

STADT RECKLINGHAUSEN

- FACHBEREICH 62 - INGENIEURWESEN -

Stadtentwicklungsgesellschaft Recklinghausen mbH

ISEK HILLERHEIDE – BAU DES HILLERSEES IN RECKLINGHAUSEN –

Heft 9.2: Slipanlage Vorstatik

Inhaltsverzeichnis

Position	Beschreibung	Seite
	Inhalt	2
L	Literatur	1
V	Vorbemerkung	3
Ü-1	Übersicht Grundriss / Längsschnitt	7
A-1.1	Abschnitt 1- Winkelstützwand	8
A-2.1	Abschnitt 2- Trogbauwerk	9
A-3.1	Abschnitt 3- Winkelstützwand	10
W1	Winkelstützwand Slipanlage	11
W2-R	Rissbreitennachweis Stützwände	23
W2-A	W2_ Abschnitt2_Nachweis der äußeren Standsicherheit	26
W2-B	Abschnitt 2 -beidseitig Stützwände, Vorbemessung	29
W-3	Winkelstützwand Slipanlage	63
S	Schlussseite	75

ISEK Hillerheide - Vorstatik Slipanlage

Verwendete Literatur

[1] DIN EN 1990:2010-12:

Grundlagen der Tragwerksplanung

[2] DIN EN 1990/NA:2010-12:

Nationaler Anhang - National festgelegte Parameter - Grundlagen der Tragwerksplanung

[3] DIN EN 1991-1-1:2010-12:

Einwirkungen auf Tragwerke

Teil 1-1: Allgemeine Einwirkungen auf Tragwerke

[4] DIN EN 1991-1-1/NA:2010-12:

Nationaler Anhang - National festgelegte Parameter

Einwirkungen auf Tragwerke

Teil 1-1: Allgemeine Einwirkungen auf Tragwerke

[5] Handbuch Eurocode 1

Einwirkungen / Band 3 : Brückenlasten

1. Auflage 2013 IIN Deutsches Institut für Normung e.V

[6] DIN EN 1992-1-1:2011-01:

Bemessung und Konstruktion von Stahlbeton- und Spannbetonbauwerken

Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den

Hochbau

[7] DIN EN 1992-1-1/NA:2011-01:

Nationaler Anhang - National festgelegte Parameter

Bemessung und Konstruktion von Stahlbeton- und Spannbetonbauwerken

Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den

Hochbau

[8] Fingerloos/Hegger/Zilch

EUROCODE 2 für Deutschland

Kommentierte Fassung

1. Auflage 2012

[9] Schneider

Bautabellen für Ingenieure

23. Auflage 2018

[10] Deutscher Beton- und Bautechnik-Verein e.V.

Merkblätter Bautechnik

Begrenzung der Rissbildung im Stahlbeton- und Spannbetonbau

Fassung Mai 2016

[11] DIN EN 1997-1: 2004 + A1:2013:

Entwurf, Berechnung und Bemessung in der Geotechnik

ISEK Hillerheide - Vorstatik Slipanlage

Teil 1: Allgemeine Regeln

[12] Deutsche Gesellschaft für Geotechnik e.V.: Empfehlung des Arbeitskreises "Baugruben" EAB 5.Auflage 2012

[13] Deutsche Gesellschaft für Geotechnik e.V Empfehlung des Arbeitsausschusses "Ufereinfassung" EAU 2012 11. Auflage 2012

Verwendete Unterlagen

[14] Bjoernsen Beratende Ingenieure GmbH
ISEK Hillerheide See-, Kanal- und Entwässerungsplanung Ehemalige
Trabrennbahn
Entwurfplanung
Entwurfspläne B - 3.5.1, B - 3.5.2
Stand 12/20

[15] HPC AG
ISEK Hillerheide - Entwicklung des ehemaligen Trabrennbahnareals
Baugrunduntersuchungen im Bereich des geplanten Sees
Baugrundgutachten

Stand 08.06.2020

oopyrigm zorg - mb AEC Sortware GmbH

iewei version zozo - copyrigin zora - iilo AEC sonware ciiil

Stadtentwicklungsgesellschaft Recklinghausen mbH

ISEK Hillerheide - Vorstatik Slipanlage

Vorbemerkungen

Im Zuge der Umplanung des Geländes der ehemaligen Trabrennbahn in Recklinghausen soll ein See gebaut werden. Die Stadtentwicklungsgesellschaft Recklinghausen mbH (SER GmbH) hat die Björnsen Beratende Ingenieure GmbH und das Ingenieurbüro Berg mit der See und Entwässerungsplanung, sowie der hierfür erforderlichen Tragwerksplanung beauftragt.

Im Rahmen der Herstellung des Sees soll eine Slipanlage gebaut werden, über die Boote zu Wasser gelassen bzw. aus dem Wasser geholt werden können. Die Slipanlage besteht aus einer Stahlbetonrampe mit gewässerseitiger und je nach Tiefe der Rampe landseitiger Stützwand. In der folgenden Vorstatik wird die Slipanlage in drei Abschnitten nachgewiesen.

Abschnitt 1:

Einfahrtsbereich Oberkante Fahrbahnplatte 57.74 mNN

In diesen Bereich wird eine Winkelstützwand mit einem erdseitigen Sporn nachgewiesen.

Die in den Entwurfsplänen dargestellte landseitige Stützwand ist nicht erforderlich.

Abschnitt 2:

Mittlerer Bereich, Rampe mit Gefälle

In diesem Bereich wird die Stützkonstruktion als Stahlbetontrog ausgebildet.

Die landseitige Wand bleibt konstant auf 57.74 mNN, die Höhe der seeseitigen Wand nimmt konstant entsprechend des Rampengefälles ab

Abschnitt 3:

Endbereich auf Höhe Seesohle

In diesem Bereich wird die Stützkonstruktion als Winkelstützwand mit luftseitigem Sporn ausgebildet. Die landseitige Wand bleibt konstant auf 57.74 mNN, die seeseitige Wand nimmt bis auf eine geringe Restwandhöhe ab.

ISEK Hillerheide - Vorstatik Slipanlage

Baugrund und Gründung

Als Grundlage für die Vorstatik wir das Baugrundgutachten der HPC AG [15] vom 08.06.2020 herangezogen.

Hinterfüllung der Uferwände:

Gemäß Baugrundgutachten soll die Verfüllung von Arbeitsräumen, somit auch die Hinterfüllung der Uferwände mit Mineralgemisch der Körnung 0/32 oder 0/45 mm erfolgen. Für die Ermittlung des auf die Uferwände wirkenden Erddruck werden folgende Bodenkennwerte für das Hinterfüllmaterial angenommen:

Aufbau der Rampe:

Dränagematerial, Frostschutzschicht

Im Rahmen der Vorstatik wird für dieses Material von folgenden Bodenkennwerten ausgegangen.

Die Werte sind im Zuge der weiteren Planung zu überprüfen.

Gründung:

Stützkonstruktion

Die Gründungsebene der Slipanlage liegt im Nordteil des Sees bei 55.20 mNN im verwitterten Mergel (RKS 2). Im Baugrundgutachten wird keine Aussage darüber getroffen wie die Stützwände zu gründen sind. Im Rahmen der weiteren Ausführungsplanung ist mit dem Baugrundgutachten zu klären ob ein Bodenaustausch im verwitterten Mergel erforderlich ist oder nicht.

Im Rahmen der Vorbemessung wird davon ausgegangen, das die Gründung im verwitterten Mergel erfolgen kann.

Verwitterungshorizont Mergel, mitteldicht:

```
∴'∴ = 21/11 KN/m³
-' 嗂32.5°
c' = 3 kN/m²
```

ib-Viewer Version 2020 - Copyright 2019 - mb AEC Software GmbH

ISEK Hillerheide - Vorstatik Slipanlage

Bemessungswasserstände

Der max. Seewasserstand und damit der Bemessungswasserstand liegt gemäß Entwurfsplanung bei:

Bemessungswasserstand = 57.00 mNN

Zum landseitig anzusetzenden Grundwasserstand liegen aktuell keine Angaben vor. Es wird nachfolgend davon ausgegangen, das aufgrund einer fehlenden Untergrundabdichtung der Wasserstand hinter der Wand in etwa dem Seewasserstand entspricht, es kommt zu einer Umströmung der Wand.

Für die Vorbemessung der Stützwände wird zunächst ein Differenzwasserdruck nach EAU 2012 E19, Situation 1: Geringe Wasserspiegelschwankungen (< 0.50 m) mit Durchlaufentwässerung oder durchlässigem Boden angesetzt. Hieraus ergibt sich folgender Ansatz:

Grundwasserstand, landseitig: BGW = 57.00 mNN

Seewasserstand BW = 57.00 - 0.50 m = 56.50 mNN

Dieser Ansatz ist im Zuge der weiteren Planung zu überprüfen!

Baustoffe

Wandkopfverbreiterung / Fahrbahnplatte Slipanlage:

Expositionsklassen XC4, XD3, XF4, XA1, WA (umlaufend)

Festigkeitsklasse C 30/37 LP Überwachungsklasse 2 Betonstahl B 500 B

Betondeckung $c_{nom} = c_{min} + \forall c_{dev}$

 $c_{nom} = 50 + 10 = 60 \text{ mm}$

Stürzwände bis Querschnittsaufweitung Wandkopf und Bodenplatte:

Expositionsklassen XC4, XD3, XF2, XA1, WA (umlaufend)

Festigkeitsklasse C 30/37, r < 0.3

Überwachungsklasse 2 Betonstahl B 500 B

Betondeckung $c_{nom} = c_{min} + \forall c_{dev}$

 $c_{nom} = 50 + 10 = 60 \text{ mm}$ (Bodenplatte oben, Wände allseits)

 $c_{nom} = 60 + 20 = 80 \text{ mm}$ (Bodenplatte unten)

o-Viewer Version 2020 - Copyright 2019 - mb AEC Software GmbH

Lastannahmen

- Eigengewicht Konstruktion: Automatisch durch Bemessungsprogramm: Stahlbeton, ∴= 25 kN/m³
- Hinterfüllung landseitigen Stützwand

 $-' = 30^{\circ}$

- Aufbau der Rampe

.½ ∴ = 20/10 Kn/m³

 $-' = 35^{\circ}$

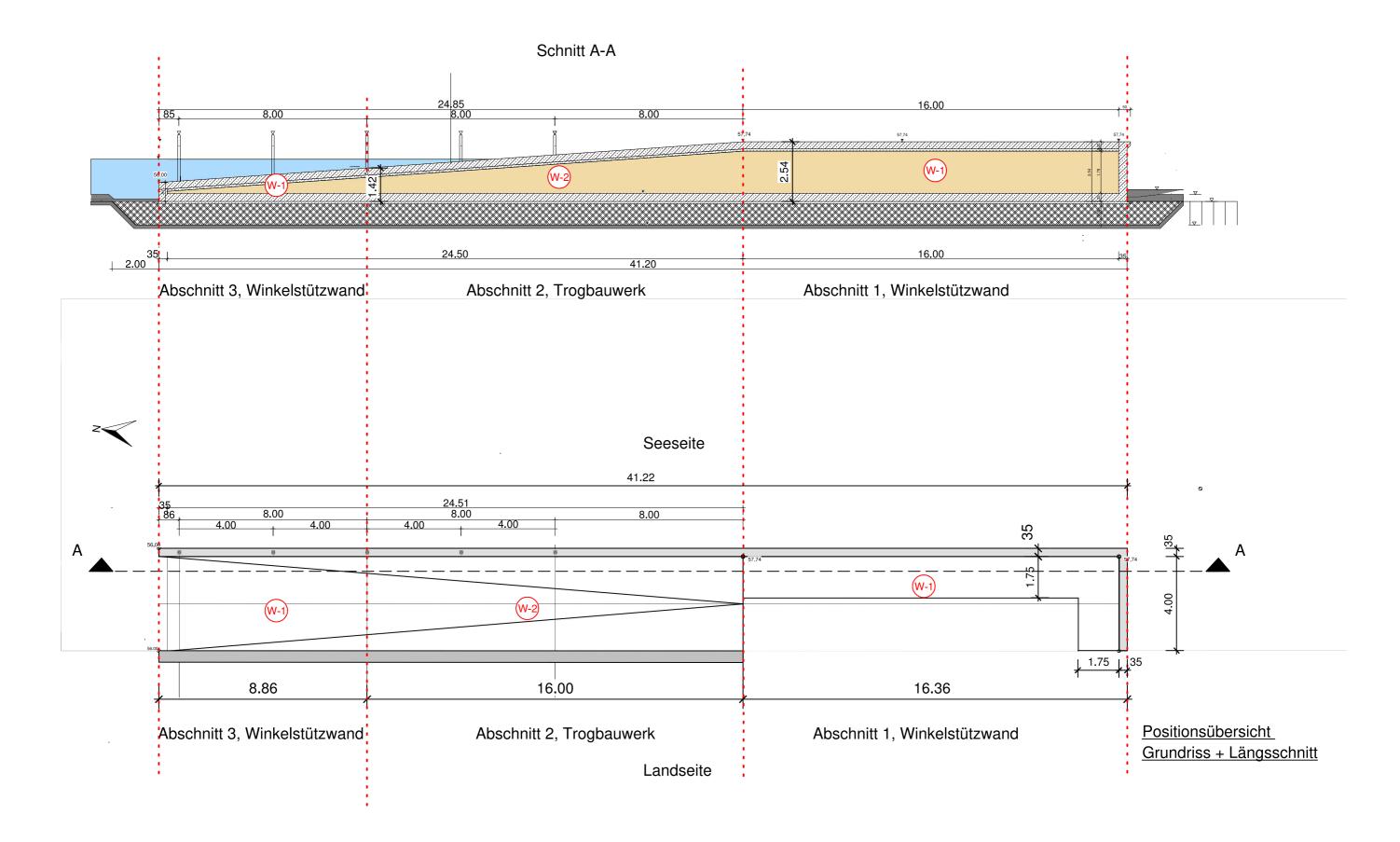
Erddruckansatz:

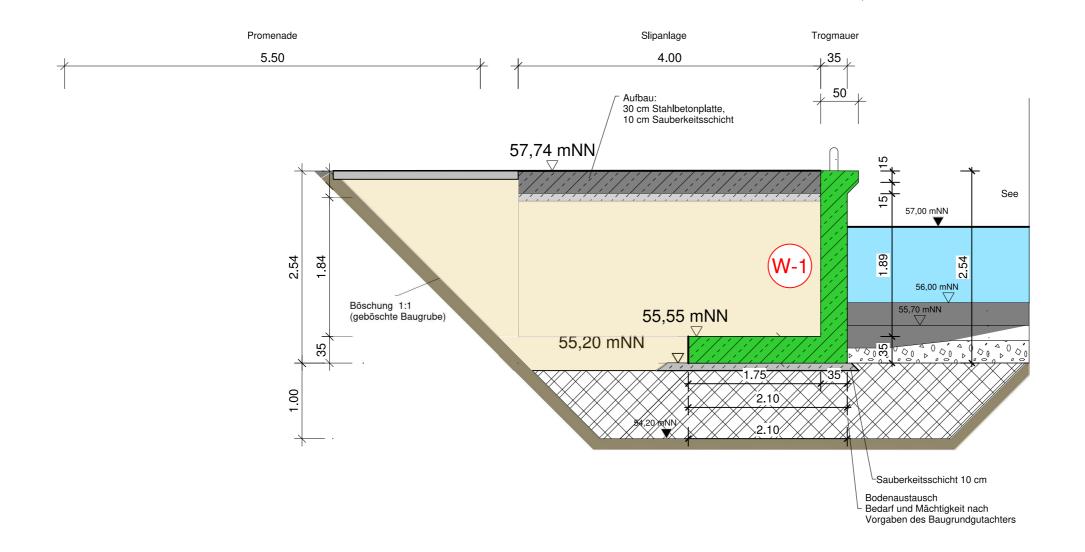
a) Äußere Standsicherheit:

