Anlage 3

ergänzende Studie natürliche Rückhalteräume

Masterarbeit

Hydraulische Untersuchung der Auswirkung von Retentionsmaßnahmen am Beispiel der Vicht

Isabel Brähler

FH Aachen – University of Applied Sciences Fachbereich Bauingenieurwesen

Betreuung: Prof. Dr.-Ing. Jörg Höttges Dr. rer. nat. Eva Loch

Aachen, 12. Januar 2015

Inhaltsverzeichnis

1	Einleitung				
2	Zielsetzung und Vorgehensweise				
3	3 Rechtlicher Rahmen				
4	Vorstellung des Untersuchungsgebietes4.1Räumliche Abgrenzung und Gewässerverlauf4.2Topographie4.3Flächen- und Landnutzung				
5	Erlä 5.1 5.2	uterung Hochwassergefährdung Gefährdung und Schadenspotenzial an der Vicht	9 12 13		
6	Aufl 6.1 6.2 6.3	bereitung der Datengrundlage Grundlegende Programme 6.1.1 ArcGIS 6.1.2 Jabron 6.1.3 NASIM 6.1.3 NASIM Verwendete Eingangsdaten	14 14 14 17 17 18 18 19 19 23		
7	Hyd	6.3.2.1 Arbeitsschritte Gelandeabsenkung	25 30 32		
	$7.1 \\ 7.2$	SOBEK Hydrodynamischer Rechenkern	$\frac{36}{37}$		
8	Dur 8.1 8.2	chführung der ModellarbeitenSOBEK-Modell	41 41 43 43 44 45		

9	Ergebnisse 9.1 Dokumentation und Plausibilisierung der Ergebnisse	46 46 46 52 55
10	Bewertung der Ergebnisse des Rechenkerns	63
11	Schlussbetrachtung	69
Lit	eratur	71
An	hangA.1AbflusstabelleA.2Rauheiten nach "TIMIS flood"	74 74 86

Abbildungsverzeichnis

4.1	Einzugsgebiet der Vicht	6
4.2	Flächennutzung entlang der Vicht	7
4.3	Gegenüberstellung Oberlauf und Unterlauf	8
5.1	Hochwasser an der Vicht	12
6.1	Zustandsdiagramm Strömen - Schießen	15
6.2	Lage des Wasserspiegels und der Energielinie	15
6.3	Anordnung der Trennflächen (geometrisch gegliederter Querschnitt)	16
6.4	Dichte der interpolierten Profile	20
6.5	Luftbild bei Profil 2994	22
6.6	Querschnitt für das Profil 2994	22
6.7	Darstellung der Retentionsflächen im Überblick	24
6.8	Klassifiziertes Gelände	26
6.9	Luftbild bei Profil 15938	28
6.10	Querprofil 15938 im Ist-Zustand	29
6.11	Querprofil 15938 im Planzustand	29
6.12	Darstellung der drei Nebengerinne	30
7.1	Bilanzierung für einen Wasserkörper	35
7.2	Ortsdiskretisierung eines Fließgewässers	40
8.1	Netzwerk-Elemente (Network)	41
9.1	Längsschnittdarstellung der WSPL im Ist-Zustand	47
9.2	Darstellung der Froude-Zahl über die Fließstrecke	48
9.3	Längsschnittdarstellung der MQ-Wasserspiegellagen im Ist-Zustand	51
9.4	Längsschnittdarstellung der WSPL im Ist-und im Planzustand	53
9.5	Abflussganglinien der Nebengerinne	54
9.6	Ganglinien an Profil 9474	57
9.7	Ganglinien an Profil 5261	58
9.8	Ganglinien an Profil 10790	59
9.9	Ganglinien an Profil 10490	60
9.10	Darstellung verschiedener Retentionsmöglichkeiten	61
9.11	Längsschnitt an Profil 5261	62
9.12	Längsschnitt an Profil 10490	62
10.1	Vergleich der WSPL im Ist-Zustand	64
10.2	Einfluss der Ein- und Auslaufverluste auf die Wasserspiegellage	66
10.3	Ergebnisse des RK an Profil 9474	67
10.4	Ergebnisse des RK an Profil 10490	67

Tabellenverzeichnis

1	Nebengewässer der Vicht	5
2	Handlungsempfehlung zur Erstellung von Hochwasseraktionsplänen $\ .$.	11

Abkürzungsverzeichnis

1D eindimensional
DGM digitales Geländemodell
\ensuremath{DVWK} Deutscher Verband für Wasserwirtschaft und Kulturbau e.V.
ESRI Environmental Systems Research Institute Inc.
EU Europäische Union
GIS Geoinformationssystem
GSK Gewässerstationierungskarte
HRB Hochwasserrückhaltebecken
HWAP Hochwasseraktionsplan
HWGK Hochwassergefahrenkarten
LAWA Länderarbeitsgemeinschaft Wasser
\mathbf{MQ} Mittelwasserabfluss
\mathbf{MW} Mittelwasser
MWSP Mittelwasserspiegel
NA-Modell Niederschlag-Abfluss-Modell
NG Nebengerinne
RK Rechenkern
SE Systemelement
TG Teilgebiet
ÜSG Überschwemmungsgebiet
WHG Wasserhaushaltsgesetz
WSPL Wasserspiegellage
WVER Wasserverband Eifel-Rur

1 Einleitung

Im Stadtkern von Stolberg fließt die ausgebaute Vicht, auch Vichtbach genannt, unmittelbar zwischen der Bebauung hindurch. Bedingt durch die starke Einengung und die daraus resultierende hohe hydraulische Belastung, insbesondere in der Altstadt, können Hochwasser zu erheblichen Schäden führen. Im Stadtgebiet stehen keine Möglichkeiten zur schadlosen Ausuferung zur Verfügung.

Seit Oktober 2007 liegt der Hochwasseraktionsplan (HWAP) der Bezirksregierung Köln vor. Im Zuge dessen wurde das Überschwemmungsgebiet (ÜSG) an der Vicht neu untersucht. Aus den Ergebnissen wird deutlich, dass schadhafte Überflutungen bereits bei einem 5-10-jährlichen Hochwasserereignis auftreten. Für ein 100-jährliches Hochwasserereignis ist allein in der Ortslage Stolberg mit Schäden in Höhe von 25 Mio. Euro zu rechnen.

Sowohl für die betroffenen Anlieger als auch für die vor Ort befindlichen Industrie- und Gewerbebetriebe ist eine Verbesserung des Hochwasserschutzes dringend erforderlich. Daher untersucht der WVER Möglichkeiten, um Abflussscheitel, Wasserstände und Überflutungen zu verringern. Als Schutzziel wird ein 100-jährliches Hochwasserereignis anvisiert. (vgl. [1, 2])

2 Zielsetzung und Vorgehensweise

Ziel der vorliegenden Masterarbeit ist es mittels eindimensionaler (1D) instationärer hydraulischer Modelle die Auswirkungen der Aktivierung potenzieller Retentionsräume auf den Hochwasserschutz entlang der Vicht und insbesondere für die Altstadt von Stolberg zu untersuchen.

Dabei wird überprüft, ob der Wasserspiegel in Stolberg durch den Anschluss von Retentionsräumen nennenswert abgesenkt werden kann, um dadurch geplante Hochwasserrückhaltebecken (HRB) vollständig oder teilweise zu ersetzen.

Zur Analyse des wasserwirtschaftlichen Systems der Vicht hinsichtlich der Hochwasserproblematik stehen zwei verschiedene Programme zur Verfügung. Zum einen das etablierte Hydraulikprogramm SOBEK und zum anderen ein von der Hydrotec Ingenieurgesellschaft für Wasser und Umwelt mbH neu entwickelter hydraulischer Rechenkern (RK).

Im Zuge der Bearbeitung wird zunächst die Simulation für den Ist-Zustand mit beiden erarbeiteten Modellen durchgeführt.

Für den Planzustand werden die Vorländer im Modell in sinnvoller Weise abgesenkt und die Auswirkungen der Erhöhung des natürlichen Wasserrückhalts auf die Hochwassergefährdung dokumentiert.

Darüber hinaus ist ein Vergleich der mit SOBEK erzielten Ergebnisse und den Resultaten des RK vorgesehen.

Bei der Gliederung und Nummerierung der einzelnen Kapitel wurde sich bewusst

gegen die chronologische Bearbeitungsreihenfolge entschieden, um im Text das wiederholte Wechseln zwischen den Programmen zu vermeiden und den Aufbau sowie die Funktionsweise der jeweiligen Programme in Abgrenzung zueinander schlüssig darstellen zu können.

Nach der Vorstellung der grundsätzlichen Problematik in den Kapiteln 3 - 5, wird in Kapitel 6 zunächst auf die Bearbeitung der Datenbasis eingegangen, bevor die herangezogenen Modelle in Kapitel 7 vorgestellt werden. Der tatsächliche Modellaufbau, sortiert nach den einzelnen Programmen, wird in Kapitel 8 beschrieben. Es folgt eine differenzierte Betrachtung der Ergebnisse in Kapitel 9 und 10. Kapitel 11 fasst die wesentlichen Erkenntnisse abschließend zusammen.

Somit konnte eine strukturierte Gliederung erarbeitet werden, die einen nachvollziehbaren Überblick über die vorliegende Thematik, die verschiedenen Arbeitsschritte sowie die resultierenden Ergebnisse bietet.

3 Rechtlicher Rahmen

Nutzungsansprüche an Fließgewässern bzw. Auen einerseits und der zum Hochwasserschutz erforderliche Wasserrückhalt andererseits erfordern ein Abwägen oft gegensätzlicher Interessen.

Wesentliche Grundlage der jeweils zu treffenden Entscheidungen ist ein umfangreiches rechtliches Regelwerk, welches im folgenden Kapitel in seinen Grundzügen vorgestellt werden soll. (vgl. [3])

Hochwasserkatastrophen in der Vergangenheit führten zur Verabschiedung von bundeseinheitlichen Leitlinien für einen "zukunftsweisenden Hochwasserschutz" durch die Länderarbeitsgemeinschaft Wasser (LAWA). Zusätzliche Hochwasserschutzkonzepte der Bundesländer sind jeweils an die regionalen Besonderheiten angepasst. So bilden das Wasserhaushaltsgesetz (WHG) und das Hochwasserschutzgesetz sowie diverse Verordnungen, Erlasse und Gemeindesatzungen den rechtlichen Rahmen des Hochwasserschutzes.

Die im Jahr 2007 verabschiedete EU-Richtlinie über die "Bewertung und das Management von Hochwasserrisiken" wurde 2010 mit der Neufassung des WHG in nationales Recht umgesetzt (§§ 72 - 81 WHG). Die Richtlinie fasst die Handlungsfelder der planerischen Vorsorge und der technischen Schutzmaßnahmen des Hochwasserschutzes in einem "Hochwasserrisiko-Managementplan" zusammen. Sie verfolgt das Ziel, die nachteiligen Auswirkungen von Hochwasser auf die menschliche Gesundheit und die Umwelt sowie auf Wirtschaft, Infrastruktur und das Kulturerbe zu verringern.

Kern der neuen Regelungen ist die Erstellung von Hochwassergefahrenkarten (HWGK) und Hochwasserrisikokarten für Gebiete mit signifikantem Hochwasserrisiko. Auf Basis der Erkenntnisse aus den beiden Kartentypen erstellen die zuständigen Landesbehörden Hochwasserrisikomanagementpläne (§ 75 Absatz 1 WHG).

Das WHG fordert die Darstellung der Hochwassergefährdung und des Hochwasserrisikos für folgende Hochwasserszenarien:

- 1. Hochwasser mit niedriger Wahrscheinlichkeit oder bei Extremereignissen,
- 2. Hochwasser mit mittlerer Wahrscheinlichkeit,
- 3. Hochwasser mit hoher Wahrscheinlichkeit (soweit erforderlich).

Innerhalb der Hochwasserrisikogebiete setzen die Länder entweder durch Rechtsverordnung oder kraft Gesetz Überschwemmungsgebiete fest. Grundlage für die Festsetzung ist ein Hochwasser, das statistisch einmal in 100 Jahren zu erwarten ist (HQ_{100}) .

In Überschwemmungsgebieten gilt grundsätzlich das Verbot, neue Baugebiete auszuweisen. Damit soll die Schaffung neuen Schadenspotenzials durch Neubauten verhindert werden. Behörden und Verbände werden durch die Richtlinie dazu verpflichtet, die Öffentlichkeit umfassend über entsprechende Aktivitäten im Bereich Hochwasserschutz zu informieren.

Um die erforderlichen Maßnahmen möglichst effizient zu gestalten, sollen Strategien

und Maßnahmen grenzüberschreitend innerhalb eines Einzugsgebiets abgestimmt, koordiniert und umgesetzt werden. Den Mitgliedsstaaten werden dabei konkrete Arbeitsschritte vorgegeben. (vgl. [4–6])

Zusätzlich fordert das WHG in §77 weitergehende Maßnahmen, die z.B. dem Erhalt und der Rückgewinnung von Rückhalteflächen dienen.

Der Schutz der natürlichen Überschwemmungsgebiete und die Bereitstellung von Flächen für den Wasserrückhalt sind heute die wesentlichen Bestandteile einer Schutzstrategie. Dort wo diese Maßnahmen nicht ausreichen bzw. nicht realisierbar sind, greifen die Maßnahmen des technischen Hochwasserschutzes.

Die Richtlinie für die Entwicklung naturnaher Fließgewässer in Nordrhein-Westfalen, auch Blaue Richtlinie genannt, hat das Ziel zu beschreiben, wie naturnahe Fließgewässer geschützt und strukturell beeinträchtigte Fließgewässer möglichst naturnah weiterentwickelt werden können, ohne jedoch Aspekte wie den ordnungsgemäßen Abfluss, den Hochwasserschutz sowie die angrenzenden Flächennutzungen zu vernachlässigen. Dabei wird über Planungsgrundsätze und Planungsinstrumente sowie über Planungsabläufe und das methodische Vorgehen informiert.

Die Blaue Richtlinie enthält keine Vorgaben, wo und in welchem Umfang die Gewässer strukturell zu verbessern sind und hat somit den Charakter eines Leitfadens oder einer Handlungsanleitung. Dieser Charakter lässt wiederum eine verbindliche Einführung, wie in der Vergangenheit geschehen, als allgemein anerkannte Regel der Technik für Gewässerausbaumaßnahmen nicht zu. (vgl. [7, 8])

Für mögliche Hochwasserschutzmaßnahmen an der Vicht bedeutet dies, dass grundsätzlich eine Lösung durch natürlichen ungesteuerten Wasserrückhalt anzustreben ist. Sollten entsprechende Maßnahmen jedoch nicht ausreichen, kann technischer Hochwasserschutz dennoch erforderlich sein. (vgl. [6])

4 Vorstellung des Untersuchungsgebietes

4.1 Räumliche Abgrenzung und Gewässerverlauf

Die Vicht (Gewässerkennzahl 28244) ist ein Fließgewässer in der Städteregion Aachen und zählt zum Einzugsgebiet der Inde bzw. der Rur als Hauptgewässer.

Sie wird durch den Zusammenfluss von Grölisbach und Roetgenbach gebildet. Das betrachtete Einzugsgebiet der Vicht, dargestellt in Abbildung 4.1, umfasst eine Fläche von ca. 104 km² und liegt innerhalb des Verbandgebietes des Wasserverbands Eifel-Rur (WVER). Es nimmt am Gesamteinzugsgebiet der Inde einen Anteil von etwa 30 % ein (vgl. [2]).

Der Gewässerverlauf erstreckt sich über einen Höhenunterschied von 193 m auf einer Fließlänge von 20,7 km. Er beginnt an der Dreilägerbach-Talsperre in Roetgen (km 20,7) und mündet am nördlichen Rand der Ortslage Stolberg in die Inde.

In ihrem Verlauf nimmt die Vicht eine Reihe von Nebengewässern auf. Die wichtigsten Zuflüsse sind der Dreilägerbach in Roetgen (Einmündung bei km 20,7) sowie der Hasselbach in Rott (Einmündung bei km 10,8), welche in Tabelle 1 noch einmal aufgeführt sind.

Nebengewässer (mit EZG Größe)	Zuordnung	Quellgebiet bzw. Entstehung	Gewässer- kennzahl
Hasselbach (17,3 m^2)	Rechtes Nebengewässer mit einer Fließlänge von ca. 9,8 km. Mündung bei Vicht-km 10,8	Staatsforst Monschau	282446
Dreilägerbach (23,3 km^2)	Rechtes Nebengewässer mit einer Fließlänge von ca. 6,8 km. Mündung bei Vicht-km 20,7		282442

Tabelle 1: Nebengewässer der Vicht

Quelle: Gewässerverzeichnis NRW und Gewässerstationierungskarte (GSK)

4.2 Topographie

Die Vicht liegt am Rande des Rheinischen Schiefergebirges und zählt zu den grobmaterialreichen, silikatischen Mittelgebirgsbächen (LAWA-Typologie Typ 5).

Das Gebiet ist geprägt durch tief eingeschnittene Täler mit schmalen, lockergesteinserfüllten Talauen, in denen geringe Grundwasserflurabstände vorherrschen. Die Gewässerschle besteht überwiegend aus Festgestein.

Aufgrund des hohen Reliefs und der geringen Durchlässigkeit der Bodenschichten erfolgt eine ausgeprägte oberirdische Entwässerung. Typisch sind große Abflussschwankungen im Jahresverlauf und stark ausgeprägte Extremabflüsse bei Einzelereignissen. Starke

Abbildung 4.1: Einzugsgebiet der Vicht

Quelle: WVER

Hochwasserabflüsse in den Sommer- und Wintermonaten führen Geschiebe mit sich, die in entsprechenden Ablagerungen resultieren.

4.3 Flächen- und Landnutzung

Das Gebiet ist größtenteils bewaldet; im Norden und Nordwesten überwiegen anthropogene Flächen, wie Abbildung 4.2 verdeutlicht.

Abbildung 4.2: Flächennutzung entlang der Vicht

Entlang der Vicht befinden sich insbesondere im Norden neben Wohngebäuden auch eine Vielzahl von Industrie- und Gewerbebetrieben.

(a) Oberlauf in waldreichem Einzugsgebiet

(b) Unterlauf in Stolberg (zwischen Bebauung)

Abbildung 4.3: Gegenüberstellung Oberlauf und Unterlauf

Quelle: WVER

Die Vicht gilt als überwiegend natürliches Gewässer und wird lediglich in Stolberg, kurz vor der Mündung in die Inde, als "erheblich verändert" ausgewiesen. (vgl. [9]) Abbildung 4.3 illustriert die charakteristischen Unterschiede des Ober- und Unterlaufs.

5 Erläuterung Hochwassergefährdung

Allgemein gefährdet ein Hochwasser neben Leib und Leben auch materielle Güter und kann dabei erhebliche volkswirtschaftliche Schäden hervorrufen.

Aufgrund der wachsenden Bebauung in Flussauen hat der Hochwasserschutz in den vergangenen Jahren einen immer größeren Stellenwert errungen. Darüber hinaus wird in jüngster Zeit zunehmend die Einflussnahme des Menschen auf das Klima diskutiert.

Hochwasser ist durch die Speichereigenschaft eines Einzugsgebietes (Bewuchs, Boden, Gelände und Gewässernetz) transformierter Niederschlag. Somit sind die Größe und die Speichereigenschaften des Einzuggebiets sowie der Niederschlag als prozessveranlassende Größe die für Hochwasser entscheidenden Randbedingungen.

Es gibt verschiedene Strategien, Schäden durch Hochwasser zu verringern. Dazu gehören Maßnahmen in den Bereichen:

- Natürlicher Wasserrückhalt,
- Technischer Hochwasserschutz und
- Hochwasservorsorge.

Diese werden in Tabelle 2 detailliert erläutert.

Grundsätzlich sind Hochwasser Bestandteil von natürlichen, immer wiederkehrenden Prozessen und keine neue Erscheinung unserer Zeit.

Das Schadenspotenzial ist allerdings direkt von der Nutzung der Flussaue durch den Menschen abhängig. Im Zuge der fortschreitenden städtebaulichen Nutzung wurden verstärkt auch hochwassergefährdete Gebiete erschlossen und in Anspruch genommen. Folglich steigert die Anhäufung großer Vermögensgegenstände in Siedlungsbereichen am Gewässer das Schadenspotenzial. (vgl. [10])

Die vermeintliche Zunahme an Hochwasserereignissen und das Ausmaß der Schäden werden häufig durch anthropogene Eingriffe begründet. Demnach werden direkte Eingriffe in den Vorgang der Wellenverformung, z.B. durch den Ausbau der Gewässer (lineare Regulierung, Verminderung der Retentionsräume) und die Versiegelung der Landschaft kritisiert. Die Folge ist eine Vergrößerung des effektiven Niederschlags und damit des Oberflächenabflusses. Der Scheitel der Abflussganglinie wird höher und tritt früher auf. (vgl. [11])

In dicht besiedelten und schadensintensiven Gebieten mit einem geringen Hochwasserschutzgrad kann oftmals nicht auf Maßnahmen des technischen Hochwasserschutzes verzichtet werden. Lösungen, die mit einem großen Flächenbedarf verbunden sind, können aufgrund der beengten Platzverhältnisse in urbanen Bereichen nicht realisiert werden.

