

Gutachten zu Risiken durch Eiswurf und Eisfall am Standort Stemwede Tiefenriede

Referenz-Nummer:

F2E-2020-TGG-052, Rev. 0 - ungekürzte Fassung

Auftraggeber:

enercity Erneuerbare Projekte GmbH & Co.KG Nessestraße 24, 26789 Leer

Die Ausarbeitung des Gutachtens erfolgte durch:

Fluid & Energy Engineering GmbH & Co. KG Borsteler Chaussee 178, 22453 Hamburg, www.f2e.de

Verfasser:

Dipl.-Ing. Kai Deponte Sachverständiger,

Hamburg, 12.06.2020

Geprüft:

Dr.-Ing. Thomas Hahm, Sachverständiger,

Hamburg, 12.06.2020

Für weitere Auskünfte:

Tel.: 040 53303680-0 Fax: 040 53303680-79

Kai Deponte: deponte@f2e.de oder Dr. Thomas Hahm: hahm@f2e.de

Urheber- und Nutzungsrecht:

Urheber des Gutachtens ist die Fluid & Energy Engineering GmbH & Co. KG. Der Auftraggeber erwirbt ein einfaches Nutzungsrecht entsprechend dem Gesetz über Urheberrecht und verwandte Schutzrechte (UrhG). Das Nutzungsrecht kann nur mit Zustimmung des Urhebers übertragen werden. Veröffentlichung und Bereitstellung zum uneingeschränkten Download in elektronischen Medien sind verboten. Eine Einsichtnahme der gekürzten Fassung des Gutachtens gemäß UVPG §23 (2) über die zentralen Internetportale von Bund und Ländern gemäß UVPG §20 Absatz (1) wird gestattet.

Referenz-Nr.: F2E-2020-TGG-052, Revision 0 - ungekürzte Fassung

Inhaltsverzeichnis

1	Aufgabenstellung	3
2	Grundlagen	3
	2.1 Vereisung	3
	2.2 Regelungen in den Normen	4
	2.3 Grenzwerte und Risikobewertung	6
	2.3.1 Grenzwerte individuelles Risiko	
	2.3.2 Grenzwerte kollektives Risiko	8
	2.3.3 Risikobewertung	9
	2.3.4 Risikomindernde Maßnahmen	
	2.3.5 Addition von Risiken	
	2.1 Berechnung der Flugbahnen von Eisstücken	15
	2.2 Vereisungshäufigkeiten	15
3	Eingangsdaten	.18
	3.1 Windparkkonfiguration und Schutzobjekte	18
	3.2 Winddaten am Standort	.22
	3.3 Aufenthaltshäufigkeiten	.22
	3.4 Eiserkennung	.23
	3.4.1 Eiserkennungssystem	23
	3.4.2 Zustand nach Abschaltung	23
	3.4.3 Risikoreduzierende Maßnahmen	
4	Durchgeführte Untersuchungen	23
	4.1 Standortbesichtigung	23
	4.2 Vereisungshäufigkeit am Standort	
	4.3 Anzahl sich lösender Eisstücke	24
	4.4 Ermittlung der Gefährdungsbereiche	24
	4.5 Eiswurf	.26
	4.6 Eisfall	.26
5	Weitere Maßnahmen	28
	5.1 Eisfall	28
6	Zusammenfassung	29
	6.1 Gefährdungsbereiche	29
	6.2 Eiswurf	
	6.3 Eisfall	
7	Formelzeichen und Abkürzungen	
	Literaturangaben	
	nhang A: Detaillierte Berechnungsergebnisse Eisfall	
_	A.1 Berechnung der Auftreffhäufigkeiten	
	A.2 Schadenshäufigkeiten	
		1

1 Aufgabenstellung

Die Fluid & Energy Engineering GmbH & Co. KG ist beauftragt worden, die vorliegende Windparkkonfiguration hinsichtlich einer Gefährdung durch Eiswurf und Eisfall ausgehend von sich in Betrieb befindlichen bzw. stillstehenden (trudelnden) Windenergieanlagen (WEA) zu betrachten und zu bewerten.

2 Grundlagen

2.1 Vereisung

Abhängig von den Vereisungsbedingungen kann es auf dem Rotorblatt einer WEA zu starken Vereisungen kommen, in deren Folge eine Gefahr durch sich lösende bis zu mehreren Kilogramm schwere Eisstücke besteht.

Während des Betriebes der WEA erfahren diese Eisstücke einen deutlichen Anfangsimpuls durch das schnell rotierende Blatt. In diesem Fall wird daher von Eiswurf gesprochen. Während des Stillstandes der WEA trudelt diese mit deutlich niedrigeren Drehzahlen. In diesem Fall wird daher von Eisfall gesprochen. In beiden Fällen (Eiswurf und Eisfall) wirken auf die abgelösten Eisstücke durch den Wind weitere Kräfte. Bei Sturm und auch entlang eines abfallenden Geländes können so nennenswerte Flugweiten erreicht werden.

Vereisung tritt ein, wenn entweder unterkühlte Wassertropfen auf das Rotorblatt aufschlagen oder die Oberflächentemperatur des Rotorblattes unterhalb des Reifpunktes liegt und Wasserdampf auf der Oberfläche in Form von Reif resublimiert.

Im Temperaturbereich von ca. 0° bis -10°C bildet sich aus den Wassertropfen beim Auftreffen auf das Rotorblatt Eis. Bis etwa -4°C kommt es dabei aufgrund der verzögerten Eisbildung zu großflächiger Klareisbildung. Bei niedrigeren Temperaturen dominiert hingegen die Raueisbildung, mit geringer Haftoberfläche und einem milchigeren und rauerem Erscheinungsbild.

Unterhalb von -10°C können sich größere Ablagerungen von Raureif an den Profilkanten bilden. Der sich bei noch kälteren Temperaturen bildende Reif bildet typischerweise keine größeren Ablagerungen und spielt hinsichtlich einer Gefährdung durch Eisfall oder Eiswurf keine Rolle.

Grundsätzlich sollten bei der Gefährdung durch Eisfall bzw. Eiswurf daher zwischen großflächigen Eisplatten, die sich über einen großen Bereich der Profiltiefe ausbilden können, und schlankeren Eisstücken, die von der Profilkante abbrechen, unterschieden werden. Hinweise zu Form und Masse von Eisstücken finden sich z.B. in / 2/.

Aufgrund der extrem hohen Variabilität der Vereisungstage von Jahr zu Jahr werden langjährige Messungen benötigt, die möglichst auf einen klimatologischen Zeitraum, also 30 Jahre, zu beziehen sind /1/. Derart langjährige Messungen oder Beobachtungen liegen in Deutschland z.B. in Bodennähe für die Klimastationen des Deutschen Wetterdienstes DWD vor. Messungen in Bodennähe unterliegen jedoch starken mikroskaligen Einflüssen, so dass sie bezüglich einer Vereisung schon wenige hundert Meter entfernt nicht mehr aussagekräftig sein können, wenn sich dort z.B. aufgrund einer lokalen Senke kalte Luft sammelt. Diese mikroskaligen Effekte, die auf Nabenhöhe der Windenergieanlagen typischerweise keine Rolle mehr spielen, zu identifizieren und entsprechend zu korrigieren ist so gut wie nicht möglich. Hinzu kommt, dass die Daten der Klimastationen oft über mehr als 10km und auf andere Höhen über Meeresniveau übertragen werden müssen, so dass die Unsicherheiten in der Vorhersage der Vereisungstage nach dieser Methode insgesamt sehr groß sind.

Eine weitere mögliche Quelle stellen großflächige Vereisungskarten dar, wie sie z.B. in /2/ und /3/ dargestellt sind. Diese Karten liefern jedoch nur Hinweise und Tendenzen. In /3/ wird darauf hingewiesen, dass im Gegensatz zu den in den großflächigen Karten dargestellten Werten, die tatsächlichen Werte schon auf kurzen Distanzen stark schwanken können und die lokale Geländetopografie berücksichtigt werden sollte. Die daraus entstehenden Unterschiede in der Einschätzung der Vereisungstage können extrem groß sein, so dass diese Karten selbst zur Plausibilisierung lokaler Vereisungsdaten nur sehr bedingt geeignet sind.

Für Deutschland liegt mittlerweile eine hochaufgelöste Vereisungskarte des DWD vor, die die lokale Topografie berücksichtigt /11/. Sie stellt vor dem Hintergrund der dargestellten Zusammenhänge die zurzeit beste Datengrundlage zur Ermittlung der Vereisungstage für Standorte in Deutschland dar.

2.2 Regelungen in den Normen

In /2/ findet sich für Regionen mit einer hohen Vereisungshäufigkeit die Empfehlung, einen Mindestabstand von 1,5 · (Nabenhöhe + Rotordurchmesser) zu gefährdeten Bereichen einzuhalten oder die Windenergieanlage bei Vereisungsbedingungen abzuschalten.

Der vorgeschlagene Mindestabstand von 1,5 · (Nabenhöhe + Rotordurchmesser) fand in Deutschland Eingang in die Muster-Liste der technischen Baubestimmungen bzw. die Muster-Verwaltungsvorschrift Technischen Baubestimmungen /4/. Dort heißt es in der Anlage zur Richtlinie für Windenergieanlagen:

"Abstände zu Verkehrswegen und Gebäuden sind unbeschadet der Anforderungen aus anderen Rechtsbereichen wegen der Gefahr des Eisabwurfs einzuhalten, soweit

eine Gefährdung der öffentlichen Sicherheit nicht auszuschließen ist. Abstände größer als 1,5 x (Rotordurchmesser plus Nabenhöhe) gelten im Allgemeinen in nicht besonders eisgefährdeten Regionen als ausreichend. In anderen Fällen ist die Stellungnahme eines Sachverständigen erforderlich."