Erhöhter aktiver Erddruck, Abschnitt 1 und 3,

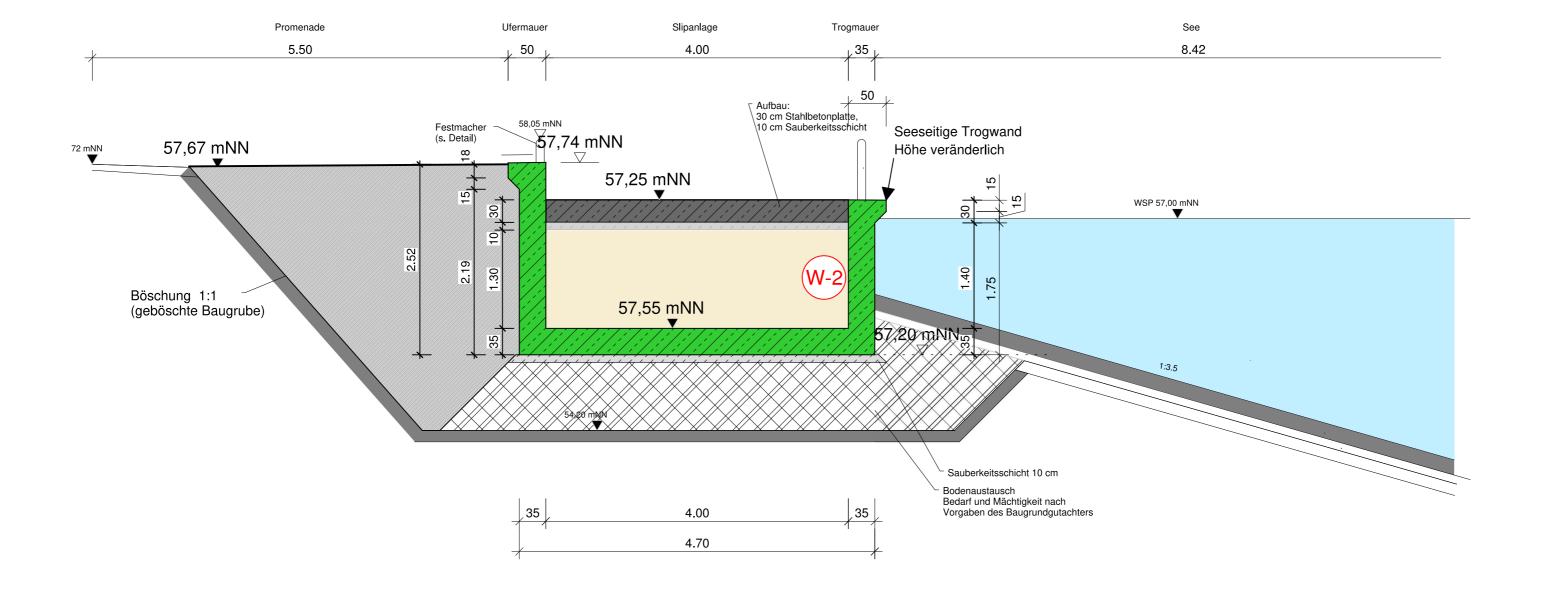
Winkelstützwände

Erdruhedruck, Abschnitt 2, Trogbauwerk


b) Stahlbetonbemessung:


Erhöhter aktiver Erddruck

- Verkehrslast Slipanlage, Rampe, Gelände:


Nach Auskunft der Planer wird die Rampenfläche durch Rangierverkehr zum Auf-und Abladen der Boote belastet. In der nachfolgenden Vorbemessung wird davon ausgegangen, dass der Rangierverkehr die Lasten eines SLW 30 nicht überschreitet.

 $q_k = 16.7 \text{ kN/m}^2$

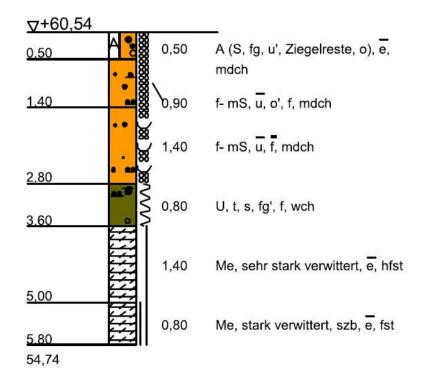
Abschnitt 1 - Winkelstützwand

Abschnitt 2 - Trogbauwerk

Abschnitt 3 - Winkelsstützwand

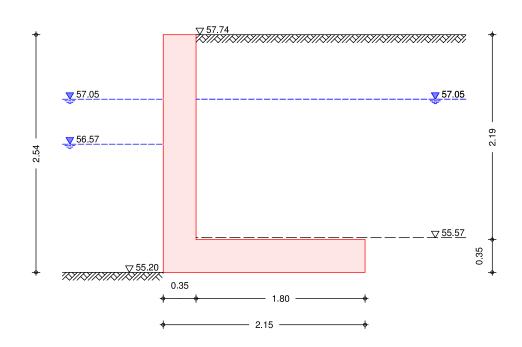
Pos. W1

Winkelstützwand Slipanlage


In der folgenden Position wird die Stützwand der Abschnitt 1 als Winkelstützwand mit erdseitigem Sporn vorbemessen.

Gründung

Die Gründungssohle des geplanten Wandquerschnitts liegt bei 55.20 mNN. Die Unterkante der Winkelstützwand liegt somit im stark verwitterten Mergelhorizont.


Nächstgelegener Aufschluss nach [15]:

RKS₂

System

M 1:40

<u>Geometrie</u>

Wandschenkel

h[m]	d _o [m]	luft[°]	erd[°]
2.19	0.35	0.00	0.00
	I[m]	h _a [m]	h _e [m]
	1.00	0.05	0.05

Sporne

erds. 1.80 0.35 0.35

<u>Gelände</u>

ebene Geländeoberfläche Abstand OK Gelände-Wandkopf $z_{luft} = 2.54 \, m$ $z_{erd} = 0.00 \, m$

Baugrund

Boden

h	<i>:</i> .	.:	_	Ca	c_p	а	р	0
[m]	[k	$(N/m^3]$	[°]	[k	$(N/m^2]$	[°]	[°]	[°]
2.2	20.0	10.0	35.0	-	-	23.3	-23.3	0.0
999.0	21.0	11.0	32.5	3.0	3.0	21.7	-21.7	0.0

Einwirkungen

Einwirkungen nach DIN EN 1990:2010-12

Gk

Eigenlasten

Qk.N

Ständige Einwirkungen Nutzlasten

O. - .

Kategorie G - Fahrzeuglast zwischen 30 kN und 160 kN

Gk.E.A

Erddruck

Gk.H.S

Ständiger Erddruck
Wasserstand ständig

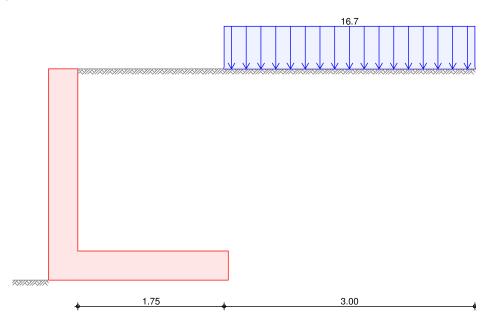
wer Version 2020 - Copyright 2019 - mb AEC Softwar

Ständiger Wasserdruck

Wasserstand außergewöhnlich

Außergewöhnliche Einwirkungen # Die Einwirkung wurde automatisch generiert.

Belastungen


Eigengewicht EW Anteil G [kN/m] Gk Gesamtlast Wand 37.98 Gk Sporn erdseitig 15.75 Gk Wandschenkel 19.16 Gk Bodenkeil erdseitig 51.88 Grundwasser **EW** Art h_{Luft}

 h_{Erd} [m] [m] Gk.H.S ständiges Grundwasser 0.69 0.69 Gk.H.A außergew. Grundwasser 1.17 0
Die Einwirkungen des ständigen und außergewöhnlichen Grundwassers treten nicht gleichzeitig auf. 0.69

Blocklasten Nr. EW a_h s е [kN/m²] [m] [m] [m] Qk.N 1.75 3.00 6.00 16.70

<u>Grafik</u> Belastungsgrafiken (einwirkungsbezogen)

Einwirkung Qk.N

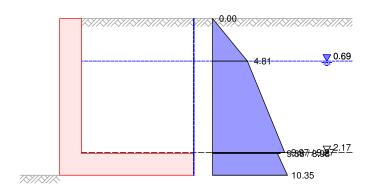
Erddruck

Berechnung nach DIN 4085:2017-08

Standsicherheit

ISEK Hillerheide - Vorstatik Slipanlage

EW Gk.E.A

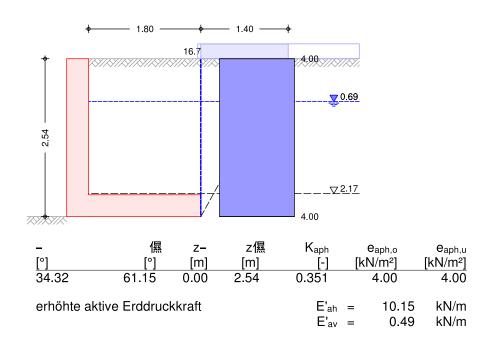

erhöhter aktiver Erddruck aus Bodeneigengewicht Anteil aktiver Erddruck

Grundwasser

 $\begin{array}{ll} \approx & = & 0.50 \\ z_{gw} & = & 0.69 \end{array}$

9 m

M 1:60

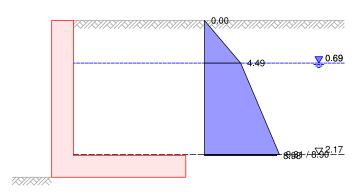

EW Qk.N

erhöhter aktiver Erddruck aus Blocklast (Nr. 1) Lastordinate

ve =

16.70 kN/m²

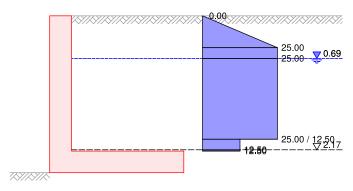
M 1:60



Bemessung

ISEK Hillerheide - Vorstatik Slipanlage

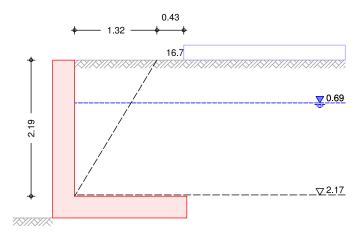
EW Gk.E.A erhöhter aktiver Erddruck aus Bodeneigengewicht Anteil aktiver Erddruck ≈ 0.50 - Grundwasser $z_{gw} = 0.69$ m


M 1:60

Verdichtungserddr.

Intensive Verdichtung			
Breite des zu verfüllenden Raums	B =	2.50	m
Verdichtungserddruck	e _{vh} =	25.00	kN/m^2
Tiefe nach Bild 13	z _p =	0.52	m
Tiefe nach Bild 13	z _a =	2.00	m
Grundwasser	z _{gw} =	0.69	m

M 1:60


Z	everd.	√en
[m]	[kN/m²]	[kN/m²]
0.00	0.0	0.0
0.52	25.0	25.0
0.69		25.0
2.00	25.0	25.0
2.00	12.5	12.5
2.17		12.5
2.19	12.5	12.5
Verdichtungserddruckkraft	$E_{vh} = 45.93$ $E_{vv} = 9.47$	kN/m kN/m

EW Qk.N

erhöhter aktiver Erddruck aus Blocklast (Nr. 1) Lastordinate

 $ve = 16.70 \text{ kN/m}^2$

M 1:60

Last verursacht keinen Erddruck auf die Wand

Wasserdruck

Stands. luftseitig	GW-Stand [m]	W _h [kN/m]	W _{v,Sporn} [kN/m]	W _{v,Sohle} [kN/m]
	0.69	17.11	0.00	19.89
	1.17	9.38	0.00	14.73
Stands. erdseitig	GW-Stand	W_h	$W_{v,Sporn}$	$W_{v,Sohle}$
-	[m]	[kN/m]	[kN/m]	[kN/m]
	0.69	17.11	27.00	19.89
Bem. luftseitig	GW-Stand	W_h	$W_{v,Sporn}$	$W_{v,Sohle}$
•	[m]	[kN/m]	[kN/m]	[kN/m]
	0.69	11.25	0.00	0.00
	1.17	5.20	0.00	0.00
Bem. erdseitig	GW-Stand	W_h	$W_{v,Sporn}$	$W_{v,Sohle}$
S .	[m]	[kN/m]	[kN/m]	[kN/m]
	0.69	11.25	0.00	0.00

Kombinationen

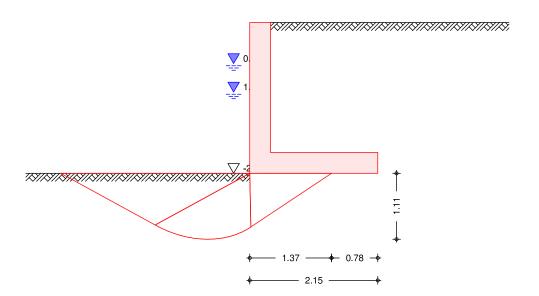
Kombinationsbildung nach DIN EN 1997-1 Darstellung der maßgebenden Kombinationen

Standsicherheit

Ek	√(. <u>:</u> * ≧*EW)		
9	0.90*Gk	+1.50*Qk.N	+1.10*Gk.E.A
	+1.10*Gk.H.S		
25	1.35*Gk	+1.50*Qk.N	+1.27*Gk.E.A
	+1.35*Gk.H.S		
29	1.35*Gk	+1.50*Qk.N	+1.35*Gk.E.A
	+1.35*Gk.H.S		
47	1.00*Gk	+1.30*Qk.N	+1.00*Gk.E.A
	+1.00*Gk.H.S		
	9 25 29	9 0.90*Gk +1.10*Gk.H.S 25 1.35*Gk +1.35*Gk.H.S 29 1.35*Gk +1.35*Gk.H.S 47 1.00*Gk	9 0.90*Gk +1.50*Qk.N +1.10*Gk.H.S 25 1.35*Gk +1.50*Qk.N +1.35*Gk.H.S 29 1.35*Gk +1.50*Qk.N +1.35*Gk.H.S 47 1.00*Gk +1.30*Qk.N

Hqu			
mb-Viewer Version 2020 - Copyright 2019 - mb AEC Software GmbH			
nb-Viewer Version 2020 - Copy			
m			

Lastfall Verdichtung


z = 2.19 m

GZ SLS	<u>Ek</u> 51	√(.:* ≧*EW) 1.00*Gk	+1.00*Qk.N	+1.00*G	± F Λ
GZ SLS	31	+1.00 GK +1.00*Gk.H.S	+1.00 QK.N	+1.00 G	IK.E.A
	52	1.00*Gk	+1.00*Gk.E.A	+1.00*G	ik.H.S
Bemessung (GZT)	Ek	√(. <u>*</u> *≧*EW)			
GZ STR, BS-P	53	1.35*Gk	+1.50*Qk.N	+1.27*G	ik.E.A
GZ STR, BS-A	55	+1.35*Gk.H.S 1.10*Gk +1.00*Gk.H.A	+0.33*Qk.N	+1.05*G	ik.E.A
	56	1.10*Gk	+1.05*Gk.E.A	+1.00*G	ik.H.A
Bemschnittgrößen					
<u>Standsicherheit</u>	07.5	Ollo Na abousia day l	Zinan ai ah awb ait		
	Ek	QU: Nachweis der l	Nippsichemeit H _{Ed}	V_{Ed}	M_{Ed}
	LK		[kN/m]	[kN/m]	[kNm/m]
	9		33.01	68.26	-36.76
		EO-2: Nachweis de	r Grundbruchsicher		
	Ek		H _{Ed}	V _{Ed}	Med
	05		[kN/m]	[kN/m]	[kNm/m]
	25		35.84	105.62	-41.81
		EO-2: Gleitnachwei cksichtigung des Erd	is Boden-Bauteil, Be dwiderstands	eanspruchung o	hne
	Ek	ntoloningang doo En	H _{Ed}	V_{Ed}	M_{Ed}
			[kN/m]	[kN/m]	[kNm/m]
	29		37.05	105.67	-42.90
		LS: Nachweis der 1			
	Ek		H _{Ed}	V _{Ed}	M _{Ed}
	52		[kN/m]	[kN/m] 77.72	[kNm/m]
			16.17	11.12	-18.05
		LS: Nachweis der 2			
	Ek		H _{Ed} [kN/m]	V _{Ed} [kN/m]	M _{Ed} [kNm/m]
	51		26.32	78.22	-30.41
		EO-2: Nachweis Sc			
	Ek		H _{Ed} [kN/m]	V _{Ed}	M _{Ed} [kNm/m]
	25		35.84	[kN/m] 105.62	-41.81
Bemessung (GZT)					
Wandschenkel	z = 2	.19 m			
	Ek		N_{Ed}	V_{Ed}	M_{Ed}
			[kN/m]	[kN/m]	[kNm/m]
	55		23.66	18.58	-13.45