Sowohl natürliche als auch technische Rückhaltemaßnahmen können Höhe und Dauer der Hochwasserwellen beeinflussen. Die ungesteuerte Wasserrückhaltung hat jedoch im Vergleich zu gesteuerten HRB (bei identischen Retentionsvolumina) nur begrenzt Einfluss auf den Hochwasserscheitel, da die Abgaben hier nicht durch eine Drossel kontrolliert werden können.

Bei gleicher Überschwemmungsfläche sind gesteuerte Rückhalteräume für den Hochwasserschutz deutlich effektiver, da diese im Scheitelpunkt der Hochwasserwelle, geflutet werden können. Die Wirkung einer ungesteuerten Retention ist hingegen begrenzt, da der Rückhalteraum im maßgeblich kritischen Moment bereits gefüllt ist.

Dies stellt insbesondere ein Problem dar, wenn Rückhalteflächen in der benötigten Größenordnung nicht zur Verfügung stehen. (vgl. [2, 10, 12])

Natürlicher Wasserrückhalt	Technischer Hochwasserschutz	Hochwasservorsorge
 Wasserrückhalt auf der Fläche: Flächensparendes Planen und Bauen Entsiegelung versiegelter Flächen Dezentrale Versickerung von Niederschlagswasser Extensivierung in der Landwirtschaft Ökologisch orientierte Waldentwicklung Rückhaltung durch Mulden 	 Hochwasserrückhaltung: Hochwasserrückhaltebecken und Talsperren Gesteuerte Rückhalte 	 Flächenvorsorge: Freihaltung hochwassergefährdeter Bereiche im Rahmen der Raumplanung Festsetzung gesetzlicher Überschwemmungsgebiete Stärkung des Wasserrückhaltes
 Wasserrückhalt in Gewässer und Aue: Gewässerrenaturierung Wiedergewinnung von Flächen für den Hochwasserrückhalt und -abfluss durch: Aufkauf von Uferrandstreifen Deichrückverlegung Ungesteuerte Rückhalte 	 Lokale Schutzmaßnahmen: Vergrößerung der Abflussquerschnitte Anlage von Flutmulden Schutz durch Neubau oder Ertüchtigung von Deichen oder Ufermauern Mobiler/teilmobiler Hochwasserschutz 	 Verhaltensvorsorge: Information der Bevölkerung über mögliche Gefährdung Hochwasserwarndienst Aufstellung und Aktualisierung von Alarm- und Einsatzplänen Aus-/Fortbildung und Übung im Katastrophenschutz
		Bauvorsorge: - Hochwasserangepasstes Bauen, Leben und Wohnen

Tabelle 2: Handlungsempfehlung zur Erstellung von Hochwasseraktionsplänen

- Hochwasserversicherung

Risikovorsorge:

Quelle: nach LAWA (1999)

5.1 Gefährdung und Schadenspotenzial an der Vicht

Im Hochwasseraktionsplan Inde/Vicht wurden die potenziellen Schäden verschiedener Hochwasserereignisse für die Jährlichkeiten HQ_5 , HQ_{10} , HQ_{20} , HQ_{50} , HQ_{100} , HQ_{200} und HQ_{Extrem} abgeschätzt. Dabei lieferten hydrologische und hydraulische Modelle die Grundlagendaten bei der Bestimmung der Gefährdung einzelner Objekte.

Obwohl die Überflutungsflächen an der Vicht verhältnismäßig gering ausfallen, ist das Schadenspotenzial sehr hoch, was die Sachwerte an den Ufern widerspiegelt. Besonders hohe Schäden entstehen bei der Überflutung von Gewerbe- und Industriebetrieben (Bausubstanz, Inventar, Produktionsausfall, Gefährdung von Arbeitsplätzen). (vgl. [2]) Abbildung 5.1 zeigt verschiedene Bilder, welche die derzeitige Hochwassersituation in Stolberg verdeutlichen.

Abbildung 5.1: Hochwasser an der Vicht

Quelle: WVER

5.2 Vorstudie und Maßnahmenplanung an der Vicht

Aufgrund der Komplexität des Projekts wurde zunächst eine Vorstudie beauftragt, in der hydrologische und hydraulische Grundlagen geschaffen wurden, auf deren Basis die Beauftragung einer Genehmigungsplanung erfolgen konnte.

Mit Hilfe von mathematischen Modellen wurden Zusammenhänge für das gesamte Einzugsgebiet detailliert erfasst.

Die Ergebnisse zeigen, dass der angestrebte Schutz der Altstadt für ein 100-jährliches Hochwasserereignis nur durch technische Hochwasserschutzmaßnahmen in Form von Rückhaltung erfolgen kann, da der angestrebte Schutz aufgrund der engen bachbegleitenden Bebauung nicht annähernd erreicht werden kann.

Entsprechend wurde eine Hochwasserschutzkonzeption für die Ortslage an der Vicht entwickelt, beginnend von der Dreilägerbachtalsperre bis zur Mündung in die Inde. Dabei sollen oberhalb des bebauten Stadtgebietes an der Vicht, in Mulartshütte auf Stolberger Gebiet und in Rott auf Roetgener Gebiet, zwei Hochwasserrückhaltebecken, welche 400.000 bzw. 800.000 m³ fassen, entstehen.

Nach der Aussage der Vorstudie ist eine effektive Verringerung des Hochwasserabflussscheitels lediglich durch den Rückhalt im Einzugsgebiet oberhalb der Ortslage Stolberg realisierbar, da das Gerinne der Vicht gerade im Stadtkern von Stolberg stark eingeengt ist und Schutzmaßnahmen hier aus technischen Gründen sowie unter dem Aspekt der Denkmalpflege nicht durchgehend möglich sind. (vgl. [1])

Die weiteren Untersuchungen im Rahmen der vorliegenden Masterarbeit sollen überprüfen, welchen Einfluss die zusätzliche Vorlandretention auf den Abflussscheitel hat.

6 Aufbereitung der Datengrundlage

6.1 Grundlegende Programme

Im folgenden Kapitel erfolgt eine Erläuterung der verwendeten Software, die zur Aufbereitung der Datengrundlage vor der tatsächlichen Modellerstellung zum Einsatz gekommen sind.

Auf die entsprechende Nutzung wird detaillierter in Kapitel 6.3 eingegangen.

6.1.1 ArcGIS

Das Geoinformationssystem (GIS) ArcGIS ist ein Softwarepaket der Environmental Systems Research Institute Inc. (ESRI) und fasst verschiedene GIS-Softwareprodukte zusammen.

Für die Datenhaltung bzw. die Analyse der Daten (Datenerfassung, Editieren, Analyse und Kartenerstellung) wurde die Anwendung ArcMap benutzt. Geographische Informationen werden als eine Sammlung von Layern und anderen Elementen in einer Kartenansicht visualisiert.

Unterschiedliche GIS-Werkzeuge ermöglichen die Verarbeitung und Darstellung von Jabron-Daten gemeinsam mit einem digitalen Geländemodell (DGM) und kommen in der vorliegenden Arbeit entsprechend häufig zur Anwendung.

6.1.2 Jabron

Jabron ist eine Simulationssoftware der Firma Hydrotec für die Gewässerhydraulik. Es handelt sich um ein Programmsystem zur eindimensionalen Modellierung von Fließgewässern, welches zur Wasserspiegellagenberechnung für stationäre Strömungsbedingungen (ohne Zeitkomponente) konzipiert wurde.

In Abhängigkeit von der Fließtiefe werden hier Wasserspiegelbreite, Abfluss, Volumen und Fließgeschwindigkeit für die Gewässerquerschnitte ermittelt.

Im Modell werden die zur Berechnung herangezogenen Querprofile mit Hilfe von Stützstellen implementiert. Bauwerke können dabei als geschlossene oder überströmte Profile dargestellt werden.

Die Berechnungsreihenfolge ist so festgelegt, dass ausgehend von einem Startprofil entgegen der Fließrichtung der Oberwasserspiegel berechnet wird.

Wird bei der Berechnung ein Fließwechsel vom Schießen zum Strömen in Fließrichtung festgestellt (Froude-Zahl ≥ 1), setzt Jabron für die Oberwassertiefe die kritische Abflusstiefe, oder auch Grenztiefe, ein. Diese ist definiert als die Tiefe mit der minimalen Energiehöhe H_{min} , für die der gegebene Abfluss abfließen kann (Abbildung 6.1).

Für alle oberhalb liegenden Profile wird jeweils die Grenztiefe eingesetzt, bis wieder strömender Abfluss ermittelt wird. Die berechneten Wasserspiegeltiefen entsprechen also den bei den gegebenen Verhältnissen maximal möglichen Tiefen, nicht den tatsächlich vorliegenden. (vgl. [14])

Abbildung 6.1: Zustandsdiagramm Strömen - Schießen

Quelle: Zanke (2011), S.174 [13]

Während der Wechsel vom Strömen zum Schießen in Fließrichtung ohne signifikante Fließverluste stattfindet, ist der Wechsel vom Schießen zum Strömen mit einem Wechselsprung und erheblichen Verlusten durch Reibung und Verwirbelung verbunden, wie Abbildung 6.2 verdeutlicht. Diese Verluste durch den Wechselsprung zwischen den Profilen werden jedoch nicht berechnet, da es keinen allgemeinen theoretischen Berechnungsansatz gibt. (vgl. [14])

Abbildung 6.2: Lage des Wasserspiegels und der Energielinie

Quelle: Patt (2013), S.124 [7]

Darüber hinaus wird in Einzelfällen bei einem starken Wechsel in der Gerinnegeometrie bzw. starkem Gefällewechsel die Normalabflusstiefe als Kontrollgröße für den iterativ berechneten Wasserspiegel herangezogen, also die Tiefe, mit der in einem Gerinne ein gegebener konstanter Abfluss stationär gleichförmig abfließt. Dabei haben Energielinie, Wasserspiegellinie und Gewässerschle dasselbe Gefälle. (vgl. [14])

Beim Abfluss in einem gegliederten Querschnitt treten aufgrund der unterschiedlichen Fließgeschwindigkeiten des Vorlands und des Hauptgerinnes Reibungsverluste auf, die nicht vernachlässigt werden dürfen.

Das in Jabron angewendete Berechnungsverfahren beruht auf der Trennung der Gerinneteile durch fiktive vertikale Trennflächen, nach DVWK-Merkblatt 220.

Den Flächen wird eine Rauheit zugewiesen, sodass die Berücksichtigung entsprechender Verluste somit auch in einer eindimensionalen Modellierung möglich ist. (vgl. [14, 15]) Es wird davon ausgegangen, dass wegen der Interaktion in der Ebene eine Schubspannung wirkt, die sowohl durch Formeinfluss (Wechsel Abflusstiefe) als auch unterschiedliche Rauheitsstrukturen (erhöhter Fließwiderstand durch Bewuchs) hervorgerufen werden kann. Zwei Beispiele zur Anordnung der Trennflächen sind Abbildung 6.3 zu entnehmen. Äquivalente Sandrauheiten nach Darcy-Weissbach (k_s) und Bewuchsparameter nach DVWK-Merkblatt 220 werden getrennt erfasst. Dabei werden sowohl die Rauheiten als auch der Bewuchs für die Profilabschnitte zwischen den Profilstützpunken festgelegt.

Abbildung 6.3: Anordnung der Trennflächen (geometrisch gegliederter Querschnitt) Quelle: DVWK-Merkblatt 220 (1991), S.10 [15]

П

Π

Ш

п | ---- щ ----- щ ----

I

6.1.3 NASIM

NASIM wurde mit der Zielsetzung, die traditionelle Verwendung von unterschiedlichen Kurz-, Mittel- oder Langzeitmodellen aufzugeben und wesentliche Aufgaben der Hydrologie in einem Modell zu bearbeiten, von der Firma Hydrotec entwickelt.

Es ist ein Niederschlag-Abfluss-Modell (NA-Modell), d.h. ein Rechenprogramm, welches die Systemeigenschaften eines Untersuchungsgebietes modellhaft abbildet und der Ermittlung flächendeckender Zu- und Abflüsse für alle Gewässerabschnitte dient.

Der Modellaufbau erfolgt unter der Verwendung von:

- Einzugsgebieten
- Boden, Geologie
- Landnutzung
- Topographie
- Stadtentwässerung
- Gewässernetzen
- Sonderbauwerken (z.B. Speicher).

Die Darstellung des Einzugsgebietes erfolgt über Systemelemente (SE).

Die einzelnen Systemelemente werden entsprechend ihrer Fließrichtung unter Berücksichtigung ihrer geo- und topographischen Lage miteinander verknüpft. Hierzu besitzt jedes SE jeweils einen Zu- und einen Abflussknoten.

Die mithilfe von NASIM simulierten Daten werden als Datengrundlage für hydraulische Modelle verwendet. (vgl. [11])

Die Verwaltung der Zeitreihendaten wird durch die Integration des Programms TimeView unterstützt, welches als Werkzeug zur Darstellung und Bearbeitung umweltrelevanter Zeitreihen dient. Dabei ist es unter anderem möglich mehrere eingelesene Zeitreihen zu addieren, Summenlinien zu erzeugen und Extremwerte zu ermitteln. (vgl. [16])

Für die Simulation müssen hydrologische und meteorologische Zeitreihen-Eingangsdaten vorliegen. Alternativ zu gemessenen Niederschlagsdaten können auch Bemessungsniederschläge verwendet werden.

Die mögliche Einbindung des hydrodynamischen RK in das NA-Modell NASIM wird kurz in Kapitel 10 aufgegriffen.

6.2 Verwendete Eingangsdaten

Grundlage eines jeden Modells ist die benötigte Datenbasis.

Neben der entsprechenden Gewässerachse (GSK3C) sowie den topographischen Daten, die hier in Form eines DGM vorlagen, wurden weitere Eingangsdaten verwendet, welche im folgenden Kapitel detailliert erläutert sind.

6.2.1 Bestehender Jabron-Modell-Datensatz der Vicht

Die genutzte Jabron-Datenbank der Hochwasserstudie-Vicht, ergänzt um den mittleren Abfluss (MQ), liegt durch den WVER vor.

Im Jabron-Modell sind unter anderem für die genannten Gewässerabschnitte vermessene Querprofile und Geometrien der hydraulisch relevanten Bauwerke abgebildet.

Das erhaltene Jabron-Modell dient sowohl für das zu erstellende SOBEK-Modell als auch für die Berechnungen des RK als Grundlage.

Die integrierten Rechenläufe des Modells beinhalten bereits jegliche Zuflüsse, die angesetzten Verluste an Bauwerken sowie die bereits in Kapitel 6.1.2 angeführten Normalabflusstiefenprüfungen.

Für einen späteren repräsentativen Vergleich der Ergebnisse des Ist-Zustandes mit denen des Planzustandes sowie für den Vergleich der unterschiedlichen Programme ist insbesondere auf eine identische Datengrundlage geachtet worden.

Entsprechende Änderungen des ursprünglichen Jabron-Modells und somit der Eingangsdaten, die für die Anwendungen der instationären Programme notwendig waren, wurden infolgedessen vorab und somit für alle Modelle vorgenommen.

Folglich führt dies bereits zu Abweichungen von den Ergebnissen der Vorstudie.

6.2.2 Hydrologie

Die Grundlage für das hydrologische Modell bildet das NA-Modell, welches im Rahmen des HWAP Inde/Vicht aufgebaut und für die Untersuchungen der Vorstudie 2010 überarbeitet wurde. (vgl. [1])

Die entsprechenden Abflusswellen wurden vom WVER zur Verfügung gestellt und liegen als Eingangsgrößen für die Hydraulik-Modelle vor.

Da unter anderem für den Aufbau des RK- Modells die Auseinandersetzung mit dem erhaltenen NASIM-Modell dennoch unumgänglich war (siehe Kapitel 7.2), wird an dieser Stelle kurz auf die Einzelheiten des Modells eingegangen.

Es umfasst das gesamte Einzugsgebiet der Inde (365 km²), wobei aus Gründen der Performanz hier nur mit dem Teilmodell für das Einzugsgebiet der Vicht gerechnet worden ist (106 km²). Entsprechend wurde nur der Hauptstrang der Vicht selektiert, da seitliche Zuflüsse durch die Subtraktion der Zu- und Abflüsse der verschiedenen Teilgebiete erfasst werden konnten.

Die mit den hydrologischen Modellen durchgeführten Berechnungen wurden auf der Grundlage von Bemessungsniederschlägen durchgeführt. Maßgebend für die Auslegung der Hochwasserschutzmaßnahmen ist dabei ein 100-jährliches Niederschlagsereignis. (vgl. [1])

Aufgrund der längeren Fließzeiten bedarf es in großen Einzugsgebieten längerer Niederschlagsdauern und größerer überregneter Flächen, bis das gesamte Einzugsgebiet zum Abfluss am betrachteten Gewässerquerschnitt beiträgt. Für größere Einzugsgebiete sind somit in der Regel geringere Niederschlagsintensitäten maßgebend als in kleinen Einzugsgebieten.

Die gewählte Dauerstufe charakterisiert die Regendauer, die im betrachteten Gebiet den größten Abfluss verursacht. Da die maßgebende Bemessungsregendauer insbesondere von der Gebietsgröße und dem gegebenen Gefälle abhängt, ist diese nicht für alle Teil- bzw. Einzugsgebiete konstant. Folglich reagieren in der Regel große, flache Gebiete langsamer, d.h. mit höherer Zeitverzögerung auf Niederschläge als kleine, steile Gebiete.

Die Niederschlagswerte der Bemessungsregen sind Punktwerte, die an jedem beliebigen Ort des betrachteten Gebietes auftreten können. Ein Niederschlagswert, der gleichzeitig an jedem Punkt der Gebietsfläche auftritt, wird durch die Anwendung von Abminderungsfaktoren in Abhängigkeit von der Niederschlagshöhe, der Niederschlagsdauer und der Gebietsfläche reduziert.

Je größer das betrachtete Gebiet und je kürzer die Niederschlagsdauer, desto stärker kann der Niederschlag abgemindert werden. (vgl. [10])

Folglich führen bei den verschiedenen Teilgebieten mitunter unterschiedliche Dauerstufen bzw. Abminderungsfaktoren zu maximalen Zu- und Abflüssen.

Für die vorliegenden Modellberechnungen wurde aus den erhaltenen Ergebnissen ein einzelnes relevantes Ereignis identifiziert, bei einer maßgebenden Dauerstufe von 540 min und mit einer maßgebenden Abminderungsstufe von 5%. Diese Kombination bringt den größten Abfluss bzw. das größte Gefahrenpotential mit sich und ist für die meisten Teilgebiete maßgebend.

Da die Kombination verschiedener Dauerstufen und Abminderungsfaktoren in einem instationären Modell sowohl einen deutlichen Mehraufwand, als auch eine zusätzliche Fehlerquelle darstellt (bei geringer Verbesserung des Modells) wurde der entsprechende Gesamtfehler von etwa 1,6% toleriert.

6.3 Datenaufbereitung

6.3.1 Erforderliche Änderungen der Modelldaten

Das genaue Vorgehen sowie die einzelnen Änderungen zur Aufbereitung der Datenbasis werden im folgenden Kapitel im Detail beschrieben.

In der vorliegenden Arbeit umfassen diese Änderungen:

- Einfügen zusätzlicher interpolierter Querprofile,
- Bearbeitung und Kürzung einzelner Querprofile,
- Neukilometrierung aller Querprofile,
- Abflussänderungen im ursprünglichen Jabron-Modell.

Da die Berechnung der Wasserspiegellage (WSPL) und der Geschwindigkeit bei einem 1D-Modell profilweise erfolgt, geht die Qualität des Modells bzw. der Modellergebnisse mit der Qualität der Vermessungsdaten einher. Die Wahl der Lage sowie die Dichte der

Querprofile ist insbesondere entscheidend. (vgl. [17])

Für eine möglichst genaue Simulation des tatsächlichen Flussverlaufs wurden im GIS mithilfe von Jabron-Tools 120 zusätzliche Profile generiert.

(a) Unterlauf bei Stolberg

(b) Oberlauf bei Rott

Abbildung 6.4: Dichte der interpolierten Profile

Durch das Erzeugen eines Flussschlauchs, der Höheninformationen enthält, und dem Setzen von Schnittlinien können neue Querprofile interpoliert und in die Jabron-Datenbank geschrieben werden. Hierzu wurden vorab jeweils 5 einzelne Punkte der Profile attributiert und entlang der Vicht verbunden (linkes Ufer, linke Sohle, tiefster Sohlpunkt, rechte Sohle, rechtes Ufer).

