

STADT RECKLINGHAUSEN

- FACHBEREICH 62 - INGENIEURWESEN -

Stadtentwicklungsgesellschaft Recklinghausen mbH

ISEK HILLERHEIDE – BAU DES HILLERSEES IN RECKLINGHAUSEN –

Heft 9.5: Vorstufe RBF Nord Vorstatik

Inhaltsverzeichnis

Position	Beschreibung	Seite
	Inhalt	1
L	Literatur	2
V	Vorbemerkung	2
A BP	Nachweis der Auftriebssicherheit, Bodenplatte Filter	8
R1 RT	Rissbreitenbeschränkung Retentionsbodenfilter Wände h = 35 cm	Ş
R2_RT	Rissbreitenbeschränkung_Retentionsbodenfilter_Bodenplatte h = 35 cm	12
A_VST	Nachweis der Auftriebssicherheit	16
R2	Rissbreitenbeschränkung_Schacht_Wände h = 30 cm	17
B1	Vorbemessung Vorstufe Nord	20
GiRo	Gitterrostabdeckung auf Betriebssteg	90
S	Schlussseite	91

wer version zozo - Och) igni zoro - ino AEO Conward Cinon

Stadtentwicklungsgesellschaft Recklinghausen mbH

ISEK Hillerheide - Vorstatik Vorstufe RBF Nord

Verwendete Literatur

[1]	DIN EN 1990:2010-12
L'J	

Grundlagen der Tragwerksplanung

[2] DIN EN 1990/NA:2010-12:

Nationaler Anhang - National festgelegte Parameter - Grundlagen der Tragwerksplanung

[3] DIN EN 1991-1-1:2010-12:

Einwirkungen auf Tragwerke

Teil 1-1: Allgemeine Einwirkungen auf Tragwerke

[4] DIN EN 1991-1-1/NA:2010-12:

Nationaler Anhang - National festgelegte Parameter

Einwirkungen auf Tragwerke

Teil 1-1: Allgemeine Einwirkungen auf Tragwerke

[5] Handbuch Eurocode 1

Einwirkungen / Band 3 : Brückenlasten

1. Auflage 2013 IIN Deutsches Institut für Normung e.V

[6] DIN EN 1992-1-1:2011-01:

Bemessung und Konstruktion von Stahlbeton- und Spannbetonbauwerken

Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den

Hochbau

[7] DIN EN 1992-1-1/NA:2011-01:

Nationaler Anhang - National festgelegte Parameter

Bemessung und Konstruktion von Stahlbeton- und Spannbetonbauwerken

Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den

Hochbau

[8] Fingerloos/Hegger/Zilch

EUROCODE 2 für Deutschland

Kommentierte Fassung

1. Auflage 2012

[9] Schneider

Bautabellen für Ingenieure

23. Auflage 2018

[10] Deutscher Beton- und Bautechnik-Verein e.V.

Merkblätter Bautechnik

Begrenzung der Rissbildung im Stahlbeton- und Spannbetonbau

Fassung Mai 2016

[11] DIN EN 1997-1: 2004 + A1:2013:

Entwurf, Berechnung und Bemessung in der Geotechnik

ISEK Hillerheide - Vorstatik Vorstufe RBF Nord

Teil 1: Allgemeine Regeln

[12] Deutsche Gesellschaft für Geotechnik e.V.: Empfehlung des Arbeitskreises "Baugruben" EAB 5.Auflage 2012

[13] Deutsche Gesellschaft für Geotechnik e.V Empfehlung des Arbeitsausschusses "Ufereinfassung" EAU 2012 11. Auflage 2012

Verwendete Unterlagen

[14] ARGE Hillerheide

Bjoernsen Beratende Ingenieure GmbH Ingenieurbüro H. Berg &Partner GmbH ISEK Hillerheide See-, Kanal- und Entwässerungsplanung Ehemalige Trabrennbahn Entwurfplanung Vorstufe RBF Nord & Süd Entwurfsplan E12, E13, E14 Stand 08/21

[15] HPC AG

ISEK Hillerheide - Entwicklung des ehemaligen Trabrennbahnareals Baugrunduntersuchungen im Bereich des geplanten Sees Baugrundgutachten Stand 08.06.2020

ISEK Hillerheide - Vorstatik Vorstufe RBF Nord

Vorbemerkungen

Im Zuge der Umplanung des Geländes der ehemaligen Trabrennbahn in Recklinghausen soll ein See gebaut werden. Die Stadtentwicklungsgesellschaft Recklinghausen mbH (SER GmbH) hat die Björnsen Beratende Ingenieure GmbH und das Ingenieurbüro Berg mit der See und Entwässerungsplanung, sowie der hierfür erforderlichen Tragwerksplanung beauftragt.

Im Rahmen der Herstellung des Sees soll im nördlichen Seebereich ein Retentionsbodenfilter und ein Bauwerk, bezeichnet als Vorstufe Nord, gebaut werden. Bei der Vorstufe handelt sich hierbei um einen Stahlbetonschacht in Ortbetonbauweise, mit den groben Abmessungen B /L / H = 4,5 / 12,0 / 4,30 m mit zwei unterschiedlichen Gründungsniveaus.

Bei dem Retentionsfilter handelt es sich um ein Stahlbetonbecken mit aufgebrachter Filterschicht und Drainageschicht.

In der nachfolgenden Vorstatik werden die beiden Bauwerke vorbemessen. Der Nachweis eines ggfs erforderlichen Baugrubenverbaus ist nicht Gegenstand dieser Vorstatik, entsprechende Nachweise und Planungen sind gesondert zu erbringen.

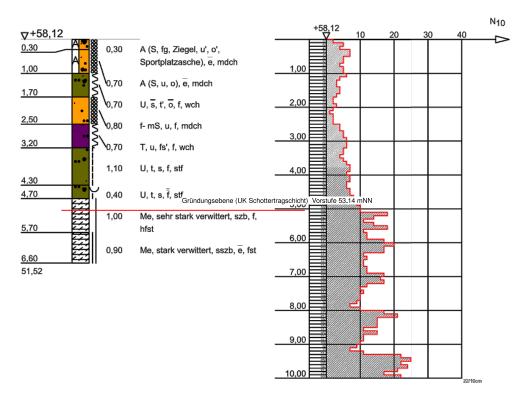
Baugrund und Gründung

Als Grundlage für die Vorstatik wir das Baugrundgutachten der HPC AG [15] vom 08.06.2020 herangezogen.

Gründung des Schachtbauwerks

Für das geplante Schachtbauwerk Vorstufe Nord ist im vorgenannten Baugrundgutachten keine Gründungsempfehlung enthalten.

Der nächstgelegene Baugrundaufschluss ist gem. vorliegender Baugrunduntersuchungen RKS 4. Das Gründungsniveau des Bauwerks liegt mit Berücksichtigung der geplanten Schottertragschicht auf 53.14 mNN im verwitterten Mergel.


In der nachfolgenden Vorstatik wird für die Bemessung der Bodenplatten folgender Bettungsmodul angenommen:

 $k_{s,k} = 20000 \text{ kN/m}^3$

Diese Annahme ist im Rahmen der weiteren Genehmigungsplanung vom Baugrundgutachter zu bestätigen.

Die Gründungssohle des Schachtbauwerkes ist von einem Baugrundgutachter auf ihre ausreichende Tragfähigkeit hin zu beurteilen.

Gemäß Baugrundgutachten soll die Verfüllung von Arbeitsräumen mit Mineralgemisch der Körnung 0/32 oder 0/45 mm erfolgen. Für die Ermittlung des Erddrucks werden folgende Bodenkennwerte für das Hinterfüllmaterial angenommen:

Bauzustände und Baugrube:

Für alle nicht nachgewiesenen Bauzustände während der Baumaßnahme ist vom ausführenden Unternehmer die Stabilität aller Bauteile durch Abstützungen und Versteifungen sicherzustellen. Die Bemessung des Baugrubenverbaus sowie gegebenenfalls notwendiger Aussteifungen bzw. Verankerungen ist nicht Gegenstand dieser Vorstatik, sie ist gesondert zu erbringen. In dieser Vorstatik wird davon ausgegangen, dass in keinem Bauzustand Lasten aus dem Baugrubenverbau in die Stahlbetonbauteile eingeleitet werden.

Sollten sich im Verlauf der weiteren Ausführungsplanung Abweichungen von o.g. Annahmen ergeben, ist der Aufsteller dieser Vorstatik hierüber zu informieren.

ISEK Hillerheide - Vorstatik Vorstufe RBF Nord

Bemessungswasserstände

Der Bemessungswasserstand ist gem. Grundwassermodell und Angabe der Planer wie folgt anzunehmen:

Bemessungswasserstand = 56.30 mNN

Baustoffe

Schachtbauwerk

Expositionsklassen XC4, XD3, XF2, XA1, WA (umlaufend)

Festigkeitsklasse C 30/37, r < 0.3

Überwachungsklasse 2 Betonstahl B 500 B

Betondeckung $c_{nom} = c_{min} + \forall c_{dev}$

 $c_{nom} = 50 + 10 = 60 \text{ mm}$ (Bodenplatte oben, Wände allseits und Deckenplatte)

 $c_{nom} = 60 + 20 = 80 \text{ mm}$ (Bodenplatte unten)

Retentionsbodenfilter

Expositionsklasse XC4, XF3, XA1, WF, WU

Beton $C \frac{30}{37} r < 0.3$

Überwachungsklasse 2 Betonstahl B 500 B

Betondeckung: $c_{nom} = c_{min} + \forall c_{dev}$

 $c_{nom} = 50 + 10 = 60 \text{ mm}$ (Bodenplatte oben, Wände allseits)

 $c_{nom} = 60 + 20 = 80 \text{ mm}$ (Bodenplatte unten)

Lastannahmen

- Eigengewicht Konstruktion:

Automatisch durch Bemessungsprogramm: Stahlbeton, ∴= 25 kN/m³

- Hinterfüllung landseitigen Stützwand

..'... = 20/10 kN/m³

 $-' = 30^{\circ}$

Erddruckansatz:

Stahlbetonbemessung: Erhöhter aktiver Erddruck

- Verkehrslast im Bereich des Bauwerkes Vorstufe:

b-viewer version zozu - copyrigni zu 19 - mb AEC sontware Gmbri

Stadtentwicklungsgesellschaft Recklinghausen mbH

ISEK Hillerheide - Vorstatik Vorstufe RBF Nord

In der nachfolgenden Vorbemessung wird davon ausgegangen, dass der Verkehr im Revisionsfall die Lasten eines SLW 30 nicht überschreitet und die Befahrung nur auf bis zur Gitterostabdeckung erfolgt.

 $q_k = 16.7 \text{ kN/m}^2$

Pos. A BP Nachweis der Auftriebssicherheit, Bodenplatte Filter

Der Nachweis der Auftriebssicherheit der Bodenplatte wird für den Bemessungswasserstand BHGW = 57.00 mNN geführt. Eine Teilfüllung sowie das Eigengewicht der Wände wird auf der sicheren Seite liegend nicht angesetzt.

Bemessungswasserstand:	57.00					
Bauteil	Breite [m]	Länge [m]	Dicke [m]	Faktor [-]	Wichte [kN/m³]	Gewicht [kN]
Bodenplatte, h = 0.35 m						
Bodenplatte, hoch	1.00	1.00	0.35	1.0	24.0	8.40
Fläche Bodenplatte	0.00					8.4
Auflast						
Filterschicht	1.00	1.00	0.50	1.0	17.7	8.8
Dränschicht	1.00	1.00	0.40	1.0	17.7	7.1
Summe Auflast					G _k =	24.3
Auftrieb bei BHGW = 57.00 mNN 57.00 - 54.85 = 2.15 m	1.00	1.00	2.15	1.0	10.0	21.5
Summe Auftrieb					Q _{A,k} =	21.5
Ausnutzung der Auftriebsicherheit:	(Q _{A,k} *1.05)/(G	G _k *0.95) =				0.98 < 1.0

Der Nachweis der Auftriebssicherheit erfüllt.

Pos. R1 RT Rissbreitenbeschränkung Retentionsbodenfilter Wände h = 35 cm

Nachfolgend wird für die aufgehenden Wände (h = 35 cm) der Nachweis der Rissbreitenbeschränkung geführt.

Baustoffe:

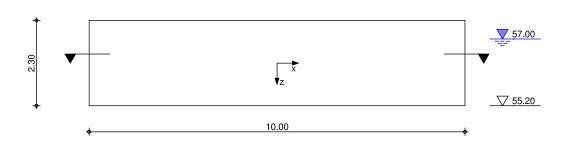
Stahlbeton:

Expositionsklasse XC4, XF3, XA1, WF, WU

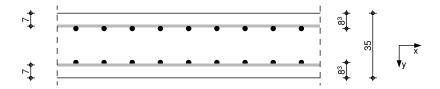
Beton C 30/37 r < 0.3

Überwachungsklasse 2 Betonstahl B 500 B

Betondeckung: $c_{nom} = 60 \text{ mm}$


Bemessungsgrundwasserstand:

 $BHGW = 56.30 \, mNN$


<u>System</u> Wand

Ansicht

M 1:100

Querschnitt M 1:20

ISEK Hillerheide - Vorstatik Vorstufe RBF Nord

Abmessungen Mat./Querschnitt	Material C 30/37, B 500SB	L [m] 10.00	H [m] 2.30		h [m] 0.35	L _{Fuge} [m]
	0 00/07, B 0000B	10.00	2.00		0.00	
Mat./Querschnitt Betondeckung	Seite				d' [mm]	C _{nom} [mm]
	aussen innen				70 70	60 60
Material	Normalbeton C 30/37 WU					
	75% E-Modul Zementsorte		f _{ctm} f _{ct,eff} E _{cm} 3	=	2.90 2.18 33000 R,42,5 N	N/mm ² N/mm ² N/mm ²
	Betonstahl B 500SB Zugfestigkeit E-Modul		f _{yk} E		500 200000	N/mm² N/mm²
Querschnitt	Bauteildicke Mindestwanddicke Größtkorndurchmesser		$h \ h_{min} \ d_{g,vorh.} \ d_{g,zul.}$	=	35.00 24.00 16 32	cm cm mm mm
	Abstand der Bewehrungslage Mindestmaß (d_g = 16mm)	n	b _w ,min	=	17.20 14.00	cm
	Die Mindestabmessungen we Der Größtkorndurchmesser w					
Nachweise (GZG) Randbedingung	Nachweise nach WU-Richtlini DIN EN 1992-1-1:2011-01	ie (12/17),				
Nutzungsklasse	Nutzungsklasse				В	
Beanspruchungs- klasse	drückendes Grundwasser Beanspruchungsklasse				1	
zul. Rissweite	nach WU-Richtlinie (12/17), T Höhe Wasserstand 1/4 Wandhöhe Druckhöhe Druckgefälle zul. Rissweite	ab.2	h _G h _{Wh,1/4} h _w h _w /h _b Wzul	= = =	57.00 55.78 1.23 3.50 0.20	m m m - mm

ISEK Hillerheide - Vorstatik Vorstufe RBF Nord

Trennrisse (Zwang)	nach DIN EN	l 1992-1-1	1, 7.3.2			Нус	dratation	
	reiner Zug innerer Zwar manuelle Eir Zugspannun	igabe	onfoetiaka	sit		$\begin{array}{ccc} k_{\text{C}} & = \\ k & = \\ f_{\text{ct,eff}} & = \end{array}$	1.00 0.77 2.18	- - N/mm²
	Betonspannı			,,,,		c =	2.18	N/mm²
Mindestbewehrung	nach DIN EN Lage	N 1992-1-1 d _s [mm]	d _s ' [mm]	, [N/m	s ım²]	A _{ct} [m²]	k_{zt}	a _{s,min} [cm²/m]
	x-aussen	14.00	18.62		3.32	0.17	1.00	15.20
	x-innen	14.00	18.62	193	3.32	0.17	1.00	15.20
	nach DIN EN	N 1992-1-1	I/NA, NCI	Zu 7.3	.2, GI.(N	IA.7.5.1)		
	Lage	GI.	h/d _i	h _{eff} [m]	d _s * [mm]	s [N/mm²]	k_{zt}	a _{s,min} [cm²/m]
	x-aussen	а		0.17	18.62	193.32	1.00	19.73
	x-innen	а	5.00	0.17	18.62	193.32	1.00	19.73
Bewehrungswahl								
Grundbewehrung	1			T		d_s	_	a_s
Grundbewernung	Lage			Тур	[n	us nm]	s [cm]	[cm ² /m]
Grundbeweinung	x-aussen			Stäbe	[n	nm] 14	[cm] 10.0	[cm ² /m] 15.39
Grundbeweillung					[n	nm]	[cm]	[cm ² /m]
Grundbeweihung	x-aussen			Stäbe	a	nm] 14 14	[cm] 10.0 10.0 a _{s,vorh}	[cm ² /m] 15.39
Grundbeweihung	x-aussen x-innen			Stäbe Stäbe	a [cm²	nm] 14 14 s,erf 6 /m] [cr	[cm] 10.0 10.0	[cm ² /m] 15.39
Grundbeweihung	x-aussen x-innen Kommentar		x-a	Stäbe Stäbe Lage	a [cm² 15	nm] 14 14 ss,erf /m] [cr	[cm] 10.0 10.0 a _{s,vorh} m ² /m]	[cm ² /m] 15.39 15.39
Zusammenfassung	x-aussen x-innen Kommentar	assung de	x-a x	Stäbe Stäbe Lage ussen	a [cm² 15	nm] 14 14 ss,erf /m] [cr	[cm] 10.0 10.0 a _{s,vorh} m ² /m] 15.39	[cm ² /m] 15.39 15.39 :
	x-aussen x-innen Kommentar Hydratation Hydratation	· ·	x-a x r Nachwe	Stäbe Stäbe Lage ussen -innen	a [cm² 15	nm] 14 14 s,erf cr /m] [cr .20 .20	[cm] 10.0 10.0 a _{s,vorh} m ² /m] 15.39	[cm ² /m] 15.39 15.39 :
<u>Zusammenfassung</u>	x-aussen x-innen Kommentar Hydratation Hydratation Zusammenfa	· ·	x-a x r Nachwe	Stäbe Stäbe Lage ussen -innen	a [cm² 15	nm] 14 14 s,erf cr /m] [cr .20 .20	[cm] 10.0 10.0 a _{s,vorh} m²/m] 15.39 15.39	[cm ² /m] 15.39 15.39 : : 0.99 0.99
<u>Zusammenfassung</u>	x-aussen x-innen Kommentar Hydratation Hydratation Zusammenfa	· ·	x-a x r Nachwe	Stäbe Stäbe Lage ussen -innen	a [cm² 15	nm] 14 14 s,erf cr /m] [cr .20 .20 chkeit	[cm] 10.0 10.0 a _{s,vorh} m²/m] 15.39 15.39	[cm ² /m] 15.39 15.39 :
Zusammenfassung Nachweise (GZG)	x-aussen x-innen Kommentar Hydratation Hydratation Zusammenfa Nachweise in Nachweise Wanddicke Bewehrungs	m Grenzzi	x-a x r Nachwe ust. der G	Stäbe Stäbe Lage ussen -innen	a [cm² 15	nm] 14 14 s,erf cr /m] [cr .20 .20 chkeit	[cm] 10.0 10.0 a _{s,vorh} m²/m] 15.39 15.39	[cm ² /m] 15.39 15.39 : : 0.99 0.99 : [-] 0.69 0.81
Zusammenfassung Nachweise (GZG) Mindestabmessungen	x-aussen x-innen Kommentar Hydratation Hydratation Zusammenfa Nachweise in Nachweis Wanddicke Bewehrungs Größtkorndu	m Grenzzi abstand rchmesse	x-a x r Nachwe ust. der G	Stäbe Stäbe Lage ussen -innen	a [cm² 15	nm] 14 14 s,erf /m] [cr .20 .20 chkeit Lage	[cm] 10.0 10.0 a _{s,vorh} n²/m] 15.39 15.39 OK OK	[cm ² /m] 15.39 15.39 : : 0.99 0.99 : [-] 0.69 0.81 0.50
Zusammenfassung Nachweise (GZG)	x-aussen x-innen Kommentar Hydratation Hydratation Zusammenfa Nachweise in Nachweise Wanddicke Bewehrungs	m Grenzzi abstand rchmesse	x-a x r Nachwe ust. der G ust. der G	Stäbe Stäbe Lage ussen -innen	a [cm² 15	nm] 14 14 s,erf cr /m] [cr .20 .20 chkeit	[cm] 10.0 10.0 as,vorh m²/m] 15.39 15.39 OK OK OK	[cm ² /m] 15.39 15.39 : : 0.99 0.99 : [-] 0.69 0.81

ISEK Hillerheide - Vorstatik Vorstufe RBF Nord

Pos. R2 RT Rissbreitenbeschränkung Retentionsbodenfilter Bodenplatte h = 35 cm

Nachfolgend wird für die Bodenplatte des Retentionsbodenfilters (h = 35 cm) der Nachweis der Rissbreitenbeschränkung geführt.

Baustoffe:

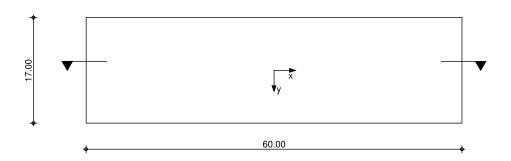
Stahlbeton:

Expositionsklasse XC2, XA1, WF, WU Beton C 30/37 r < 0.3

Überwachungsklasse 2 Betonstahl B 500 B

Betondeckung: $c_{nom} = 60 \text{ mm}$ oben und seitlich

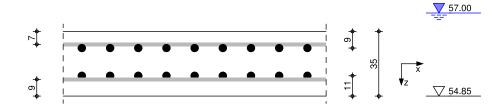
 $c_{nom} = 60 \text{ mm} + 20 \text{ mm}$ unten


Bemessungsgrundwasserstand:

BHGW = 56.30 mNN

<u>System</u> Bodenplatte

Draufsicht


M 1:600

Querschnitt

ISEK Hillerheide - Vorstatik Vorstufe RBF Nord

M 1:20

 Abmessungen
 Material
 L
 B
 h

 Mat./Querschnitt
 [m]
 [m]
 [m]

 C 30/37, B 500SB
 60.00
 17.00
 0.35

Einwirkungen Einwirkungen nach DIN EN 1990:2010-12

Gk Eigenlasten

Ständige Einwirkungen

Belastungen

Kombinationen

Kombinationsbildung nach DIN EN 1990
Darstellung der maßgebenden Kombinationen

Ek √(.:* ≧*EW) 1 1.00*Gk

Mat./Querschnitt

selten

Material Normalbeton C 30/37 WU

Betonstahl B 500SB

Zugfestigkeit $f_{yk} = 500 \text{ N/mm}^2$ E-Modul $E = 200000 \text{ N/mm}^2$

Querschnitt Bauteildicke h = 35.00 cm Mindestplattendicke $h_{min} = 25.00$ cm

Die Mindestabmessungen werden eingehalten.