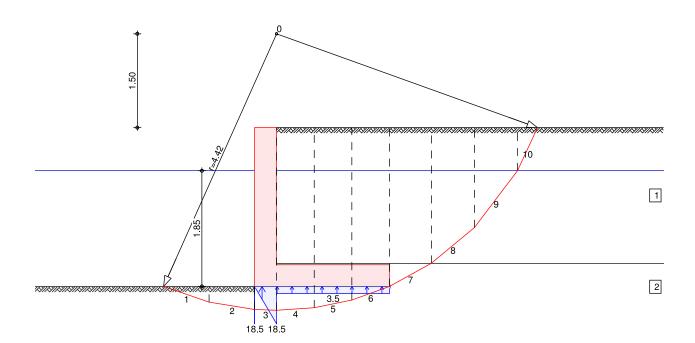
ISEK Hillerheide - Vorstatik Slipanlage

	Ek 53		N _{Ed} [kN/m] 37.94	\ [kN/ 58:		M _{Ed} [kNm/m] -57.46
Sporn erdseitig			37.94			
	Ek	Anteil		N _{Ed} [kN/m]	V _{Ed} [kN/m]	M _{Ed} [kNm/m]
	56	Standsicherheit Erddruck Bemessu Sohldruck Resultierende	ng Wand	34.09 23.79 17.85 -7.55	72.39 2.58 66.40	44.02 -19.83 46.62 17.23
Lastfall Verdichtung	Ek	Anteil		N _{Ed} [kN/m]	V _{Ed} [kN/m]	M _{Ed} [kNm/m]
	53	Standsicherheit Erddruck Bemessu Sohldruck Resultierende	ng Wand	20.62 58.57 18.89 -56.84	92.12 12.07 37.46 42.59	67.75 -69.82 9.05 128.52
<u>Standsicherheit</u>		dsicherheitsnachweis lige Situationen	e nach DIN	EN 1997-1:2	2014-03	
<u>Kippen</u>	nach	DIN 1054:2010-12, G	GZ EQU			
	Ek	M _{Ed} [kNm/m] -36.76	V _{Ed} [kN/m] 68.26	e/b [-] -0.250	zul e/b [-] 1/2	: [-] 0.50
<u>Gleiten</u>		hlfuge nach DIN EN ⁻ eibungswinkel	1997-1:2014	4-03, GZ GE	O-2 k = 32.5	0 °
	Ek 29	R _k .: _{R,h} [kN/m] [-] 49.83 1.10	R _{p,k} [kN/m] 0.00		H _d F N/m] [kN/n 7.05 45.3	
Grundbruch	nach	DIN EN 1997-1:2014	-03, GZ GE	:O-2		

M 1:63

Grundrissform: Streifen

		b' [m]	d [m]		[°]	∳ [°]
		1.37	0.00		0.00	0.00
Z _{max}		_	С		A	.'2
[m]		[°]	[kN/m²]		(N/m³]	[kN/m³]
1.11		32.50	3.00		0.00	11.00
	Т	N			«	m
[kN/r	nl	[kN/m]	[°]		[°]	[-]
26.3		78.22	18.60		90.00	2.00
Einfluß	N_0	SI	į	≅	≒	N
Breite	15.03	1.000	0.292	1.000	1.000	4.39
Tiefe	24.58	1.000	0.440	1.000	1.000	10.82
Kohäsion	37.02	1.000	0.417	1.000	1.000	15.42
Ek	V		D .	•	R_d	
LK	[kN/m			-ÎR,∨ [-]	[kN/m]	[-]
25	105.62		-	.40	110.31	0.96


Geländebruch

nach DIN 1054 (12/10), A 11.1.1, GZ GEO-3 Lamellenverfahren mit kreisförmiger Gleitlinie Anzahl untersuchter Gleitkreise n = 36 - maßgeb. Gleitkreismittelpunkt x = 0.00 m z = 1.50 m Halbmesser r = 4.42 m

maßgebende Kombination Ek 47, BS-P

TS-Beiwerte	ständige Einwirkungen	. ` G =	1.00	_
	veränderliche Einwirkungen	. ∵ Q =	1.30	-
	Reibungsbeiwert des Bodens	∴ =	1.25	-
	Kohäsion des Bodens	.;₀ =	1.25	-

maßgeb. Gleitkreis M 1:60 mit größter Ausnutzung

Lamellenwerte	Nr.	Х	Z	b	::	– d	Cd
		[m]	[m]	[m]	[°]	[°]	[kN/m²]
	1	-1.44	-2.67	0.73	-19.0	27.0	2.4
	2	-0.71	-2.85	0.73	-9.3	27.0	2.4
	3	-0.17	-2.92	0.35	-2.3	27.0	2.4
	4	0.30	-2.90	0.60	3.9	27.0	2.4
	5	0.90	-2.82	0.60	11.8	27.0	2.4
	6	1.50	-2.65	0.60	19.9	27.0	2.4
	7	2.13	-2.35	0.67	29.0	27.0	2.4
	8	2.81	-1.88	0.69	39.7	29.3	0.0
	9	3.50	-1.14	0.69	52.9	29.3	0.0
	10	4.00	-0.35	0.32	65.2	29.3	0.0

Lasten Tangentialkräfte	Nr.	G_d	$P_{v,d}$	(G+P)*sin::	Т
· ·		[kN/m]	[kN/m]	` [kN/m]	[kN/m]
	1	1.00	13.41	-4.70	10.60
	2	2.47	13.41	-2.57	10.43
	3	23.67	0.00	-0.94	13.05
	4	24.93	0.00	1.70	13.92
	5	24.39	0.00	4.97	13.41
	6	23.26	0.00	7.91	12.88
	7	20.47	14.51	16.94	19.32
	8	17.69	14.92	20.84	19.05

ISEK Hillerheide - Vorstatik Slipanlage

	Nr. 9 10 √		G _d [kN/m] 12.61 2.20		P _{v,d} [kN/m] 14.92 6.91)*sin:: kN/m] 21.96 8.27 74.38	T [kN/m] 18.36 7.41 138.42
Momente aus Einwirkungen			und Aufla asserdruc			M(Gi) M(Fs) E _M	= -4.5	4 kNm/m
Momente aus Widerständen	infolge	Tange	ntialkräfte			M(Ti) R _M	= 612.2 = 612.2	2 kNm/m 2 kNm/m
Ausnutzung	:=	324.4	2/ 612	2.22 =	0.53 1	 1.0		
1. Kernweite	nach D	IN EN	1997-1:20)14-03,	GZ SLS	i		
	Ek	ı	M _{Ed} [kNm/m]	ſkN	V _{Ed} N/m]	e/b [-]	zul e/b [-]	: [-]
	52		-18.05	7	7.72	-0.108	1/6	0.65
2. Kernweite	nach D	IN EN	1997-1:20)14-03, (GZ SLS			
	Ek	ſ	M _{Ed} [kNm/m]	ΓĿΝ	V _{Ed} √m]	e/b [-]	zul e/b [-]	: [-]
	51		-30.41		8.22	-0.181	1/3	0.54
Mittlerer Sohldruck	nach D	IN 105	4:2010-12	2				
	Ek	M _k Nm/m]	V _k [kN/m]	e [m]	b' [m]	V _d [kN/m] [k	E,d . N/m²] [kN/ r	R,d :
	25	-30.4	78.2	-0.39	1.37	105.6	76.95 200.	
Bemessung (GZT)								
Achsabstand	Bauteil		Seite	Э			d'	Cnom
	Wand		lufts				[mm] 68	[mm] 60
	Wand Sporn		erds ober	•			68 68	60 60
	Sporn		unte				95	75
Biegebemessung			ung der M , NDP Zu			ehrung nad	ch DIN EN 19	92-1-
Wand	z [m]	Seite	Ek	[k	M _{Ed} (Nm/m)	N _{Ed} [kN/m]	a _s [cm²/m]	min a _s [cm²/m]
	2.19	lufts.	53 53	•	-57.46 -11.65	-37.94 -29.00		
		erds.	53 55		-57.46 -13.45	-37.94 -23.66		4.50
Sporn erdseitig	Seite	Ek		Med		N_{Ed}	a _s	min a _s
	oben	53	[۱	kNm/m] 128.52		[kN/m] 56.84	[cm²/m] 11.25	[cm ² /m]
		53		128.52		56.84		5.06

ISEK Hillerheide - Vorstatik Slipanlage

	Seite	Ek	[kNm		N _{Ed} [kN/m]	a _s [cm²/m]	min a _s [cm²/m]
	unten	56	1/	7.23	7.55	=	
Querkraftbemessung Wand	z [m] 2.19	Ek 53	:: [°] 18.43	V _{Ed} [kN/m] 58.57	V _{Rd,c} [kN/m] 138.83	V _{Rd,max} [kN/m] 734.40	a _{sw} [cm²/m²] -
Sporn erdseitig	Ek 53		:: [°] 18.43	V _{Ed} [kN/m] 42.59	V _{Rd,c} [kN/m] 129.67	V _{Rd,max} [kN/m] 677.03	a _{sw} [cm²/m²] -
erf. Bewehrung	Biege-	und Quer	kraftbeweh	rung			
Wand	z [m] 2.19			a _{sı} [cm²/m] -		а _{se} n²/m] 1.50м	a _{sw} [cm²/m²] -
Sporne				a _{so} [cm²/m]	[cr	a _{su} m²/m]	a _{sw} [cm²/m²]
	erdseiti	ig		11.25		-	-
	M Mindest	tlängsbewehru	ung nach DIN E	N 1992-1-1/NA,	NDP Zu 9.2.1.1(1)	
Zusammenfassung	Zusam	menfassu	ng der Nac	hweise			
Nachweise (GZT)	Nachw	eise im G	renzzustan	d der Tragf	ähigkeit		
	Nachw	eis					.:
	Kippen Sohldru Gleiten Grundb Geländ	uck Sohlfuge oruch				OK OK OK OK	[-] 0.50 0.38 0.82 0.96 0.53
Nachweise (GZG)	Nachw	eise im Gı	renzzust. d	er Gebraud	chstauglichke	eit	
	Nachw	eis					:
	1. Kern 2. Kern					OK OK	0.65 0.54

ISEK Hillerheide - Vorstatik Slipanlage

Pos. W2-R Rissbreitennachweis Stützwände **System** Wand Ansicht M 1:200 7 57.00 ▽ 55.55 16.00 Querschnitt M 1:20 Abmessungen Material L_{Fuge} L Н h Mat./Querschnitt [m][m] [m][m] C 30/37, B 500SB 16.00 1.70 0.35 Mat./Querschnitt Betondeckung Seite ď' Cnom [mm] [mm] aussen 60 65 65 60 innen Nachweise (GZG) Nachweise nach WU-Richtlinie (12/17), Randbedingung

DIN EN 1992-1-1:2011-01

drückendes Grundwasser

Beanspruchungsklasse

Nutzungsklasse

Nutzungsklasse

klasse

Beanspruchungs-

В

1

ISEK Hillerheide - Vorstatik Slipanlage

zul. Rissweite	nach WU-Rich Höhe Wasser 1/4 Wandhöhe Druckhöhe Druckgefälle zul. Rissweite	stand e	2/17),	Tab.ź	2		$\begin{array}{rcl} h_G &=& \\ W_{h,1/4} &=& \\ h_W &=& \\ h_W/h_b &=& \\ W_{zul} &=& \end{array}$	55.97 1.02 2.93	m m
Trennrisse (Zwang)	nach DIN EN	1992-1-1	1, 7.3.2	2			Н	lydratation	
	reiner Zug innerer Zwang manuelle Eing Zugspannung Betonspannun	gabe aus Bet		igkeit	t		$k_{c} = k_{c}$ $k = t_{ct,eff}$ $k = t_{ct,eff}$	0.77 2.40	N/mm²
Mindestbewehrung	nach DIN EN Lage	1992-1-1 d _s [mm]		2, GI. d _s * mm]	(7.1) [N/m	s m²]	A _{ct} [m²]	k_{zt}	a _{s,min} [cm²/m]
	x-aussen x-innen	16.00 16.00	19	9.33 9.33	189 189).74	0.17 0.17	1.00 1.00	17.04 17.04
	nach DIN EN Lage x-aussen	1992-1-1 Gl.	1/NA, I h/d _i 5.38		Zu 7.3. h _{eff} [m]).17	.2, Gl.(N d _s * [mm] 19.33	NA.7.5.1 [N/mm 189.7	s k _{zt}	a _{s,min} [cm ² /m] 20.87
	x-innen	а	5.38	C).17	19.33	189.7	4 1.00	20.87
<u>Duktilität</u>	nach DIN EN Lage x-aussen x-innen Die vorhande	[k 59 59	M _{cr} Nm] 9.21 9.21	2	zıı [cm] 25.65 25.65	0.0	036 036	f _{ctm} N/mm ²] 2.90 2.90	a _{s,min} [cm²/m] 4.62 4.62
Bewehrungswahl Grundbewehrung	Lage	ne winde	SIDON	, cili a	Тур		d _s	s [cm]	a _s [cm²/m]
	x-aussen x-innen				Stäbe Stäbe	-	16 16	10.0 10.0	20.11
	Kommentar				Lage	a [cm²	l s,erf	a _{s,vorh}	:
	Hydratation Hydratation				issen nnen	17	7.04 7.04	20.11 20.11	0.85 0.85
Zusammenfassung	Zusammenfas	ssung de	r Nach						
Nachweise (GZG)	Nachweise im	ı Grenzzı	ust. de	er Ge	braucl	hstaugli	chkeit		
	Nachweis						La	ıge	: [-]
Mindestabmessungen	Wanddicke Bewehrungsa Größtkorndur		r					OK OK OK	0.69 1.00 1.00

er version zuzu - copyngni zu i = mb AEC sortware cim

Stadtentwicklungsgesellschaft Recklinghausen mbH

ISEK Hillerheide - Vorstatik Slipanlage

	Nachweis	Lage		:
				[-]
Trennrisse	Mindestbewehrung-Zugzwang	x-aussen	OK	0.85
	Mindestbewehrung-Zugzwang	x-innen	OK	0.85
Duktilität	Mindestbewehrung-Duktilität	x-aussen	OK	0.23
	Mindestbewehrung-Duktilität	x-innen	OK	0.23

ISEK Hillerheide - Vorstatik Slipanlage

Pos. W2-A W2 Abschnitt2 Nachweis der äußeren Standsicherheit

Nachfolgend wird für den Abschnitt 2 der Nachweis der äußeren Standsicherheit geführt.