Die eigens erstellten Profile sowie ausgewählte Vermessungsprofile wurden unter Berücksichtigung der Hauptströmungsrichtung verlängert.

Aufgrund einer erhöhten Profildichte bzw. starken Fließwegänderungen kam es hierbei zu Überschneidungen der Profile, welche durch Abknicken der Verlängerungen behoben wurden.

Anhand des DGM wurden aus den entstandenen Verlängerungslinien Profilpunkte

erzeugt, welche schließlich in die Jabron-Datenbank geschrieben wurden.

Dem somit entstandenen Vorland waren individuelle Rauheitsklassen sowie Bewuchsklassen nach DVWK zuzuordnen. Um entscheidende Differenzen zwischen der Vorstudie und der Modellierung des Ist-Zustandes zu vermeiden, sind diese nicht automatisiert festgelegt worden, sondern wurden ebenfalls händisch und in Abhängigkeit von umliegenden Profilen vergeben.

Die Positionen der zusätzlich generierten Profile wurden so gewählt, dass der tatsächliche Gewässerverlauf mit einzelnen Mäandern möglichst gut abgebildet wird. Hierbei wurde ein maximaler Profilabstand von ca. 150 m eingehalten.

Über den Verlauf der Vicht von Süden nach Norden nimmt die Entfernung zwischen einzelnen Vermessungsprofilen deutlich ab, sodass vor allem im Oberlauf (zwischen Roetgen und Rott) eine Vielzahl interpolierter Profile vorhanden ist, wie Abbildung 6.4 zeigt.

Darüber hinaus wurden bei der Wahl der jeweiligen Lage insbesondere die potenziellen Retentionsräume beachtet, die für die spätere Darstellung des Planzustandes relevant sind. Auch hier ist eine hohe Dichte der Querprofile entscheidend.

Die gewählten Retentionsräume sind großräumig angelegt worden, mit dem Ziel die maximalen Möglichkeiten des Hochwasserschutzes zu untersuchen. Bei realer Umsetzung in der Praxis sind die nutzbaren Flächen unter Umständen kleiner zu dimensionieren.

Alle weiteren Änderungen der Datengrundlage sind mit den Unterschieden bzw. Vorund Nachteilen der verwendeten Programme zu begründen.

So enthalten diverse Profile im bestehenden Jabron-Modell einzelne Profilabschnitte, die als nicht abflusswirksam definiert sind und somit in der Berechnung unberücksichtigt bleiben. Solche ineffektiven Bereiche können jedoch in der hier verwendeten SOBEK-Version nicht erkannt werden.

Folglich wurden die nicht durchströmten Bereiche, die nicht abflusswirksam sind, aus den jeweiligen Profilen entfernt. Liegen die ineffektiven Bereiche am Rand oder außerhalb der Überschwemmungsgebiete wurden die Profile gekürzt, bzw. die Profilpunkte gelöscht. Ist dies nicht der Fall, wurde das Gelände zwischen den Bereichen, in denen die Vicht strömt, fiktiv angehoben, um ein Miteinbeziehen entsprechender Flächen in die Rechnung zu verhindern.

Zur Veranschaulichung zeigt das Luftbild in Abbildung 6.5 den bebauten Ortseingang von Stolberg. Die rot dargestellten, nicht abflusswirksamen Bereiche werden bei der Abflussberechnung des HQ_{100} nicht berücksichtigt. Da das Wasser jedoch zusätzlich über die Straße fließen kann, dürfen alle Bereiche, die hier gelb dargestellt sind, im Modell nicht ignoriert werden.

Abbildung 6.6 stellt das Profil 2994 im Querschnitt dar. Das Gelände zwischen dem Hauptgerinne der Vicht und der Straße wurde entsprechend angehoben.

Abbildung 6.5: Luftbild bei Profil 2994

Abbildung 6.6: Querschnitt für das Profil 2994

Da die Kilometrierung der Profile des Jabron-Modells und der verwendeten Gewässerachse (GSK 3C) nicht exakt übereinstimmten, war eine neue und somit in allen Modellen übereinstimmende Kilometrierung der Profile erforderlich.

Während Jabron ausschließlich entlang der vorgegebenen Kilometrierung und unabhängig von den Koordinaten der Profile rechnet, erfolgt die Kilometrierung der Profile beim Aufbau des SOBEK-Modells über die definierte Lauflänge sowie über die entsprechenden Koordinaten. Die vereinfachte grafische Darstellung in der Modellansicht zeigt eine direkte und entsprechend kürzere Verbindung der einzelnen Profile und Knoten, in der Berechnung wird jedoch die gespeicherte tatsächliche Länge der Fließstrecke verwendet.

Darüber hinaus wurde, wie in Kapitel 6.2.2 erläutert, eine einzelne maßgebliche Abflusswelle für alle Teilgebiete gewählt (Dauerstufe = 540 min, Abminderungsstufe = 5%). Für einen unmittelbaren Vergleich der Ergebnisse erfolgte im stationären Jabron-Modell eine entsprechende Änderung.

6.3.2 Erarbeitung der Variante mit abgesenkten Vorländern

Eine Möglichkeit zur Steigerung der Abflussleistung eines Gerinneabschnittes ist die Aufweitung des Fließquerschnitts. Diese ist jedoch von der Flächenverfügbarkeit abhängig. Aufgrund der Bebauung in gewässernahen Bereichen sind Maßnahmen dieser Art in urbanen Gebieten nur im begrenzten Maße realisierbar. (vgl. [7])

Die Festlegung aller anschließbaren Retentionsflächen erfolgte demgemäß in Abhängigkeit von der existierenden Bebauung sowie den bestehenden Geländeverhältnissen. Unter Berücksichtigung der aktuellen Überschwemmungsgebietsausweisungen wurden vorab ermittelte Bereiche, in denen eine konfliktfreie Anlegung von Primär- und Sekundärauen möglich erschien, untersucht und für eine Geländeabsenkung in Betracht gezogen. In Absprache mit dem WVER wurde hierbei, um das maximale Retentionsvolumen zu ermitteln, lediglich auf eine grundsätzliche Realisierbarkeit geachtet, unabhängig von wirtschaftlichen Aspekten.

Abbildung 6.7 zeigt alle festgelegten Retentionsflächen im Überblick.

Dabei wird deutlich, dass auf der Strecke zwischen km 20,7 (Modellbeginn) und km 18,6 keine Maßnahmen vorgesehen sind. Das Gelände ist hier äußerst steil, lässt Wasser schnell abfließen und bietet keinen natürlichen Flächenrückhalt.

Alle angeschlossenen Retentionsräume befinden sich auf der Strecke zwischen km 18,6 und km 5,2. Das Tal ist hier etwas breiter und flacher, das Gebiet zudem überwiegend bewaldet und nur vereinzelt bebaut.

Vor der Ortslage Stolberg, die etwa bei km 3,5 beginnt, liegen über mehrere Kilometer Industrie- und Gewerbeflächen. Bis zur Mündung in die Inde ist das Gebiet entlang der Vicht vollständig bebaut und somit nicht für Retentionsmaßnahmen nutzbar.

Abbildung 6.7: Darstellung der Retentionsflächen im Überblick

Alle abgesenkten Flächen wurden mithilfe von Uferböschungen, die als seitlicher Abschluss des Gewässerbetts definiert sind, wieder an das reguläre Gelände angeschlossen.

Für die Stabilität einer Böschung ist neben dem Bewuchs insbesondere der Böschungswinkel maßgebend. In Abhängigkeit von den variierenden Gegebenheiten (Bodenarten, Wasserverhältnisse, Auflasten, etc.) muss die maximal anzusetzende Böschungsneigung individuell ermittelt werden. Zwecks einer schematischen und nachvollziehbaren Vorgehensweise bei der Bestimmung des Retentionsvolumens wurde in Abstimmung mit dem WVER eine maximale Böschungsneigung von 1:2 angenommen. Die steilen Böschungen schaffen zusätzliches Retentionsvolumen, sodass eine diesbezügliche Unterschätzung der Wirksamkeit der Maßnahmen ausgeschlossen werden kann. Mit zunehmender Steilheit nimmt jedoch die Gleitsicherheit ab und nötige Unterhaltungsarbeiten werden mühsamer. (vgl. [7, 10])

Infolge der Geländeabsenkung müssen für die betroffenen Profile erneut Rauheitsklassen sowie Bewuchsklassen zugeordnet werden. Die Retentionsflächen werden nach bisheriger Handhabe nicht bewuchsfrei gehalten sondern unterliegen der natürlichen Sukzession.

Der Bewuchs in einem Gewässer ist insbesondere von der Fließgeschwindigkeit, dem Nährstoffgehalt und den Lichtverhältnissen abhängig. Breite Gerinne bzw. Retentionsflächen mit geringen Fließgeschwindigkeiten und fehlender Beschattung durch große Bäume weisen in der Regel eine starke Verkrautung durch Wasserpflanzen auf. Der Verband unterhält das Gewässer je nach Anforderung und Entwicklungsziel.

Die Genauigkeit der Berechnungsansätze hängt insbesondere davon ab, wie präzise die Fließwiderstände erfasst werden. Ihre Bestimmung wird dadurch erschwert, dass natürliche Gerinne häufig keine einheitliche Rauheit haben, sodass das Widerstandsverhalten selten durch einen konstanten Wert beschrieben werden kann.

Der Gesamtfließwiderstand setzt sich in natürlichen Fließgewässern aus verschiedenen Teilwiderständen zusammen. Neben Fließwiderständen aufgrund der Ufer- und Sohlenausbildung sind auch Widerstände durch Vegetationsstrukturen zu berücksichtigen. Bei Kleinbewuchs (Höhe im Vergleich zur Wassertiefe klein) reicht nach DVWK-Merkblatt 220 ein Parameter zur Charakterisierung aus. Dies ist die äquivalente Rauheit. (vgl. [3, 15])

Entsprechend wurde eine Rauheitsklasse für Krautwuchs angesetzt.

Der gewählte k_s -Wert [m] von 0,75 wurde anhand des Hydrotec-Projekts "TIMIS flood" [18] gewählt. Die empirisch ermittelten, realitätsnahen Werte der im Projekt verwendeten Rauheitsklassen, sind tabellarisch in Anhang A.2 aufgeführt.

6.3.2.1 Arbeitsschritte Geländeabsenkung

Die Gestaltung des Geländes im Planzustand fand in mehreren Schritten statt. Für die Vorlandabsenkung wurde durch den Wasserverband Eifel-Rur (WVER) ein Orientierungswert von einem Meter vorgegeben.

Da die Aufweitung des Fließquerschnittes erst ab einem Wasserstand über dem des

Mittelwassers (MW) stattfinden sollte, wurde vorab ein Raster mit dem Mittelwasserspiegel (MWSP) erstellt, um einen Eingriff in den natürlichen Verlauf der Vicht auszuschließen.

In einem weiteren Schritt wurde der Orientierungswert von 1 m zusätzlich auf den MWSP addiert und die Summe im Anschluss vom DGM subtrahiert. Somit ist eine Schnittstelle mit dem Gelände entstanden, von der ausgehend das Gelände auf Höhe des MW abgesenkt werden soll.

Das neu entstandene Raster wurde klassifiziert, wodurch ein übersichtliches Bild der jeweiligen Höhenverhältnisse hervorging (siehe Abbildung 6.8).

Abbildung 6.8: Klassifiziertes Gelände

Dabei wurden alle Flächen maximal auf die Höhe des MW abgesenkt, auch einzelne Bereiche, die infolge einer Geländeabsenkung von einem Meter unter diesem lägen. Entsprechende Flächen sind in Abbildung 6.8 blau dargestellt.

Das fiktive DGM ist letztendlich das Ergebnis einzelner Teile des Gebietes, die in Abhängigkeit vom Verhältnis der Geländehöhe zum MW-Stand abgesenkt und im Anschluss zusammengesetzt wurden.

Für die Abbildung der Maßnahme im Modell, wurde an allen Profilen, die in potenziellen Retentionsräumen liegen, der MW-Stand als zusätzliche Punkte im Hauptgerinne aufgenommen. Die betroffenen Profile wurden im Anschluss bis zu diesen Punkten gekürzt, bevor sie erneut mithilfe des neu generierten DGM verlängert wurden. Dabei kam, aufgrund der starken Fließwegänderungen bzw. der streckenweise eng aneinander liegenden Profile eine Abknickhilfe zum Einsatz.

Die Retentionsräume waren händisch, mit einer Böschungsneigung von 1:2, wieder an das reguläre Vorland anzuschließen.

Zur Veranschaulichung des Resultats wird beispielhaft das Profil 15938 herangezogen. Abbildung 6.9 zeigt einen Ausschnitt aus dem Luftbild, der die Lage des Profils (bei km 15,94) sowie das unmittelbare Umfeld widerspiegelt und die Wahl der festgelegten Retentionsräume erläutert.

Das steile Gelände, welches anhand der Höhenlinien im Bild deutlich zu erkennen ist, schränkt das weitere Abgraben westlich der aktivierten Auen klar ein, während die Straße auf der anderen Seite eine entsprechende Grenze setzt. Das freie Gelände jenseits der Straße (rechts im Bild) wird hier als Nebengerinne (NG) im Modell angeschlossen. Dies wird in Kapitel 6.3.2.2 detaillierter erläutert.

Die Annahme der Vorlandform wird sowohl im Ist-Zustand als auch im Planzustand anhand von Querschnitten des Profils bildlich dargestellt (Abbildung 6.10 und 6.11).

Dabei fällt auf, dass die Abbildung des rechten Vorlandes bzw. der Straße infolge des Kürzens und erneuten Verlängerns des Profils im Planzustand verloren gegangen ist. Auch im Falle eines Hochwassers tritt die Vicht an dieser Stelle nicht über ihre Ufer, sodass die Betrachtung des rechten Vorlandes hier vernachlässigt werden kann.

Stattdessen ist anstelle der linken Uferböschung unmittelbar das linke Vorland angeschlossen worden, nachdem es, wie bereits beschrieben, vorab bis auf die Höhe des Mittelwasserspiegels abgesenkt wurde.

Abbildung 6.9: Luftbild bei Profil 15938

Abbildung 6.10: Querprofil 15938 im Ist-Zustand

Abbildung 6.11: Querprofil 15938 im Planzustand
6.3.2.2 Erstellen einer Verzweigung mit Nebengerinne

Anschließbare Flächen, die nicht unmittelbar an der Vicht liegen, sondern z.B. durch eine Straße von dieser getrennt sind, wurden jeweils durch eine Verzweigung mit Nebengerinne erfasst. Abbildung 6.12 zeigt alle drei NG bzw. die angeschlossenen Retentionsräume im Nebenschluss und ihre jeweilige Lage entlang der Vicht.

Abbildung 6.12: Darstellung der drei Nebengerinne

Eine derartige Verzweigung mit NG ist durch die Aufteilung des Hauptflussschlauches im Oberwasser in ein Haupt- und ein Nebengerinne gekennzeichnet.

Die beiden Stränge verlaufen in getrennten Flussschläuchen und vereinigen sich wieder im Unterwasser.

Die hydraulische Berechnung bzw. die Ermittlung der Wasserspiegellagen in beiden Strängen wird unabhängig voneinander durchgeführt, wobei sich die Randbedingung aus dem Anfangswasserstand im Vereinigungspunkt ergibt.

Die Wassermengenverteilung auf die einzelnen Stränge wird durch einen Abgleich der Oberwasserspiegel im Verzweigungsbereich automatisch berechnet. (vgl. [14])

Da das Gelände an den entsprechenden Stellen aufgrund der deutlichen Höhenunterschiede nicht auf das MW-Niveau abgesenkt werden kann, entfällt an den hier generierten Profilen die klassische Differenzierung zwischen Sohle und Vorland. Das DGM wird stattdessen um einen Meter abgesenkt und außerhalb der Retentionsräume an das original DGM angeschlossen, ebenfalls mit einer Böschungsneigung von 1:2. Die Nebengerinne werden somit ausschließlich bei Hochwasserabfluss durchströmt und fallen bei Mittelwasser trocken.

Die derart gewonnenen Rückhalteflächen wurden mit Durchlässen an die Vicht angeschlossen. Hierzu wurden fiktive Bauwerke in die Modelle aufgenommen (überströmbare Profile), die das Kreuzen des Straßenverlaufs ermöglichen. Die Größe der Öffnungen musste angenommen werden, da keine Abflusswerte für die neu generierten Nebengerinne vorlagen.

Das Vorland an den Profilen im Nebenschluss wurde nach dem gleichen Vorgehen abgesenkt wie bei der Aufweitung des Hauptgerinnes.

Darüber hinaus mussten entsprechende Gewässerachsen festgelegt werden, nach denen die zusätzlichen Profile der Nebengerinne kilometriert werden konnten. In diversen Schritten konnten mithilfe von gezogenen Profilspuren und dem neu erstellten DGM ein Meter breite Profile generiert werden, welche erneut anhand des DGM durch entsprechende Jabron-Tools verlängert wurden.

Infolge der Gelände absenkungen konnte insgesamt ein abgetragenes Erdvolumen von $826.230~{\rm m}^3$ ermittelt werden. Dieses entspricht nicht exakt dem erreichten Retentionsvolumen, bietet jedoch diesbezüglich einen angemessenen Orientierungswert.

Das abgetragene Erdvolumen liegt som
it deutlich unter dem Gesamtvolumen der beiden geplanten HRB, welche 400.000 bzw. 800.000 m³ fassen.

Die Bewertung der angeschlossenen Retentionsflächen sollte jedoch nicht ausschließlich basierend auf das gewonnene Volumen erfolgen, sondern insbesondere die entsprechende Wirkung erfassen, auf die in Kapitel 9.2 im Detail eingegangen wird.

7 Hydraulische Modelle

Ziel der hydrodynamischen Abflussmodellierung ist die möglichst genaue Nachbildung von in der Natur auftretenden Strömungsverhältnissen. Im mathematischen Modell werden physikalische Vorgänge durch mathematische Funktionen beschrieben. Die Modelle werden zur Untersuchung von hydraulischen Vorgängen herangezogen und dienen unter anderem der Beantwortung folgender Detailfragen:

- Bestimmung der Wasserspiegellinie,
- Ermittlung der Gerinneleistungsfähigkeit,
- Ermittlung und Darstellung der Überschwemmungsgrenzen bzw. -flächen,
- Veränderung des Wasserrückhalts und Auswirkungen auf die Abflussganglinie.

Ein mathematisches Modell besteht grundsätzlich aus wenigstens zwei Komponenten. Zum einen dem Programmteil, der wesentliche Funktionen, Algorithmen etc. enthält, zum anderen dem Datensatz, in welchem die an den Modellrändern herrschenden Bedingungen, die Vorgaben für das Modellgebiet und die zu Beginn der Berechnung an jedem Element herrschenden Verhältnisse definiert sind.

Sind für die ausreichende Beschreibung eines zu untersuchenden Strömungsproblems nicht alle drei Richtungen der Strömung erforderlich, so kann die Dimensionalität des Problems reduziert werden. In der vorliegenden Masterarbeit sind eindimensionale hydraulische Modelle für das Einzugsgebiet der Vicht erstellt worden.

Da der hydrodynamische Rechenkern ausschließlich zur eindimensionalen Modellierung verwendet werden kann, wurde zur Gewährleistung der direkten Vergleichbarkeit auch in SOBEK lediglich ein 1D-Modell erstellt. Die deutlich kürzere Rechenzeit ist zudem ein zusätzlicher Vorteil der eindimensionalen hydraulischen Berechnungen.

Bei 1D Modellen wird der Durchfluss mit der querschnittsgemittelten Geschwindigkeit ausgedrückt als

$$Q(s,t) = v(s,t) \cdot A(s,t) .$$
(1)

Zusätzlich wird angenommen, dass zur hinreichenden Beschreibung des Strömungsproblems die Fließgeschwindigkeit lediglich in Hauptströmungsrichtung berücksichtigt werden muss. Das heißt, die Querströmungen werden vernachlässigt und die Geschwindigkeitsverteilung über die Abflusshöhe ist gleichmäßig. Als Ergebnisse der Berechnungen liegen somit Informationen über die mittlere Fließgeschwindigkeit sowie die mittlere Abflusstiefe bzw. die Lage des Wasserspiegels im Querprofil vor. (vgl. [10, 19])

Neben der Dimensionalität ist auch die Zeitabhängigkeit eine wichtige Komponente eines Hydraulikmodells. Von zeitabhängigen oder auch instationären Strömungen wird gesprochen, wenn sich die Strömungsgeschwindigkeiten mit der Zeit verändern.

