Windenergienutzung in der Gemeinde Altenbeken

Projektkurzbeschreibung

Errichtung und Betrieb von 1 Windenergieanlage des Typs **Vestas V162 / 6.2** mit 6.200kW Nennleistung

Träger des Vorhabens:

WKA Austerdahl GbR

Pfarrer-Schlottmann-Str.18, 33184 Altenbeken-Schwaney

Inhaltsverzeichnis

Wir	ndener	gienutzung in der Gemeinde Altenbeken	1					
Pro	jektkur	zbeschreibung	1					
1	Projektüberblick							
	1.1	Größe des Projekts	5					
	1.2	Nutzung und Gestaltung von Wasser, Boden, Natur und Landschaft	6					
	1.3	Abfallerzeugung	6					
	1.3.1	Abfallmengen während der Errichtung	6					
	1.3.2	Abfallmengen nach Inbetriebnahme	7					
	1.3.3	Abfallmengen nach Nutzungsaufgabe	8					
	1.4	Umweltverschmutzung und Belästigung	8					
	1.5	Anlagensicherheit	10					
	1.6	Unfallrisiko, insbesondere im Hinblick auf die verwendeten Stoffe und Technologien	10					
2	Stand	dort des Vorhabens	10					
	2.1	Nutzung des Gebietes	11					
	2.2	Plan des Standortes mit Umgebung	11					
3	Infras	struktur	12					
	3.1	Wegebau und Kranstellflächen	12					
4	Eiger	tumsverhältnisse	15					
5	Kenn	zeichnung von Luftfahrthindernissen	16					

1 Projektüberblick

Geplant sind die Errichtung und der Betrieb von einer (1) Windenergieanlage des Typs **Vestas V162** mit einer Nabenhöhen von 169 m und einer Gesamthöhe von 250 m.

Technische Daten

Nabenhöhen : 169 m

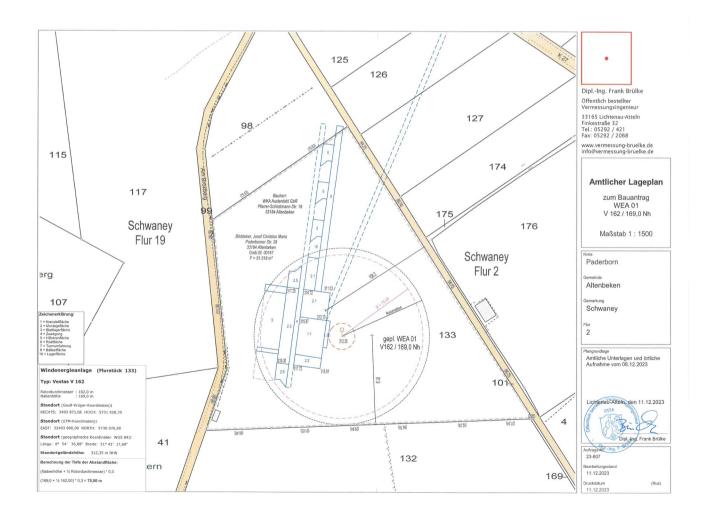
Nennleistung : 6.200 kW

Standort

PLZ, Ort : 33184, Altenbeken

Gemarkung : Schwaney

W- Nr.	Bezeichnung	Ty p	Rotor- durch- messer	Nabenhöhe (m)	UTM WGS	684 Zone 32	Höhe über NHN (m)
			(m)		X (m)	Y (m)	
W1	WEA 1	Vestas V162 - 6.2MW	162.0	169	493800.00	5730076.00	312,35

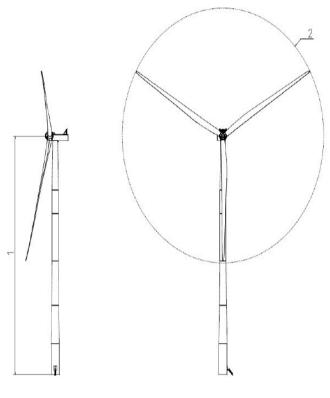

Detailinformation zum Standort:

WEA 1 - V162 - 169 m

Flur 2 Flurstück 133

(UTM)