Soweit dieser Mindestabstand nicht eingehalten wird bzw. der Standort der Windenregieanlage in einer besonders eisgefährdeten Region liegt und der Mindestabstand daher keine Anwendung finden kann, ist also das Risiko durch Eiswurf standortspezifisch zu bewerten.

Weiterhin wird in /4/ ausgeführt, dass die gutachterliche Stellungnahme eines Sachverständigen zur Funktionssicherheit von Einrichtungen vorzulegen ist, durch die der Betrieb der Windenergieanlage bei Eisansatz sicher ausgeschlossen werden kann oder durch die ein Eisansatz verhindert werden kann. Dies hat immer dann zu erfolgen, wenn erforderliche Abstände wegen der Gefahr des Eisabwurfes nicht eingehalten werden.

Die gutachterliche Stellungnahme zur Funktionssicherheit von Einrichtungen zur Eiserkennung ist im Gegensatz zur gutachterlichen Stellungnahme bei Unterschreitung des in der Muster-Liste genannten Mindestabstandes von 1,5 · (Nabenhöhe + Rotordurchmesser) kein standortspezifischer Nachweis, sondern ein entweder vom Hersteller des Eiserkennungssystemes bzw. für die Implementierung in eine spezifische Windenergieanlage vom Hersteller der Windenergieanlage einmalig für den jeweiligen Typ in Auftrag gegebenes Gutachten. Diese Systeme schließen damit den Betrieb bei potentiell gefährlichem Eisansatz aus, können aber nicht grundsätzlich Eisansatz verhindern. Das für eine Verhinderung des Eisansatzes in /4/ genannte Beispiel einer Rotorblattheizung ist an dieser Stelle typischerweise nicht als Sicherheitssystem konzipiert. Der Betrieb einer Rotorblattheizung wird daher durch einzelne Hersteller für Standorte, in deren Umgebung eventuell durch Eiswurf eine erhebliche Gefährdung besteht, sogar ausgeschlossen.

Damit ergibt sich die Situation, dass auch bei einem vorhandenen System zur Eiserkennung mit Eisfall (Ablösen von Eisstücken von der stillstehenden bzw. trudelnden Windenergieanlage) zu rechnen ist und damit auch in diesen Fällen bei Unterschreitung des Mindestabstandes von 1,5 · (Nabenhöhe + Rotordurchmesser) eine standortspezifische Bewertung des Risikos erfolgen sollte.

Der in der Abbildung 2.2.1 dargestellte Entscheidungsbaum für die Bewertung des Risikos durch Eiswurf und Eisfall fasst dies noch einmal zusammen.

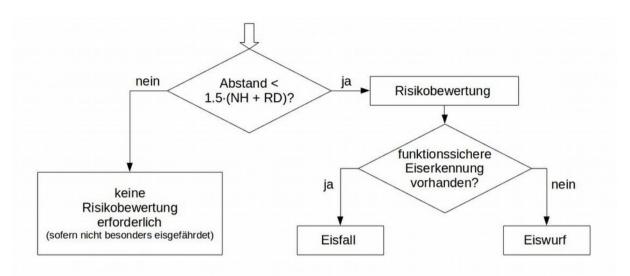
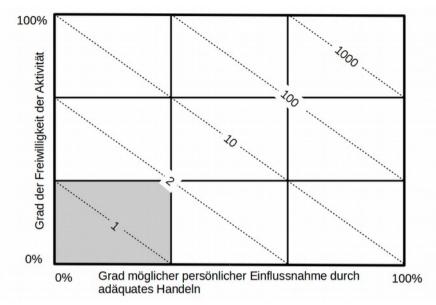


Abbildung 2.2.1: Entscheidungsbaum für die Bewertung des Risikos durch Eiswurf und Eisfall.


Auf internationaler Ebene wurden durch die International Energy Agency (IEA) Empfehlungen für die Risikobewertung von Eisfall und Eiswurf erarbeitet /1/. Neben der Risikobewertung beschäftigen sich die Empfehlungen der IEA auch mit der mathematischen Modellierung und den eingehenden Randbedingungen. Die Empfehlungen der IEA /1/ werden im Folgenden berücksichtigt.

2.3 Grenzwerte und Risikobewertung

2.3.1 Grenzwerte individuelles Risiko

Für Personenschäden findet sich in der Literatur das Konzept der minimalen endogenen Sterblichkeit (MEM) /5/. Die minimale endogene Sterblichkeit in entwickelten Ländern findet sich in der Gruppe der fünf bis 15jährigen. Sie liegt bei $2 \cdot 10^{-4}$ Todesfällen pro Person und Jahr. Eine neue Technologie sollte diese endogene Sterblichkeit nicht nennenswert erhöhen. Es wird daher gefordert, dass die mit einer neuen Technologie verbundene Sterblichkeit nicht mehr als $1 \cdot 10^{-5}$ Todesfälle pro Person und Jahr betragen darf.

An anderer Stelle wird das gesellschaftlich akzeptierte Todesfallrisiko abhängig vom Grad der Freiwilligkeit und möglichen Einflussnahme auf die Handlung dargestellt / 10/. Die Akzeptanz sinkt, wenn zum einen die Möglichkeit sich durch adäquates Handeln zu schützen gegen Null geht und zum anderen sich die Person nicht freiwillig der Gefährdung aussetzt. Der unter diesen Randbedingungen definierte Grenzwert liegt bei $1\cdot 10^{-5}$ Todesfällen pro Person und Jahr und entspricht damit dem definierten MEM-Kriterium.

Abbildung 2.3.1.1: Akzeptiertes Todesfallrisiko pro 100 000 Personen /10/. Grau hinterlegter Bereich entspricht dem MEM-Kriterium /5/.

Betrachtet man das Risiko in der Nähe einer WEA durch Eisfall oder Eiswurf tödlich zu verunglücken, begibt man sich in der Regel weder freiwillig in diese Lage noch hat man durch persönliche Einflussnahme eine Möglichkeit das Risiko nennenswert zu minimieren. Der Ansatz des MEM-Kriteriums ist daher an dieser Stelle gerechtfertigt und sinnvoll.

Damit liegt eine inakzeptable Gefährdung durch Eiswurf oder Eisfall nur vor, wenn der so definierte Grenzwert überschritten wird.

Um hier eine konservative Vorgehensweise zu gewährleisten, werden folgende Annahmen getroffen:

- Ein Eisstück, das eine ungeschützte Person außerhalb eines Fahrzeuges oder Gebäudes im Bereich des Kopfes trifft, führt immer zu einer schweren Verletzung oder zum Tode.
- Ein Eisstück, das direkt auf ein Fahrzeug im Bereich der Frontscheibe auftrifft, führt stets zu einer schweren Verletzung oder zum Tode der Insassen. Die durchschnittliche Anzahl von Personen in einem Kraftfahrzeug ist statistisch erfasst /9/, so dass sich hieraus eine Anzahl betroffener Personen ableiten lässt.

Mit dem Ausschluss leichter Verletzungen sowie der fehlenden Unterscheidung zwischen schweren und tödlichen Verletzungen wird hier ein konservativer Ansatz gewählt. Eine weitere Differenzierung gestaltet sich an dieser Stelle sehr schwierig und lässt sich statistisch zurzeit nicht ausreichend absichern.

Referenz-Nr.: F2E-2020-TGG-052, Revision 0 - ungekürzte Fassung

2.3.2 Grenzwerte kollektives Risiko

Bei der Bewertung von Schutzobjekten, bei denen sich eine größere Anzahl von Personen in der Nähe der WEA aufhält, wie es typischerweise bei Verkehrswegen der Fall ist, ist gemäß /1/ das daraus resultierende Kollektivrisiko zu bewerten. Entsprechende Grenzwerte für das Kollektivrisiko werden in /1/ definiert. Diese liegen für das Kollektivrisiko zwei Größenordnungen oberhalb des MEM-Kriteriums /1/ und somit bei $1\cdot 10^{-3}$ Todesfällen pro Jahr.

Gemäß /1/ kann für das Risiko im Straßenverkehr der Grenzwert für das kollektive Risiko basierend auf vorliegenden Unfallstatistiken ermittelt werden. Diese Vorgehensweise findet Anwendung für Straßen des Fernverkehrs und angeschlossene Straßen, die dem Durchgangsverkehr dienen. Dies sind in Deutschland die Bundesautobahnen, die Bundesstraßen und die Landesstraßen.

Das aktuelle Risiko ist dabei auf Basis der Todesfälle und der Schwerverletzten im Straßenverkehr zu ermitteln. Entsprechend der grundsätzlichen Idee des MEM-Kriteriums wird auch hier gefordert, dass ein bestehendes Risiko nicht nennenswert erhöht werden darf. Der anzusetzende Grenzwert für eine inakzeptable Gefährdung durch Eiswurf oder Eisfall wird daher eine Größenordnung niedriger gewählt als das bestehende Risiko /1/.

Mit /6/ liegen entsprechende Unfallzahlen für Kfz-Benutzer gegliedert nach Straßenklasse, Ortslage und Unfallfolge vor. Tabelle 2.3.2.1 listet die entsprechenden absoluten Unfallzahlen pro Jahr für die betreffenden Straßengruppen.