Die Berechnung des Ablaufs von Hochwasserwellen in natürlichen Gerinnen gehört zu den gängigsten instationären Aufgaben, da viele Fließgewässer von Belastungen durch

Flutwellen betroffen sind. Entsprechend hat die rechnerische Behandlung des Wellenablaufs in Gerinnen große Bedeutung hinsichtlich Überflutungen, Hochwasserschutz, etc. Ziel der Berechnung ist die vollständige Darstellung des Flutwellenablaufs durch Bestimmung des Durchflusses Q(s,t) und der mit diesem gekoppelten Wassertiefe h(s,t).

Instationäre Hydraulikmodelle sind zwar mit höherer Rechenzeit verbunden, jedoch auch bei veränderlichen Durchflüssen, wie sie in der Natur besonders während eines Hochwassers vorkommen, geeignet. Die Vorteile gegenüber stationären Berechnungen liegen bei der Berücksichtigung des tatsächlichen Wellenvolumens und der möglichen Darstellung von Retentionseffekten.

Die Erstellung eines numerischen Modells erfolgt durch Zusammenführung der Datengrundlagen. Ist ein plausibles, kalibriertes und im Idealfall validiertes Modell vorhanden, kann darauf aufbauend die Bearbeitung der eigentlichen Fragestellungen durchgeführt werden.

Im Allgemeinen werden die Prozesse in Fließgewässern bzw. die entsprechenden Modelle durch Erhaltungssätze beschrieben. Es handelt sich hierbei um partielle Differentialgleichungen, welche komplexe, kontinuierliche Verläufe in Raum und Zeit darstellen. Mithilfe der Programme werden die Gleichungen durch Diskretisierung in eine lösbare Form gebracht (finite Recheneinheiten).

Das Lösungsgebiet wird hierzu in einzelne Elemente zerlegt, auf denen die Differentialgleichungen zu algebraischen Gleichungen reduziert werden können. Die kontinuierliche Funktion wird also nur noch an bestimmten Stellen berechnet.

Basis aller Berechnungsmethoden ist die Diskretisierung mathematischer Formulierungen der Erhaltungssätze und ihrer Randbedingungen auf einem strukturierten Rechengitter. Die Diskretisierung wird in Raum und Zeit durchgeführt.

Bei der zeitlichen Diskretisierung numerischer Modelle können implizite und explizite Verfahren zur Anwendung kommen. Die expliziten Verfahren beziehen sich bei der Lösung individueller Parameter an einem Knoten nur auf den vorangegangenen Zeitschritt, bei dem bereits eine Lösung vorliegt. Bei impliziten Verfahren hingegen werden die einzelnen Parameter an einem Knoten anhand des vorangegangenen sowie des aktuellen Zeitschritts ermittelt. Diese Verfahren erlauben im allgemeinen die Verwendung von größeren Zeitschritten, erfordern folglich jedoch einen höheren Rechenaufwand. (vgl. [20])

Durch die entsprechende Dateneingabe werden eine Vielzahl von Informationen über das lokale System, wie z.B. topographische und hydrologische Daten, an das Programm weitergegeben. Zur Lösung des abstrakten Gleichungssystems müssen diese Eingangsdaten angepasst werden. (vgl. [21])

Es ist zu beachten, dass die Lösung hier von der Zeitvariablen t und der Ortsvariablen xabhängt. Deshalb werden durch die partiellen Differentialgleichungen instationäre Prozesse beschrieben. Zur eindeutigen Lösung dieser partiellen Differentialgleichungen werden sowohl Anfangs- als auch Randbedingungen für alle auftretenden Unbekannten benötigt. Diese setzen sich z.B. aus Angaben über zeitliche Zuflüsse Q(t) und Wasserständen h(t) zusammen.

Die für die jeweiligen Berechnungsszenarien anzusetzenden hydraulischen Anfangsund Randbedingungen werden gesetzt und die gegebenenfalls zu untersuchenden geometrischen Veränderungen wie Bettaufweitung, Vorlandabsenkungen, Schutzbauten etc. eingearbeitet. Darüber hinaus muss die Systemgeometrie bekannt sein, die durch Profile, Bauwerke und weitere Geländedaten bestimmt wird. (vgl. [22])

Nach Durchführung der Berechnung liegen die Abflussverhältnisse in numerischer Form vor und müssen in der Regel vor der weiteren Interpretation und Auswertung visualisiert werden. Durch die Verbindung mit topographischen Daten aus einem Geoinformationssystem lassen sich z.B. die Überschwemmungsflächen für unterschiedliche Abflüsse darstellen. (vgl. [10, 21, 23])

Zur Berechnung der Auswirkungen zusätzlicher Retentionsräume auf den Hochwasserschutz für die Altstadt von Stolberg stehen zwei verschiedene Programme zur Verfügung. Zum einen das instationäre Hydraulikprogramm SOBEK und zum anderen ein von Hydrotec neu entwickelter hydrodynamischer Rechenkern (RK). In beiden Fällen wird eindimensional instationär gerechnet. Sowohl SOBEK als auch der von Hydrotec entwickelte RK basieren auf den Flachwassergleichungen nach Saint-Venant für instationären Gerinneabfluss. Dieses Gleichungssystem besteht aus der Kontinuitätsgleichung und der Impulsgleichung und bildet die Grundlage für die hydraulischen Berechnungsverfahren des Hochwasserwellenablaufs in Flüssen.

Kontinuitätsgleichung (Massenerhaltungsgleichung):

"Die Differenz aus Zufluss und Abfluss über die Länge dx ist gleich der Änderung des Speichervolumens je Zeiteinheit." [24]

$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} - q = 0 \tag{2}$$

mit:

A	Querschnittsfläche des Wasserkörpers	$[m^2]$
Q	Durchfluss	$\left[\frac{m^3}{s}\right]$
t	Zeit	[s]
x	Weg in Fließrichtung	[m]
q	lateraler Zufluss/Abfluss	$\left[\frac{m^2}{s}\right]$

Impulsgleichung (Bewegungsgleichung):

"Die Impulsänderung eines Massekörpers ist gleich der Summe der auf ihn einwirkenden Kräfte."[24]

$$\underbrace{\frac{\partial \left(\frac{Q^2}{A}\right)}{\partial x}}_{\text{konvektive Beschleunigung}} + \underbrace{\frac{\partial Q}{\partial t}}_{\text{lokale Beschleunigung}} + \underbrace{gA\frac{\partial h}{\partial x}}_{\text{Druckterm}} - gA(\underbrace{I_E}_{\text{Reibung}} - \underbrace{I_S}_{\text{Gravitation}}) = 0 \quad (3)$$

mit:		
g	Erdbeschleunigung ($\approx 9, 81 \frac{m}{s^2}$)	$\left[\frac{m}{s^2}\right]$
h	Wassertiefe	[m]
I_E	Energieliniengefälle (auch S_f)	[-]
I_S	Neigung der Sohle	[-]

Das Gleichungssystem basiert auf folgenden Annahmen:

- eindimensionale Strömung
- Geschwindigkeitsverteilung über Abflusshöhe ist gleichmäßig
- Freispiegelabfluss
- Energie-, Wasserspiegel- und Sohlgefälle sind relativ klein
- Gerinnesohle, -profil und -gefälle sind über den zu berechnenden Gerinneabschnitt und über die Zeit konstant.

Abbildung 7.1: Bilanzierung für einen Wasserkörper Quelle: Krebs, Peter (2008), S.4 [24] (eigene Darstellung)

Die Integration der Saint-Venant-Gleichung, um das Abflussverhalten über Raum und Zeit vorherzusagen, ist nur mit numerischen Methoden möglich. Sie ist wegen der starken Nicht-Linearität des Gleichungssystems im Allgemeinen schwierig, obwohl zunehmende Rechenleistungen den praktischen Einsatz erleichtern.

Aus diesem Grund wird die Impulsgleichung oft in vereinfachter Form gelöst.

Um die Wellenausbreitung im Gerinne zu untersuchen, muss die Kontinuitätsgleichung, die in Abbildung 7.1 bildlich dargestellt ist, immer in ihrer vollen instationären Form erhalten bleiben. Dazu können aber verschiedene Approximationsgrade der Impulsgleichung angewandt werden. (vgl. [24, 25])

$\frac{\partial (\frac{Q^2}{A})}{\partial x} + \frac{\partial Q}{\partial t} + gA\frac{\partial h}{\partial x} -$	$-gA(I_E - I_S) = 0$	$\frac{\partial Q}{\partial x} + \frac{\partial A}{\partial t} - q = 0$
	Normalabfluss	
,	kinematische We	llenapproximation
	diffuse Wellenappro	ximation

dynamische Wellenapproximation (St. Venant)

Die zwei Unbekannten in den beiden Gleichungen sind A(x,t) und Q(x,t), wobei die zusätzlichen Variablen, z.B. h und I_e jeweils bekannte Funktionen von A bzw. Q sind. Zur Berechnung der sich einstellenden Geschwindigkeit v für einen bestimmten Wasserstand h kann sowohl die Formel nach Manning-Strickler angewandt werden, als auch das Fließgesetz nach Darcy-Weisbach. Letzteres liefert genauere Ergebnisse und ist wissenschaftlich fundierter. (vgl. [25])

7.1 SOBEK

Die folgenden Ausführungen sind überwiegend dem User Manual der Software SOBEK entnommen. (vgl. [26])

SOBEK ist ein modular aufgebautes Softwarepaket für die integrierte Simulation von ein- und zweidimensionalen Prozessen in Fließgewässern. (vgl. [27]) Das Programm ist eine Entwicklung von WL | Delft Hydraulics ¹ in enger Kooperation mit dem nationalen niederländischen Institut für Wassermanagement und Abwasserbehandlung und unterteilt sich in die verschiedenen Produktlinien River, Rural und Urban.

Es ist unter anderem ein Instrument für die Hochwasserberechnung und bietet die Möglichkeit sowohl stationäre ungleichförmige als auch instationäre Strömungen in Fließgewässern zu berechnen, weshalb es speziell an dieser Stelle zur Untersuchung der großräumigen Auswirkungen von Retentionsmaßnahmen auf den Hochwasserablauf geeignet ist.

Die Abflussberechnungen von SOBEK beruhen auf den bereits eingeführten Saint-Venant-Gleichungen, die hier vollständig gelöst werden. Die Bewegungsgleichung berücksichtigt dabei die lokale und konvektive Beschleunigung, das Wasserspiegelgefälle, Energieverluste durch die Rauheit der Gewässersohle, durch Windeffekt und durch weitere lokal beschränkte Einflussfaktoren sowie die Dichte.

Die Lösung erfolgt numerisch mithilfe des sogenannten Delft-Schemas, welches im SOBEK-Handbuch nicht im Detail erläutert wird. Dennoch wird insbesondere auf die Unempfindlichkeit des Delft-Schemas hingewiesen, welches Phänomene wie Flut und schießenden Abfluss berechnen kann und für jeden Zeitschritt ein Ergebnis liefert. Dabei ist die Genauigkeit der Ergebnisse von der Größe der einzelnen Rasterzellen abhängig. Die zeitliche Diskretisierung beruht auf einem expliziten Verfahren. Dabei werden alle

¹2008 Zusammenschluss von vier niederländischen Organisationen zu Deltares, einem unabhängigen Institut für Entwicklung.

bekannten Variablen eines Zeitschritts verwendet, um eine Unbekannte des nächsten Zeitschritts zu berechnen.

Es ist ein eindimensionales instationäres SOBEK-Modell aufgebaut worden.

Dieses besteht aus einem Berechnungsnetz von Fließstreckenabschnitten, die an Verbindungsknoten miteinander verbunden sind.

In jedem Fließstreckenabschnitt werden Berechnungspunkte definiert (*Calculati*on Points), die das Raster für die Simulation bilden. Die Bewegungsgleichung und Kontinuitätsgleichung werden numerisch in diesem Raster gelöst, welches die hydraulischen Zustände an den Berechnungspunkten und den Fließabschnitten darlegt. Dabei werden die resultierenden Wasserstände jeweils an den Punkten (Schnittpunkt Profilspur und Gewässerachse) und die Abflüsse an den Fließstreckenabschnitten definiert.

Die Geometrie des Gewässers wird durch eine Serie aufeinander folgender Querprofile festgelegt, deren Lage über die Grundstruktur aus Knoten (*Nodes*) und Fließabschnitten (*Reaches*) definiert wird. Zwischen zwei benachbarten Profilen wird der Querschnitt des Flussschlauches aus den gegebenen Informationen interpoliert.

An jedem Knoten muss eine Bedingung für den Wasserstrom festgelegt werden, um die Gleichungen unter Berücksichtigung der Anfangs- und Randbedingungen zu lösen. Folglich sind Informationen über die Strömungen an den Grenzen erforderlich. Die Gerinneströmung, die in der Realität dreidimensional abläuft, kann somit auf eine Dimension reduziert abgebildet werden.

Eine detaillierte Erläuterung und Darstellung des grundsätzlichen Aufbaus eines SOBEK-Modells erfolgt in Kapitel 8.1.

Im Rahmen der vorliegenden Masterarbeit wurde SOBEK-Rural verwendet, welches in ländlichen Gebieten zum Einsatz kommt.

Für die durchgeführten Untersuchungen hinsichtlich der Auswirkungen von Retentionsmaßnahmen ist SOBEK als instationäres Programm gut geeignet, da insbesondere die Berechnung des schießenden Abflusses an der Vicht von Bedeutung ist.

7.2 Hydrodynamischer Rechenkern

Informationen über die Funktionsweise des Programms sind überwiegend aus der Dokumentation zur Software-Erstellung entnommen. (vgl. [28])

Der hydrodynamische Rechenkern wird seit Herbst 2013 von der Firma Hydrotec in Aachen entwickelt. Das ursprüngliche Ziel war hierbei Möglichkeiten zur Abbildung dynamischer Rückstaueffekte in NASIM aufzuzeigen.

Der hydrodynamische Rechenkern soll als auswählbare Berechnungsmethode in NASIM integriert werden, sodass hydrologische Modelle mit wenig Aufwand und fehlerfrei mit hydrodynamischen Modellen verknüpft werden können. Folglich handelt es sich im Kern um eine Programmbibliothek, die nicht von einem Endanwender direkt nutzbar ist.

Da eine entsprechende Implementierung jedoch noch nicht erfolgt ist, fungiert der RK

bislang als eigenständiges Programm, dessen Eingangsdateien vorab individuell erstellt werden müssen.

Der RK beruht ebenfalls auf den Saint-Venant-Gleichungen, die jedoch vereinfacht werden. Berücksichtigt man bei der Strömungsberechnung sowohl die Kontinuitätsgleichung als auch alle Terme der Bewegungsgleichung, wird von einer dynamischen Welle gesprochen (keine Vereinfachung). Die Wellenfortpflanzung ist dann sowohl in Fließrichtung als auch gegen die Fließrichtung möglich $(\pm x)$.

Zur Darstellung der angewandten Berechnungsmethode werden die Flachwassergleichungen nach Saint-Venant umgeformt.

Aus der Kontinuitätsgleichung (2) folgt:

$$\frac{\partial Q}{\partial x} + \frac{\partial A}{\partial t} = q .$$
(4)

Die Bewegungssgleichung (3) lässt sich umformen zF:

$$\frac{\partial(\frac{Q^2}{A})}{\partial x} + \frac{\partial Q}{\partial t} + gA\frac{\partial y}{\partial x} - gAS_f = 0.$$
(5)

mit:

y Geländehöhe des Wasserspiegels [m](Sohlhöhe + Abflusstiefe)

Da sich die beiden Terme der konvektiven Beschleunigung

$$\frac{\partial(\frac{Q^2}{A})}{\partial x} \tag{6}$$

und der lokalen Beschleunigung

$$\frac{\partial Q}{\partial t}$$
 (7)

beinahe aufheben, führt ihre Vernachlässigung in der Regel nur zu kleinen Fehlern. Diese Vereinfachung wird als Diffusionswelle bezeichnet und kommt im hydrodynamischen RK zur Anwendung.

Mit der diffusen Wellenapproximation können Rückstaueffekte stromaufwärts modelliert werden. Zusätzlich zum Sohlgefälle und der Reibung wird auch der Druckgradient berücksichtigt. Der Beschleunigungsterm und die Wellenfortpflanzung werden jedoch außer Acht gelassen, sodass lediglich eine partielle Differentialgleichung zu lösen ist, um die durchströmte Fläche A oder die Wasserspiegellage y zu ermitteln. (vgl. [29]).

Für die Herleitung wird außerdem angenommen, dass das Profil nicht trocken fällt, d.h. es gilt A > 0.

Insgesamt folgt somit:

$$\frac{\partial}{\partial t}A + \frac{\partial}{\partial x}Q = q$$

$$\frac{\partial}{\partial x}y = S_f.$$
Modellgleichungen
(8)

Die Impulsgleichung, aufgelöst nach S_f , kann in die Formel für den Durchfluss nach Darcy Weisbach oder nach Manning-Strickler eingesetzt werden. Für den Abfluss im hydraulischen Modell gilt daher der Zusammenhang:

$$Q = sign(S_f) \cdot C_{vel}(A) \cdot A \cdot \sqrt{|S_f|} , \qquad (9)$$

wobei eine von der Fläche abhängige Geschwindigkeit $C_{vel}(A)$ genutzt wird. Die Größe $C(A) = C_{vel}(A) \cdot A$, welche die Transportfähigkeit des Profils beschreibt, wird Conveyance genannt.

Mit dem Ansatz nach Darcy-Weisbach wird diese bestimmt als:

$$C_{DarcyWeisbach}(A) = \sqrt{\frac{8g}{\lambda}} \cdot \sqrt{R(A)} \cdot A .$$
(10)

Sie wird für jedes Querprofil aus der Geometrie und den Rauheiten aus Jabron nach Merkblatt DVWK 220 berechnet.

Die auftretenden Widerstandskräfte können durch den Reibungsbeiwert λ ausgedrückt werden. Dieser ist abhängig von der Reynoldszahl (viskose Einflüsse) und der Sohlrauheit.

Neben dem Rauhigkeitsansatz geht der hydraulische Radius in die Berechnung der Reibungsverluste ein. Dieser beschreibt das Verhältnis zwischen durchflossenem Querschnitt und benetztem Umfang ($R = AU^{-1}$) und erfasst damit die Geometrie des jeweiligen Profils. Entsprechend wird für jede Strömungssituation (variierende Wasserstände) ein neuer Reibungsbeiwert berechnet und für die Ermittlung der mittleren Fließgeschwindigkeit verwendet.

Für das hydrodynamische Modell wird die Conveyance-Geschwindigkeit C_{vel} als Schnittstelle zu einem hydraulischen Modell ohne Zeitkomponente genutzt. Exportierte Profile aus einem vorliegenden Jabron-Modell liefern durch Einlesen von xml-Dateien somit die jeweiligen Reibungsverluste. Die Conveyance wird nicht als ein alternativer Ansatz zu den bekannten Fließformeln benutzt, sondern als Ansatz, mit dem von der konkret verwendeten Fließformel abstrahiert werden kann. [13]

Durch Einsetzen der zweiten Modellgleichung (8), also $\frac{\partial}{\partial x}y = S_f$ in (9) erhält man

$$Q = sign(\frac{\partial}{\partial x}y) \cdot C_{vel}(A) \cdot A \cdot \sqrt{\left|\frac{\partial}{\partial x}y\right|} .$$
(11)

Folglich ist der Abfluss Q eine von der Wasserspiegellage y und der durchströmten Fläche A abhängige Funktion. Die Wasserspiegelhöhe y ist wiederum eine Funktion von der Position entlang der Gewässerachse x und der durchströmten Fläche A, sodass Q als Funktion von x und A dargestellt werden kann. Somit wird (8) zu

$$\frac{\partial}{\partial t}A + \frac{\partial}{\partial x}Q(A) = q.$$
(12)

Die erhaltene Formel (12) ist nun nur noch von der durchströmten Fläche A abhängig. Aufgrund der Definition von Q ist (12) eine nicht-lineare partielle Differentialgleichung, welche durch den RK gelöst wird. (vgl. [28])

Dabei wird die durchströmte Fläche berechnet und sowohl die Wasserspiegellage y als auch der Abfluss Q können aufgrund der direkten Abhängigkeit ermittelt werden.

Wie im SOBEK-Modell erfolgt auch hier die Berechnung von y an den Profilen bzw. Berechnungspunkten und von Q an den Fließabschnitten, da die resultierende diffuse Wellengleichung im Rechenkern durch ein versetztes Gitter im Ort gelöst wird.

Die Diskretisierung erfolgt dabei anhand der Kilometrierung des Fließgewässers. Es können sowohl Verzweigungen als auch Zusammenflüsse dargestellt werden (siehe Abbildung 7.2).

Abbildung 7.2: Ortsdiskretisierung eines Fließgewässers

Quelle: Hydrotec (2014)

Wie bereits angeführt, werden Informationen über die einzelnen Profile bzw. ihre durchströmten Querschnittsflächen unmittelbar aus Jabron entnommen. Es besteht somit lediglich eine Abhängigkeit von der Zeit.