Lastzusammenstellung

LF 1 Ständige Lasten (Eigengewicht):

Rampenaufbau

Fahrbahnplatte

 $G_{k,1} = 0.30 \text{ m x } 25 \text{ kN/m}^3 \text{ x } 3.70 \text{ m}$ = 27.80 kN/m

Magerbeton

 $G_{k,2} = 0.10 \text{ m x } 23 \text{ kN/m}^3 \text{ x } 3.70 \text{ m} = 8.50 \text{ kN/m}$

Trogverfüllung, Frostschutzschicht

 $G_{k,3} = 1.30 \text{ m} \times 20 \text{ kN/m}^3 \times 3.70 \text{ m} = 96.00 \text{ kN/m}$

Stahlbeton Trogbauwerk

Landseitige Wand

 $G_{k4} = 2.19 \text{m} \ \overline{\text{x} \ 0.35} \ \text{m} \ \text{x} \ 25 \ \text{kN/m}^3 = 19.20 \ \text{kN/m}$

Seeseitige Wand

 $\overline{G_{k5}} = 1.70 \text{m x } 0.35 \text{ m x } 25 \text{ kN/m}^3 = 14.90 \text{ kN/m}$

Bodenplatte Trog

 $\overline{G_{k5}} = 3.70 \text{m x } 0.35 \text{ m x } 25 \text{ kN/m}^3 = 32.40 \text{ kN/m}$

 $\sqrt{G} = 198.8 \text{ kN/m}$

LF 2 Erddruck:

Ansatz Erdruhedruck

Erddruckbeiwert für Erdruhedruck

 $k_{0gh} = 1 - (\sin -) = 1 - \sin 30^{\circ} = 0.50$

Wandoberkante = Oberkante Hinterfüllung 57.74 mNN

 $e_{0gh,1}$ = 0

Bodenplattenachse 55.38 mNN

 $e_{0gh,2} = (57.74 - 55.38) * 20 * 0,5 = 23.6 \text{ kN/m}^2$

--> E_{0gh} = 23.6 kN/m² * 2.36 m * 1/2 = **27.8 kN/m**

ISEK Hillerheide - Vorstatik Slipanlage

LF 3 Erddruck unter Auftrieb + Wasserdruck (Differenzlastfall zu LF 2):

--> Höhe BHGW = 57.00 mNN

$$\begin{array}{ll} e_{0gh1`} = (57.74 - 57.00) \ ^*20^*0,5 & = 7.40 \ kN/m^2 \\ q_{wh1} = & & \underline{= 0.00 \ kN/m^2} \\ \sqrt{e_{0gh`} + q_{wh1}} & = 7.90 \ kN/m^2 \end{array}$$

--> Bodenplattenachse 55.38 mNN

$$\begin{array}{lll} e_{0gh,2^{`}} = (57.74 - 57.00) * 20 * 0,5 \\ & + (57.00 - 55.38) * 10 * 0,5 \\ q_{wh2} = (57.00 - 55.38) * 10 & = 15.50 \text{ kN/m}^2 \\ & \sqrt{e_{0gh`}} + q_{wh1} & = 31.70 \text{ kN/m}^2 \end{array}$$

$$\forall q_{wh2} = (e_{0gh,2} + q_{wh2}) - e_{0gh,2} = 31.7 - 23.6 = 8.1 \text{ kN/m}^2$$

-->
$$\forall Q_{wh} = 8.1 \text{ kN/m}^2 * 1.62 \text{ m} * 1/2 = 6.6 kN/m$$

Auftrieb

$$q_{A,k} = (57.00 - 55.20) * 10 kN/m^3 = 1.80 * 10 kN/m^2 = 18 kN/m^2$$
--> $Q_{Ak} = 18 kN/m^2 * 3.7m = 66.6 kN/m$

LF 4 Verkehrslasten auf der Hinterfüllung

Annahme: max SLW 30

$$k_{0gh} = 0.5$$

$$e_{0qh} = 16.7 \text{ kN/m}^2 * 0.5 = 8.35 \text{ kN/m}^2$$

$$->$$
 E_{0qh} = 8.35 kN/m² * 2.36m = **19.7 kN/m**

Nachweis der äußeren Standsicherheit

1) Nachweis gegen Aufschwimmen

$$\sqrt{G_k}$$
 = 198.8 kN/m
 $\sqrt{Q_{A,K}}$ = 66.6 kN/m

Nachweis:

:=
$$(1.05 * Q_{A,k}) / (0.95 * G_{K})$$

= $(1.05 * 66.6) / (0.95 * 198.8)$

= 0.37 < 1.0 (Nachweis gegen Aufschwimmen erfüllt)

2) Nachweis der Gleitsicherheit

$$N_{k,G}$$
 = 198.8 kN/m (Eigengewicht)
 $N_{k,A}$ = 66.6 kN/m (Auftrieb)

$$--> N_k = 198.8 \text{ kN/m} - 66.6 \text{ kN/m}$$
 = 132.2 kN/m

$$T_k = E_0 + \forall Q_w + E_{0qh}$$

= 27.8 kN/m + 6.6 kN/m + 19.7 kN/m = 54.1 kN/m

$$T_d = 27.8 * 1.35 + 6.6 * 1.35 + 19.5 * 1.5$$
 = 75.7 kN/m

Charakteristischer Gleitwiderstand

$$R_{T,k} = N_k * tan - = 132.2 * tan 35^\circ = 92.6 kN/m$$

Bemessungswert des Gleitwiderstands

$$R_{T,d} = R_{T,k}/1.1 = 92.6/1.1$$
 = 84.2 kN/m

Nachweis:

$$\approx = T_d / R_{T,d} = 75.7 / 84.2 = 0.90 < 1.0$$

Der Nachweis der Sicherheit gegen Gleiten ist erfüllt.

Der seeseitig stützend wirkende Wasserdruck wird auf der sicheren Seite liegend nicht angesetzt.

ISEK Hillerheide - Vorstatik Slipanlage

Pos. W2-B

Abschnitt 2 -beidseitig Stützwände, Vorbemessung

Der Abschnitt 2, das Trogbauwerk wird nachfolgend in einem räumlichen Gesamtsystem mit FE-Methode vorbemessen.

Baustoffe:

Stahlbetonbauteile:

Expositionsklassen XC4, XD3, XF2, XA1*, WA

Beton C 30/37 r < 0.3; (C30/37 LP Wandkopfverbreiterung)

Überwachungsklasse 2 Betonstahl B 500

Betondeckung $c_{nom} = 6.0 \text{ cm}$ (Bodenplatte oben, Wände)

 $c_{nom} = 8.0 \text{ cm}$ (Bodenplatte unten)

*) vgl. Erläuterungen in den Vorbemerkungen Pos. V

Bemessungswasserstand

Gemäß Angabe Baugrundgutachten und nach nochmaliger Rücksprache Baugrundgutachter:

BHW = 57.00 mNN (max. Seewasserspiegel)

Verfüllmaterial im Trog

Für die Erddruckermittlung des landseitigen Stützwand ist gem. Baugrundgutachten von folgenden Bodenkennwerten auszugehen.

Erddruckansatz

Bei der nachfolgenden Vorbemessung des Bauwerkes wird der Erdruhedruck angesetzt.

$$k_{0ah} = 1 - \sin - = 1 - \sin 30^{\circ} = 0.50$$

ISEK Hillerheide - Vorstatik Slipanlage

LF 1 Ständige Lasten (Eigengewicht):

Rampenaufbau

Fahrbahnplatte

 $g_{k,1} = 0.30 \text{ m x } 25 \text{ kN/m}^3 = 7.50 \text{ kN/m}^2$

Magerbeton

 $g_{k,2} = 0.10 \text{ m x } 23 \text{ kN/m}^3 = 2.30 \text{ kN/m}^2$

Trogverfüllung, Frostschutzschicht

 $G_{k,3} = 1.30 \text{ m x } 20 \text{ kN/m}^3 = 26.00 \text{ kN/m}^2$

Stahlbeton Trogbauwerk

Das Eigengewicht der Stahlbetonbauteile wird programmintern vom verwendeten FEM Programm ermittelt.

LF 2 Erddruck:

Ansatz Erdruhedruck

Erddruckbeiwert für Erdruhedruck

 $k_{0gh} = 1 - (\sin -) = 1 - \sin 30^{\circ} = 0.50$

Wandoberkante = Oberkante Hinterfüllung 57.74 mNN

e_{0gh,1}

Bodenplattenachse 55.38 mNN

 $\overline{e_{0gh,2}} = \overline{(57.74 - 55.38) \times 20 \times 0.5} = 23.6 \text{ kN/m}^2$

Verdichtungserddruck

 $e_{vgh} = 25 \text{ kN/m}^2$

 $e_{vgh} = 25 \text{ kN/m}^2 - (0 + 8.35) = 16.7 \text{ kN/m}^2$

wirksame Tiefe:

 $t = 16.7 \text{ kN/m}^2 / (20 * 0.50) = 1.67 \text{ m}$

LF 3 Erddruck unter Auftrieb + Wasserdruck (Differenzlastfall zu LF 2):

km³ Höhe BHGW = 57.00 mNN

ISEK Hillerheide - Vorstatik Slipanlage

km Bodenplattenachse 55.38 mNN

$$\begin{array}{c} e_{0gh,2} = (57.74 - 57.00) * 20 * 0,5 \\ + (57.00 - 55.38) * 10 * 0,5 \\ \hline q_{\underline{wh2}} = (57.00 - 55.38) * 10 \\ \hline & \sqrt{e_{0gh'}} + q_{\underline{wh1}} \end{array} = \begin{array}{c} 15.50 \; kN/m^2 \\ = 16.20 \; kN/m^2 \\ \hline & = 31.70 \; kN/m^2 \end{array}$$

$$\forall q_{wh2} = (e_{0gh,2} + q_{wh2}) - e_{0gh,2} = 31.7 - 23.6 = 8.1 \text{ kN/m}^2$$

Auftrieb

$$q_{A,k} = (57.00 - 55.20) *10 \text{ kN/m}^3 = 1.80 * 10 \text{ kN/m}^2 = 18 \text{ kN/m}^2$$

LF 4 Verkehrslasten auf der Hinterfüllung

(Belastung Erdseitige Wand, wenn die Hinterfüllung befahren wird)

Annahme: max SLW 30

$$\begin{array}{ll} k_{0gh} = & 0.5 \\ e_{0gh} = & 16.7 \ kN/m^2 \ ^* \ 0.5 = 8.35 \ kN/m^2 \end{array}$$

LF 5 Verkehrslasten auf der Rampe

(Belastung der erdseitigen und wasserseitigen Wand, wenn die Rampe befahren wird)

Annahme: max SLW 30

$$\begin{array}{ll} k_{0gh} = & 0.5 \\ e_{0qh} = & 16.7 \ kN/m^2 \ ^* \ 0.5 = 8.35 \ kN/m^2 \end{array}$$

Bewehrungswahl:

Bodenplatte: Ø12-15 #, unten und oben

(7.54 cm²/m)

Wände: horizontal:

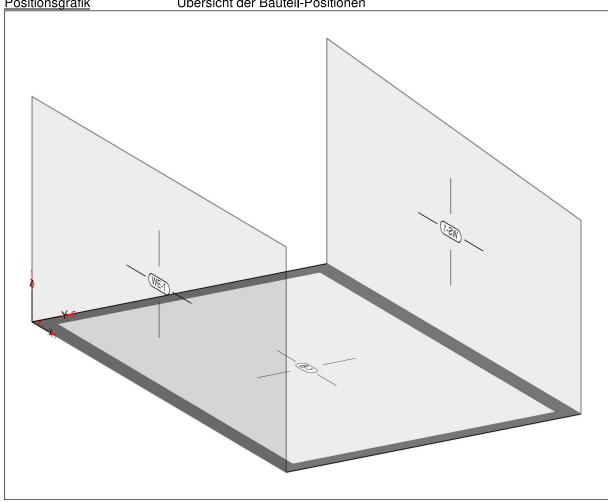
Ø16 - 10 innen und außen

(20.11 cm²/m)

vertikal: Ø12 -15 innen (7.54 cm²/m)

<u>System</u>

Positionsplan(3D)


<u>Bauteile</u>

<u>Flächen</u>

Bauteil-Positionen

Positionsgrafik

Übersicht der Bauteil-Positionen

Stahlbeton	Position	Art	Exz. [cm] Längs	Material Quer	Dicke [cm]
	B-1, WE-1, WS-1	iso	0.0 <i>B 500SB</i>	C 30/37 Q B 500SB	35.0
	iso: isotropes Material Q: Gesteinskörnung Quarzit Exz.: Exzentrizität e				
Koordinaten	Position		x	у	z
			[m]	[m]	[m]
	B-1		0.00	0.00	0.00
			0.00	3.35	0.00
			5.00	3.35	0.00

Flächen-Positionen

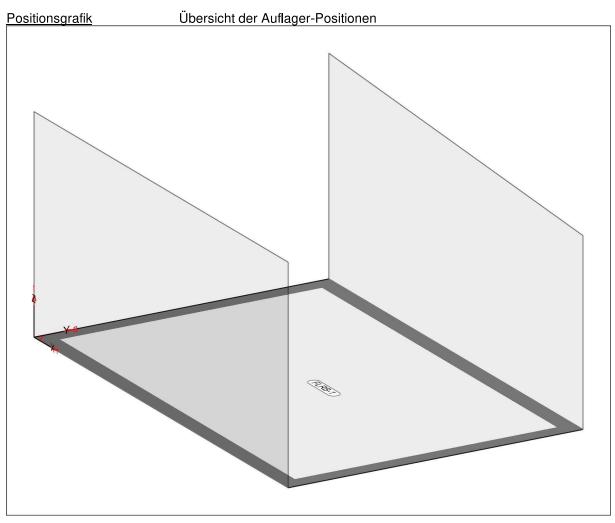
WE-1

0.00

0.00

0.00

0.00


5.00

0.00

ISEK Hillerheide - Vorstatik Slipanlage

Position	Х	У	Z
	[m]	[m]	[m]
	5.00	0.00	0.00
	5.00	0.00	2.36
	0.00	0.00	2.36
WS-1	0.00	3.35	0.00
	5.00	3.35	0.00
	5.00	3.35	2.03
	0.00	3.35	2.36

<u>Auflager</u> Auflager-Positionen

<u>Flächenlager</u>

Flächenlager-Positionen

Flächenbettung (Bettungsziffer)

Position		$K_{T,r}$		$K_{T,s}$		$K_{T,t}$
		[kN/m ³]		[kN/m ³]		[kN/m ³]
FLRB-1	+/-	1500	+/-	1500	+/-	15000

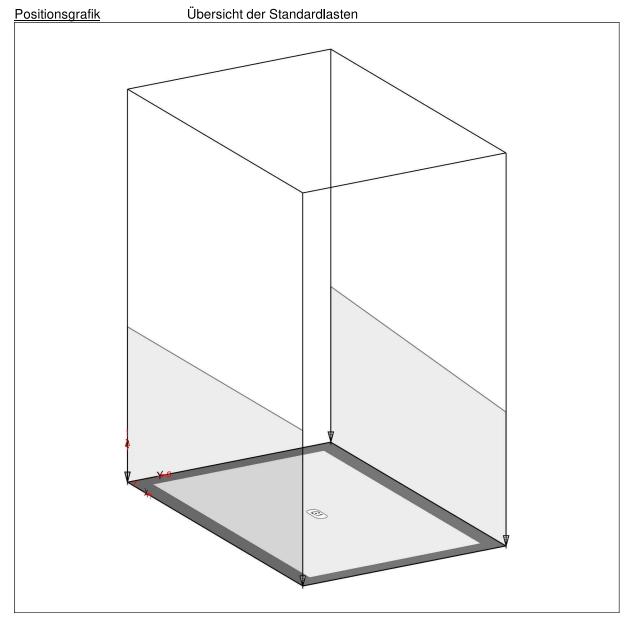
Koordinaten

	Position		x [m]	y [m]	z [m]
	FLRB-1		0.00 5.00	0.00	0.00
			5.00 0.00	3.35 3.35	0.00
Material	Materialkennwerte		0.00	0.00	0.00
Stahlbeton	Position	Material	Wichte	Ecm	f_{ck}
DIN EN 1992-1-1			[kN/m³]	G [N/mm²]	f _{ctm} [N/mm²]
	B-1, WE-1, WS-1	C 30/37 Q	25.00	33000	30.00
	Q: Gesteinskörnung Quarzit			13750	2.90
Betonstahl DIN EN 1992-1-1	Position	Material	Wichte	Es G	fyk f _{tk,cal}
			[kN/m³]	[N/mm ²]	$[N/mm^2]$
	B-1, WE-1, WS-1	B 500SB	78.50	200000 77000	500.00 525.00
Auswertung	Geometrische Auswertung	g der Positione	n		
<u>Flächen</u>	Flächenförmige Bauteil-Po	ositionen			
Stahlbeton	Position		icke	Fläche	Volumen
	B-1		cm] 35.0	[m²] 16.75	[m³] 5.86
	WE-1		35.0	11.80	4.13
	WS-1		35.0	10.98	3.84

<u>Belastungen</u>

ISEK Hillerheide - Vorstatik Slipanlage

Lastplan (lastfallweise) Lasten des FE-Modells


Lasten im Lastfall LF-1 - Eigengewicht in Einwirkung Gk - Eigenlasten <u>LF-1</u>

<u>Bauteillasten</u> Bauteilbezogene Lasten

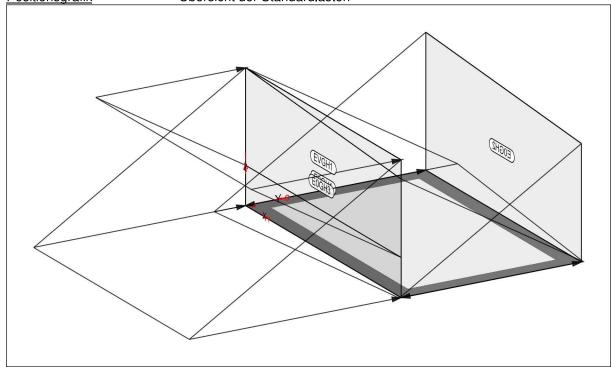
Flächenpositionen Flächenförmige Bauteil-Positionen

