

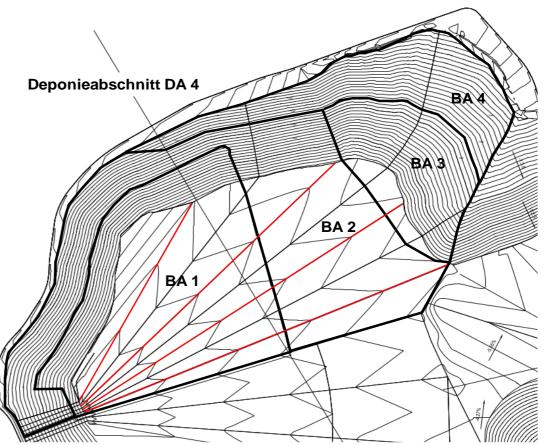
Anlage 10

Nachweise Sickerwasserfassung und -ableitung

Anlage 10 Nachweise Sickerwasserfassung und -ableitung

Inhalt

10-1	Nachweis der Dränagerohrleitungen
10-2	Nachweis der Entwässerungsschicht
10-3	Nachweis Sickerwasserspeichervolumen
	Deponiebetrieb 2026
	Deponiebetrieb 2037
	Deponiebetrieb 2052
10-4	Sickerwasserprognose
	Endzustand
10-5	Vorbemessung Druckleitungen
10-6	Mengen für Sickerwasserentsorgung ungünstigster Zustand für DK I-Bereich, Deponiebetrieb 2026 ungünstigster Zustand für DK II-Bereich, Deponiebetrieb 2052


Deponieabschnitt 4

Betriebsbeginn: fehlende / geringe Abfallüberdeckung, Regenereignis nach KOSTRA r_{15,1}: 105,6 l/s*ha (2010R)

Betriebszustand: relevante Abfallüberdeckung, 10-fache Sicherheit: 10 mm/d -> 1,16 l/s*ha

$$Q_{voll} = v_{voll} * \pi * d_i^2 / 4$$

 $Q_{erf.} = A_E * \Psi * r_{15,1}$

Sammler 1 (da 400)	Fläche [ha]	Abfluss Q _{beginn} [l/s]	Abfluss Q _{betrieb} [l/(s*ha)]
BA 1	1,595	*)	1,85
BA 2 **)	1,081	91,34	1,25
BA 4	0,142	12,02	0,17
Sammler 2 (da 355)			
BA 1	0,637	*)	0,74
BA 2 **)	0,831	70,22	0,96
BA 3	0,409	34,55	0,47
BA 4	0,606	51,22	0,70
Sammler 3 (da 400)			
BA 1	0,428	*)	0,50
BA 2 **)	0,615	51,98	0,71
BA 3	0,658	55,62	0,76
BA 4	0,533	45,04	0,62
Sammler 4 (da 355)			
BA 1	0,386	*)	0,45
BA 2 **)	0,705	59,59	0,82
BA 3	0,106	8,97	0,12

^{*)} Bauabschnitt BA 1 = Bestand (Abschnitt DA 4a) → Nachweis erfolgt für Betriebszustand mit Q_{betrieb} = 1,16 l/(s*ha)

^{**)} Bauabschnitt BA 2 wird unterteilt gebaut (vgl. Grenzen Abschnitt DA 4b) → Nachweise erfolgen konservativ mit größeren Flächen

Bauabschn	itt BA 1 *)				SDF	? 7 <u>,4</u>						
	Abfluss d	er angesc Fläche	hlossenen	Gesamt- abfluss	Innen-Ø	Nenn-ø	Mindest- gefälle	Rauigkeits- beiwert	Fließge- schw.	maximaler Abfluss	Auslast (max. 9	_
	BA 1	BA 2	BA 3		di	da	I	k_b	V_{voll}	Q_{voll}		-
		[l/s]		[l/s]	[mm]	[mm]	[%]	[mm]	[m/s]	[l/s]	[%]	
Sammler 1	1,85			1,85	290,6	400	1,5	1,5	1,66	110,4	1,7	~
Sammler 2	0,74			0,74	258,0	355	1,5	1,5	1,54	80,4	0,9	~
Sammler 3	0,50			0,50	290,6	400	1,5	1,5	1,66	110,4	0,4	~
Sammler 4	0,45			0,45	258,0	355	1,5	1,5	1,54	80,4	0,6	V

^{*)} Bauabschnitt BA 1 = Bestand (Abschnitt DA 4a) → Nachweis erfolgt für Betriebszustand mit Q_{betrieb} = 1,16 l/(s*ha)

Bauabschn	itt BA 2 **)			SDF	R 7,4						
	Abfluss o	der angesc Fläche	hlossenen	Gesamt- abfluss	Innen-Ø	Nenn-ø	Mindest- gefälle	Rauigkeits- beiwert	Fließge- schw.	maximaler Abfluss	Auslast (max. 9	•
	BA 1	BA 2	BA 3		di	da	1	k_b	V_{voll}	Q_{voll}		
		[l/s]		[l/s]	[mm]	[mm]	[%]	[mm]	[m/s]	[l/s]	[%]	
Sammler 1	1,85	91,34		93,19	290,6	400	1,5	1,5	1,66	110,4	84,4	✓
Sammler 2	0,74	70,22		70,96	258,0	355	1,5	1,5	1,54	80,4	88,2	~
Sammler 3	0,50	51,98		52,47	290,6	400	1,5	1,5	1,66	110,4	47,5	~
Sammler 4	0,45	59,59		60,04	258,0	355	1,5	1,5	1,54	80,4	74,6	V

^{**)} Bauabschnitt BA 2 wird unterteilt gebaut (vgl. Grenzen Abschnitt DA 4b) → Nachweise erfolgen konservativ mit größeren Flächen

Bauabschn	itt BA 3				SDF	R 7,4						
	Abfluss o	ler angeso Fläche	chlossenen	Gesamt- abfluss	Innen-Ø	Nenn-ø	Mindest- gefälle	Rauigkeits- beiwert	Fließge- schw.	maximaler Abfluss	Auslast (max. 9	_
	BA 1	BA 2	BA 3		di	da	I	k_b	V_{voll}	Q_{voll}		
		[l/s]		[l/s]	[mm]	[mm]	[%]	[mm]	[m/s]	[l/s]	[%]	
Sammler 1	1,85	1,25		3,10	290,6	400	1,5	1,5	1,66	110,4	2,8	~
Sammler 2	0,74	0,96	34,55	36,25	258,0	355	1,5	1,5	1,54	80,4	45,1	V
Sammler 3	0,50	0,71	55,62	56,83	290,6	400	1,5	1,5	1,66	110,4	51,5	~
Sammler 4	0,45	0,82	8,97	10,23	258,0	355	1,5	1,5	1,54	80,4	12,7	V

Bauabschni	tt BA 4					<u>SD</u>	R 7,4						
	Abflus	s der ange	eschlossene	n Fläche	Gesamt- abfluss	Innen-Ø	Nenn-Ø	Mindest- gefälle	Rauigkeits- beiwert	Fließge- schw.	maximaler Abfluss	7	slastung ax. 90%)
	BA 1	BA 2	BA 3	BA 4		di	da	I	k_b	V_{voll}	Q_{voll}		
			[l/s]		[l/s]	[mm]	[mm]	[%]	[mm]	[m/s]	[l/s]	[%]	
Sammler 1	1,85	1,25		12,02	15,13	290,6	400	1,5	1,5	1,66	110,4	13,7	~
Sammler 2	0,74	0,96	0,47	51,22	53,40	258,0	355	1,5	1,5	1,54	80,4	66,4	✓
Sammler 3	0,50	0,71	0,76	45,04	47,01	290,6	400	1,5	1,5	1,66	110,4	42,6	~

Deponieabschnitt 3.2

Betriebsbeginn: fehlende / geringe Abfallüberdeckung, Regenereignis nach KOSTRA r_{15,1}: 105,6 l/s*ha (2010R)

Betriebszustand: relevante Abfallüberdeckung, 10-fache Sicherheit: 10 mm/d -> 1,16 l/s*ha

mit $v_{voll} = -2^* lg[(2.51^*1.31^*10^{-6}) / (d_i^* \sqrt{(2^*9.81^*d_i^*l)}) + k_b/(3.71^*d_i)]^* \sqrt{(2^*9.81^*d_i^*l)}$

 $Q_{voll} = V_{voll} * \pi * d_i^2 / 4$ $Q_{erf.} = A_E * \Psi * r_{15,1}$

♥ erf. —	ΛΕ Ψ 1 15,1			
		Abfluss Q _{beginn}	Abfluss Q _{betrieb}	
Sammler 8 (da 450)	Fläche [ha]	[I/s]	[l/s]	
BA 1	1,476	124,66	1,71	
BA 2	0,863	72,95	1,00	BA2
BA 3	1,292	109,14	1,50	
BA 4	1,016	85,83	1,18	
BA 5	0,859	72,56	1,00	
				BA2
Sammler 9 (da 400)				
BA 1	1,141	96,41	1,32	
BA 2	1,148	96,96	1,33	BA1
				BA 1
Sammler 10 (da 355))			BAS
BA 1	0,579	48,92	0,67	
BA 2	0,481	40,59	0,56	BAA
Sammler 11 (da 355)				BAST 5
BA 1	0,762	64,41	0,88	
BA 2	0,516	43,60	0,60	
				Deponieabschnitt DA 3.2a
Sammler 12 (da 400)				
BA 1	1,120	94,62	1,30	
BA 2	0,804	67,88	0,93	Deponieabschnitte DA 3.2b/c

Bauabschni	tt BA 1			SDR	R 7,4						
	Abfluss de	er angeschlossenen Fläche	Gesamt- abfluss	Innen-Ø	Nenn-ø	Mindest- gefälle	Rauigkeits- beiwert	Fließge- schwindigk eit	maximaler Abfluss	Auslast (max. 9	•
	BA 1	BA 2		di	da	1	k_b	V_{voll}	Q_{voll}		
		[l/s]	[l/s]	[mm]	[mm]	[%]	[mm]	[m/s]	[l/s]	[%]	
Sammler 8	124,66		124,66	327,0	450	1,5	1,5	1,80	150,9	82,6	~
Sammler 9	96,41		96,41	290,6	400	1,5	1,5	1,66	110,4	87,4	~
Sammler 10	48,92		48,92	258,0	355	1,5	1,5	1,54	80,4	60,8	~
Sammler 11	64,41		64,41	258,0	355	1,5	1,5	1,54	80,4	80,1	~
Sammler 12	94,62		94,62	290,6	400	1,5	1,5	1,66	110,4	85,7	V

Bauabschni	itt BA 2			SDF	R 7,4						
	Abfluss d	er angeschlossenen Fläche	Gesamt- abfluss	Innen-Ø	Nenn-ø	Mindest- gefälle	Rauigkeits- beiwert	Fließge- schwindigk eit	maximaler Abfluss	Auslast (max. 9	•
	BA 1	BA 2		di	da	1	k_b	V_{voll}	Q_{voll}		
		[l/s]	[l/s]	[mm]	[mm]	[%]	[mm]	[m/s]	[l/s]	[%]	
Sammler 8	1,71	72,95	74,66	327,0	450	1,5	1,5	1,80	150,9	49,5	~
Sammler 9	1,32	96,96	98,29	290,6	400	1,5	1,5	1,66	110,4	89,1	~
Sammler 10	0,67	40,59	41,27	258,0	355	1,5	1,5	1,54	80,4	51,3	~
Sammler 11	0,88	43,60	44,49	258,0	355	1,5	1,5	1,54	80,4	55,3	V
Sammler 12	1,30	67,88	69,18	290,6	400	1,5	1,5	1,66	110,4	62,7	~

Bauabschnit	t BA 3						<u>SD</u>	R 7,4						
	А	bfluss der	angeschlos	ssenen Fläc	he	Gesamt- abfluss	Innen-Ø	Nenn-Ø	Mindest- gefälle	Rauigkeits- beiwert	Fließge- schwindig keit		Auslas (max. 9	_
	BA 1	BA 2	BA 3	BA 4	BA 5		di	da	1	k_b	V_{voll}	Q_{voll}		
			[l/s]			[l/s]	[mm]	[mm]	[%]	[mm]	[m/s]	[l/s]	[%]	
Sammler 8	1,71	1,00	109,14			111,85	327,0	450	1,5	1,5	1,80	150,9	74,1	~

Bauabschni	tt BA 4						SDI	R 7,4						
	А	bfluss der	angeschlos	ssenen Fläc	he	Gesamt- abfluss	Innen-Ø	Nenn-Ø	Mindest- gefälle	Rauigkeits- beiwert	Fließge- schwindig keit		Auslas (max.	_
	BA 1	BA 2	BA 3	BA 4	BA 5		di	da	1	k_b	V_{voll}	Q_{voll}		
			[l/s]			[l/s]	[mm]	[mm]	[%]	[mm]	[m/s]	[l/s]	[%]	
Sammler 8	1,71	1,00	1,50	85,83		90,04	327,0	450	1,5	1,5	1,80	150,9	59,7	~

Bauabschnit	t BA 5						<u>S</u> D	OR 7,4						
	А	bfluss der	angeschlos	ssenen Fläc	che	Gesamt- abfluss	Innen-Ø	Nenn-ø	Mindest- gefälle	Rauigkeits- beiwert	Fließge- schwindig keit	maxim aler Abflus	Auslas (max.	_
	BA 1	BA 2	BA 3	BA 4	BA 5		di	da	1	k_b	V_{voll}	Q_{voll}		
			[l/s]			[l/s]	[mm]	[mm]	[%]	[mm]	[m/s]	[l/s]	[%]	
Sammler 8	1,71	1,00	1,50	1,18	72,56	77,95	327,0	450	1,5	1,5	1,80	150,9	51,6	✓

Deponieabschnitt 5

Betriebsbeginn: fehlende / geringe Abfallüberdeckung, Regenereignis nach KOSTRA r_{15,1}: 105,6 l/s*ha (2010R)

Betriebszustand: relevante Abfallüberdeckung, 10-fache Sicherheit: 10 mm/d -> 1,16 l/s*ha

mit $v_{voll} = -2^* lg[(2.51^*1.31^*10^{-6}) / (d_i^* \sqrt{(2^*9.81^*d_i^*l)}) + k_b/(3.71^*d_i)]^* \sqrt{(2^*9.81^*d_i^*l)}$

 $Q_{voll} = v_{voll} * \pi * d_i^2 / 4$

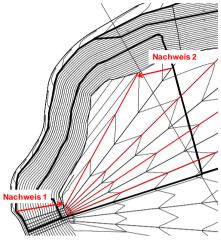
 $Q_{erf.} = A_E * \Psi * r_{15,1}$

Sammler 5 (da 355)		Abfluss Q _{beginn} [l/s]	Abfluss Q _{betrieb} [l/s]	
BA 1	0,490	41,36	0,57	
BA 2	0,491	41,47	0,57	
BA 3		0,00	0,00	
Sammler 6 (da 355)				
BA 1	0,496	41,93	0,58	
BA 2	0,521	44,05	0,60	BA1
BA 3	0,088	7,45	0,10	
Sammler 7 (da 450)				BA 2
BA 1	1,604	135,49	1,86	BA 3
BA 2	1,578	133,28	1,83	Deponieabschnitt DA 5
BA 3	0,804	67,92	0,93	

Bauabschn	itt BA 1				<u>SDF</u>	R 7,4						
	Abfluss d	er angesc Fläche	hlossenen	Gesamt- abfluss	Innen-Ø	Nenn-ø	Mindest- gefälle	Rauigkeits- beiwert	Fließge- schwindigk eit	maximaler Abfluss	Auslast (max. 9	_
	BA 1	BA 2	BA 2		di	da	I	k_b	V_{voll}	Q_{voll}		
		[l/s]		[l/s]	[mm]	[mm]	[%]	[mm]	[m/s]	[l/s]	[%]	
Sammler 5	41,36			41,36	258,0	355	1,5	1,5	1,54	80,4	51,4	~
Sammler 6	41,93			41,93	258,0	355	1,5	1,5	1,54	80,4	52,1	~
Sammler 7	135,49			135,49	327,0	450	1,5	1,5	1,80	150,9	89,8	~

Bauabschn	itt 2				<u>SDF</u>	R 7,4						
	Abfluss	der angesch Fläche	hlossenen	Gesamt- abfluss	Innen-Ø	Nenn-Ø	Mindest- gefälle	Rauigkeits- beiwert	Fließge- schwindigk eit	maximaler Abfluss	Auslast (max. 9	•
	BA 1	BA 2	BA 3	[]/0]	di []	da	[0/1	k _b	V _{voll}	Q _{voll}	F0/ 1	
		[l/s]		[l/s]	[mm]	[mm]	[%]	[mm]	[m/s]	[l/s]	[%]	
Sammler 5	0,57	41,47		42,03	258,0	355	1,5	1,5	1,54	80,4	52,2	~
Sammler 6	0,58	44,05		44,63	258,0	355	1,5	1,5	1,54	80,4	55,5	~
Sammler 7	1,86	133,28		135,14	327,0	450	1,5	1,5	1,80	150,9	89,5	~