Die zeitliche Diskretisierung erfolgt mithilfe des impliziten Euler-Verfahrens. Die angewandten Verfahren ermöglichen große Zeitschritte von einigen Minuten, wodurch sich die Rechenzeit verkürzt.

8 Durchführung der Modellarbeiten

8.1 SOBEK-Modell

Begriffe einzelner Teile des Modells wurden aus SOBEK übernommen und nicht übersetzt (*Boundary, Reach, Connection Node*, etc.). Neben der schematischen Darstellung der Elemente in Abbildung 8.1 sind detaillierte Erläuterungen zu den einzelnen Begriffen im Benutzerhandbuch zu finden.

Abbildung 8.1: Netzwerk-Elemente (*Network*) Quelle: SOBEK manual S.561 [26], (eigene Darstellung)

Das in der Aufgabenstellung aufgeführte, bestehende SOBEK-Modell konnte nicht für die weitere Bearbeitung genutzt werden, da dieses auf einer anderen Jabron-Datenbank basiert, welche Unterschiede zu den vorliegenden Daten aus der Vorstudie aufweist. Darüber hinaus ist das existente Modell nicht auf den deutlich höheren Abfluss des HQ_{100} ausgelegt, da für die Gütemodellierung von Niedrigwasserabflüssen unter anderem die Profile verkürzt wurden.

Daher wurde im Rahmen der Bearbeitung der vorliegenden Masterarbeit ein von Grund auf neues SOBEK-Modell erstellt.

8.1.1 Ist-Zustand

Für den Aufbau des neuen Modells wurde in einem ersten Schritt der betrachtete Gewässerabschnitt als shape-file importiert (GSK3C). Die beiden *Boundary Nodes* markieren die äußeren Grenzen der hydraulischen Schematisierung.

Darüber hinaus wurden alle offenen Profile im y-z Format aus der Jabron-Datenbank exportiert. Da eine Übernahme der Bauwerke aus dem bestehenden SOBEK-Modell ebenfalls nicht möglich war, wurden die Bauwerke separat als tabulierte Profile aus Jabron exportiert und bearbeitet. Durch den Export aus Jabron liegen 3 Dateien vor, die händisch bearbeitet werden mussten.

Im Anschluss wurden die Profile ebenfalls in das SOBEK-Modell importiert und zusätzlich als *Calculation Points* festgelegt. Hierdurch werden alle *Reaches* in einzelne *Reach Segments* aufgeteilt, sodass im vollständigen Modell die Wasserspiegellagen jeweils an den Profilen und die Abflüsse jeweils auf den entsprechenden Fließstreckenabschnitten berechnet werden können.

Zur Differenzierung einzelner *Reaches* wurden an den Teilgebietsgrenzen zusätzliche *Connection Nodes* eingefügt. Somit ist ein diffuser lateraler Zufluss über die Fließstrecke des jeweiligen Teilgebietes möglich, welcher dem Abfluss entspricht, der innerhalb des entsprechenden Gebietes generiert wird (TG-Abfluss).

Des weiteren wurden Lateral Flow Nodes gesetzt, um punktuelle Zuflüsse einzuleiten. Diese lateralen Zuflüsse stammen aus Teilgebieten, die nicht im Hauptstrang liegen und wurden durch Subtraktion der Zu- und Abflüsse erfasst. Da die Zeitschritte der Ganglinien nicht in allen Fällen identisch sind, wurden die entsprechenden Einleitungen vorab mithilfe von TimeView errechnet. Alle Zuflüsse mussten zudem händisch in das Modell eingefügt werden, da diese nicht in einem von SOBEK verwendeten Format vorlagen (uvf-, und Text-Dateien) und vorab in ein kompatibles Format umgewandelt werden mussten. Die Lateral Flow Nodes befinden sich direkt vor den zugehörigen Teilgebieten, bzw. Connection Nodes.

An der Mündung in die Inde, also am zweiten *Boundary Node* wurde als Randbedingung eine Q(h)-Beziehung festgelegt, die anhand des bestehenden Gütemodells ermittelt werden konnte. Um einem Abbruch der Simulation entgegenzuwirken, ist ein anfänglicher Wasserstand von 0,3 m angenommen worden.

Da die Bauwerke in der genutzten SOBEK-Version nur als geschlossene und nicht als überströmbare Profile dargestellt werden können, ergaben erste Rechenläufe mitunter erhebliche Einstauungen. Einzelne Brücken werden in Realität überströmt, fungierten jedoch im Modell als Drossel.

Um die überströmbaren Profile dennoch realitätsnah darzustellen, wurde nach der Methode von Preissmann ein fiktiver schmaler Spalt (1 cm) im Scheitelbereich der geschlossenen Profile vorgesehen, der so genannte Preissmann-Slot. (vgl. [30])

Auch der RK rechnet nach dieser Methode an überströmbaren Profilen. Die Wasserspiegellinie und die Drucklinie stimmen in Folge dieser Annahme überein, sodass verbleibende Einstauungen auf eine tatsächliche Drossel-Funktion einzelner Brücken hindeuten. Betroffen ist hierbei vor allem der Ortseingang von Stolberg.

Für jedes individuelle Bauwerk kann in SOBEK lediglich eine homogene Rauheit festgelegt werden. Jabron ermöglicht hingegen differenzierte Rauheiten zwischen unterschiedlichen Vermessungspunkten, sodass es hier erneut zu verschiedenen Ausgangssituationen kommt.

Nach wiederholten Testrechnungen, bei denen jeweils verschiedene Rauheiten angesetzt wurden, konnte festgestellt werden, dass entsprechende Unterschiede in den Ergebnissen äußerst gering sind und SOBEK diesbezüglich nicht sensitiv reagiert.

Es wurde somit für alle Bauwerke eine einheitliche Rauheit gewählt (Beton), da die Berechnungen einzelner Mittelwerte sehr aufwendig sind, in der Regel jedoch keine Auswirkungen auf die Wasserspiegellage haben.

Bei der Modellerstellung wurde mit SOBEK vorab eine stationäre Rechnung gestartet, die auf mögliche Modellfehler hinweist.

8.1.2 Planzustand

Der grundsätzliche Modellaufbau des SOBEK-Modells im Planzustand erfolgt ähnlich zu dem im Ist-Zustand.

Vorab wurde jedoch die Gewässerachse inklusive aller gesetzten *Nodes* aus dem bereits erstellten SOBEK-Modell (Ist-Zustand) exportiert.

Dabei dienen die Lateral Flow Knoten zur Einleitung punktueller seitlicher Zuflüsse, während die Connection Nodes den Fluss in einzelne Reaches unterteilen und die Grenzen der jeweiligen Teilgebiete darstellen.

Da der Verlauf der Vicht unbeeinflusst bleibt, konnten sowohl die Gewässerachse als auch alle *Nodes* übernommen werden.

Darüber hinaus wurden sechs zusätzliche *Connection Nodes* in das neue Modell eingefügt, an denen die Verzweigungen bzw. die Vereinigungen der Nebengerinne liegen.

Die im GIS erstellten Gewässerachsen der drei NG (siehe Kapitel 6.3.2.2) wurden in das SOBEK-Modell geladen und mithilfe der *Connection Nodes* an die Gewässerachse der Vicht angebunden.

Im Anschluss wurden die bearbeiteten Profile des Planzustandes erneut aus Jabron exportiert. Da die Bauwerke nicht weiter bearbeitet wurden und somit identisch sind, konnten diese entsprechend übernommen werden.

Alle Profile wurden, wie bereits bei der Erstellung des Modells im Ist-Zustand, in das neue Modell importiert und als *Calculation Points* festgelegt.

Auch die Zu- und Abflüsse der Modelle im Ist- und im Planzustand stimmen überein und konnten folgerichtig ebenfalls unverändert übernommen werden.

8.2 Aufbau des RK-Modells

Zur Erstellung des Modells mit dem hydrodynamischen RK wurden vier xml-Dateien erstellt und bearbeitet:

- Network,
- Source,
- Simulation,
- BoundaryCondition.

8.2.1 Ist-Zustand

Die Network-Datei wird als einzige vorab aus Jabron exportiert. Informationen hinsichtlich der Geometrien, der Rauheiten sowie des Bewuchses der Profile werden dabei umgerechnet in für den RK brauchbare Funktionen, also y(A) und C(A) und für jedes individuelle Profil als Stützstelle hier hinterlegt.

Zudem werden die Profile mithilfe der entsprechenden Kilometrierung in den korrekten Zusammenhang gesetzt bzw. in die richtige Reihenfolge gebracht. In der *Network*-Datei sind somit alle maßgeblichen Informationen über den Gewässerverlauf enthalten.

In die exportierte Datei wurde neben der händisch eingetragenen Q(h)-Beziehung am letzten Profil vor der Mündung in die Inde ebenfalls ein anfänglicher Wasserstand von 0,3 m festgelegt, um identische Bedingungen wie im SOBEK-Modell zu gewährleisten.

Die Source-Datei enthält Zeitreihen aus NASIM (TG-Abfluss), welche durch den WVER zur Verfügung gestellt wurden und nicht selbstständig berechnet wurden.

Die aufgeführten Teilgebietsabflüsse werden jeweils im dazugehörigen Teilgebiet generiert und per Quellterm, in Abhängigkeit von der Fließstrecke, auf die Profile verteilt. Diese Methode stellt einen Unterschied zum hydrologischen Modell dar, da die entsprechenden Abflüsse dort ebenfalls punktuell am Ende des Teilgebietes eingeleitet werden.

Alle Teilgebiete wurden händisch entlang der Fließstrecke über die Kilometrierung definiert, was dem Programm eine Zuordnung einzelner Profile zu den entsprechenden Teilgebieten ermöglicht.

Die entsprechenden Zeitreihen liegen im uvf-Format vor und können vom RK ohne Probleme eingelesen werden.

In der *Simulation*-Datei sind alle gewählten Simulationsoptionen enthalten. Neben der betrachteten Simulationszeit sowie den dazugehörigen Zeitschritten sind hier Angaben zu den gewünschten Ausgabedateien manuell aufzuführen.

Für den direkten Vergleich mit den Ergebnissen des SOBEK-Modells wurden die Wasserspiegel H [mNN] an ausgewählten Profilen sowie die Abflüsse Q $[\frac{m^3}{s}]$ auf der Strecke zwischen den entsprechenden Profilen betrachtet.

Die BoundaryConditions-Datei stellt den aufwendigsten Teil des Modellaufbaus dar. Jegliche lateralen Zuflüsse sind händisch aus dem bestehenden NASIM-Modell zu übertragen.

Die vom WVER zur Verfügung gestellten Daten umfassen lediglich die Ergebnisse aller Teilgebiete im Hauptstrang der Vicht. Nicht enthaltene Zuflüsse aus anderen Teilgebieten wurden demnach durch Subtraktion der Zu- und Abflüsse erfasst (SE_Zufluss / SE_Abfluss).

Unter Zuhilfenahme von GIS und NASIM wurden diese punktuellen Einleitungen einzelnen Profilen zugeordnet. Anzugeben waren hierbei die berechneten Zuflüsse, die jeweiligen Profilnummern sowie die dazugehörigen Entfernungen der Profile zur Teilgebietsgrenze, welche vorab im GIS rausgemessen wurden.

Zur Überprüfung der Ergebnisse wurde ähnlich wie bei der Erstellung des SOBEK-Modells ebenfalls ein zusätzliches stationäres Modell im RK erstellt. Dabei wurden alle lateralen Zuflüsse sowie alle diffusen Zuflüsse der Teilgebiete jeweils als konstanter Wert punktuell zu Beginn des entsprechenden Teilgebiets eingeleitet.

8.2.2 Planzustand

Der Aufbau des Modells für den Planzustand erfolgte identisch zu dem des Modells für den Ist-Zustand.

Um die bearbeiteten Profile des Planzustandes im RK zu erfassen, musste erneut die Network-Datei aus dem Jabron-Modell exportiert werden.

Lediglich die Integration der drei erstellten Nebengerinne, auf die in Kapitel 6.3.2.2 detaillierter eingegangen wird, erforderte zusätzliche Arbeit sowie eine Weiterentwicklung des bestehenden Programms.

Da die Kilometrierung der Profile der Nebengerinne unabhängig von der Kilometrierung der Vicht erfolgt, wurde in der *Network*-Datei jeweils eine *Stream ID* bzw. ein individueller Name für jedes Gerinne festgelegt.

Darüber hinaus wurde mithilfe von *Connections* bzw. Verbindungen, dokumentiert, welche Profile sowohl an den Verzweigungen als auch an den Vereinigungen aufeinanderfolgen und welchen Abstand sie zueinander haben. Infolge der drei Nebengerinne wurden demgemäß 6 *Connections* gesetzt, die ebenfalls in der *Network*-Datei aufgeführt wurden.

9 Ergebnisse

Im folgenden Kapitel werden die Ergebnisse der verschiedenen Programme dargestellt und miteinander verglichen.

Im Fokus der Betrachtung liegen jedoch die Ergebnisse der SOBEK-Modelle im Ist-Zustand sowie im Planzustand, auf deren Grundlage die Bewertung der Wirksamkeit einer möglichen Bereitstellung zusätzlicher Retentionsräume erfolgt (Kapitel 9.2).

9.1 Dokumentation und Plausibilisierung der Ergebnisse

Neben der umfangreichen Abflusstabelle in Anhang A.1, in der der jeweils maximale Abfluss sowie die maximale Wasserspiegellage an jedem einzelnen Profil zusammengefasst sind, erfolgt die grafische Darstellung der Ergebnisse im folgenden Kapitel mithilfe von Ganglinien und Auszügen des Längsschnittes.

Da der Längsschnitt lediglich eine Momentaufnahme an einer ausgewählten Stelle aufzeigt, wurde aus dem maximalen Wasserstand aller Profile eine Wasserspiegellinie zusammengesetzt, die überall den maßgebenden maximalen Wasserstand berücksichtigen.

9.1.1 SOBEK-Modell im Ist-Zustand

Bei der Betrachtung einer HQ_{100} -Welle zeigen die Ergebnisse des SOBEK-Modells bereits im Ist-Zustand deutliche Unterschiede zu denen des Jabron-Modells.

Für einen direkten Vergleich der verwendeten Programme ist eine separate Analyse der Ergebnisse bei gleicher Datengrundlage erforderlich. Somit ist gewährleistet, dass Diskrepanzen der Wasserspiegel nicht ein Resultat des geänderten Abflusses, der zusätzlich generierten Profile oder anderer Änderungen der Datenbasis sind.

Da das vom WVER bereit gestellte Jabron-Modell weiter modifiziert wurde, erfolgt dieser Vergleich folglich zwischen dem neu erstellten SOBEK-Modell und dem bearbeiteten Jabron-Modell und nicht dem aus der Vorstudie.

Die berechneten Wasserspiegellagen aus SOBEK liegen im Durchschnitt mit etwa 30 cm klar unter denen aus Jabron. Einzig am Ortseingang von Stolberg wurde in SOBEK über mehrere hundert Meter ein höher Wasserspiegel als in Jabron errechnet. Beispielhaft wurden beide Fälle in Abbildung 9.1 dargestellt.

Die verschiedenen Rechenansätze der verwendeten Programme, SOBEK und Jabron, die in den Kapiteln 6.1.2 und 7.1 bereits kurz vorgestellt wurden, führen offensichtlich zu deutlichen Diskrepanzen. Dabei sind insbesondere die programminternen unterschiedlichen Vorgehensweisen bei schießendem Abfluss zu nennen.

Aufgrund des starken Gefälles liegt im gesamten Gebiet immer wieder schießender Abfluss vor. Speziell im Oberwasser wird fast durchgängig eine Froude-Zahl ≥ 1 errechnet, wohingegen im Unterwasser immer wieder ein Fließwechsel bzw. Wechselsprung stattfindet, wie Abbildung 9.2 zeigt.

(a) Vicht km 20,6

(b) Vicht km 3,5 am Ortseingang Stolberg

Abbildung 9.1: Längsschnittdarstellung der WSPL im Ist-Zustand

Während der Wechsel vom Strömen zum Schießen ohne signifikante Fließverluste stattfindet, führt der Wechsel vom Schießen zum Strömen zu großen Verlusten durch Reibung und Verwirbelung.

Ist dies der Fall, setzt Jabron, wie bereits in Kapitel 6.1.2 erläutert, für die Oberwassertiefe die Grenztiefe ein, bis wieder strömender Abfluss ermittelt wird. Die Verluste des Wechselsprungs werden folglich nicht berechnen. (vgl. [14])

SOBEK hingegen berechnet den Wasserspiegel, der somit grundsätzlich tiefer liegt. Die Belastbarkeit der eher konservativen Ergebnisse aus Jabron ist an diesen Stellen unter Umständen kritisch zu betrachten.

Deutliche Unterschiede sind ebenfalls mit der fehlenden Berücksichtigung des Bewuchses in SOBEK bzw. mit den angenommenen Trennwandrauheiten in Jabron zu begründen. Bewuchs kann zu erheblichen Verlusten durch Reibung und Verwirbelungen führen, die das Wasser verlangsamen und den Wasserspiegel steigen lassen. Dieser wird bei der Modellierung in SOBEK jedoch vollständig ignoriert. Auf eine Erhöhung der Rauheiten im SOBEK-Modell, um fehlenden Bewuchs auszugleichen, wurde im Rahmen der Modellerstellung verzichtet. Da ein derartiger Aufschlag nicht pauschal möglich ist und das Modell unter Umständen noch weiter verfälscht, wurde diese Alternative im Rahmen der vorliegenden Arbeit nicht weiter untersucht.

Zudem existieren vereinzelt Geometriefehler, da SOBEK die Begrenzthöhen aus dem bestehenden Jabron-Modell nicht übernehmen kann und es somit zu Ausuferungen kommt, die in der Realität erst bei höheren Wasserspiegellagen auftreten. Eine mögliche Alternative wäre, die SOBEK-Profile an den Begrenzthöhen abzuschneiden. In diesem Fall käme es jedoch unter Umständen zu einem größeren Fehler, da in Anbetracht der untersuchten Hochwassersituation die vorgegebenen Begrenzthöhen des Jabron-Modells in der Regel überströmt werden.

Zudem werden die Ergebnisunterschiede der beiden Programme jeweils an den Bauwerken größer, sodass auch hier auf eine unterschiedliche Berechnungsweise geschlossen werden kann.

Obwohl alle individuellen Ein- und Auslaufverluste aus Jabron in das SOBEK-Modell integriert wurden, sind die entsprechenden Auswirkungen geringer. Ähnlich wie bei den Rauheiten an Bauwerken reagiert SOBEK hier deutlich weniger sensitiv als Jabron. Die angesetzten Verlustbeiwerte haben dort einen signifikanten Einfluss auf die Wasserspiegellage.

Die Kombination aller aufgeführten Programmunterschiede resultiert in deutlichen Wasserspiegelabweichungen.

Als zusätzliche Kontrolle, dass keine weiteren Modellfehler vorliegen, wurde mit SOBEK ebenfalls der Mittelwasserabfluss stationär berechnet. Im direkten Vergleich mit den Jabron-Ergebnissen des mittleren Abflusses zeigen sich hier lediglich sehr geringe Diskrepanzen (Abbildung 9.3), was die angeführte These hinsichtlich der Programmunterschiede unterstreicht.

Aufgrund der geringeren Fließgeschwindigkeit bzw. des überwiegend strömenden Fließ-

zustandes sowie des insgesamt niedrigeren Wasserstandes (keine Ausuferungen ins Vorland), sind die Ergebnisse aus Jabron und SOBEK hier über lange Strecken identisch, wie Abbildung 9.2 zu entnehmen ist. Einzelne lokale Abweichungen liegen im cm-Bereich.

(a) Vicht km 13,2 $\,$

(b) Vicht km 17,8

9.1.2 SOBEK-Modell im Planzustand

Die Absenkung des Vorlandes resultiert lokal in deutlich niedrigeren Wasserständen. Auffällig ist, dass die Ergebnisse des Jabron-Modells und die des SOBEK-Modells im Planzustand sichtbar näher aneinander liegen, als die jeweiligen Ergebnisse des Ist-Zustandes. Dies ist in Abbildung 9.4 an zwei verschiedenen Stellen grafisch dargestellt.

Wie Abbildung 9.2 zeigt, hat sich infolge der Maßnahmen an einigen Stellen die berechnete Froude-Zahl reduziert, wenngleich nach wie vor über viele Streckenabschnitte schießender Abfluss herrscht.

Darüber hinaus sind die gegebenen Bedingungen hinsichtlich der Rauheit bzw. des Bewuchses in beiden Modellen identisch, da die abgesenkte Waldflächen nicht erneut aufgeforstet werden, sondern der natürlichen Sukzession unterliegen (siehe Kapitel 6.3.2). Die fehlende Berücksichtigung des Bewuchsparameters im SOBEK-Modell kann hier somit keine weiteren Abweichungen verursachen.