Koordinate East : 493800.00 Koordinate North : 5730076.00


1.1 Größe des Projekts

Anlagentyp : Vestas V162

Nabenhöhe : 169 m

Rotordurchmesser : 162,00 m

Gesamthöhe : 250 m

1: Nabenhöhen: Vgl. Leistungsspezifikationen 2: Rotordurchmesser: 162/172 m

Fläche Fundament*

^{*}abhängig von Gründungsart, Annahme Flachgründung

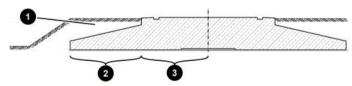


Abb. 1: Fundamentschnitt mit Aufschüttung

1 Bodenaufschüttung	2 Sporn
3 Sockel	

1.2 Nutzung und Gestaltung von Wasser, Boden, Natur und Landschaft

Grundwasserentnahme : keine Wasserverbrauch : null

Eingesetzte Energieträger : Elektrizität

Energieverbrauch : 0.1 - 0.3 % des Jahresertrags pro Anlage (Versorgung der Anla-

gensteuerung bei Schwachwind z. B. Windrichtungsnachführung)

1.3 Abfallerzeugung

1.3.1 Abfallmengen während der Errichtung

Abfälle fallen nur in sehr geringem Umfang bei der Errichtung der Anlage an (z. B. Kunststoffbehälter für Betriebsmittel). Die Abfälle werden ordnungsgemäß bei den Entsorgungsunternehmen abgegeben.

Menge und Art der Abfallmaterialien

EnVentus™ V162-7.2 MW & V172-7.2 MW

Abfallverwertung

Lfd. Nr.	Material	AVV- Code	Menge	Projektmenge	t	m³	Anfallhäufigkeit	
1	Pappe	150101	1,3			X	1x bei Montage	
2	PE-Folie	150102	2,5			X	1x bei Montage	
3	Holz	150103	5			X	1x bei Montage	
4	Styropor	150102	0,04			Х	1x bei Montage	
5	Kabelreste	170411	0,05			X	1x bei Montage	
6	Kabelbinderreste	150102	0,03			X	1x bei Montage	

Abfallbeseitigung

lfd. Nr.	Material	AVV- Code	Menge	Projektmenge	t	m³	Anfallhäufigkeit
7	verschmutzte Papiertücher	150203	0,03			X	1x bei Montage

1.3.2 Abfallmengen nach Inbetriebnahme

Abfälle fallen nur in sehr geringem Umfang bei der Wartung der Anlage an (z. B. Kunststoffbehälter für Betriebsmittel). Die Abfälle werden ordnungsgemäß bei den Entsorgungsunternehmen abgegeben.

lfd. Nr.	Material	AVV-Code	Menge	t	1	Wasserge- fährdend	Anfallhäufigkeit			
8	Hauptgetriebe, Generator & Hau	ıptlager								
Getriebetyp abhängig	ExxonMobil MOBILGEAR SHC XMP 320 (0043-8204) oder Castrol Optigear Synthetic CT320 (0043-8197)	130206*	1100	ı.	x	x	Ölwechsel abhängig vom jährlichem Öltest (Wechsel ca. alle 5 Jahre)			
9	Windnachführungsverzahnung	(Drehplatte)								
	Klüberplex AG 11-462 (0043- 8195) oder Shell Gadus S5 T460 1.5 (0038- 7779)	130205*	0,09	x		x	jährlich (max.)			
10	Nabe - Blattlager									
	Klüberplex BEM 41-141 (0043- 8178)	150202*	0,039	X	365	x	jährlich (max.)			
11	weitere Komponenten									
	Klüberplex BEM 41-132 (0043- 8182)	150202 *	5		X	х	jährlich (max.)			
12	weitere Komponenten									
	Klüberplex AG 11-462 (0043- 8195)	130205*	0,005	X	88	x	jährlich (max.)			
13	Windnachführungsantriebe Yaw Gears (Azimutsystem Drehgetriebe)									
***	Shell Omala S4 WE 320 (0043- 7822)	130206*	105		x	X	kein Austausch			
14	Nabe – Pitchsystem Hydrauliköl									
100	MOBIL DTE 10 EXCEL 32 (0027-8080), Rando WM 32 (0043-8223) oder	130110*	<u>V162</u> : 380 <u>V172</u> : 425		x	x	Ölwechsel abhängig vom jährlichem Öltest (Wechsel ca. alle 5 Jahre)			