<u>Positionsgrafik</u> Übersicht der flächenförmigen Bauteil-Positionen

<u>Eigengewicht</u>	Position	EW	Lastfall	Art	g [kN/m²]
	B-1, WE-1, WS		LF-1 sten wirken senkre	PGr cht nach unten	8.75

<u>Gleichflächenlasten</u>	Position	EW	Lastfall	Art	p [kN/m²]
	G1	<i>Aufba</i> Gk	u im Trog I F-1	pt	-35.80
	pt: in lokaler t-Ric			Pr.	00.00

<u>LF-2</u>


Lasten im Lastfall LF-2 - Erddruck in Einwirkung Gk.E - Erddruck

Standardlasten

Standardlasten im FE-Modell

Positionsgrafik

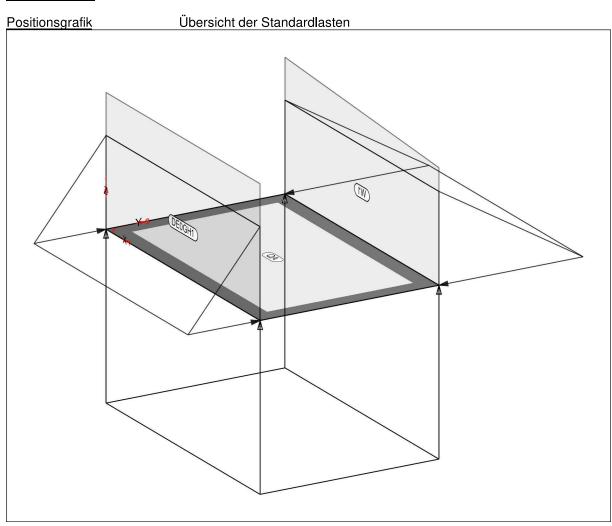
Übersicht der Standardlasten

ıra	pezt	Iaci	neni	laste	en

Position	EW	Lastfall	Art	p [kN/m²]
E0GH1	Erddrud	ck		
	Gk.E	LF-2	pt	Trapez
E0GH2	Erddrud	ck		
	Gk.E	LF-2	pt	Trapez
E0GH3	Erddrud	ck		
	Gk.E	LF-2	pt	Trapez
EVGH1	Verdich	ntungserddruck		
	Gk.E	LF-2	pt	Trapez
pt: in lokaler t-Richtung	ı		•	·

<u>Trapezlasten</u>

Lastordinatenebe	ene durch drei S	tützstellen d	lefiniert	
Position	Punkt	r	S	р
		[m]	[m]	[kN/m²]
E0GH1	P-1	0.00	2.36	0.00
	P-2	5.00	0.00	-23.60
	P-3	0.00	0.00	-23.60
E0GH2	P-1	0.00	2.36	0.00
	P-2	-5.00	0.00	20.30
	P-3	0.00	0.00	23.60
E0GH3	P-1	0.00	2.36	0.00
	P-2	5.00	0.00	20.30
	P-3	0.00	0.00	23.60

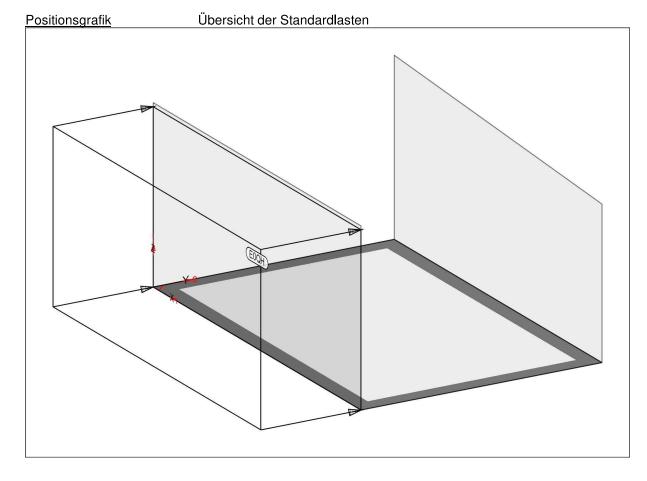

ISEK Hillerheide - Vorstatik Slipanlage

Position	Punkt	r	S	р
		[m]	[m]	[kN/m ²]
EVGH1	P-1	5.00	0.69	0.00
	P-2	5.00	2.36	-16.70
	P-3	0.00	2.36	-16.70

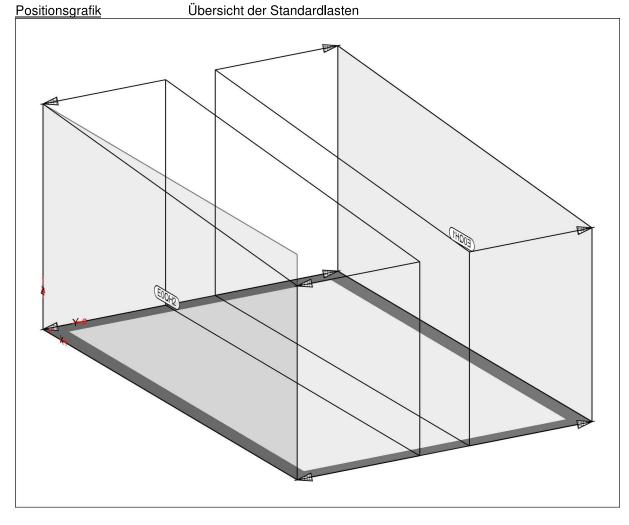
Lasten im Lastfall LF-3 - Erddruck unter Auftrieb + Wasserdruck <u>LF-3</u>

(Differenzlast zu LF 2) in Einwirkung Gk.H - Wasserdruck

Standardlasten im FE-Modell Standardlasten


Gleichflächenlasten	Position	EW	Lastfall	Art	p [kN/m²]
	QA	<i>Auftrie</i> Gk.H	<i>b Bodenplatte</i> LF-3	pt	18.00
	pt: in lokaler t-Richt	ung		•	

ISEK Hillerheide - Vorstatik Slipanlage


<u>Trapezflächenlasten</u>	Position	EW	Lastfa	ıll	Art	p [kN/m²]	
	DE0GH1	Erddru	ck unter	Auftrieb	+ Wasserdruck	<u> </u>	
		Gk.H	LF-3		pt	Trapez	
	W1	Wasse	rdruck S	Seeseite		•	
		Gk.H	LF-3		pt	Trapez	
	pt: in lokaler t-Richtun	g					
Trapezlasten	Lastordinatenebene durch drei Stützstellen definiert						
	Position	Pι	ınkt	r	S	р	
				[m]	[m]	[kN/m²]	
	DE0GH1		P-1	5.00	1.62	0.00	
			P-2	5.00	0.00	-8.10	
			P-3	0.00	0.00	-8.10	
	W1		P-1	0.00	1.62	0.00	
			P-2	-5.00	0.00	-16.20	
			P-3	0.00	0.00	-16.20	
154	Looton im Lootfall		rddrudl	oue Verk	obrauf Hintarfül	luna	

Lasten im Lastfall LF-4 - Erddruck aus Verkehr auf Hinterfüllung in Einwirkung Qk.N - Nutzlasten <u>LF-4</u>

Standardlasten im FE-Modell Standardlasten

Gleichflächenlasten	Position	EW	Lastfall	Art	p [kN/m²]		
	E0QH	r					
		Qk.N	LF-4	pt	-8.35		
	pt: in lokaler t-Richtun	g					
<u>LF-5</u>	Lasten im Lastfall LF-5 - Erddruck aus Verkehr auf Rampe in Einwirkung Qk.N - Nutzlasten						
Standardlasten	Standardlasten in	n FF-Mo	dell				

Gleichflächenlasten	Position	EW	Lastfall	Art	p [kN/m²]
	E0QH1	Erddru Qk.N	ick aus Verker LF-5	nr pt	8.35
	E0QH2 pt: in lokaler t-Ricl	Qk.N	ıck aus Verkel LF-5	pt	8.35

<u>Einwirkungen</u>

ISEK Hillerheide - Vorstatik Slipanlage

DIN EN 1990 Einwirkungen nach DIN EN 1990

Kürzel	Beschreibung
	Typisierung
Gk	Eigenlasten
	Ständige Einwirkungen
Qk.N	Nutzlasten
	Kategorie G - Fahrzeuglast zwischen 30 kN und 160 kN
Gk.E	Erddruck
	Ständiger Erddruck
Gk.H	Wasserdruck
	Ständiger Wasserdruck

Lastfälle und deren Zuordnung zu den Einwirkungen

Gk LF-1

 Qk.N
 LG-1 (LF-4, LF-5)

 Gk.E
 LF-2

 Gk.H
 LF-3

Bemessung (GZT+GZG)

Biegung F-As-erf-Iso

Biegebemessung Flächenbereiche

<u>B-1</u>

Bemessung für Fläche (Stahlbeton) B-1

Parameter

Es wird das Bemessungsverfahren nach DIN V ENV 1992-1-1:1992-06,

Anhang 2 verwendet.

Beton C 30/37, Betonstahl B 500SB

Gesteinskörnung Quarzit

8.7 / Bew.-Abstände d'.ru/su = 10.1 cm d',ro/so = 6.7 / 8.1 cm Grundbewehrung asg,ru/su = 0.00 /0.00 cm²/m asg,ro/so = 0.00 /0.00 cm²/m w,ru/su = Bemessungswinkel 0.0 / 90.0 w,ro/so = 0.0 / 90.0

Mindestbewehrung (9.2.1.1) wurde nicht ermittelt.

Rissbreitennachweis (7.3):

- Rissbreiten wk,u/o = 0.20/0.20 mm
- Rissbew. (7.3.4) wurde ermittelt für Stab-Durchmesser: ds,ru/su/ro/so = 12.0/12.0/12.0 mm
- wirksame Betonzugfestigkeit bei Lastbeanspr.:
- fct,eff = 2.90 N/mm² (= 100.0 % von fctm)
 Mindestbewehrung (7.3.2(2)) wurde nicht ermittelt.

Dicke konstant h = 35.00 cm

Kombinationen

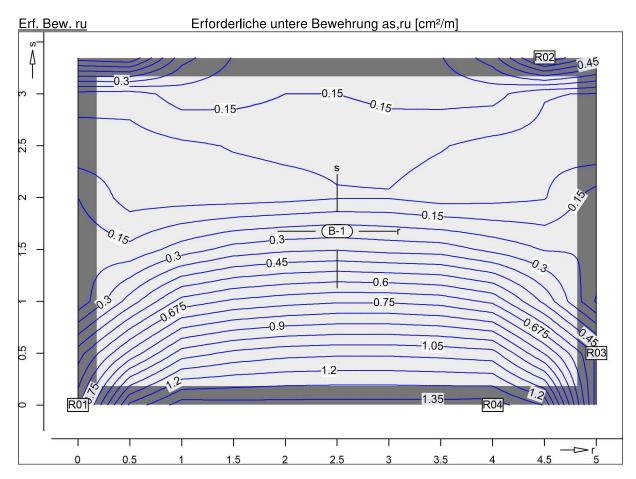
Maßgebende Kombinationen nach DIN EN 1990

Zur Bemessung wurden folgende Kombinationen untersucht:

- Grundkombination
- Quasi-ständig*
- * Kombinationen führten zu keinen maßgebenden Bemessungsschnittgrößen und werden deshalb in der Bemessungstabelle nicht referenziert.

nb-Viewer Version 2020 - Copyright 2019 - mb AEC Software Gmb

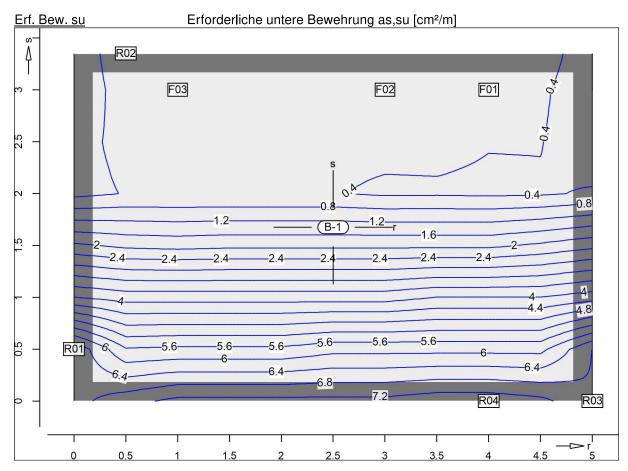
ISEK Hillerheide - Vorstatik Slipanlage


Ew

Einwirkungsname Lastkombinationsnummer Lkn

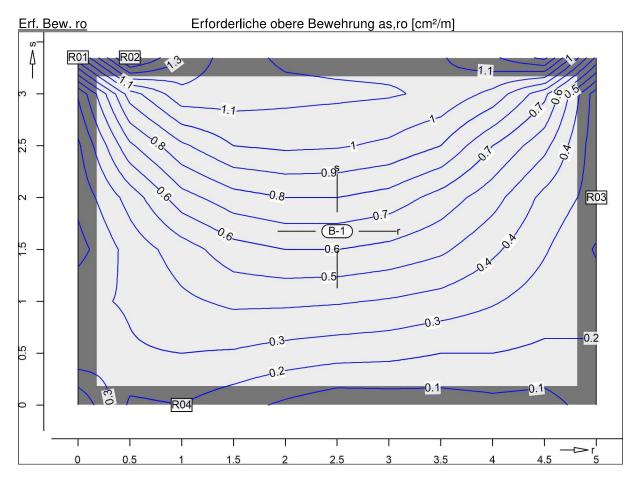
ļ vorherrschende veränderliche Einwirkung

Die Beteiligung einzelner Lastfälle innerhalb einer Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.


Ew	Gk	Gk.E	Gk.H	Qk.N	
Lkn	Grundkombination				
1	1.35	1.00	1.00	1.50 !	
2	1.35	1.35	1.00	1.50 !	
3	1.00	1.35	1.35	1.50 !	
4	1.00	1.35	1.00	1.50 !	
5	1.35	1.35	1.35	1.50 !	