Die Ergebnisse der verschiedenen Programme zeigen ebenfalls Diskrepanzen bei den als Nebengerinne angeschlossenen Retentionsräumen. Da die Wasserspiegellinien der instationären Modelle in den Längsschnitten aus den jeweiligen Maximalwerten der Berechnungen zusammengesetzt wurden, sind diese Unterschiede insbesondere bei der Betrachtung der Abflussganglinien sichtbar, welche in Abbildung 9.5 miteinander verglichen werden. Dabei illustrieren die roten Linien die SOBEK-Ergebnisse, während die gestrichelten schwarzen Linien die Ergebnisse des RK darstellen. Alle Graphen beziehen sich jeweils auf den Anfang der Retentionsfläche im Nebenschluss, also auf die Strecke hinter dem entsprechenden Straßendurchlass.

Es wird deutlich, dass die Abflüsse in den NG lediglich von kurzer Dauer sind (ca. 12 Stunden). Aufgrund des natürlichen Charakters des Geländes kann das Wasser streckenweise jedoch nicht komplett abgeführt werden und ein geringer Wasserstand bleibt im Modell.

Das NG 1 hingegen fällt trocken und führt in keinem der 3 Modelle Wasser (Q = 0 und H = 0). Lediglich zu Beginn der Abflusswelle wird sowohl in SOBEK als auch im RK ein geringer Abfluss suggeriert, der jedoch auf den anfänglicher Wasserstand von 30 cm zurückzuführen ist. Ein direkter Vergleich der Ergebnisse des SOBEK-Modells mit denen des RK folgt in Kapitel 10.

(a) Vicht km 13,2

(b) Vicht km 17,8

Abbildung 9.5: Abflussganglinien der Nebengerinne

9.2 Bewertung der Wirksamkeit der Maßnahmen

Das folgende Kapitel konzentriert sich für die Bewertung der Wirksamkeit der Retentionsmaßnahmen ausschließlich auf die beiden erstellten SOBEK-Modelle. Es steht der direkte Vergleich der Ergebnisse des Ist- und des Planzustandes im Fokus.

Dabei wurden ausgewählte Stellen entlang der Vicht herangezogen, die eine allgemein gültige Bewertung der Maßnahmen ermöglichen.

Entsprechend wurden zwei aufgeweitete Profile untersucht, die aufgrund ihrer Lage und den damit verbundenen äußeren Bedingungen unterschiedliche Auswirkungen der Retentionsmaßnahmen aufzeigen.

Hierbei wurde das Profil 9474 als repräsentatives Beispiel herangezogen, da es sich im Hauptstrang, parallel zu NG3 befindet und somit inmitten der Retentionsmaßnahmen liegt.

Darüber hinaus wurden die Auswirkungen der Maßnahmen an Profil 5261 untersucht. Bei der hier betrachteten Stelle handelt es sich bereits um bebautes Gebiet, welches einige letzte Flächen zur Geländeabsenkung bietet.

Da die größte Hochwassergefährdung und damit der Fokus der Betrachtung in Stolberg liegt, wurden die entsprechenden Ergebnisse hier sowohl am Ortseingang, an Profil 10790, als auch in Ortsmitte, an Profil 10490, eingehend betrachtet.

Die grafische Darstellung der Ergebnisse aller untersuchten Profile erfolgt in Form von verschiedenen Ganglinien, welche entsprechende Ergebniswerte über die Zeit angeben.

Jede Abbildung zeigt dabei neben dem Verlauf des Abflusses (a) auch den Verlauf des Wasserstandes (b) sowie den Verlauf der Geschwindigkeit (c).

Alle Ergebnisse des Ist-Zustandes werden dabei in Schwarz, alle Ergebnisse des Planzustandes in Rot dargestellt.

Aufgrund des vorliegenden hohen Reliefs sind alle Ganglinien sehr steil. Je größer das Gefälle, umso schneller steigen die Ganglinien an und umso früher erreicht das Wasser den Auslaufquerschnitt. Insgesamt handelt es sich hier um eine eher kurze Hochwasserwelle. (vgl. [31])

Abbildung 9.6 stellt die Ergebnisse an Profil 9474 (km 9,47) dar.

Diagramm (a) zeigt klare Differenzen der beiden Scheitelabflüsse. Der maximale Abfluss im Planzustand ist geringer, eine deutliche zeitliche Verzögerung bleibt hingegen aus.

Hier ist anzumerken, dass ein Großteil der Reduktion der Abflussspitze auf die Verzweigung in das parallel laufende Nebengerinne 3 zurückzuführen ist.

Der Vergleich der Integrale, bzw. der Flächeninhalte unter den Abflusskurven bestätigt, dass es sich hier nicht ausschließlich um eine Dämpfung der Hochwasserwelle infolge der Retention handelt, sondern um eine tatsächliche Abflussdifferenz. Nach einigen Kilometern mündet das Nebengerinne jedoch erneut in die Vicht.

Darüber hinaus reduziert sich der Wasserstand im Planzustand deutlich, um etwa 50 cm, wie (b) zu entnehmen ist. Eine zeitliche Verzögerung des Scheitelwertes ist jedoch auch hier nicht zu erkennen.

Die Betrachtung der Fließgeschwindigkeiten in (c) ergibt ähnliche Erkenntnisse.

Während es zu keiner zeitlichen Verschiebung des Scheitelwertes kommt, wird dieser trotzdem durch die Umsetzung des Planzustandes beeinflusst. Die Kurve ist flacher und die maximale Geschwindigkeit im Vergleich zum Ist-Zustand deutlich geringer.

Es bleibt somit festzuhalten, dass Wasserstand und Fließgeschwindigkeit durch die starke Vergrößerung des Querschnittes deutlich reduziert wurden, bei einer eher geringen Änderung im Abfluss.

Abbildung 9.7 zeigt ein anderes Resultat an Profil 5261 (km 5,26). Es handelt sich hier um das letzte aufgeweitete Profil und folglich um das Ende der Maßnahmen.

Sowohl in Diagramm (a) als auch in Diagramm (b) sind lediglich geringe Abminderungen hinsichtlich des Scheitelwertes zu erkennen. Indessen zeigt sich in beiden Fällen eine leicht nach hinten versetzte Kurve im Planzustand, was einer zeitlichen Verzögerung der Abflusswelle gleichkommt.

Deutliche Unterschiede sind hingegen hinsichtlich der Fließgeschwindigkeiten zu erkennen, wie (c) zu entnehmen ist. Hier zeigt sich zum einen eine deutliche Reduktion der maximalen Fließgeschwindigkeit sowie eine zeitliche Verzögerung des Scheitelwertes.

Die Profile 10790 (km 3,51) und 10490 (km 1,79) befinden sich beide in Stolberg und somit unterhalb aller angeschlossenen Retentionsräume.

Folgerichtig sind keine großen Unterschiede in den Ergebnissen zu erwarten. Dies wird bestätigt in den Abbildungen 9.8 und 9.9.

Neben den beiden Abflussganglinien (a), zeigen auch die Diagramme der Wasserstände (b) sowie die der Fließgeschwindigkeiten (c) ähnliche Resultate.

Alle Kurven des Planzustandes sind im Vergleich zu denen des Ist-Zustandes leicht gedämpft und zeitlich um etwa 40 min verzögert. Eine auffallende Verformung der Hochwasserwelle bleibt aus.

Infolge der Ergebnisbetrachtung an verschiedenen Stellen im Modell wird deutlich, dass die Maßnahmen des Planzustandes jeweils lokal zu deutlichen Veränderungen der Wasserspiegellage und der Fließgeschwindigkeit führen.

Der Anschluss der Retentionsflächen entspricht quasi einer Aufweitung des Gewässers. Die somit erzielten vergrößerten Abflussquerschnitte resultieren bei gleichem Durchfluss in deutlich reduzierten Wasserständen. Ungewollte Ausuferungen werden somit lokal verhindern.

Je breiter die natürlichen Retentionsräume gegenüber deren Länge sind, desto größere Verzögerungen der maximalen Scheitelabflüsse können erzielt werden. Aufgrund des steilen Geländes entlang der Vicht sind die hier gewonnenen Retentionsräume jedoch tendenziell schmal.

Dennoch verzögern die höheren Rauheiten im Vorland im Vergleich zum Hauptgerinne die Hochwasserwelle, wenngleich der zeitliche Gewinn eher gering ist. (vgl. [32])

Abbildung 9.6: Ganglinien an Profil 9474

Abbildung 9.7: Ganglinien an Profil 5261

Abbildung 9.8: Ganglinien an Profil 10790

Abbildung 9.9: Ganglinien an Profil 10490

Trotz der Reduzierung der Fließgeschwindigkeit kommt das Wasser in den gewonnenen Retentionsräumen nicht zum Stehen.

Es handelt sich folglich um eine fließende Retention (Abbildung 9.10)

Abbildung 9.10: Darstellung verschiedener Retentionsmöglichkeiten Quelle: Breiner (1980) S.146 [31]

Im Gegensatz zu Poldern oder anderen Hochwasserrückhaltebecken, in denen das Wasser stehen bleibt, bewegt sich die Welle hier talabwärts weiter. Laufzeit und Scheitelabminderung fallen entsprechend geringer aus.

Für die Vorlandretention sind zum einen die unterschiedlichen Fließgeschwindigkeiten im Flussschlauch und Vorland und zum anderen die Aufweitungen des Fließquerschnitts verantwortlich. Je größer der Unterschied der Fließgeschwindigkeiten durch die Verzögerung im Vorland ist, desto stärker wird die Hochwasserwelle entlang eines Gewässerabschnittes gedämpft. Die Wirkung entsteht entsprechend durch die Reibung im offenen Gerinne. (vgl. [31])

Infolge der beschriebenen Erkenntnisse lässt sich grundsätzlich festhalten, dass die lokalen Abminderungen der Wasserstände keine relevanten Auswirkungen auf das Unterwasser, bzw. auf die Hochwassersituation in Stolberg haben.

Der reduzierte Wasserspiegel erreicht unmittelbar hinter den jeweiligen Maßnahmen erneut das Niveau des Ist-Zustandes, wie Abbildung 9.11 zu entnehmen ist.

Die Auswirkungen auf die Ortslage Stolberg sind in Abbildungen 9.12 (Ortsmitte) im Längsschnitt dargestellt.

Aufgrund des sehr steilen Geländes, der daraus resultierenden hohen Fließgeschwindigkeit und des insgesamt geringen Retentionsvolumens kann das Wasser nicht maßgeblich zurückgehalten werden.

Die erreichte Reduzierung der Wasserspiegellagen wird lediglich infolge der jeweiligen Querschnittsaufweitung erreicht. Das maximale Abflussvolumen bleibt nahezu gleich.

Abbildung 9.11: Längsschnitt an Profil 5261

Abbildung 9.12: Längsschnitt an Profil 10490

10 Bewertung der Ergebnisse des Rechenkerns

Mithilfe des Rechenkerns wird in der Regel ein Wasserspiegel berechnet, der zwischen den Ergebnissen der anderen beiden Programme liegt.

Dies ist ebenfalls mit den bereits genannten Programmunterschieden zu begründen.

Wie in Kapitel 7.1 aufgeführt, wird der Wasserspiegel bei schießendem Zustand in SOBEK problemlos berechnet, wohingegen in Jabron die Grenztiefe gesetzt wird.

Der RK hingegen berechnet schießenden Abfluss, es kommt jedoch bei Fließwechseln zu Fehlern, da nicht die vollständigen Flachwassergleichungen gelöst werden.

Infolge des fehlenden Beschleunigungsterms (Kapitel 7.2) werden die Effekte der Fließwechsel vernachlässigt. So wird das Wasser anlässlich eines Wechselsprungs nicht langsamer und der Wasserspiegel steigt nicht an.

Indessen wird der beschriebene Ansatz der Trennflächenrauheiten (Kapitel 6.1.2) ebenfalls bei der Rechnung des RK angewandt. Alle Profile werden auch hier unmittelbar aus Jabron übernommen.

Folgerichtig ist, anders als im SOBEK-Modell, ein zusätzlicher Fließwiderstand aufgrund des vorhandenen Bewuchses im Modell integriert. Dies spiegelt sich im erhöhten Wasserstand wider.

Tendenziell liefert der RK an langen Streckenabschnitten ohne Bauwerke Ergebnisse, die näher an denen des SOBEK-Modells als an denen des Jabron-Modells liegen, was erneut auf einen signifikanten Einfluss des Fließzustandes schließen lässt.

Die Einwirkungen infolge des Bewuchses und der Begrenzthöhen scheinen im Verhältnis eher geringere Diskrepanzen nach sich zu ziehen.

Abbildung 10.1 zeigt die unterschiedlichen Ergebnisse aller drei verwendeten Programme. Dabei wurden zwei verschiedene Stellen im Ist-Zustand dargestellt. Zum einen ein längerer Fließstreckenabschnitt ohne Bauwerke im Oberlauf (a) und zum anderen der Ortseingang von Stolberg (b), der durch eine Vielzahl von Bauwerken geprägt ist. Die entsprechenden Längsschnitte sollen dabei die festgehaltenen Erkenntnisse grafisch unterstreichen.

Die Aussagekraft der Ergebnisse des RK ist an einzelnen Stellen jedoch kritisch zu betrachten. Insbesondere an Bauwerken ist das Fehlen des Beschleunigungsterms problematisch, da die Fließgeschwindigkeit keine Variable der Flachwassergleichungen ist. Sie wird lediglich über die durchströmte Fläche und den Abfluss errechnet und nicht als Unbekannte bestimmt.

Demgemäß sind Geschwindigkeitsverluste nicht erfassbar, wodurch Einstauungen vor einzelnen Bauwerken bzw. entsprechende Drosselfunktionen außer Acht gelassen werden, was ebenfalls Abbildung 10.1 zu entnehmen ist.

(a) Vicht km 20,6

(b) Vicht km 3,5 am Ortseingang Stolberg

Abbildung 10.1: Vergleich der WSPL im Ist-Zustand

Im direkten Vergleich mit den Ergebnissen aus SOBEK oder Jabron ist jedoch festzuhalten, dass zusätzlich angesetzte Bauwerksverluste in beiden Modellen die jeweiligen Wasserspiegel beeinflussen.

Nicht vorhandene Einstauungen oberhalb der Bauwerke sind somit zum einen mit der Vernachlässigung des Beschleunigungsterms und zum anderen mit den fehlenden Einund Auslaufverlusten an den Bauwerken zu begründen.

Besonders Jabron reagiert auf zusätzliche Verlustfaktoren sensitiv, sodass ein entsprechender Einfluss hier evident aufgezeigt werden kann.

Zur Veranschaulichung sind in Abbildung 10.2 verschiedene Bauwerke im Längsschnitt dargestellt. Die gezeigten Wasserspiegellagen, hier basierend auf den Ergebnissen des Jabron-Modells sowie denen des RK (Ist-Zustand), verdeutlichen den Einfluss der zusätzlich festgelegten Verlustfaktoren.

Trotz ähnlicher Verlustfaktoren differieren die Auswirkungen, in Abhängigkeit vom Belastungsfall, stark an den unterschiedlichen Stellen. So sinkt der Wasserspiegel nach dem Entfernen der Faktoren in Jabron an Profil 4137 (a) um 60 cm, während sich an Profil 7295 (b) lediglich eine Differenz von 7 cm ergibt.

Auch wenn der Anstieg des Wasserspiegels durch Einstauungen an Bauwerken nicht in den Ergebnissen des RK reflektiert wird, kann unter Umständen im Längsschnitt auf eine entsprechende Drosselfunktion geschlossen werden.

Das Wasser läuft in Einzelfällen nicht ungehindert unter den Bauwerken durch, sondern trifft quasi frontal dagegen, was ebenfalls Abbildung 10.2 zu entnehmen ist.

Grundsätzlich zeigen die Ergebnisse des RK trotz einzelner Abweichungen im Gesamtbild dennoch die gleichen Resultate. Die Retentionswirkung der Maßnahmen im Planzustand sind daher gleich zu bewerten.

Zum direkten Vergleich werden auch hier die Ergebnisse hinsichtlich der Abflüsse sowie der Wasserspiegellagen in Abbildung 10.3 für Profil 9474 sowie in Abbildung 10.4 an Profil 10490 in Form von Ganglinien dargestellt. Aufgrund der ähnlichen Ergebnisse wird auf die zusätzliche Darstellung der Fließgeschwindigkeit an dieser Stelle verzichtet.

10 Bewertung der Ergebnisse des Rechenkerns

(b) Vicht km $7{,}2$

Abbildung 10.2: Einfluss der Ein- und Auslaufverluste auf die Wasserspiegellage

Abbildung 10.3: Ergebnisse des RK an Profil9474

Abbildung 10.4: Ergebnisse des RK an Profil 10490

Im Rahmen der vorliegenden Masterarbeit ist der Einbau des hydrodynamischen Rechenkerns in das NA-Modell NASIM nicht bewertbar, da zur Bearbeitung der Fragestellung der RK lediglich entkoppelt eingesetzt wurde.

Die Integration des RK ermöglicht eine gekoppelte Berechnung, sodass Abflüsse und Transport jeweils im Wechsel berechnet werden.

Darüber hinaus wurden die Abflusswellen durch den WVER bereitgestellt, sodass auf einen Rechenlauf des NA-Modells hier verzichtet werden konnte.

Einschätzungen der Auswirkungen auf die Rechenzeiten durch den Einbau des RK in NASIM können an dieser Stelle demgemäß nicht erfolgen.

Die Integration in NASIM resultiert jedoch in einer automatische Übertragung der Modelldaten für die hydrodynamische Berechnung, welche verschiedene Vorteile mit sich bringt. Neben der großen Zeitersparnis bei der Modellerstellung ist insbesondere die Eliminierung zusätzlicher Fehlerquellen hervorzuheben, da keine Daten mehr händisch in das Modell einzuarbeiten sind.

11 Schlussbetrachtung

Ziel der vorliegenden Masterarbeit war es mittels instationärer hydraulischer Modelle die Auswirkungen auf die Hochwassersituation in Stolberg durch den Anschluss zusätzlicher Retentionsräume an der Vicht zu untersuchen.

Da in diesem Rahmen die maximal zu erreichende Retentionswirkung infolge von Vorlandabsenkungen im Fokus stand, wurde bei der Erarbeitung der Variante darauf geachtet, die anschließbaren Retentionsräume so groß wie möglich zu dimensionieren. In Absprache mit dem WVER wurden unabhängig von aktuellen Flächennutzungen

oder wirtschaftlichen Aspekten alle potenziellen Auenbereiche untersucht und das anschließbare Vorland entsprechend abgesenkt. Die Realisierbarkeit der Einzelmaßnahmen bleibt folglich an mehreren Stellen zu hinterfragen.

Bereits im Laufe der Modellerstellung wird deutlich, dass alle zum Einsatz gekommenen Programme (SOBEK, der hydrodynamischer Rechenkern sowie auch Jabron) individuelle Vor- und Nachteile mit sich bringen und entsprechend für verschiedene Anwendungsfälle unterschiedlich gut geeignet sind.

Um einen uneingeschränkten Vergleich der Ergebnisse zu gewährleisten, konnten die Möglichkeiten der einzelnen Programme mitunter nicht optimal ausgenutzt werden.

So wurden z.B. Wehre im SOBEK-Modell lediglich über reguläre Profile dargestellt, wenngleich das Programm Optionen anbietet, die darüber hinaus gehen.

Aufgrund der identischen Datenbasis aller Modelle sind voneinander abweichende Ergebnisse grundsätzlich mit den jeweiligen Programmunterschieden zu begründen.

Obwohl die Ergebnisse im Einzelnen voneinander abweichen, zeigt sich überall das gleiche Resultat hinsichtlich der Wirksamkeit der Vorlandabsenkung in Bezug auf die zu erreichenden Hochwasserschutzziele.

Insbesondere die Entwicklung der Hochwasserwelle über die Zeit, die in Ganglinien dargestellt wird, zeigt ähnliche Verläufe bei beiden instationären Modellen, wenngleich die Scheitelwerte nicht übereinstimmen.

Eine Aufweitung des Fließquerschnitts führt lokal jeweils zu einer deutlichen Reduktion des Wasserspiegels. Verengt sich jedoch der Fließquerschnitt am darauf folgenden Profil bzw. hinter den jeweiligen Maßnahmen, erreicht der Wasserspiegel erneut das Niveau des Ist-Zustandes. Die effektive Retentionswirkung der Maßnahmen bleibt demnach gering. Folglich ist davon auszugehen, dass die Summe des gewonnenen Retentionsvolumens infolge der erarbeiteten Variante nicht genügt, um einen ausreichenden Hochwasserschutz zu garantieren.