lfd. Nr.	Material	AVV-Code	Menge	t	1	Wasserge- fährdend	Anfallhäufigkeit		
	MOBIL SHC 524 (0076-5693)	130111*	<u>V162</u> : 380 <u>V172</u> : 425	×.	x	x	Ölwechsel abhängig vom jährlichem Öltest (Wechsel ca. alle 5 Jahre)		
15	Maschinenhaus - Hydraulikstati	on (Hydrauliko	il)						
	MOBIL DTE 10 EXCEL 32 (0027-8080), Rando WM 32 (0043-8223)	130110*	890		x	x	Ölwechsel abhängig vom jährlichem Öltest (Wechsel ca. alle 5 Jahre)		
	oder MOBIL SHC 524 (0076-5693)	130111*	890		x	x	Ölwechsel abhängig vom jährlichem Öltest (Wechsel ca. alle 5 Jahre)		
16	Maschinenhaus Kühlsystem								
	Delo XLC Antifreeze/Coolant – Premixed 50/50 (EN:0087-2645)	160114*	600		X	х	Alle 5 Jahre		
17	Transformer Dielektrische Isolierflüssigkeit								
****	MIDEL eN 1204 (0110-6263), MIDEL eN 1215 (0110-6264) oder Cargill ENVIROTEMP TM FR3 TM Fluid (0110-6261)	130309*	3100		х	х	kein Austausch		

1.3.3 Abfallmengen nach Nutzungsaufgabe

Da Windenergieanlagen nach Aufgabe der Nutzung fachgerecht unter Beachtung der Sicherheitsvorschriften demontiert werden, und wassergefährdende und brennbare Stoffe oder sonstige Abfälle nicht auf dem Grundstück verbleiben, entstehen keine schädlichen Umwelteinwirkungen und sonstigen Gefahren, erheblichen Nachteile und Belästigungen für die Allgemeinheit und die Nachbarschaft.

Zum heutigen Zeitpunkt ist noch nicht absehbar, welche Recyclingtechniken nach Aufgabe der Nutzung zum Einsatz kommen, daher können hierüber noch keine abschließenden Aussagen getroffen werden.

Es liegt im eigenen wirtschaftlichen Interesse des Antragstellers, den größtmöglichen Materialanteil der Anlage wiederzuverwenden bzw. zu verwerten. Nicht verwertbare Maschinenteile und Betriebsstoffe werden den geltenden Vorschriften entsprechend ordnungsgemäß beseitigt.

1.4 Umweltverschmutzung und Belästigung

Mögliche Emissionen: Schall und Schattenwurf

Die Auswirkungen bestehen während der Betriebszeit der Anlage. Die Lärmemissionen ändern sich mit Windrichtung und Windgeschwindigkeit. Der Schattenwurf ist nur bei entsprechender Rotorstellung in den Morgen- und Abendstunden und auch nur zu bestimmten Jahreszeiten möglich und auch nur dann, wenn keine Bewölkung oder Nebel vorherrschen. Zur genauen Bestimmung

der Lärmemissionen und des Schattenwurfs werden Prognosen erstellt. Die Prognosen gehen immer vom so genannten "worst case" aus, d. h. von der ungünstigsten Situation, in der eine maximale Belastung entstehen kann.

Die Schallabstrahlung einer Windenergieanlage ist nie konstant, sondern stark von der Leistung und somit der Windgeschwindigkeit abhängig. Im Schallgutachten wird von einer ungehinderten Schallausbreitung ausgegangen, die in der Realität so kaum anzutreffen ist. Erreicht die Windenergieanlage ihre Nennleistung und damit die maximale Geräuschemission, sind auch die windinduzierten Geräusche an den Immissionspunkten laut und überdecken in der Regel die Anlagengeräusche.