ISEK Hillerheide - Vorstatik Vorstufe RBF Nord

Nachweise (GZG) Randbedingung	Nachweise nach WU-Richtlinie (12/17), DIN EN 1992-1-1:2011-01				
Nutzungsklasse	Nutzungsklasse			В	
Beanspruchungs- klasse	drückendes Grundwasser Beanspruchungsklasse			1	
zul. Rissweite	nach WU-Richtlinie (12/17), Tab.2 Höhe Wasserstand Höhe Sohle Druckhöhe Druckgefälle zul. Rissweite	h _G h _s h _w h _w /h _b W _{zul}	= = =	57.00 54.85 2.15 6.14 0.20	m m m - mm
Trennrisse (Zwang)	nach DIN EN 1992-1-1, 7.3.2		Hyd	Iratation	
	reiner Zug innerer Zwang manuelle Eingabe		= = =	1.00 0.77 2.18	- - N/mm²

Reibungsbeiwert nach Lohmeyer, Tafel 4.10

aus Sohlreibung

Unterkonstr. Sauberkeitsschicht (abgezogen)
Gleitschicht 2 Lagen PE Folie
Reibungskoeff. $\approx 1,25 * 1.97 = 2.46$

Hinweis

Die Bodenplatte muss auf ebener Unterlage betoniert sein und darf nicht durch Verzahnung mit dem Untergrund (Versprünge, Schächte etc.) in ihrer freien Verformung gehindert werden.

Betonspannung (Reibung)

Lage	q_d	1/2	≈d	⊢ _{R,d}	С
	[kN/m²]	[m]	[-]	[kN/m]	[N/mm ²]
x-oben	8.75	30.00	2.46	646.68	1.85
y-oben	8.75	8.50	2.46	183.23	0.52
x-unten	8.75	30.00	2.46	646.68	1.85
y-unten	8.75	8.50	2.46	183.23	0.52

Mindestbewehrung

nach DIN EN 1992-1-1, 7.3.2, Gl.(7.1)

Lage	as	۵sˆ	S	Act	Kzt	$a_{s,min}$
	[mm]	[mm]	[N/mm ²]	[m²]		[cm ² /m]
x-oben	20.00	26.61	161.74	0.17	0.85	16.72
y-oben	20.00	26.61	161.74	0.17	0.24	8.90
x-unten	20.00	26.61	161.74	0.17	0.85	16.72
y-unten	20.00	26.61	161.74	0.17	0.24	8.90

nach DIN EN 1992-1-1/NA, NCI Zu 7.3.2, Gl.(NA.7.5.1)

Lage	GI.	h/di	h_{eff}	d_s^*	s	k_{zt}	$a_{s,min}$
			[m]	[mm]	[N/mm ²]		[cm ² /m]
x-oben	а	5.00	0.17	26.61	161.74	0.85	21.71
y-oben	а	3.89	0.17	26.61	161.74	0.24	11.56
x-unten	а	3.89	0.17	26.61	161.74	0.85	21.71
y-unten	а	3.18	0.17	26.61	161.74	0.24	11.56

|--|

nach DIN EN 1992-1-1/NA, NDP Zu 9.2.1.1(1)

Lage	Mer	ZII	li li	f _{ctm}	a _{s.min}
9-	[kNm]	[cm]	[m ⁴]	[N/mm ²]	[cm ² /m]
x-oben	59.21	25.20	0.0036	2.90	4.70
y-oben	59.21	23.40	0.0036	2.90	5.06
x-unten	59.21	23.40	0.0036	2.90	5.06
y-unten	59.21	21.60	0.0036	2.90	5.48

Die vorhandene Mindestbewehrung (Duktilität) ist ausreichend.

<u>Bewehrungswahl</u>

Grundbewehrung

Lage	Тур	ds	S	a_s
		[mm]	[cm]	[cm ² /m]
x-oben	Stäbe	20	15.0	20.94
y-oben	Stäbe	20	15.0	20.94
x-unten	Stäbe	20	15.0	20.94
y-unten	Stäbe	20	15.0	20.94
Kommentar	Lage	a _{s,erf}	$a_{s,vorh}$:
		[cm²/m]	[cm²/m]	
Hydratation	x-oben	16.72	20.94	0.80
Hydratation	y-oben	8.90	20.94	0.42
Hydratation	x-unten	16.72	20.94	0.80
Hydratation	y-unten	8.90	20.94	0.42

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise (GZG)

Nachweise im Grenzzust. der Gebrauchstauglichkeit

	Nachweis	Lage		:
				[-]
Mindestabmessungen	Plattendicke		OK	0.71
Trennrisse	Mindestbewehrung-Zugzwang	x-oben	OK	0.80
	Mindestbewehrung-Zugzwang	x-unten	OK	0.80
	Mindestbewehrung-Zugzwang	y-oben	OK	0.42
	Mindestbewehrung-Zugzwang	y-unten	OK	0.42
Duktilität	Mindestbewehrung-Duktilität	x-oben	OK	0.22
	Mindestbewehrung-Duktilität	x-unten	OK	0.24
	Mindestbewehrung-Duktilität	y-oben	OK	0.24
	Mindestbewehrung-Duktilität	y-unten	OK	0.26

Pos. A VST Nachweis der Auftriebssicherheit

Der Nachweis der Auftriebssicherheit wird für den Bemessungswasserstand BHGW = 57.00 mNN geführt. Eine Teilfüllung sowie die Erdauflast werden auf der sicheren Seite liegend nicht angesetzt.

Bemessungswasserstand: (Flächen und Abmessungen aus Pdf Da	57.00	mNN				
Bauteil	Breite [m]	Länge [m]	Dicke [m]	Faktor [-]	Wichte [kN/m³]	Gewicht [kN]
Bodenplatte, h = 0.35 m						
Bodenplatte, Umlaufkanal, hoch	19.40	1.00	0.30	1.0	24.0	139.68
Bodenplatte, Hauptschacht, tief	16.70	1.00	0.30	1.0	24.0	120.2
Fläche Bodenplatte	16.70			,		259.9
Wände, hm = 0.30 m						
Aussenwand tief	14.90	3.97	0.30	1.0	24.0	425.9
Auswand hoch	20.00	1.80	0.30	1.0	24.0	259.2
Überlauföffnung	0.80	0.40	0.30	-1.0	24.0	-2.3
Öffnung 1.0 m * 1.0 m	1.00	1.00	0.30	-1.0	24.0	-7.2
Rohrdurchführung Zulauf DN 800 Stb	0.50	1.00	0.30	-1.0	24.0	-3.6
DN300	0.15	1.00	0.30	-2.0	24.0	-2.2
Profilbeton Hauptschacht	13.40	1.00	0.42	1.0	23.0	129.4
Profilbeton Umlaufkanal	13.55	1.00	0.29	1.0	23.0	90.4
Summe Auflast					G _k =	1149 .6
Auftrieb bei BHGW = 57.00 mNN						
57.00 - 53.54 = 3.32 m	16.70	1.00	3.32	1.0	10.0	554.4
57.00 - 55.70 = 1.3 m	19.40	1.00	1.30	1.0	10.0	252.2
Summe Auftrieb					Q _{A,k} =	806.6
Ausnutzung der Auftriebsicherheit:	/O *1 05\//	*0 0E\				0.70
	(Q _{A,k} *1.05)/(G	ak U.95) =				0.78 < 1.0
						< 1.0

Der Nachweis der Auftriebssicherheit erfüllt.

Pos. R2 Rissbreitenbeschränkung Schacht Wände h = 30 cm

Nachfolgend wird für die seeseitig Wand (h = 35 cm) der Nachweis der Rissbreitenbeschränkung geführt.

Baustoffe:

Stahlbeton:

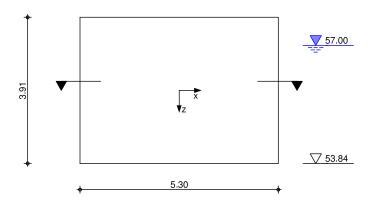
Expositionsklasse XC4, XD3, XF2, XA1, WA, WU

Beton $C \frac{30}{37} r < 0.3$

Überwachungsklasse 2

Betonstahl B 500 B

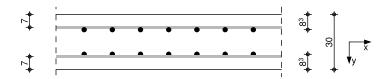
Betondeckung: $c_{nom} = 60 \text{ mm}$


Bemessungsgrundwasserstand:

 $BHGW = 57.00 \, mNN$

<u>System</u> Wand

Ansicht


M 1:100

Querschnitt

ISEK Hillerheide - Vorstatik Vorstufe RBF Nord

M 1:20

Abmessungen Mat./Querschnitt	Material	L [m]	H [m]	h [m]	L _{Fuge} [m]
	C 30/37, B 500SB	5.30	3.91	0.30	-
Mat./Querschnitt Betondeckung	Seite			d'	Cnom
Deterracerang	Gene			[mm]	[mm]
	aussen innen			70 70	60 60
Material	Normalbeton C 30/37 WU				
	75% E-Modul Zementsorte		$\begin{array}{rcl} f_{ctm} &= \\ f_{ct,eff} &= \\ E_{cm} &= \\ 32,5 \end{array}$	2.90 2.18 33000 R,42,5 N	N/mm ² N/mm ² N/mm ²
	Betonstahl B 500SB Zugfestigkeit E-Modul		f _{yk} = E =	500 200000	N/mm² N/mm²
Querschnitt	Bauteildicke Mindestwanddicke Größtkorndurchmesser Abstand der Bewehrungslagen		$\begin{array}{rcl} h & = \\ h_{min} & = \\ d_{g,vorh.} & = \\ d_{g,zul.} & = \\ b_w & = \end{array}$	30.00 24.00 8 32 12.20	cm cm mm mm cm
	Mindestmaß (d _g = 8mm)		b _{w,min} =	12.00	cm
	Die Mindestabmessungen werde	en eindeha	aiten.		

Die Mindestabmessungen werden eingehalten. Der Größtkorndurchmesser wird eingehalten.

Nachweise (GZG) Randbedingung	Nachweise nach WU-Richtlinie (12/17). DIN EN 1992-1-1:2011-01

Nutzungsklasse Nutzungsklasse B

Beanspruchungsklasse Beanspruchungsklasse

zul Rissweite nach WII-Richtlinie (12/17) Tab 2

zul. Rissweite	nach WU-Richtlinie (12/17), Tab.2			
	Höhe Wasserstand	h _G =	57.00	m
	1/4 Wandhöhe	$h_{Wh,1/4} =$	54.82	m
	Druckhöhe	h _w =	2.18	m
	Druckgefälle	$h_w/h_b =$	7.28	_
	zul. Rissweite	W _{zul} =	0.20	mm

1

ISEK Hillerheide - Vorstatik Vorstufe RBF Nord

Trennrisse (Zwang)	nach DIN EN	l 1992-1-1	, 7.3.2			Нус	dratation	
	reiner Zug innerer Zwar manuelle Ein Zugspannun	gabe	onfestiake	eit		$\begin{array}{ccc} k_c & = \\ k & = \\ f_{ct,eff} & = \end{array}$	1.00 0.80 2.18	- - N/mm²
	Betonspannu			,,,,		c =	2.18	N/mm²
Mindestbewehrung	nach DIN EN Lage	l 1992-1-1 d _s [mm]	I, 7.3.2, G d _s ` [mm	*	s nm²]	A _{ct} [m²]	\mathbf{k}_{zt}	a _{s,min} [cm²/m]
	x-aussen	14.00	18.62		3.32	0.15	1.00	13.53
	x-innen	14.00	18.62	2 193	3.32	0.15	1.00	13.53
	nach DIN EN	l 1992-1-1	I/NA, NCI	Zu 7.3	.2, GI.(N	IA.7.5.1)		
	Lage	GI.	h/d _i	h _{eff} [m]	d _s * [mm]	s [N/mm²]	k_{zt}	a _{s,min} [cm²/m]
	x-aussen	a	4.29	0.15	18.62	193.32	1.00	16.92
	x-innen	а	4.29	0.15	18.62	193.32	1.00	16.92
<u>Bewehrungswahl</u>								
<u> </u>								
Grundbewehrung	Lage			Тур	[n	d _s าm]	s [cm]	a _s [cm²/m]
Grundbewehrung	x-aussen			Typ Stäbe	[n	d _s nm] 14	s [cm] 10.0	[cm ² /m] 15.39
Grundbewehrung					[n	nm]	[cm]	[cm ² /m]
Grundbewehrung	x-aussen			Stäbe	a	nm] 14 14	[cm] 10.0 10.0 a _{s,vorh}	[cm ² /m] 15.39
Grundbewehrung	x-aussen x-innen		х- <i>а</i>	Stäbe Stäbe	a [cm²	nm] 14 14 s,erf /m] [cr	[cm] 10.0 10.0	[cm ² /m] 15.39
Grundbewehrung	x-aussen x-innen Kommentar			Stäbe Stäbe Lage	a [cm² 13	nm] 14 14 s,erf /m] [cr	[cm] 10.0 10.0 a _{s,vorh} m ² /m]	[cm ² /m] 15.39 15.39
Zusammenfassung	x-aussen x-innen Kommentar	ssung de	Х	Stäbe Stäbe Lage ussen	a [cm² 13	nm] 14 14 s,erf /m] [cr	[cm] 10.0 10.0 a _{s,vorh} m ² /m] 15.39	[cm ² /m] 15.39 15.39 :
	x-aussen x-innen Kommentar Hydratation Hydratation		x r Nachwe	Stäbe Stäbe Lage ussen -innen	a [cm² 13	nm] 14 14 ss,erf /m] [cr .53 .53	[cm] 10.0 10.0 a _{s,vorh} m ² /m] 15.39	[cm ² /m] 15.39 15.39 :
Zusammenfassung	x-aussen x-innen Kommentar Hydratation Hydratation Zusammenfa		x r Nachwe	Stäbe Stäbe Lage ussen -innen	a [cm² 13	nm] 14 14 ss,erf /m] [cr .53 .53	[cm] 10.0 10.0 a _{s,vorh} m²/m] 15.39 15.39	[cm ² /m] 15.39 15.39 : : 0.88 0.88
Zusammenfassung	x-aussen x-innen Kommentar Hydratation Hydratation Zusammenfa Nachweise in		x r Nachwe	Stäbe Stäbe Lage ussen -innen	a [cm² 13	nm] 14 14 ss,erf /m] [cr .53 .53	[cm] 10.0 10.0 a _{s,vorh} m²/m] 15.39 15.39	[cm ² /m] 15.39 15.39 :
Zusammenfassung Nachweise (GZG)	x-aussen x-innen Kommentar Hydratation Hydratation Zusammenfa Nachweise ir Nachweis Wanddicke Bewehrungs	m Grenzzi	x r Nachwe ust. der G	Stäbe Stäbe Lage ussen -innen	a [cm² 13	nm] 14 14 ss,erf /m] [cr .53 .53	[cm] 10.0 10.0 a _{s,vorh} m²/m] 15.39 15.39	[cm ² /m] 15.39 15.39 : : 0.88 0.88
Zusammenfassung Nachweise (GZG) Mindestabmessungen	x-aussen x-innen Kommentar Hydratation Hydratation Zusammenfa Nachweise ir Nachweis Wanddicke Bewehrungs Größtkorndu	m Grenzzi abstand rchmesse	x r Nachwe ust. der G r	Stäbe Stäbe Lage ussen -innen	a [cm² 13	nm] 14 14 .s,erf /m] [cr .53 .53 .chkeit	[cm] 10.0 10.0 a _{s,vorh} m²/m] 15.39 15.39 OK OK	[cm ² /m] 15.39 15.39 : : 0.88 0.88 : [-] 0.80 0.98 0.25
Zusammenfassung Nachweise (GZG)	x-aussen x-innen Kommentar Hydratation Hydratation Zusammenfa Nachweise ir Nachweis Wanddicke Bewehrungs	m Grenzzi abstand rchmesse	x r Nachwe ust. der G r gzwang	Stäbe Stäbe Lage ussen -innen	a [cm² 13	nm] 14 14 ss,erf /m] [cr .53 .53	[cm] 10.0 10.0 as,vorh m²/m] 15.39 15.39 e OK OK OK OK	[cm ² /m] 15.39 15.39 : : 0.88 0.88

ISEK Hillerheide - Vorstatik Vorstufe RBF Nord

Pos. B1 Vorbemessung Vorstufe Nord

Das Bauwerk Vorstufe RBF Nord wird nachfolgend in einem räumlichen Gesamtsystem mit FE-Methode vorbemessen.

Schachtbauwerk:

Expositionsklassen XC4, XD3, XF2, XA1, WA (umlaufend)

Festigkeitsklasse $\,$ C 30/37 , r < 0.3

Überwachungsklasse 2 Betonstahl B 500 B

Betondeckung $c_{nom} = c_{min} + \forall c_{dev}$

 $c_{nom} = 50 + 10 = 60 \text{ mm}$ (Bodenplatte oben, Wände allseits, Deckenplatte)

 $c_{nom} = 60 + 20 = 80 \text{ mm}$ (Bodenplatte unten)

Bemessungswasserstand

Gemäß Angabe Planer:

Wsp.- See = 57.00 mNN

<u>Verfüllmaterial</u>

Für die Erddruckermittlung des Schachtbauwerks ist gem. Baugrundgutachten von folgenden Bodenkennwerten auszugehen.

Erddruckansatz

Bei der nachfolgenden Vorbemessung des Bauwerkes wird der erhöht aktive Erddruck angesetzt.

$$E_{agh}$$
 = 0.5 x E_0 + 0.5 x E_{agh}

Erddruckbeiwerte

$$k_{agh} = 0.28 (30^{\circ}, 2/3 -)$$

$$k_{0gh} = 1 - \sin - = 1 - \sin 30^{\circ} = 0.50$$

$$--> k_{agh} = 0.5 * k_{agh} + 0.5 * k_{0gh} = 0.5 * 0.28 + 0.5 * 0.50 = 0.39$$

/lewer Version 2020 - Copyright 2019 - mb AEC Software GmbH

ISEK Hillerheide - Vorstatik Vorstufe RBF Nord

Lastzusammenstellung

Lastfall 1: Ständige Lasten

Das Eigengewicht wird vom verwendeten FEM Programm ermittelt.

Erdüberschüttung

GOK = 58.29 mNN

 $g\ddot{u} = (58.29 - 57.80) * 20kN/m^3 = 9.8 kN/m^2$

Lastfall 2: Erddruck

GOK = 58.29 mNN

erhöht aktiver Erddruck,

 $k_{agh} = 0.39$

Deckenplattenachse 57.65 mNN

 $e_{0gh1} = (58.29 - 57.65) *20 *0.39 = 5.0$

Bodenplattenachse 53.69 mNN (tief)

 $e_{0gh2} = (58.29 - 53.69) * 20 kN/m³ * 0.39$

 $= 35.9 \text{ kN/m}^2$

Bodenplattenachse 55.85 mNN

 $e_{0gh3} = (58.29 - 55.85) * 20 kN/m³ * 0.39$

 $= 19.0 \text{ kN/m}^2$

Verdichtungserddruck

 $e_{vgh} = 25 \text{ kN/m}^2$

 $e_{vgh} = 25 \text{ kN/m}^2 - (5 + 6.5) = 13.5 \text{ kN/m}^2$

wirksame Tiefe:

 $t = 13.5 \text{ kN/m}^2 / (20 * 0.39) = 1.73 \text{ m}$

ISEK Hillerheide - Vorstatik Vorstufe RBF Nord

<u>Lastfall 3 Erddruck unter Auftrieb + Wasserdruck (Differenzlastfall zu LF2)</u>

Wsp See = 56.30 mNN (Bemessungswasserstand See)

Hier wird die Differenzlast zu Lastfall 2 ermittelt und angesetzt.

-> Höhe BHGW = 57.00 mNN:

e _{0gh,1} '	= (58.29-57.00) * 20 * 0.39	$= 10.1 \text{ kN/m}^2$
Q wh, 1	=	$= 0.0 \text{ kN/m}^2$
e _{0gh,1} '+q _{wh,1}		$= 10.1 \text{ kN/m}^2$

$$Dq_{wh,1} = (e_{0qh,1} + q_{wh,1}) - e_{0qh,1} = 0.0 \text{ kN/m}^2$$

-> Bodenplattenachse 55.85 mNN:

e _{0gh,2} '	= (58.29 - 57.00) * 20 * 0.39	
	+ (57.00 - 55.85) * 10 * 0.39	$= 14.55 \text{ kN/m}^2$
Q wh,2	= (57.00 - 55.85) * 10	$= 11.50 \text{ kN/m}^2$
e _{0gh,2} '+q _{wh,2}		$= 26.05 \text{ kN/m}^2$

$$Dq_{wh,2}$$
 = $(e_{0gh,2}' + q_{wh,2}) - e_{0gh,2} = 26.05 - 19.0$ = 7.05 kN/m^2

-> Auftrieb UK Bodenplatte 55.70 mNN

$$q_{w,A} = (57.00 - 55.70) * 10 = 13.0 \text{ kN/m}^2$$

-> Bodenplattenachse 53.69 mNN:

e _{0gh,2} '	= (58.29 - 57.00) * 20 * 0.39	
	+ (57.00 - 53.69) * 10 * 0.39	$= 22.30 \text{ kN/m}^2$
Q wh,2	= (57.0 - 53.69) * 10	$= 33.10 \text{ kN/m}^2$
e _{0gh,2} '+q _{wh,2}		$= 55.40 \text{ kN/m}^2$

$$Dq_{wh,2}$$
 = $(e_{0gh,2}' + q_{wh,2}) - e_{0gh,2} = 55.4 - 35.90$ = 19.50 kN/m^2

-> Auftrieb UK Bodenplatte 53.54 mNN

$q_{W,A} = (57.00 - 53.54) \cdot 10 = 34.6 \text{ kN/m}^2$	$q_{w,A}$	= (57.00 - 53.54) * 10	$= 34.6 \text{ kN/m}^2$
--	-----------	------------------------	-------------------------

ISEK Hillerheide - Vorstatik Vorstufe RBF Nord

Lastfall 4: Verkehrslast auf dem Gelände

Annahme: Maximale Befahrung mit Dienstfahrzeug q_k 嗁16.7 kN/m^2 (SLW 30) auf dem Bauwerk bis zur Gitterrostabdeckung

 $q_k = 16.7 \text{ kN/m}^2$

Nach Aussgage der Planer ist keine Befahrung der Gitterrostabdeckung zu berücksichtigen!