Um Retentionswirkungen zu erzielen, die mit der gesteuerten Flutung vergleichbar sind, werden wesentlich größere Retentionsflächen benötigt, die im vorliegenden Einzugsgebiet unter anderem aufgrund des steilen Geländes nicht zur Verfügung stehen.

Darüber hinaus ist abzuwägen, ob die erarbeitete Variante mit Gewässeraufweitungen oberhalb des Mittelwasserstandes nicht einen größeren Eingriff in die natürliche Abflussdynamik und die Landschaft vor Ort darstellt als eine technische gesteuerte Lösung. Die umfassende Bearbeitung der Datenbasis, zur Sicherstellung einer direkten Vergleichbarkeit der Programme und eines validen Endergebnisses, führt zu einzelnen Abweichungen von der ursprünglichen Aufgabenstellung, die über die geplanten Bearbeitungsschritte hinaus gehen.

Eine weitere Darstellung der Ergebnisse in Form von ÜSG-Flächen wurde aufgrund des bereits sehr hohen Bearbeitungsaufwandes im Rahmen dieser Masterarbeit für folgende Untersuchungen vorbehalten.

Da vor allem bei der ungesteuerten Retention häufig zweidimensionale hydraulische Effekte auftreten, welche z.B. durch seitliche Ausuferungen ins Vorland mit deutlichen Rauheitsunterschieden zum Flussschlauch entstehen können, ist eine eindimensionale Untersuchung dieser Retentionsräume nur eingeschränkt möglich.

Für die genaue Betrachtung der Strömungsvorgänge sowie der damit verbundenen Ausuferungen, oder Verzögerungen würden zweidimensionale hydraulische Berechnungen unter Umständen weiteren Aufschluss geben.

Literatur

- [1] WVER. Vorstudie "Hochwasserschutz im Einzugsgebiet der Vicht". Studie, 2011.
- [2] Staatliches Umweltamt Aachen. Hochwasser-Aktionsplan Inde/Vicht. pdf-Datei, 2006.
- [3] Heinz Patt und Werner Kraus. Naturnaher Wasserbau. Entwicklung und Gestaltung von Fließgewässern. Springer-Verlag Berlin Heidelberg, Heidelberg, 2011. 4. Auflage.
- [4] Bundesamt für Bauwesen und Raumordnung. Hochwasserschutzfibel Objektschutz und bauliche Vorsorge. pdf-Datei, 2013.
- [5] Minister für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz des Landes Nordrhein-Westfalen. Mit dem Wasser leben - Hochwasserschutz in NRW. pdf-Datei, 2011.
- [6] Umweltbundesamt (UBA). Hochwasser Verstehen, Erkennen, Handeln! pdf-Datei, 2011.
- [7] Heinz Patt und Peter Gonsowski. Wasserbau Grundlagen, Gestaltung von wasserbaulichen Bauwerken und Anlagen. Springer-Verlag Berlin Heidelberg, Berlin, 2011.
 7. Auflage.
- [8] Ministerium für Umwelt und Natur, Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen (MUNLV NRW). Blaue Richtlinie - Richtlinie für die Entwicklung naturnaher Fließgewässer in Nordrhein-Westfalen, Ausbau und Unterhaltung. pdf-Datei, 2010.
- [9] Umwelt und Verbraucherschutz Nordrhein-Westfalen Landesamt für Natur. Gewässerstrukturgüte NRW, Kartierung 2011 bis 2013. pdf-Datei, 2013.
- [10] (Hrsg.) Heinz Patt und Robert Jüpner. Hochwasserschutz-Handbuch. Auswirkungen und Schutz. Springer Vieweg, Berlin Heidelberg, 2013. 2. Auflage.
- [11] Hydrotec Ingenieurgesellschaft f
 ür Wasser und Umwelt mbH. NASIM Benutzerdokumentation. Programmhilfe, 2014.
- [12] ATV-DVWK Arbeitsgruppe HW-3.2 Hochwasser. Ursache-Wirkungsbeziehung zu Hochwasserereignissen. Deutsche Vereinigung f
 ür Wasserwirtschaft, Abwasser und Abfall, Hennef, 2003.
- [13] Ulrich Zanke. Hydraulik f
 ür den Wasserbau. Springer-Verlag, Berlin Heidelberg, 2013. 3. Auflage.
- [14] Hydrotec Ingenieurgesellschaft f
 ür Wasser und Umwelt mbH. Jabron 6.9 Benutzerdokumentation. pdf-Datei, 2014.

- [15] DVWK. Hydraulische Berechnung von Fließgewässern. DVWK Merkblätter zur Wasserwirtschaft. Verlag Paul Parey Hamburg, 1991.
- [16] Hydrotec Ingenieurgesellschaft f
 ür Wasser und Umwelt mbH. Timeview 2.5.0 Benutzerdokumentation. Programmhilfe, 2011.
- [17] Alpaslan Yörük und Hartmut Sacher. Methoden und Qualität von Modellrechnungen für HW-Gefahrenflächen. Dresdner Wasserbauliche Mitteilungen. Selbstverlag der Technischen Universität Dresden, 2014.
- [18] Hydrotec Ingenieurgesellschaft für Wasser und Umwelt mbH. Hydraulische Berechnung der Schlüsselkurven von Pegeln in Rheinland-Pfalz im Rahmen des Projektes TIMIS, 2008.
- [19] Ekkehard Heinemann und Rainer Feldhaus. Hydraulik für Bauingenieure. Teubner Verlag Stuttgart-Leipzig-Wiesbaden, Wiesbaden, 2003. 2. Auflage.
- [20] Stefan Lecheler. Numerische Strömungsberechnung. Schneller Einstieg durch anschauliche Beispiele mit ANSYS 15.0. Springer Vieweg, Wiesbaden, 2014. 3. Auflage.
- [21] H. Gabriel. Hydrodynamische Modellierung von Oberflächengewässern. Osterreichische Wasser- und Abfallwirtschaft, 61(7-8):99–104, 2009.
- [22] Andreas Matheja, Christian Pohl, Lutz Schweter und Heiko Spekker. Hydrodynamische numerische Simulationen von Hochwasserereignissen und Schutzmaßnahmen für ein Tidegebiet, pages 1–154. Franzius-Institut für Wasserbau und Küsteningenieurwesen, 2007.
- [23] Helmut Martin. Numerische Strömungssimulation in der Hydrodynamik. Grundlagen und Methoden. Springer-Verlag Berlin Heidelberg, Heidelberg, 2011.
- [24] Peter Krebs. Abfluss in offenen Gerinnen. Vorlesungsskript, Institut f
 ür Siedlungsund Industrieabwasserwirtschaft, Technische Universit
 ät Dresden, Dresden, 2008.
- [25] Gerhard H. Jirka und Cornelia Lang. *Einführung in die Gerinnehydraulik*. Universitätsverlag Karlsruhe, Karlsruhe, 2009. 2. Auflage.
- [26] Deltares. Sobek hydrodynamics, Rainfall Runoff and Real Time Control user manuel. pdf-Datei, 2013.
- [27] Deltares. Sobek. http://sobek.ipp-hydro-consult.de/. Aufgerufen: 02.08.2014.
- [28] Eva Loch. Dokumentation Software-Erstellung: Hydrodynamischer Rechenkern für NASIM. Unpublished manuscript, 2014.
- [29] Olaf Cirpka. Allgemeine Einführung, Flusshydraulik, Grundwasser. Vorlesungsskript, Eidgenössische Anstalt für Wasserversorgung, Abwasserreinigung und Gewässerschutz (Eawag), Dübendorf, April 2006.

- [30] Kathrin Klamroth und Jens Lang Alexander Martin. *Mathematical Optimization* of Water Networks. Birkhäuser, Basel, 2012.
- [31] Bayerisches Landesamt f
 ür Wasserwirtschaft. Einfluss von Ma
 ßnahmen der Gew
 ässerentwicklung auf den Hochwasserab
 fluss. pdf-Datei, 2005.
- [32] Markus Fischer. Ungesteuerte und gesteuerte Retention entlang von Fließgewässern. Beurteilung der Wirksamkeit möglicher Maßnahmen unter Verwendung hydrodynamisch-numerischer Modellierung. Vorlesungsskript, Lehrstuhl und Versuchsanstalt für Wasserbau und Wasserwirtschaft, Technische Universität München, München, 2008.
- [33] Rüdiger Schwarze. CFD-Modellierung. Grundlagen und Anwendungen bei Strömungsprozessen. Springer Vieweg, Berlin Heidelberg, 2013.
- [34] Gabi Förtsch und Heinz Meinholz. Handbuch Betrieblicher Gewässerschutz. Springer Spektrum, Wiesbaden, 2014.
- [35] (Hrsg.) Stephan Heimerl und Heribert Meyer. Vorsorgender und nachsorgender Hochwasserschutz. Ausgewählte Beiträge aus der Fachzeitschrift WasserWirtschaft. Springer Vieweg, Wiesbaden, 2014.
- [36] Eva Loch und Benedikt Rothe. NASIM mit hydrodynamischem Rechenkern modelliert Rückstaueffekte korrekt. *Hydrothemen*, 27:6–7, 2014.
- [37] Eduard Naudascher. Hydraulik der Gerinne und Gerinnebauwerke. Springer-Verlag Wien, Wien, 1987.
- [38] Konrad Zilch und Claus Jürgen Diederichs. Wasserbau, Siedlungswasserwirtschaft, Abfalltechnik. Springer Vieweg, Berlin Heidelberg, 2013.
- [39] Ralph C. M. Schröder. Technische Hydraulik. Kompendium f
 ür den Wasserbau. Springer-Verlag Berlin Heidelberg, Darmstadt, 1994.
- [40] Hydrotec Ingenieurgesellschaft für Wasser und Umwelt mbH. Hydraulische Berechnung der Schlüsselkurven von Pegeln in Rheinland-Pfalz im Rahmen des Projektes TIMIS. LUWG, Aachen, 2008.
- [41] H. Breiner und W. Kresser. Der Hochwasserrückhalt und seine Bedeutung im Rahmen einer integralen, umweltbezogenen Schutzwasserwirtschaft. pdf-Datei, 1980.

Anhang

A.1 Abflusstabelle

Da die detaillierte Betrachtung und Analyse aller Profile den Rahmen der vorliegenden Masterarbeit übersteigen würde, wurden die jeweilige Abflussspitzen sowie die dazugehörigen Wasserspiegellagen der einzelnen Profile in einer Tabelle zusammengefasst. Entsprechend sind die Maximalwerte der SOBEK-Berechnungen sowohl für den Ist-Zustand als auch für den Planzustand aufgeführt.

		Ist-Zustand		Planzustand	
Profile	km	Q [m³/s]	WSPL [mNN]	Q [m³/s]	WSPL [mNN]
20670	20.657	44.2911	356.3982	44.2911	356.3982
20650	20.633	44.3411	355.7551	44.3411	355.7551
132	20.522	44.5677	354.3499	44.5677	354.3499
20451	20.457	44.7021	353.342	44.7021	353.342
41	20.380	44.8612	352.1897	44.8612	352.1897
12	20.314	44.9970	351.338	44.9970	351.338
4	20.234	45.1626	350.1656	45.1626	350.1656
42	20.152	45.3314	348.9609	45.3314	348.9609
20104	20.110	45.4194	348.371	45.4194	348.371
1	19.998	45.6510	347.0868	45.6510	347.0868
43	19.894	45.8675	345.8891	45.8675	345.8891
103	19.801	46.0594	344.7719	46.0594	344.7719
102	19.768	46.1275	344.3264	46.1275	344.3264
2	19.755	46.1553	344.1894	46.1553	344.1894
44	19.692	46.2842	343.4327	46.2842	343.4327
19625	19.628	46.4176	342.6743	46.4176	342.6743
45	19.564	46.5500	341.8931	46.5500	341.8931
5	19.479	46.7267	340.6205	46.7267	340.6205
46	19.415	46.8575	339.8132	46.8575	339.8132
47	19.372	46.9472	339.2556	46.9472	339.2556
95	19.332	47.0310	338.6387	47.0310	338.6387
48	19.278	47.1428	337.8834	47.1428	337.8834
19201	19.193	47.3177	336.5471	47.3177	336.5471
7	19.134	47.4291	335.8386	47.4291	335.8386
6	19.052	47.5874	334.4554	47.5874	334.4554
8	19.008	47.6703	333.9791	47.6703	333.979
49	18.950	47.7812	333.3441	47.7812	333.344
18879	18.865	47.9436	331.9951	47.9436	331.9948
51	18.750	48.1647	330.3358	48.1647	330.3328
52	18.720	48.2232	329.9453	48.2232	329.9337
9	18.666	48.3258	329.3468	48.3259	329.2945
50	18.607	48.4381	328.7105	48.4382	328.4554
10	18.559	48.5306	328.1393	48.5307	327.8274
53	18.479	48.6831	327.2019	48.6828	326.844
54	18.419	48.7991	326.4176	48.7980	326.1266
55	18.360	48.9121	325.6081	48.9106	325.5435
56	18.320	48.9891	325.1341	48.9873	325.0275
18292	18.291	49.0446	324.6431	49.0426	324.3278
57	18.253	49.1177	324.1605	49.1155	323.8488
18209	18.208	49.2035	323.6664	49.2007	323.2021
14	18.060	49.4867	321.6085	49.4822	321.1293
106	18.009	49.5836	320.9681	49.5787	320.6308
13	17.958	49.6810	320.3197	49.6749	320.0953
17894	17.893	49.8058	319.6049	49.7987	319.5024
17881	17.877	49.8348	319.1308	49.8275	318.7756
17847	17.843	49.8996	318.8827	49.8919	318.4335
107	17.771	50.0382	318.0563	50.0293	317.5587
17	17.731	50.1142	317.5237	50.1046	317.0697
15	17.654	50.2599	316.7168	50.2492	316.2901
108	17.601	50.3619	316.2291	50.3503	315.7428

		Ist-Zustand		Planzustand	
Profile	km	Q [m³/s]	WSPL [mNN]	Q [m³/s]	WSPL [mNN]
17562	17.560	50.4390	315.7842	50.4268	315.3096
109	17.508	50.5392	315.139	50.5261	314.7496
58	17.456	50.6377	314.4888	50.6237	314.088
110	17.436	50.6747	314.1644	50.6603	313.844
59	17.408	50.7291	313.6765	50.7141	313.5392
60	17.343	50.8515	313.0304	50.8352	312.6436
17215	17.258	51.0133	312.1071	50.9949	311.5629
16	17.112	51.2917	311.1152	51.2700	310.5314
111	17.081	51.3501	310.8804	51.3277	310.2928
94	17.048	51.4136	310.6233	51.3904	310.0147
17011	17.012	51.4823	310.3695	51.4582	309.7275
99	16.975	51.5512	309.8819	51.5265	309.3071
112	16.930	51.6377	309.3604	51.6120	308.7643
93	16.895	51.7032	308.6885	51.6766	308.2879
113	16.850	51.7891	307.9646	51.7611	307.5677
61	16.801	51.8831	307.2632	51.8536	306.7855
16710	16.713	52.0480	305.9427	52.0159	305.4481
114	16.665	52.1308	305.2745	52.0970	304.975
62	16.619	52.1693	304.6249	52.1335	304.2823
63	16.562	52.2152	303.9964	52.1740	303.731
16510	16.512	52.2542	303.8	52.2128	303.659
16482	16.485	52.2758	303.8105	52.2346	303.6115
16470	16.472	52.2864	303.0027	52.2451	302.8049
16446	16.448	52.3064	302.372	52.2647	302.1677
16366	16.368	52.3730	301.4524	52.3303	301.2376
16342	16.344	61.4374	300.8652	61.3019	300.6875
16315	16.315	61.4876	300.5849	61.3507	300.441
16305	16.307	61.5184	300.6127	61.3806	300.2891
16295	16.298	61.5282	300.7066	61.3901	300.2155
16290	16.292	61.5283	300.8284	61.3902	300.3592
16280	16.281	61.5479	300.4841	61.4093	300.0708
64	16.247	61.6080	300.2467	61.4676	299.8031
116	16.219	61.6560	300.0977	61.5143	299.5624
16178	16.181	61.7243	299.7839	61.5808	299.26
16176	16.179	61.7243	299.6616	61.5808	299.0968
16175	16.178	61.7262	299.0007	61.5825	298.5548
16124	16.127	61.8155	298.647	61.6695	298.1742
16122	16.125	61.8194	298.748	61.6732	298.2119
16121	16.124	61.8212	298.5499	61.6748	297.9691
16071	16.072	61.9107	298.0539	61.7616	297.351
15938	15.942	62.1373	296.76	61.9813	296.2372
91	15.880	62.2454	296.0753	62.0859	295.6715
117	15.853	62.2927	295.7448	62.1317	295.3041
92	15.824	62.3430	295.3512	62.1803	295.0204
18	15.790	62.4009	295.2372	62.2364	294.7869
15/20	15./19	62.5243	294.8766	62.3558	294.146
15559	15.563	62.7953	292.9551	62.6179	292.7106
65	15.494	62.9144	292.2947	02.7324	291.8785
15000	15.412	03.0508	291.5848	02.00//	291.3198
15329	15.360	63.1461	291.1694	62.9530	291.2126