Die Drehung des Rotors kann an sonnigen Tagen Hell-Dunkel-Effekte (Schattenwurf) erzeugen, welche mit geringer werdendem Abstand zu Wohngebieten eine längere Schattenwurfzeit begründen. Die theoretisch möglichen Schattenwurfzeiten können für festgelegte Immissionspunkte auf Grund der feststehenden astronomischen Daten genau ermittelt werden. Auch hier wird in der Prognose von einer maximalen Belastung ausgegangen, die nur beim gleichzeitigen Zusammentreffen mehrerer Faktoren eintreten kann (konstante Windgeschwindigkeit, Sonnenstand, ungehinderte Sonneneinstrahlung, keine Bewölkung, klare Sicht).

Für den Schattenwurf und für die Lärmemissionen sind Grenzwerte einzuhalten, die in der Genehmigung festgehalten werden und im Betrieb einzuhalten sind. Vielfach wird noch der sog. "Discoeffekt" als besonders störende Erscheinung bei Windenergieanlagen benannt. Dieser könnte durch die Reflexion des Sonnenlichts an den Rotoren und durch die Drehung des Rotors entstehen.

Durch Verwendung einer gering reflektierenden Oberflächenbeschichtung und eines matten Farbanstrichs für Rotoren tritt dieses Problem bei modernen Windenergieanlagen nicht mehr auf.

Die Prognosen zur Bestimmung der genauen Lärmemission und des Schattenwurfs weisen nach, dass die Auswirkungen nicht erheblich sind und die Richtwerte durch entsprechende Maßnahmen eingehalten werden.

Windenergieanlagen sind keine relevanten Infraschallquellen:

"Die Infraschallpegel in der Umgebung von Windenergieanlagen liegen weit unter der Wahrnehmbarkeitsschwelle. Es ergeben sich keine Hinweise auf eine mögliche Gefährdung oder Beeinträchtigung von Personen durch den von Windenergieanlagen ausgehenden Infraschall."

[Klug, Helmut, DEWI

Infraschall von Windenergieanlagen: Realität oder Mythos? Infrasound from wind turbines: A ,German' Problem? DEWI Magazin Nr. 20, Seite 6, Februar 2002]

"Messtechnisch kann nachgewiesen werden, dass Windenergieanlagen Infraschall verursachen. Die festgestellten Infraschallpegel liegen aber weit unterhalb der Wahrnehmungsschwelle des Menschen und sind damit völlig harmlos."

[Landesumweltamt Nordrhein-Westfalen

Materialien Nr. 63 Windenergieanlagen und Immissionsschutz, Seite 19, Essen 2002]

1.5 Anlagensicherheit

Mögliche Sicherheitsbedenken gegen den Betrieb der Anlage sind unbegründet. Moderne Windenergieanlagen wie die Vestas V162 EnVentus verfügen über einen hohen Sicherheitsstandard und unterliegen einer permanenten Überwachung.

1.6 Unfallrisiko, insbesondere im Hinblick auf die verwendeten Stoffe und Technologien

Da Windenergieanlagen nicht zum dauerhaften Aufenthalt von Menschen bestimmt sind, besteht ein Unfallrisiko nur bei Errichtung und Wartung der Anlagen. Dabei werden die Vorgaben zum Arbeitsschutz beachtet und deren Einhaltung regelmäßig durch Mitarbeiter der Abteilung Arbeitsschutz des Anlagenherstellers überwacht.

Die Arbeiten in der Windenergieanlage werden nur von geschultem Personal vorgenommen.

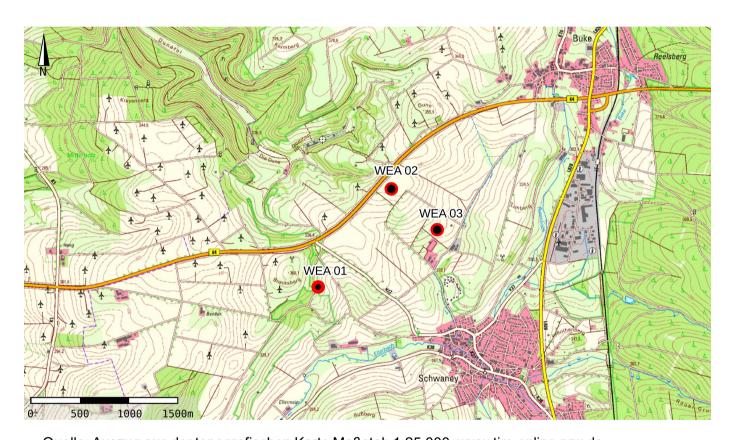
Arbeiten an den elektrischen Anlagen dürfen nur von Elektrofachkräften gemäß den elektrotechnischen Vorschriften vorgenommen werden.