Gem. Aussage Planer wird durch konstruktive Maßnahmen eine Befahrung der Gitterrostabdeckung unterbunden, eine gelegentliche Befahrung ist nur im Bereich der überschütteten Deckenplatte zu berücksichtigen.

Lastfall 5: Erddruck aus Verkehr, y-Richtung

$$e_{aqw} = 16.7 \text{ kN/m}^2 * 0.39 =$$

= 6.5 kN/m

Lastfall 6: Wasserdruck innen

max. Wsp, innen = Seewasserspiegel = 57.00 mNN

Einlauf / Auslaufbereich

 $q_{wi} = (57.00 - 55.85) * 10 = 11.5 \text{ kN/m}^2$

Schlammsammelraum

 $q_{wi} = (57.00 - 53.69) * 10 = 33.1 \text{ kN/m}^2$

ISEK Hillerheide - Vorstatik Vorstufe RBF Nord

Bewehrungswahl:

Bodenplatte: Ø12-15 #, unten und oben

(7.54 cm²/m)

Anschlussbewehrung Ø12-15

Wände: horizontal:

Wand h = 30 cm

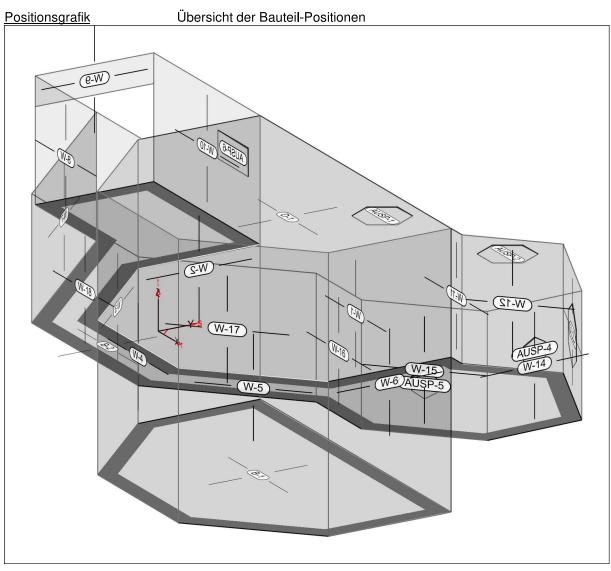
Ø14 - 10 innen und außen

(15.4 cm²/m)

vertikal:

Ø12 -15 innen und außen

(7.54 cm²/m)


Deckenplatte: Ø14-15 #, unten und oben

(10.26 cm²/m

/iewer Version 2020 - Copyright 2019 - mb AEC Software GmbH

Positionsplan (3D)

Bauteile Bauteil-Positionen

<u>Flächen</u>	Fläche	en-Positionen				
Stahlbeton	Positio	on	Art	Exz. [cm] Längs	Material Quer	Dicke [cm]
	B-1, B	-2, D-1, W-1W-18	iso	0.0 <i>B 500SB</i>	C 30/37 Q B 500SB	30.0
	iso: Q:	isotropes Material Gesteinskörnung Quarzit				

_		
Exz.:	Exzentrizität	е

Koo	rnı	กวเ	ıαn
-1	ш	ı ıaı	G11

Position	х	у	Z
	[m]	[m]	[m]
B-1	2.93	-2.00	0.00
	4.37	-3.44	0.00
	6.50	-3.44	0.00
	7.93	-2.00	0.00
	7.93	-0.29	0.00
	7.93	-0.14	0.00
	3.09	-0.14 0.15	0.00
	2.93	-0.15	0.00
B-2	2.93 1.74	-0.29 -1.94	0.00 2.16
D-2	0.13	-1.94 -1.94	2.16
	0.15	-0.15	2.16
	2.93	-0.15 -0.15	2.16
	2.93	-2.00	2.16
	4.37	-3.44	2.16
	6.50	-3.44	2.16
	7.93	-2.00	2.16
	7.93	-0.14	2.16
	8.21	-0.14	2.16
	9.19	0.83	2.16
	10.87	0.14	2.16
	10.93	-1.32	2.16
	9.72	-2.53	2.16
	8.54	-2.53	2.16
	6.83	-4.24	2.16
	4.04	-4.24	2.16
D-1	10.87	0.14	3.96
	10.93	-1.32	3.96
	9.72	-2.53	3.96
	8.54	-2.53	3.96
	6.83	-4.24	3.96
	4.04	-4.24	3.96
	1.74	-1.94	3.96
	2.93	-1.94	3.96
	2.93	-0.15	3.96
	7.93	-0.15	3.96
	8.21	-0.14	3.96
VAL 4	9.19	0.83	3.96
W-1	7.93	-0.14	0.00
	2.93	-0.15	0.00
	2.93	-0.15 -0.14	3.96
W-2	7.93 2.93	-0.14	3.96 0.00
VV-2	2.93		
	2.93 2.93	-2.00 -2.00	0.00 3.96
	2.93 2.93	-2.00 -0.15	3.96
W-3	2.93	-2.00	0.00
VV U	2.93 4.37	-2.00 -3.44	0.00
	4.37 4.37	-3.44	3.96
	2.93	-2.00	3.96
W-4	4.37	-3.44	0.00
** T	7.07	0.77	0.00

Position

		[111]	[111]
	6.50	-3.44	0.00
	6.50	-3.44	3.96
	4.37	-3.44	3.96
W-5	6.50	-3.44	0.00
	7.93	-2.00	0.00
	7.93	-2.00	3.96
	6.50	-3.44	3.96
W-6	7.93	-2.00	0.00
	7.93	-0.14	0.00
	7.93	-0.14	3.96
	7.93	-2.00	3.96
W-7	4.04	-4.24	2.16
,	1.74	-1.94	2.16
	1.74	-1.94	3.96
	4.04	-4.24	3.96
W-8	1.74	-1.94	2.16
•	0.13	-1.94	2.16
	0.13	-1.94	3.96
	1.74	-1.94	3.96
W-9	0.13	-1.94	3.53
VV-9	0.15		3.53
	0.15	-0.15 -0.15	3.96
W 10	0.13	-1.94	3.96
W-10	0.15	-0.15	2.16
	2.93	-0.15	2.16
	2.93	-0.15	3.96
	0.15	-0.15	3.96
W-11	7.93	-0.14	2.16
	8.21	-0.14	2.16
	8.21	-0.14	3.96
	7.93	-0.14	3.96
W-12	8.21	-0.14	2.16
	9.19	0.83	2.16
	9.19	0.83	3.96
	8.21	-0.14	3.96
W-13	9.19	0.83	2.16
	10.87	0.14	2.16
	10.87	0.14	3.96
	9.19	0.83	3.96
W-14	10.87	0.14	2.16
	10.93	-1.32	2.16
	10.93	-1.32	3.96
	10.87	0.14	3.96
W-15	10.93	-1.32	2.16
	9.72	-2.53	2.16
	9.72	-2.53	3.96
	10.93	-1.32	3.96
W-16	9.72	-2.53	2.16
VV 10	8.54	-2.53 -2.53	2.16
	8.54		3.96
		-2.53 2.53	
	9.72 8.54	-2.53 -2.53	3.96 2.16
1/1/17			
W-17	6.83	-4.24	2.16

x [m] y [m] z [m]

	Position	X	y [m]	Z
		[m] 6.83	[m] -4.24	[m] 3.96
		8.54	-2.53	3.96
	W-18	6.83	-4.24	2.16
		4.04	-4.24	2.16
		4.04	-4.24	3.96
		6.83	-4.24	3.96
Aussparungen	Position	X	у	Z
		[m]	[m]	[m]
	AUSP-1	7.46	-0.68	3.96
		7.26	-0.34	3.96
		6.86	-0.34	3.96
		6.66	-0.68	3.96
		6.86	-1.03	3.96
	ALIODO	7.26	-1.03	3.96
	AUSP-2	9.55	0.01	3.96
		9.35	0.36	3.96
		8.95 8.75	0.36 0.01	3.96 3.96
		8.95	-0.34	3.96
		9.35	-0.34 -0.34	3.96
	AUSP-3	10.03	0.49	3.46
	A001 -0	10.39	0.49	3.24
		10.39	0.34	2.79
		10.03	0.49	2.56
		9.67	0.63	2.79
		9.67	0.63	3.24
	AUSP-4	10.90	-0.59	3.46
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10.91	-0.76	3.36
		10.91	-0.76	3.16
		10.90	-0.59	3.06
		10.89	-0.42	3.16
		10.89	-0.42	3.36
	AUSP-5	10.32	-1.93	3.06
		10.20	-2.05	2.96
		10.20	-2.05	2.76
		10.32	-1.93	2.66
		10.45	-1.81	2.76
		10.45	-1.81	2.96
	AUSP-6	2.62	-0.15	3.01
		1.82	-0.15	3.01
		1.82	-0.15	3.41
		2.62	-0.15	3.41

<u>Auflager</u> Auflager-Positionen

Positionsgrafik Übersicht der Auflager-Positionen

<u>Flächenlager</u>

Flächenlager-Positionen

Flächenbettung (Bettungsziffer)

Position		$K_{T,r}$		$K_{T,s}$		$K_{T,t}$
		[kN/m³]		[kN/m³]		[kN/m³]
FLRB-1	+/-	2000	+/-	2000	+/-	20000
FLRB-2	+/-	2000	+/-	2000	+/-	20000

Koordinaten

Position	х	У	Z
	[m]	[m]	[m]
FLRB-1	7.93	-2.00	0.00
	7.93	-0.14	0.00
	2.93	-0.15	0.00
	2.93	-2.00	0.00
	4.37	-3.44	0.00
	6.50	-3.44	0.00
FLRB-2	2.93	-0.15	2.16
	2.93	-2.00	2.16
	4.37	-3.44	2.16

Position

			7.93 7.93 8.21 9.19 10.87 10.93 9.72 8.54 6.83 4.04 1.74 0.13 0.15	-3.44 -2.00 -0.14 -0.14 0.83 0.14 -1.32 -2.53 -2.53 -4.24 -4.24 -1.94 -1.94 -0.15	2.16 2.16 2.16 2.16 2.16 2.16 2.16 2.16
<u>Material</u>	Materialkennwerte				
Stahlbeton DIN EN 1992-1-1	Position	Material	Wichte	E _{cm} G	f_{ck}
			[kN/m³]	[N/mm²]	[N/mm²]
	B-1, B-2, D-1, W- 1W-18	C 30/37 Q	25.00	33000	30.00
	Q: Gesteinskörnung Quarzit			13750	2.90
Betonstahl DIN EN 1992-1-1	Position	Material	Wichte	Es G	f _{yk} f _{tk,cal}
			[kN/m³]	[N/mm ²]	[N/mm ²]
	B-1, B-2, D-1, W- 1W-18	B 500SB	78.50	200000	500.00
				77000	525.00
Auswertung	Geometrische Auswertu	ng der Positione	n		
<u>Flächen</u>	Flächenförmige Bauteil-	Positionen			
Stahlbeton	Position		icke [cm]	Fläche [m²]	Volumen [m³]
	B-1		30.0	14.41	4.32
	B-2 D-1		30.0 30.0	18.69 27.25	5.61 8.18
	W-1		30.0	19.79	5.94
	W-2	;	30.0	7.33	2.20
	W-3		30.0	8.07	2.42
	W-4 W-5		30.0 30.0	8.41 8.05	2.52 2.41
	W-6		30.0	7.37	2.21
	W-7		30.0	5.85	1.76
	W-8 W-9		30.0 30.0	2.90 0.77	0.87 0.23
	W-10		30.0	4.69	1.41
	W-11		30.0	0.51	0.15
	W-12 W-13		30.0 30.0	2.48 2.74	0.74 0.82

Z

[m] 2.16

Χ

[m]

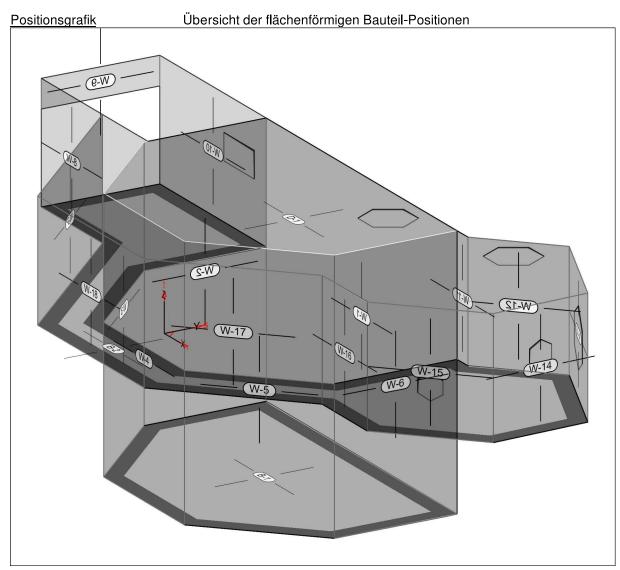
3.44

[m]

6.50

Position	Dicke	Fläche	Volumen
	[cm]	[m²]	[m³]
W-14	30.0	2.54	0.76
W-15	30.0	2.98	0.89
W-16	30.0	2.13	0.64
W-17	30.0	4.35	1.30
W-18	30.0	5.02	1.51

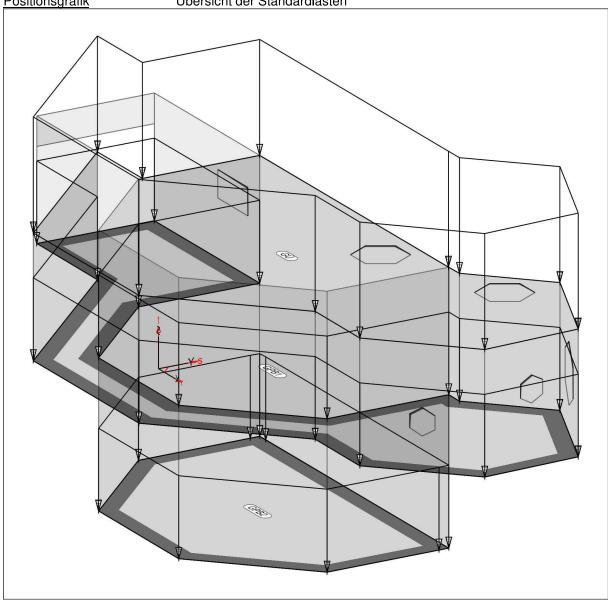
Belastungen


<u>Lastplan (lastfallweise)</u> Lasten des FE-Modells

<u>LF-1</u> Lasten im Lastfall LF-1 - Eigengewicht

in Einwirkung Gk - Eigenlasten

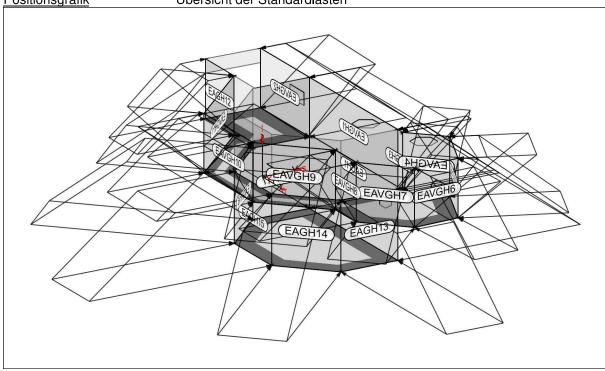
<u>Bauteillasten</u> Bauteilbezogene Lasten


<u>Flächenpositionen</u> Flächenförmige Bauteil-Positionen

1..W-18
PGr: Gravitationslast; positive Lasten wirken senkrecht nach unten

Standardlasten Standardlasten im FE-Modell

Übersicht der Standardlasten **Positionsgrafik**


		_
Cloio	hfläche	enlasten
Gleic	mache	HIIASIEH

Position	EW	Lastfall	Art	p [kN/m²]
GPB1	1 Gk	LF-1	pt	-7.00
GPB2	1			
	Gk	LF-1	pt	-7.00

Lasten im Lastfall LF-2 - Erddruck in Einwirkung Gk.E - Erddruck

<u>Standardlasten</u> Standardlasten im FE-Modell

<u>Positionsgrafik</u> Übersicht der Standardlasten

Trapezflächenlasten

Position	EW	Lastfall	Art	р
				[kN/m²]
EAGH1	Erddruc	:k	,	
	Gk.E	LF-2	pt	Trapez
EAGH2	Erddruc	k		
	Gk.E	LF-2	pt	Trapez
EAGH3	Erddruc	:k		
	Gk.E	LF-2	pt	Trapez
EAGH4	Erddruc	:k		
	Gk.E	LF-2	pt	Trapez
EAGH5	Erddruc	:k		
	Gk.E	LF-2	pt	Trapez
EAGH6	Erddruc	:k		
	Gk.E	LF-2	pt	Trapez
EAGH7	Erddruc	:k		
	Gk.E	LF-2	pt	Trapez
EAGH8	Erddruc	k		
	Gk.E	LF-2	pt	Trapez

Trapezlasten

Lastordinatenebene durch drei Stützstellen definiert

Position	Punkt	r	S	р
		[m]	[m]	[kN/m²]
EAGH1	P-1	0.00	0.00	-35.90
	P-2	5.00	0.00	-35.90
	P-3	5.00	3.96	-5.00
EAGH2	P-1	0.00	0.00	-19.00
	P-2	-2.79	0.00	-19.00
	P-3	0.00	1.80	-5.00
EAGH3	P-1	0.00	0.00	-19.00
	P-2	-2 79	0.00	-19 00

Position

EAGH4

Punkt

P-3

P-1

s

[m]

1.80

0.00

r [m]

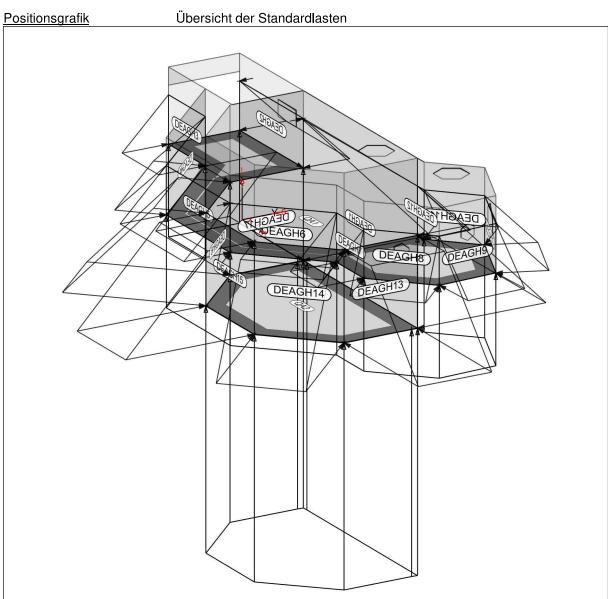
0.00

0.00

p [kN/m²]

-5.00

-19.00


EAGH4	P-1	0.00	0.00	-19.00
	P-2	-2.79	0.00	-19.00
	P-3	0.00	1.80	-5.00
EAGH5	P-1	0.00	0.00	-19.00
	P-2	-2.79	0.00	-19.00
	P-3	0.00	1.80	-5.00
EAGH6	P-1	0.00	0.00	-19.00
	P-2	-2.79	0.00	-19.00
	P-3	0.00	1.80	-5.00
EAGH7	P-1	0.00	0.00	-19.00
	P-2	-2.79	0.00	-19.00
	P-3	0.00	1.80	-5.00
EAGH8	P-1	0.00	0.00	-19.00
	P-2	-2.79	0.00	-19.00
	P-3	0.00	1.80	-5.00
EAGH9	P-1	0.00	0.00	-19.00
	P-2	-2.79	0.00	-19.00
	P-3	0.00	1.80	-5.00
EAGH10	P-1	0.00	0.00	-19.00
	P-2	-2.79	0.00	-19.00
	P-3	0.00	1.80	-5.00
EAGH11	P-1	0.00	0.00	-19.00
	P-2	-2.79	0.00	-19.00
	P-3	0.00	1.80	-5.00
EAGH12	P-1	0.00	0.00	-19.00
	P-2	-2.79	0.00	-19.00
	P-3	0.00	1.80	-5.00
EAGH13	P-1	1.86	0.00	-35.90
	P-2	0.00	0.00	-35.90
	P-3	1.86	2.16	-19.00
EAGH14	P-1	0.00	0.00	-35.90
	P-2	2.03	0.00	-35.90
	P-3	2.03	2.16	-19.00
EAGH15	P-1	0.00	0.00	-35.90
	P-2	2.12	0.00	-35.90
	P-3	2.12	2.16	-19.00
EAGH16	P-1	0.00	0.00	-35.90
	P-2	-2.79	0.00	-35.90
	P-3	0.00	2.16	-19.00
EAGH17	P-1	0.00	0.00	-35.90
	P-2	1.85	0.00	-35.90
	P-3	0.00	2.16	-19.00
EAVGH1	P-1	5.00	2.23	0.00
	P-2	0.00	2.23	0.00
	P-3	-5.51	4.57	-13.50
EAVGH2	P-1	0.00	0.00	0.00
	P-2	-2.79	0.07	0.00
	P-3	0.00	1.80	-13.50
EAVGH3	P-1	0.00	0.00	0.00
	P-2	-2.79	0.07	0.00
	P-3	0.00	1.80	-13.50
EAVGH4	P-1	0.00	0.00	0.00
		0.00	0.00	0.00

Position	Punkt	r	s	р
		[m]	[m]	[kN/m ²]
	P-2	-1.39	-0.01	0.00
	P-3	0.00	1.80	-13.50
EAVGH5	P-1	0.00	0.00	0.00
	P-2	-1.82	0.00	0.00
	P-3	0.00	1.80	-13.50
EAVGH6	P-1	0.00	0.00	0.00
	P-2	-1.47	0.00	0.00
	P-3	0.00	1.80	-13.50
EAVGH7	P-1	0.00	0.00	0.00
	P-2	-1.71	0.00	0.00
	P-3	0.00	1.80	-13.50
EAVGH8	P-1	0.00	0.00	0.00
	P-2	-1.15	0.00	0.00
	P-3	0.00	1.80	-13.50
EAVGH9	P-1	0.00	0.00	0.00
	P-2	-2.42	0.00	0.00
	P-3	0.00	1.80	-13.50
EAVGH10	P-1	0.00	0.00	0.00
	P-2	-2.79	0.07	0.00
	P-3	0.00	1.80	-13.50
EAVGH11	P-1	0.00	0.00	0.00
	P-2	-2.79	0.07	0.00
	P-3	0.00	1.80	-13.50