Isolinienstufen = 0.08 cm²/m

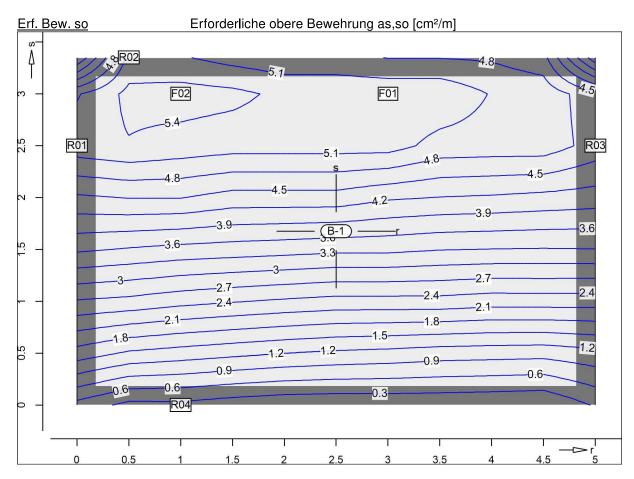
Bew.-Abstand: d'_{ru} = 8.7 cm Maßgebender Nachweis (falls Tragfähigkeitsnachweis nicht maßgebend): R = Rissbreitennachweis


Punkt	r	S	S _{r,Ed}	S _{s,Ed}	S _{rs} ,Ed	n_{Ed}	$a_{s,ru}$	Lkn
			$m_{r,Ed}$	$m_{s,Ed}$	$m_{\sf rs,Ed}$	m_{Ed}		
		[m]			$[N/mm^2]$	[kN/m]	[cm ² /m]	
					[kNm/m]	[kNm/m]	-	
R01	0.00	0.00	0.05	0.05	0.01	19.95	0.65	1
			0.66	3.28	-3.67	4.33		
R02	4.50	3.35	0.14	0.14	0.02	53.69	0.67	2
			-7.71	-45.98	0.04	0.00		
R03	5.00	0.50	0.00	0.07	-0.05	18.30	0.51	3
			1.64	66.22	-1.29	2.93		
R04	4.00	0.00	-0.08	-0.19	0.01	0.00	1.39	3
			16.31	81 46	-0.28	16 59		

Isolinienstufen = 0.40 cm²/m

Bew.-Abstand: d'_{su} = 10.1 cm Maßgebender Nachweis (falls Tragfähigkeitsnachweis nicht maßgebend): R = Rissbreitennachweis

Punkt	r	S	Sr,Ed	S _{s,Ed}	S _{rs} ,Ed	n_{Ed}	$a_{s,su}$	Lkn
			$m_{r, Ed}$	$m_{s, Ed}$	$m_{rs,Ed}$	m_{Ed}		
		[m]			[N/mm ²]	[kN/m]	[cm²/m]	
					[kNm/m]	[kNm/m]		
F01	4.00	3.00	0.03	0.13	0.01	48.57	0.63	2
			-9.79	-52.60	0.06	0.00		
F02	3.00	3.00	0.03	0.12	0.01	44.70	0.53	2
			-10.81	-54.14	1.02	0.00		
F03	1.00	3.00	0.03	0.14	-0.01	53.80	0.71	4
			-10.10	-53.10	1.60	0.00		
R01	0.00	0.50	0.00	0.11	0.05	56.60	6.73	3
			1.58	63.52	1.06	64.58		
R02	0.50	3.35	0.14	0.16	-0.02	62.17	0.76	4
			-8.30	-49.93	1.95	0.00		
R03	5.00	0.00	-0.12	0.09	-0.02	32.30	6.84	5
			0.51	69.32	-0.31	69.63		
R04	4.00	0.00	-0.08	-0.19	0.01	0.00	7.46	3
			16.31	81.46	-0.28	81.74		



Isolinienstufen = 0.10 cm²/m

R = Rissbreitennachweis

Bew.-Abstand: d'_{ro} = 6.7 cm Maßgebender Nachweis (falls Tragfähigkeitsnachweis nicht maßgebend):

Punkt	r	S	Sr,Ed	S _{s,Ed}	S _{rs} ,Ed	$n_{\sf Ed}$	$a_{s,ro}$	Lkn
			$m_{r, Ed}$	$m_{s,Ed}$	$m_{\text{rs},\text{Ed}}$	m_{Ed}		
		[m]			[N/mm ²]	[kN/m]	[cm²/m]	
					[kNm/m]	[kNm/m]		
R01	0.00	3.35	0.13	-0.04	0.00	46.77	0.96	2
			0.14	-38.77	4.62	-4.48		
R02	0.50	3.35	0.14	0.16	-0.02	55.76	1.56	2
			-8.11	-49.80	2.20	-10.32		
R03	5.00	2.00	0.00	-0.05	-0.01	0.45	0.26	3
			-0.55	2.40	2.71	-3.25		
R04	1.00	0.00	0.02	0.03	0.00	6.91	0.20	1
			0.05	0.37	-1.39	-1.34		

Isolinienstufen = 0.30 cm²/m

Bew.-Abstand: $d'_{so} = 8.1 \text{ cm}$ Maßgebender Nachweis (falls Tragfähigkeitsnachweis nicht maßgebend): R = Rissbreitennachweis

Punkt	r	S	Sr,Ed	S _{s,Ed}	S _{rs} ,Ed	n_{Ed}	$a_{s,so}$	Lkn
			$m_{r, Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}		
		[m]			[N/mm ²]	[kN/m]	[cm ² /m]	
					[kNm/m]	[kNm/m]		
F01	3.00	3.00	0.03	0.12	0.01	44.70	5.33	2
			-10.81	-54.14	1.02	-55.16		
F02	1.00	3.00	0.03	0.14	-0.01	54.33	5.53	2
			-10.45	-55.24	1.80	-57.04		
R01	0.00	2.50	-0.01	0.05	0.01	21.71	5.28	2
			-1.13	-57.27	2.18	-59.45		
R02	0.50	3.35	0.14	0.16	-0.02	62.17	5.20	4
			-8.30	-49.93	1.95	-51.88		
R03	5.00	2.50	-0.01	0.00	-0.01	6.08	4.68	2
			-1.11	-54.03	-0.93	-54.96		
R04	1.00	0.00	0.02	0.03	0.00	9.65	0.22	1
			0.05	0.37	-1.39	-1.03		

ISEK Hillerheide - Vorstatik Slipanlage

WE-1 Bemessung für Fläche (Stahlbeton) WE-1

Parameter Es wird das Bemessungsverfahren nach DIN V ENV 1992-1-1:1992-06,

Anhang 2 verwendet.

Beton C 30/37, Betonstahl B 500SB

Gesteinskörnung Quarzit

Bew.-Abstände d',ru/su = 6.8 / 8.2 cm d',ro/so = 6.8 / 8.2 cm Grundbewehrung asg,ru/su = 0.00 /0.00 cm²/m asg,ro/so = 0.00 /0.00 cm²/m Bemessungswinkel w,ru/su = 0.0 / 90.0 0 w,ro/so = 0.0 / 90.0

Mindestbewehrung (9.2.1.1) wurde nicht ermittelt.

Rissbreitennachweis (7.3):

- Rissbreiten wk,u/o = 0.20/0.20 mm
- Rissbew. (7.3.4) wurde ermittelt für Stab-Durchmesser: ds,ru/su/ro/so = 16.0/14.0/16.0/14.0 mm
- wirksame Betonzugfestigkeit bei Lastbeanspr.: fct,eff = 2.90 N/mm² (= 100.0 % von fctm)
- Mindestbewehrung (7.3.2(2)) wurde nicht ermittelt.

Dicke konstant h = 35.00 cm

Kombinationen

Maßgebende Kombinationen nach DIN EN 1990

Zur Bemessung wurden folgende Kombinationen untersucht:

- Grundkombination
- Quasi-ständig*
- * Kombinationen führten zu keinen maßgebenden Bemessungsschnittgrößen und werden deshalb in der Bemessungstabelle nicht referenziert.

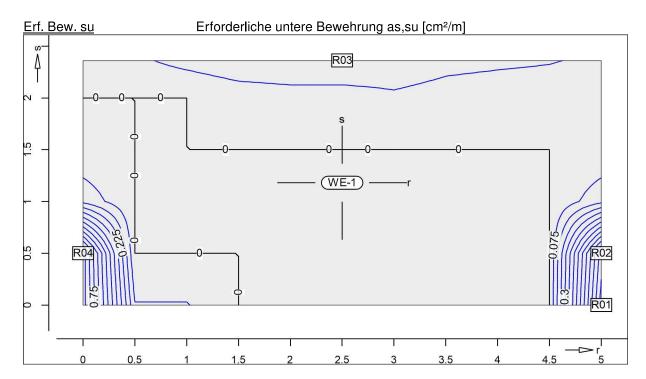
Ew Einwirkungsname

Lkn Lastkombinationsnummer

! vorherrschende veränderliche Einwirkung

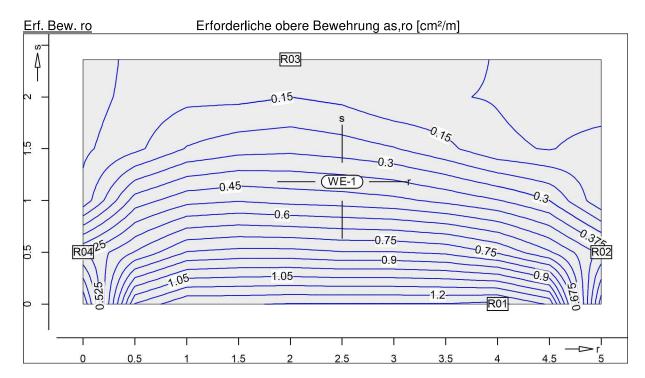
Die Beteiligung einzelner Lastfälle innerhalb einer Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Gk.E	Gk.H	Qk.N	
Lkn	Grundkombination				
1	1.35	1.00	1.00	1.50 !	
2	1.00	1.35	1.35	1.50 !	
3	1.00	1.35	1.00	1.50 !	


-Viewer Version 2020 - Copyright 2019 - mb AEC Software GmbH

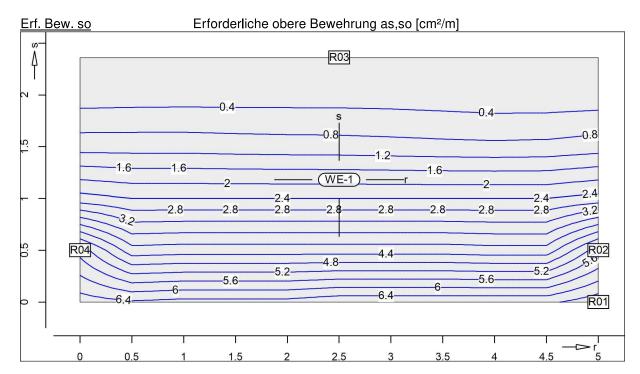
Isolinienstufen = 0.02 cm²/m

Bew.-Abstand: $d'_{ru} = 6.8 \text{ cm}$ Maßgebender Nachweis (falls Tragfähigkeitsnachweis nicht maßgebend): R = Rissbreitennachweis


Punkt	r	s	$S_{r,Ed}$	S _{s,Ed}	S _{rs} ,Ed	n_{Ed}	$a_{s,ru}$	Lkn
			$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}		
		[m]			[N/mm ²]	[kN/m]	[cm²/m]	
					[kNm/m]	[kNm/m]		
R01	0.50	0.00	0.01	-0.05	-0.01	2.08	0.19	1
			-0.03	-1.09	-2.04	2.02		
R02	5.00	0.50	0.00	0.19	-0.06	20.43	0.22	2
			-1.96	-50.52	0.08	0.00		
R03	3.50	2.36	0.02	0.00	0.00	9.07	0.28	2
			1.59	0.37	-0.38	1.97		
R04	0.00	0.50	0.00	0.18	0.06	19.57	0.21	2
			-1.84	-49.72	-1.24	0.00		

Isolinienstufen = 0.08 cm²/m

Bew.-Abstand: d'_{su} = 8.2 cm Maßgebender Nachweis (falls Tragfähigkeitsnachweis nicht maßgebend): R = Rissbreitennachweis


	11 - 1	tioobi oitoi ii a	011110				
r	s	S _{r,Ed}	S _{s,Ed}	S _{rs} ,Ed	n_{Ed}	$a_{s,su}$	Lkn
		$m_{r,Ed}$	$m_{s,Ed}$	$m_{\sf rs,Ed}$	m_{Ed}		
	[m]			[N/mm ²]	[kN/m]	[cm²/m]	
				[kNm/m]	[kNm/m]		
5.00	0.00	-0.08	0.24	-0.04	89.28	1.01	2
		-0.30	-67.69	-1.41	0.00		
5.00	0.50	0.00	0.19	-0.06	88.95	0.94	2
		-1.96	-50.52	0.08	0.00		
2.50	2.36	0.00	0.00	0.00	0.00	0.14	3
		0.54	0.19	-1.55	1.74		
0.00	0.50	0.00	0.18	0.06	83.77	0.94	2
		-1.84	-49.72	-1.24	0.00		
	5.00 2.50	r s [m] 5.00 0.00 5.00 0.50 2.50 2.36	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{bmatrix} [m] \end{bmatrix} & m_{r,Ed} & m_{s,Ed} \\ \hline 5.00 & 0.00 & -0.08 & 0.24 \\ -0.30 & -67.69 \\ 5.00 & 0.50 & 0.00 & 0.19 \\ -1.96 & -50.52 \\ 2.50 & 2.36 & 0.00 & 0.00 \\ 0.54 & 0.19 \\ 0.00 & 0.50 & 0.00 & 0.18 \\ \hline \end{bmatrix} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Isolinienstufen = 0.08 cm²/m

Bew.-Abstand: d'_{ro} = 6.8 cm Maßgebender Nachweis (falls Tragfähigkeitsnachweis nicht maßgebend): R = Rissbreitennachweis

				.01111010	110001011011110			
Lkn	$\mathbf{a}_{s,ro}$	n_{Ed}	S _{rs,Ed}	S _{s,Ed}	S _r ,Ed	s	r	Punkt
		m_{Ed}	$m_{rs,Ed}$	$m_{s,Ed}$	$m_{r,Ed}$			
	[cm²/m]	[kN/m]	[N/mm ²]			[m]		
		[kNm/m]	[kNm/m]					
2	1.30	0.00	0.01	-0.08	-0.06	0.00	4.00	R01
		-16.60	-0.46	-80.33	-16.14			
2	0.43	20.43	-0.06	0.19	0.00	0.50	5.00	R02
		-2.04	0.08	-50.52	-1.96			
2	0.14	10.79	0.00	0.00	0.03	2.36	2.00	R03
		-0.18	-0.78	0.36	0.60			
2	0.52	19.57	0.06	0.18	0.00	0.50	0.00	R04
		-3.08	-1.24	-49.72	-1.84			
	0.14	20.43 -2.04 10.79 -0.18 19.57	-0.06 0.08 0.00 -0.78 0.06	0.19 -50.52 0.00 0.36 0.18	0.00 -1.96 0.03 0.60 0.00	2.36	2.00	R03

Isolinienstufen = 0.40 cm²/m

Bew.-Abstand: d'_{so} = 8.2 cm Maßgebender Nachweis (falls Tragfähigkeitsnachweis nicht maßgebend): R = Rissbreitennachweis

		– .	nood onomia	.01111010				
Punkt	r	s	$\mathbf{S}_{r,Ed}$	S _{s,Ed}	S _{rs,Ed}	n_{Ed}	$a_{s,so}$	Lkn
			$m_{r, Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}		
		[m]			$[N/mm^2]$	[kN/m]	[cm²/m]	
					[kNm/m]	[kNm/m]		
R01	5.00	0.00	-0.08	0.24	-0.04	89.28	7.07	2
			-0.30	-67.69	-1.41	-69.10		
R02	5.00	0.50	0.00	0.19	-0.06	88.95	5.44	2
			-1.96	-50.52	0.08	-50.60		
R03	2.50	2.36	0.00	0.00	0.00	0.00	0.11	3
			0.54	0.19	-1.55	-1.36		
R04	0.00	0.50	0.00	0.18	0.06	83.77	5.44	2
			-1.84	-49.72	-1.24	-50.96		

ISEK Hillerheide - Vorstatik Slipanlage

WS-1 Bemessung für Fläche (Stahlbeton) WS-1

Parameter Es wird das Bemessungsverfahren nach DIN V ENV 1992-1-1:1992-06,

Anhang 2 verwendet.

Beton C 30/37, Betonstahl B 500SB

Gesteinskörnung Quarzit

Bew.-Abstände d',ru/su = 6.8 / 8.2 cm d',ro/so = 6.8 / 8.2 cm Grundbewehrung asg,ru/su = 0.00 /0.00 cm²/m asg,ro/so = 0.00 /0.00 cm²/m Bemessungswinkel w,ru/su = 0.0 / 90.0 w,ro/so = 0.0 / 90.0

Mindestbewehrung (9.2.1.1) wurde nicht ermittelt.

Rissbreitennachweis (7.3):

- Rissbreiten wk,u/o = 0.20/0.20 mm
- Rissbew. (7.3.4) wurde ermittelt für Stab-Durchmesser: ds,ru/su/ro/so = 16.0/14.0/16.0/14.0 mm
- wirksame Betonzugfestigkeit bei Lastbeanspr.: fct,eff = 2.90 N/mm^2 (= 100.0 % von fctm)
- Mindestbewehrung (7.3.2(2)) wurde nicht ermittelt.

Dicke konstant h = 35.00 cm

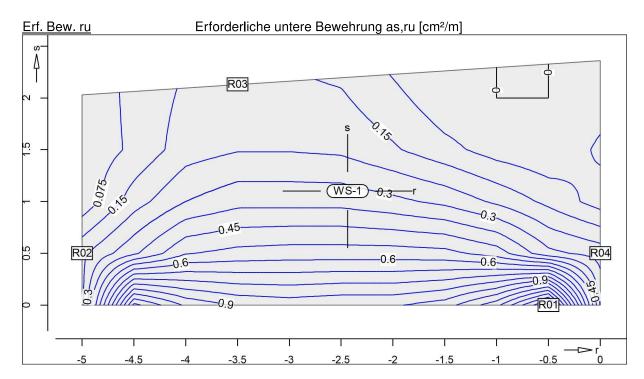
Kombinationen

Maßgebende Kombinationen nach DIN EN 1990

Zur Bemessung wurden folgende Kombinationen untersucht:

- Grundkombination
- Quasi-ständig*
- * Kombinationen führten zu keinen maßgebenden Bemessungsschnittgrößen und werden deshalb in der Bemessungstabelle nicht referenziert.