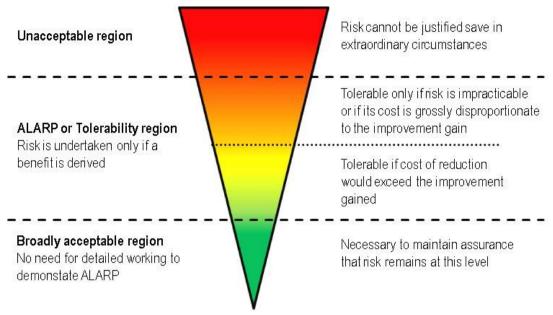
Tabelle 2.3.2.1: Verunglückte Kfz-Benutzer gegliedert nach Straßenklasse pro Jahr /6/.

Straßenklasse	Getötete	Schwerverletzte
Bundesautobahn	344	5673
Bundesstraße (außerorts)	640	7742
Landesstraße (außerorts)	646	9210

In Verbindung mit der Inlandsfahrleistung auf den verschiedenen Straßenklassen lassen sich daraus die bestehende Risiken bezogen auf die gefahrene Strecke bestimmen. Damit ist es möglich abhängig von der Verkehrsdichte straßenspezifische Risikowerte festzulegen. Die Streckenlänge ist dabei so festzulegen, dass jeweils nur eine WEA zur Gefährdung beitragen kann, um auch hier zu gewährleisten, dass das von jeder WEA ausgehende Risiko unabhängig bewertet werden kann.

Für alle anderen Straßenklassen kann der oben definierte Grenzwert für das Kollektivrisiko von $1\cdot 10^{-3}$ zugrunde gelegt werden.

2.3.3 Risikobewertung


Im Folgenden wird in allen Fällen das individuelle Risiko und das kollektive Risiko ermittelt. Anschließend wird in Abhängigkeit von der Aufenthaltshäufigkeit von Personen das individuelle oder kollektive Risiko für eine Bewertung zugrunde gelegt. In Anlehnung an /1/ kann dabei folgende Aufteilung verwendet werden:

- Individuelles Risiko:
 - land- und forstwirtschaftlich genutzte Wege, Wanderwege, Fahrradwege und Straßen mit geringer Verkehrsdichte,
 - Objekte wie Scheunen, Hütten etc., die regelmäßig durch den Besitzer oder durch einen kleinen Personenkreis genutzt werden.
- Kollektives Risiko:
 - stark genutzte Gemeindestraßen, Kreisstraßen, Landesstraßen, Bundesstraßen und Autobahnen,
 - Objekte, die von generellem Interesse für die Öffentlichkeit sind und entsprechend durch eine größere Personengruppe genutzt werden (öffentliche Parkplätze, Industrieanlagen etc.).

Entsprechend dem Vorgehen der UK Health and Safety Executive (HSE) /13/ werden in /1/ unterhalb des inakzeptablen Bereiches weitere Risikobereiche definiert, die unterschiedliche Maßnahmen erfordern.

Das MEM-Kriterium definiert für das individuelle Risiko dabei die Obergrenze des sogenannten ALARP-Bereichs (As Low As Reasonably Practicable, s. Abbildung 2.3.3.1). Risiken die höher als das MEM-Kriterium liegen, sind demnach nicht akzeptabel.

Abbildung 2.3.3.1: ALARP-Prinzip /13/. Die Grenze zum roten inakzeptablen Bereich wird für das individuelle Risiko durch das MEM-Kriterium /5/ definiert.

Darunter folgt der ALARP-Bereich, welcher sich über zwei Größenordnungen der Risikowerte erstreckt.

Liegt das Risiko im oberen ALARP-Bereich, sollen Maßnahmen in Betracht gezogen werden, um das Risiko weiter zu reduzieren. Die Maßnahmen sollten sich an den bekannten und etablierten Techniken und den am Standort gegebenen Möglichkeiten orientieren.

Liegt das Risiko im unteren ALARP-Bereich, sind Maßnahmen zur Reduzierung des Risikos in der Regel nicht erforderlich. Im Rahmen des Gutachtens werden entsprechend nur im Einzelfall Maßnahmen vorgeschlagen.

Liegt das Risiko mehr als zwei Größenordnungen unterhalb des MEM-Kriteriums, ist es ohne weitere Maßnahmen uneingeschränkt akzeptabel.

Bei der Bewertung der individuellen und kollektiven Risiken wird entsprechend zwischen den vier in Tabelle 2.3.3.1 genannten Bereichen unterschieden.

Da Sachschäden hier in ihrer Schwere gegenüber Personenschäden vernachlässigbar sind, werden diese in der Regel nicht weiter bewertet und in den Detailergebnissen im Anhang nicht dargestellt.

Tabelle 2.3.3.1: Risikobereiche für das individuelle und kollektive Risiko nach /1/.

Individuelles Risiko	Kollektives Risiko	Bewertung
> 10 ⁻⁵	> 10 ⁻³ oder standortspezifisch	Roter Bereich: Risiko inakzeptabel - Maßnahmen sind einzuleiten und deren Nutzen nachzuweisen
10 ⁻⁶ bis 10 ⁻⁵	10 ⁻⁴ bis 10 ⁻³ oder standortspezifisch	Oranger Bereich: Risiko akzeptabel - Maßnahmen sind in Betracht zu ziehen
10 ⁻⁷ bis 10 ⁻⁶	10 ⁻⁵ bis 10 ⁻⁴ oder standortspezifisch	Gelber Bereich: Risiko akzeptabel - Maßnahmen in der Regel nicht erforderlich
< 10 ⁻⁷	< 10 ⁻⁵ oder standortspezifisch	Grüner Bereich: Risiko uneingeschränkt akzeptabel

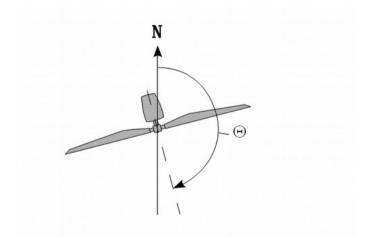
2.3.4 Risikomindernde Maßnahmen

Liegt das Risiko im inakzeptablen roten Bereich, ist ein Nachweis erforderlich, dass das Risiko durch geeignete Maßnahmen in den ALARP-Bereich verschoben werden kann. Gemäß /1/ kommen insbesondere folgende Maßnahmen in Frage, um das Risiko in den ALARP-Bereich zu verschieben:

- Fixierung der Azimut-Position des Rotors der WEA nach Abschaltung durch die Eiserkennung,
- Wahl eines kleineren WEA-Typs,
- Verschiebung der WEA,
- Verlegung des betroffenen Schutzobjektes.

In allen Fällen ist durch eine erneute Berechnung nachzuweisen, dass das Risiko anschließend nicht mehr im roten inakzeptablen Bereich liegt /1/.

Liegt das Risiko im oberen orangen ALARP-Bereich sind etablierte risikomindernde Maßnahmen umzusetzen. Zu den empfohlenen Maßnahmen zählen:


- Fixierung der Azimut-Position des Rotors der WEA nach Abschaltung durch die Eiserkennung, wenn dies aufgrund der Lage der Schutzobjekte möglich und sinnvoll ist,
- Einsatz einer funktionssicheren Eiserkennung,
- Warnschilder,
- Warnleuchten, die mit dem Eiserkennungssystem der WEA gekoppelt sind,

 Physische Barrieren wie Schranken sofern dies vor Ort umgesetzt werden kann.

Die Auswahl der Maßnahmen sollte sich an den bekannten und etablierten Techniken und den am Standort gegebenen Möglichkeiten orientieren.

Auf Freiflächen mit kontrolliertem und beschränktem Zutritt wie z.B. einem Betriebsgelände kann das Risiko auch durch Aufenthaltsbeschränkungen oder das Tragen eines Schutzhelmes reduziert werden. Bei der Quantifizierung dieser Maßnahmen kann gemäß /14/ davon ausgegangen werden, dass das Tragen eines Schutzhelmes mit einem Chancenverhältnis (odds ratio) für schwere und tödliche Kopfverletzungen von etwa ½ verbunden ist.

Bei einer Fixierung der Azimut-Position wird die WEA nach einer Abschaltung durch die Eiserkennung in eine fixe Azimut-Position gefahren. Damit kann die Trefferhäufigkeit von Eisstücken auf die Schutzobjekte verringert werden, indem im Falle eines Verkehrsweges z.B. der Rotor parallel zum Fahrbahnrand ausgerichtet wird. Die Azimut-Position wird dabei definiert über den Azimutwinkel zwischen geografisch Nord und der Achsenrichtung der WEA.

Abbildung 2.3.4.1: Definition des Azimutwinkels Θ .

2.3.5 Addition von Risiken

Entlang von Verkehrswegen kann in der Regel nicht ausgeschlossen werden, dass einzelne oder alle Personen mehrere WEA passieren und damit einer Summe von Risiken ausgesetzt sind.

Dies spielt für den überregionalen Verkehr keine Rolle, da hier mit Grenzwerten verglichen wird, die auf die gefahrene Strecke bezogen sind (siehe Kapitel 2.3.2).

WEA an Autobahnen, Bundesstraßen und Landesstraßen können daher stets einzeln

betrachtet werden. Hier sind benachbarte WEA nur dann von Interesse, wenn sich die Gefährdungsbereiche der zu betrachtenden WEA und einer benachbarten WEA überlappen.

