 0,9			
oder ca. 5%)	Kies: 0,7			
Gründach (Neigung bis 15°	humusiert <10 cm Aufbau: 0,5			
oder ca. 25%)	humusiert >10 cm Aufbau: 0,3			
	Asphalt, fugenloser Beton: 0,9	10.000	0,90	9.000
	Pflaster mit dichten Fugen: 0,75			
	fester Kiesbelag: 0,6			
Straßen, Wege und Plätze (flach)	Pflaster mit offenen Fugen: 0,5			
()	lockerer Kiesbelag, Schotterrasen: 0,3			
	Verbundsteine mit Fugen, Sickersteine: 0,25			
	Rasengittersteine: 0,15			
Böschungen,	toniger Boden: 0,5			
Bankette und	lehmiger Sandboden: 0,4			
Gräben	Kies- und Sandboden: 0,3			
Gärten, Wiesen	flaches Gelände: 0,0 - 0,1			
und Kulturland	steiles Gelände: 0,1 - 0,3	109.000	0,15	16.350

Gesamtfläche Einzugsgebiet A _E [m²	119.000
Summe undurchlässige Fläche A _u [m ²	25.350
resultierender mittlerer Abflussbeiwert Ψ_m [-	0,21

Bemerkungen:

Sickerbecken I

Bemessungsprogramm ATV-A138.XLS Version 7.4.1 © 2018 - Institut für technisch-wissenschaftliche Hydrologie GmbH Engelbosteler Damm 22, 30167 Hannover, Tel.: 0511-97193-0, Fax: 0511-97193-77, www.itwh.de

Auftraggeber:

Rhein-Sieg-Abfallwirtschaftsgesellschaft AöR

Muldenversickerung:

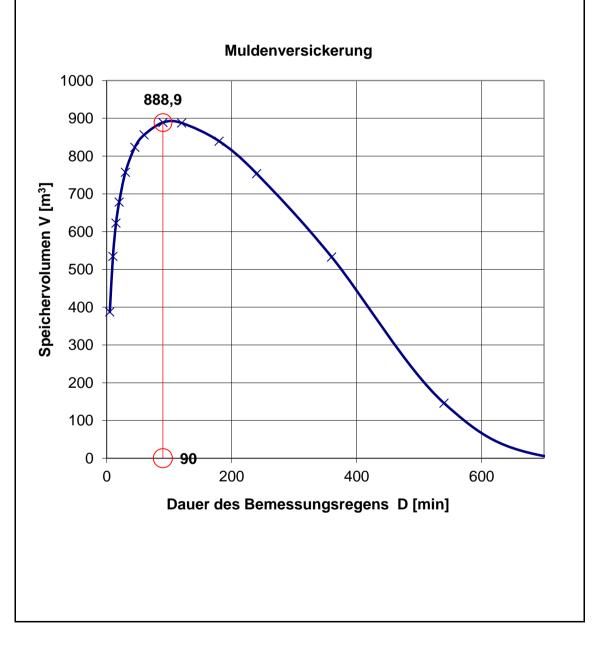
Sickerbecken I - kf = 5.0 x E-5

Eingabedaten: $V = [(A_u + A_S) * 10^{-7} * r_{D(n)} - A_S * k_f / 2] * D * 60 * f_Z$

Einzugsgebietsfläche	A _E	m ²	119.000
Abflussbeiwert gem. Tabelle 2 (DWA-A 138)	Ψ_{m}	-	0,21
undurchlässige Fläche	A_{u}	m^2	25.350
Versickerungsfläche	A_s	m ²	1770
Durchlässigkeitsbeiwert der gesättigten Zone	k _f	m/s	5,0E-05
gewählte Regenhäufigkeit	n	1/Jahr	0,05
Zuschlagsfaktor	f_Z	-	1,20

örtliche Regendaten:

D [min]	r _{D(n)} [l/(s*ha)]
5	413,3
10	290,0
15	228,9
20	190,0
30	145,6
45	110,0
60	89,4
90	66,9
120	54,2
180	40,2
240	32,4
360	23,9
540	17,7
720	14,2
1080	10,5
1440	8,5
2880	5,0
4320	3,7


Berechnung:

V [m ³]
387,6
534,4
622,6
678,3
757,3
823,2
856,2
888,9
887,7
839,5
753,7
533,1
145,9
0,0
0,0
0,0
0,0
0,0