Lasten im Lastfall LF-3 - Erddruck unter Auftrieb + Wasserdruck in Einwirkung Gk.H - Wasserdruck

<u>LF-3</u>

<u>Standardlasten</u> Standardlasten im FE-Modell

\sim					
(-)	ല	ht	lac	hen	lasten

Position	EW	Lastfall	Art	p [kN/m²]
QA1	Auftriek)		
	Gk.H	LF-3	pt	13.00
QA2	Auftriek)	•	
	Gk.H	LF-3	pt	34.60
and the later land of the	a law in a		•	

pt: in lokaler t-Richtung

Position

DEAGH1

Trapezflächenlasten

		Gk.H LF-3		pt	Trapez
	DEAGH2	Erddruck unte	r Auftrieb +	Wasserdruck	
		Gk.H LF-3		pt	Trapez
	DEAGH3	Erddruck unte	r Auftrieb +	Wasserdruck	
		Gk.H LF-3		pt	Trapez
	DEAGH4	Erddruck unte	r Auftrieb +	Wasserdruck	
		Gk.H LF-3		pt	Trapez
	DEAGH5		r Auftrieb +	Wasserdruck	
		Gk.H LF-3		pt	Trapez
	DEAGH6	Erddruck unte	r Auftrieb +	Wasserdruck	
		Gk.H LF-3		pt	Trapez
	DEAGH7		r Auftrieb +	Wasserdruck	
		Gk.H LF-3		pt	Trapez
	DEAGH8	Erddruck unte	r Auftrieb +	Wasserdruck	_
		Gk.H LF-3		pt	Trapez
	DEAGH9	Erddruck unte	r Auftrieb +	Wasserdruck	
		Gk.H LF-3		pt	Trapez
	DEAGH10	Erddruck unte	r Auftrieb +	Wasserdruck	
		Gk.H LF-3		pt	Trapez
	DEAGH11	Erddruck unte	r Auftrieb +	Wasserdruck	<u> </u>
		Gk.H LF-3		pt	Trapez
	DEAGH12	Erddruck unte	r Auftrieb +	Wasserdruck	<u> </u>
		Gk.H LF-3		pt	Trapez
	DEAGH13	Erddruck unte	r Auftrieb +	Wasserdruck	<u> </u>
		Gk.H LF-3		pt	Trapez
	DEAGH14		r Auftrieb +	Wasserdruck	
		Gk.H LF-3		pt	Trapez
	DEAGH15		r Auftrieb +	Wasserdruck	
		Gk.H LF-3		pt	Trapez
	DEAGH16		r Auftrieb +	Wasserdruck	
		Gk.H LF-3		pt	Trapez
	DEAGH17		r Auftrieb +	Wasserdruck	
		Gk.H LF-3		pt	Trapez
	pt: in lokaler t-Rich			I	
<u>Trapezlasten</u>		bene durch drei St			
	Position	Punkt	r	S	p
	BE40114		[m]	[m]	[kN/m ²]
	DEAGH1	P-1	0.00	0.00	-19.50
		P-2	5.08	-0.04	-19.50
		P-3	0.00	3.31	0.00
	DEAGH2	P-1	0.00	0.00	-7.05
		P-2	-2.78	0.00	-7.05
		P-3	-2.78	1.15	0.00
	DEAGH3	P-1	0.00	0.00	-7.05
		P-2	-1.61	0.00	-7.05
		P-3	-1.61	1.15	0.00
	DEAGH4	P-1	0.00	0.00	-7.05
		P-2	-3.25	0.00	-7.05
		P-3	-3.25	1.15	0.00
	DEAGH5	P-1	0.00	0.00	-7.05
		P_2	-2 78	0.00	-7.05

P-2

-2.78

0.00

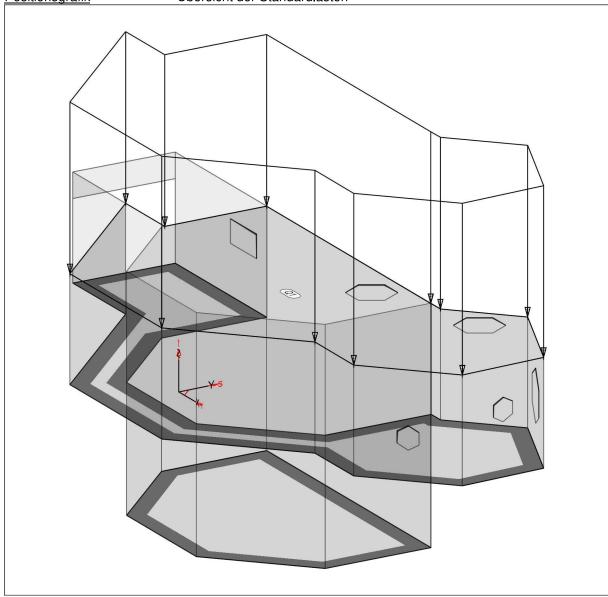
EW

Lastfall

Erddruck unter Auftrieb + Wasserdruck

Art

-7.05

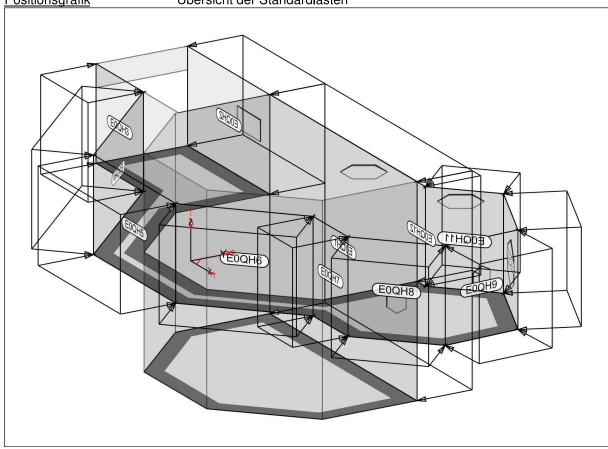

Position	Punkt	r	s	р
		[m]	[m]	[kN/m²]
	P-3	-2.78	1.15	0.00
DEAGH6	P-1	0.00	0.00	-7.05
	P-2	-2.42	0.00	-7.05
	P-3	-2.38	1.15	0.00
DEAGH7	P-1	0.00	0.00	-7.05
	P-2	-1.18	0.00	-7.05
	P-3	-1.18	1.15	0.00
DEAGH8	P-1	0.00	0.00	-7.05
	P-2	-1.71	0.00	-7.05
	P-3	-1.71	1.15	0.00
DEAGH9	P-1	0.00	0.00	-7.05
	P-2	-1.47	0.00	-7.05
	P-3	-1.47	1.15	0.00
DEAGH10	P-1	0.00	0.00	-7.05
	P-2	-1.82	0.00	-7.05
	P-3	-1.82	1.15	0.00
DEAGH11	P-1	0.00	0.00	-7.05
	P-2	-1.38	0.00	-7.05
	P-3	-1.38	1.15	0.00
DEAGH12	P-1	0.00	0.00	-7.05
	P-2	-0.28	0.00	-7.05
	P-3	-0.28	1.15	0.00
DEAGH13	P-1	0.00	0.00	-19.50
	P-2	1.79	0.00	-19.50
	P-3	0.00	2.16	-7.05
DEAGH14	P-1	0.00	0.00	-19.50
	P-2	2.03	0.00	-19.50
	P-3	2.03	2.16	-7.05
DEAGH15	P-1	0.00	0.00	-19.50
	P-2	2.12	0.00	-19.50
	P-3	2.12	2.16	-7.05
DEAGH16	P-1	0.00	0.00	-19.50
	P-2	2.04	0.00	-19.50
	P-3	0.01	2.16	-7.05
DEAGH17	P-1	0.00	0.00	-19.50
	P-2	1.82	0.00	-19.50
	P-3	0.00	2.16	-7.05

<u>LF-4</u> Lasten im Lastfall LF-4 - Verkehrslast

in Einwirkung Qk.N - Nutzlasten

<u>Standardlasten</u> Standardlasten im FE-Modell

<u>Positionsgrafik</u> Übersicht der Standardlasten



<u>Gleichflächenlasten</u>	Position	EW	Lastfall	Art	p [kN/m²]
	Q1	<i>Auftriel</i> Qk.N	b LF-4	pt	-16.70
	pt: in lokaler t-Rich	itung		•	

Lasten im Lastfall LF-5 - Erddruck aus Verkehrslast y Richtung in Einwirkung Qk.N - Nutzlasten <u>LF-5</u>

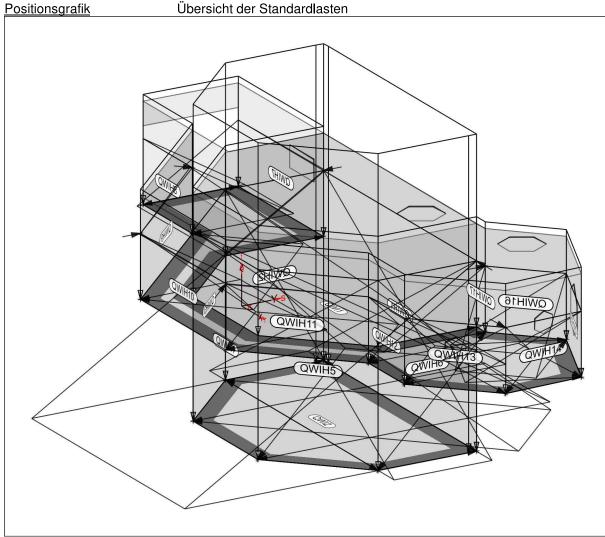
Standardlasten Standardlasten im FE-Modell

Übersicht der Standardlasten Positionsgrafik

Gleichflächenlasten

Position	EW Lastfall	Art	p [kN/m²]
E0QH1	Erddruck aus Verkehr		
	Qk.N LF-5	pt	-6.50
E0QH2	Erddruck aus Verkehr		
	Qk.N LF-5	pt	-6.50
E0QH3	Erddruck aus Verkehr		
	Qk.N LF-5	pt	-6.50
E0QH4	Erddruck aus Verkehr		
	Qk.N LF-5	pt	-6.50
E0QH5	Erddruck aus Verkehr	•	
	Qk.N LF-5	pt	-6.50
E0QH6	Erddruck aus Verkehr	•	
	Qk.N LF-5	pt	-6.50
E0QH7	Erddruck aus Verkehr	•	
	Qk.N LF-5	pt	-6.50
E0QH8	Erddruck aus Verkehr		
	Qk.N LF-5	pt	-6.50

Position	EW Lastfall	Art	p [kN/m²]
E0QH9	Erddruck aus Verkehr		<u> </u>
	Qk.N LF-5	pt	-6.50
E0QH10	Erddruck aus Verkehr		
	Qk.N LF-5	pt	-6.50
E0QH11	Erddruck aus Verkehr		
	Qk.N LF-5	pt	-6.50
E0QH12	Erddruck aus Verkehr		
	Qk.N LF-5	pt	-6.50


pt: in lokaler t-Richtung

<u>LF-6</u> Lasten im Lastfall LF-6 - Wasserdruck, innen

in Einwirkung Qk.N - Nutzlasten

Standardlasten Standardlasten im FE-Modell

Übersicht der Standardlasten

Gleichflächenlasten	Position	EW	Lastfa	dl	Art	p [kN/m²]	
	QWI1	Qk.N	LF-6		pt	-11.50	
	QWI2	Qk.N	LF-6		pt pt	-33.10	
	pt: in lokaler t-Richtun		LI O		ρι	30.10	
Trapezflächenlasten	Position	EW	Lastfa	ıII	Art	p [kN/m²]	
	QWIH1	Wasse	erdruck i	nnen		<u> </u>	
		Qk.N	LF-6		pt	Trapez	
	QWIH2	Wasse	erdruck i	nnen	•	<u> </u>	
		Qk.N	LF-6		pt	Trapez	
	QWIH3	Wasse	erdruck i	nnen	•	<u> </u>	
		Qk.N	LF-6		pt	Trapez	
	QWIH4		erdruck i	nnen		<u> </u>	
		Qk.N	LF-6		pt	Trapez	
	QWIH5		erdruck i	nnen			
		Qk.N	LF-6		pt	Trapez	
	QWIH6		erdruck i	nnen			
	Q 1 1 1 1 0	Qk.N	LF-6		pt	Trapez	
	QWIH7		erdruck i	nnen	ρι	Парог	
	QVVIII/	Qk.N	LF-6	illion	pt	Trapez	
	QWIH8		erdruck i	nnen	ρι	Парсг	
	QVVIIIO	Qk.N	LF-6	illeli	pt	Trapez	
	QWIH9		erdruck i	nnon	ρι	Парег	
	QWIDS	Qk.N	LF-6	men	nt	Tranca	
	QWIH10				pt	Trapez	
	QWIDTO		erdruck i	ririeri		Tuene=	
	OWILIAA	Qk.N	LF-6		pt	Trapez	
	QWIH11		erdruck i	nnen	- 1	T	
	OMILIAO	Qk.N	LF-6		pt	Trapez	
	QWIH12		erdruck i	nnen		_	
	014/11/10	Qk.N	LF-6		pt	Trapez	
	QWIH13		erdruck i	nnen		_	
	011111111111111111111111111111111111111	Qk.N	LF-6		pt	Trapez	
	QWIH14		erdruck i	nnen		_	
		Qk.N	LF-6		pt	Trapez	
	QWIH15		erdruck i	nnen		_	
		Qk.N	LF-6		pt	Trapez	
	QWIH16	Wasse	erdruck i	nnen			
		Qk.N	LF-6		pt	Trapez	
	QWIH17		erdruck i	nnen			
		Qk.N	LF-6		pt	Trapez	
	pt: in lokaler t-Richtung						
<u>Trapezlasten</u>	Lastordinatenebe	no durch	droi St	ützetallan	dofiniort		
Trapeziasteri	Position		ınkt	uizsiellen r	S	n	
	1 03111011	1 (arnet	[m]	[m]	[kN/m²]	
	QWIH1		P-1	0.00	0.00	33.10	
	Q VVIIII		P-2	-1.63	0.00	33.10	
			P-3	0.00	3.31	0.00	
	QWIH2		P-1	0.00	0.00	33.10	
	۷۷۱۱۱۲		P-2	1.79		33.10	
					0.00		
	OWILLO		P-3	0.00	3.31	0.00	
	QWIH3		P-1	0.00	0.00	33.10	
			P-2	2.04	0.00	33.10	

P-3

0.00

3.31

0.00

Position	Punkt	r	s	р
		[m]	[m]	[kN/m½]
QWIH4	P-1	0.00	0.00	33.10
	P-2	2.12	0.00	33.10
	P-3	0.00	3.31	0.00
QWIH5	P-1	0.00	0.00	33.10
	P-2	2.03	0.00	33.10
	P-3	0.00	3.31	0.00
QWIH6	P-1	0.00	0.00	33.10
	P-2	1.71	0.00	33.10
	P-3	0.00	3.31	0.00
QWIH7	P-1	0.00	0.00	11.50
	P-2	-2.75	-0.02	11.50
	P-3	0.00	1.15	0.00
QWIH8	P-1	0.00	0.00	11.50
	P-2	-1.61	0.00	11.50
	P-3	0.00	1.15	0.00
QWIH9	P-1	0.00	0.00	11.50
	P-2	-2.75	-0.02	11.50
	P-3	0.00	1.15	0.00
QWIH10	P-1	0.00	0.00	11.50
	P-2	-2.75	-0.02	11.50
	P-3	0.00	1.15	0.00
QWIH11	P-1	0.00	0.00	11.50
	P-2	-2.75	-0.02	11.50
	P-3	0.00	1.15	0.00
QWIH12	P-1	0.00	0.00	11.50
	P-2	-1.18	0.00	11.50
	P-3	0.00	1.15	0.00
QWIH13	P-1	0.00	0.00	11.50
	P-2	-1.71	0.00	11.50
	P-3	0.00	1.15	0.00
QWIH14	P-1	0.00	0.00	11.50
	P-2	-1.47	0.00	11.50
	P-3	0.00	1.15	0.00
QWIH15	P-1	0.00	0.00	11.50
	P-2	-1.82	0.00	11.50
	P-3	0.00	1.15	0.00
QWIH16	P-1	0.00	0.00	11.50
	P-2	-1.38	0.00	11.50
	P-3	0.00	1.15	0.00
QWIH17	P-1	0.00	0.00	11.50
	P-2	-0.29	0.00	11.50
	P-3	0.00	1.15	0.00

Einwirkungen

Einwirkungen nach DIN EN 1990 **DIN EN 1990**

> Beschreibung
> Typisierung
> Eigenlasten
> Ständige Einwirkungen Kürzel Gk

Qk.N Nutzlasten

Kategorie A - Wohn- und Aufenthaltsräume

ISEK Hillerheide - Vorstatik Vorstufe RBF Nord

Kürzel Beschreibung Typisierung

Gk.E Erddruck

Ständiger Erddruck

Wasserdruck Gk.H

Ständiger Wasserdruck

Lastfälle und deren Zuordnung zu den Einwirkungen Lastfälle

Gk

LF-4, LF-6 Qk.N LG-1 (LF-5)

LF-2

Gk.E Gk.H LF-3

Bemessung (GZT+GZG)

Biegung F-As-erf-Iso

Biegebemessung Flächenbereiche

B-1

Bemessung für Fläche (Stahlbeton) B-1

Parameter

Es wird das Bemessungsverfahren nach DIN V ENV 1992-1-1:1992-06,

Anhang 2 verwendet.

Beton C 30/37, Betonstahl B 500SB

Gesteinskörnung Quarzit

Bew.-Abstände d',ru/su =8.6 / 9.8 cm d',ro/so = 6.6 / 7.8 cm Grundbewehrung asg,ru/su = 0.00 / 0.00 cm²/m asg,ro/so = 0.00 / 0.00 cm²/m Bemessungswinkel w,ru/su = 0.0 / 90.0 0 w,ro/so = 0.0 / 90.0

Mindestbewehrung (9.2.1.1) wurde nicht ermittelt.

Rissbreitennachweis (7.3):

- Rissbreiten wk,u/o = 0.20/0.20 mm
- Rissbew. (7.3.4) wurde ermittelt für Stab-Durchmesser: ds,ru/su/ro/so = 12.0/12.0/12.0/12.0 mm
- wirksame Betonzugfestigkeit bei Lastbeanspr.: fct,eff = 2.90 N/mm² (= 100.0 % von fctm)
- Mindestbewehrung (7.3.2(2)) wurde nicht ermittelt.

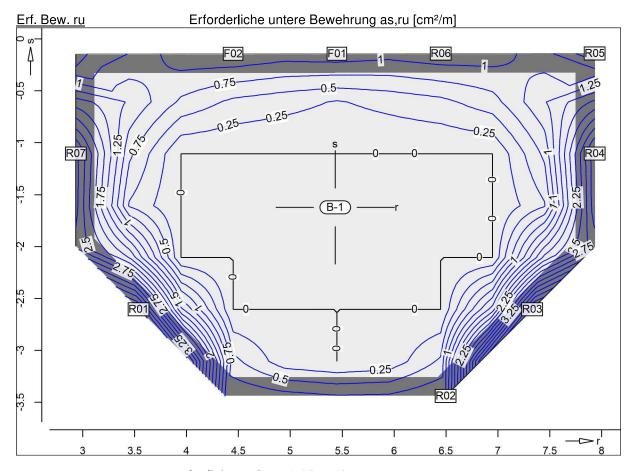
Dicke konstant h = 30.00 cm

Kombinationen

Maßgebende Kombinationen nach DIN EN 1990

Zur Bemessung wurden folgende Kombinationen untersucht:

- Grundkombination
- Quasi-ständig*
- * Kombinationen führten zu keinen maßgebenden Bemessungsschnittgrößen und werden deshalb in der Bemessungstabelle nicht referenziert.

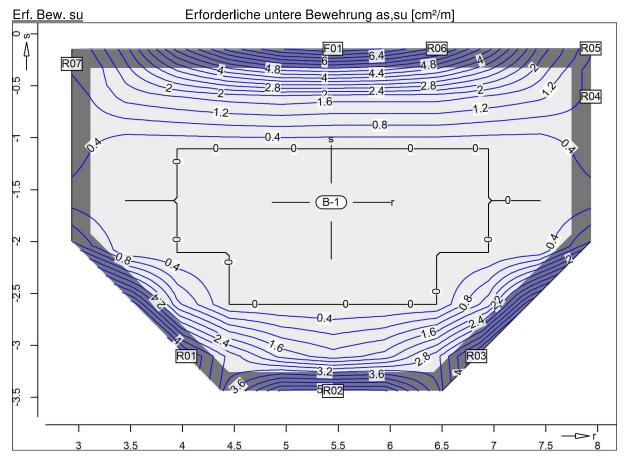

Fw Einwirkungsname

Lastkombinationsnummer l kn

! vorherrschende veränderliche Einwirkung

Die Beteiligung einzelner Lastfälle innerhalb einer Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

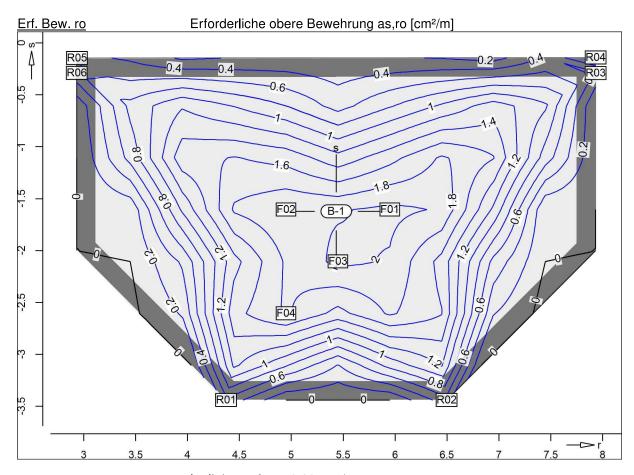
Ew	Gk	Gk.E	Gk.H	Qk.N	
Lkn	Grundkombination				
1-2	1.35	1.00	1.35	1.50 !	
3-4	1.35	1.35	1.35	1.50 !	
5-6	1.35	1.00	1.00	1.50 !	
7	1.00	1.35	1.35	1.50 !	