Bei der Bewertung von Verkehrswegen des regionalen bzw. des Nahverkehrs werden die akzeptierten Grenzwerte für das individuelle bzw. kollektive Risiko herangezogen. Für Kreisstraßen, Gemeindestraßen und sonstige Verkehrswege ist daher zu prüfen, ob die übliche Nutzung dazu führt, dass die Gefährdungsbereiche mehrerer WEA passiert werden. Diese Betrachtung kann aufgrund des regionalen Charakters dieser Verkehrswege dabei auf den zu betrachtenden Windpark beschränkt werden.

In einem verzweigten Verkehrswegenetz innerhalb eines Windparks gibt es eine Vielzahl von Routen, die nicht alle betrachtet werden können. Es ist hier ausreichend eine repräsentative Route zu wählen, die eine konservative Bewertung gewährleistet.

In der Praxis kann für Verkehrswege des regionalen bzw. des Nahverkehrs folgendermaßen vorgegangen werden:

- Im ersten Schritt werden die Risiken ausgehend von jeder einzelnen WEA und bezogen auf die verschiedenen Schutzobjekte ermittelt. Wenn einzelne Risiken hier bereits im oberen ALARP-Bereich liegen, werden die entsprechenden Maßnahmen abgeleitet (siehe auch Kapitel 5).
- Im zweiten Schritt wird eine repräsentative Route festgelegt und hierfür das Risiko ermittelt und bewertet. Eventuell sind hieraus weitere risikomindernde Maßnahmen abzuleiten.
- Auf den zweiten Schritt kann verzichtet werden, wenn die Summe der Risiken über alle WEA die jeweils anzusetzenden Grenzwerte für das individuelle bzw. kollektive Risiko nicht übersteigen.
- Auf den zweiten Schritt kann ebenfalls verzichtet werden, wenn die Risiken der geplanten WEA bezüglich der relevanten Schutzobjekte jeweils im uneingeschränkt akzeptablen Bereich liegen, da der Beitrag zum Gesamtrisiko entlang eines repräsentativen Weges dann vernachlässigbar ist. Liegen die Risiken der geplanten WEA bezüglich der relevanten Schutzobjekte im unteren ALARP-Bereich, ist im Einzelfall zu prüfen, ob der Beitrag zum Gesamtrisiko als nicht signifikant eingestuft werden kann.

Es ergeben sich folgende Begriffe und Symbole, die im Zusammenhang mit WEA im Gutachten verwendet werden:

Tabelle 2.3.5.1: Erläuterung der verwendeten Begriffe und Symbole.

Erlä	Erläuterung der Begriffe						
人	"geplante WEA"	WEA, deren Risiko im Rahmen des Gutachtens zu bewerten ist.					
人	"benachbarte WEA"	Alle weiteren WEA, die vom Auftraggeber übermittelt wurden. Es ist dabei unerheblich, ob sich einzelne benachbarte WEA ebenfalls in Planung oder Bau befinden. Entscheidend ist die Windparkkonfiguration, die als Vorbelastung für die geplanten WEA zu unterstellen ist. Alle benachbarten WEA sind in Tabelle 3.1.1 aufgeführt.					
Øb,	"Referenzpunkt der Usweiliger Standort, auf dessen Koordinaten sich die verwendete Winddaten" Winddaten beziehen.						
Far	bliche Zuordnung	der Symbole					
人	Zu betrachtende WE	A: geplante WEA, deren Risiko bewertet wird.					
人	Zu berücksichtigende WEA: Benachbarte WEA, die aufgrund ihres Abstandes zu den geplanten WEA Einfluss auf das Risiko im Gefährdungsbereich der zu betrachtenden WEA (人) nehmen bzw. aufgrund der Nutzung der Schutzobjekte innerhalb des Windparks potentiell zu berücksichtigen sind.						
人	Benachbarte WEA, die aufgrund ihres Abstandes zu den geplanten WEA und ihrer Lage im Windpark nicht bei der Bewertung des Risikos der zu betrachtenden WEA (人) zu berücksichtigen sind. Diese WEA sind eventuell nur zum Teil in Abbildung 3.1.1 dargestellt.						
a	Referenzpunkte der	Referenzpunkte der Winddaten.					
丛	Referenzpunkt der V	Vinddaten auf den Koordinaten einer (in diesem Fall geplanten) WEA.					

2.1 Berechnung der Flugbahnen von Eisstücken

Für die Berechnung der Flugbahnen der Eisstücke wird basierend auf den Luftwiderstandsbeiwerten, der Geometrie und der Masse der Eisstücke die Lage des Eisstückes während der gesamten Bewegung erfasst und verfolgt, so dass sich im Vergleich zu einer rein ballistischen Flugbahn ein realistischeres Bild der Flugweiten ergibt.

Im Rahmen einer Monte-Carlo-Simulation werden dabei folgende Größen zufällig im Rahmen der am Standort zu erwartenden Wahrscheinlichkeitsverteilung variiert:

- · Windgeschwindigkeit auf Nabenhöhe,
- · Windrichtung,
- Position des Eisstückes auf dem Blatt,
- Geometrie und Dichte des Eisstückes,
- Drehzahl und Stellung des Rotors im Moment der Ablösung des Eisstückes.

Für das Geländemodell in der Umgebung der WEA werden Daten aus /8/ berücksichtigt. Eine eventuell vorhandene Schutzwirkung durch Bewuchs oder Gebäude wird dabei vernachlässigt.

Das Berechnungsmodell wurde im Rahmen der Entwicklung der IEA Recommendations /1/ anhand von Messkampagnen in realen Windparks validiert.

2.2 Vereisungshäufigkeiten

Datengrundlage für die Bewertung der Vereisungshäufigkeit bildet die Vereisungskarte des Deutschen Wetterdienstes /11/. Für die Bestimmung der Häufigkeit atmosphärischer Vereisung wurden hierzu in /11/ verschiedene Wetter-Meldungen ausgewertet:

- Allgemeine Wetterereignisse:
 - leichter, mäßiger oder starker gefrierender Regen,
 - leichter, m\u00e4\u00dfiger oder starker gefrierender Spr\u00fchhregen,
 - leichter, mäßiger oder starker Schneeregen,
 - Eiskörner (gefrorene Regentropfen),
 - Nebel mit Reifansatz
- Wetterereignisse bei Temperaturen ≤ 0° Celsius:
 - durchgehender oder unterbrochener leichter, mäßiger oder starker Sprühregen,
 - leichter, mäßiger oder starker Sprühregen mit Regen,

- o durchgehender oder unterbrochener leichter, mäßiger oder starker Regen,
- Nebel oder Nebel mit Reifansatz
- Wetterereignisse bei Temperaturen > 0° Celsius:
 - durchgehender oder unterbrochener leichter, mäßiger oder starker Schneefall,
 - leichter, mäßiger oder starker Schneeregen- oder Schneeschauer,
- Wetterereignisse der letzten Stunde aber nicht zur Beobachtungszeit:
 - Schneefall,
 - Schneeregen oder Eiskörner,
 - gefrierender Regen,
 - Schneeschauer bei Temperaturen > 0° Celsius,
 - ∘ Nebel bei Temperaturen ≤ 0° Celsius.

Damit werden eine Vielzahl von Ereignissen erfasst, die nicht in allen Fällen zu einer signifikanten Vereisung bzw. in einigen Fällen zu keiner Vereisung der WEA führen. Gleichzeitig beziehen sich die Meldungen auf Beobachterhöhe und nicht auf die Nabenhöhe der WEA. Es wurden daher Vergleiche mit verschiedenen Klimastationen des Deutschen Wetterdienstes durchgeführt. Hierzu wurden langjährige (30 Jahre) Messreihen zum Tagesmittel der relativen Luftfeuchte und der Lufttemperatur ausgewertet, um die Vereisungshäufigkeit auf Nabenhöhe zu bestimmen. Der Vergleich zeigt, dass die in /11/ auf Beobachterhöhe ermittelten Vereisungshäufigkeiten konservativere Ergebnisse liefern. Eine Umrechnung auf Nabenhöhe der WEA ist daher unter Berücksichtigung der in /11/ betrachteten Ereignisse nicht erforderlich.

Gemäß /11/ sind für Standorte in großen Höhen besondere Betrachtungen erforderlich, wenn diese besonders exponiert oder besonders geschützt liegen. Entsprechende Orte wurden in /11/ daher gefiltert. Die niedrigste betroffene Höhe liegt bei ca. 700m üNN, so dass das hier verwendete Verfahren im Folgenden für Orte bis zu einer Höhe von 700m üNN ohne Korrekturen angewendet wird. In diesem Höhenbereich weist die in /11/ verwendete exponentielle Regression eine gute Annäherung an die Daten auf und wird daher hier verwendet. Abbildung 2.2.1 zeigt die hierauf beruhende Vereisungskarte für Deutschland.

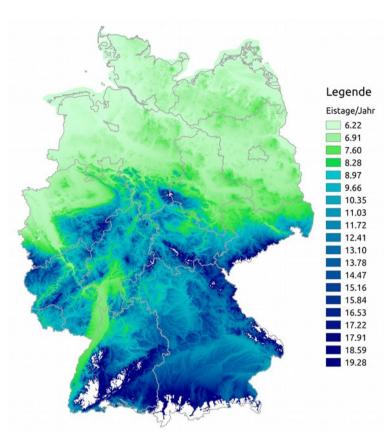


Abbildung 2.2.1: Eistage pro Jahr gemäß den Ergebnissen aus /11/ für Höhen bis 700m üNN.