Bemessungsprogramm ATV-A138.XLS Version 7.4.1 © 2018 - Institut für technisch-wissenschaftliche Hydrologie GmbH Engelbosteler Damm 22, 30167 Hannover, Tel.: 0511-97193-0, Fax: 0511-97193-77, www.itwh.de Lizenznummer: ATV-1490-1062

Ergebnisse:

maßgebende Dauer des Bemessungsregens	D	min	90
maßgebende Regenspende	r _{D(n)}	l/(s*ha)	66,9
erforderliches Muldenspeichervolumen	V	m ³	888,9
gewähltes Muldenspeichervolumen	V_{gew}	m ³	888,9
Einstauhöhe in der Mulde	z_{M}	m	0,50
Entleerungszeit der Mulde	t _E	h	5,6

Bemessungsprogramm ATV-A138.XLS Version 7.4.1 © 2018 - Institut für technisch-wissenschaftliche Hydrologie GmbH Engelbosteler Damm 22, 30167 Hannover, Tel.: 0511-97193-0, Fax: 0511-97193-77, www.itwh.de Lizenznummer: ATV-1490-1062

Auftraggeber:

Rhein-Sieg-Abfallwirtschaftsgesellschaft AöR

Muldenversickerung:

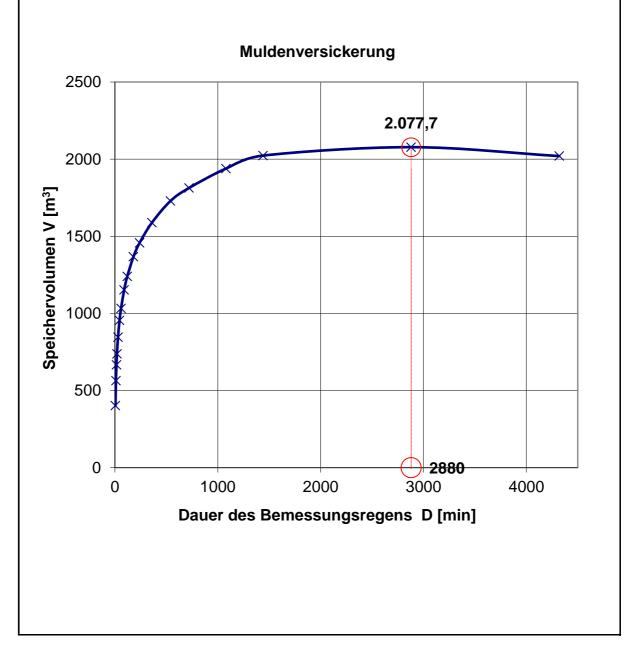
Sickerbecken I - $kf = 4.0 \times E-6$

Eingabedaten: $V = [(A_u + A_S) * 10^{-7} * r_{D(n)} - A_S * k_f / 2] * D * 60 * f_Z$

Einzugsgebietsfläche	A _E	m ²	119.000
Abflussbeiwert gem. Tabelle 2 (DWA-A 138)	Ψ_{m}	-	0,21
undurchlässige Fläche	A_{u}	m^2	25.350
Versickerungsfläche	A_s	m^2	1770
Durchlässigkeitsbeiwert der gesättigten Zone	k_f	m/s	4,0E-06
gewählte Regenhäufigkeit	n	1/Jahr	0,05
Zuschlagsfaktor	f_Z	-	1,20

örtliche Regendaten:

D [min] r _{D(n)} [l/(s*ha			
5	413,3		
10	290,0		
15	228,9		
20	190,0		
30	145,6		
45	110,0		
60	89,4		
90	66,9		
120	54,2		
180	40,2		
240	32,4		
360	23,9		
540	17,7		
720	14,2		
1080	10,5		
1440	8,5		
2880	5,0		
4320	3,7		


Berechnung:

V [m³]
402,2
563,7
666,6
736,9
845,3
955,1
1032,1
1152,7
1239,4
1367,1
1457,2
1588,3
1728,7
1812,9
1939,0
2023,0
2077,7
2020,0

Bemessungsprogramm ATV-A138.XLS Version 7.4.1 © 2018 - Institut für technisch-wissenschaftliche Hydrologie GmbH Engelbosteler Damm 22, 30167 Hannover, Tel.: 0511-97193-0, Fax: 0511-97193-77, www.itwh.de Lizenznummer: ATV-1490-1062