Bauabschn	itt 3				SDF	R 7,4						
	Abfluss o	der angesc Fläche	hlossenen	Gesamt- abfluss	Innen-ø	Nenn-ø	Mindest- gefälle	Rauigkeits- beiwert	Fließge- schwindigk eit	maximaler Abfluss	Auslast (max. 9	_
	BA 1	BA 2	BA 3	[]/6]	di	da	[k _b	V _{voll}	Q _{voll}	F0/ 1	
		[l/s]		[l/s]	[mm]	[mm]	[%]	[mm]	[m/s]	[l/s]	[%]	
Sammler 5	0,57	0,57	0,00	1,14	258,0	355	1,5	1,5	1,54	80,4	1,4	~
Sammler 6	0,58	0,60	7,45	8,63	258,0	355	1,5	1,5	1,54	80,4	10,7	~
Sammler 7	1,86	1,83	67,92	71,61	327,0	450	1,5	1,5	1,80	150,9	47,4	V



10-2 Nachweis der Entwässerungsschicht

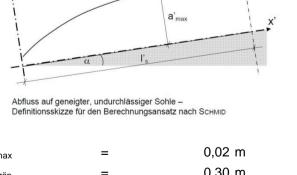
Nachweis der maximalen Aufstauhöhe gemäß [Ramke, 91; Ramke, 98; GDA E-2-20] (Anströmwege zu den Sammlern wurden in den Plänen GP-LP-1-07.1 und GP-LP-1-07.2 gemessen)

Nachweis 1 - Böschung

Sickerwasserspende	q_s	=	10 mm/d
		=	1,16E-07 m/s
Durchlässigkeitsbeiwert	k_{f}	=	1,00E-03 m/s
maximale Zulaufstrecke zum Fassungssyste	m l's	=	67,70 m
minimale Neigung	J	=	40,00 %
minimale Neigung 1 : n mit	n	=	2,50
Böschungswinkel	α	=	21,80 °
Parameterkonstellation nach SCHMID, 1993	Δ	=	-1,595E-01
mit	Δ	<	0
maßgebender Bemessungsfall:	Fall C		
Aufstauhöhe im Fall A	a' _{max, Fall A}	=	nicht maßgebend
Aufstauhöhe im Fall B	a' _{max, Fall B}	=	nicht maßgebend
Aufstauhöhe im Fall C	a' _{max, Fall C}	=	0,02 m

Aufstauhöhe im Fall C gemäß GDA E2-20:

Fall B : $\Delta = 4 \cdot (q_s / k_x) - tan^2 \alpha = 0$:


$$a'_{max} = \sqrt{\frac{q_s}{k_x}} \cdot l'_s \cdot \frac{1}{e} \quad (e = \text{Euler'sche Zahl})$$

Fall C : $\Delta = 4 \cdot \left(q_s \, / \, k_x \, \right) - tan^2 \, \alpha < 0$:

$$\textbf{a'}_{max} = \sqrt{\frac{q_s}{k_x}} \cdot \textbf{I'}_s \cdot \left| \frac{-2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha - \sqrt{-\Delta}\right)}{-2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha + \sqrt{-\Delta}\right)} \cdot \frac{\tan \alpha + \sqrt{-\Delta}}{\tan \alpha - \sqrt{-\Delta}} \right|^{\frac{\tan \alpha}{2\sqrt{-\Delta}}}$$

 $\begin{array}{ll} a'_{max} = maximaler \ Aufstau \ \ddot{u}ber \ der \ Sohle \ \ (normal \ zur \ Sohle) \\ x' = Koordinate, \ hangparallel \\ l'_{s} = (maximale) \ Zulaufstrecke \ zum \ Drän \ (hangparallel) \end{array}$ [m] [m]

 a'_{max} maximal vorhandene Aufstauhöhe mind. Mächtigkeit Flächenfilter $d_{\text{Drän}}$ 0,30 m a'_{max} $d_{\text{Dr}\underline{a}n}$

Nachweis erbracht!

 $\partial a'/\partial x' = 0$

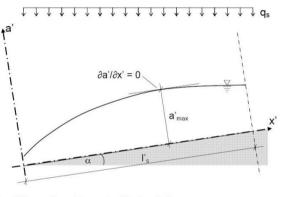
Seite 10 von 46

Nachweis 2 - Fläche

Sickerwasserspende	q_s	=	10 mm/d
		=	1,16E-07 m/s
Durchlässigkeitsbeiwert	$k_{\rm f}$	=	1,00E-03 m/s
maximale Zulaufstrecke zum Fassungssysten	n l's	=	40,00 m
minimale Neigung	J	=	3,00 %
minimale Neigung 1 : n mit	n	=	33,30
Böschungswinkel	α	=	1,72 °
Parameterkonstellation nach SCHMID, 1993	Δ	=	-4,39E-04
mit	Δ	<	0
maßgebender Bemessungsfall:	Fall C		
Aufstauhöhe im Fall A	a' _{max, Fall A}	=	nicht maßgebend
Aufstauhöhe im Fall B	a' _{max, Fall B}	=	nicht maßgebend
Aufstauhöhe im Fall C gemäß GDA E2-20:	a' _{max, Fall C}	=	0,12 m

$$\begin{split} \text{Fall A}: \ \Delta &= 4 \cdot \left(q_\text{s} \, / \, k_\text{x}\right) - \tan^2 \alpha > 0 \ ; \\ a'_\text{max} &= \sqrt{\frac{q_\text{s}}{k_\text{x}}} \cdot I'_\text{s} \cdot \text{exp} \Bigg[\frac{\tan \alpha}{\sqrt{\Delta}} \cdot \Bigg(\text{arctan} \, \frac{k_\text{x} \cdot \tan^2 \alpha - 2 \cdot q_\text{s}}{k_\text{x} \cdot \tan \alpha} \cdot \sqrt{\Delta} - \text{arctan} \, \frac{\tan \alpha}{\sqrt{\Delta}} \Bigg) \Bigg] \end{split}$$

Fall B : $\Delta = 4 \cdot (q_s / k_x) - tan^2 \alpha = 0$:


$$a'_{max} = \sqrt{\frac{q_s}{k_x}} \cdot l'_s \cdot \frac{1}{e} \quad (e = \text{Euler'sche Zahl})$$

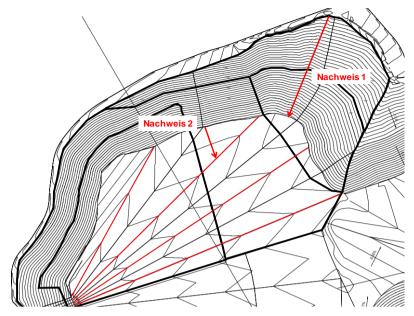
Fall C : $\Delta = 4 \cdot \left(q_s \, / \, k_x \right) - tan^2 \, \alpha < 0$:

$$\textbf{a'}_{max} = \sqrt{\frac{q_s}{k_x}} \cdot \textbf{I'}_s \cdot \left| \frac{-2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha - \sqrt{-\Delta}\right)}{-2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha + \sqrt{-\Delta}\right)} \cdot \frac{\tan \alpha + \sqrt{-\Delta}}{\tan \alpha - \sqrt{-\Delta}} \right|^{\frac{\tan \alpha}{2\sqrt{-\Delta}}}$$

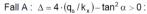
a'_{max} = maximaler Aufstau über der Sohle (normal zur Sohle)

[m] = Koordinate, hangparallel = (maximale) Zulaufstrecke zum Drän (hangparallel) [m] [m]

Abfluss auf geneigter, undurchlässiger Sohle -Definitionsskizze für den Berechnungsansatz nach SCHMID


maximal vorhandene Aufstauhöhe a'max 0,12 m mind. Mächtigkeit Flächenfilter $d_{Drän}$ 0,50 m

a'_{max} $d_{\text{Drän}}$ Nachweis erbracht! >



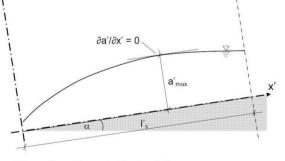
Sammler 2

Nachweis 1 - Böschung

Sickerwasserspende	q_s	=	10 mm/d
		=	1,16E-07 m/s
Durchlässigkeitsbeiwert	k_{f}	=	1,00E-03 m/s
maximale Zulaufstrecke zum Fassungssystem	ր l' _s	=	140,00 m
minimale Neigung	J	=	25,00 %
minimale Neigung 1 : n mit	n	=	4,00
Böschungswinkel	α	=	14,04 °
Parameterkonstellation nach SCHMID, 1993	Δ	=	-6,20E-02
mit	Δ	<	0
maßgebender Bemessungsfall:	Fall C		
Aufstauhöhe im Fall A	a' _{max, Fall A}	=	nicht maßgebend
Aufstauhöhe im Fall B	a' _{max, Fall B}	=	nicht maßgebend
Aufstauhöhe im Fall C	a' _{max, Fall C}	=	0,06 m
gemäß GDA E2-20:			

$$\begin{split} & \text{Fall A}: \ \Delta = 4 \cdot \left(q_s \, / \, k_x\right) - \tan^2 \alpha > 0: \\ & \text{a'}_{\text{max}} = \sqrt{\frac{q_s}{k_x}} \cdot I_s' \cdot \text{exp} \Bigg[\frac{\tan \alpha}{\sqrt{\Delta}} \cdot \Bigg(\text{arctan} \frac{k_x \cdot \tan^2 \alpha - 2 \cdot q_s}{k_x \cdot \tan \alpha \cdot \sqrt{\Delta}} - \text{arctan} \frac{\tan \alpha}{\sqrt{\Delta}} \Bigg) \Bigg] \end{split}$$

Fall B : $\Delta = 4 \cdot (q_s / k_x) - tan^2 \alpha = 0$:


$$a'_{max} = \sqrt{\frac{q_s}{k_x}} \cdot l_s' \cdot \frac{1}{e} \quad (e = \text{Euler'sche Zahl})$$

Fall C : $\Delta = 4 \cdot \left(q_s \, / \, k_x \right) - tan^2 \, \alpha < 0$:

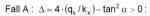
$$\textbf{a'}_{\text{max}} = \sqrt{\frac{q_s}{k_x}} \cdot \textbf{I'}_s \cdot \left| \frac{-2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha - \sqrt{-\Delta}\right)}{-2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha + \sqrt{-\Delta}\right)} \cdot \frac{\tan \alpha + \sqrt{-\Delta}}{\tan \alpha - \sqrt{-\Delta}} \right|^{\frac{\tan \alpha}{2\sqrt{-\Delta}}}$$

a'_{max} = maximaler Aufstau über der Sohle (normal zur Sohle)

[m] [m] [m] Koordinate, hangparallel
 (maximale) Zulaufstrecke zum Drän (hangparallel)

Abfluss auf geneigter, undurchlässiger Sohle -Definitionsskizze für den Berechnungsansatz nach Schmid

0,06 m maximal vorhandene Aufstauhöhe a'max mind. Mächtigkeit Flächenfilter $d_{Drän}$ 0,30 m


a'_{max} $\mathbf{d}_{\mathsf{Drän}}$ Nachweis erbracht!

Nachweis 2

Sickerwasserspende	q_s	=	10 mm/d
		=	1,16E-07 m/s
Durchlässigkeitsbeiwert	k_{f}	=	1,00E-03 m/s
maximale Zulaufstrecke zum Fassungssysten	n l's	=	38,40 m
minimale Neigung	J	=	3,00 %
minimale Neigung 1 : n mit	n	=	33,30
Böschungswinkel	α	=	1,72 °
Parameterkonstellation nach SCHMID, 1993	Δ	=	-4,39E-04
mit	Δ	<	0
maßgebender Bemessungsfall:	Fall C		
Aufstauhöhe im Fall A	a' _{max, Fall A}	=	nicht maßgebend
Aufstauhöhe im Fall B	a' _{max, Fall B}	=	nicht maßgebend
Aufstauhöhe im Fall C gemäß GDA E2-20:	a' _{max, Fall C}	=	0,12 m

$$\mathbf{a'_{max}} = \sqrt{\frac{q_s}{k_x}} \cdot \mathbf{l'_s} \cdot \exp\!\left[\frac{\tan\alpha}{\sqrt{\Delta}} \cdot \! \left(\arctan\frac{k_x \cdot \tan^2\alpha - 2 \cdot q_s}{k_x \cdot \tan\alpha \cdot \sqrt{\Delta}} - \arctan\frac{\tan\alpha}{\sqrt{\Delta}}\right)\right]$$

Fall B : $\Delta = 4 \cdot (q_s / k_x) - tan^2 \alpha = 0$:

$$a'_{max} = \sqrt{\frac{q_s}{k_x}} \cdot l'_s \cdot \frac{1}{e} \quad (e = \text{Euler'sche Zahl})$$

Fall C : $\Delta = 4 \cdot \left(q_s \, / \, k_x \right) - tan^2 \, \alpha < 0$:

$$a_{max}' = \sqrt{\frac{q_s}{k_x}} \cdot I_s' \cdot \frac{\left| -2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha - \sqrt{-\Delta} \right) \cdot \tan \alpha + \sqrt{-\Delta} \right|^{\frac{1}{2\sqrt{-\Delta}}}}{\left| -2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha + \sqrt{-\Delta} \right) \cdot \tan \alpha - \sqrt{-\Delta} \right|^{\frac{1}{2\sqrt{-\Delta}}}}$$

 $\begin{array}{ll} a'_{max} = maximaler \ Aufstau \ \ddot{u}ber \ der \ Sohle \ \ (normal \ zur \ Sohle) \\ x' = Koordinate, \ hangparallel \\ l'_{s} = (maximale) \ Zulaufstrecke \ zum \ Drän \ (hangparallel) \end{array}$

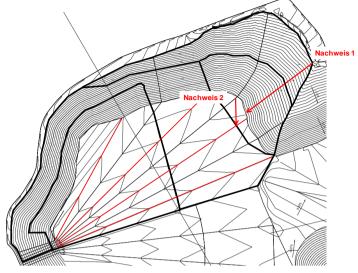
 $\partial a'/\partial x' = 0$ a'_{max}

Abfluss auf geneigter, undurchlässiger Sohle – Definitionsskizze für den Berechnungsansatz nach Schmid

maximal vorhandene Aufstauhöhe

mind. Mächtigkeit Flächenfilter

0,12 m a'max = $d_{Drän}$ 0,50 m


a'_{max} $\mathbf{d}_{\mathsf{Drän}}$ Nachweis erbracht!

[m] [m]

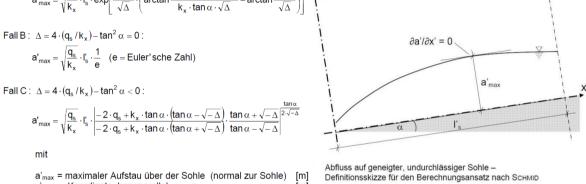
Sammler 3

Nachweis 1 - Böschung

Sickerwasserspende	q_s	=	10 mm/d
		=	1,16E-07 m/s
Durchlässigkeitsbeiwert	k_{f}	=	1,00E-03 m/s
maximale Zulaufstrecke zum Fassungssystem	l's	=	124,00 m
minimale Neigung	J	=	25,64 %
minimale Neigung 1 : n mit	n	=	3,90
Böschungswinkel	α	=	14,38 °
Parameterkonstellation nach SCHMID, 1993	Δ	=	-6,53E-02
mit	Δ	<	0
maßgebender Bemessungsfall: F	all C		
Aufstauhöhe im Fall A	a' _{max, Fall A}	=	nicht maßgebend
Aufstauhöhe im Fall B	a' _{max, Fall B}	=	nicht maßgebend
Aufstauhöhe im Fall C gemäß GDA E2-20:	a' _{max, Fall C}	=	0,06 m

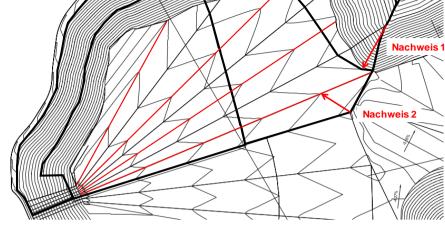
Fall A : $\Delta = 4 \cdot \left(q_s \, / \, k_x \right) - tan^2 \, \alpha > 0$:

$$\textbf{a'}_{\text{max}} = \sqrt{\frac{q_s}{k_x}} \cdot \textbf{I'}_s \cdot \text{exp} \Bigg[\frac{\tan \alpha}{\sqrt{\Delta}} \cdot \left(\text{arctan} \frac{k_x \cdot \tan^2 \alpha - 2 \cdot q_s}{k_x \cdot \tan \alpha \cdot \sqrt{\Delta}} - \text{arctan} \frac{\tan \alpha}{\sqrt{\Delta}} \right) \Bigg]$$


Fall B : $\Delta = 4 \cdot \left(q_s \, / \, k_x \right) - tan^2 \, \alpha = 0$:

 $\partial a'/\partial x' = 0$ $a'_{max} = \sqrt{\frac{q_s}{k_x}} \cdot l_s' \cdot \frac{1}{e} \quad (e = \text{Euler'sche Zahl})$ Fall C : $\Delta = 4 \cdot \left(q_s \, / \, k_x \, \right) - tan^2 \, \alpha < 0$: $a'_{max} = \sqrt{\frac{q_s}{k_x}} \cdot I'_s \cdot \left| \frac{-2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha - \sqrt{-\Delta}\right)}{-2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha + \sqrt{-\Delta}\right)} \cdot \frac{\tan \alpha + \sqrt{-\Delta}}{\tan \alpha - \sqrt{-\Delta}} \right|^{\frac{\tan \alpha}{2\sqrt{-\Delta}}}$ mit Abfluss auf geneigter, undurchlässiger Sohle – Definitionsskizze für den Berechnungsansatz nach Schmid a'_{max} = maximaler Aufstau über der Sohle (normal zur Sohle) [m] = Koordinate, hangparallel = (maximale) Zulaufstrecke zum Drän (hangparallel) [m] [m] maximal vorhandene Aufstauhöhe a'max 0,06 m mind. Mächtigkeit Flächenfilter $d_{\text{Dr} \underline{a} \underline{n}}$ 0,30 m a'_{max} d_{Dran} Nachweis erbracht!