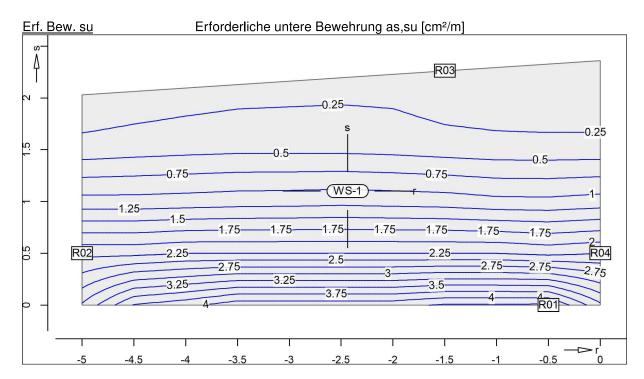
Ew Einwirkungsname


Lkn Lastkombinationsnummer

! vorherrschende veränderliche Einwirkung

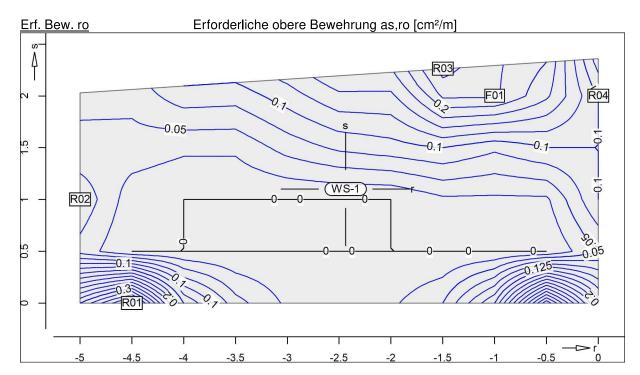
Die Beteiligung einzelner Lastfälle innerhalb einer Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Gk.E	Gk.H	Qk.N	
Lkn	Grundkombination				
1	1.35	1.35	1.00	1.50 !	
2	1.00	1.35	1.00	1.50 !	


nb-Viewer Version 2020 - Copyright 2019 - mb AEC Software GmbH

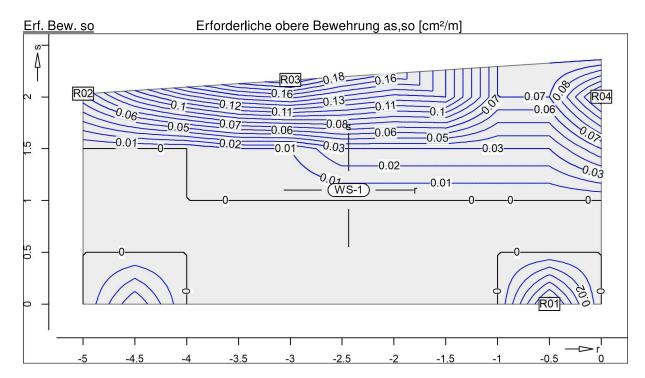
Isolinienstufen = 0.08 cm²/m

Bew.-Abstand: $d'_{ru} = 6.8 \text{ cm}$ Maßgebender Nachweis (falls Tragfähigkeitsnachweis nicht maßgebend): R = Rissbreitennachweis


Punkt	r	S	S _{r,Ed}	S _{s,Ed}	S _{rs,Ed}	n_{Ed}	$a_{s,ru}$	Lkn
			$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}		
		[m]			$[N/mm^2]$	[kN/m]	[cm²/m]	
					[kNm/m]	[kNm/m]		
R01	-0.50	0.00	0.10	-0.01	-0.01	40.62	1.45	1
			9.24	48.04	2.25	11.49		
R02	-5.00	0.50	0.00	-0.22	-0.04	2.98	0.21	1
			1.21	25.36	0.92	2.13		
R03	-3.50	2.13	-0.03	-0.01	0.00	0.00	0.19	1
			0.54	-0.28	1.85	2.39		
R04	0.00	0.50	0.00	-0.26	0.05	4.49	0.27	1
			1.32	26.65	1.41	2.74		

Isolinienstufen = 0.25 cm²/m

Bew.-Abstand: d'_{su} = 8.2 cm Maßgebender Nachweis (falls Tragfähigkeitsnachweis nicht maßgebend): R = Rissbreitennachweis


Punkt	r	S	S _{r,Ed}	S _{s,Ed}	S _{rs,Ed}	n_{Ed}	$\mathbf{a}_{s,su}$	Lkn
			$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}		
		[m]			$[N/mm^2]$	[kN/m]	[cm²/m]	
					[kNm/m]	[kNm/m]	_	
R01	-0.50	0.00	0.10	0.01	-0.01	6.71	4.30	2
			9.29	48.25	2.00	50.25		
R02	-5.00	0.50	0.00	-0.22	-0.04	0.00	2.18	1
			1.21	25.36	0.92	26.28		
R03	-1.50	2.26	-0.02	0.00	0.00	0.00	0.13	2
			-1.60	0.07	1.53	1.54		
R04	0.00	0.50	0.00	-0.26	0.05	0.00	2.25	1
			1.32	26.65	1.41	28.06		

Isolinienstufen = 0.03 cm²/m

Bew.-Abstand: d'_{ro} = 6.8 cm Maßgebender Nachweis (falls Tragfähigkeitsnachweis nicht maßgebend): R = Rissbreitennachweis

Punkt	r	S	S _{r,Ed} M _{r.Ed}	S _{s,Ed}	S _{rs,Ed} M _{rs,Ed}	n _{Ed} m _{Ed}	$a_{s,ro}$	Lkn
		[m]	IIIr,Ea	$m_{s,Ed}$	[N/mm²] [kNm/m]	[kN/m] [kNm/m]	[cm²/m]	
F01	-1.00	2.00	-0.01	-0.01	0.01	0.00	0.23	1
			-1.71	0.04	1.07	-2.78		
R01	-4.50	0.00	0.10	0.00	0.01	38.08	0.42	2
			8.04	44.25	0.14	0.00		
R02	-5.00	1.00	-0.01	-0.07	-0.01	0.00	0.07	1
			-0.90	12.35	0.86	-0.96		
R03	-1.50	2.26	-0.02	0.00	0.00	0.00	0.26	1
			-1.59	0.07	1.55	-3.15		
R04	0.00	2.00	0.00	-0.02	0.00	0.00	0.10	1
			-0.42	-0.64	0.88	-1.31		

Isolinienstufen = 0.01 cm²/m

Bew.-Abstand: d'_{so} = 8.2 cm Maßgebender Nachweis (falls Tragfähigkeitsnachweis nicht maßgebend): R = Rissbreitennachweis

Punkt	r	s	S _{r,Ed}	S _{s,Ed}	S _{rs} ,Ed	n_{Ed}	$a_{s,so}$	Lkn
			$m_{r, Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}		
		[m]			[N/mm ²]	[kN/m]	[cm ² /m]	
					[kNm/m]	[kNm/m]		
R01	-0.50	0.00	0.10	0.01	-0.01	6.71	0.07	2
			9.29	48.25	2.00	0.00		
R02	-5.00	2.03	0.00	-0.01	0.00	0.00	0.06	1
			-0.58	-0.30	0.44	-0.74		
R03	-3.00	2.16	-0.03	-0.01	0.00	0.00	0.20	1
			0.30	-0.33	1.96	-2.29		
R04	0.00	2.00	0.00	-0.01	0.00	0.00	0.13	2
			-0.42	-0.62	0.88	-1.50		

ISEK Hillerheide - Vorstatik Slipanlage

Querkraft F-As-Iso Querkraftbemessung Schalenbereiche

<u>B-1</u> Querkraftbemessung der Schale

Querkraftbemessung nach DIN EN 1992-1-1

Beton C 30/37, Betonstahl B 500SB

Gesteinskörnung Quarzit

asg, ru/su = asg, ro/so = Grundbiegebew. 0.0 / 0.0 cm²/m 0.0 / 0.0 cm²/m

Druckstrebenneigung wurde vom Programm optimiert. Mindestbewehrung (9.3.2) wurde nicht ermittelt.

Dicke konstant h = 35.00 cm

ISEK Hillerheide - Vorstatik Slipanlage

<u>WE-1</u> Querkraftbemessung der Schale

Querkraftbemessung nach DIN EN 1992-1-1 Beton C 30/37, Betonstahl B 500SB

Gesteinskörnung Quarzit

Grundbiegebew. asg, ru/su = 0.0 / 0.0 cm²/m

asg, ro/so = 0.0 / 0.0 cm²/m

Druckstrebenneigung wurde vom Programm optimiert. Mindestbewehrung (9.3.2) wurde nicht ermittelt.

Dicke konstant h = 35.00 cm

Isolinienstufen = $1.00 \text{ cm}^2/\text{m}^2$

ISEK Hillerheide - Vorstatik Slipanlage

<u>WS-1</u> Querkraftbemessung der Schale

Querkraftbemessung nach DIN EN 1992-1-1 Beton C 30/37, Betonstahl B 500SB

Gesteinskörnung Quarzit

Grundbiegebew. asg, ru/su = 0.0 / 0.0 cm²/m

asg, ro/so = 0.0 / 0.0 cm²/m

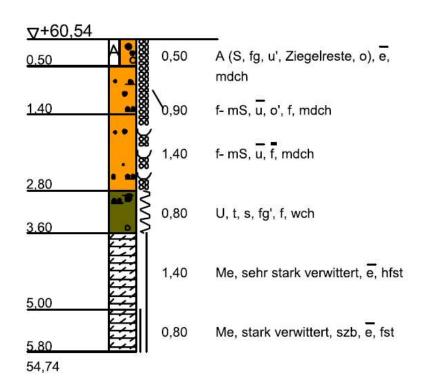
Druckstrebenneigung wurde vom Programm optimiert. Mindestbewehrung (9.3.2) wurde nicht ermittelt.

Dicke konstant h = 35.00 cm

Isolinienstufen = $1.00 \text{ cm}^2/\text{m}^2$

Pos. W-3

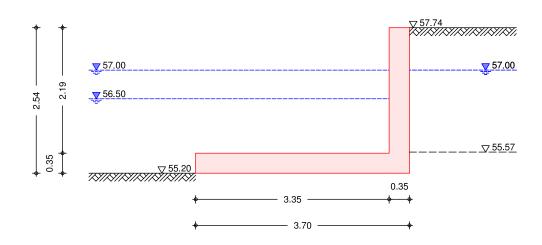
Winkelstützwand Slipanlage


In der folgenden Position wird die Stützwand der Abschnitt 3 als Winkelstützwand mit luftseitigem Sporn vorbemessen.

Gründung

Die Gründungssohle des geplanten Wandquerschnitts liegt bei 55.20 mNN. Die Unterkante der Winkelstützwand liegt somit im stark verwitterten Mergelhorizont.

Nächstgelegener Aufschluss nach [15]:


RKS₂

ISEK Hillerheide - Vorstatik Slipanlage

System

M 1:65

Geometrie

Wandschenkel	h[m]	d _o [m]	luft[°]	erd[°]
	2 19	0.35	0.00	0.00

Gelände ebene Geländeoberfläche

Abstand OK Gelände-Wandkopf $z_{luft} = 2.54$ m $z_{erd} = 0.00$ m

3.0

3.0

21.7

-21.7

0.0

Baugrund

11.0

Einwirkungen nach DIN EN 1990:2010-12

999.0

Gk Eigenlasten

Ständige Einwirkungen

21.0

Qk.N Nutzlasten

Kategorie G - Fahrzeuglast zwischen 30 kN und 160 kN

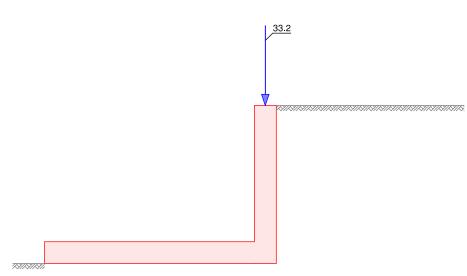
32.5

Gk.E.A # Erddruck

Ständiger Erddruck

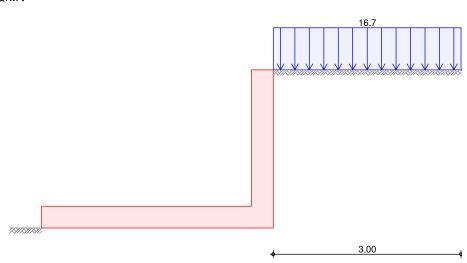
Gk.H.S # Wasserstand ständig

Ständiger Wasserdruck


Gk.H.A # Wasserstand außergewöhnlich

Außergewöhnliche Einwirkungen # Die Einwirkung wurde automatisch generiert.

<u>Belastungen</u>


ISEK Hillerheide - Vorstatik Slipanlage

Eigengewicht	Gk Gk Gk		Anteil Gesamtlas Sporn lufts Wandsche	seitig				G [kN/m] 51.54 29.31 19.16
Grundwasser	EW		Art				h _{Luft} [m]	h _{Erd} [m]
	Gk.H Gk.H Die Eir	I.A	außergew	Grundwas . Grundwas und außergewö	sser	ndwassers t	0.74 1.24 treten nicht gleich:	0.74 0.74
Blocklasten	Nr.	EW			a _h [m]	s [m]	l _e [m]	q [kN/m²]
	1	Qk.N			0.00	3.00	6.00	16.70
Linienlasten an Wand	Nr.	EW		a _∨ [m]	[kN/	f _x m]	f _z [kN/m]	m _y [kNm/m]
	1	Gk		2.19		00	33.17	0.00
Zusammenstellungen Last Nr. 1: f _z			platte und eschicht	3.35*0.3*	*25+3.35*	0.1*24	= 33.1	6 kN/m
<u>Grafik</u>	Bela	stungs(grafiken (eir	nwirkungsb	ezogen)			
Einwirkung	Gk							

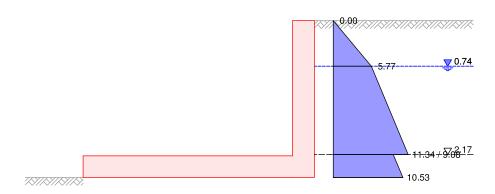
ISEK Hillerheide - Vorstatik Slipanlage

 $\mathsf{Qk}.\mathsf{N}$

Erddruck

Berechnung nach DIN 4085:2017-08

Standsicherheit EW Gk.E.A


erhöhter aktiver Erddruck aus Bodeneigengewicht

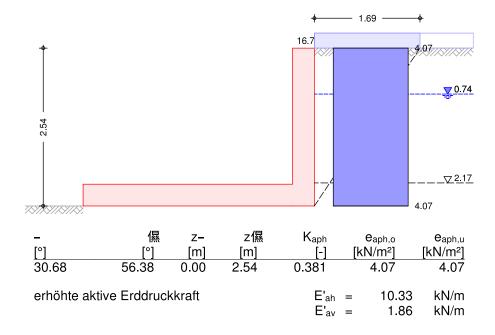
Anteil aktiver Erddruck Grundwasser

 $\begin{array}{rcl} \approx & = & 0.50 \\ z_{gw} & = & 0.74 \end{array}$

m

M 1:60

ISEK Hillerheide - Vorstatik Slipanlage


EW Qk.N

erhöhter aktiver Erddruck aus Blocklast (Nr. 1) Lastordinate

ve =

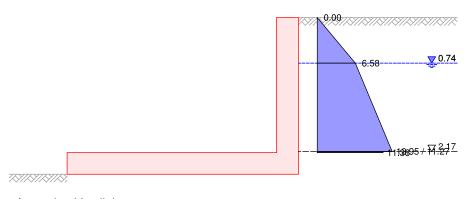
16.70 kN/m²

M 1:60

Bemessung EW Gk.E.A

erhöhter aktiver Erddruck aus Bodeneigengewicht

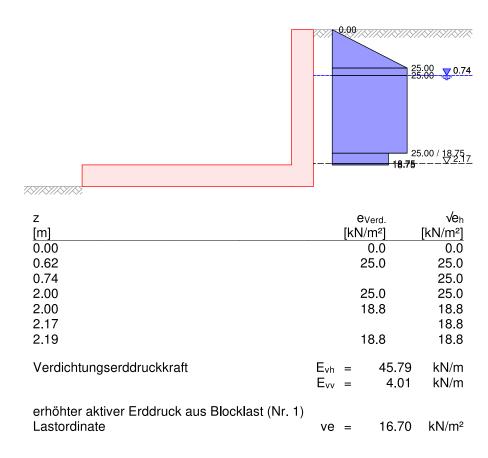
Anteil aktiver Erddruck


Grundwasser

0.25 $z_{gw} =$

0.74

m


M 1:60

Verdichtungserddr.