Ergebnisse:

maßgebende Dauer des Bemessungsregens	D	min	2880
maßgebende Regenspende	$r_{D(n)}$	l/(s*ha)	5
erforderliches Muldenspeichervolumen	V	m ³	2077,7
gewähltes Muldenspeichervolumen	V_{gew}	m ³	2077,7
Einstauhöhe in der Mulde	z _M	m	1,17
Entleerungszeit der Mulde	t _E	h	163,0

Bemessungsprogramm ATV-A138.XLS Version 7.4.1 © 2018 - Institut für technisch-wissenschaftliche Hydrologie GmbH Engelbosteler Damm 22, 30167 Hannover, Tel.: 0511-97193-0, Fax: 0511-97193-77, www.itwh.de Lizenznummer: ATV-1490-1062

Örtliche Regendaten zur Bemessung nach Arbeitsblatt DWA-A 138

Datenherkunft / Niederschlagsstation	Siegburg (NW)
Spalten-Nr. KOSTRA-DWD	104
Zeilen-Nr. KOSTRA-DWD	144
KOSTRA-Datenbasis	KOSTRA-DWD
KOSTRA-Zeitspanne	2020

Regendauer D	Regenspende r _{D(T)} [I/(s ha)] für Wiederkehrzeiten			
in [min]	T in [a]			
[min]	1	1 5		
10	141,7	216,7	290,0	
15	111,1	171,1	228,9	
20	93,3	142,5	190,0	
30	71,1	108,9	145,6	
45	53,7	82,2	110,0	
60	43,9	66,9	89,4	
90	32,6	50,0	66,9	
120	26,5	40,4	54,2	
180	19,6	30,0	40,2	
240	15,8	24,2	32,4	
360	11,7	17,9	23,9	
540	8,6	13,2	17,7	
720	7,0	10,6	14,2	
1080	5,1	7,9	10,5	
1440	4,1	6,3	8,5	
2880	2,5	3,8	5,0	
4320	1,8	2,8	3,7	
5760	1,5	2,2	3,0	

Bemerkungen:


Sickerbecken II

Bemessungsprogramm ATV-A138.XLS Version 7.4.1 © 2018 - Institut für technisch-wissenschaftliche Hydrologie GmbH Engelbosteler Damm 22, 30167 Hannover, Tel.: 0511-97193-0, Fax: 0511-97193-77, www.itwh.de

Örtliche Regendaten zur Bemessung nach Arbeitsblatt DWA-A 138

Datenherkunft / Niederschlagsstation	Siegburg (NW)
Spalten-Nr. KOSTRA-DWD	104
Zeilen-Nr. KOSTRA-DWD	144
KOSTRA-Datenbasis	KOSTRA-DWD
KOSTRA-Zeitspanne	2020

Regenspendenlinien

Bemessungsprogramm ATV-A138.XLS Version 7.4.1 © 2018 - Institut für technisch-wissenschaftliche Hydrologie GmbH Engelbosteler Damm 22, 30167 Hannover, Tel.: 0511-97193-0, Fax: 0511-97193-77, www.itwh.de

Ermittlung der abflusswirksamen Flächen A_u nach Arbeitsblatt DWA-A 138

Flächentyp	Art der Befestigung mit empfohlenen mittleren Abflussbeiwerten Ψ_{m}	Teilfläche A _{E,i} [m²]	Ψ _{m,i} gewählt	Teilfläche A _{u,i} [m²]
Cohrändoob	Metall, Glas, Schiefer, Faserzement: 0,9 - 1,0			
Schrägdach	Ziegel, Dachpappe: 0,8 - 1,0			
Flachdach	Metall, Glas, Faserzement: 0,9 - 1,0			
(Neigung bis 3°	Dachpappe: 0,9			
oder ca. 5%)	Kies: 0,7			
Gründach	humusiert <10 cm Aufbau: 0,5			
(Neigung bis 15° oder ca. 25%)	humusiert >10 cm Aufbau: 0,3			
,	Asphalt, fugenloser Beton: 0,9	7.000	0,90	6.300
	Pflaster mit dichten Fugen: 0,75			
Straßen, Wege und Plätze (flach)	fester Kiesbelag: 0,6			
	Pflaster mit offenen Fugen: 0,5			
	lockerer Kiesbelag, Schotterrasen: 0,3			
	Verbundsteine mit Fugen, Sickersteine: 0,25			
	Rasengittersteine: 0,15			
Böschungen,	toniger Boden: 0,5			
Bankette und	lehmiger Sandboden: 0,4			
Gräben	Kies- und Sandboden: 0,3			
Gärten, Wiesen	flaches Gelände: 0,0 - 0,1	179.800	0,15	26.970
und Kulturland	steiles Gelände: 0,1 - 0,3	36.600	0,25	9.150