Sickerwasserspende	q_s	=	10 mm/d
·		=	1,16E-07 m/s
Durchlässigkeitsbeiwert	k_{f}	=	1,00E-03 m/s
maximale Zulaufstrecke zum Fassungssyst	em l's	=	36,40 m
minimale Neigung	J	=	3,00 %
minimale Neigung 1 : n mit	n	=	33,30
Böschungswinkel	α	=	1,72 °
Parameterkonstellation nach SCHMID, 199	3 Δ	=	-4,39E-04
mit	Δ	<	0
maßgebender Bemessungsfall:	Fall C		
Aufstauhöhe im Fall A	a' _{max, Fall A}	=	nicht maßgebend
Aufstauhöhe im Fall B	a' _{max, Fall B}	=	nicht maßgebend
Aufstauhöhe im Fall C	a' _{max, Fall C}	=	0,11 m
gemäß GDA E2-20:	.,		
Fall A : $\Delta = 4 \cdot (q_s / k_x) - tan^2 \alpha > 0$:	$\downarrow \downarrow \downarrow \downarrow$	++++++	$\downarrow \downarrow q_s$
$\mathbf{a'_{max}} = \sqrt{\frac{\mathbf{q_s}}{\mathbf{k_x}}} \cdot \mathbf{l'_s} \cdot \exp\!\left[\frac{\tan\alpha}{\sqrt{\Delta}} \cdot \! \left(\arctan\frac{\mathbf{k_x} \cdot \tan^2\alpha - 2 \cdot \mathbf{q_s}}{\mathbf{k_x} \cdot \tan\alpha \cdot \sqrt{\Delta}} - \arctan\frac{\mathbf{k_x} \cdot \tan\alpha}{\mathbf{k_x} \cdot \tan\alpha}\right)\right] \cdot \mathbf{q_s} \cdot \mathbf{q_s}$	$\left[\cot \frac{ an lpha}{\sqrt{\Delta}} ight] = egin{matrix} lack a' \ \dot{lack} \end{aligned}$		\
Fall B : $\Delta = 4 \cdot (q_s / k_x) - tan^2 \alpha = 0$:	į	$\partial a'/\partial x' = 0$	
$a'_{max} = \sqrt{\frac{q_s}{k_x}} \cdot i'_s \cdot \frac{1}{e}$ (e = Euler'sche Zahl)	ļ	04/01 = 0	¥ = 1
""a^	ı		



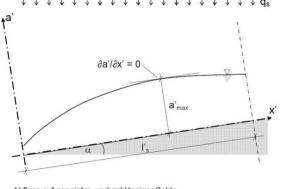
d_{Drän} > a'_{max} Nachweis erbracht!

Nachweis 1 - Böschung

q_s	=	10 mm/d
	=	1,16E-07 m/s
$k_{\rm f}$	=	1,00E-03 m/s
m l' _s	=	42,90 m
J	=	33,33 %
n	=	3,00
α	=	18,43 °
Δ	=	-1,11E-01
Δ	<	0
Fall C		
a' _{max, Fall A}	=	nicht maßgebend
a' _{max, Fall B}	=	nicht maßgebend
a' _{max, Fall C}	=	0,01 m
	$\begin{array}{ccc} & k_{\rm f} & & \\ & {\rm M} & {\rm I'_s} & & \\ & {\rm J} & & \\ & & {\rm n} & \\ & & \alpha & \\ & & \Delta & $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

gemäß GDA E2-20:

$$\begin{split} \text{Fall A}: \ \Delta &= 4 \cdot (q_s \, / \, k_x) - \tan^2 \alpha > 0 \ ; \\ a'_{\text{max}} &= \sqrt{\frac{q_s}{k_x}} \cdot I'_s \cdot \text{exp} \Bigg[\frac{\tan \alpha}{\sqrt{\Delta}} \cdot \Bigg(\text{arctan} \frac{k_x \cdot \tan^2 \alpha - 2 \cdot q_s}{k_x \cdot \tan \alpha \cdot \sqrt{\Delta}} - \text{arctan} \frac{\tan \alpha}{\sqrt{\Delta}} \Bigg) \Bigg] \end{split}$$


$$\begin{split} \text{Fall B}: \;\; \Delta = 4 \cdot \left(q_s \, / \, k_x \, \right) - \tan^2 \alpha = 0 \ : \\ a'_{max} = \sqrt{\frac{q_s}{k_x}} \cdot l'_s \cdot \frac{1}{e} \quad \text{(e = Euler'sche Zahl)} \end{split}$$

Fall C : $\Delta = 4 \cdot (q_s / k_x) - tan^2 \alpha < 0$:

$$\textbf{a'}_{\text{max}} = \sqrt{\frac{q_s}{k_x}} \cdot \textbf{I'}_s \cdot \left| \frac{-2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha - \sqrt{-\Delta}\right)}{-2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha + \sqrt{-\Delta}\right)} \cdot \frac{\tan \alpha + \sqrt{-\Delta}}{\tan \alpha - \sqrt{-\Delta}} \right|^{\frac{\tan \alpha}{2\sqrt{-\Delta}}}$$

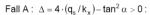
 $\begin{array}{ll} a'_{max} = maximaler \ Aufstau \ \ddot{u}ber \ der \ Sohle \ \ (normal \ zur \ Sohle) \\ x' = Koordinate, \ hangparallel \\ l'_{s} = (maximale) \ Zulaufstrecke \ zum \ Drän \ (hangparallel) \end{array}$

maximal vorhandene Aufstauhöhe mind. Mächtigkeit Flächenfilter

Abfluss auf geneigter, undurchlässiger Sohle – Definitionsskizze für den Berechnungsansatz nach Schmid

0,01 m a'max $d_{\text{Dr} \underline{a} \underline{n}}$ 0,30 m

a'_{max} d_{Dran} Nachweis erbracht!


[m] [m]

Nachweis 2 - Fläche

Sickerwasserspende	q_s	=	10 mm/d
		=	1,16E-07 m/s
Durchlässigkeitsbeiwert	k_f	=	1,00E-03 m/s
maximale Zulaufstrecke zum Fassungssyster	m l' _s	=	32,00 m
minimale Neigung	J	=	3,00 %
minimale Neigung 1 : n mit	n	=	33,30
Böschungswinkel	α	=	1,72 °
Parameterkonstellation nach SCHMID, 1993	Δ	=	-4,39E-04
mit	Δ	<	0
maßgebender Bemessungsfall:	Fall C		
Aufstauhöhe im Fall A	a' _{max, Fall A}	=	nicht maßgebend
Aufstauhöhe im Fall B	a' _{max, Fall B}	=	nicht maßgebend
Aufstauhöhe im Fall C gemäß GDA E2-20:	a' _{max, Fall C}	=	0,10 m

$$\textbf{a'}_{\text{max}} = \sqrt{\frac{q_s}{k_x}} \cdot \textbf{I'}_s \cdot \text{exp} \Bigg[\frac{\tan \alpha}{\sqrt{\Delta}} \cdot \Bigg(\text{arctan} \frac{k_x \cdot \tan^2 \alpha - 2 \cdot q_s}{k_x \cdot \tan \alpha \cdot \sqrt{\Delta}} - \text{arctan} \frac{\tan \alpha}{\sqrt{\Delta}} \Bigg) \Bigg]$$

Fall B : $\Delta = 4 \cdot (q_s / k_x) - tan^2 \alpha = 0$:

$$a'_{max} = \sqrt{\frac{q_s}{k_x}} \cdot l_s' \cdot \frac{1}{e} \quad (e = \text{Euler'sche Zahl})$$

Fall C : $\Delta = 4 \cdot \left(q_s \, / \, k_x \right) - tan^2 \, \alpha < 0$:

$$a'_{max} = \sqrt{\frac{q_s}{k_x}} \cdot I'_s \cdot \left| \frac{-2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha - \sqrt{-\Delta}\right)}{-2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha + \sqrt{-\Delta}\right)} \cdot \frac{\tan \alpha + \sqrt{-\Delta}}{\tan \alpha - \sqrt{-\Delta}} \right|^{\frac{\tan \alpha}{2\sqrt{-\Delta}}}$$

 $\begin{array}{ll} a'_{max} = maximaler \ Aufstau \ \ddot{u}ber \ der \ Sohle \ \ (normal \ zur \ Sohle) \\ x' = Koordinate, \ hangparallel \\ l'_{s} = (maximale) \ Zulaufstrecke \ zum \ Drän \ (hangparallel) \end{array}$

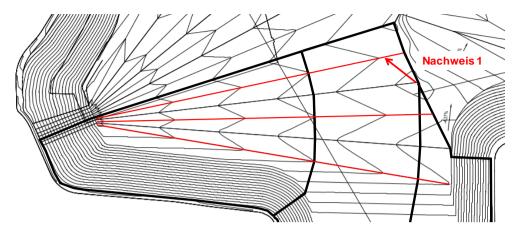
 $\partial a'/\partial x' = 0$

Abfluss auf geneigter, undurchlässiger Sohle – Definitionsskizze für den Berechnungsansatz nach Schmid

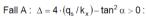
maximal vorhandene Aufstauhöhe

mind. Mächtigkeit Flächenfilter

0,10 m a'max = $d_{Drän}$ 0,50 m


a'_{max} $\mathbf{d}_{\mathsf{Drän}}$ Nachweis erbracht!

[m] [m] [m]



Sammler 5

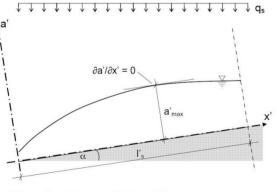
Nachweis 1 - Fläche

Sickerwasserspende	q_s	=	10 mm/d
		=	1,16E-07 m/s
Durchlässigkeitsbeiwert	k_{f}	=	1,00E-03 m/s
maximale Zulaufstrecke zum Fassungssystem	ո l' _s	=	37,80 m
minimale Neigung	J	=	3,00 %
minimale Neigung 1 : n mit	n	=	33,30
Böschungswinkel	α	=	1,72 °
Parameterkonstellation nach SCHMID, 1993	Δ	=	-4,39E-04
mit	Δ	<	0
maßgebender Bemessungsfall:	Fall C		
Aufstauhöhe im Fall A	a' _{max, Fall A}	=	nicht maßgebend
Aufstauhöhe im Fall B	a' _{max, Fall B}	=	nicht maßgebend
Aufstauhöhe im Fall C gemäß GDA E2-20:	a' _{max, Fall C}	=	0,12 m

$$\mathbf{a'_{max}} = \sqrt{\frac{q_s}{k_x}} \cdot \mathbf{i'_s} \cdot exp \Bigg[\frac{tan\,\alpha}{\sqrt{\Delta}} \cdot \left(arctan \frac{k_x \cdot tan^2\,\alpha - 2 \cdot q_s}{k_x \cdot tan\,\alpha \cdot \sqrt{\Delta}} - arctan \frac{tan\,\alpha}{\sqrt{\Delta}} \right) \Bigg]$$

Fall B : $\Delta = 4 \cdot (q_s / k_x) - tan^2 \alpha = 0$:

$$a'_{max} = \sqrt{\frac{q_s}{k_x}} \cdot l'_s \cdot \frac{1}{e} \quad (e = \text{Euler'sche Zahl})$$


Fall C : $\Delta = 4 \cdot \left(q_s \, / \, k_x \right) - tan^2 \, \alpha < 0$:

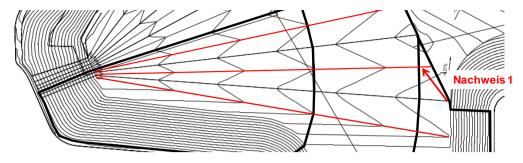
$$\textbf{a'}_{max} = \sqrt{\frac{q_s}{k_x}} \cdot \textbf{I'}_s \cdot \left| \frac{-2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha - \sqrt{-\Delta}\right)}{-2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha + \sqrt{-\Delta}\right)} \cdot \frac{\tan \alpha + \sqrt{-\Delta}}{\tan \alpha - \sqrt{-\Delta}} \right|^{\frac{\tan \alpha}{2\sqrt{-\Delta}}}$$

mit

a'max = maximaler Aufstau über der Sohle (normal zur Sohle)

 Koordinate, hangparallel
 (maximale) Zulaufstrecke zum Drän (hangparallel) [m] [m]

Abfluss auf geneigter, undurchlässiger Sohle -Definitionsskizze für den Berechnungsansatz nach SCHMID


maximal vorhandene Aufstauhöhe 0,12 m a'max $\mathsf{d}_{\mathtt{Drän}}$ mind. Mächtigkeit Flächenfilter 0,50 m

a'_{max} Nachweis erbracht! d_{Dran}

Sammler 6

Nachweis 1 - Fläche

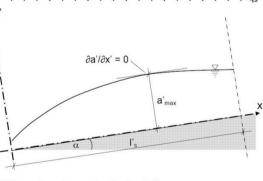
Sickerwasserspende	q_s	=	10 mm/d
		=	1,16E-07 m/s
Durchlässigkeitsbeiwert	\mathbf{k}_{f}	=	1,00E-03 m/s
maximale Zulaufstrecke zum Fassungssyste	em l's	=	41,20 m
minimale Neigung	J	=	3,00 %
minimale Neigung 1 : n mit	n	=	33,30
Böschungswinkel	α	=	1,72 °
Parameterkonstellation nach SCHMID, 1993	Δ	=	-4,39E-04
mit	Δ	<	0
maßgebender Bemessungsfall:	Fall C		
Aufstauhöhe im Fall A	a' _{max, Fall A}	=	nicht maßgebend
Aufstauhöhe im Fall B	a' _{max, Fall B}	=	nicht maßgebend
Aufstauhöhe im Fall C	a' _{max, Fall C}	=	0,13 m

Fall A : $\Delta = 4 \cdot (q_s / k_x) - tan^2 \alpha > 0$:

gemäß GDA E2-20:

$$\textbf{a'}_{\text{max}} = \sqrt{\frac{q_s}{k_x}} \cdot \textbf{I'}_s \cdot \text{exp} \Bigg[\frac{tan\,\alpha}{\sqrt{\Delta}} \cdot \Bigg(\text{arctan} \frac{k_x \cdot tan^2\,\alpha - 2 \cdot q_s}{k_x \cdot tan\,\alpha \cdot \sqrt{\Delta}} - \text{arctan} \frac{tan\,\alpha}{\sqrt{\Delta}} \Bigg) \Bigg]$$

Fall B : $\Delta = 4 \cdot (q_s / k_x) - tan^2 \alpha = 0$:


$$a'_{max} = \sqrt{\frac{q_s}{k_x}} \cdot l_s' \cdot \frac{1}{e} \quad (e = \text{Euler'sche Zahl})$$

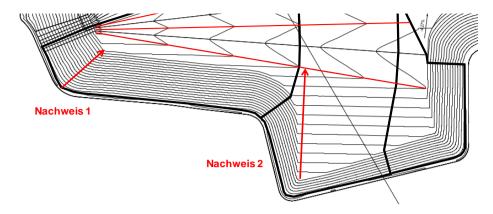
Fall C : $\Delta = 4 \cdot (q_s / k_x) - tan^2 \alpha < 0$:

mind. Mächtigkeit Flächenfilter

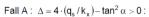
$$\textbf{a'}_{\text{max}} = \sqrt{\frac{q_s}{k_x}} \cdot \textbf{i'}_s \cdot \left| \frac{-2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha - \sqrt{-\Delta}\right)}{-2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha + \sqrt{-\Delta}\right)} \cdot \frac{\tan \alpha + \sqrt{-\Delta}}{\tan \alpha - \sqrt{-\Delta}} \right|^{\frac{\tan \alpha}{2\sqrt{-\Delta}}}$$

 $\begin{array}{ll} a'_{max} = maximaler \ Aufstau \ \ddot{u}ber \ der \ Sohle \ \ (normal \ zur \ Sohle) \\ x' & = \ Koordinate, \ hangparallel \\ l'_{s} & = \ (maximale) \ Zulaufstrecke \ zum \ Drän \ (hangparallel) \end{array}$ [m] [m] [m] maximal vorhandene Aufstauhöhe