Isolinienstufen = 0.25 cm²/m

Bew.-Abstand: d'_{ru} = 8.6 cm Maßgebender Nachweis (falls Tragfähigkeitsnachweis nicht maßgebend): R = Rissbreitennachweis

		11 — 1	1133DI CILCITIA	CITWCIS				
Punkt	r	S	$S_{r,Ed}$	S s,Ed	S _{rs} ,Ed	n_{Ed}	$a_{s,ru}$	Lkn
			$m_{r,Ed}$	$m_{s,Ed}$	$m_{\sf rs,Ed}$	m_{Ed}		
		[m]			[N/mm ²]	[kN/m]	[cm ² /m]	
					[kNm/m]	[kNm/m]		
F01	5.45	-0.14	-0.33	-0.44	-0.03	0.00	1.16	3
			10.86	65.48	-0.39	11.25		
F02	4.45	-0.15	0.07	-0.07	-0.03	22.52	1.21	5
			3.64	24.04	-4.75	8.39		
R01	3.54	-2.61	-0.18	-0.24	-0.07	0.00	4.36	1
			25.34	20.10	16.01	41.35		
R02	6.50	-3.44	-0.15	-0.12	-0.03	0.00	1.00	3
			0.98	19.42	-8.69	9.67		
R03	7.33	-2.61	-0.20	-0.27	0.09	0.00	4.61	4
			26.38	22.07	-17.27	43.64		
R04	7.93	-1.11	-0.19	-0.14	-0.02	0.00	3.18	1
			26.99	2.80	3.08	30.07		
R05	7.93	-0.14	0.00	-0.01	0.05	16.60	0.29	2
			-2.96	-1.17	3.53	0.57		
R06	6.45	-0.14	0.07	-0.08	-0.01	20.30	1.17	5
			3.80	25.49	4.51	8.31		

Stadtentwicklungsgesellschaft Recklinghausen mbH ISEK Hillerheide - Vorstatik Vorstufe RBF Nord

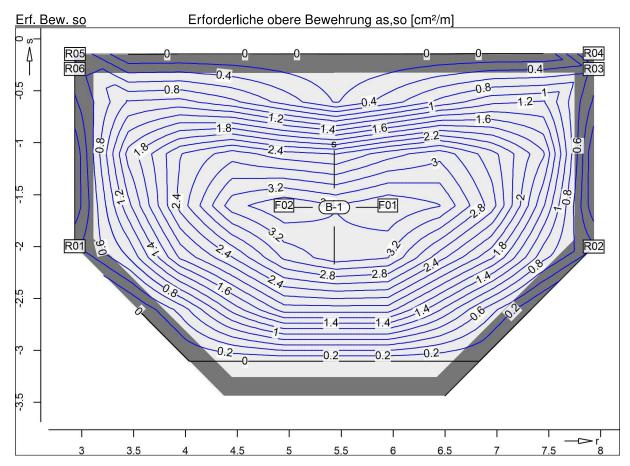

Punkt	r	S	S _{r,Ed}	S _{s,Ed}	S _{rs} ,Ed	n_{Ed}	$a_{s,ru}$	Lkn
			$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}		
		[m]			[N/mm ²]	[kN/m]	[cm ² /m]	
					[kNm/m]	[kNm/m]	-	
R07	2.93	-1.11	-0.23	-0.17	-0.02	0.00	2.85	4
			23.92	2.52	-2.85	26.77		

Isolinienstufen = 0.40 cm²/m

Bew.-Abstand: d'_{su} = 9.8 cm Maßgebender Nachweis (falls Tragfähigkeitsnachweis nicht maßgebend): R = Rissbreitennachweis

		11-1	1133DI CILCITITA	CITWCIS				
Punkt	r	S	$S_{r,Ed}$	S s,Ed	S _{rs} ,Ed	n_{Ed}	$a_{s,su}$	Lkn
			$m_{r,Ed}$	$m_{s,Ed}$	$m_{\sf rs,Ed}$	m_{Ed}		
		[m]			[N/mm ²]	[kN/m]	[cm²/m]	
					[kNm/m]	[kNm/m]		
F01	5.45	-0.14	-0.33	-0.44	-0.03	0.00	7.53	3
			10.86	65.48	-0.39	65.87		
R01	4.04	-3.11	-0.22	-0.29	-0.08	0.00	4.53	3
			19.05	24.34	16.10	40.44		
R02	5.45	-3.44	-0.16	-0.31	-0.01	0.00	5.36	4
			7.28	47.49	-0.09	47.58		
R03	6.83	-3.11	-0.27	-0.26	0.05	0.00	4.86	1
			19.41	26.21	-17.10	43.31		
R04	7.93	-0.61	-0.10	0.09	0.06	36.79	0.70	7
			4.64	0.44	0.87	1.31		
R05	7.93	-0.14	-0.05	0.17	-0.04	63.27	0.89	7
			1.22	0.26	0.22	0.48		
R06	6.45	-0.14	-0.29	-0.40	-0.04	0.00	6.26	3
			8.73	55.06	0.18	55.24		
R07	2.93	-0.29	-0.03	0.04	-0.02	15.55	0.93	3
			-0.08	2.49	-3.68	6.17		

Isolinienstufen = 0.20 cm²/m


Bew.-Abstand: $d'_{ro} = 6.6 \text{ cm}$ Maßgebender Nachweis (falls Tragfähigkeitsnachweis nicht maßgebend): R = Rissbreitennachweis

Punkt	r	s	Sr,Ed	S _{s,Ed}	S _{rs} ,Ed	n_{Ed}	$a_{s,ro}$	Lkn
			$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}		
		[m]			[N/mm²]	[kN/m]	[cm²/m]	
					[kNm/m]	[kNm/m]	-	
F01	5.95	-1.61	-0.16	-0.26	0.01	0.00	2.05	1
			-19.32	-33.66	2.54	-21.86		
F02	4.95	-1.61	-0.16	-0.30	-0.03	0.00	1.98	4
			-17.51	-31.84	-2.44	-19.95		
F03	5.45	-2.11	-0.16	-0.26	-0.01	0.00	2.05	1
			-21.32	-32.66	0.20	-21.52		
F04	4.95	-2.61	-0.17	-0.24	-0.01	0.00	1.83	1
			-15.44	-15.99	3.77	-19.21		
R01	4.37	-3.44	-0.18	-0.08	0.06	0.00	0.56	2
			-1.46	14.96	8.20	-5.96		
R02	6.50	-3.44	-0.19	-0.07	-0.06	0.00	0.53	2
			-1.38	15.64	-8.11	-5.59		
R03	7.93	-0.29	-0.04	-0.07	0.02	0.00	0.35	5
			1.48	-0.07	5.15	-3.67		
R04	7.93	-0.14	0.01	-0.01	0.05	17.70	0.87	5
			-3.09	-1.15	3.48	-6.57		

er version 2020 - Copyrigni 2019 - mb AEC Soltware Gm

Stadtentwicklungsgesellschaft Recklinghausen mbH

Punkt	r	S	Sr,Ed	S _{s,Ed}	S _{rs} ,Ed	n_{Ed}	$\mathbf{a}_{s,ro}$	Lkn
			$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}		
		[m]			[N/mm ²]	[kN/m]	[cm²/m]	
					[kNm/m]	[kNm/m]	-	
R05	2.93	-0.15	-0.04	-0.06	-0.09	15.26	0.92	5
			-5.33	-3.95	-2.21	-7.54		
R06	2.93	-0.29	-0.06	-0.06	-0.04	0.00	0.54	6
			-0.97	0.34	-4.76	-5.73		

Isolinienstufen = 0.20 cm²/m

Bew.-Abstand: d'_{so} = 7.8 cm Maßgebender Nachweis (falls Tragfähigkeitsnachweis nicht maßgebend): R = Rissbreitennachweis

		11 -	i iloobi oitoi ii ia	CITWOID				
Punkt	r	S	Sr,Ed	S _S ,Ed	S _{rs,Ed}	n_{Ed}	$a_{s,so}$	Lkn
			$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}		
		[m]			$[N/mm^2]$	[kN/m]	[cm²/m]	
					[kNm/m]	[kNm/m]		
F01	5.95	-1.61	-0.16	-0.26	0.01	0.00	3.58	1
			-19.32	-33.66	2.54	-36.20		
F02	4.95	-1.61	-0.16	-0.26	-0.03	0.00	3.58	1
			-18.31	-32.90	-2.42	-35.32		
R01	2.93	-2.00	-0.05	-0.18	0.06	0.00	0.37	5
			12.33	-0.86	5.91	-3.69		
R02	7.93	-2.00	-0.06	-0.19	-0.07	0.00	0.44	5
			13.32	-1.07	-6.68	-4.42		
R03	7.93	-0.29	-0.04	-0.07	0.02	0.00	0.52	5
			1.48	-0.07	5.15	-5.22		
R04	7.93	-0.14	-0.04	0.14	-0.01	42.93	0.89	3
			-0.64	-0.47	2.31	-2.78		
R05	2.93	-0.15	-0.04	-0.06	-0.09	10.76	0.77	5
			-5.33	-3.95	-2.21	-6.16		
R06	2.93	-0.29	-0.08	-0.09	-0.05	0.00	0.49	5
			-0.09	-0.07	-4.84	-4.90		

ISEK Hillerheide - Vorstatik Vorstufe RBF Nord

B-2	Bemessung für Fläche	(Stahlbeton)	B-2

<u>Parameter</u> Es wird das Bemessungsverfahren nach DIN V ENV 1992-1-1:1992-06,

Anhang 2 verwendet.

Beton C 30/37, Betonstahl B 500SB

Gesteinskörnung Quarzit

BewAbstände	d',ru/su =	8.6 /	9.8	cm
	d',ro/so =	6.6 /	7.8	cm
Grundbewehrung	asg,ru/su =	0.00 /	0.00	cm²/m
	asg,ro/so =	0.00 /	0.00	cm²/m
Bemessungswinkel	w,ru/su =	0.0 /	90.0	0
-	w,ro/so =	0.0 /	90.0	0

Mindestbewehrung (9.2.1.1) wurde nicht ermittelt.

Rissbreitennachweis (7.3):

- Rissbreiten wk,u/o = 0.20/0.20 mm
- Rissbew. (7.3.4) wurde ermittelt für Stab-Durchmesser: ds,ru/su/ro/so = 12.0/12.0/12.0 mm
- wirksame Betonzugfestigkeit bei Lastbeanspr.: fct,eff = 2.90 N/mm^2 (= 100.0 % von fctm)
- Mindestbewehrung (7.3.2(2)) wurde nicht ermittelt.

Dicke konstant h = 30.00 cm

Kombinationen

Maßgebende Kombinationen nach DIN EN 1990

Zur Bemessung wurden folgende Kombinationen untersucht:

- Grundkombination
- Quasi-ständig*
- * Kombinationen führten zu keinen maßgebenden Bemessungsschnittgrößen und werden deshalb in der Bemessungstabelle nicht referenziert.

Ew Einwirkungsname Lkn Lastkombinationsnummer

! vorherrschende veränderliche Einwirkung

Die Reteiligung einzelner Lastfälle innerhalb einer Einwirkung

Die Beteiligung einzelner Lastfälle innerhalb einer Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Gk.E	Gk.H	Qk.N	
Lkn	Grundkombination				
1-2	1.35	1.00	1.00	1.50 !	
3-4	1.35	1.35	1.00	1.50 !	
5	1.00	1.35	1.35	1.50 !	

mb-Viewer Version 2020 - Copyright 2019 - mb AEC Sottware GmbH

Erf. Bew. ru

Erforderliche untere Bewehrung as,ru [cm²/m]

Bew.-Abstand: $d'_{ru} = 8.6 \text{ cm}$ Maßgebender Nachweis (falls Tragfähigkeitsnachweis nicht maßgebend): R = Rissbreitennachweis

		11 - 1	1133bi Citerina	SITWOIS				
Punkt	r	S	S r,Ed	S _{s,Ed}	S _{rs} ,Ed	n_{Ed}	$a_{s,ru}$	Lkn
			$m_{r,Ed}$	$m_{s,Ed}$	$m_{ ext{rs}, ext{Ed}}$	m_{Ed}		
		[m]			[N/mm²]	[kN/m]	[cm²/m]	
					[kNm/m]	[kNm/m]		
R01	1 74	-1.94	0.08	-0.05	0.00	22.87	0.74	1
			1.87	7.43	-1.89	3.77		
R02	0.15	-0.15	0.01	-0.02	-0.01	5.43	0.26	1
			0.55	12.15	1.16	1.72		
R03	2.93	-0.15	0.57	-0.08	-0.02	171.67	4.18	3
			14.76	2.43	-0.26	15.01		
R04	2.93	-2.00	0.08	-0.01	-0.06	41.37	1.89	1
			11.19	6.51	0.92	12.11		
R05	3.54	-2.61	0.09	-0.04	-0.06	44.95	1.39	1
			4.31	3.56	2.55	6.85		
R06	6.50	-3.44	0.07	-0.03	0.00	20.54	0.80	1
			3.81	4.26	-0.87	4.68		
R07	7.93	-2.00	0.03	0.02	0.01	9.44	2.05	1
			16.36	6.47	1.93	18.29		
R08	7.93	-0.14	0.71	0.17	-0.08	235.59	5.72	1
			15.75	1.62	-4.78	20.52		
R09	7.94	-0.14	0.59	0.18	-0.08	201.33	5.01	1
			13.03	0.13	-5.63	18.66		
R10	8.95	0.59	-0.13	-0.09	0.06	0.00	1.12	3
			3.34	12.13	-7.46	10.80		
R11	10.87	0.14	-0.08	-0.10	0.00	0.00	1.20	3
			5.91	2.30	5.58	11.49		

Punkt	r	s	$S_{r,Ed}$	S _{s,Ed}	S _{rs} ,Ed	n_{Ed}	$a_{s,ru}$	Lkn
			$m_{r,Ed}$	$m_{s,Ed}$	$m_{\sf rs,Ed}$	m_{Ed}		
		[m]			[N/mm ²]	[kN/m]	[cm²/m]	
					[kNm/m]	[kNm/m]		
R12	10.90	-0.61	-0.08	-0.17	-0.01	0.00	2.29	1
			20.11	0.00	1.87	21.98		
R13	10.45	-1.80	-0.09	-0.17	-0.01	0.00	2.22	3
			11.31	8.77	-9.08	20.39		
R14	8.54	-2.53	0.10	0.01	0.03	38.12	1.17	2
			0.37	9.61	5.29	5.66		
R15	7.45	-3.62	-0.22	-0.15	-0.06	0.00	0.92	5
			5.41	4.01	-3.34	8.75		
R16	4.04	-4.24	-0.06	-0.01	0.02	0.00	0.36	5
			1.70	3.24	1.67	3.37		
R17	2.41	-2.61	-0.02	-0.25	-0.01	0.00	0.99	5
			5.57	4.84	4.01	9.58		

Erf. Bew. su

Erforderliche untere Bewehrung as,su [cm²/m]

Bew.-Abstand: d'_{su} = 9.8 cm Maßgebender Nachweis (falls Tragfähigkeitsnachweis nicht maßgebend):

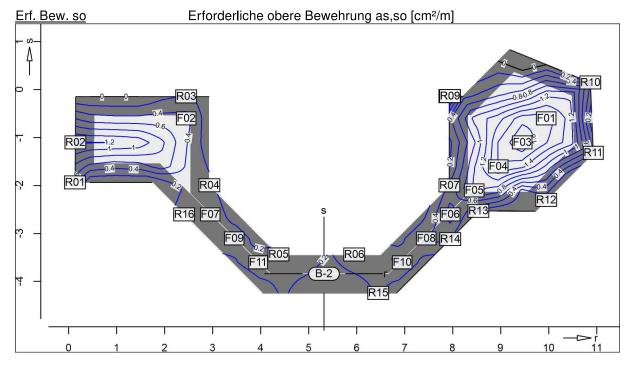
Punkt	r	S	S _{r,Ed}	S _{s,Ed}	S _{rs} ,Ed	n_{Ed}	$a_{s,su}$	Lkn
			$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}		
		[m]	,		[N/mm²]	[kN/m]	[cm ² /m]	
		£1			[kNm/m]	[kNm/m]	[
R01	1.45	-1.94	0.00	-0.12	0.02	0.00	1.48	3
			1.42	12.97	-0.48	13.46		
R02	0.15	-0.15	0.00	-0.02	-0.02	0.00	1.83	3
			0.49	15.18	1.40	16.59		
R03	0.95	-0.15	-0.02	-0.14	-0.03	0.00	2.17	3
			2.21	18.30	0.10	18.40		
R04	2.93	-2.00	0.08	-0.01	-0.06	14.02	1.04	1
			11.19	6.51	0.92	7.43		
R05	3.54	-2.61	0.09	-0.04	-0.06	7.04	0.78	1
			4.31	3.56	2.55	6.11		
R06	5.95	-3.44	0.03	-0.04	-0.02	0.00	0.68	4
			-0.27	5.86	-0.31	6.18		
R07	7.93	-2.00	0.03	0.02	0.01	7.38	1.04	1
			16.36	6.47	1.93	8.40		
R08	7.93	-0.14	0.71	0.17	-0.08	73.85	1.90	1
			15.75	1.62	-4.78	6.39		
R09	7.94	-0.14	0.59	0.18	-0.08	77.25	1.88	1
			13.03	0.13	-5.63	5.76		
R10	8.95	0.59	-0.13	-0.08	0.06	0.00	2.17	2
			3.24	12.03	-7.51	19.54		
R11	10.45	0.31	-0.13	-0.10	0.01	0.00	2.17	3
			3.57	10.63	7.87	18.49		

R = Rissbreitennachweis

ion zuzu - copyrigni zu 19 - mb AEC sottware GmbH

Stadtentwicklungsgesellschaft Recklinghausen mbH

Punkt	r	s	Sr,Ed	S _{s,Ed}	S _{rs} ,Ed	n_{Ed}	$a_{s,su}$	Lkn
			$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}		
		[m]			[N/mm²]	[kN/m]	[cm²/m]	
					[kNm/m]	[kNm/m]		
R12	10.88	-0.11	-0.12	-0.12	0.01	0.00	0.34	1
			12.11	-1.38	4.44	3.06		
R13	9.95	-2.30	-0.09	-0.12	-0.03	0.00	2.17	1
			2.87	11.59	-6.87	18.46		
R14	8.95	-2.53	0.00	-0.13	0.00	0.00	2.57	3
			1.27	19.85	3.38	23.23		
R15	7.95	-3.12	-0.13	-0.31	-0.09	0.00	0.90	5
			4.71	4.64	-3.53	8.16		
R16	5.95	-4.24	-0.26	-0.11	-0.05	0.00	0.90	5
			0.73	7.84	0.41	8.25		
R17	2.41	-2.61	-0.02	-0.25	-0.01	0.00	0.97	5
			5.57	4.84	4.01	8.85		


Erf. Bew. ro

Erforderliche obere Bewehrung as,ro [cm²/m]

Bew.-Abstand: $d'_{ro} = 6.6 \text{ cm}$ Maßgebender Nachweis (falls Tragfähigkeitsnachweis nicht maßgebend): R = Rissbreitennachweis

Punkt	r	s	$S_{r,Ed} \ m_{r,Ed}$	$S_{s,Ed} \ m_{s,Ed}$	S _{rs,Ed} m _{rs,Ed}	n _{Ed} m _{Ed}	$\mathbf{a}_{s,ro}$	Lkn
		[m]	·····,Lu	1115,Eu	[N/mm²] [kNm/m]	[kN/m] [kNm/m]	[cm ² /m]	
F01	1.95	-0.61	0.08 -4.07	-0.04 -3.20	0.00 1.60	23.40 -5.67	0.86	1
F02	9.45	-1.11	-0.04 -20.28	-0.10 -18.04	0.00 2.00	0.00 -22.28	2.12	1
F03	8.95	-1.61	-0.02 -15.49	-0.06 -11.77	-0.01 4.26	0.00 -19.75	1.88	1
F04	1.95	-1.61	0.05 -5.09	-0.07 -3.98	0.00 -3.19	13.54 -8.29	0.97	1
F05	8.45	-2.11	0.02 -5.45	-0.02 -1.66	-0.02 8.96	8.89 -14.41	1.49	1
F06	2.45	-2.11	0.07 -5.42	-0.04 0.94	-0.05 -2.59	38.23 -8.01	1.29	1
F07	7.95	-2.61	0.09 -1.68	-0.01 -3.06	0.03 2.76	36.78 -4.45	0.93	1
F08	7.45	-3.11	0.05 -2.20	-0.05 -3.42	0.04 1.41	27.22 -3.61	0.72	1
F09	3.45	-3.11	0.08	-0.05	-0.05	36.75	0.67	1
F10	6.95	-3.61	-1.46 0.06	-2.87 -0.04	-0.69 0.02	-2.15 20.09	0.64	1
F11	3.95	-3.61	-2.56 0.07 -1.85	-3.18 -0.03 -2.81	1.21 -0.02 -0.94	-3.77 25.50 -2.79	0.62	1

Punkt	r	s	Sr,Ed	S _{s,Ed}	S _{rs} ,Ed	n_{Ed}	$a_{s,ro}$	Lkn
			$m_{r,Ed}$	$m_{s, Ed}$	m _{rs,Ed}	m _{Ed}		
		[m]			[N/mm²]	[kN/m]	[cm²/m]	
					[kNm/m]	[kNm/m]		
R01	0.13	-1.94	0.02	80.0	0.02	11.95	0.31	3
			-0.61	6.17	-2.39	-1.54		
R02	0.14	-1.61	0.00	0.01	0.02	4.77	0.18	4
			0.15	-4.98	-1.37	-1.22		
R03	2.93	-0.15	0.57	-0.08	-0.02	171.67	1.63	3
			14.76	2.43	-0.26	0.00		
R04	2.93	-2.00	0.08	-0.01	-0.06	41.37	0.39	1
			11.19	6.51	0.92	0.00		
R05	4.04	-3.11	0.11	-0.03	-0.05	47.14	0.45	1
			3.79	4.27	1.97	0.00		
R06	4.95	-3.44	0.08	-0.04	-0.01	26.48	0.36	1
			-0.12	5.82	0.06	0.00		
R07	7.33	-2.61	0.02	-0.15	-0.12	33.63	0.38	5
			-0.14	-0.59	-0.31	-0.45		
R08	7.93	-0.14	0.71	0.17	-0.08	235.59	2.23	1
			15.75	1.62	-4.78	0.00		-
R09	7.94	-0.14	0.59	0.18	-0.08	201.33	1.91	1
	,		13.03	0.13	-5.63	0.00		•
R10	9.19	0.83	-0.05	-0.06	-0.06	0.02	0.26	1
	0110	0.00	-1.56	6.86	-2.86	-2.75	0.20	•
R11	10.45	0.31	-0.12	-0.09	0.01	0.00	0.29	1
		0.0	3.31	10.13	8.03	-3.06	0.20	•
R12	9.72	-2.53	-0.10	-0.08	-0.06	0.00	0.25	1
1112	0.72	2.00	-0.99	11.88	-4.51	-2.70	0.20	
R13	8.54	-2.53	0.08	0.03	0.01	28.88	0.87	1
1110	0.04	2.00	-0.52	8.21	6.04	-4.97	0.07	•
R14	7.95	-3.12	0.09	0.00	0.06	44.79	0.68	1
1114	7.55	0.12	-1.43	1.11	0.28	-1.71	0.00	
R15	6.45	-4.24	0.05	0.01	0.01	18.43	0.51	1
1113	0.43	-4.44	-2.00	-1.03	-0.72	-2.72	0.51	'
R16	2.41	-2.61	0.11	-0.03	-0.72 -0.06	49.98	0.76	1
nio	۷. 4 ۱	-2.01					0.70	1
			-0.83	-0.25	-1.09	-1.92		