3 Eingangsdaten

3.1 Windparkkonfiguration und Schutzobjekte

Am Standort Stemwede Tiefenriede (Nordrhein-Westfalen) plant der Auftraggeber die Errichtung von zehn Windenergieanlagen (WEA 1 - 10).

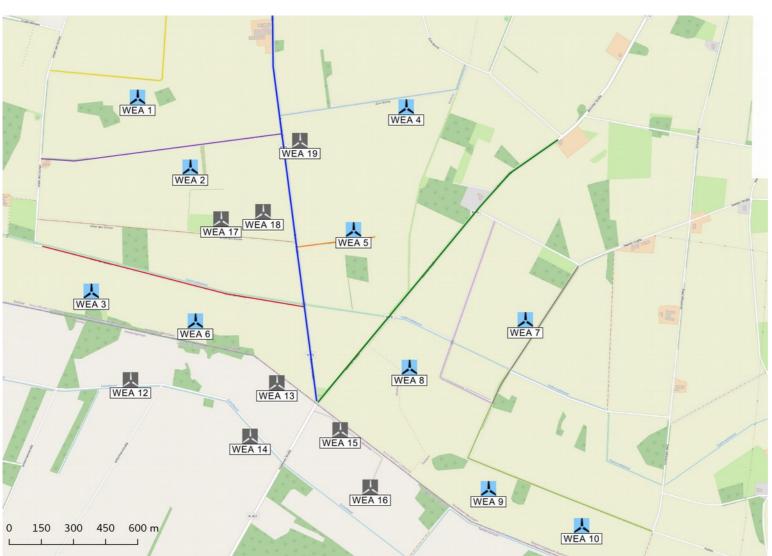
Am Standort befinden sich neun weitere benachbarte WEA, die auf Wunsch des Auftraggebers im Rahmen der Risikobewertung nicht berücksichtigt werden.

Die vom Auftraggeber übermittelten Daten zur Windparkkonfiguration und die Schutzobjekte sind in Tabelle 3.1.1 bzw. Abbildung 3.1.1 dargestellt.

In der Umgebung befinden sich die Kreisstraßen K75 und K76 sowie verschiedene Feldwege, welche im Rahmen dieser Untersuchung als Schutzobjekte definiert wurden (siehe Abbildung 3.1.1).

Die WEA 1 - 10 liegen in unmittelbarer Nähe zu den Schutzobjekten und werden im Folgenden hinsichtlich einer Gefährdung durch Eiswurf und Eisfall betrachtet.

 Tabelle 3.1.1: Windparkkonfiguration


	Lfd.Nr. WEA	Rezeichnung	Koordinaten (UTM ETRS89 Zone 32) (UTM WGS84 Zone 32)		Hersteller	WEA-Typ	P _N	NH [m]	RD [m]
			East	North					
人	1	WEA 01	32454758	5806732	Nordex	N149	4.5	125.4	149.1
人	2	WEA 02	32455004	5806406	Nordex	N149	4.5	125.4	149.1
人	3	WEA 03	32454542	5805827	Nordex	N149	4.5	125.4	149.1
人	4	WEA 04	32456012	5806687	Nordex	N149	4.5	125.4	149.1
人	5	WEA 05	32455766	5806114	Nordex	N149	4.5	125.4	149.1
人	6	WEA 06	32455028	5805688	Nordex	N149	4.5	125.4	149.1
人	7	WEA 07	32456568	5805694	Nordex	N149	4.5	125.4	149.1
人	8	WEA 08	32456027	5805472	Nordex	N149	4.5	125.4	149.1
人	9	WEA 09	32456396	5804906	Nordex	N149	4.5	125.4	149.1
人	10	WEA 10	32456831	5804733	Nordex	N149	4.5	125.4	149.1
人	11	EX1	32454122	5805583	ENERCON	E-70	2.0	113.5	71.0
人	12	EX2	32454725	5805414	ENERCON	E-70	2.0	113.5	71.0
人	13	EX3	32455408	5805400	ENERCON	E-70	2.0	113.5	71.0
人	14	EX4	32455283	5805150	ENERCON	E-70	2.0	113.5	71.0
人	15	EX5	32455704	5805180	ENERCON	E-70	2.0	113.5	71.0

	Lfd.Nr. WEA	Bezeichnung	Koordinaten (UTM ETRS89 Zone 32) (UTM WGS84 Zone 32)		Hersteller	WEA-Typ	P _N [MW]	NH [m]	RD [m]
			East	North					
>-	16	EX6	32455844	5804913	ENERCON	E-70	2.0	113.5	71.0
>-	17	Tacke 1.5	32455148	5806164	Tacke	Tacke 1.5s	1.5	80.0	70.5
>-	18	WKM 01	32455344	5806198	ENERCON	E-115	3.0	149.0	115.7
	19	WKM 02	32455516	5806530	Vensys	Vensys 120	3.0	90.0	119.9

Alle Benennungen von WEA im Dokument beziehen sich auf die Nomenklatur von Spalte 2 (Lfd. Nr.) in Tabelle 3.1.1.

Abbildung 3.1.1:

Lage des Standortes, Karte /7/.

zu betrachtende WEA

zu berücksichtigende WEA

weitere WEA

Schutzobjekte:

blau: K75 grün: K76

gelb: Weg bei WEA1 lila: Weg bei WEA2

rot: Unter den Eichen

hellblau: Weg bei WEA4 orange: Weg bei WEA5

oliv: Weg bei WEA7

violett: Weg bei WEA8 hellgrün:Weg bei WEA 9

und 10

3.2 Winddaten am Standort

Die relativen Häufigkeiten der Windrichtung und Windgeschwindigkeiten am Standort wurden /15/ entnommen. Datengrundlage zur Abschätzung des Windpotentials am Standort Stemwede Tiefenriede bilden die Daten des anemos Windatlas für Deutschland mit einer räumlichen Auflösung von 3km und einer zeitlichen Auflösung von 10 Minuten. Der Referenzzeitraum deckt 20 Jahre von 1999 - 2018 ab /15/.

Entsprechend den Empfehlungen aus /1/ wurden die Daten für Perioden gefiltert, bei denen Eiswurf oder Eisfall potentiell auftreten kann. Die gefilterten Daten sind in Tabelle 3.2.1 aufgetragen und werden als richtig und repräsentativ für die freie Anströmung bei potentiellen Vereisungsbedingungen am Standort Stemwede Tiefenriede vorausgesetzt.

Tabelle 3.2.1: Winddaten am Standort (f: Häufigkeit der Windrichtung; A und k: Skalenund Formparameter der Weibull-Verteilung).

Höhe über Grund		N	NNO	ONO	0	oso	SSO	S	SSW	wsw	W	WNW	NNW	Ges.
	A	5.57	6.09	6.53	7.73	7.06	6.78	6.93	8.52	8.66	8.19	7.66	5.63	7.45
125m	k	2.258	2.684	3.014	3.135	3.012	2.892	2.999	3.022	3.018	2.792	2.948	2.175	2.711
	f	0.049	0.061	0.101	0.146	0.077	0.054	0.047	0.098	0.140	0.109	0.073	0.046	1.000
Bezugsw	Bezugswerte													
Koordinaten des Referenzpunktes (UTM ETRS89 Zone / WGS84 Zone 32)						East				North				
					32455826				5806062					

Die Parameter der Weibull-Verteilung werden genutzt, um die Häufigkeitsverteilung der Windrichtungen auf die jeweiligen Windgeschwindigkeiten umzurechnen.

3.3 Aufenthaltshäufigkeiten

Nach /16/ wurde an den Zählpunkten auf den Kreisstraßen K75 und K76 im Bereich des Windparks eine Verkehrsbelastung von 849 bzw. 573 Kfz pro Tag ermittelt.

Auf den angrenzenden landwirtschaftlichen Wegen wird im Folgenden von einem Verkehrsaufkommen von 10 Kfz und einem zusätzlichen Personenaufkommen von 10 Personen pro Tag ausgegangen. Aufgrund der Nutzung wird hier von einer mittleren Fahrzeug-Geschwindigkeit von 30 Kilometern pro Stunde ausgegangen.

3.4 Eiserkennung

3.4.1 Eiserkennungssystem

Die WEA 1 - 10 sind mit drei unabhängigen Verfahren zur Erkennung von Eisansatz ausgerüstet /17/. Dabei wird Eisansatz entweder durch Vibrationen infolge ungleichmäßigen Eisansatzes, durch eine Abweichung von der Soll-Kennlinie aufgrund verschlechterter Aerodynamik oder durch eine Differenz zwischen der Schalensternanemometer- und der Ultraschallanemometer-Messung aufgrund vereister Anemometerschalen detektiert /17/.

3.4.2 Zustand nach Abschaltung

Nach einer Abschaltung durch das Eiserkennungssystem geht die WEA in einen definierten Zustand. Angaben zu Trudeldrehzahlen, Blattstellung und Windnachführung der WEA wurden gemäß /18/ umgesetzt.

3.4.3 Risikoreduzierende Maßnahmen

In den im Anhang A dargestellten Ergebnissen wurden keine risikoreduzierenden Maßnahmen berücksichtigt.

4 Durchgeführte Untersuchungen

4.1 Standortbesichtigung

Eine Standortbesichtigung ist im Rahmen der Bewertung des Risikos durch Eiswurf oder Eisfall nicht durch ein Regelwerk vorgeschrieben oder geregelt. Eine Standortbesichtigung empfiehlt sich, wenn die Situation vor Ort nicht ausreichend bekannt ist.