Abfluss auf geneigter, undurchlässiger Sohle – Definitionsskizze für den Berechnungsansatz nach Schmid


a'_{max} 0,13 m $d_{\text{Drän}}$ 0,50 m

a'_{max} Nachweis erbracht! d_{Dran}



Nachweis 1 - Böschung

Sickerwasserspende	q_s	=	10 mm/d
·		=	1,16E-07 m/s
Durchlässigkeitsbeiwert	k_{f}	=	1,00E-03 m/s
maximale Zulaufstrecke zum Fassungssyste	m l's	=	58,20 m
minimale Neigung	J	=	33,33 %
minimale Neigung 1 : n mit	n	=	3,00
Böschungswinkel	α	=	18,43 °
Parameterkonstellation nach SCHMID, 1993	Δ	=	-1,11E-01
mit	Δ	<	0
maßgebender Bemessungsfall:	Fall C		
Aufstauhöhe im Fall A	a' _{max, Fall A}	=	nicht maßgebend
Aufstauhöhe im Fall B	a' _{max, Fall B}	=	nicht maßgebend
Aufstauhöhe im Fall C	a' _{max, Fall C}	=	0,02 m

gemäß GDA E2-20:

$$\mathbf{a'_{max}} = \sqrt{\frac{q_s}{k_x}} \cdot \mathbf{I'_s} \cdot \exp\!\left[\frac{\tan\alpha}{\sqrt{\Delta}} \cdot \!\left(\arctan\frac{k_x \cdot \tan^2\alpha - 2 \cdot q_s}{k_x \cdot \tan\alpha \cdot \sqrt{\Delta}} - \arctan\frac{\tan\alpha}{\sqrt{\Delta}}\right)\right]$$

Fall B : $\Delta = 4 \cdot (q_s / k_x) - tan^2 \alpha = 0$:

$$a'_{max} = \sqrt{\frac{q_s}{k_x}} \cdot l_s' \cdot \frac{1}{e} \quad (e = \text{Euler'sche Zahl})$$

Fall C : $\Delta = 4 \cdot \left(q_s \, / \, k_x \right) - tan^2 \, \alpha < 0$:

$$\textbf{a'}_{max} = \sqrt{\frac{q_s}{k_x}} \cdot \textbf{I'}_s \cdot \frac{\left| -2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha - \sqrt{-\Delta}\right) \cdot \tan \alpha + \sqrt{-\Delta}\right|}{-2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha + \sqrt{-\Delta}\right)} \cdot \frac{\tan \alpha + \sqrt{-\Delta}}{\tan \alpha - \sqrt{-\Delta}} \right|^{\frac{\tan \alpha}{2\sqrt{-\Delta}}}$$

 $\begin{array}{ll} a'_{max} = maximaler \ Aufstau \ \ddot{u}ber \ der \ Sohle \ \ (normal \ zur \ Sohle) \\ x' = Koordinate, \ hangparallel \\ l'_{s} = (maximale) \ Zulaufstrecke \ zum \ Drän \ (hangparallel) \end{array}$ [m]

[m] [m] maximal vorhandene Aufstauhöhe

 $\partial a'/\partial x' = 0$

Abfluss auf geneigter, undurchlässiger Sohle – Definitionsskizze für den Berechnungsansatz nach Schmid

0,02 m a'max mind. Mächtigkeit Flächenfilter $d_{\text{Drän}}$ 0,30 m

a'_{max} Nachweis erbracht! d_{Dran}

Nachweis 2 - Fläche

Sickerwasserspende	q_s	=	10 mm/d
		=	1,16E-07 m/s
Durchlässigkeitsbeiwert	k_f	=	1,00E-03 m/s
· ·		_	,
maximale Zulaufstrecke zum Fassungssyste	m l's	=	119,00 m
minimale Neigung	J	=	10,00 %
minimale Neigung 1 : n mit	n	=	10,00
Böschungswinkel	α	=	5,71 °
Parameterkonstellation nach SCHMID, 1993	Δ	=	-9,54E-03
mit	Δ	<	0
maßgebender Bemessungsfall:	Fall C		
Aufstauhöhe im Fall A	a' _{max, Fall A}	=	nicht maßgebend
Aufstauhöhe im Fall B	a' _{max, Fall B}	=	nicht maßgebend
Aufstauhöhe im Fall C gemäß GDA E2-20:	a' _{max, Fall C}	=	0,13 m

$$\begin{split} \text{Fall A}: \ \Delta &= 4 \cdot \left(q_\text{s} \, / \, k_\text{x}\right) - \tan^2 \alpha > 0 \ : \\ a'_\text{max} &= \sqrt{\frac{q_\text{s}}{k_\text{x}}} \cdot l'_\text{s} \cdot \text{exp} \Bigg[\frac{\tan \alpha}{\sqrt{\Delta}} \cdot \Bigg(\arctan \frac{k_\text{x} \cdot \tan^2 \alpha - 2 \cdot q_\text{s}}{k_\text{x} \cdot \tan \alpha} \cdot \sqrt{\Delta} - \arctan \frac{\tan \alpha}{\sqrt{\Delta}} \Bigg) \Bigg] \end{split}$$

Fall B : $\Delta = 4 \cdot (q_s / k_x) - tan^2 \alpha = 0$:

$$a'_{max} = \sqrt{\frac{q_s}{k_x}} \cdot l'_s \cdot \frac{1}{e} \quad (e = \text{Euler'sche Zahl})$$

Fall C : $\Delta = 4 \cdot \left(q_s \, / \, k_x \right) - tan^2 \, \alpha < 0$:

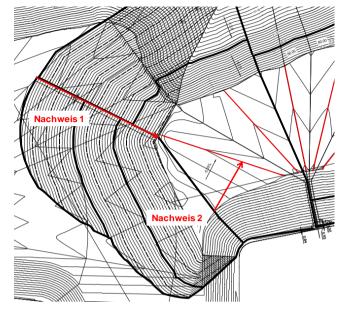
$$\textbf{a'}_{max} = \sqrt{\frac{q_s}{k_x}} \cdot \textbf{I'}_s \cdot \left| \frac{-2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha - \sqrt{-\Delta}\right)}{-2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha + \sqrt{-\Delta}\right)} \cdot \frac{\tan \alpha + \sqrt{-\Delta}}{\tan \alpha - \sqrt{-\Delta}} \right|^{\frac{\tan \alpha}{2\sqrt{-\Delta}}}$$

a'_{max} = maximaler Aufstau über der Sohle (normal zur Sohle)

= Koordinate, hangparallel = (maximale) Zulaufstrecke zum Drän (hangparallel) [m] [m] $\partial a'/\partial x' = 0$ a'max

Abfluss auf geneigter, undurchlässiger Sohle -Definitionsskizze für den Berechnungsansatz nach SCHMID

maximal vorhandene Aufstauhöhe a'max 0,13 m mind. Mächtigkeit Flächenfilter $d_{Drän}$ 0,50 m


a'_{max} $d_{\text{Drän}}$ Nachweis erbracht! >

[m]

Sammler 8

Nachweis 1 - Böschung

Sickerwasserspende	q_s	=	10 mm/d
		=	1,16E-07 m/s
Durchlässigkeitsbeiwert	k_f	=	1,00E-03 m/s
maximale Zulaufstrecke zum Fassungssystem	ı l's	=	162,00 m
minimale Neigung	J	=	33,33 %
minimale Neigung 1 : n mit	n	=	3,00
Böschungswinkel	α	=	18,43 °
Parameterkonstellation nach SCHMID, 1993	Δ	=	-1,11E-01
mit	Δ	<	0
maßgebender Bemessungsfall:	Fall C		
Aufstauhöhe im Fall A	a' _{max, Fall A}	=	nicht maßgebend
Aufstauhöhe im Fall B	a' _{max, Fall B}	=	nicht maßgebend
Aufstauhöhe im Fall C	a' _{max, Fall C}	=	0,06 m
gemäß GDA E2-20:			

$$\begin{split} \text{Fall A}: \ \Delta &= 4 \cdot (q_s \, / \, k_x \,) - \tan^2 \alpha > 0 : \\ a^{\text{t}}_{\text{max}} &= \sqrt{\frac{q_s}{k_x}} \cdot I_s^{\text{t}} \cdot \text{exp} \Bigg[\frac{\tan \alpha}{\sqrt{\Delta}} \cdot \Bigg(\text{arctan} \frac{k_x \cdot \tan^2 \alpha - 2 \cdot q_s}{k_x \cdot \tan \alpha \cdot \sqrt{\Delta}} - \text{arctan} \frac{\tan \alpha}{\sqrt{\Delta}} \Bigg) \Bigg] \end{split}$$

Fall B : $\Delta = 4 \cdot \left(q_s \, / \, k_x \right) - tan^2 \, \alpha = 0$:

$$a'_{max} = \sqrt{\frac{q_s}{k_x}} \cdot l_s' \cdot \frac{1}{e} \quad (e = \text{Euler'sche Zahl})$$

Fall C : $\Delta = 4 \cdot (q_s / k_x) - tan^2 \alpha < 0$:

$$\textbf{a'}_{max} = \sqrt{\frac{q_s}{k_x}} \cdot \textbf{I'}_s \cdot \left| \frac{-2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha - \sqrt{-\Delta}\right)}{-2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha + \sqrt{-\Delta}\right)} \cdot \frac{\tan \alpha + \sqrt{-\Delta}}{\tan \alpha - \sqrt{-\Delta}} \right|^{\frac{\tan \alpha}{2\sqrt{-\Delta}}}$$

a'_{max} = maximaler Aufstau über der Sohle (normal zur Sohle) [m] [m] [m]

Koordinate, hangparallel
 (maximale) Zulaufstrecke zum Drän (hangparallel)

Abfluss auf geneigter, undurchlässiger Sohle -Definitionsskizze für den Berechnungsansatz nach Schmid

 $\partial a'/\partial x' = 0$

a'_{max} $\mathbf{d}_{\mathsf{Drän}}$ Nachweis erbracht!

Seite 22 von 46

Nachweis 2 - Fläche

Sickerwasserspende	q_s	=	10 mm/d
		=	1,16E-07 m/s
Durchlässigkeitsbeiwert	k_{f}	=	1,00E-03 m/s
maximale Zulaufstrecke zum Fassungssysten	n l's	=	113,00 m
minimale Neigung	J	=	6,00 %
minimale Neigung 1 : n mit	n	=	16,67
Böschungswinkel	α	=	3,43 °
Parameterkonstellation nach SCHMID, 1993	Δ	=	-3,14E-03
mit	Δ	<	0
maßgebender Bemessungsfall:	Fall C		
Aufstauhöhe im Fall A	a' _{max, Fall A}	=	nicht maßgebend
Aufstauhöhe im Fall B	a' _{max, Fall B}	=	nicht maßgebend
Aufstauhöhe im Fall C gemäß GDA E2-20:	a' _{max, Fall C}	=	0,20 m

$$\begin{split} \text{Fall A}: \ \Delta &= 4 \cdot (q_s \, / \, k_x) - \tan^2 \alpha > 0 \ ; \\ a'_{max} &= \sqrt{\frac{q_s}{k_x}} \cdot l_s' \cdot \text{exp} \Bigg[\frac{\tan \alpha}{\sqrt{\Delta}} \cdot \Bigg(\text{arctan} \frac{k_x \cdot \tan^2 \alpha - 2 \cdot q_s}{k_x \cdot \tan \alpha \cdot \sqrt{\Delta}} - \text{arctan} \frac{\tan \alpha}{\sqrt{\Delta}} \Bigg) \Bigg] \end{split}$$

Fall B : $\Delta = 4 \cdot (q_s / k_x) - tan^2 \alpha = 0$:

$$a'_{max} = \sqrt{\frac{q_s}{k_x}} \cdot l_s' \cdot \frac{1}{e} \quad (e = \text{Euler'sche Zahl})$$

Fall C : $\Delta = 4 \cdot (q_s / k_x) - tan^2 \alpha < 0$:

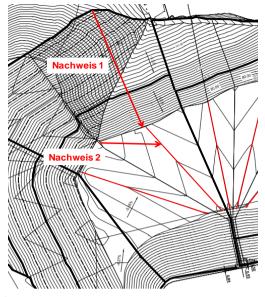
$$a_{max}' = \sqrt{\frac{q_s}{k_x}} \cdot I_s' \cdot \frac{\left| -2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha - \sqrt{-\Delta} \right) \cdot \tan \alpha + \sqrt{-\Delta} \right|^{2\sqrt{-\Delta}}}{\left| -2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha + \sqrt{-\Delta} \right) \cdot \tan \alpha - \sqrt{-\Delta} \right|^{2\sqrt{-\Delta}}}$$

a'_{max} = maximaler Aufstau über der Sohle (normal zur Sohle)

[m] [m] [m] = Koordinate, hangparallel = (maximale) Zulaufstrecke zum Drän (hangparallel)

 $\partial a'/\partial x' = 0$ a'max

Abfluss auf geneigter, undurchlässiger Sohle -Definitionsskizze für den Berechnungsansatz nach SCHMID


maximal vorhandene Aufstauhöhe a'_{max} 0,20 m mind. Mächtigkeit Flächenfilter $d_{Drän}$ 0,50 m

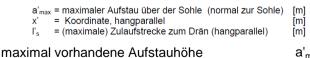
a'_{max} $d_{\text{Drän}}$ Nachweis erbracht!

Sammler 9

Nachweis 1 - Böschung

Sickerwasserspende	q_s	=	10 mm/d
		=	1,16E-07 m/s
Durchlässigkeitsbeiwert	k_f	=	1,00E-03 m/s
maximale Zulaufstrecke zum Fassungssystem	l's	=	153,00 m
minimale Neigung	J	=	33,33 %
minimale Neigung 1 : n mit	n	=	3,00
Böschungswinkel	α	=	18,43 °
Parameterkonstellation nach SCHMID, 1993	Δ	=	-1,11E-01
mit	Δ	<	0
maßgebender Bemessungsfall: F	all C		
Aufstauhöhe im Fall A	a' _{max, Fall A}	=	nicht maßgebend
Aufstauhöhe im Fall B	a' _{max, Fall B}	=	nicht maßgebend
Aufstauhöhe im Fall C	a' _{max, Fall C}	=	0,05 m
gemäß GDA E2-20:			

$$\begin{split} \text{Fall A}: \ \Delta &= 4 \cdot (q_{_S} / k_{_X}) - \tan^2 \alpha > 0: \\ a^{_{}}_{\text{max}} &= \sqrt{\frac{q_{_S}}{k_{_X}}} \cdot l_{_S}^{'} \cdot \text{exp} \Bigg[\frac{\tan \alpha}{\sqrt{\Delta}} \cdot \Bigg(\text{arctan} \frac{k_{_X} \cdot \tan^2 \alpha - 2 \cdot q_{_S}}{k_{_X} \cdot \tan \alpha \cdot \sqrt{\Delta}} - \text{arctan} \frac{\tan \alpha}{\sqrt{\Delta}} \Bigg) \Bigg] \end{split}$$


Fall B : $\Delta = 4 \cdot (q_s / k_x) - tan^2 \alpha = 0$:

$$a'_{max} = \sqrt{\frac{q_s}{k_x}} \cdot l_s' \cdot \frac{1}{e} \quad (e = \text{Euler'sche Zahl})$$

Fall C : $\Delta = 4 \cdot (q_s / k_x) - tan^2 \alpha < 0$:

mind. Mächtigkeit Flächenfilter

$$a_{max}' = \sqrt{\frac{q_s}{k_x}} \cdot I_s' \cdot \left| \frac{-2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha - \sqrt{-\Delta}\right)}{-2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha + \sqrt{-\Delta}\right)} \cdot \frac{\tan \alpha + \sqrt{-\Delta}}{\tan \alpha - \sqrt{-\Delta}} \right|^{\frac{\tan \alpha}{2\sqrt{-\Delta}}}$$

Definitionsskizze für den Berechnungsansatz nach Schmid

Abfluss auf geneigter, undurchlässiger Sohle -

 $\partial a'/\partial x' = 0$

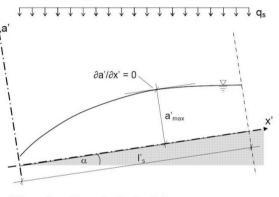
a'_{max} $\mathbf{d}_{\mathsf{Drän}}$ Nachweis erbracht!