Isolinienstufen = 0.20 cm²/m

Bew.-Abstand: $d'_{so} = 7.8 \text{ cm}$ Maßgebender Nachweis (falls Tragfähigkeitsnachweis nicht maßgebend): R = Rissbreitennachweis

		110001 Oitoinia	01111010				
r	S	S _{r,Ed}	S _S ,Ed	S _{rs} ,Ed	n_{Ed}	$a_{s,so}$	Lkn
		$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}		
	[m]			$[N/mm^2]$	[kN/m]	[cm²/m]	
				[kNm/m]	[kNm/m]		
9.95	-0.61	-0.08	-0.12	0.02	0.00	1.73	2
		-15.46	-15.02	2.12	-17.14		
2.45	-0.61	0.10	0.02	0.00	7.46	0.48	1
		-0.57	-1.31	2.38	-3.69		
9.45	-1.11	-0.04	-0.10	0.00	0.00	2.01	1
		-20.28	-18.04	2.00	-20.04		
8.95	-1.61	-0.02	-0.06	-0.01	0.00	1.61	1
		-15.49	-11.77	4.26	-16.03		
8.45	-2.11	0.02	-0.02	-0.02	0.00	1.06	1
		-5.45	-1.66	8.96	-10.62		
7.95	-2.61	0.09	-0.01	0.03	8.25	0.70	1
		-1.68	-3.06	2.76	-5.83		
2.95	-2.61	0.07	-0.05	-0.05	0.00	0.35	1
		-0.71	-2.68	-0.96	-3.64		
7.45	-3.11	0.05	-0.05	0.04	0.00	0.48	1
		-2.20	-3.42	1.41	-4.82		
3.45	-3.11	0.08	-0.05	-0.05	0.00	0.35	1
		-1.46	-2.87	-0.69	-3.56		
6.95	-3.61	0.06	-0.04	0.02	0.00	0.43	1
		-2.56	-3.18	1.21	-4.39		
3.95	-3.61	0.07	-0.03	-0.02	0.00	0.37	1
		-1.85	-2.81	-0.94	-3.75		
	9.95 2.45 9.45 8.95 8.45 7.95 2.95 7.45 3.45 6.95	[m] 9.95 -0.61 2.45 -0.61 9.45 -1.11 8.95 -1.61 8.45 -2.11 7.95 -2.61 2.95 -2.61 7.45 -3.11 3.45 -3.11 6.95 -3.61	[m] 9.95	$ \begin{bmatrix} [m] \end{bmatrix} $	$ \begin{bmatrix} [m] \\ & & & & & & & \\ & & & & & \\ & & & & $	$ \begin{bmatrix} m \end{bmatrix} \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{bmatrix} [m] \\ [$

Punkt	r	s	S _{r,Ed}	S _{s,Ed}	S _{rs} ,Ed	n_{Ed}	$a_{s,so}$	Lkn
		[m]	$m_{r,Ed}$	$m_{\text{s,Ed}}$	m _{rs,Ed} [N/mm²]	m _{Ed} [kN/m]	[cm ² /m]	
		נייין			[kNm/m]	[kNm/m]		
R01	0.13	-1.94	-0.03	0.08	0.01	25.96	0.55	5
			-0.89	-0.47	-1.32	-1.79		
R02	0.14	-1.11	0.00	-0.06	0.00	0.00	1.23	1
			-0.95	-12.00	-0.36	-12.35		
R03	2.45	-0.15	0.31	0.01	0.07	24.76	0.23	5
			-0.20	3.56	-1.93	0.00		
R04	2.93	-2.00	-0.06	-0.36	-0.04	0.00	0.25	5
			-0.62	-2.31	-0.24	-2.56		
R05	4.37	-3.44	-0.27	-0.20	0.05	0.00	0.32	5
			-3.52	-3.21	0.01	-3.22		
R06	5.95	-3.44	-0.23	-0.02	-0.12	13.37	0.38	5
			-1.45	-1.28	-0.58	-1.86		
R07	7.93	-2.00	-0.12	-0.36	0.02	0.00	0.45	5
			0.63	-2.97	1.58	-4.55		
R08	7.93	-0.14	0.71	0.17	-0.08	73.85	0.68	1
			15.75	1.62	-4.78	0.00		
R09	7.94	-0.14	0.59	0.18	-0.08	77.25	1.12	1
			13.03	0.13	-5.63	-2.31		
R10	10.87	0.14	-0.07	-0.10	0.00	0.00	0.37	1
			5.72	2.14	5.87	-3.73		
R11	10.93	-1.32	-0.07	-0.18	-0.03	0.00	0.43	1
			12.51	-2.38	-5.00	-4.37		
R12	9.95	-2.30	-0.09	-0.03	0.06	2.51	0.03	5
			3.54	6.09	-3.26	0.00		
R13	8.54	-2.53	0.08	0.03	0.01	13.47	0.16	1
			-0.52	8.21	6.04	0.00		
R14	7.95	-3.12	0.09	0.00	0.06	19.19	0.42	1
			-1.43	-1.11	0.28	-1.39		
R15	6.45	-4.24	0.05	0.01	0.01	4.31	0.24	1
			-2.00	-1.03	-0.72	-1.75		
R16	2.41	-2.61	0.11	-0.03	-0.06	9.91	0.28	1
			-0.83	-0.25	-1.09	-1.35		

ISEK Hillerheide - Vorstatik Vorstufe RBF Nord

<u>D-1</u> Bemessung für Fläche (Stahlbeton) D-1

Parameter Es wird das Bemessungsverfahren nach DIN V ENV 1992-1-1:1992-06,

Anhang 2 verwendet.

Beton C 30/37, Betonstahl B 500SB

Gesteinskörnung Quarzit

Bew.-Abstände d',ru/su = 6.6 / 7.8 cm d',ro/so = 6.6 / 7.8 cm Grundbewehrung asg,ru/su = 0.00 /0.00 cm²/m asg,ro/so = 0.00 /0.00 cm²/m Bemessungswinkel w,ru/su = 0.0 / 90.0 w,ro/so = 0.0 / 90.0

Mindestbewehrung (9.2.1.1) wurde nicht ermittelt.

Rissbreitennachweis (7.3):

- Rissbreiten wk,u/o = 0.20/0.20 mm
- Rissbew. (7.3.4) wurde ermittelt für Stab-Durchmesser: ds,ru/su/ro/so = 12.0/12.0/12.0 mm
- wirksame Betonzugfestigkeit bei Lastbeanspr.: fct,eff = 2.90 N/mm² (= 100.0 % von fctm)
- Mindestbewehrung (7.3.2(2)) wurde nicht ermittelt.

Dicke konstant h = 30.00 cm

Kombinationen

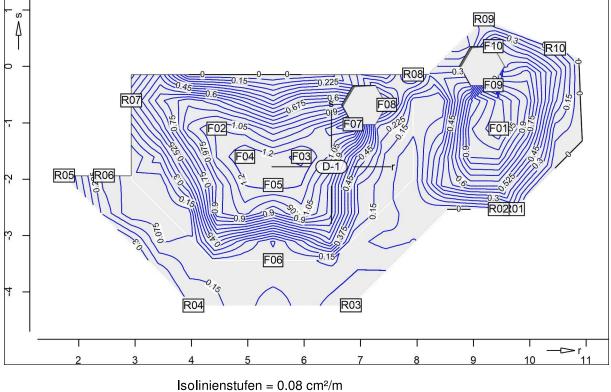
Maßgebende Kombinationen nach DIN EN 1990

Zur Bemessung wurden folgende Kombinationen untersucht:

- Grundkombination
- Quasi-ständig*
- * Kombinationen führten zu keinen maßgebenden Bemessungsschnittgrößen und werden deshalb in der Bemessungstabelle nicht referenziert.

Ew Einwirkungsname

Lkn Lastkombinationsnummer

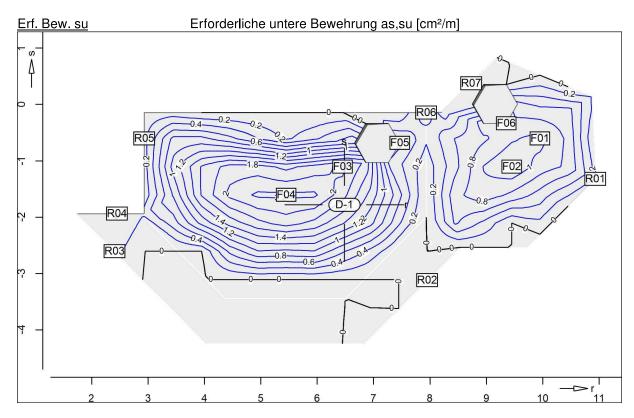

! vorherrschende veränderliche Einwirkung

Die Beteiligung einzelner Lastfälle innerhalb einer Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Gk.E	Gk.H	Qk.N	
Lkn	Grundkombination				
1	1.00	1.35	1.35	ē	
2	1.00	1.00	1.35	•	
3	1.35	1.00	1.00	1.50 !	
4	1.00	1.35	1.35	1.50 !	
5	1.35	1.00	1.35	1.50 !	
6-7	1.35	1.35	1.00	1.50 !	
8	1.35	1.35	1.35	1.50 !	

b-viewer version 2020 - Copyright 2019 - mb AEC Software GmbH

Erf. Bew. ru

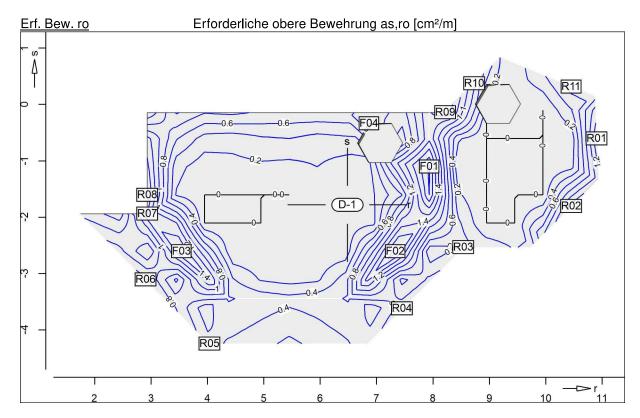


Erforderliche untere Bewehrung as,ru [cm²/m]

Bew.-Abstand: $d'_{ru} = 6.6 \text{ cm}$ Maßgebender Nachweis (falls Tragfähigkeitsnachweis nicht maßgebend): R = Rissbreitennachweis

		11-1	1133DI GILGITIA	CHWEIS				
Punkt	r	s	Sr,Ed	S _{s,Ed}	S _{rs,Ed}	n_{Ed}	$a_{s,ru}$	Lkn
			$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}		
		[m]			$[N/mm^2]$	[kN/m]	[cm ² /m]	
					[kNm/m]	[kNm/m]	-	
F01	9.45	-1.11	-0.09	-0.06	-0.01	0.00	1.20	3
			11.57	10.84	-1.03	12.61		
F02	4.45	-1.11	-0.13	-0.10	0.00	0.00	1.14	3
			8.10	15.05	3.90	12.00		
F03	5.95	-1.61	-0.12	-0.09	0.01	0.00	1.31	3
			12.51	20.82	-1.41	13.92		
F04	4.95	-1.61	-0.12	-0.10	0.00	0.00	1.29	3
			12.36	21.06	1.22	13.58		
F05	5.45	-2.11	-0.11	-0.09	0.01	0.00	1.25	3
			13.19	18.80	0.05	13.24		
F06	5.45	-3.44	0.03	-0.12	0.00	10.35	0.11	4
			-1.73	-6.31	-0.01	0.00		
F07	6.86	-1.03	-0.15	-0.08	0.02	0.00	1.39	3
			9.23	11.94	-5.40	14.63		
F08	7.46	-0.68	-0.11	-0.12	0.10	0.00	0.75	6
			2.81	-2.10	-5.09	7.90		
F09	9.35	-0.34	-0.13	-0.06	-0.02	0.00	1.44	3
			12.82	7.35	2.34	15.16		
F10	9.35	0.36	-0.13	-0.05	0.02	0.00	0.60	3
			6.06	-4.59	1.19	6.37		

r	S	Sr,Ed	S _{s,Ed}	S _{rs} ,Ed	n_{Ed}	$a_{s,ru}$	Lkn
		$m_{r,Ed}$	$m_{s,Ed}$	$m_{\text{rs},\text{Ed}}$	m_{Ed}		
	[m]				[kN/m]	[cm²/m]	
				[kNm/m]	[kNm/m]		
9.72	-2.53	-0.10	-0.06	-0.02	0.00	0.17	3
		0.78	-7.60	2.79	1.81		
9.45	-2.53	-0.10	-0.07	-0.02	0.00	0.05	3
		0.25	-10.79	1.57	0.48		
6.83	-4.24	0.04	-0.04	0.03	21.34	0.23	4
		-1.97	-1.70	-0.23	0.00		
4.04	-4.24	0.04	-0.03	-0.03	19.28	0.21	4
		-1.93	-1.75	-0.04	0.00		
1.74	-1.94	0.06	0.03	0.02	23.82	0.58	1
		1.88	-0.14	0.71	2.58		
2.45	-1.94	-0.14	-0.04	-0.05	0.00	0.11	5
		1.01	2.55	-0.20	1.22		
2.93	-0.61	-0.02	-0.14	0.10	16.09	0.41	4
		1.39	-0.14	0.59	1.98		
7.93	-0.15	0.18	0.03	-0.01	59.32	0.64	5
		-3.93	-0.13	1.77	0.00		
9.19	0.83	-0.10	-0.04	0.01	0.00	0.19	5
		0.52	-3.25	2.15	1.94		
10.45	0.31	-0.11	-0.02	-0.03	0.00	0.15	3
		-2.40	-5.86	-4.87	1.64		
	9.72 9.45 6.83 4.04 1.74 2.45 2.93 7.93 9.19	[m] 9.72 -2.53 9.45 -2.53 6.83 -4.24 4.04 -4.24 1.74 -1.94 2.45 -1.94 2.93 -0.61 7.93 -0.15 9.19 0.83	$ \begin{bmatrix} m \end{bmatrix} \\ m_{r,Ed} \\ m_{r,Ed} \\ m_{r,Ed} \\ 0.78 \\ 9.45 & -2.53 & -0.10 \\ 0.25 \\ 6.83 & -4.24 & 0.04 \\ -1.97 \\ 4.04 & -4.24 & 0.04 \\ -1.93 \\ 1.74 & -1.94 & 0.06 \\ 1.88 \\ 2.45 & -1.94 & -0.14 \\ 1.01 \\ 2.93 & -0.61 & -0.02 \\ 1.39 \\ 7.93 & -0.15 & 0.18 \\ -3.93 \\ 9.19 & 0.83 & -0.10 \\ 0.52 \\ 10.45 & 0.31 & -0.11 \\ \end{bmatrix} $	$ \begin{bmatrix} [m] \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$ \begin{bmatrix} [m] & m_{r,Ed} & m_{s,Ed} & m_{rs,Ed} \\ [N/mm^2] \\ [kNm/m] \\ \end{bmatrix} \\ 9.72 & -2.53 & -0.10 & -0.06 & -0.02 \\ 0.78 & -7.60 & 2.79 \\ 9.45 & -2.53 & -0.10 & -0.07 & -0.02 \\ 0.25 & -10.79 & 1.57 \\ 6.83 & -4.24 & 0.04 & -0.04 & 0.03 \\ -1.97 & -1.70 & -0.23 \\ 4.04 & -4.24 & 0.04 & -0.03 & -0.03 \\ -1.93 & -1.75 & -0.04 \\ 1.74 & -1.94 & 0.06 & 0.03 & 0.02 \\ 1.88 & -0.14 & 0.71 \\ 2.45 & -1.94 & -0.14 & -0.04 & -0.05 \\ 1.01 & 2.55 & -0.20 \\ 2.93 & -0.61 & -0.02 & -0.14 & 0.10 \\ 1.39 & -0.14 & 0.59 \\ 7.93 & -0.15 & 0.18 & 0.03 & -0.01 \\ -3.93 & -0.13 & 1.77 \\ 9.19 & 0.83 & -0.10 & -0.04 & 0.01 \\ 0.52 & -3.25 & 2.15 \\ 10.45 & 0.31 & -0.11 & -0.02 & -0.03 \\ \hline \end{tabular} $	$ \begin{bmatrix} [m] & m_{r,Ed} & m_{s,Ed} & m_{rs,Ed} & m_{Ed} \\ [N/mm^2] & [kN/m] & [kNm/m] \\ [kNm/m] & [kNm/m] & [kNm/m] \\ [Nmm/m] & [kNm/m] & [kNm/m] \\ [Nmm/m] & [Nmm/m] & [Nmm/m] [Nmm/m] & [Nmm/m] & [Nmm/m] & [Nmm/m] \\ [Nmm/m] & [Nmm/m] & [Nmm/m] & [Nmm/m] & [Nmm/m] & [Nmm/m] & [Nmm/m] \\ [Nmm/m] & [N$	$ \begin{bmatrix} [m] & m_{r,Ed} & m_{s,Ed} & m_{rs,Ed} & m_{Ed} \\ [N/mm^2] & [kN/m] & [kN/m] & [kN/m] \\ [N/mm] & [kNm/m] & [kNm/m] & [kNm/m] \\ [N/mm] & [kNm/m] & [kNm/m] & [kNm/m] \\ [N/mm] & [kNm/m] & [kNm/m]$

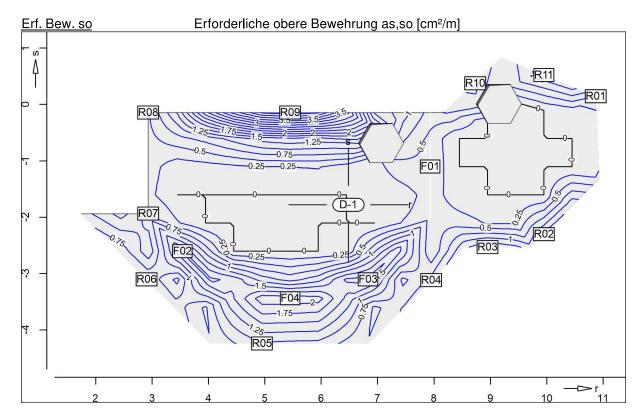


Isolinienstufen = 0.20 cm²/m

Bew.-Abstand: d'_{su} = 7.8 cm Maßgebender Nachweis (falls Tragfähigkeitsnachweis nicht maßgebend): R = Rissbreitennachweis

		H = H	Rissbreitennad	cnweis				
Punkt	r	S	S _{r,Ed}	S _{s,Ed}	S _{rs} ,Ed	$n_{\sf Ed}$	$\mathbf{a}_{s,su}$	Lkn
			$m_{r, Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}		
		[m]			$[N/mm^2]$	[kN/m]	[cm ² /m]	
					[kNm/m]	[kNm/m]	-	
F01	9.95	-0.61	-0.09	-0.07	-0.01	0.00	1.08	3
			8.41	9.72	-1.13	10.85		
F02	9.45	-1.11	-0.09	-0.06	-0.01	0.00	1.19	3
			11.57	10.84	-1.03	11.87		
F03	6.45	-1.11	-0.12	-0.09	0.03	0.00	2.06	3
			8.14	15.23	-4.85	20.07		
F04	5.45	-1.61	-0.12	-0.10	0.01	0.00	2.24	3
			12.94	21.92	-0.06	21.97		
F05	7.46	-0.68	-0.06	-0.09	0.01	0.00	0.67	3
			0.30	1.28	-5.49	6.77		
F06	9.35	-0.34	-0.13	-0.06	-0.02	0.00	0.97	3
			12.82	7.35	2.34	9.68		
R01	10.93	-1.32	-0.06	-0.10	-0.02	0.00	0.19	5
			-7.78	0.73	3.05	1.92		
R02	7.95	-3.12	-0.02	-0.02	0.03	2.81	0.03	5
			-1.46	-2.45	1.41	0.00		
R03	2.41	-2.61	-0.05	-0.03	-0.11	24.09	0.27	4
			-2.71	-3.76	-2.17	0.00		
R04	2.45	-1.94	-0.06	-0.03	-0.07	13.57	0.42	2
			-0.20	1.41	-0.80	2.22		

Punkt	r	s	S _{r,Ed}	S _{s,Ed}	Srs,Ed	n_{Ed}	$a_{s,su}$	Lkn
			$m_{r, Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}		
		[m]			[N/mm ²]	[kN/m]	[cm ² /m]	
					[kNm/m]	[kNm/m]		
R05	2.93	-0.61	-0.10	-0.16	0.14	0.00	0.14	7
			-7.78	-0.31	3.61	1.36		
R06	7.93	-0.15	0.10	0.07	-0.02	26.60	0.56	4
			-0.80	-0.35	2.13	1.78		
R07	8.73	0.37	-0.02	0.00	0.02	7.01	0.08	2
			-2.10	-2.62	1.29	0.00		



Isolinienstufen = 0.20 cm²/m

Bew.-Abstand: $d'_{ro} = 6.6 \text{ cm}$ Maßgebender Nachweis (falls Tragfähigkeitsnachweis nicht maßgebend): R = Rissbreitennachweis