Gesamtfläche Einzugsgebiet A _E [m²]	223.400
Summe undurchlässige Fläche A _u [m²]	42.420
resultierender mittlerer Abflussbeiwert Ψ_m [-]	0,19

Bemerkungen:

Sickerbecken II

Bemessungsprogramm ATV-A138.XLS Version 7.4.1 © 2018 - Institut für technisch-wissenschaftliche Hydrologie GmbH Engelbosteler Damm 22, 30167 Hannover, Tel.: 0511-97193-0, Fax: 0511-97193-77, www.itwh.de Lizenznummer: ATV-1490-1062

Auftraggeber:

Rhein-Sieg-Abfallwirtschaftsgesellschaft AöR

Muldenversickerung:

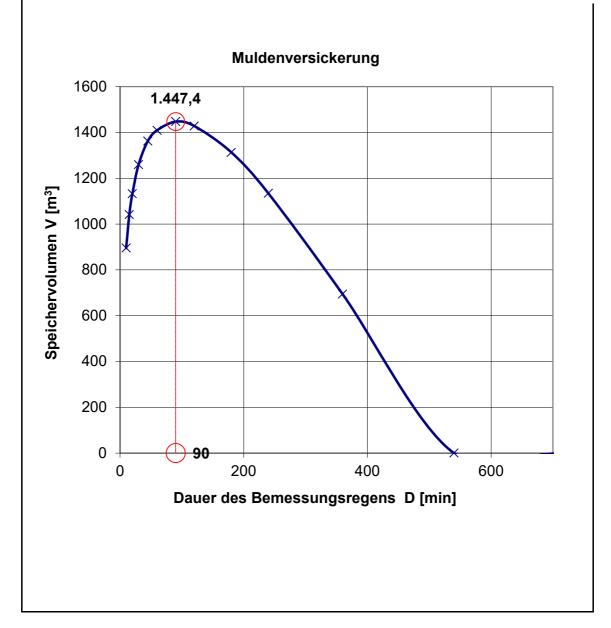
Sickerbecken II - kf = 5,0 x E-5

Eingabedaten: $V = [(A_u + A_S) * 10^{-7} * r_{D(n)} - A_S * k_f / 2] * D * 60 * f_Z$

Einzugsgebietsfläche	A _E	m ²	223.400
Abflussbeiwert gem. Tabelle 2 (DWA-A 138)	Ψ_{m}	-	0,19
undurchlässige Fläche	A_{u}	m ²	42.420
Versickerungsfläche	A_s	m ²	3300
Durchlässigkeitsbeiwert der gesättigten Zone	k_f	m/s	5,0E-05
gewählte Regenhäufigkeit	n	1/Jahr	0,05
Zuschlagsfaktor	f_Z	-	1,20

örtliche Regendaten:

D [min]	r _{D(n)} [l/(s*ha)]		
10	290,0		
15	228,9		
20	190,0		
30	145,6		
45	110,0		
60	89,4		
90	66,9		
120	54,2		
180	40,2		
240	32,4		
360	23,9		
540	17,7		
720	14,2		
1080	10,5		
1440	8,5		
2880	5,0		
4320	3,7		
5760	3,0		


Berechnung:

V [m³]	
895,2	
1041,2	
1132,1	
1259,7	
1362,2	
1409,3	
1447,4	
1428,2	
1312,8	
1134,1	
693,9	
0,0	
0,0	
0,0	
0,0	
0,0	
0,0	
0,0	

Bemessungsprogramm ATV-A138.XLS Version 7.4.1 © 2018 - Institut für technisch-wissenschaftliche Hydrologie GmbH Engelbosteler Damm 22, 30167 Hannover, Tel.: 0511-97193-0, Fax: 0511-97193-77, www.itwh.de Lizenznummer: ATV-1490-1062

Ergebnisse:

maßgebende Dauer des Bemessungsregens	D	min	90
maßgebende Regenspende	$r_{D(n)}$	l/(s*ha)	66,9
erforderliches Muldenspeichervolumen	٧	m ³	1447,4
gewähltes Muldenspeichervolumen	V _{gew}	m ³	1447,4
Einstauhöhe in der Mulde	z_{M}	m	0,44
Entleerungszeit der Mulde	t _E	h	4,9