Nachweis 2 - Fläche

Sickerwasserspende	q_s	=	10 mm/d
·		=	1,16E-07 m/s
Durchlässigkeitsbeiwert	$k_{\rm f}$	=	1,00E-03 m/s
maximale Zulaufstrecke zum Fassungssystem	ı l' _s	=	65,00 m
minimale Neigung	J	=	3,00 %
minimale Neigung 1 : n mit	n	=	33,30
Böschungswinkel	α	=	1,72 °
Parameterkonstellation nach SCHMID, 1993	Δ	=	-4,39E-04
mit	Δ	<	0
maßgebender Bemessungsfall:	Fall C		
Aufstauhöhe im Fall A	a' _{max, Fall A}	=	nicht maßgebend
Aufstauhöhe im Fall B	a' _{max, Fall B}	=	nicht maßgebend
Aufstauhöhe im Fall C gemäß GDA E2-20:	a' _{max, Fall C}	=	0,20 m

$$\begin{split} \text{Fall A}: \ \Delta &= 4 \cdot \left(q_\text{s} \, / \, k_\text{x} \right) - \tan^2 \alpha > 0 \ ; \\ \text{a'}_{\text{max}} &= \sqrt{\frac{q_\text{s}}{k_\text{x}}} \cdot I_\text{s}' \cdot \text{exp} \Bigg[\frac{\tan \alpha}{\sqrt{\Delta}} \cdot \Bigg(\text{arctan} \frac{k_\text{x} \cdot \tan^2 \alpha - 2 \cdot q_\text{s}}{k_\text{x} \cdot \tan \alpha \cdot \sqrt{\Delta}} - \text{arctan} \frac{\tan \alpha}{\sqrt{\Delta}} \Bigg) \Bigg] \end{split}$$

Fall B : $\Delta = 4 \cdot (q_s / k_x) - tan^2 \alpha = 0$:


$$a'_{max} = \sqrt{\frac{q_s}{k_x}} \cdot l_s' \cdot \frac{1}{e} \quad (e = \text{Euler'sche Zahl})$$

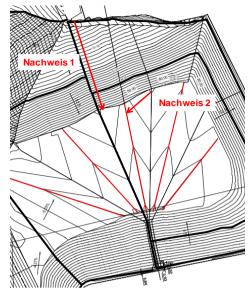
Fall C : $\Delta = 4 \cdot (q_s / k_x) - tan^2 \alpha < 0$:

$$a_{max}' = \sqrt{\frac{q_s}{k_x}} \cdot I_s' \cdot \frac{\left| -2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha - \sqrt{-\Delta} \right) \cdot \tan \alpha + \sqrt{-\Delta} \right|^{2\sqrt{-\Delta}}}{\left| -2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha + \sqrt{-\Delta} \right) \cdot \tan \alpha - \sqrt{-\Delta} \right|^{2\sqrt{-\Delta}}}$$

a'_{max} = maximaler Aufstau über der Sohle (normal zur Sohle)

[m] [m] [m] = Koordinate, hangparallel = (maximale) Zulaufstrecke zum Drän (hangparallel)

Abfluss auf geneigter, undurchlässiger Sohle -Definitionsskizze für den Berechnungsansatz nach SCHMID


maximal vorhandene Aufstauhöhe a'_{max} 0,20 m mind. Mächtigkeit Flächenfilter $d_{Drän}$ 0,50 m

a'_{max} $d_{\text{Drän}}$ Nachweis erbracht!

Sammler 10

Nachweis 1 - Böschung

Sickerwasserspende	q_s	=	10 mm/d
·		=	1,16E-07 m/s
Durchlässigkeitsbeiwert	k_{f}	=	1,00E-03 m/s
maximale Zulaufstrecke zum Fassungssystem	l' _s	=	112,50 m
minimale Neigung	J	=	27,03 %
minimale Neigung 1 : n mit	n	=	3,70
Böschungswinkel	α	=	15,12 °
Parameterkonstellation nach SCHMID, 1993	Δ	=	-7,26E-02
mit	Δ	<	0
maßgebender Bemessungsfall: Fa	all C		
Aufstauhöhe im Fall A	a' _{max, Fall A}	=	nicht maßgebend
Aufstauhöhe im Fall B	a' _{max, Fall B}	=	nicht maßgebend
Aufstauhöhe im Fall C gemäß GDA E2-20:	a' _{max, Fall C}	=	0,05 m

$$\begin{split} \text{Fall A}: \ \Delta &= 4 \cdot (q_{_S} \, / \, k_{_X}) - \tan^2 \alpha > 0 : \\ a^{_I}_{\text{max}} &= \sqrt{\frac{q_{_S}}{k_{_X}}} \cdot I^{_I}_{_S} \cdot \text{exp} \Bigg[\frac{\tan \alpha}{\sqrt{\Delta}} \cdot \Bigg(\text{arctan} \frac{k_{_X} \cdot \tan^2 \alpha - 2 \cdot q_{_S}}{k_{_X} \cdot \tan \alpha \cdot \sqrt{\Delta}} - \text{arctan} \frac{\tan \alpha}{\sqrt{\Delta}} \Bigg) \Bigg] \end{split}$$

Fall B : $\Delta = 4 \cdot (q_s / k_x) - tan^2 \alpha = 0$:

$$a'_{max} = \sqrt{\frac{q_s}{k_x}} \cdot l_s' \cdot \frac{1}{e} \quad (e = \text{Euler'sche Zahl})$$

maximal vorhandene Aufstauhöhe

Fall C : $\Delta = 4 \cdot (q_s / k_x) - tan^2 \alpha < 0$:

$$a_{max}' = \sqrt{\frac{q_s}{k_x}} \cdot I_s' \cdot \frac{\left| -2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha - \sqrt{-\Delta} \right) \cdot \tan \alpha + \sqrt{-\Delta} \right|^{\frac{1}{2\sqrt{-\Delta}}}}{\left| -2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha + \sqrt{-\Delta} \right) \cdot \tan \alpha - \sqrt{-\Delta} \right|^{\frac{1}{2\sqrt{-\Delta}}}}$$

a'_{max} = maximaler Aufstau über der Sohle (normal zur Sohle)

 Koordinate, hangparallel
 (maximale) Zulaufstrecke zum Drän (hangparallel) [m] [m]

 $\partial a'/\partial x' = 0$

mind. Mächtigkeit Flächenfilter a'_{max} $\mathbf{d}_{\mathsf{Drän}}$ Nachweis erbracht!

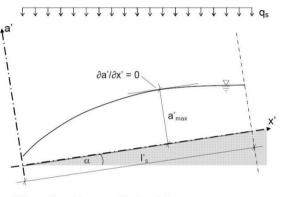
Nachweis 2 - Fläche

Sickerwasserspende	q_s	=	10 mm/d
		=	1,16E-07 m/s
Durchlässigkeitsbeiwert	k_f	=	1,00E-03 m/s
maximale Zulaufstrecke zum Fassungssystei	m l's	=	40,00 m
minimale Neigung	J	=	3,00 %
minimale Neigung 1 : n mit	n	=	33,30
Böschungswinkel	α	=	1,72 °
Parameterkonstellation nach SCHMID, 1993	Δ	=	-4,39E-04
mit	Δ	<	0
maßgebender Bemessungsfall:	Fall C		
Aufstauhöhe im Fall A	a' _{max, Fall A}	=	nicht maßgebend
Aufstauhöhe im Fall B	a' _{max, Fall B}	=	nicht maßgebend
Aufstauhöhe im Fall C gemäß GDA E2-20:	a' _{max, Fall C}	=	0,12 m

Fall A : $\Delta = 4 \cdot \left(\textbf{q}_{_S} \, / \, \textbf{k}_{_X} \right) - tan^2 \, \alpha > 0$:

$$\mathbf{a'}_{\mathsf{max}} = \sqrt{\frac{\mathbf{q_s}}{\mathbf{k_x}}} \cdot \mathbf{l'_s} \cdot \exp\left[\frac{\tan\alpha}{\sqrt{\Delta}} \cdot \left(\arctan\frac{\mathbf{k_x} \cdot \tan^2\alpha - 2 \cdot \mathbf{q_s}}{\mathbf{k_x} \cdot \tan\alpha \cdot \sqrt{\Delta}} - \arctan\frac{\tan\alpha}{\sqrt{\Delta}}\right)\right]$$

Fall B : $\Delta = 4 \cdot (q_s / k_x) - tan^2 \alpha = 0$:


$$a'_{max} = \sqrt{\frac{q_s}{k_x}} \cdot l'_s \cdot \frac{1}{e} \quad (e = \text{Euler'sche Zahl})$$

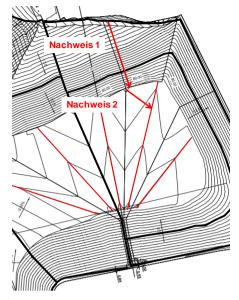
Fall C : $\Delta = 4 \cdot \left(q_s \, / \, k_x \right) - tan^2 \, \alpha < 0$:

$$\textbf{a'}_{max} = \sqrt{\frac{q_s}{k_x}} \cdot \textbf{I'}_s \cdot \left| \frac{-2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha - \sqrt{-\Delta}\right)}{-2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha + \sqrt{-\Delta}\right)} \cdot \frac{\tan \alpha + \sqrt{-\Delta}}{\tan \alpha - \sqrt{-\Delta}} \right|^{\frac{\tan \alpha}{2\sqrt{-\Delta}}}$$

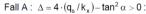
a'_{max} = maximaler Aufstau über der Sohle (normal zur Sohle)

[m] = Koordinate, hangparallel = (maximale) Zulaufstrecke zum Drän (hangparallel) [m] [m]

Abfluss auf geneigter, undurchlässiger Sohle -Definitionsskizze für den Berechnungsansatz nach SCHMID


maximal vorhandene Aufstauhöhe a'_{max} 0,12 m mind. Mächtigkeit Flächenfilter $d_{Drän}$ 0,50 m

a'_{max} $d_{\text{Drän}}$ Nachweis erbracht! >



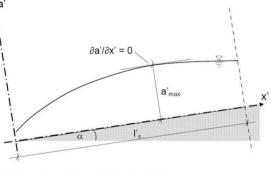
Sammler 11

Nachweis 1 - Böschung

Sickerwasserspende	q_s	=	10 mm/d
		=	1,16E-07 m/s
Durchlässigkeitsbeiwert	k_{f}	=	1,00E-03 m/s
maximale Zulaufstrecke zum Fassungssystem	۱ ا' _s	=	86,20 m
minimale Neigung	J	=	40,00 %
minimale Neigung 1 : n mit	n	=	2,50
Böschungswinkel	α	=	21,80 °
Parameterkonstellation nach SCHMID, 1993	Δ	=	-1,60E-01
mit	Δ	<	0
maßgebender Bemessungsfall:	Fall C		
Aufstauhöhe im Fall A	a' _{max, Fall A}	=	nicht maßgebend
Aufstauhöhe im Fall B	a' _{max, Fall B}	=	nicht maßgebend
Aufstauhöhe im Fall C gemäß GDA E2-20:	a' _{max, Fall C}	=	0,02 m

$$\begin{split} \text{Fall A}: \ \Delta &= 4 \cdot (\textbf{q}_{s} \, / \, \textbf{k}_{x}) - \tan^{2} \alpha > 0 : \\ \textbf{a'}_{\text{max}} &= \sqrt{\frac{\textbf{q}_{s}}{\textbf{k}_{x}}} \cdot \textbf{I}'_{s} \cdot \text{exp} \Bigg[\frac{\tan \alpha}{\sqrt{\Delta}} \cdot \Bigg(\text{arctan} \frac{\textbf{k}_{x} \cdot \tan^{2} \alpha - 2 \cdot \textbf{q}_{s}}{\textbf{k}_{x} \cdot \tan \alpha \cdot \sqrt{\Delta}} - \text{arctan} \frac{\tan \alpha}{\sqrt{\Delta}} \Bigg) \Bigg] \end{split}$$

Fall B : $\Delta = 4 \cdot (q_s / k_x) - tan^2 \alpha = 0$:


$$a'_{max} = \sqrt{\frac{q_s}{k_x}} \cdot l_s' \cdot \frac{1}{e} \quad (e = \text{Euler'sche Zahl})$$

Fall C : $\Delta = 4 \cdot (q_s / k_x) - tan^2 \alpha < 0$:

$$\textbf{a'}_{\text{max}} = \sqrt{\frac{q_s}{k_x}} \cdot \textbf{I'}_s \cdot \left| \frac{-2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha - \sqrt{-\Delta}\right)}{-2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha + \sqrt{-\Delta}\right)} \cdot \frac{\tan \alpha + \sqrt{-\Delta}}{\tan \alpha - \sqrt{-\Delta}} \right|^{\frac{\tan \alpha}{2\sqrt{-\Delta}}}$$

a'_{max} = maximaler Aufstau über der Sohle (normal zur Sohle)

[m] [m] [m] Koordinate, hangparallel
 (maximale) Zulaufstrecke zum Drän (hangparallel)

Abfluss auf geneigter, undurchlässiger Sohle -Definitionsskizze für den Berechnungsansatz nach Schmid

0,02 m maximal vorhandene Aufstauhöhe a'max $d_{D\underline{r}\underline{a}\underline{n}}$ mind. Mächtigkeit Flächenfilter 0,30 m

a'_{max} $\mathbf{d}_{\mathsf{Drän}}$ Nachweis erbracht!

Nachweis 2 - Fläche

Sickerwasserspende	q_s	=	10 mm/d 1,16E-07 m/s
			1,102 07 11//0
Durchlässigkeitsbeiwert	k_{f}	=	1,00E-03 m/s
maximale Zulaufstrecke zum Fassungssystem	ı l's	=	40,00 m
minimale Neigung	J	=	3,00 %
minimale Neigung 1 : n mit	n	=	33,30
Böschungswinkel	α	=	1,72 °
Parameterkonstellation nach SCHMID, 1993	Δ	=	-4,39E-04
mit	Δ	<	0
maßgebender Bemessungsfall:	Fall C		
Aufstauhöhe im Fall A	a' _{max, Fall A}	=	nicht maßgebend
Aufstauhöhe im Fall B	a' _{max, Fall B}	=	nicht maßgebend
Aufstauhöhe im Fall C gemäß GDA E2-20:	a' _{max, Fall C}	=	0,12 m

a'max

 $\partial a'/\partial x' = 0$

Fall A : $\Delta = 4 \cdot \left(\textbf{q}_{_S} \, / \, \textbf{k}_{_X} \right) - tan^2 \, \alpha > 0$:

$$\mathbf{a'}_{\text{max}} = \sqrt{\frac{q_s}{k_x}} \cdot \mathbf{I'}_{\text{s}} \cdot \text{exp} \left[\frac{\tan \alpha}{\sqrt{\Delta}} \cdot \left(\arctan \frac{k_x \cdot \tan^2 \alpha - 2 \cdot q_s}{k_x \cdot \tan \alpha \cdot \sqrt{\Delta}} - \arctan \frac{\tan \alpha}{\sqrt{\Delta}} \right) \right]$$

Fall B : $\Delta = 4 \cdot (q_s / k_x) - tan^2 \alpha = 0$:

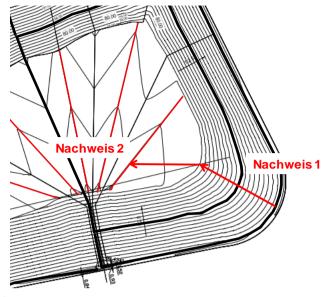
$$a'_{max} = \sqrt{\frac{q_s}{k_x}} \cdot l'_s \cdot \frac{1}{e}$$
 (e = Euler'sche Zahl)

Fall C : $\Delta = 4 \cdot (q_s / k_x) - tan^2 \alpha < 0$:

$$\textbf{a'}_{\text{max}} = \sqrt{\frac{q_s}{k_x}} \cdot \textbf{I'}_s \cdot \left| \frac{-2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha - \sqrt{-\Delta}\right)}{-2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha + \sqrt{-\Delta}\right)} \cdot \frac{\tan \alpha + \sqrt{-\Delta}}{\tan \alpha - \sqrt{-\Delta}} \right|^{\frac{\tan \alpha}{2\sqrt{-\Delta}}}$$

a'_{max} = maximaler Aufstau über der Sohle (normal zur Sohle)

Abfluss auf geneigter, undurchlässiger Sohle -[m] [m] [m] Definitionsskizze für den Berechnungsansatz nach SCHMID = Koordinate, hangparallel = (maximale) Zulaufstrecke zum Drän (hangparallel)


maximal vorhandene Aufstauhöhe a'_{max} 0,12 m mind. Mächtigkeit Flächenfilter $d_{Drän}$ 0,50 m

a'_{max} $d_{\text{Drän}}$ Nachweis erbracht!