Punkt	r	S	Sr,Ed	S _S ,Ed	S _{rs,Ed}	n_{Ed}	$a_{s,ro}$	Lkn
			$m_{r,Ed}$	$m_{s,Ed}$	$m_{\sf rs,Ed}$	m_{Ed}		
		[m]			[N/mm²]	[kN/m]	[cm²/m]	
					[kNm/m]	[kNm/m]		
F01	7.93	-1.10	-0.08	-0.07	0.00	0.00	2.04	3
			-20.28	-3.33	-1.15	-21.43		
F02	7.33	-2.61	-0.02	-0.03	0.05	9.07	1.91	5
			-11.79	-8.86	6.99	-18.78		
F03	3.54	-2.61	-0.13	-0.06	0.00	0.00	1.60	3
			-9.64	-9.90	-7.22	-16.87		
F04	6.86	-0.34	-0.15	-0.08	-0.05	0.00	0.96	3
			-3.26	-11.56	-6.91	-10.18		
R01	10.90	-0.61	-0.13	-0.09	-0.01	0.00	1.35	7
			-13.40	0.03	-0.83	-14.23		
R02	10.45	-1.80	-0.10	-0.08	0.02	0.00	1.28	7
			-7.74	-6.54	5.73	-13.47		
R03	8.54	-2.53	-0.08	-0.03	0.02	0.00	0.46	3
			-3.62	-9.51	-1.28	-4.90		
R04	7.45	-3.62	-0.10	-0.08	0.02	0.00	0.72	7
			-4.57	-4.74	3.06	-7.63		
R05	4.04	-4.24	0.04	-0.03	-0.03	19.28	0.46	4
			-1.93	-1.75	-0.04	-1.97		
R06	2.90	-3.11	0.05	-0.12	-0.08	30.96	1.05	4
			-4.20	-3.51	-2.36	-6.56		·

Punkt	r	S	Sr,Ed	S _{s,Ed}	S _{rs} ,Ed	n_{Ed}	$a_{s,ro}$	Lkn
			$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}		
		[m]			[N/mm ²]	[kN/m]	[cm ² /m]	
					[kNm/m]	[kNm/m]		
R07	2.93	-1.94	-0.11	-0.13	0.01	0.00	1.41	5
			-10.34	-0.99	-4.54	-14.88		
R08	2.93	-1.61	-0.09	-0.11	-0.01	0.00	1.60	3
			-15.38	-0.69	-1.92	-17.29		
R09	8.21	-0.14	0.03	-0.06	0.06	27.31	1.60	5
			-8.29	-2.74	4.61	-12.90		
R10	8.73	0.37	-0.09	-0.05	0.01	0.00	0.84	8
			-5.16	-7.09	3.80	-8.96		
R11	10.45	0.31	-0.11	-0.02	-0.03	0.00	0.69	3
			-2.40	-5.86	-4.87	-7.27		

Isolinienstufen = 0.25 cm²/m

Bew.-Abstand: d'_{so} = 7.8 cm Maßgebender Nachweis (falls Tragfähigkeitsnachweis nicht maßgebend): R = Rissbreitennachweis

		11-1	lissol ellerina	CHWEIS				
Punkt	r	S	$S_{r,Ed}$	S _{s,Ed}	S _{rs} ,Ed	n_{Ed}	$\mathbf{a}_{s,so}$	Lkn
			$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}		
		[m]			[N/mm²]	[kN/m]	[cm ² /m]	
					[kNm/m]	[kNm/m]	-	
F01	7.93	-1.10	-0.02	-0.02	0.02	0.09	0.47	5
			-19.99	-3.65	-1.06	-4.70		
F02	3.54	-2.61	-0.13	-0.06	0.00	0.00	1.81	3
			-9.64	-9.90	-7.22	-17.12		
F03	6.83	-3.11	-0.05	-0.03	0.03	0.00	1.85	5
			-8.52	-11.80	6.90	-18.71		
F04	5.45	-3.44	-0.01	-0.07	0.01	0.00	2.16	5
			-5.00	-22.06	-0.01	-22.08		
R01	10.87	0.14	-0.07	-0.07	-0.02	0.00	0.48	3
			-4.16	-1.36	-3.51	-4.86		
R02	9.95	-2.30	-0.12	-0.06	0.02	0.00	1.30	7
			-3.44	-8.26	4.75	-13.01		
R03	8.95	-2.53	-0.13	-0.13	0.00	0.00	1.51	6
			-1.41	-12.85	-2.16	-15.01		
R04	7.95	-3.12	-0.10	-0.06	0.02	0.00	0.84	7
			-3.60	-5.14	3.31	-8.45		
R05	4.95	-4.24	-0.09	-0.12	-0.01	0.00	0.96	7
			-1.00	-8.88	0.73	-9.61		
R06	2.90	-3.11	-0.11	-0.11	-0.01	0.00	0.98	7
			-5.85	-5.68	-4.18	-9.86		

version zuzu - copyrigni zu i 9 - mb AEC sonware Gmb

Stadtentwicklungsgesellschaft Recklinghausen mbH

Punkt	r	S	$S_{r,Ed}$	S _{s,Ed}	S _{rs} ,Ed	n_{Ed}	$a_{s,so}$	Lkn
			$m_{r, Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}		
		[m]			[N/mm ²]	[kN/m]	[cm²/m]	
					[kNm/m]	[kNm/m]		
R07	2.93	-1.94	-0.11	-0.13	0.01	0.00	0.55	5
			-10.34	-0.99	-4.54	-5.53		
R08	2.93	-0.15	-0.05	-0.01	0.04	7.26	0.47	4
			0.70	-2.03	-1.62	-3.65		
R09	5.45	-0.15	-0.18	-0.25	-0.02	0.00	4.42	8
			-7.68	-43.31	-0.18	-43.49		
R10	8.73	0.37	-0.09	-0.05	0.01	0.00	1.10	8
			-5.16	-7.09	3.80	-10.89		
R11	9.95	0.52	-0.12	-0.12	0.04	0.00	1.18	8
			-0.96	-8.90	-2.99	-11.89		

ISEK Hillerheide - Vorstatik Vorstufe RBF Nord

W-1 Bemessung für Fläche (Stahlbeton) W-1

Parameter Es wird das Bemessungsverfahren nach DIN V ENV 1992-1-1:1992-06,

Anhang 2 verwendet.

Beton C 30/37, Betonstahl B 500SB

Gesteinskörnung Quarzit

Bew.-Abstände d',ru/su = 6.6 / 7.8 cm d',ro/so = 6.6 / 7.8 cm Grundbewehrung asg,ru/su = 0.00 /0.00 cm²/m asg,ro/so = 0.00 /0.00 cm²/m Bemessungswinkel w,ru/su = 0.0 / 90.0 w,ro/so = 0.0 / 90.0

Mindestbewehrung (9.2.1.1) wurde nicht ermittelt.

Rissbreitennachweis (7.3):

- Rissbreiten wk,u/o = 0.20/0.20 mm
- Rissbew. (7.3.4) wurde ermittelt für Stab-Durchmesser: ds,ru/su/ro/so = 12.0/12.0/12.0 mm
- wirksame Betonzugfestigkeit bei Lastbeanspr.: fct,eff = 2.90 N/mm^2 (= 100.0 % von fctm)
- Mindestbewehrung (7.3.2(2)) wurde nicht ermittelt.

Dicke konstant h = 30.00 cm

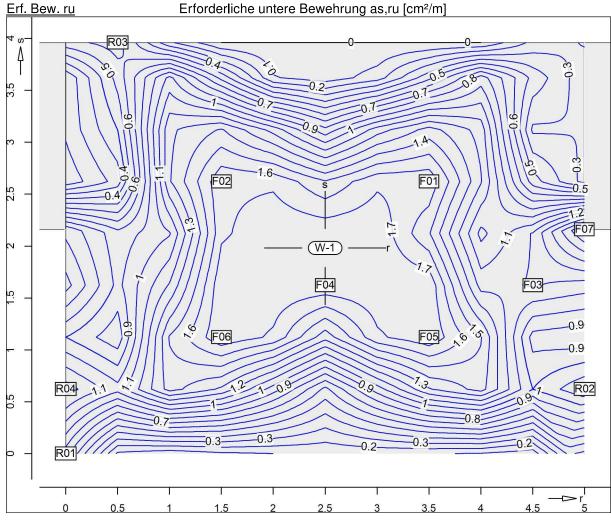
Kombinationen

Maßgebende Kombinationen nach DIN EN 1990

Zur Bemessung wurden folgende Kombinationen untersucht:

- Grundkombination
- Quasi-ständig*
- * Kombinationen führten zu keinen maßgebenden Bemessungsschnittgrößen und werden deshalb in der Bemessungstabelle nicht referenziert.

Ew Einwirkungsname


Lkn Lastkombinationsnummer

! vorherrschende veränderliche Einwirkung

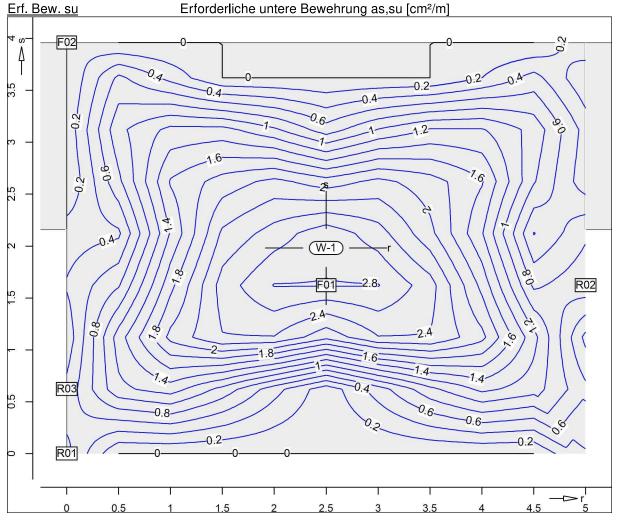
Die Beteiligung einzelner Lastfälle innerhalb einer Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Gk.E	Gk.H	Qk.N	
Lkn	Grundkombination				
1	1.35	1.00	1.35	1.50 !	
2	1.35	1.00	1.00	1.50 !	
3	1.00	1.35	1.35	1.50 !	
4	1.35	1.35	1.35	1.50 !	

b-viewer version 2020 - Copyright 2019 - mb AEC Software GmbH

Isolinienstufen = 0.10 cm²/m

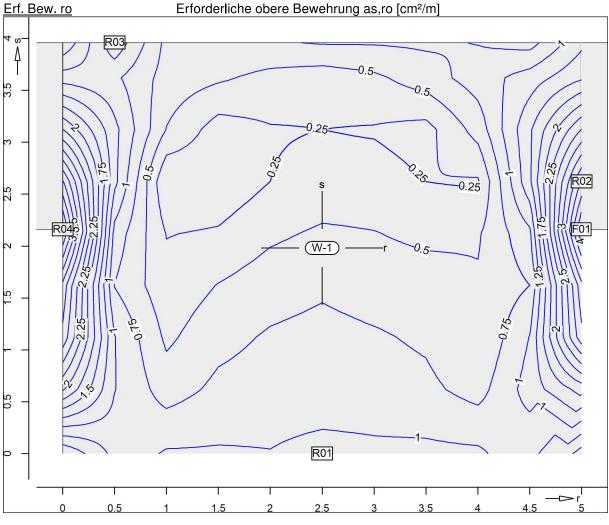
Bew.-Abstand: d'_{ru} = 6.6 cm Maßgebender Nachweis (falls Tragfähigkeitsnachweis nicht maßgebend): R = Rissbreitennachweis


Punkt	r	s	S _{r,Ed}	S _{s,Ed}	S _{rs} ,Ed	n_{Ed}	$a_{s,ru}$	Lkn
			$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}		
		[m]			$[N/mm^2]$	[kN/m]	[cm ² /m]	
					[kNm/m]	[kNm/m]		
F01	3.50	2.62	-0.08	-0.14	0.00	0.00	1.68	3
			12.34	14.41	-5.05	17.39		
F02	1.50	2.62	-0.12	-0.14	0.00	0.00	1.68	3
			12.90	14.65	5.09	17.99		
F03	4.50	1.62	0.12	-0.06	0.08	61.96	1.21	2
			2.74	1.43	1.32	4.06		
F04	2.50	1.62	-0.14	-0.21	0.02	0.00	1.78	3
			18.77	27.88	0.06	18.83		
F05	3.50	1.12	-0.16	-0.19	-0.01	0.00	1.78	3
			12.24	17.36	6.36	18.60		
F06	1.50	1.12	-0.18	-0.21	0.07	0.00	1.78	3

ion zuzu - copyrigni zu i 8 - mb AEC sonware Gmbm

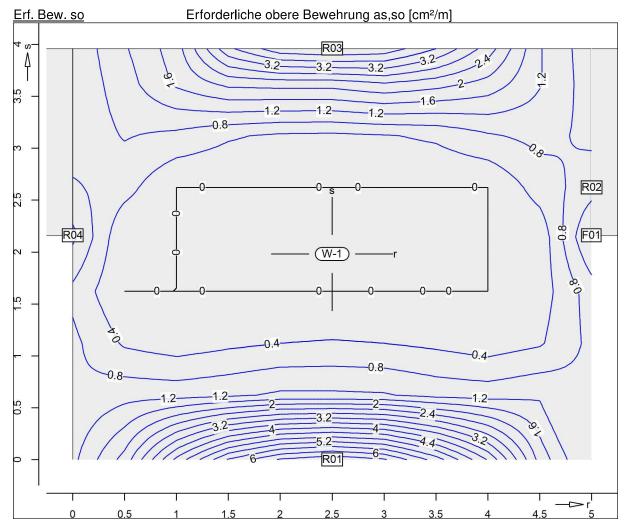
Stadtentwicklungsgesellschaft Recklinghausen mbH

ISEK Hillerheide - Vorstatik Vorstufe RBF Nord


Punkt	r	S	$S_{r,Ed}$	S _{s,Ed}	S _{rs} ,Ed	n_{Ed}	$a_{s,ru}$	Lkn
			$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}		
		[m]			$[N/mm^2]$	[kN/m]	[cm²/m]	
					[kNm/m]	[kNm/m]		
			12.37	17.44	-6.35	18.73		
F07	5.00	2.16	0.37	0.14	0.04	123.11	1.73	2
			2.84	0.91	-0.08	2.92		
R01	0.00	0.00	0.02	0.09	-0.02	13.27	0.75	1
			2.92	-1.71	3.06	5.98		
R02	5.00	0.62	0.10	0.06	0.01	32.69	1.19	2
			6.86	1.45	0.92	7.78		
R03	0.50	3.96	0.12	-0.07	0.05	46.73	0.65	3
			-3.05	-6.40	5.14	1.08		
R04	0.00	0.62	0.07	0.05	-0.01	23.48	1.25	2
			8.76	0.78	-1.01	9.77		

Isolinienstufen = 0.20 cm²/m

Bew.-Abstand: d'_{su} = 7.8 cm Maßgebender Nachweis (falls Tragfähigkeitsnachweis nicht maßgebend): R = Rissbreitennachweis


Punkt	r	s	Sr,Ed	S _{s,Ed}	S _{rs} ,Ed	n_{Ed}	$\mathbf{a}_{s,su}$	Lkn
			$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}		
		[m]			[N/mm²]	[kN/m]	[cm²/m]	
					[kNm/m]	[kNm/m]		
F01	2.50	1.62	-0.14	-0.21	0.02	0.00	2.81	3
			18.77	27.88	0.06	27.94		
F02	0.00	3.96	0.07	-0.07	-0.02	0.00	0.19	3
			-0.61	0.47	1.42	1.89		
R01	0.00	0.00	-0.01	0.07	-0.03	29.30	0.66	4
			3.83	-0.09	2.34	2.26		
R02	5.00	1.62	0.05	0.11	0.08	56.83	0.94	2
			5.22	1.13	0.94	2.07		
R03	0.00	0.62	0.07	0.05	-0.01	18.90	0.46	2
			8.76	0.78	-1.01	1.79		

Isolinienstufen = 0.25 cm²/m

Bew.-Abstand: $d'_{ro} = 6.6 \text{ cm}$ Maßgebender Nachweis (falls Tragfähigkeitsnachweis nicht maßgebend): R = Rissbreitennachweis

Punkt	r	s	Sr,Ed	S _S ,Ed	S _{rs,Ed}	n_{Ed}	$a_{s,ro}$	Lkn
			$m_{r,Ed}$	$m_{s,Ed}$	$m_{\sf rs,Ed}$	m_{Ed}		
		[m]			[N/mm²]	[kN/m]	[cm ² /m]	
					[kNm/m]	[kNm/m]	-	
F01	5.00	2.16	-0.12	0.04	0.04	0.00	4.26	3
			-40.58	-10.44	-3.70	-44.27		
R01	2.50	0.00	-0.32	-0.45	0.03	0.00	1.09	4
			-11.14	-64.86	-0.35	-11.48		
R02	5.00	2.62	-0.03	-0.01	0.03	1.49	3.53	3
			-33.62	-6.11	-3.02	-36.64		
R03	0.50	3.96	0.12	-0.07	0.05	46.73	1.43	3
			-3.05	-6.40	5.14	-8.19		
R04	0.00	2.16	-0.32	-0.14	0.00	0.00	4.33	3
			-41 62	-9 59	3 34	-44 95		

Isolinienstufen = 0.40 cm²/m

Bew.-Abstand: d'_{so} = 7.8 cm Maßgebender Nachweis (falls Tragfähigkeitsnachweis nicht maßgebend): R = Rissbreitennachweis

			110001011011110	.01111010				
Punkt	r	s	$S_{r,Ed}$	S _{s,Ed}	S _{rs} ,Ed	n_{Ed}	$a_{s,so}$	Lkn
			$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}		
		[m]			[N/mm ²]	[kN/m]	[cm²/m]	
					[kNm/m]	[kNm/m]		
F01	5.00	2.16	-0.12	0.04	0.04	17.82	1.68	3
			-40.58	-10.44	-3.70	-14.14		
R01	2.50	0.00	-0.32	-0.45	0.03	0.00	6.72	4
			-11.14	-64.86	-0.35	-65.21		
R02	5.00	2.62	-0.03	-0.01	0.03	7.32	1.02	3
			-33.62	-6.11	-3.02	-9.13		
R03	2.50	3.96	-0.19	-0.29	-0.01	0.00	4.42	4
			-7.77	-43.84	-0.36	-44.21		
R04	0.00	2.16	-0.32	-0.14	0.00	0.00	1.30	3
			-41.62	-9.59	3.34	-12.92		

ISEK Hillerheide - Vorstatik Vorstufe RBF Nord

Querkraft F-As-lso Querkraftbemessung Schalenbereiche

B-1 Querkraftbemessung der Schale

Querkraftbemessung nach DIN EN 1992-1-1

Beton C 30/37, Betonstahl B 500SB

Gesteinskörnung Quarzit

Dicke konstant h = 30.00 cm

Grundbiegebew. asg, $ru/su = 0.0 / 0.0 \text{ cm}^2/\text{m}$

 $asg, ro/so = 0.0 / 0.0 cm^2/m$

Druckstrebenneigung wurde vom Programm optimiert. Mindestbewehrung (9.3.2) wurde nicht ermittelt.

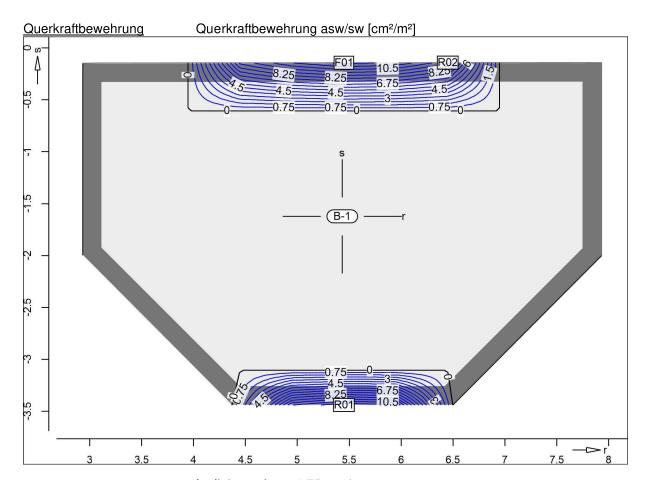
minagetserremany (elele) warde mem er

Kombinationen nach DIN EN 1990

Zur Bemessung wurden folgende Kombinationen untersucht:

- Grundkombination

Ew Einwirkungsname


Lkn Lastkombinationsnummer

! vorherrschende veränderliche Einwirkung

Die Beteiligung einzelner Lastfälle innerhalb einer Einwirkung wird mit

diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Gk.E	Gk.H	Qk.N	
Lkn	Grundkombination				
1-2	1.35	1.35	1.35	1.50 !	

Isolinienstufen = 0.75 cm²/m²

Punkt	X	y [m]	vEd	vEd,res	vRd,c	vRd,max [kN/m]	asw/sw	Summe [cm²/m²]	Lkn
F01	5.45	-0.14 r	0.5	136.9	121.5 m	470.5	0.00	12.21	2
		S	136.9		109.1 m	422.4	12.21		
R01	5.45	-3.44 r	-1.9	135.1	117.3 m	470.5	0.00	11.86	1
		S	-135.1		109.1 m	417.4	11.86		
R02	6.45	-0.14 r	-20.6	126.7	120.5 m	470.5	0.00	9.91	2
		s	125.0		109.1 m	385.8	9.91		

m: Mindestwert nach DIN EN 1992-1-1, Gl.(6.2.b) maßgebend

ISEK Hillerheide - Vorstatik Vorstufe RBF Nord

B-2 Querkraftbemessung der Schale

Querkraftbemessung nach DIN EN 1992-1-1

Beton C 30/37, Betonstahl B 500SB

Gesteinskörnung Quarzit

Grundbiegebew. asg, $ru/su = 0.0 / 0.0 \text{ cm}^2/\text{m}$

 $asg, ro/so = 0.0 / 0.0 cm^2/m$

Druckstrebenneigung wurde vom Programm optimiert. Mindestbewehrung (9.3.2) wurde nicht ermittelt.