Im Rahmen der Standortbesichtigung werden die potentiellen Schutzobjekte vor Ort dokumentiert und besichtigt. Es werden Informationen zur Beschaffenheit der Schutzobjekte, wie z.B. Straßenbelag, Geschwindigkeitsbeschränkungen und Fahrverboten bei Verkehrswegen aufgenommen.

Die Standortbesichtigung dient nicht zur Bestimmung der Aufenthaltshäufigkeit von Personen in oder auf Schutzobjekten, der Bestimmung der Frequentierung von Verkehrswegen, der Bestimmung der Klimatologie des Standortes oder der Verifizierung der Windparkkonfiguration.

Die Schutzobjekte vor Ort wurden vom Auftraggeber festgelegt (siehe Kapitel 3.1).

Aufgrund der vorhandenen Datenlage zu den Schutzobjekten wurde auf eine Standortbesichtigung verzichtet.

4.2 Vereisungshäufigkeit am Standort

Entsprechend Kapitel 2.2 ergibt sich am Standort Stemwede Tiefenriede eine Vereisungshäufigkeit von 1.8% entsprechend 6.7 Vereisungstagen pro Jahr.

4.3 Anzahl sich lösender Eisstücke

Die Anzahl der insgesamt am Standort zu unterstellenden Eisstücke ergibt sich aus der Anzahl der Eisstücke pro Vereisungsereignis und der Anzahl der Vereisungstage.

Für die WEA ist konservativ davon auszugehen, dass es an allen Vereisungstagen zu einer vollständigen Vereisung der WEA kommt.

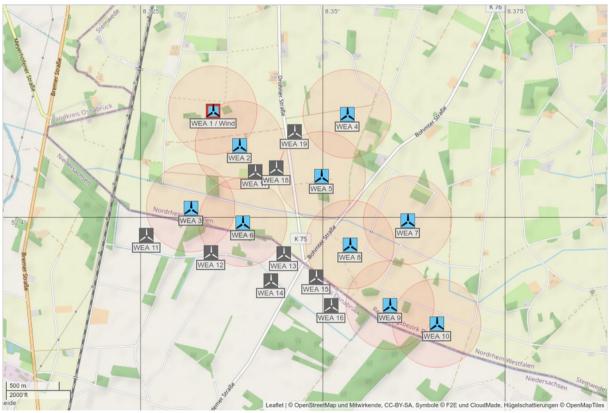
In Übereinstimmung mit /1/ kann die insgesamt zu berücksichtigende Eismasse abhängig von der Blattgeometrie anhand des Vereisungslastfalles der internationalen Richtlinie für WEA /12/ definiert werden. Unter Berücksichtigung der durchschnittlichen Masse der Eisstücke lässt sich daraus eine Anzahl Eisstücke pro Vereisung ableiten. Die Anzahl ist dabei unabhängig davon, ob ein Risiko durch Eisfall oder Eiswurf betrachtet wird, und ergibt im vorliegenden Fall 165.3 Eisstücke pro Vereisung. Damit ergeben sich bei 6.7 Vereisungsfällen insgesamt 1108 Eisstücke pro Jahr.

4.4 Ermittlung der Gefährdungsbereiche

Die potentiellen Gefährdungsbereiche der WEA vom 1.5fachen der Summe aus Nabenhöhe und Rotordurchmesser (siehe Kapitel 2.2) sind in Abbildung 4.4.1 dargestellt.

Für die zu betrachtenden WEA ergeben sich die in Tabelle 4.4.1 aufgeführten zu betrachtenden Schutzobjekte.

Tabelle 4.4.1: Zu betrachtende Schutzobjekte.


	Lfd.Nr.	D 1	Potentieller Gefährdungsbereich			
	WEA	Bezeichnung	Radius [m]	Schutzobjekte im Bereich		
人	1	WEA 1	411.75		Weg bei WEA1	
^	1	WEAI		Weg bei WEA2		
人	2	WEA 2	411.75	Weg bei WEA 2		
人	3	WEA 3	411.75	Unter den Eichen		

Referenz-Nr.: F2E-2020-TGG-052, Revision 0 - ungekürzte Fassung

Seite 25 von 36

	Lfd.Nr.	D: -1	Potentieller Gefährdungsbereich				
	WEA	Bezeichnung	Radius [m]	Schutzobjekte im Bereich			
人	4	WEA 4	411.75	Weg bei WEA4			
				Kreisstraße K75			
人	5	WEA 5	411.75	Kreisstraße K76			
				Weg bei WEA5			
一	6	WEA 6	411.75	Unter den Eichen			
人	7	WEA 7	411.75	Weg bei WEA7			
^	/	WEA /	411./3	Weg bei WEA8			
人	8	TATE A O	WEA 8 411.75	Kreisstraße K76			
^	8	WEAS		Weg bei WEA8			
人	9	WEA 9	411.75	Weg bei WEA9 und 10			
人	10	WEA 10	411.75	Weg bei WEA9 und 10			

Abbildung 4.4.1: Gefährdungsbereiche der WEA 1 - 10 am Standort Stemwede Tiefenriede (Karte /7/).

Bei den WEA 11 - 19 handelt es sich um bereits bestehende WEA, deren Gefährdung im Rahmen dieses Gutachtens nicht zu bewerten ist.

Es wurde auf Wunsch des Auftraggebers nicht untersucht, ob die Gefährdungsbereiche der bestehenden WEA für die Bewertung der geplanten WEA relevant sind (siehe Kapitel 2.3.5).

4.5 Eiswurf

Aufgrund der vorhandenen Systeme zur Eiserkennung kann der Betrieb bei potentiell gefährlichem Eisansatz weitestgehend ausgeschlossenen werden. Für diese WEA ist daher eine Gefährdung durch Eiswurf standortspezifisch nicht zu betrachten.

4.6 Eisfall

Die WEA 1 - 10 sind mit einem System zur Eiserkennung ausgerüstet. Entsprechend Kapitel 2.2 besteht auch bei vorhandener funktionssicherer Eiserkennung stets ein Risiko durch Eisfall in der Umgebung einer WEA. Für diese WEA ist daher eine Gefährdung durch Eisfall standortspezifisch zu betrachten.

Aufgrund der vorhandenen Systeme zur Eiserkennung wird im Folgenden davon ausgegangen, dass der Betrieb bei potentiell gefährlichem Eisansatz weitestgehend ausgeschlossenen werden kann. Da für die Systeme zur Eiserkennung keine Zertifizierung vorliegt, wird angenommen, dass es trotz der Eiserkennung in 10% aller Fälle zu Eiswurf während des Betriebes der WEA kommt.

Aus der in Kapitel 4.3 ermittelten Gesamtanzahl von Eisstücken, der Windgeschwindigkeitsverteilung gemäß Tabelle 3.2.1, der Geometrie und Betriebsweise der WEA sowie der Topografie am Standort, ergeben sich in der Umgebung einer WEA für jeden Punkt unterschiedliche Trefferhäufigkeiten von Eisstücken. Auf Basis dieser Trefferhäufigkeiten ist die spezifische Gefährdung von Personen abhängig von der Wegstrecke, den die Personen bzw. die mit Personen besetzten Fahrzeuge in der Umgebung der WEA nehmen, der Geschwindigkeit, mit der sie sich fortbewegen sowie der Häufigkeit, mit der ein bestimmter Weg genommen wird. Verkehrswege und andere Freiflächen bzw. Gebäude, die keinen Schutz gegen Eisstücke bieten, unterscheiden sich an dieser Stelle nur dahingehend, dass die Wegstrecke bei Verkehrswegen deutlich vorgegeben ist, während sie bei Freiflächen typischerweise durch eine allgemeine Aufenthaltshäufigkeit ersetzt wird.

Eine spezifische Gefährdung lässt sich daher nicht in Form einer Gefährdungskarte in der Umgebung einer WEA darstellen, da für jeden Punkt in der Umgebung einer WEA theoretisch unendlich viele Szenarien denkbar sind. Die Gefährdung ist daher

stets in Bezug zu einem Schutzobjekt unter Berücksichtigung der genannten Randbedingungen zu ermitteln.

Wie in Kapitel 2.3 dargestellt, erfolgt die Bewertung des individuellen und kollektiven Risikos durch eine Einteilung in vier Bereiche von inakzeptabel bis uneingeschränkt akzeptabel. Damit ergeben sich bezogen auf die betrachteten WEA folgende Ergebnisse für das Szenario Eisfall.

Es ist in Tabelle 4.6.1 jeweils nur das in Abhängigkeit von der Aufenthaltshäufigkeit von Personen zu betrachtende Risiko dargestellt (siehe Kapitel 2.3).

Sind gemäß Kapitel 2.3.5 Risiken verschiedener WEA zu addieren, wird die Bewertung der addierten Risiken in Tabelle 4.6.1 gesondert aufgeführt.

Tabelle 4.6.1: Gefährdung durch Eisfall am Standort Stemwede Tiefenriede.