Sammler 12

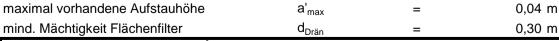
Nachweis 1 - Böschung

Sickerwasserspende	q_s	=	10 mm/d
		=	1,16E-07 m/s
Durchlässigkeitsbeiwert	k_f	=	1,00E-03 m/s
maximale Zulaufstrecke zum Fassungssystem	l's	=	76,00 m
minimale Neigung	J	=	24,39 %
minimale Neigung 1 : n mit	n	=	4,10
Böschungswinkel	α	=	13,71 °
Parameterkonstellation nach SCHMID, 1993	Δ	=	-5,90E-02
mit	Δ	<	0
maßgebender Bemessungsfall: F	all C		
Aufstauhöhe im Fall A	a' _{max, Fall A}	=	nicht maßgebend
Aufstauhöhe im Fall B	a' _{max, Fall B}	=	nicht maßgebend
Aufstauhöhe im Fall C	a' _{max, Fall C}	=	0,04 m
gemäß GDA E2-20:			

Fall B : $\Delta = 4 \cdot (q_s / k_x) - tan^2 \alpha = 0$:

$$a'_{max} = \sqrt{\frac{q_s}{k_x}} \cdot l'_s \cdot \frac{1}{e} \quad (e = \text{Euler'sche Zahl})$$

Fall C : $\Delta = 4 \cdot \left(\textbf{q}_{\text{s}} \, / \, \textbf{k}_{\text{x}} \, \right) - tan^2 \, \alpha < 0$:


$$\textbf{a'}_{\text{max}} = \sqrt{\frac{q_s}{k_x}} \cdot \textbf{I'}_s \cdot \left| \frac{-2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha - \sqrt{-\Delta}\right)}{-2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha + \sqrt{-\Delta}\right)} \cdot \frac{\tan \alpha + \sqrt{-\Delta}}{\tan \alpha - \sqrt{-\Delta}} \right|^{\frac{\tan \alpha}{2\sqrt{-\Delta}}}$$

a'_{max} = maximaler Aufstau über der Sohle (normal zur Sohle)

[m] [m] [m] Koordinate, hangparallel
 (maximale) Zulaufstrecke zum Drän (hangparallel)

 $\partial a'/\partial x' = 0$

Nachweis 2 - Fläche

Sickerwasserspende	q_s	=	10 mm/d
		=	1,16E-07 m/s
Durchlässigkeitsbeiwert	$k_{\rm f}$	=	1,00E-03 m/s
maximale Zulaufstrecke zum Fassungssystem		=	56,00 m
minimale Neigung	J	=	3,00 %
minimale Neigung 1 : n mit	n	=	33,30
Böschungswinkel	α	=	1,72 °
Parameterkonstellation nach SCHMID, 1993	Δ	=	-4,39E-04
mit	Δ	<	0
maßgebender Bemessungsfall: F	all C		
Aufstauhöhe im Fall A	a' _{max, Fall A}	=	nicht maßgebend
Aufstauhöhe im Fall B	a' _{max, Fall B}	=	nicht maßgebend
Aufstauhöhe im Fall C gemäß GDA E2-20:	a' _{max, Fall C}	=	0,17 m

Fall A : $\Delta = 4 \cdot (q_s / k_x) - tan^2 \alpha > 0$:

$$\textbf{a'}_{\text{max}} = \sqrt{\frac{q_s}{k_x}} \cdot \textbf{I'}_s \cdot \text{exp} \Bigg[\frac{\tan \alpha}{\sqrt{\Delta}} \cdot \Bigg(\text{arctan} \frac{k_x \cdot \tan^2 \alpha - 2 \cdot q_s}{k_x \cdot \tan \alpha \cdot \sqrt{\Delta}} - \text{arctan} \frac{\tan \alpha}{\sqrt{\Delta}} \Bigg) \Bigg]$$

Fall B : $\Delta = 4 \cdot (q_s / k_x) - tan^2 \alpha = 0$:

$$a'_{max} = \sqrt{\frac{q_s}{k_x}} \cdot l'_s \cdot \frac{1}{e} \quad (e = \text{Euler'sche Zahl})$$

Fall C : $\Delta = 4 \cdot \left(q_s \, / \, k_x \right) - tan^2 \, \alpha < 0$:

$$a_{max}' = \sqrt{\frac{q_s}{k_x}} \cdot I_s' \cdot \frac{\left| -2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha - \sqrt{-\Delta} \right) \cdot \tan \alpha + \sqrt{-\Delta} \right|^{\frac{1}{2\sqrt{-\Delta}}}}{\left| -2 \cdot q_s + k_x \cdot \tan \alpha \cdot \left(\tan \alpha + \sqrt{-\Delta} \right) \cdot \tan \alpha - \sqrt{-\Delta} \right|^{\frac{1}{2\sqrt{-\Delta}}}}$$

Abfluss auf geneigter, undurchlässiger Sohle – Definitionsskizze für den Berechnungsansatz nach Schmid $\begin{array}{ll} a'_{max} = maximaler \ Aufstau \ \ddot{u}ber \ der \ Sohle \ \ (normal \ zur \ Sohle) \\ x' = Koordinate, \ hangparallel \\ l'_{s} = (maximale) \ Zulaufstrecke \ zum \ Drän \ (hangparallel) \end{array}$ [m] [m]

 $\partial a'/\partial x' = 0$

maximal vorhandene Aufstauhöhe

0,17 m a'max mind. Mächtigkeit Flächenfilter $d_{Drän}$ 0,50 m

a'_{max} $\mathbf{d}_{\mathsf{Drän}}$ Nachweis erbracht!

10-3 Sickerwasserspeichervolumen - Deponiebetrieb 2026

0. Annahmen:

- Die Bemessung des erforderlichen Sickerwasserspeichervolumens erfolgt nach DWA-A 117.
- Lastfall 1 (LF 1) entspricht dem Betriebsbeginn mit geringer/fehlender Abfallüberdeckung. Rechnerisch kommt es hierbei zu einem nahezu unmittelbaren Abfluss der Regenspende (ψm = 0,8).
- LF 2 entspricht dem Betriebszustand bei offener Einbaufläche. Für diesen Zustand wird nach GDA E 2-14, 3.2, mit 10 mm/d der 10-fach erhöhte Wert der durchschnittlichen Sickerwasserspende angesetzt.
- Im LF 3 ist die endgültige Verfüllhöhe erreicht, so dass auf die o. g. Erhöhung der Sickerwasserspende verzichtet und der durchschnittliche Wert von 1 mm/d angenommen wird. Für temporär abgedichtete Flächen wird dieser Wert ebenfalls angesetzt.
- Im LF 4 wird für endgültig abgedichtete oder bereits rekultivierte Flächen mit 10 % des GDA-Ansatzes (0,1 mm/d) von einer reduzierten Sickerwasserspende ausgegangen. Dies entspricht 36,5 mm/a.
- Um Sickerwasserspitzen zu vermeiden, wird die Größe offener Ablagerungsflächen begrenzt. Möglichst schnell sind temporäre oder endgültige Abdichtungen aufzubringen. Flächen, die neu in Betrieb genommen werden (LF 1), werden auf ca. 3 ha begrenzt.

		Fläche	LF 1	LF 2	LF 3	LF 4
		[ha]	Betriebsbeginn,	offene Abfallfläche	endgültig verfüllte	abgedichtete Fläche
			geringe Abfall-	mit fortgeschrittener	Abfallfläche / temp.	(rekultivierter
			überdeckung	Verfüllhöhe	abgedichtet	Endzustand)
Re	egen- / Sickerwasserspende		$\psi_m * r_{x,0,2}$	10 mm/d	1 mm/d	0,1 * 1 mm/d
DA	Beschreibung					
DA 4a	vollständig verfüllt	3,1			Х	
DA 4b	vollständig verfüllt	2,7			Х	
DA 4c	Betriebsbeginn	2,9	x (1,4 ha)	x (2,5 ha)		
DA 3.2a	Betriebsbeginn	4,3	x (1,6 ha)	x (2,7 ha)		
DA 3.2b						
DA 3.2c						
DA 5						

Die zugrunde gelegte Zeitschiene ist dem Erläuterungsbericht zu entnehmen.

1. Bemessungsgrundlagen:

Fläche des Einzugsgebietes (offene Betriebsfläche, Betriebsbeginn)	A _{E,b} =	3,00 ha
mittlerer Abflussbeiwert	$\Psi_{m,b}$ =	0,80
Trockenwetterabfluss	$Q_{T,d,aM} =$	0 l/s
oberhalbliegende, zufließende Drosselabflüsse	$Q_{Dr,V} =$	0 l/s
Vorgegebene Drosselabflussspende	$q_{Dr,k} =$	- l/(s*ha)
vorgegebene Überschreitungshäufigkeit	n =	0,2 1/a

2. Ermittlung der für die Berechnung maßgebenden undurchlässigen Fläche Au:

A A *III	Δ.	0.40 -
$A_u = A_{E,b} \Psi_{m,b}$	A _u =	2,40 ha

3. Ermittlung der Drosselabflussspenden: wasserrechtliche Erlaubnis: 425 m³/d, d.h. 4, 9 l/s

$Q_{Dr,max} = q_{Dr,k} * A_{E,k} =$	$Q_{Dr,max} =$	4,9 l/s
$q_{Dr,R,u} = (Q_{Dr} - Q_{T,d,aM} - Q_{Dr,V})/A_u =$	$q_{Dr,R,u} =$	2,0 l/(s*ha)

4. Abminderungsfaktor f_A:

Es wird keine Abminderung vorgenommen $f_A = 1$

5. Festlegung des Zuschlagsfaktors f_z:

geringes Risikomaß $f_Z = 1,1$

6. Anwendung folgender Gleichung für Berechnung des spezifischen Speichervolumens $V_{s,u}$ für ausgewählte Dauerstufen nach KOSTRA-DWD 2010R

 $V_{s,u} = (r_{D,n} - q_{Dr,R,u}) * D * f_Z * f_A * 0.06 (m^3/ha)$

Für n=0,2/a:

Dauer- stufe D	Nieder- schlagshöhe h _N	Zugeh. Regen- spende rD,n	Drosselabfluss- spende q _{Dr,R,u}	Differenz zw. r und q _{Dr,R,u}	spezifisches Speichervolumen V _{s,u}	Speicher- volumen V
min	mm	I/(s*ha)	l/(s*ha)	l/(s*ha)	m³/ha	m³
5	8	280,2	2,0	278,2	91,8	220,3
10	12,1	208,6	2,0	206,6	136,3	
15	15	170,4	2,0	168,4	166,7	400,0
20	17,2	145,4	2,0	143,4	189,2	454,2
30	20,4	113,9	2,0	111,9	221,5	
45	23,6		2,0	85,2	252,9	607,0
60	26	71,5	2,0	69,5	275,1	660,1
90	28,6		2,0	49,6	294,4	
120	30,5		2,0	39,0	308,6	·
180	33,5		2,0	27,6	327,4	
240	35,9		2,0	21,5	339,9	·
360	39,4	17	2,0	15,0	355,4	
540	43,3		2,0	10,3	365,6	
720	46,3			7,8	368,7	884,8
1080	50,9	7,1	2,0	5,1	360,6	
1440	54,5		2,0	3,7	347,7	834,5
2880	61,8		2,0	1,2	220,2	
4320	66,7	2,3	2,0	0,3	73,7	176,8

Größtwert bei D= $720 \, \text{min}$ Erf. spezifisches Volumen Vs,u = $368.7 \, \text{m}^3\text{/ha}$

7. Bestimmung der Dränspende für die in Verfüllung befindlichen / verfüllten / abgedichteten Bereiche:

Ablagerungsflächen mit fortgeschrittener Verfüllhöhe (LF 2)		A1 =	5,2 ha
Endgültig verfüllte / temp. abgedichtete	Flächen (LF 3)	A2 =	5,8 ha
Endgültig abgedichtete / rekultivierte Fla	ächen (LF 4)	A3 =	0,0 ha
Dränspende nach GDA-Empfehlung E 2	2-14:	q _S =	0,116 l/(s*ha)
- LF 2: 10-fach überhöhter (10 mm/d):		q _{S1} =	1,16 l/(s*ha)
- LF 3: 1-facher GDA-Wert		q _{S2} =	0,12 l/(s*ha)
- LF 4: 0,1-facher GDA-Wert		q _{S3} =	0,012 l/(s*ha)
Zufluss aus Dränspende	Qdr= $A_1 \times q_{s1} + A_2 \times q_{s2} + A_3 \times q_{s3}$	Qdr =	6,70 l/s

8. Bestimmung des erforderlichen Rückhaltevolumens nach folgender Gleichung:

Speichervolumen aus Dauerstufe:	Für n=0,2/a:	885 m³
Speichervolumen aus Dauerstufe zzgl.	Dränspende:	1.174 m³
		<u> </u>
Vorhandenes Speichervolumen (12 x 1	05 m³):	1.260 m³

>> der vorhandene Speicher ist ausreichend dimensioniert!

10-3 Sickerwasserspeichervolumen - Deponiebetrieb 2037

0. Annahmen:

- Die Bemessung des erforderlichen Sickerwasserspeichervolumens erfolgt nach DWA-A 117.
- Lastfall 1 (LF 1) entspricht dem Betriebsbeginn mit geringer/fehlender Abfallüberdeckung. Rechnerisch kommt es hierbei zu einem nahezu unmittelbaren Abfluss der Regenspende (ψm = 0,8).
- LF 2 entspricht dem Betriebszustand bei offener Einbaufläche. Für diesen Zustand wird nach GDA E 2-14, 3.2, mit 10 mm/d der 10-fach erhöhte Wert der durchschnittlichen Sickerwasserspende angesetzt.
- Im **LF 3** ist die endgültige Verfüllhöhe erreicht, so dass auf die o. g. Erhöhung der Sickerwasserspende verzichtet und der durchschnittliche Wert von 1 mm/d angenommen wird. Für temporär abgedichtete Flächen wird dieser Wert ebenfalls angesetzt.
- Im LF 4 wird für endgültig abgedichtete oder bereits rekultivierte Flächen mit 10 % des GDA-Ansatzes (0,1 mm/d) von einer reduzierten Sickerwasserspende ausgegangen. Dies entspricht 36,5 mm/a.
- Um Sickerwasserspitzen zu vermeiden, wird die Größe offener Ablagerungsflächen begrenzt. Möglichst schnell sind temporäre oder endgültige Abdichtungen aufzubringen. Flächen, die neu in Betrieb genommen werden (LF 1), werden auf ca. 3 ha begrenzt.

		Fläche	LF 1	LF 2	LF 3	LF 4
		[ha]	Betriebsbeginn, geringe Abfall- überdeckung	offene Abfallfläche mit fortgeschrittener Verfüllhöhe	endgültig verfüllte Abfallfläche / temp. abgedichtet	abgedichtete Fläche / rekultivierter Endzustand
F	Regen- / Sickerwasserspende		$\psi_m * r_{x,0,2}$	10 mm/d	1 mm/d	0,1 * 1 mm/d
DA	Beschreibung					
DA 4a	vollständig verfüllt, abgedichte	3,1				Х
DA 4b	vollständig verfüllt, abgedichte	2,7				х
DA 4c	vollständig verfüllt	2,9			X	
		2,8			X	
DA 3.2a	vollständig verfüllt	1,6			x (temp. Böschung zu DA 3.2b)	
DA 3.2b	in Verfüllung	2,7		Х		
DA 3.2c						
DA 5	Betriebsbeginn	3,0	x			

Die zugrunde gelegte Zeitschiene ist dem Erläuterungsbericht zu entnehmen.

1. Bemessungsgrundlagen:

Fläche des Einzugsgebietes 3,00 ha (offene Betriebsfläche, Betriebsbeginn) mittlerer Abflussbeiwert $\Psi_{m,b}$ = 0,80 0 l/s Trockenwetterabfluss $Q_{T,d,aM} =$ oberhalbliegende, zufließende Drosselabflüsse $Q_{Dr,V} =$ 0 l/s Vorgegebene Drosselabflussspende I/(s*ha) $q_{Dr,k} =$ vorgegebene Überschreitungshäufigkeit 0,2 1/a n =

2. Ermittlung der für die Berechnung maßgebenden undurchlässigen Fläche Au:

 $A_u = A_{E,b}{}^*\Psi_{m,b} \hspace{1cm} A_u = \hspace{1cm} 2,40 \hspace{1cm} ha$

3. Ermittlung der Drosselabflussspenden: wasserrechtliche Erlaubnis: 425 m³/d, d.h. 4, 9 l/s

 $\begin{aligned} Q_{Dr,max} &= q_{Dr,k} * A_{E,k} = & Q_{Dr,max} = & \textbf{4,9 l/s} \\ q_{Dr,R,u} &= (Q_{Dr} - Q_{T,d,aM} - Q_{Dr,V}) / A_{u} = & q_{Dr,R,u} = & 2,0 l / (s^{+}ha) \end{aligned}$

4. Abminderungsfaktor f_A:

Es wird keine Abminderung vorgenommen $f_A = 1$

5. Festlegung des Zuschlagsfaktors fz:

geringes Risikomaß $f_Z = 1,1$

6. Anwendung folgender Gleichung für Berechnung des spezifischen Speichervolumens $V_{s,u}$ für ausgewählte Dauerstufen nach KOSTRA-DWD 2010R

$$V_{s,u} = (r_{D,n} - q_{Dr,R,u}) * D * f_Z * f_A * 0.06 (m^3/ha)$$

Für n=0,2/a:

Dauer- stufe D	Nieder- schlagshöhe h _N	Zugeh. Regen- spende rD,n	Drosselabfluss- spende q _{Dr,R,u}	Differenz zw. r und q _{Dr,R,u}	spezifisches Speichervolumen V _{s,u}	Speicher- volumen V
min	mm	I/(s*ha)	l/(s*ha)	l/(s*ha)	m³/ha	m³
5	8	280,2	2,0	278,2	91,8	220,3
10	,	208,6	2,0	206,6	136,3	327,2
15	15	170,4	2,0	168,4	166,7	400,0
20	17,2	145,4	2,0	143,4	189,2	454,2
30		113,9	2,0	111,9	221,5	
45	23,6	87,2	2,0	85,2	252,9	607,0
60	26	71,5	2,0	69,5	275,1	660,1
90	28,6	51,6	2,0	49,6	294,4	706,5
120	30,5	41	2,0	39,0	308,6	740,5
180	33,5	29,6	2,0	27,6	327,4	785,7
240	35,9	23,5	2,0	21,5	339,9	815,8
360	39,4	17	2,0	15,0	355,4	853,0
540	43,3	12,3	2,0	10,3	365,6	877,5
720	46,3	9,8	2,0	7,8	368,7	884,8
1080	50,9	7,1	2,0	5,1	360,6	865,3
1440	54,5	5,7	2,0	3,7	347,7	834,5
2880	61,8	3,2	2,0	1,2	220,2	528,4
4320	66,7	2,3	2,0	0,3	73,7	176,8

Größtwert bei D= 720 minErf. spezifisches Volumen Vs,u = $368.7 \text{ m}^3\text{/ha}$

7. Bestimmung der Dränspende für die in Verfüllung befindlichen / verfüllten / abgedichteten Bereiche:

Ablagerungsflächen mit fortgeschrittener	· Verfüllhöhe (LF 2)	A1 =	2,7 ha
Endgültig verfüllte / temp. abgedichtete F	Flächen (LF 3)	A2 =	7,3 ha
Endgültig abgedichtete / rekultivierte Flä	chen (LF 4)	A3 =	5,8 ha
Dränspende nach GDA-Empfehlung E 2-	-14:	q _S =	0,116 l/(s*ha)
- LF 2: 10-fach überhöhter (10 mm/d):		q _{S1} =	1,16 l/(s*ha)
- LF 3: 1-facher GDA-Wert		q _{S2} =	0,12 l/(s*ha)
- LF 4: 0,1-facher GDA-Wert		q _{S3} =	0,012 l/(s*ha)
Zufluss aus Dränspende	$Qdr = A_1 \times q_{s1} + A_2 \times q_{s2} + A_3 \times q_{s3}$	Qdr =	4,05 l/s

8. Bestimmung des erforderlichen Rückhaltevolumens nach folgender Gleichung:

Speichervolumen aus Dauerstufe: Für n=0,2/a:	885 m³
Speichervolumen aus Dauerstufe zzgl. Dränspende:	1.060 m ³
Vorhandenes Speichervolumen (12 x 105 m³):	1.260 m³

>> der vorhandene Speicher ist ausreichend dimensioniert!