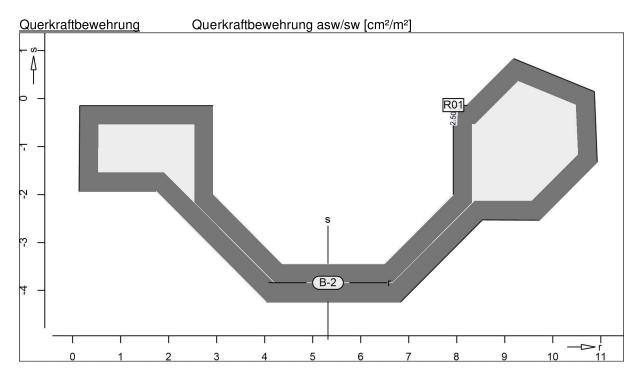
Dicke konstant h = 30.00 cm

Kombinationen Maßgebende Kombinationen nach DIN EN 1990

Zur Bemessung wurden folgende Kombinationen untersucht:

- Grundkombination

Ew Einwirkungsname


Lkn Lastkombinationsnummer

! vorherrschende veränderliche Einwirkung

Die Beteiligung einzelner Lastfälle innerhalb einer Einwirkung wird mit

diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Gk.E	Gk.H	Qk.N	
Lkn	Grundkombination				
1	1.35	1.00	1.35	1.50 !	

Isolinienstufen = 0.50 cm²/m²

Punkt	X	у	vEd	vEd,res	vRd,c	vRd,max	asw/sw	Summe	Lkn
		[m]				[kN/m]		[cm ² /m ²]	
R01	7.93	-0.14 r	-17.8	122.2	108.1 m	470.5	0.00	9.36	1
		s	-120.9		109.1 m	378.7	9.36		

m: Mindestwert nach DIN EN 1992-1-1, GI.(6.2.b) maßgebend

ISEK Hillerheide - Vorstatik Vorstufe RBF Nord

W-1 Querkraftbemessung der Schale

Querkraftbemessung nach DIN EN 1992-1-1

Beton C 30/37, Betonstahl B 500SB

Gesteinskörnung Quarzit

Grundbiegebew. asg, $ru/su = 0.0 / 0.0 \text{ cm}^2/\text{m}$

 $asg, ro/so = 0.0 / 0.0 cm^2/m$

Druckstrebenneigung wurde vom Programm optimiert. Mindestbewehrung (9.3.2) wurde nicht ermittelt.

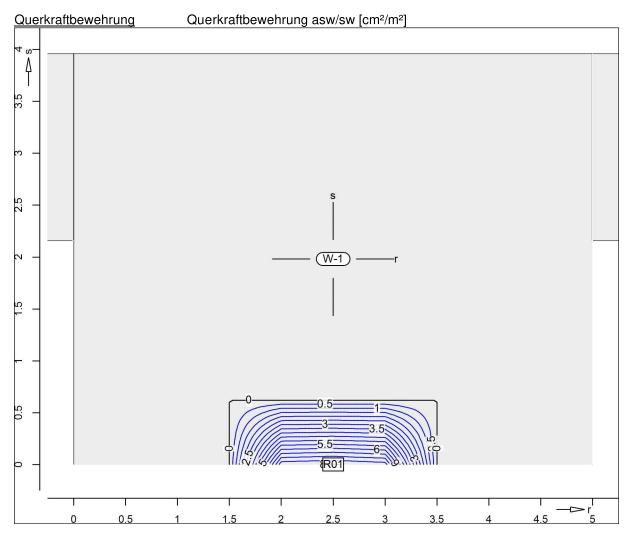
Dicke konstant h = 30.00 cm

Kombinationen Maßgebende Kombinationen nach DIN EN 1990

Zur Bemessung wurden folgende Kombinationen untersucht:

- Grundkombination

Ew Einwirkungsname

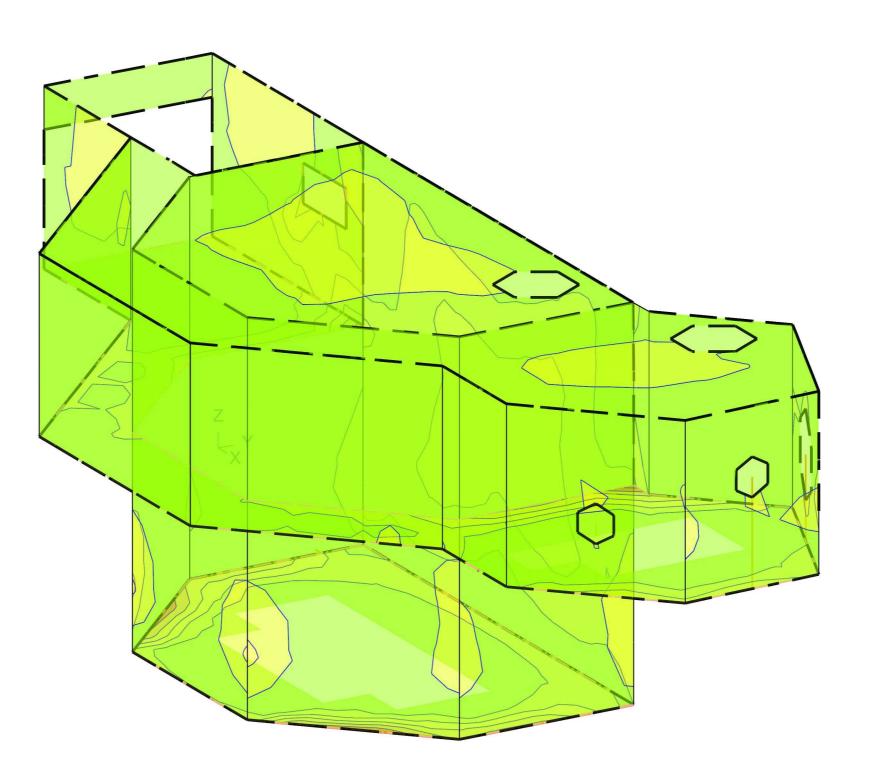

Lkn Lastkombinationsnummer

! vorherrschende veränderliche Einwirkung

Die Beteiligung einzelner Lastfälle innerhalb einer Einwirkung wird mit

diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Gk.E	Gk.H	Qk.N	
Lkn	Grundkombination				
1	1.35	1.35	1.35	1.50 !	



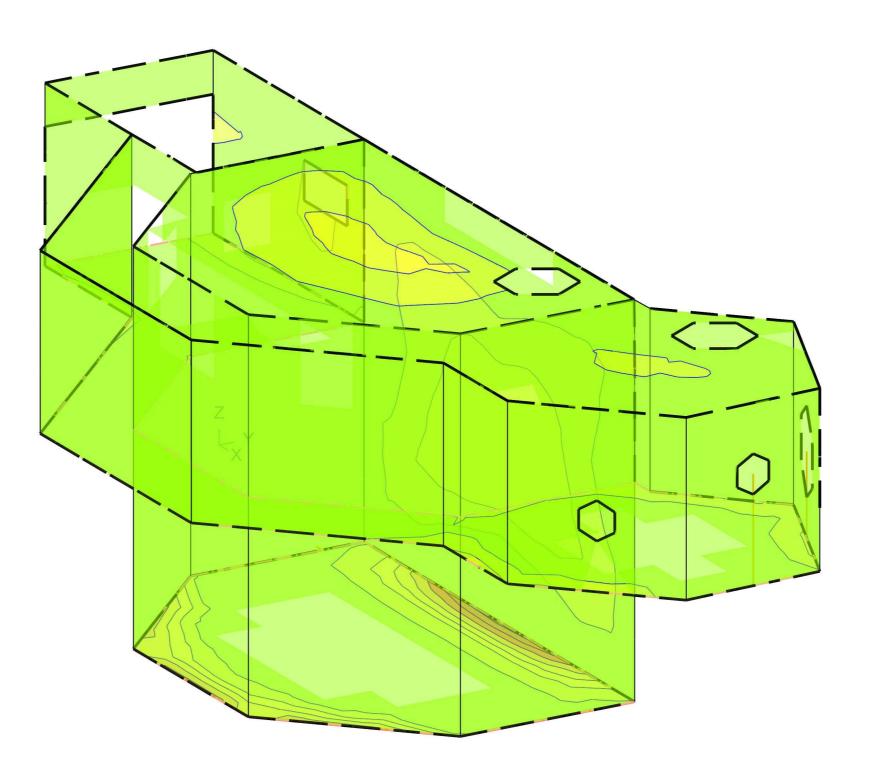
Isolinienstufen = $0.50 \text{ cm}^2/\text{m}^2$

Punkt	Х	У	vEd	vEd,res	vRd,c	vRd,max	asw/sw	Summe	Lkn
		[m]				[kN/m]		[cm ² /m ²]	
R01	2.50	0.00 r	0.8	124.8	128.7 m	547.0	0.00	8.04	1
		S	124.8		115.8 m	455.2	8.04		

m: Mindestwert nach DIN EN 1992-1-1, GI.(6.2.b) maßgebend

ISEK Hillerheide - Vorstatik Vorstufe RBF Nord

5.25 4.5 3.75 3 2.25 1.5 0.75


Flächenbemessung Erforderliche Bewehrung as,erf Maßstab: 3D

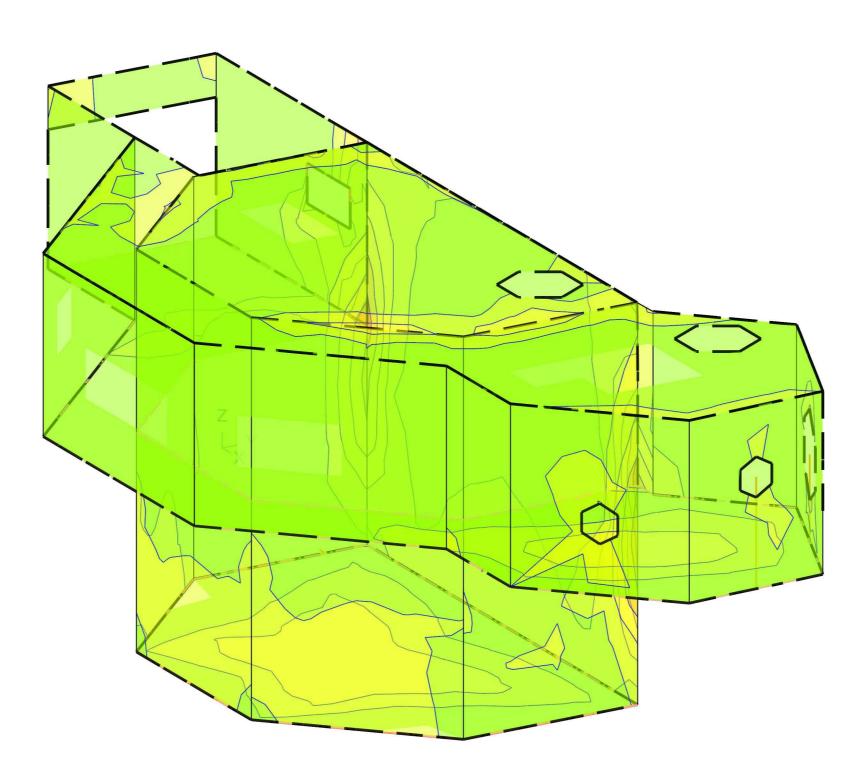
Max = 5.72 (Kn. 88), Min = 0 (Kn. 588), Step = 0.75

Beton C 30/37

Bew.-Abstand d' = 6.6...8.6 cm aus allen Nachweisen Bauteildicke h = 30.00 cm r-Richtung unten in [cm²/m]

ISEK Hillerheide - Vorstatik Vorstufe RBF Nord

Erforderliche Bewehrung as,erf Maßstab: 3D

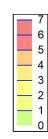

Max = 7.53 (Kn. 75), Min = 0 (Kn. 96), Step = 1

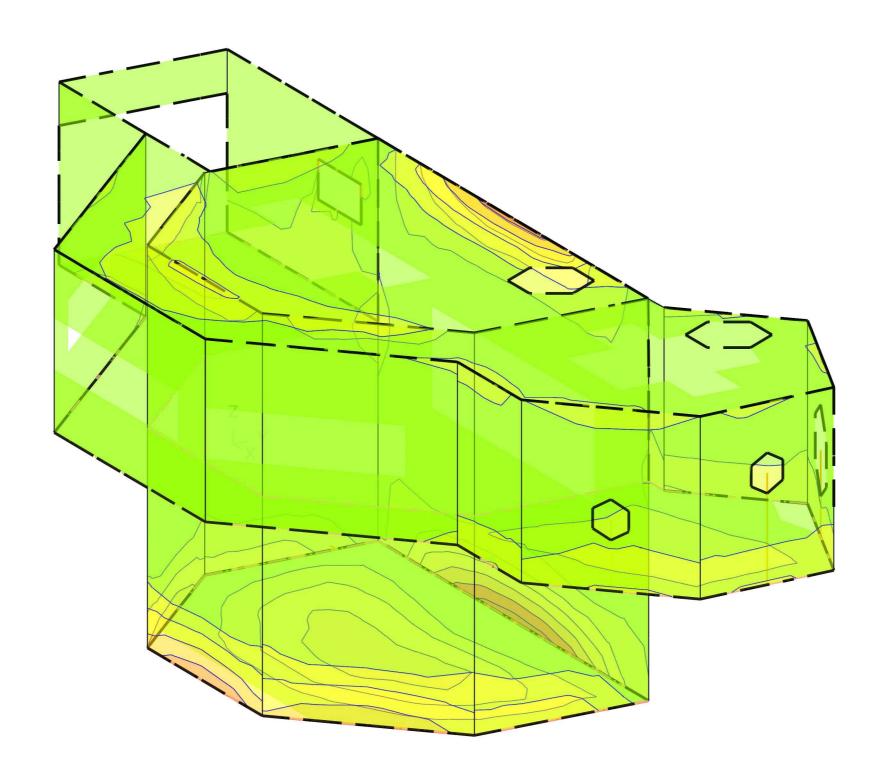
Beton C 30/37

Flächenbemessung

Bew.-Abstand d' = 7.8...9.8 cm aus allen Nachweisen Bauteildicke h = 30.00 cm s-Richtung unten in [cm²/m]

ISEK Hillerheide - Vorstatik Vorstufe RBF Nord


3.75 3.75 3 2.25 - 1.5 0.75


Flächenbemessung Erforderliche Bewehrung as,erf Maßstab: 3D

Max = 4.61 (Kn. 83), Min = 0 (Kn. 736), Step = 0.75

Beton C 30/37

Bew.-Abstand d' = 6.6 cm aus allen Nachweisen Bauteildicke h = 30.00 cm r-Richtung oben in [cm²/m]

Flächenbemessung Erforderliche Bewehrung as,erf Maßstab: 3D

Max = 6.72 (Kn. 329), Min = 0 (Kn. 735), Step = 1

Beton C 30/37

Bew.-Abstand d' = 7.8 cm aus allen Nachweisen Bauteildicke h = 30.00 cm s-Richtung oben in [cm²/m]

August 2021

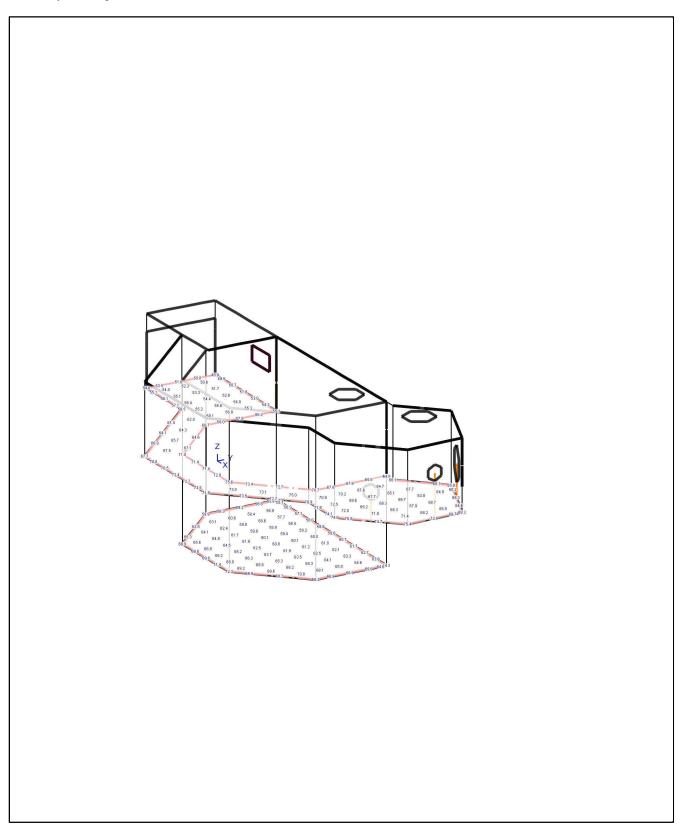
Pos B1 Seite

Querkraftbemessung

Querkraftbewehrung asw/sw aus allen Nachweisen in [cm²/m²]

Ausgangswerte

Maßstab: 3D


Max = 39.46, Min = 0, Step = 5

Stadtentwicklungsgesellschaft Recklinghausen mbH ISEK Hillerheide - Vorstatik Vorstufe RBF Nord

<u>Auflagerkräfte</u>

ISEK Hillerheide - Vorstatik Vorstufe RBF Nord

Flächenpressungen

Lagerkraft in t-Richtung in [kN/m²] im lokalen Positionskoordinatensystem lastkombinationsweise dargestellt aus Lastkombination LK-2 Max = 75.6 (Kn. 86), Min = 48.9 (Kn. 82), Step = 5

Pos. GiRo

Gitterrostabdeckung auf Betriebssteg

Das Bauwerk in einem Teilbereich mit Gitterrosten abgedeckt werden. Die Vorbemessung der Gitterroste erfolgt auf Grundlage der Bemessungstabellen vom Hersteller "Meiser Gitterroste". Der endgültige statische Nachweis der Gitterroste ist durch den Hersteller zu erbringen. Die Auflagerung der Gitterrostabdeckung erfolgt auf den Stahlbetonwänden Zulaufkammer.

Verkehrslast : $q_k = 5.0 \text{ kN} / \text{m}^2$

Lichte Stützweite < 1,60m (Auflagerung auf den Wänden der Zulaufkammer)

Meiser Gitterroste Pressrost 33.3 x 33.3 , Tragstäbe 嗂40/4

 $F_V = 5.86 \text{ kN/m}^2 < qk = 5.0 \text{ kN/m}^2$

Belastungstabelle Fa. Meiser Gitterroste:

		teilung 33,3			Lich	e Stützweite I			0200-31(1	-N (St 37-
							mm]			
		1.200	1.300	1.400	1.500	1.600	1.700	1.800	1.900	2.000
20/2	FP	[0] 18	10,114	10,11	10,09	0,07	9,06	0,05	0,04	0,04
2012	FV	0.77	0,56	0:42	0.32	0,24	0.19	0.15	0,12	0,10
20/3	FP	0,26	0,21	QJZ	0,14	0,11	0,09	0,08	0,07	0,06
2,0/,3	FV	1,46	jd/84	JØ 63	0.47	0,37	0,29	0.23	6,48	0,15
25/2	FP	(0),5,1	10,40	0,32	0,26	0,22	D,148	0.15	Ø-13	[9:1]
2012	FV	2,26	1,64	1,22	0,93	0,72	0.56	0.45	0.36	0,29
25/3	FP	10.77	0.60	0.48	0:39	0,32	0.27	0.23	0,19	0,16
25/2	FV	3,39	2,46	1,83	1,39	1,07	0,84	0,67	0,54	0:44
30/2	FP	.0.88	0,69	0,55	10:45	0,37	0,31	0.26	0:22	0,119
30/2	FV	3,91	2,84	.2,IN	1,60	1,24	0,97	0,77	0,62	0,51
30/3	FP	1,32		.D:83	0,67	0,55	0,46	0,39	0,33	0,28
3,0/3	FV	5,86	4,26	13,17	2,40	1,86	1,46	1,16	<u>[6,93</u>	,0,76
506.538	FP	1,76	1,38		0,90	0,74	(6,61	0,52	0.44	0,38
30/4	FV	7,82	\$,68	4,22	3,20	2,47	1,97	1,54	1,24	1,01
TOTAL DE	FP	2,20	1,72	1,38	1,12	0,92	0,77	0,65	6 ,55	(6)47
30/5	FV	9,77	75/10	5,28	4500	3,09	2,43	1,93	1,56	1,12.7
To other	FP	1,38	1,08	10,87	10:70	0,58	0,48	0.41	035	0.30
35/2	FV	6,21	4,51	3,35	2,54	1,96	1,54	1,23	0.99	0.80
OR WHITE:	FP	2,07	1,63		1,06	0,87	0,72	0,61	0.52	0.44
3573	FV	19,31	6,76	5,03	3:81	2,95	12,31	1484	1,48	1.12.1
ON PROCE	FP	2,76	2,17	1,73	1,41	1,16	0,97	0,81	0,69	0,59
85%4	FV	12,42	9.02	[6,70	5:09	3,93	83:08	2:45	1.98	1/61
1015/CBI	FP	3,45	2,71	2,17	1,76	1,45	1,21			0,74
35/5	FV	16,52	11,127	(8,38	6,36	4,91	3,85	3,07	2.47	2.01
OR CO	FP	2,04	1,60	1,28	1,04	0,86	0,71	0.60	Ø51	15,44
40/2	FV	9,27	16,73	:5:00	(3y80	2,93	2,30	1,83	1.47	1,20
(PERSONAL PROPERTY AND ADDRESS OF THE PERSONAL P	FP	3,07	2,41	1,92	1,56	1,29	1,07	0,90	0,77	
40/3	FV	13.90	[1:0,09	17,50	5,69	4,40	3,45	2,75	2/21	1,80
	FP	4,09	3,21	2,57	2,08	1,72	1,43	1,20	1,02	
40/4	FV	18-54	13.46	1:0-00	7-59	5,86	±4;60	3,66	2.95	2,40
	FP	5,11	4.01	3,21	2,60	2,14	1,79	1,50	1,28	1,09
40/5	FV	23,17	16,82	12.51	19.49	7,33	5.75	4.58	3:69	3.00
	FP	5,77	4,53	3,62	2,94	2,42	2,02	1,70	1,44	1,24
4574	FV	26.39	F9JT6	1:4.25	1:0.81	8,35	6.55	/5J2T	41.20	3:42
**************************************	FP	3.43	3.08	2,46	2,00	1,64	1,37	1,15	0,98	0.84
59/2	FV	18.10	13.14	9.77	7,41	5,73	449	[3],58	2.88	2:35
	FP	5.66	4.61	3,69	2.99	2,46	2,05	1,73	1,47	1,26
50/3	FV	(2:7)/15	1,9,7,1	14.66	1 i./t/2	8,59	16:74	5.36	4.32	3,52

ISEK Hillerheide - Vorstatik Vorstufe RBF Nord

Sachbearbeiter:

Dipl.-Ing. (FH) J. Kirchner

Koblenz, August 2021

Björnsen Beratende Ingenieure GmbH

Dipl.-Ing. U. Krath

ppa. Dipl.-Ing. (FH) A. Mehren