Bewertu	ng der Gefährdung o	durch Eisfall aller Schutzob	jekte im Bereich der WEA
Lfd. Nr. WEA	Schutzobjekt	Kollektives Personenrisiko	Individuelles Personenrisiko
Bewertun	g der einzelnen WEA:		
1	Weg bei WEA1		akzeptabel - Maßnahmen in der Regel nicht erforderlich
	Weg bei WEA2		*
2	Weg bei WEA2		akzeptabel - Maßnahmen in der Regel nicht erforderlich
3	Unter den Eichen		uneingeschränkt akzeptabel
4	Weg bei WEA4		akzeptabel - Maßnahmen sind in Betracht zu ziehen
	Kreisstraße K75		*
5	Kreisstraße K76		*
	Weg bei WEA5		akzeptabel - Maßnahmen sind in Betracht zu ziehen
6	Unter den Eichen		uneingeschränkt akzeptabel
7	Weg bei WEA7		akzeptabel - Maßnahmen in der Regel nicht erforderlich
	Weg bei WEA8		*
0	Kreisstraße K76		*
8	Weg bei WEA8		uneingeschränkt akzeptabel

Referenz-Nr.: F2E-2020-TGG-052, Revision 0 - ungekürzte Fassung

Bewertung der Gefährdung durch Eisfall aller Schutzobjekte im Bereich der WEA							
Lfd. Nr. WEA	Schutzobjekt Kollektives Personenrisiko		Individuelles Personenrisiko				
9	Weg bei WEA9 und 10		akzeptabel - Maßnahmen in der Regel nicht erforderlich				
10	Weg bei WEA9 und 10		akzeptabel - Maßnahmen in der Regel nicht erforderlich				

^{*:} Die Ergebnisse zeigen, dass die Schutzobjekte nicht von Eisstücken der WEA getroffen werden.

Da die Summe der Risiken aller geplanten WEA bezüglich der Feldwege die anzusetzenden Grenzwerte nicht übersteigen, ist eine weitere Betrachtung möglicher Routen durch den Windpark und der damit verbundenen Summierung von Risiken nicht erforderlich (siehe auch Kapitel 2.3.5).

Details der zugrunde liegenden Berechnungen sind im Anhang A dargestellt.

5 Weitere Maßnahmen

Da die zugrunde gelegten Risikogrenzwerte für WEA 1 - 3 und 6 - 10 am Standort Stemwede Tiefenriede deutlich unterschritten werden, sind weitere risikomindernde Maßnahmen nicht erforderlich.

5.1 Eisfall

Da die für die WEA 4 und 5 ermittelten Risiken bezüglich der Schutzobjekte Weg bei WEA4 und Weg bei WEA5 im oberen ALARP-Bereich liegen, sind weitere Maßnahmen in Betracht zu ziehen, um das Risiko noch weiter zu senken.

Für die WEA 4 und 5 empfehlen wir nach Abschaltung auf Grund von Eisansatz den Rotor der WEA so auszurichten, dass möglichst wenige Eisstücke die jeweiligen Schutzobjekte treffen und entsprechend den Vorgaben des Herstellers die Azimutposition des Rotors bis zur maximal möglichen Windgeschwindigkeit beizubehalten. Die erforderlichen Werte sind in Tabelle 5.1.1 dargestellt (zur Definition des Azimutwinkels siehe Abbildung 2.3.4.1).

Tabelle 5.1.1: Empfohlene Azimut-Positionen nach Abschaltung auf Grund von Eisansatz für den Rotor der WEA.

	Azimutwinkel bei Stillstand [°]
WEA 4	171°
WEA54	352°

6 Zusammenfassung

Die Fluid & Energy Engineering GmbH & Co. KG ist beauftragt worden, die vorliegende Windparkkonfiguration hinsichtlich einer Gefährdung durch Eiswurf und Eisfall ausgehend von den stillstehenden (trudelnden) bzw. in Betrieb befindlichen WEA zu betrachten und zu bewerten.

Als Schutzobjekte wurden die Kreisstraßen K75 und K76 sowie die Feldwege in der Nachbarschaft der WEA definiert.

Am Standort befinden sich neun weitere benachbarte WEA, die auf Wunsch des Auftraggebers im Rahmen der Risikobewertung nicht berücksichtigt werden.

6.1 Gefährdungsbereiche

Die Gefährdungsbereiche der WEA 1 - 10 überschneiden einzelne Schutzobjekte und sind daher in der weiteren Risikobewertung zu betrachten.

6.2 Eiswurf

Abschließend kann festgestellt werden, dass aufgrund der vorhandenen Systeme zur Eiserkennung eine Gefährdung durch Eiswurf von den betrachteten WEA ausgeschlossen werden kann.

6.3 Eisfall

Für die WEA 1 - 10 kann aufgrund der vorhandenen Systeme zur Eiserkennung eine Gefährdung durch Eiswurf von den betrachteten WEA weitestgehend ausge schlossen werden. Da für die Systeme zur Eiserkennung keine Zertifizierung vorliegt, wird angenommen, dass es trotz der Eiserkennung in 10% aller Fälle zu Eiswurf während des Betriebes der WEA kommt.

Die abschließende Bewertung des Risikos durch Eisfall ist in Tabelle 6.3.1 für alle WEA bezüglich der relevanten Schutzobjekte dargestellt. Aufgeführt werden dabei nur die Schutzobjekte, die von der jeweiligen WEA getroffen werden.

WEA, in deren potentiellen Gefährdungsbereich (siehe Tabelle 4.4.1) bzw. in deren standortspezifisch ermittelten Gefährdungsbereich (siehe Anhang A) keine Schutzobjekte liegen, sind in Tabelle 6.3.1 nicht mit aufgeführt.

Maßnahmen, die in den Berechnungen berücksichtigt wurden und entsprechend für die getroffene Aussage unabdingbar sind, werden in der Spalte "Maßnahmen - erforderlich" aufgeführt.

Maßnahmen, die umgesetzt werden sollten, weil das Risiko im oberen ALARP-Bereich (siehe Kapitel 2.3) liegt, werden in der Spalte "Maßnahmen - empfohlen" aufgeführt.

Tabelle 6.3.1: Bewertung des Eisfallrisikos.

Lfd. Nr.	Schutzobiekt	Risiko-	Maßnahmen	
WEA		erforderlich	empfohlen	
1	Weg bei WEA 1	akzeptabel		
2	Weg bei WEA 2	akzeptabel		
3	Unter den Eichen	akzeptabel		
4	Weg bei WEA 4	akzeptabel		Tabelle 5.1.1
5	Weg bei WEA 5	akzeptabel		Tabelle 5.1.1
6	Unter den Eichen	akzeptabel		
7	Weg bei WEA 7	akzeptabel		
8	Weg bei WEA 8	akzeptabel		
9	Weg bei WEA 9 und 10	akzeptabel		
10	Weg bei WEA 9 und 10	akzeptabel		

7 Formelzeichen und Abkürzungen

WEA Windenergieanlage RD Rotordurchmesser NH Nabenhöhe ETRS89 Europäisches Terrestrisches Referenzsystem 1989 UTM Universale Transversale Mercator Projektion WGS84 World Geodetic System 1984 ü. NN über Normalnull MEM Minimale endogen Sterblichkeit Kfz. Kraftfahrzeug A Skalierungsparameter der Weibull-Verteilung [m/s]Formparameter der Weibullverteilung k [-] Windgeschwindigkeit [m/s]h Höhe [m]Θ Azimutwinkel [°]

8 Literaturangaben

- /1/ International Energy Agency (IEA), IEA Wind TCP Task 19; International Recommendations for Ice Fall and Ice Throw Risk Assessments; October 2018.
- /2/ Bengt Tammelin et. al.; Wind Energy Production in Cold climates; Meteorological publications No.41, Finnish Meteorological Institute, Helsinki, Finland, February 2000.
- /3/ International Energy Agency (IEA), IEA Wind Task 19, State-of-the-Art of Wind Energy in Cold Climates, Edition October 2012.
- /4/ Deutsches Institut für Bautechnik (DIBt), Muster-Liste der Technischen Baubestimmungen -Fassung Juni 2015 bzw. Veröffentlichung der Muster-Verwaltungsvorschrift Technische Baubestimmungen, Ausgabe 2017/1.
- /5/ DIN EN 50126; Bahnanwendungen Spezifikation und Nachweis der Zuverlässigkeit, Verfügbarkeit, Instandhaltbarkeit und Sicherheit (RAMS); Deutsches Institut für Normung e.V., März 2000.
- /6/ Berichte der Bundesanstalt für Straßenwesen; Verkehrstechnik Heft V 291, Fahrleistungser hebung 2014 Inlandsfahrleistung und Unfallrisiko; Bergisch Gladbach, August 2017.
- /7/ OpenStreetMap und Mitwirkende; siehe Internet: http://www.openstreetmap.org, http://openda-tacommons.org, http://creativecommons.org.
- /8/ Jarvis A., H.I. Reuter, A. Nelson, E. Guevara, 2006, Hole-filled seamless SRTM data V3, Interna-