10-3 Sickerwasserspeichervolumen - Deponiebetrieb 2052

0. Annahmen:

- Die Bemessung des erforderlichen Sickerwasserspeichervolumens erfolgt nach DWA-A 117.
- Lastfall 1 (LF 1) entspricht dem Betriebsbeginn mit geringer/fehlender Abfallüberdeckung. Rechnerisch kommt es hierbei zu einem nahezu unmittelbaren Abfluss der Regenspende (ψm = 0,8).
- LF 2 entspricht dem Betriebszustand bei offener Einbaufläche. Für diesen Zustand wird nach GDA E 2-14, 3.2, mit 10 mm/d der 10-fach erhöhte Wert der durchschnittlichen Sickerwasserspende angesetzt.
- Im **LF 3** ist die endgültige Verfüllhöhe erreicht, so dass auf die o. g. Erhöhung der Sickerwasserspende verzichtet und der durchschnittliche Wert von 1 mm/d angenommen wird. Für temporär abgedichtete Flächen wird dieser Wert ebenfalls angesetzt.
- Im **LF 4** wird für endgültig abgedichtete oder bereits rekultivierte Flächen mit 10 % des GDA-Ansatzes (0,1 mm/d) von einer reduzierten Sickerwasserspende ausgegangen. Dies entspricht 36,5 mm/a.
- Um Sickerwasserspitzen zu vermeiden, wird die Größe offener Ablagerungsflächen begrenzt. Möglichst schnell sind temporäre oder endgültige Abdichtungen aufzubringen. Flächen, die neu in Betrieb genommen werden (LF 1), werden auf ca. 3 ha begrenzt.

		Fläche	LF 1	LF 2	LF 3	LF 4
		[ha]	Betriebsbeginn, geringe Abfall- überdeckung	offene Abfallfläche mit fortgeschrittener Verfüllhöhe	endgültig verfüllte Abfallfläche / temp. abgedichtet	abgedichtete Fläche / rekultivierter Endzustand
Regen- / Sickerwasserspende			$\psi_m * r_{x,0,2}$	10 mm/d	1 mm/d	0,1 * 1 mm/d
DA	Beschreibung					
DA 4a	vollständig verfüllt, abgedichte					х
DA 4b	vollständig verfüllt, abgedichte	7,3				Х
DA 4c	vollständig verfüllt, abgedichte					Х
DA 3.2a	vollständig verfüllt, abgedeckt	2,5				Х
DA 3.2b	vollständig verfüllt	3,2			X	
DA 3.2c	Betriebsbeginn	3,2	x (BFA auf DA 4, DA 5)			
DA 3.20	Dettiensnediiii	2,3			x (temp. Böschung auf DA 3.2b, DA 4)	
DA 5	nahezu vollständig verfüllt	4,0		x (50 %)	x (50 %)	

Die zugrunde gelegte Zeitschiene ist dem Erläuterungsbericht zu entnehmen.

1. Bemessungsgrundlagen:

Fläche des Einzugsgebietes (offene Betriebsfläche, Betriebsbeginn) $A_{E,b} =$ 3.20 ha mittlerer Abflussbeiwert $\Psi_{m,b}$ = 0.80 Trockenwetterabfluss $Q_{T,d,aM} =$ 0 l/s oberhalbliegende, zufließende Drosselabflüsse $Q_{Dr,V} =$ 0 l/s Vorgegebene Drosselabflussspende I/(s*ha) $q_{Dr,k} =$ vorgegebene Überschreitungshäufigkeit 0,2 1/a

2. Ermittlung der für die Berechnung maßgebenden undurchlässigen Fläche \mathbf{A}_{u} :

 $A_u = A_{E,b}{}^*\Psi_{m,b} \hspace{1cm} A_u = \hspace{1cm} 2,56 \hspace{1cm} ha$

3. Ermittlung der Drosselabflussspenden: wasserrechtliche Erlaubnis: 425 m³/d, d.h. 4, 9 l/s

 $\begin{aligned} Q_{Dr,max} &= q_{Dr,k} * A_{E,k} = & Q_{Dr,max} = & \textbf{4,9 l/s} \\ q_{Dr,R,u} &= (Q_{Dr} - Q_{T,d,aM} - Q_{Dr,V}) / A_{u} = & q_{Dr,R,u} = & 1,9 l/(s^{*}ha) \end{aligned}$

4. Abminderungsfaktor f_A:

Es wird keine Abminderung vorgenommen $f_A = 1$

5. Festlegung des Zuschlagsfaktors fz:

geringes Risikomaß $f_Z = 1,1$

6. Anwendung folgender Gleichung für Berechnung des spezifischen Speichervolumens $V_{s,u}$ für ausgewählte Dauerstufen nach KOSTRA-DWD 2010R

$$V_{s,u} = (r_{D,n} - q_{Dr,R,u}) * D * f_Z * f_A * 0.06 (m^3/ha)$$

Für n=0,2/a:

Dauerst ufe D	Nieder- schlagshöhe h _N	Zugenori ge Regenspe nde	Drosselabfluss- spende q _{Dr,R,u}	Differenz zw. r und q _{Dr,R,u}	spezifisches Speichervolumen V _{s,u}	Speicher- volumen V
min	mm	I/(s*ha)	l/(s*ha)	l/(s*ha)	m³/ha	m³
5	8	280,2	1,9	278,3	91,8	235,1
10	12,1	208,6	1,9	206,7	136,4	349,2
15	15	170,4	1,9	168,5	166,8	427,0
20	17,2	145,4	1,9	143,5	189,4	484,9
30	20,4	113,9	1,9	112,0	221,7	567,6
45	23,6	87,2	1,9	85,3	253,3	648,4
60	26	71,5	1,9	69,6	275,6	705,4
90	28,6	51,6	1,9	49,7	295,1	755,5
120		41	1,9	39,1	309,6	792,5
180		29,6	1,9	27,7	328,9	842,0
240		23,5	1,9	21,6	341,9	875,3
360	,		1,9	15,1	358,4	
540			1,9	10,4	370,2	947,6
720	,	9,8	1,9	7,9	374,7	959,3
1080		7,1	1,9	5,2	369,7	946,3
1440	- 1-	5,7	1,9	3,8	359,8	921,1
2880		3,2	1,9	1,3	244,4	625,7
4320	66,7	2,3	1,9	0,4	110,0	281,7

Größtwert bei D= 720 min Erf. spezifisches Volumen Vs,u = 374,7 $\,$ m³/ha

7. Bestimmung der Dränspende für die in Verfüllung befindlichen / verfüllten / abgedichteten Bereiche:

Ablagerungsflächen mit fortgeschrittene	er Verfüllhöhe (LF 2)	A1 =	2,0 ha
Endgültig verfüllte / temp. abgedichtete	Flächen (LF 3)	A2 =	7,5 ha
Endgültig abgedichtete / rekultivierte Fla	ächen (LF 4)	A3 =	9,8 ha
Dränspende nach GDA-Empfehlung E 2	2-14:	q _S =	0,116 l/(s*ha)
- LF 2: 10-fach überhöhter (10 mm/d):		q _{S1} =	1,16 l/(s*ha)
- LF 3: 1-facher GDA-Wert		q _{S2} =	0,12 l/(s*ha)
- LF 4: 0,1-facher GDA-Wert		q _{S3} =	0,012 l/(s*ha)
Zufluss aus Dränspende	$Qdr = A_1 x q_{s1} + A_2 x q_{s2} + A_3 x q_{s3}$	Qdr =	3,30 l/s

8. Bestimmung des erforderlichen Rückhaltevolumens nach folgender Gleichung:

Speichervolumen aus Dauerstufe: Für n=0,2/a:	959 m³
Speichervolumen aus Dauerstufe zzgl. Dränspende:	1.102 m³
Vorhandenes Speichervolumen (12 x 105 m³):	1.260 m ³

>> der vorhandene Speicher ist ausreichend dimensioniert!

Anlage 10-4 Sickerwasserprognose

10-4 Prognose Sickerwassermengen - Endzustand

0. Annahmen:

- Die Bemessung des erforderlichen Sickerwasserspeichervolumens erfolgt nach DWA-A 117.
- Es werden folgende Lastfälle unterschieden:
- Lastfall 1 (LF 1) entspricht dem Betriebsbeginn mit geringer/fehlender Abfallüberdeckung. Rechnerisch kommt es hierbei zu einem nahezu unmittelbaren Abfluss der Regenspende (ψm = 0,8).
- LF 2 entspricht dem Betriebszustand bei offener Einbaufläche. Für diesen Zustand wird nach GDA E 2-14, 3.2, mit 10 mm/d der 10-fach erhöhte Wert der durchschnittlichen Sickerwasserspende angesetzt.
- Im **LF 3** ist die endgültige Verfüllhöhe erreicht, so dass auf die o. g. Erhöhung der Sickerwasserspende verzichtet und der durchschnittliche Wert von 1 mm/d angenommen wird. Für temporär abgedichtete Flächen wird dieser Wert ebenfalls angesetzt.
- Im **LF 4** wird für endgültig abgedichtete oder bereits rekultivierte Flächen mit 10 % des GDA-Ansatzes (0,1 mm/d) von einer reduzierten Sickerwasserspende ausgegangen. Dies entspricht 36,5 mm/a.

Für abgedichtete und rekultivierte Flächen lässt sich die langfristig zu erwartende Sickerwassermenge nach Untersuchungen von RAMKE

aus dem Jahr 2007 je nach Abdichtungstyp und Lage abschätzen. Für Deponien mit vergleichbaren Abdichtungssystemen und einer Durchlässigkeit der mineralischen Dichtung von 5x10-9 m/s wurden Sickerwassermengen von 28 bis 92 mm/a ermittelt. Für Standorte mit einer vergleichbaren mittleren Niederschlagshöhe, die in Haus Forst bei ca. 650 mm/a liegt, wurde in [80] langfristig zu erwartende Sickerwassermengen von 28 bis 40 mm/a ermittelt, so dass die oben angenommenen 0,1 mm/d im oberen Bereich dieser Spanne liegen.

Die Lastfälle 1 bis 3 sind für die langfristige Prognose nicht relevant.

		Fläche	LF 4
		[ha]	abgedichtete Fläche / rekultivierter Endzustand
Re	egen- / Sickerwasserspende		0,1 * 1 mm/d
DA	Beschreibung		
DA 4a	vollständig verfüllt		Х
DA 4b	vollständig verfüllt	8,8	X
DA 4c	vollständig verfüllt		X
DA 3.2a	vollständig verfüllt		X
DA 3.2b	vollständig verfüllt	7,7	X
DA 3.2c	vollständig verfüllt		X
DA 5	vollständig verfüllt	6,1	X

Die zugrunde gelegte Zeitschiene ist dem Erläuterungsbericht zu entnehmen.

Insgesamt zu erwartende Sickerwassermenge zu Beginn der Nachsorgephase

zu erwartende Sickerwassermenge zu Beginn der	8.267 m³/a	
Zufluss aus Dränspende	$Qdr = A_3 x q_{s3} Qdr =$	0,26 l/s
- LF 4: 0,1-facher GDA-Wert	q _{S3} =	0,012 l/(s*ha)
Endgültig abgedichtete / rekultivierte Flächen (LF 4)	A =	22,6 ha

Langfristig ist eine weitere Abnahme der Sickerwassermenge anzunehmen, bis sich ein stationäre Zustand eingestellt hat.

¹⁾RAMKE, H.-G., 2007: Hydrologische Einschätzungen von Anforderungen Sickerwasserneubildungsraten von Deponieoberflächenabdichtungssystemen, 3. Symposium Umweltgeotechnik der DGGT in Weimar 2007, Schriften Geotechnik der Bauhaus-Universität Weimar, Heft 17

Anlage 10-5 Vorbemessung Druckleitung

10-5 Vorbemessung Druckleitung

Ermittlung der Auslegungsförderströme

1. Grundlast - Bemessung für kontinuierliche Dränspende

Maßgebend ist der Zustand mit maximaler kontinuierlicher Dränspende aus den verfüllten und in Verfüllung befindlichen Bereichen (d. h. Zustand, in dem die maximale Fläche im Betrieb ist bei fortgeschrittener Verfüllhöhe), je Sickerwasserpumpschacht, hier angesetzt 2052.

DA	Fläche	Beschreibung	Beschreibung Dränspende			ss Q
					SPS 1	SPS 2
	ha		mm/d	l/(s*ha)	l/s	I/s
DA 4a						
DA 4b	7,3	vollst. verfüllt / abgedeckt	1	0,116	0,85	
DA 4c						
DA 3.2a	2,5	vollst. verfüllt / abgedeckt	1	0,116		0,29
DA 3.2b	3,2	vollst. verfüllt / abgedeckt	1	0,116		0,37
DA 3.2c		im Betrieb	10	1,160		6,38
DA 5	4,0	im Betrieb	10	1,160		
Summe					5,49	7,04

Auslegung auf: ca. 6 l/s ca. 8 l/s

Die genaue Auslegung der Pumpen und Druckleitungen erfolgt im Rahmen der Ausführungsplanung.

2. - Spitzenlast für SPS 2 - Bemessung für Starkregen

Maßgebend ist der maximale Zufluss aus einem Niederschlagsereignis. Für die Ermittlung der maßgebenden Dauerstufe wird das Bezugsjahr 2052 herangezogen (siehe Anlage 10-4).