B =	2.50	m
$e_{vh} =$	25.00	kN/m^2
z _p =	0.62	m
z _a =	2.00	m
$z_{gw} =$	0.74	m
	$e_{vh} = z_p = z_a =$	$e_{vh} = 25.00$ $z_p = 0.62$ $z_a = 2.00$

EW Qk.N

M 1:60

Stands. luftseitig	GW-Stand [m]	W _h [kN/m]	W _{v,Sporn} [kN/m]	W _{v,Sohle} [kN/m]
	0.74	16.20	48.58	33.30
	1.24	8.45	31.83	24.05
Stands. erdseitig	GW-Stand	W _h	W _{v,Sporn}	W _{v,Sohle}
	[m]	[kN/m]	[kN/m]	[kN/m]
Bem. luftseitig	0.74	16.20	0.00	33.30
	GW-Stand	W _h	W _{v,Sporn}	W _{v,Sohle}
	[m]	[kN/m]	[kN/m]	[kN/m]
	0.74	10.51	0.00	0.00
Danis and a Wa	1.24	4.51	0.00	0.00
Bem. erdseitig	GW-Stand	W _h	W _{v,Sporn}	W _{v,Sohle}
	[m]	[kN/m]	[kN/m]	[kN/m]
	0.74	10.51	0.00	0.00

Kombinationen

Kombinationsbildung nach DIN EN 1997-1 Darstellung der maßgebenden Kombinationen

Standsicherheit

Clariabionicificit				
	Ek	√(:* ≧*EW)		
GZ EQU, BS-P	6	1.10*Gk	+0.90*Gk.E.A	+1.10*Gk.H.S
GZ GEO-2, BS-P	25	1.35*Gk	+1.50*Qk.N	+1.27*Gk.E.A
		+1.35*Gk.H.S		
	26	1.35*Gk	+1.27*Gk.E.A	+1.35*Gk.H.S
GZ GEO, BS-P: Gleiten	29	1.35*Gk	+1.50*Qk.N	+1.35*Gk.E.A
		+1.35*Gk.H.S		
GZ GEO-3, BS-P	47	1.00*Gk	+1.30*Qk.N	+1.00*Gk.E.A
		+1.00*Gk.H.S		
GZ SLS	52	1.00*Gk	+1.00*Gk.E.A	+1.00*Gk.H.S
Bemessung (GZT)		17 454-110		
	Ek	√(.:* ≧*EW)		
GZ STR, BS-P	53	1.35*Gk	+1.50*Qk.N	+1.24*Gk.E.A
		+1.35*Gk.H.S		
GZ STR, BS-A	56	1.10*Gk	+1.02*Gk.E.A	+1.00*Gk.H.A

Bem.-schnittgrößen

Standsicherheit

GZ EQU: Nachweis der Kippsicherheit

Ek	H_{Ed}	V_{Ed}	M_{Ed}
	[kN/m]	[kN/m]	[kNm/m]
6	16.19	76.25	76.83

GZ GEO-2: Nachweis der Grundbruchsicherheit

Ek	H_{Ed}	V_{Ed}	Med
	[kN/m]	[kN/m]	[kNm/m]
25	38.44	96.92	77.84

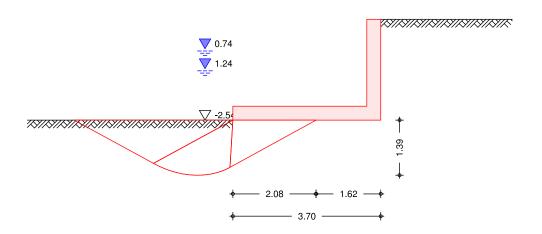
ISEK Hillerheide - Vorstatik Slipanlage

	GZ GEO-2: Gleitnachweis Boden-Bauteil, Beanspruchung ohne Berücksichtigung des Erdwiderstands					
	Ek	ksichtigung des E	H _{Ed}	V_{Ed}		M_{Ed}
	⊏K		[kN/m]	kN/m]		[kNm/m]
	29		39.79	97.17		76.99
	07.01	C. Na alassaia alass	4 1/2			
		S: Nachweis der		M		N 4
	Ek		H _{Ed} [kN/m]	V _{Ed} [kN/m]		M _{Ed} [kNm/m]
	52		17.99	69.91		67.77
	GZ SL	S: Nachweis der	2. Kernweite			
	Ek		H_{Ed}	V_{Ed}		M_{Ed}
			[kN/m]	[kN/m]		[kNm/m]
	52		17.99	69.91		67.77
	GZ GI	EO-2: Nachweis S	Sohldruck			
	Ek		H_{Ed}	V_{Ed}		M_{Ed}
			[kN/m]	[kN/m]		[kNm/m]
	26		22.94	94.13		92.35
Pamagaung (C7T)						
Bemessung (GZT)	•	10				
<u>Wandschenkel</u>	z = 2	.19 m				
	Ek		N _{Ed}	V _{Ed}		MEd
			[kN/m]	[kN/m]		[kNm/m]
	53		73.88	36.90		-33.79
	56		59.05	23.04		-17.04
Lastfall Verdichtung	z = 2.	10 m				
Lastial Verdicriturig	2 = 2. Ek	13111	N_{Ed}	V_{Ed}		NA
	⊏ĸ					M _{Ed}
	53		[kN/m]	[kN/m]		[kNm/m]
	53		75.60	56.66		-54.11
Sporn luftseitig						
	Ek	Anteil		N _{Ed}	V_{Ed}	M _{Ed}
				[kN/m]	[kN/m]	[kNm/m]
	53	Standsicherheit		-21.87	23.74	-30.47
		Erddruck Bemes	ssung Wand	-14.19	0.00	9.34
		Sohldruck		30.35	76.53	-65.87
		Resultierende		-38.03	-52.78	26.06
	56	Standsicherheit		-8.45	12.94	-23.72
		Erddruck Bemes	ssung Wand	-4.51	0.00	2.22
		Sohldruck	-	20.22	53.90	-38.95
		Resultierende		-24.15	-40.96	13.01
Otawalai ahawka !!	O4 '		alaa waala DINI	LEN 4007 4 004 4	. 00	
<u>Standsicherheit</u>		sicherheitsnachwe ge Situationen	eise nach DiiN	I EN 1997-1:2014	-03	
<u>Kippen</u>	nach I	DIN 1054:2010-12	2, GZ EQU			
	Ek	M_{Ed}	V_{Ed}	e/b	zul e/b	•
		[kNm/m]	[kN/m]	[-]	[_]	[-]
	6	76.83	76.25	0.272	1/2	0.54
	J	7 0.00	, 0.20	0.272	1/2	0.54

ISEK Hillerheide - Vorstatik Slipanlage

<u>Gleiten</u>

in Sohlfuge nach DIN EN 1997-1:2014-03, GZ GEO-2 Sohlreibungswinkel k = 1000


k = 32.50

Ek R_k $R_{p,k} \\$ $H_{\text{\scriptsize d}}$ R_{d} R,h ·R,e [kN/m] [-] [kN/m] [-] [kN/m] [kN/m] [-] 29 45.72 1.10 0.00 1.40 39.79 41.57 0.96

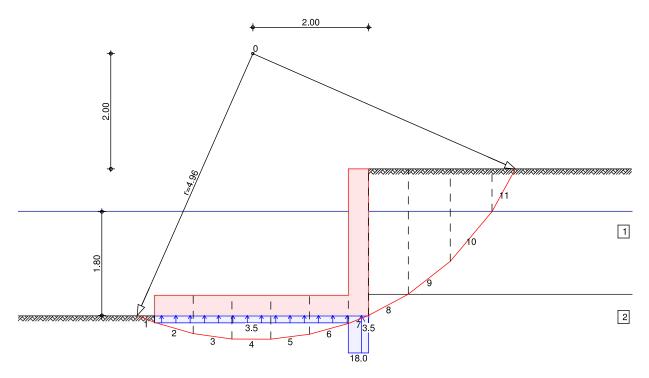
Grundbruch

nach DIN EN 1997-1:2014-03, GZ GEO-2

M 1:94

Grundrissform: Streifen

		b' [m]	d [m]		[°]	∳ [°]
		2.08	0.00		0.00	0.00
Z _{max}		_	С		.1	.2
[m]		[°]	[kN/m²]	[]	κN/m³]	[kN/m³]
1.39		32.50	3.00		0.00	11.00
	T	Ν			«	m
[kN/r	m]	[kN/m]	[°]		[°]	[-]
28.0	32	71.77	21.54		90.00	2.00
Einfluß	N_0	≅	i	≅	≒	N
Breite	15.03	1.000	0.222	1.000	1.000	3.33
Tiefe	24.58	1.000	0.366	1.000	1.000	9.01
Kohäsion	37.02	1.000	0.340	1.000	1.000	12.57
			0.0.0			
Ek	Vo	ı I	R_k	• R ,v	R_d	:
	[kN/m]			[-]	[kN/m]	[-]
25	96.92			.40	169.44	0.57


Geländebruch

nach DIN 1054 (12/10), A 11.1.1, GZ GEO-3 Lamellenverfahren mit kreisförmiger Gleitlinie Anzahl untersuchter Gleitkreise maßgeb. Gleitkreismittelpunkt

n = 68 - x = -2.00 m z = 2.00 m

	Halbmesser	r =	4.96	m
TS-Beiwerte	maßgebende Kombination Ek 47, BS-P ständige Einwirkungen veränderliche Einwirkungen Reibungsbeiwert des Bodens Kohäsion des Bodens	.e = .∴ = .∵ =	1.00 1.30 1.25 1.25	- - -

maßgeb. Gleitkreis M 1:65 mit größter Ausnutzung

Lamellenwerte	Nr.	X	Z	b	::	- d	Cd
		[m]	[m]	[m]	[°]	[°]	[kN/m²]
	1	-3.85	-2.60	0.30	-21.9	27.0	2.4
	2	-3.37	-2.76	0.67	-16.0	27.0	2.4
	3	-2.70	-2.90	0.67	-8.1	27.0	2.4
	4	-2.03	-2.95	0.67	-0.3	27.0	2.4
	5	-1.35	-2.91	0.67	7.5	27.0	2.4
	6	-0.69	-2.77	0.67	15.4	27.0	2.4
	7	-0.18	-2.61	0.35	21.6	27.0	2.4
	8	0.34	-2.35	0.69	28.3	27.0	2.4
	9	1.05	-1.89	0.72	38.1	24.8	0.0
	10	1.77	-1.17	0.72	50.0	24.8	0.0
	11	2.34	-0.37	0.40	61.3	24.8	0.0
Lasten Tangentialkräfte	Nr.	G _d [kN/m]		$P_{v,d}$	(G+P)*sin::		Т
-				[kN/m]	[kN/m]		[kN/m]
		_			_		

Lasten Tangentialkräfte	Nr.	G_d	$P_{v,d}$	(G+P)*sin::	T
		[kN/m]	[kN/m]	[kN/m]	[kN/m]
	1	0.20	5.40	-2.09	4.38
	2	7.46	9.71	-4.74	11.80
	3	8.52	9.71	-2.56	11.50

ISEK Hillerheide - Vorstatik Slipanlage

	Nr.		G _d [kN/m]		P _{v,c} [kN/m]		i+P)*sin: kN/m]		T [kN/m]		
	4		8.88		9.71		-0.09		11.10		
	5		8.57		9.71		2.38		10.60		
	6		7.56		9.71		4.59		9.97		
	7		22.49		33.16		20.49		28.06		
	8		21.41		14.93		17.22		19.70		
	9		19.01		15.72	<u>)</u>	21.44	4	16.79		
	10		13.84		15.72	<u>)</u>	22.63	3	16.01		
	11		2.99		8.78	3	10.33	3	7.55		
	$\sqrt{}$						89.60)	147.47		
Momente aus Einwirkungen			und Aufla				Gi) =	444.51	kNm/m		
	infolge S	Sohlwa	asserdrucl	k		M(Fs)_=_	-11.20	kNm/m		
							Ем =	433.31	kNm/m		
Momente aus	infolge 7	ange	ntialkräfte			M	(Ti) =	731.60	kNm/m		
Widerständen	Ŭ	Ŭ					`Rм =	731.60	kNm/m		
Ausnutzung	:=	433.3	1 / 731	.60 =	0.59	Ħ1.0					
1. Kernweite	nach DI	nach DIN EN 1997-1:2014-03, GZ SLS									
	Ek		M_{Ed}		V_{Ed}	e		zul e/b	:		
			[kNm/m]		N/m]		[-]	[-]	[-]		
	52		67.77	6	9.91	0.26	52	1/3	0.79		
2. Kernweite	nach DI	N EN	1997-1:20	14-03,	GZ SL	S					
	Ek		M_{Ed}		$V_{\text{Ed}} \\$	e		zul e/b	:		
			[kNm/m]		N/m]		[-]	[-]	<u>[-]</u> 0.79		
	52		67.77	6	9.91	0.26	52	1/3	0.79		
Mittlerer Sohldruck	nach DII	N 105	4:2010-12	2							
	Ek	M_{k}	V_{k}	е	b'	V_{d}	E,	d R			
		<u>m/m]</u>	[kN/m]	[m]	[m]	[kN/m]	[kN/m ²				
	26	67.8	69.9	0.97	1.76	94.1	53.45	5 200.0	0.27		
Remessung (G7T)											

Bemessung (GZT)

Achsabstand	Bautei	I	Seite		[1	d' mm]	c _{nom} [mm]
	Wand		luftseitig		•	68	60
	Wand		erdseitig			68	60
	Sporn		oben			68	60
	Sporn		unten			95	75
Biegebemessung			g der Minde IDP Zu 9.2.	stlängsbewel 1.1(1)	hrung nach	DIN EN 199	92-1-
Wand	Z	Seite	Ek	M_{Ed}	N_{Ed}	a_s	min as
	[m]			[kNm/m]	[kN/m]	[cm ² /m]	[cm ² /m]
	2.19	lufts.	53	-33.79	-73.88		
			53	-33.79	-73.88		-
		erds.	53	-54.11	-75.60	3.31	

ISEK Hillerheide - Vorstatik Slipanlage

	z [m]	Seite	Ek 56	M _{Ed} [kNm/m] -17.04	[kN/m]	a _s [cm²/m]	min a _s [cm²/m] 4.25	
Sporn luftseitig	Seite oben	Ek 53		M _{Ed} m/m] 26.06	N _{Ed} [kN/m] -38.03	a _s [cm²/m] -	min a _s [cm²/m]	
	unten	53 56	3	34.80 3.01	-58.36 -24.15	2.19	4.97	
Querkraftbemessung Wand	z [m] 2.19	Ek 53	:: [°] 18.43	V _{Ed} [kN/m] 56.66	V _{Rd,c} [kN/m] 142.48	V _{Rd,max} [kN/m] 734.40	a _{sw} [cm²/m²]	
Sporn luftseitig	Ek 53			: V _{Ed}] [kN/m]	V _{Rd,c} [kN/m]	V _{Rd,max} [kN/m] 631.13	a _{sw} [cm²/m²] -	
erf. Bewehrung	Biege-	und Que	rkraftbewe	hrung				
Wand	z [m] 2.19			a _s [cm²/m] -	[cr	a _{se} n²/m] I.25м	a _{sw} [cm²/m²] -	
Sporne				a _{so} [cm²/m]		a _{su} n²/m]	a _{sw} [cm²/m²]	
	luftseiti	g		-		I.97м	<u>[OIII /III]</u> -	
		-	_		NDP Zu 9.2.1.1(1)		
<u>Zusammenfassung</u>	Zusammenfassung der Nachweise							
Nachweise (GZT)	Nachweise im Grenzzustand der Tragfähigkeit							
	Nachw	eis					: [-]	
	Kippen Sohldri	uck	•			OK OK OK	0.54 0.27	
	Grund	Sohlfuge bruch lebruch	е			OK OK OK	0.96 0.57 0.59	
Nachweise (GZG)	Nachw	eise im G	Grenzzust.	der Gebraud	chstauglichke	eit		
	Nachw						: [-]	
	1. Kerr 2. Kerr					OK OK	0.79 0.79	

ISEK Hillerheide - Vorstatik Slipanlage

Sachbearbeiter:

Dipl.-Ing. (FH) J. Kirchner

Koblenz, Februar 2021

Björnsen Beratende Ingenieure GmbH

Dipl.-Ing. U. Krath

ppa. Dipl.-Ing. (FH) A. Mehren