- tional Centre for Tropical Agriculture (CIAT).
- /9/ Bundesministerium für Verkehr, Bau und Stadtentwicklung; Mobilität in Deutschland 2008; Ergebnisbericht, Struktur Aufkommen Emissionen Trends; Bonn und Berlin, Februar 2010.
- /10/ Schneider J., Schlatter H. P.; Sicherheit und Zuverlässigkeit im Bauwesen Grundwissen für Ingenieure; 1. Auflage, B. G. Teubner, Stuttgart, 1994.
- /11/ Wichura, B., 2013. The Spatial Distribution of Icing in Germany Estimated by the Analysis of Weather Station Data and of Direct Measurements of Icing, Proceedings of the 15th International Workshop On Atmospheric Icing Of Structures (IWAIS 2013). Compusult Ltd., St. John's, Newfoundland and Labrador, September 8-11, 2013, pp. 303-309.
- /12/ International Electrotechnical Commission (IEC); IEC 61400-1 Ed. 4, Wind turbines Part 1: Design requirements; 88/521/CD Committee Draft, 22. Oktober 2015.
- /13/ HSE, Health and safety Executive. (n.d.); Risk analyses or 'predictive' aspects of comah safety reports guidance for explosives sites The COMAH Safety Report Process for Predictive Assessment of Explosives Sites, downloaded 2014-08-21; Retrieved from http://www.hse.gov.uk/comah/
- /14/ Oliver J., Creighton P.; Road Accidents, Bicycle injuries and helmet use: a systematic review and meta-analysis; International Journal of Epidemiology, 2017, 278-292.
- /15/ anemos Gesellschaft für Umweltmeteorologie mbH; anemos Windatlas für Deutschland, https://awis.anemos.de/, Windaten zum Standort Stemwede Tiefenriede heruntergeladen am 8.5.2020.
- /16/ Ministerium für Bauen, Wohnen, Stadtentwicklung und Verkehr des Landes Nordrhein-Westfalen; Verkehrsstärken Nordrhein-Westfalen, Straßenverkehrszählung 2015 an den Straßen des überörtlichen Verkehrs. Quelle der Verkehrszählungen: https://www.vm.nrw.de/verkehr/strasse/Strassenverkehr/Verkehrszaehlungen/index.php
- /17/ Nordex Energy GmbH; Allgemeine Dokumentation, Eiserkennung an Nordex Windenergieanlagen, Gültig für alle Nordex Windenergieanlagen, NALL01_008528_DE, Revision 05; 31.05.2019; Hamburg, Deutschland.
- /18/ Nordex Energy GmbH; Trudelbetrieb bei Eisansatz von Nordex Anlagen; per Email am 13.02.2018.

Anhang A: Detaillierte Berechnungsergebnisse Eisfall

A.1 Berechnung der Auftreffhäufigkeiten

Tabelle A.1.1 listet die maximal erreichte Flugweite der Bruchstücke bezogen auf den Fußpunkt der WEA auf. Die maximale Flugweite bezieht sich auf ein 99.95% Quantil. Einzelne Eisstücke erreichen größere Flugweite, sind aber für die Risikobewertung nicht relevant und werden auch nicht bei den Trefferhäufigkeiten berücksichtigt.

Tabelle A.1.1: Maximale Flugweite der betrachteten Eisstücke am Standort Stemwede Tiefenriede.

WEA	Maximale Flugweite [m]	Maximale Flugweite / (Nabenhöhe + Rotordurchmesser)
1	214.3	0.781
2	213.6	0.778
3	219.4	0.799
4	212.9	0.776
5	214.0	0.78
6	215.0	0.783
7	219.0	0.798
8	212.5	0.774
9	216.1	0.787
10	213.0	0.776

Die Flugweiten erreichen einen Maximalwert vom 0.799fachen aus Nabenhöhe plus Rotordurchmesser der WEA. Sie liegen damit unter dem in /2/ bei pauschaler Betrachtung geforderten konservativen Abstand vom 1.5fachen aus Nabenhöhe plus Rotordurchmesser der WEA.

In der Abbildung A.1.1 sind die für die Umgebung der WEA resultierenden Treffer pro 16 Quadratmeter und Jahr dargestellt.

Referenz-Nr.: F2E-2020-TGG-052, Revision 0 - ungekürzte Fassung

Abbildung A.1.1: Trefferhäufigkeiten von Eisstücken pro Rasterfläche (16m²) und Jahr in der Umgebung der WEA 1 - 10 am Standort Stemwede Tiefenriede (Karte /7/).

A.2 Schadenshäufigkeiten

Aus den ermittelten Flugbahnen ergeben sich für die Schutzobjekte im Bereich der WEA die in Tabelle A.2.1 aufgeführten Randbedingungen.

Tabelle A.2.1: Randbedingungen für die Bewertung von Sach- bzw. Personenschäden am Standort Stemwede Tiefenriede.

WEA	Schutzobjekt	Anzahl Treffer pro Jahr
WEA 1	Weg bei WEA1	7.6
	Weg bei WEA2	0.0
WEA 2	Weg bei WEA2	4.4
WEA3	Unter den Eichen	0.9
WEA 4	Weg bei WEA4	32.0

Referenz-Nr.: F2E-2020-TGG-052, Revision 0 - ungekürzte Fassung

WEA	Schutzobjekt	Anzahl Treffer pro Jahr
	Kreisstraße K75	27.4
WEA 5	Kreisstraße K76	0.0
	Weg bei WEA5	0.0
WEA 6	Unter den Eichen	0.4
WEA 7	Weg bei WEA7	14.9
	Weg bei WEA8	0.0
WEA 8	Kreisstraße K76	0.7
	Weg bei WEA8	0.0
WEA 9	Weg bei WEA9 und 10	6.5
WEA 10	Weg bei WEA9 und 10	6.4

Die Kreisstraßen K75 und K76 werden nicht von Eisstücken getroffen.

Für die Bewertung von Personenschäden wird davon ausgegangen, dass jedes Kfz im Mittel mit 1.5 Personen besetzt ist. Dies entspricht der durchschnittlichen Besetzungszahl von Pkw in Deutschland /9/. Eine infolge eines Treffers durch Eis resultierende Verkettung von Unfällen wurde nicht betrachtet.

Mit den genannten Ausführungen ergeben sich die in Tabelle A.2.2 aufgelisteten Unfallhäufigkeiten bzw. Risiken.

Das in Abhängigkeit von der Aufenthaltshäufigkeit von Personen zu betrachtende Risiko ist in Tabelle A.2.2 jeweils fett gedruckt.

Relevante Überschreitungen der Risikogrenzwerte gemäß Tabelle 2.3.3.1 bzw. Werte im ALARP-Bereich, die eventuell weitere Maßnahmen erfordern, sind in Tabelle A.2.2 jeweils kursiv gerduckt.

Die zugrunde gelegten Parameter sind noch einmal in Tabelle A.2.3 aufgeführt.

Tabelle A.2.2: Kollektive und individuelle Risiken für Personenschäden am Standort Stemwede Tiefenriede.

WEA	Schutzobjekt	Kollektives Personenrisiko	Individuelles Personenrisiko	
Risiken pro WEA:				
1	Weg bei WEA1	6.36*10 ⁻⁶ (einmal in 157 000 Jahren)	5.09*10 ⁻⁷ (einmal in 1.9 Mio. Jahren)	

Gutachtliche Stellungnahme zu Risiken durch Eiswurf und Eisfall am Standort Stemwede Tiefenriede, Juni 2020 für enercity Erneuerbare Projekte GmbH & Co.KG

Referenz-Nr.: F2E-2020-TGG-052, Revision 0 - ungekürzte Fassung

WEA	Schutzobjekt	Kollektives Personenrisiko	Individuelles Personenrisiko
2	Weg bei WEA2	3.69*10 ⁻⁶ (einmal in 270 000 Jahren)	2.96*10 ⁻⁷ (einmal in 3.3 Mio. Jahren)
3	Unter den Eichen	7.90*10 ⁻⁷ (einmal in 1.2 Mio. Jahren)	6.32*10 ⁻⁸ (einmal in 15 Mio. Jahren)
4	Weg bei WEA4	2.66*10 ⁻⁵ (einmal in 37 000 Jahren)	2.13*10 ⁻⁶ (einmal in 469 000 Jahren)
5	Weg bei WEA5	2.28*10 ⁻⁵ (einmal in 43 000 Jahren)	3.65*10 ⁻⁶ (einmal in 273 000 Jahren)
6	Unter den Eichen	3.19*10 ⁻⁷ (einmal in 3.1 Mio. Jahren)	2.55*10 ⁻⁸ (einmal in 39 Mio. Jahren)
7	Weg bei WEA7	1.24*10 ⁻⁵ (einmal in 80 000 Jahren)	9.93*10 ⁻⁷ (einmal in 1.0 Mio. Jahren)
8	Weg bei WEA8	5.63*10 ⁻⁷ (einmal in 1.7 Mio. Jahren)	4.51*10 ⁻⁸ (einmal in 22 Mio. Jahren)
9	Weg bei WEA9 und 10	5.39*10 ⁻⁶ (einmal in 185 000 Jahren)	4.31*10 ⁻⁷ (einmal in 2.3 Mio. Jahren)
10	Weg bei WEA9 und 10	5.33*10 ⁻⁶ (einmal in 187 000 Jahren)	4.26*10 ⁻⁷ (einmal in 2.3 Mio. Jahren)

Tabelle A.2.3: Auflistung der verwendeten Einflussparameter.

Einflussparameter	Wert
Vereisungshäufigkeit pro Jahr	0.018 (1.8%)
Vereisungshäufigkeit der WEA bei Vereisungsbedingungen	1 (100%)
Eisstücke pro Vereisungsereignis	165.3
Vereisungsereignisse pro Jahr (vollständige und dickschichtige Vereisung)	6.7
Gesamtanzahl Eisstücke pro Jahr	1108
Für die Statistik berücksichtigte Anzahl an Eisstück-Flugbahnen	~ 1 000 000
Verkehrsaufkommen auf der Kreisstraße K75 Kfz/Tag	573
Verkehrsaufkommen auf der Kreisstraße K76 Kfz/Tag	849
Verkehrsaufkommen auf den landwirtschaftlichen Wegen Kfz/Tag	10
Personenaufkommen auf den landwirtschaftlichen Wegen Personen/Tag	10
Anzahl Personen pro Kfz	1.5