Erf. Speichervolumen aus Dauerstufe:	Für n=0,2/a:	311 m³/ha
	Fläche DA 3.2c: A _{E,b} =	3,20 ha
	$\Psi_{m,b}$ =	0,80
	$A_u =$	2,56 ha
	Speichervolumen	796,16 m ³
	D =	360 min
Resultierender max. Zufluss aus SPS2:	$Q_{\text{max, SPS2}} =$	36,9 l/s
	Auslegung SPS2:	40,0 l/s

Anlage 10-5 Vorbemessung Druckleitung

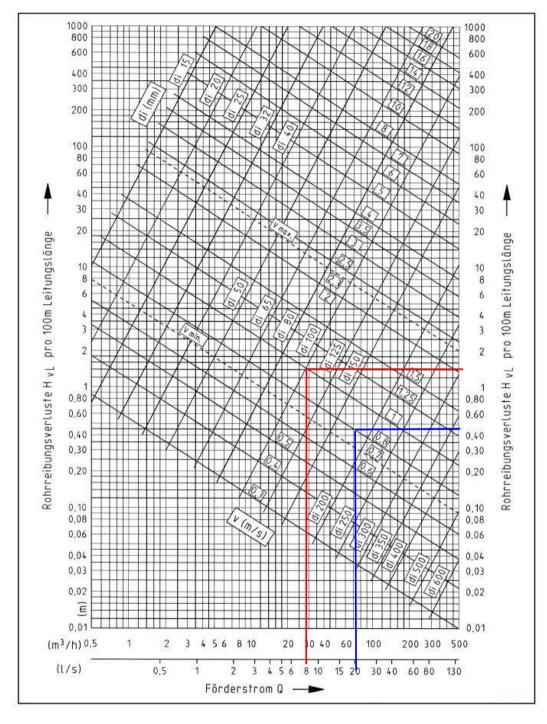
Pumpstation SPS 2 (Grundlast - Bemessung für kontinuierliche Dränspende)

Druckleitung Rohrdurchmesser Querschnittsfläche Mindestfließgeschwindigkeit Maximalfließgeschwindigkeit Fließgeschwindigkeit zum dazugehörigen Auslegungsförderstrom	L di A V _{min} V _{max} V _{bem.}	= = = =	755 102,2 0,008 0,7 2,3 1,0	m mm m² m/s m/s	z.B. da 125x11,4 SDR 11, PE100 (entspricht PN16)
Auslegungsförderstrom	$\mathbf{Q}_{\mathrm{erf.}}$	=	8,0	l/s	1 Druckleitung
Rohrreibungsverluste pro 100 m Leitungslänge gem. Diagramm Rohrreibungsverluste (gesamte	h _{vl pro 100}	=	,	m/100m	1
Druckleitungstrasse)	h_{vl}	=	10,57	m	
Gesamtverlusthöhe	h_v	=	11,63	m	10 % Aufschlag für Armaturen etc.
geodätische Höhe	\mathbf{h}_{geo}	=	30,50	m	
manometrische Förderhöhe	h_D	=	42,13	m	
Volumina der Druckleitung pro m	$V_{\text{D/m}}$	=	8,20	l/m	
	Q_{min}	=	5,74	l/s	
Druckleitungsvolumen	V_D	=	6.194	I	
Dichte des Mediums	ρ	=	1,00	t/m³	Wasser ca. 1,0
Wirkungsgrad Pumpe	η_P	=	0,60		0,60 bis 0,80
Wirkungsgrad Kupplung	η_K	=	0,97		0,97 bis 0,99
Wirkungsgrad Motor	η_M	=	0,85		0,85 bis 0,95
erf. Pumpenleistung	$P_{P,erf}$	=	6,7	kW	
gew. Pumpenleistung (+25%)	$P_{P,gew}$	=	8,4	kW	

Anlage 10-5 Vorbemessung Druckleitung

Pumpstation SPS 2 (Spitzenlast - Bemessung für Starkregen)

Druckleitung Rohrdurchmesser	L di	=	755 184	m mm	z.B. da 225x20,5 SDR 11, PE100
Querschnittsfläche	A	=	0,027	m ²	(entspricht PN16)
Mindestfließgeschwindigkeit	V _{min}	=	0,027	m/s	(chtspheric)
Maximalfließgeschwindigkeit	V _{max}	=	2,3	m/s	
Fließgeschwindigkeit zum dazugehörigen Auslegungsförderstrom		=	0,8	m/s	
Auslegungsförderstrom	Q _{erf.}	=	20,0	l/s	2 Druckleitungen Q _{erf} = 0,5*Q _{max}
Rohrreibungsverluste pro 100 m Leitungslänge gem. Diagramm	h _{vl pro 100}	=	0,45	m/100m	1
Rohrreibungsverluste (gesamte Druckleitungstrasse)	\mathbf{h}_{vl}	=	3,40	m	
Gesamtverlusthöhe	h_{v}	=	3,74	m	10 % Aufschlag für Armaturen etc.
geodätische Höhe	$h_{ m geo}$	=	30,50	m	
manometrische Förderhöhe	h_D	=	34,24	m	
Volumina der Druckleitung pro m	$V_{\text{D/m}}$	=	26,59	I/m	
	Q_{min}	=	18,61	l/s	
Druckleitungsvolumen	V_D	=	20.076	I	
Dichte des Mediums	ρ	=	1,00	t/m³	Wasser ca. 1,0
Wirkungsgrad Pumpe	η_P	=	0,60		0,60 bis 0,80
Wirkungsgrad Kupplung	η_K	=	0,97		0,97 bis 0,99
Wirkungsgrad Motor	η_M	=	0,85		0,85 bis 0,95
erf. Pumpenleistung	$P_{P,erf}$	=	13,6	kW	
gew. Pumpenleistung (+25%)	$P_{P,gew}$	=	17,0	kW	



Anlage 10-5 Vorbemessung Druckleitung

Anhang:

Druckverlust in Leitungen (k_b = 0,25 mm) v = 1,31 mm²/s (Wasser 10° C)

10-6 Mengen für Sickerwasserentsorgung

10-6-1 ungünstigster Zustand für DK I-Bereich, Deponiebetrieb 2026

0. Annahmen:

- Lastfall 1 (LF 1) entspricht dem Betriebsbeginn mit geringer/fehlender Abfallüberdeckung. Rechnerisch kommt es hierbei zu einem nahezu unmittelbaren Abfluss der Regenspende (ψ_m = 0,8). Für die Ermittlung der aus diesen Bereichen resultierenden Sickerwassermengen werden die tatsächlich gemessenen Niederschlagsmengen für den Deponiestandort Haus Forst zugrunde gelegt.
- **LF 2** entspricht dem Betriebszustand bei offener Einbaufläche. Für diesen Zustand wird die durchschnittliche Sickerwasserspende nach GDA E 2-14, 3.2, angesetzt (1 mm/d bzw. 365 mm/a). Auf die konservative Erhöhung mit dem Faktor 10 wird hier verzichtet, da diese nach GDA streng genommen nur für die hydraulische Bemessung des Entwässerungssystems auf der Basisabdichtung empfohlen ist.
- Im **LF 3** ist die endgültige Verfüllhöhe erreicht. Hier wird der durchschnittliche Wert nach GDA E 2-14 von 1 mm/d (365 mm/a) angenommen. Für temporär abgedichtete Flächen wird dieser Wert ebenfalls angesetzt.
- Im **LF 4** wird für endgültig abgedichtete oder bereits rekultivierte Flächen mit 10 % des GDA-Ansatzes (0,1 mm/d) von einer reduzierten Sickerwasserspende ausgegangen. Dies entspricht 36,5 mm/a.
- Um Sickerwasserspitzen zu vermeiden, wird die Größe offener Ablagerungsflächen begrenzt. Möglichst schnell sind temporäre oder endgültige Abdichtungen aufzubringen. Flächen, die neu in Betrieb genommen werden (LF 1), werden auf ca. 3 ha begrenzt.

			Fläche	LF1 LF2		LF 3	LF 4
			[ha]	Betriebsbeginn, geringe Abfallüberdeckung	offene Abfallfläche mit fortgeschrittener Verfüllhöhe	endgültig verfüllte Abfallfläche / temp. abgedichtet	abgedichtet / rekultivierter Endzustand
Re	ege	n-/Sickerwasserspende		ψ _m * (650 777) mm/a	365 r	mm/a	0,1 * 365 mm/a
DA		Beschreibung					
DA 4a	_	vollständig verfüllt	3,1			X	
DA 4b	DK	vollständig verfüllt	2,7			X	
DA 4c	_	Betriebsbeginn	2,9	x (1,4 ha)	x (1,5 ha)		
DA 3.2a		Betriebsbeginn	4,3	x (1,6 ha)	x (2,7 ha)		
DA 3.2b	DK						
DA 3.2c							
DA 5	DK I						
Die zugru	nde	gelegte Zeitschiene ist dei	m Erläute	erungsbericht zu entnehme	en.	_	

1. Bemessungsgrundlagen:

Fläche des Einzugsgebietes (LF 1 / offene Betriebsfläche, Betriebsbeginn)

DK I: $A_{E,b} =$	1,40	ha
DK II: $A_{E,b} =$	1,60	ha
Gesamt: A _{E,b} =	3,00	ha
:		

mittlerer Abflussbeiwert $\Psi_{m,b} = 0,80$

2. Ermittlung der maßgebenden undurchlässigen Fläche Au und des zu entsorgenden Volumens aus den offenen Betriebsflächen mit geringer Abfallüberdeckung (LF 1, Betriebsbeginn):

$$A_u = A_{E,b}{}^*\Psi_{m,b} \\ DK \text{ II: } A_u = 1,12 \text{ ha} \\ DK \text{ II: } A_u = 1,28 \text{ ha} \\ Gesamt: A_u = 2,40 \text{ ha} \\ \\$$

Zufluss basierend auf Jahresniederschlag (Messstationen Haus Forst / Nörvenich, s. Bericht Kapitel 4.8 Tabelle 4-2)

- mittlerer Jahresniederschlag (2004 bis 2021)	650	mm/a, d. h. $q_{s,med} =$ bzw.	17,8 m³/(d 6.500 m³/(a	,
mittlerer Zufluss aus Betriebsflächen LF 1	$Q = A_u \times q_{med}$	DK I: Q _{med} = DK II: Q _{med} = Gesamt: Q _{med} =	20 m³/d 23 m³/d 43 m³/d	

- max. Jahresniederschlag (Jahr 2014) 777 mm/a, d. h. $q_{s,max} = 21,3 \text{ m}^3/(d^*ha)$ bzw. 7.770 m³/(a*ha)

max. Zufluss aus Betriebsflächen LF 1 Q= $A_u \times q_{max}$ DK I: $Q_{max} = 24 \text{ m}^3/d$ DK II: $Q_{max} = 27 \text{ m}^3/d$ Gesamt: $Q_{max} = 51 \text{ m}^3/d$

3. Bestimmung der Dränspende für die in Verfüllung befindlichen / verfüllten / abgedichteten Bereiche:

Ablagerungsflächen mit fortgeschrittene	er Verfüllhöhe (LF 2)	DK I: A1 =	1,45 ha
		DK II: A1 =	2,75 ha
		Gesamt: A1 =	4,20 ha
Endgültig verfüllte / temp. abgedichtete	Flächen (LF 3)	DK I: A2 =	5,80 ha
	,	DK II: A2 =	0,00
		Gesamt: A2 =	5,80 ha
Endgültig abgedichtete / rekultivierte Fla	ächen (LF 4)	A3 =	0,0 ha
Dränspende nach GDA-Empfehlung E	2-14:	q _S =	10 m³/(d*ha)
- LF 2: 1-facher GDA-Wert → 365 mm/	′a	q _{S1} =	10 m³/(d*ha)
- LF 3: 1-facher GDA-Wert → 365 mm/	⁄a	q _{S2} =	10 m ³ /(d*ha)
- LF 4: 0,1-facher GDA-Wert> 36,5 r	mm/a	q _{S3} =	1 m³/(d*ha)
Zufluss aus Dränspende	$Qdr = A_1 \times q_{s1} + A_2 \times q_{s2} + A_3 \times q_{s3}$	DK I: Qdr =	73 m³/d
•		DK II: Qdr =	28 m³/d
		Gesamt: Qdr =	101 m³/d

4. Abschätzung der insgesamt zu entsorgenden Sickerwassermengen (Referenzjahr 2026):

- mittlerer Wert (Ansatz des mittleren Jahresniederschlags der Jahre 2004 bis 2021)

	DK I	DK II	Gesamt
	[m³/d]	[m³/d]	[m³/d]
aus offenen Betriebsflächen (LF1, Betriebsbeg.)	20	23	43
aus übrigen Flächen (LF2 + LF3)	73	28	101
Summe 2026	93	51	144

- oberer Grenzwert (Ansatz des max. Jahresniederschlags der Jahre 2004 bis 2021)

	DK I	DK II	Gesamt
	[m³/d]	[m³/d]	[m³/d]
aus offenen Betriebsflächen (LF1, Betriebsbeg.)	24	27	51
aus übrigen Flächen (LF2 + LF3)	73	28	101
Summe 2026	97	55	152

- → Der rechnerisch ermittelte obere Grenzwert des insgesamt zu entsorgenden Sickerwasservolumens ist mit 157 m³/d deutlich niedriger als die gemäß wasserrechtlicher Genehmigung maximal erlaubte Menge von 425 m³/d (s. Bericht Kapitel 6.1.4.6).
- → Seit Beginn des Deponiebetriebs am 17.04.2020 ist ein Sickerwasservolumen von durchschnittlich ca. 12 m³/d bzw. maximal 132 m³/d angefallen. Der Vergleich der rechnerisch ermittelten mit den tatsächlich gemessenen Werten zeigt, dass die o. g. Berechnungsannahmen konservativ gewählt sind.

10-6 Mengen für Sickerwasserentsorgung

10-6-2 ungünstigster Zustand für DK II-Bereich, Deponiebetrieb 2052

			Fläche	LF 1	LF 2	LF 3	LF 4
			[ha]	Betriebsbeginn, geringe Abfallüberdeckung	offene Abfallfläche mit fortgeschrittener Verfüllhöhe	endgültig verfüllte Abfallfläche / temp. abgedichtet	abgedichtet / rekultivierter Endzustand
Re	eger	n- / Sickerwasserspende		ψ * (650 … 777) mm/a	365 m	m/a	0,1 * 365 mm/a
DA		Beschreibung					
DA 4a	-	vollständig verfüllt,					X
DA 4b	DK	abgedichtet	7,3				X
DA 4c	1	abgedicritet					X
DA 3.2a		vollständig verfüllt, abgedeckt	2,5				x
DA 3.2b		vollständig verfüllt	3,2			X	
DA 3.2c	DK II	Betriebsbeginn	3,2	x (BFA auf DA 4, DA 5)			
DA 3.20		Detriebsbegiiii	2,3			x (temp. Böschung auf DA 3.2b, DA 4)	
DA 5	DK I	nahezu vollständig verfüllt	4,0		x (50 %)	x (50 %)	
Die zugrunde gelegte Zeitschiene ist dem Erläuterungsbericht zu entnehmen.							

1. Bemessungsgrundlagen:

Fläche des Einzugsgebietes (LF 1 / offene Betriebsfläche, Betriebsbeginn)

DK I: $A_{E,b} =$	0,00	ha
DK II: $A_{E,b} =$	3,20	ha
Gesamt: A _{E,b} =	3,20	ha
=		
	0,80	

mittlerer Abflussbeiwert

2. Ermittlung der maßgebenden undurchlässigen Fläche A_u und des zu entsorgenden Volumens aus den offenen Betriebsflächen mit geringer Abfallüberdeckung (LF 1, Betriebsbeginn):

 $\Psi_{\text{m,b}} =$

Zufluss basierend auf Jahresniederschlag (Messstationen Haus Forst / Nörvenich, s. Bericht Kapitel 4.8 Tabelle 4-2)

- mittlerer Jahresniederschlag (2004 bis 2021)	650 mm/a, d. h. $q_{s,med} = bzw$.		17,8 m³/(d*ha) 6.500 m³/(a*ha)
mittlerer Zufluss aus Betriebsfl. LF 1	$Q = A_u x q_{med}$	DK I: Q _{med} = DK II: Q _{med} = Gesamt: Q _{med} =	0 m³/d 46 m³/d 46 m³/d
- max. Jahresniederschlag (Jahr 2014)	777	mm/a, d. h. $q_{s,max} =$ bzw.	21,3 m³/(d*ha) 7.770 m³/(a*ha)
max. Zufluss aus Betriebsflächen LF 1	$Q=A_u x q_{max}$	DK I: Q _{max} = DK II: Q _{max} = Gesamt: Q _{max} =	0 m³/d 54 m³/d 54 m³/d

3. Bestimmung der Dränspende für die in Verfüllung befindlichen / verfüllten / abgedichteten Bereiche:

		DK II: Qdr = Gesamt: Qdr =	58 m³/d 105 m³/d
Zufluss aus Dränspende	$Qdr = A_1 x q_{s1} + A_2 x q_{s2} + A_3 x q_{s3}$	DK I: Qdr =	47 m³/d
- LF 4: 0,1-facher GDA-Wert> 36	5,5 mm/a	q _{S3} =	1 m³/(d*ha)
- LF 3: 1-facher GDA-Wert → 365 r	mm/a	q _{S2} =	10 m ³ /(d*ha)
- LF 2: 1-facher GDA-Wert → 365 r		$q_{S1} =$	10 m ³ /(d*ha)
Dränspende nach GDA-Empfehlung	,	$q_S =$	10 m³/(d*ha)
		Gesamt: A3 =	9,80 ha
		DK II: A3 =	2,50 ha
Endgültig abgedichtete / rekultivierte	e Flächen (LF 4)	DK I: A3 =	7,30 ha
		Gesamt: A2 =	7,50 ha
	, ,	DK II: A2 =	5,50 ha
Endgültig verfüllte / temp. abgedicht	tete Flächen (LF 3)	DK I: A2 =	2,00 ha
		Gesamt: A1 =	2,00 ha
	,	DK II: A1 =	0,00 ha
Ablagerungsflächen mit fortgeschrit	tener Verfüllhöhe (LF 2)	DK I: A1 =	2,00 ha

4. Abschätzung der insgesamt zu entsorgenden Sickerwassermengen (Referenzjahr 2052):

- mittlerer Wert (Ansatz des mittleren Jahresniederschlags der Jahre 2004 bis 2021)

	DK I	DK II	Gesamt
	[m³/d]	[m³/d]	[m³/d]
aus offenen Betriebsflächen (LF1, Betriebsbeg.)	0	46	46
aus übrigen Flächen (LF2 + LF3)	47	58	105
Summe 2052	47	104	151

- oberer Grenzwert (Ansatz des max. Jahresniederschlags der Jahre 2004 bis 2021)

	DK I	DK II	Gesamt
	[m³/d]	[m³/d]	[m³/d]
aus offenen Betriebsflächen (LF1, Betriebsbeg.)	0	54	54
aus übrigen Flächen (LF2 + LF3)	47	58	105
Summe 2052	47	112	159

- → Der rechnerisch ermittelte obere Grenzwert des insgesamt zu entsorgenden Sickerwasservolumens ist mit 159 m³/d deutlich niedriger als die gemäß wasserrechtlicher Genehmigung maximal erlaubte Menge von 425 m³/d (s. Bericht Kapitel 6.1.4.6).
- → Seit Beginn des Deponiebetriebs am 17.04.2020 ist ein Sickerwasservolumen von durchschnittlich ca. 12 m³/d bzw. maximal 132 m³/d angefallen. Der Vergleich der rechnerisch ermittelten mit den tatsächlich gemessenen Werten zeigt, dass die o. g. Berechnungsannahmen konservativ gewählt sind.