2 Standort des Vorhabens

ca. 1,5 km nordwestlich von Schwaney im Kreis Paderborn (Nordrhein-Westfalen). Der geplante Anlagenstandort befindet sich auf einer durch Ackerbau geprägten Hochebene (s. Abb. 1).

Westlich grenzt ein Naturschutzgebiet an, östlich ist die Straße Duner Weg (K27), süd-östlich die Ortslage Schwaney und im Norden die Bundesstraße B64.

Beim betrachteten Gebiet handelt es sich um: durch eine vom Ackerbau geprägten Hochebene mit landwirtschaftlich erschlossenen Flächen ca. 1,5 km nordwestlich des Ortsteils Schwaney der Gemeinde Altenbeken im Kreis Paderborn (PLZ Gebiet 33184). Westlich grenzt ein Naturschutzgebiet an, östlich ist die Straße Duner Weg (K27), süd-östlich die Ortslage Schwaney und im Norden die Bundesstraße B64.


In der Gemarkung Schwaney ist die Flur 2 in der Planung betrachtet.

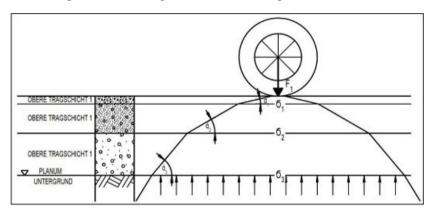
Das Gebiet erstreckt sich über den Höhenkamm "Austertal" mit einer durchschnittlichen Höhe von 300m über NN.

2.1 Nutzung des Gebietes

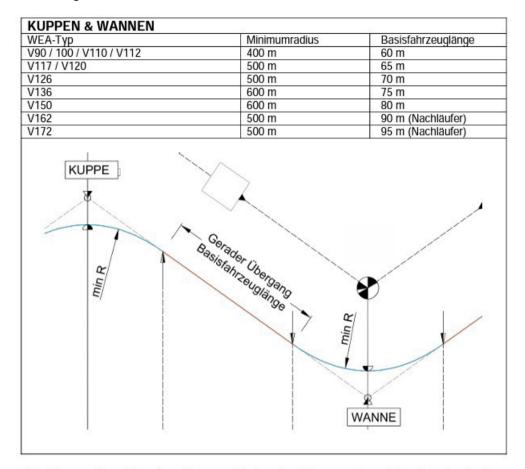
Bei den betrachteten Flächen handelt es sich um Freiflächen in Landwirtschaftlicher-Nutzung und werden z.T. als Grün- oder Ackerland genutzt und bewirtschaftet.

2.2 Plan des Standorts mit Umgebung (WEA01)

Quelle: Auszug aus der topografischen Karte Maßstab 1:25.000, www.tim-online.nrw.de


3 Infrastruktur

3.1 Wegebau und Kranstellflächen


Kranstellfläche und Zuwegung sind mit grobkörnigem Tragmaterial aufgebaut und bieten genügend Festigkeit für die Errichtung des Krans bei gleichzeitiger Versickerungsmöglichkeit für Regenwasser.

Kranstellflächen und Zuwegung sind in den Karten sowie im Dokument "Anforderungen an Transportwege und Kranstellflächen" unter Register 4 detailliert beschrieben.