Bemessungsprogramm ATV-A138.XLS Version 7.4.1 © 2018 - Institut für technisch-wissenschaftliche Hydrologie GmbH Engelbosteler Damm 22, 30167 Hannover, Tel.: 0511-97193-0, Fax: 0511-97193-77, www.itwh.de Lizenznummer: ATV-1490-1062

Auftraggeber:

Rhein-Sieg-Abfallwirtschaftsgesellschaft AöR

Muldenversickerung:

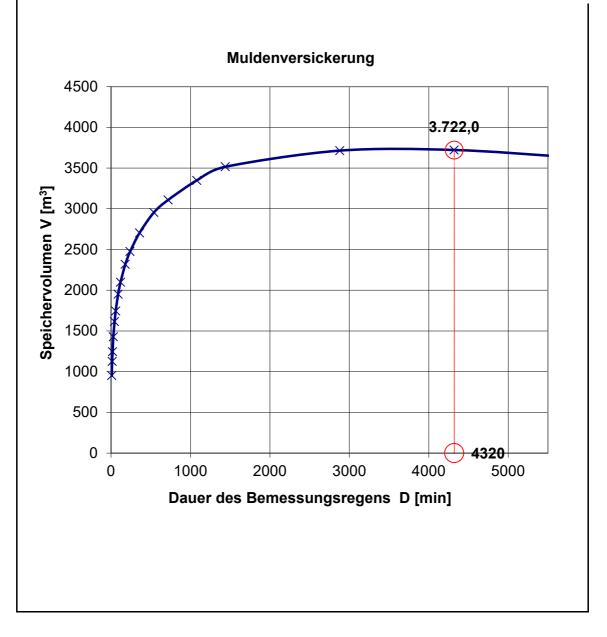
Sickerbecken II - kf = 3,0 x E-6

Eingabedaten: $V = [(A_u + A_S) * 10^{-7} * r_{D(n)} - A_S * k_f / 2] * D * 60 * f_Z$

Einzugsgebietsfläche	A_{E}	m^2	223.400
Abflussbeiwert gem. Tabelle 2 (DWA-A 138)	Ψ_{m}	-	0,19
undurchlässige Fläche	A_{u}	m^2	42.420
Versickerungsfläche	A_s	m^2	3300
Durchlässigkeitsbeiwert der gesättigten Zone	k _f	m/s	3,0E-06
gewählte Regenhäufigkeit	n	1/Jahr	0,05
Zuschlagsfaktor	f_Z	-	1,20

örtliche Regendaten:

D [min]	r _{D(n)} [l/(s*ha)]		
10	290,0		
15	228,9		
20	190,0		
30	145,6		
45	110,0		
60	89,4		
90	66,9		
120	54,2		
180	40,2		
240	32,4		
360	23,9		
540	17,7		
720	14,2		
1080	10,5		
1440	8,5		
2880	5,0		
4320	3,7		
5760	3,0		


Berechnung:

V [m³]	
951,1	
1124,9	
1243,8	
1427,2	
1613,4	
1744,4	
1949,9	
2098,2	
2317,8	
2474,2	
2704,0	
2953,9	
3109,0	
3348,0	
3516,0	
3713,8	
3722,0	
3635,4	

Bemessungsprogramm ATV-A138.XLS Version 7.4.1 © 2018 - Institut für technisch-wissenschaftliche Hydrologie GmbH Engelbosteler Damm 22, 30167 Hannover, Tel.: 0511-97193-0, Fax: 0511-97193-77, www.itwh.de Lizenznummer: ATV-1490-1062

Ergebnisse:

maßgebende Dauer des Bemessungsregens	D	min	4320
maßgebende Regenspende	$r_{D(n)}$	l/(s*ha)	3,7
erforderliches Muldenspeichervolumen	٧	m ³	3722,0
gewähltes Muldenspeichervolumen	V_{gew}	m ³	3722,0
Einstauhöhe in der Mulde	z_{M}	m	1,13
Entleerungszeit der Mulde	t _E	h	208,9

Bemessungsprogramm ATV-A138.XLS Version 7.4.1 © 2018 - Institut für technisch-wissenschaftliche Hydrologie GmbH Engelbosteler Damm 22, 30167 Hannover, Tel.: 0511-97193-0, Fax: 0511-97193-77, www.itwh.de Lizenznummer: ATV-1490-1062