Abbildung 1: Darstellung der Lastverteilung

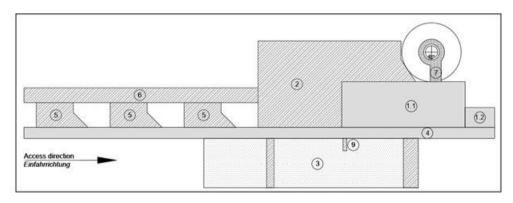


Abbildung 2: Kurvenradien

<u>Hybridturm:</u> Abweichend zu den o.g. sind andere Werte während des Bauabschnittes Fundament- und Betonturmbau möglich. Minimumradius von 250 m und Basisfahrzeuglänge von 25m.

Abbildung 3: Prinzipdarstellung einer Kranstellfläche

Nr.	Teilflächen- bezeichnung	Verwendung	Achslast (t) gebrauchs- tauglich	Anforderungen/ Beschaffenheit
1	Kranstellfläche	Montagekran		0% Gefälle, Flächenlast: 260 kN/m² für NH ≤152m 350- 400 ⁽²⁾ kN/m² für NH >152m, dauerhaft ausgebaut, Krantyp z.B. LG1750/ LR11000
2	Montagefläche	Montage	12	0 % Gefälle; temporär ausgebaut, zum Teil Wiederherstellung im Servicefall notwendig
3	Lagerfläche	Rotorblatt- lagerung	6 (nur Blatt- ablage- streifen)	eben und frei von Hindernissen, Ablagestreifen 30 cm angehoben, höhengleich zueinander, in alle Richtungen neigungsfrei, temporär ausgebaut
4	Transportweg	Transport	12	vgl. Kapitel 2, dauerhaft ausgebaut
5	Hilfskranfläche	Hilfskran	12	<2 % Gefälle, temporär ausgebaut, Wiederherstellung im Servicefall notwendig
6	Rüstfläche	Rüsten	12	<2 % Gefälle vom Kranmittelpunkt, temporär ausgebaut, Wiederherstellung im Servicefall notwendig
7	Turmsockelumfahr ung und Zufahrt	Arbeitsbereich	6	dauerhaft ausgebaut
8	Ballast- und Hilfskranfläche	Ballastieren des Großkranes	12	eben und frei von Hindernissen, temporär ausgebaut, Wiederherstellung im Servicefall notwendig
9	Turmlager	Lagerfläche	12	temporär ausgebaut
10	Werkzeuglager	Lagerfläche	12	<2 % Gefälle, temporär ausgebaut

4 Eigentumsverhältnisse

Die Eigentumsverhältnisse des für die Errichtung der Anlage genutzten Grundstücks stellt sich wie folgt dar:

<u>WEA 1</u>

Eigentümer: Josef Christian Maria

Böddeker,

Paderbornerstraße 29

PLZ, Ort: 33184 Altenbeken

Gemarkung: Schwaney

Flur: 2

Flurstück: 133

5 Kennzeichnung von Luftfahrthindernissen

Gemäß Teil 3 "Windenergieanlagen, Abschnitt 1, Allgemeines" der Allgemeinen Verwaltungsvorschrift zur Kennzeichnung von Luftfahrthindernissen gilt:

"Windenergieanlagen werden wie allgemeine Luftfahrthindernisse (Teil 2 der allgemeinen Verwaltungsvorschrift) behandelt, soweit … nichts Abweichendes vorgesehen ist"

Luftfahrthindernisse sind unter bestimmten Voraussetzungen zu kennzeichnen.

Wie bzw. ob die Kennzeichnung ausgeführt werden muss, wird im Genehmigungsbescheid festgelegt.

Hier verweisen wir u. a. auf folgende Unterlagen, die dem Register 10 "Anlagensicherheit" beigefügt sind:

- Kopie des Dokumentes "Gefahrenfeuer in Deutschland gemäß AVV-Kennzeichnung (2020): Tages- und Nachtkennzeichnung von Vestas Windenergieanlagen in Deutschland"
- Kopie des Dokumentes "Notbeleuchtung an Vestas Windenergieanlagen"
- Kopie des Dokumentes "Allgemeine Spezifikation des Vestas Sichtweitenmessgerät ORGA SWS050-N-AC"
- Kopie des Dokumentes "Allgemeine Spezifikation Gefahrenfeuer ORGA AL L240-GFW IRG-G-BR Feuer W, Rot Intensität, Rot blinkend/Infrarot blinkend"