ProfilekmQ[m³/s]WSPL [mNN]Q[m³/s]WSPL [mNN]1534615.34663.1708291.036262.9767291.17181529815.30363.2435291.097363.0474291.13841527915.27863.2857291.092663.0879291.08511815.25163.334291.119263.1336291.09851521315.21963.3867291.130463.1848291.10871520515.20863.4079291.071463.2052291.06821520215.20763.4665290.388263.2615290.38621516415.17063.4729289.195263.2678289.1921514715.14663.5133288.908163.3066288.90461508515.08463.6415288.358263.4298288.5171506415.07263.6415288.807363.4298288.79771506415.05563.6660287.703263.4533287.6821505015.05563.6713286.473363.6450286.36981487714.88363.9668286.234663.7436285.32831487714.88363.9668283.25664.1425282.87976914.61864.4242282.989764.1836285.288812014.64264.3816283.26664.1425282.87976914.61864.4242282.989764.1836282.5112114.54364.5522282.1837 </th
15346 15.346 63.1708 291.0362 62.9767 291.1718 15298 15.303 63.2435 291.0973 63.0474 291.1384 15279 15.278 63.2857 291.0926 63.0879 291.085 118 15.251 63.3334 291.1192 63.1336 291.0985 15213 15.219 63.3867 291.1304 63.1848 291.0985 15205 15.208 63.4079 291.0714 63.2052 291.0682 15202 15.207 63.4665 290.3822 63.2615 290.3862 15168 15.173 63.4665 290.3394 63.2616 290.3375 15164 15.170 63.4729 289.1952 63.2678 289.192 15147 15.146 63.5133 288.9081 63.3066 288.9046 15085 15.084 63.6415 288.3582 63.4298 288.7977 15064 15.069 63.6465 288.8275 63.4345 288.8147 15053 15.058 63.6660 287.7032 63.4533 287.682 14877 14.883 63.9668 286.2346 63.7436 285.283 119 14.797 64.1161 284.868 63.9406 284.5252 68 14.682 64.3129 283.752 64.0764 283.5888 120 14.642 64.8816 282.5779 64.2428 282.1631 19 14.543 64.5522 282.1987 64.3
1529815.30363.2435291.097363.0474291.13841527915.27863.2857291.092663.0879291.08511815.25163.3334291.119263.1336291.09851521315.21963.3867291.130463.1848291.10871520515.20863.4079291.071463.2052291.06821520215.20763.4665290.388263.2615290.38621516815.17363.4665290.339463.2616290.33751516415.17063.4729289.195263.2678289.1921514715.14663.5133288.908163.3066288.90461508515.08463.6415288.358263.4298288.35171506715.07263.6415288.827563.4345288.1471505315.05863.6660287.703263.4533287.6821505015.05563.6713287.619963.4584287.59491493714.94263.8651286.234663.7436285.828311914.79764.1161285.400563.8872284.78749814.66264.3129283.75264.0764283.588812014.64264.3816283.26664.1425282.87976914.61864.4242282.989764.1836282.5112114.58264.4856282.577964.2428282.16311914.54364.5522282.198764.30682
1527915.27863.2857291.092663.0879291.08511815.25163.3334291.119263.1336291.09851521315.21963.3867291.130463.1848291.10871520515.20863.4079291.071463.2052291.06821520215.20763.4665290.388263.2615290.38621516815.17363.4665290.339463.2616290.33751516415.17063.4729289.195263.2678289.1921514715.14663.5133288.908163.3066288.90461508515.08463.6415288.358263.4298288.35171506715.07263.6415288.807363.4298288.79771506415.06963.6660287.703263.4533287.6821505015.05563.6713287.619963.4545288.81471505315.05863.6660287.703263.4533287.6821505015.05563.6713286.473363.6450286.36981487714.88363.9668286.234663.7436285.828311914.79764.1161285.400563.8872284.78749814.76464.1716284.86863.9406284.52526814.68264.3129283.75264.0764283.588812014.64264.3816282.577964.2428282.16311914.54364.5522282.198764.3068<
118 15.251 63.3334 291.1192 63.1336 291.0985 15213 15.219 63.3867 291.1304 63.1848 291.1087 15205 15.208 63.4079 291.0714 63.2052 291.0682 15202 15.207 63.4665 290.3882 63.2615 290.3862 15168 15.173 63.4665 290.3394 63.2616 290.3375 15164 15.170 63.4729 289.1952 63.2678 289.192 15147 15.146 63.5133 288.9081 63.3066 288.9046 15085 15.084 63.6415 288.3582 63.4298 288.7977 15067 15.072 63.6415 288.8073 63.4298 288.7977 15064 15.069 63.6465 288.8275 63.4345 288.8147 15053 15.058 63.6660 287.7032 63.4533 287.682 15050 15.055 63.6713 287.6199 63.4584 287.5949 14937 14.942 63.8651 286.4733 63.6455 288.283 119 14.764 64.1716 284.868 63.9406 284.5252 68 14.682 64.3129 283.752 64.0764 283.5888 120 14.642 64.3816 282.5779 64.2428 282.1631 19 14.543 64.5522 282.1987 64.3068 281.7175 14468 14.472 64.6766 281.4462 64.42
1521315.21963.3867291.130463.1848291.10871520515.20863.4079291.071463.2052291.06821520215.20763.4665290.388263.2615290.38621516815.17363.4665290.339463.2616290.33751516415.17063.4729289.195263.2678289.1921514715.14663.5133288.908163.3066288.90461508515.08463.6415288.358263.4298288.35171506715.07263.6415288.807363.4298288.79771506415.06963.6465288.827563.4345288.81471505315.05863.6660287.703263.4533287.6821505015.05563.6713287.619963.4584285.82831493714.94263.8651286.234663.7436285.828311914.79764.1161285.400563.8872284.78749814.76464.1716284.86863.9406284.52526814.68264.3129283.75264.0764283.58812014.64264.3816282.577964.2428282.16311914.54364.5522282.198764.3068281.71751446814.47264.6736281.446264.4266280.92387014.37264.8454280.496364.5846280.07837214.27165.0470270.557764.7330
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1516815.17363.4665290.339463.2616290.33751516415.17063.4729289.195263.2678289.1921514715.14663.5133288.908163.3066288.90461508515.08463.6415288.358263.4298288.35171506715.07263.6415288.807363.4298288.79771506415.06963.6465288.827563.4345288.81471505315.05863.6660287.703263.4533287.6821505015.05563.6713287.619963.4584287.59491493714.94263.8651286.234663.7436285.828311914.79764.1161285.400563.8872284.78749814.68264.3129283.75264.0764283.588812014.64264.3816283.26664.1425282.87976914.61864.4242282.989764.1836282.5112114.58264.4856282.577964.2428282.16311914.54364.5522282.198764.3068281.71751446814.47264.6736281.446264.3266280.92387014.37264.8454280.496364.5846280.07837214.27165.0170270.552764.7320270.2414
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1505315.05863.6660287.703263.4533287.6821505015.05563.6713287.619963.4584287.59491493714.94263.8651286.473363.6450286.36981487714.88363.9668286.234663.7436285.828311914.79764.1161285.400563.8872284.78749814.76464.1716284.86863.9406284.52526814.68264.3129283.75264.0764283.588812014.64264.3816283.26664.1425282.87976914.61864.4242282.989764.1836282.5112114.58264.4856282.577964.2428282.16311914.54364.5522282.198764.3068281.71751446814.47264.6736281.446264.4226280.92387014.37264.8454280.496364.5846280.078312214.27165.0170270.552764.7330270.2411
1505015.05563.6713287.619963.4584287.59491493714.94263.8651286.473363.6450286.36981487714.88363.9668286.234663.7436285.828311914.79764.1161285.400563.8872284.78749814.76464.1716284.86863.9406284.52526814.68264.3129283.75264.0764283.588812014.64264.3816283.26664.1425282.87976914.61864.4242282.989764.1836282.5112114.58264.4856282.577964.2428282.16311914.54364.5522282.198764.3068281.71751446814.47264.6736281.446264.4226280.92387014.37264.8454280.496364.5846280.078312214.27165.0170270.552764.7330270.2414
1493714.94263.8651286.473363.6450286.36981487714.88363.9668286.234663.7436285.828311914.79764.1161285.400563.8872284.78749814.76464.1716284.86863.9406284.52526814.68264.3129283.75264.0764283.588812014.64264.3816283.26664.1425282.87976914.61864.4242282.989764.1836282.5112114.58264.4856282.577964.2428282.16311914.54364.5522282.198764.3068281.71751446814.47264.6736281.446264.4226280.92387014.37264.8454280.496364.5846280.078312214.27165.0170270.552764.7330270.2411
14877 14.883 63.9668 286.2346 63.7436 285.8283 119 14.797 64.1161 285.4005 63.8872 284.7874 98 14.764 64.1716 284.868 63.9406 284.5252 68 14.682 64.3129 283.752 64.0764 283.5888 120 14.642 64.3816 283.266 64.1425 282.8797 69 14.618 64.4242 282.9897 64.1836 282.51 121 14.582 64.4856 282.5779 64.2428 282.1631 19 14.543 64.5522 282.1987 64.3068 281.7175 14468 14.472 64.6736 281.4462 64.4226 280.9238 70 14.372 64.8454 280.4963 64.5846 280.0783 122 14.271 65.0170 270.5527 64.7330 270.2411
11914.79764.1161285.400563.8872284.78749814.76464.1716284.86863.9406284.52526814.68264.3129283.75264.0764283.588812014.64264.3816283.26664.1425282.87976914.61864.4242282.989764.1836282.5112114.58264.4856282.577964.2428282.16311914.54364.5522282.198764.3068281.71751446814.47264.6736281.446264.4226280.92387014.37264.8454280.496364.5846280.078312214.27165.0170270.552764.7330270.2411
98 14.764 64.1716 284.868 63.9406 284.5252 68 14.682 64.3129 283.752 64.0764 283.5888 120 14.642 64.3816 283.266 64.1425 282.8797 69 14.618 64.4242 282.9897 64.1836 282.51 121 14.582 64.4856 282.5779 64.2428 282.1631 19 14.543 64.5522 282.1987 64.3068 281.7175 14468 14.472 64.6736 281.4462 64.4226 280.9238 70 14.372 64.8454 280.4963 64.5846 280.0783 122 14.271 65.0170 270.5527 64.7330 270.2411
6814.68264.3129283.75264.0764283.588812014.64264.3816283.26664.1425282.87976914.61864.4242282.989764.1836282.5112114.58264.4856282.577964.2428282.16311914.54364.5522282.198764.3068281.71751446814.47264.6736281.446264.4226280.92387014.37264.8454280.496364.5846280.078312214.27165.0170279.552764.7330279.2411
12014.64264.3816283.26664.1425282.87976914.61864.4242282.989764.1836282.5112114.58264.4856282.577964.2428282.16311914.54364.5522282.198764.3068281.71751446814.47264.6736281.446264.4226280.92387014.37264.8454280.496364.5846280.078312214.27165.0170279.552764.7330279.2411
6914.61864.4242282.989764.1836282.5112114.58264.4856282.577964.2428282.16311914.54364.5522282.198764.3068281.71751446814.47264.6736281.446264.4226280.92387014.37264.8454280.496364.5846280.078312214.27165.0170270.552764.7330270.2411
121 14.582 64.4856 282.5779 64.2428 282.1631 19 14.543 64.5522 282.1987 64.3068 281.7175 14468 14.472 64.6736 281.4462 64.4226 280.9238 70 14.372 64.8454 280.4963 64.5846 280.0783 122 14.271 65.0170 279.5527 64.7330 279.2411
19 14.543 64.5522 282.1987 64.3068 281.7175 14468 14.472 64.6736 281.4462 64.4226 280.9238 70 14.372 64.8454 280.4963 64.5846 280.0783 122 14.271 65.0170 279.5527 64.7330 270.2411
14468 14.472 64.6736 281.4462 64.4226 280.9238 70 14.372 64.8454 280.4963 64.5846 280.0783 122 14.271 65.0170 270.5527 64.7330 270.2411
70 14.372 64.8454 280.4963 64.5846 280.0783 122 14.271 65.0170 270.5527 64.7330 270.2411
122 14.271 03.0170 279.3327 04.7330 279.2411
14210 14.217 65.1090 279.1936 64.8151 278.9663
71 14.176 65.1759 278.9995 64.8665 278.6538
14040 14.044 65.3950 278.574 65.0150 278.4816
14031 14.025 65.4271 277.9161 65.0430 277.8314
14004 14.009 65.4546 277.9029 65.0682 277.8296
13998 14.003 65.4642 276.8501 65.0770 276.6017
21 13.897 65.6442 276.2138 65.2423 275.8456
13241 13.249 00.0055 270.9019 00.4037 270.7994
25 12 895 67 2756 267 0112 66 8184 267 4296
124 12 872 67 2803 267 2803 267 2823 66 8232 267.4280
12844 12 847 67 2857 267 509 66 8280 267 0968

		Ist-Zustand		Planzustand		
Profile	km	Q [m³/s]	WSPL [mNN]	Q [m³/s]	WSPL [mNN]	
26	12.750	67.3070	266.4366	66.8499	265.9689	
12685	12.686	67.3210	265.7422	66.8639	265.2365	
27	12.618	67.3355	265.0134	66.8782	264.6575	
12519	12.522	67.3564	263.8773	66.8993	263.8812	
74	12.440	67.3738	263.1041	66.9170	263.1481	
12270	12.277	67.4094	261.2174	66.9535	261.2242	
28	12.191	67.4272	260.9069	66.9713	260.894	
126	12.154	67.4351	260.9726	66.9794	260.9476	
12111	12.117	67.4444	260.8529	66.9875	260.8234	
12103	12.109	67.4480	260.8467	66.9906	260.8032	
12097	12.103	67.4480	259.6963	66.9906	259.5763	
12079	12.086	67.4519	259.431	66.9945	259.2375	
12078	12.085	67.4524	259.2292	66.9947	258.7834	
96	11.993	67.4743	258.4017	67.0157	257.6422	
75	11.947	67.4857	257.986	67.0258	257.3401	
11900	11.904	67.4967	257.7082	67.0344	257.0909	
76	11.844	67.5101	257.1205	67.0448	256.7339	
11789	11.796	67.5183	256.6943	67.0544	256.6066	
30	11.750	67.5273	256.2985	67.0643	256.3982	
134	11.697	67.5391	255.5705	67.0767	255.6482	
11675	11.681	67.5423	255.3465	67.0803	255.3709	
11628	11.633	67.5527	254.3334	67.0912	254.3558	
11608	11.614	67.5567	253.9524	67.0956	253.959	
11531	11.536	67.5755	252.7912	67.1148	252.7962	
11525	11.530	67.5755	253.4486	67.1147	253.4424	
11519	11.525	67.5781	252.898	67.1174	252.8915	
11513	11.518	67.5782	252.8802	67.1173	252.8737	
11508	11.514	67.5791	252.4472	67.1182	252.4405	
77	11.468	67.5893	252.0128	67.1289	252.0068	
29	11.392	67.6060	251.0968	67.1463	251.092	
11346	11.354	67.6127	251.0932	67.1538	251.0875	
11290	11.298	67.6250	251.0677	67.1664	251.0612	
11284	11.292	67.6262	250.249	67.1678	250.2429	
78	11.241	67.6368	249.8139	67.1791	249.8074	
11166	11.1/3	67.6517	249.1455	67.1942	249.1378	
31	11.115	67.6640	248.669	67.2069	248.6599	
11080	11.081	67.6729	248.4898	67.2161	248.4808	
11065	11.075	67.6682	248.6407	67.2120	248.626	
11004	11.004	67.6812	248.5837	67.2262	248.5626	
10959	10.968	67.6889	248.6261	67.2341	248.6091	
10939	10.949	67.6991	248.3093	67.2446	248.2941	
10915	10.923	67.6989	247.4015	67.2444	247.4434	
10912	10.912	67.7008	247.3969	67.2400	247.3777	
10872	10.002	0001.10 70 0000	241.1408	70 0664	241.1009	
10042	10.002	13.2320	240.0117 015 7000	10.900	240.3901	
10004	10.010	1 3.2040 70 2010	240.1220	70.9000	240.1000	
10684	10.771	70 2202	240.0223	78 7700	244.3340 211 rrst	
70	10.034	70 2525	244.3320	70 0680	244.0037	
32	10.594	79.3911	244.2908	79.1003	244.3592	

		Ist-Zustand		Planzustand	
Profile	km	Q [m³/s]	WSPL [mNN]	Q [m³/s]	WSPL [mNN]
10538	10.542	79.4555	243.8779	79.1619	243.8961
10478	10.491	79.4553	243.72	79.1618	243.2993
80	10.405	79.5085	242.7704	79.2124	242.1267
10315	10.327	79.5566	242.0423	79.2583	241.3946
81	10.271	79.5911	241.7742	79.2915	241.0644
128	10.218	79.9629	241.4374	79.6624	240.6772
82	10.174	79.9877	241.1475	79.6866	240.2695
10102	10.115	80.0203	240.8401	79.7188	239.8091
10069	10.082	80.0391	240.549	79.7369	239.6445
10050	10.063	80.0495	240.2038	79.7468	239.4783
10043	10.056	80.0536	239.3193	79.7500	239.0609
33	9.966	80.1028	238.8255	79.7961	238.3725
9864	9.875	80.1527	238.1382	79.8433	237.6689
129	9.801	80.1903	237.8329	79.8812	237.3825
97	9.736	80.2225	237.5517	79.9158	237.1341
9686	9.699	80.2449	237.4799	67.0765	237.1424
9676	9.690	80.2477	237.6305	67.0793	237.0915
9670	9.683	80.2579	236.9364	67.0893	236.379
9652	9.665	80.2571	236.8565	67.0893	236.1331
83	9.586	80.3007	236.1222	67.1310	235.4432
136	9.516	80.3398	235.4583	67.1690	234.8557
9474	9.490	80.3548	234.9878	67.1834	234.5179
100	9.456	80.3735	234.6167	67.2015	234.0604
130	9.417	80.3953	234.341	67.2223	233.6829
135	9.391	80.4091	234.2727	67.2348	233.5607
9324	9.338	80.4387	233.8601	67.2601	233.2407
34	9.255	80.4818	233.3459	67.2979	233.0448
9141	9.161	80.5345	232.9085	67.3490	232.9406
84	9.119	80.5577	232.4445	67.3717	232.3315
9064	9.083	80.5777	232.1823	67.3913	232.0003
35	8.993	80.6258	231.7014	67.4376	231.4033
8939	8.953	80.6605	231.6819	67.4710	231.2482
8918	8.933	80.6604	231.679	67.4708	231.3059
8912	8.926	80.6633	231.1584	67.4734	230.7772
8898	8.911	80.6709	231.0727	67.4713	230.7031
8785	8.799	80.7336	230.414	67.5244	230.4689
8710	8.724	84.7989	230.6213	71.4776	230.3884
8700	8.716	84.8084	229.7472	/1.486/	229.606
8687	8.701	84.8083	229.6805	/1.4865	229.5384
8666	8.680	84.8169	229.424	/1.4949	229.2896
8663	8.677	84.8176	229.3296	/1.495/	229.2193
8590	8.603	84.8455	228.7062	71.5237	228.5805
8486	8.500	84.8871	227.9219	/1.5651	227.716
36	8.449	84.9075	227.2807	/1.5855	227.0274
8290	8.303	84.9699	225.9286	84.4977	226.1759
8288	8.288	84.9915	225.7409	84.5209	225.9437
δ243	ŏ.∠6U	04.9979	225.8511	04.52/4	225.8508
ŏ∠31	0.243	04.9991	223.1809	04.020/	220.1795
0238 0239	0.∠ວຽ ຊ ລາວ	00.0001 85 0024	220.1202	04.0020 Q1 5221	220.119
0223	0.223	00.0034	220.3407	04.0031	223.3369

		Ist-Zustand		Planzustand	
Profile	km	Q [m³/s]	WSPL [mNN]	Q [m³/s]	WSPL [mNN]
8222	8.222	85.0076	225.2337	84.5377	225.2347
58167	8.167	85.0335	225.0243	84.5634	225.0246
8167	8.154	85.0412	225.138	84.5710	225.1369
58111	8.111	85.0663	224.878	84.5956	224.8745
8094	8.094	85.0747	224.3314	84.6038	224.3267
8022	8.022	85.1044	223.9289	84.6330	223.9242
8000	8.000	85.1131	223.6466	84.6415	223.6419
7948	7.948	85.1335	223.2679	84.6615	223.2622
7879	7.879	85.1597	222.5985	84.6871	222.5937
7827	7.840	85.1736	222.1651	84.7012	222.1604
7808	7.808	85.1868	221.8293	84.7141	221.8257
85	7.764	85.2053	221.6259	84.7322	221.6231
7732	7.733	85.2183	221.56	84.7448	221.557
7670	7.671	85.2451	221.5867	84.7710	221.5833
7654	7.666	85.2451	221.7171	84.7710	221.7138
7649	7.660	85.2472	221.7369	84.7731	221.7336
7640	7.652	85.2498	220.7724	84.7757	220.767
7602	7.602	85.2670	220.5788	84.7926	220.5731
7526	7.526	85.3136	219.915	84.8385	219.9098
7473	7.485	85.3138	219.7649	84.8388	219.7589
7446	7.447	85.3291	219.2699	84.8540	219.2584
7393	7.410	85.3547	218.8997	84.8801	218.8809
7379	7.379	85.3541	219.1745	84.8798	219.147
7314	7.315	85.3793	219.0569	84.9067	219.0189
7295	7.307	85.3818	219.2133	84.9097	219.1812
7287	7.298	85.3812	218.3596	84.9095	218.2597
7277	7.289	85.3824	218.2165	84.9129	218.0792
7241	7.242	85.3964	218.3866	84.9314	218.2048
7174	7.175	85.4242	218.1886	84.9611	217.9099
7156	7.166	85.4239	218.3615	84.9608	217.9964
7136	7.150	85.4308	218.3907	84.9672	217.9134
7106	7.117	85.4479	217.3788	84.9832	216.9123
7109	7.110	85.4552	217.3453	84.9902	216.7913
7082	7.092	85.4562	217.2603	84.9903	216.6935
7041	7.041	88.7969	217.0203	88.2014	216.7164
6991	7.001	88.8385	216.5712	88.2200	216.5237
37	6.935	88.8704	216.0636	88.2500	216.0705
6857	0.800	88.9036	215.6325	88.2813	215.4244
39	6.797	88.9373	215.3022	88.3128	215.1777
38	0.703	88.9540	215.0859	88.3283	215.2001
6639	0.713	88.9790	214.772	00.001	214.9308
0020	0.030	09.0191	214.700	00.3004	214.0342
6604	0.023	91.4003 01 1050	214.000	90.7201 00.7460	214.00/0 212.0004
6502	0.000	91.4000	213.9003	90.7469	213.9901
20620	0.001	91.4943 01 6170	213.0302	90.7003 00 9677	213.9204
30020	0.011 6 /7/	91.0140 01 6900	213.3001 212 2201	30.0017	213.2131
30010	0.474 6 160	01 6700	213.3201	30.3200 00 0285	213.3000
30500	6 127	Q1 7770	212.000	Q1 0107	212.0009
30580	6.389	91.7762	212,4835	91.0190	212.4477

		Ist-Zustand		Planzustand	
Profile	km	Q [m³/s]	WSPL [mNN]	Q [m³/s]	WSPL [mNN]
30570	6.366	91.8077	212.63	91.0482	212.5947
30560	6.354	91.8231	212.2532	91.0624	212.2183
30550	6.341	91.8407	212.2198	91.0785	212.1833
30540	6.320	91.8774	211.9683	91.1126	211.92
30530	6.313	91.8821	212.2594	91.1169	212.2235
30520	6.310	91.9159	212.2792	91.1485	212.2482
30510	6.284	91.9158	212.2803	91.1486	212.2508
30500	6.277	91.9260	211.496	91.1583	211.4639
30490	6.260	91.9670	211.4314	91.1967	211.3969
30480	6.246	91.9751	211.5439	91.2044	211.5107
30470	6.240	91.9751	210.5889	91.2044	210.5453
30450	6.220	92.0064	210.1539	91.2337	210.0615
106207	6.217	92.0217	210.1649	91.2480	209.8401
30440	6.205	92.0216	210.3473	91.2464	209.9384
40	6.123	92.1298	209.7163	91.3121	209.3668
6057	6.067	92.2042	209.675	91.3077	209.309
5992	6.001	92.2913	209.2473	91.3205	209.199
87	5.940	92.3708	209.096	91.3560	209.1948
30210	5.890	92.4377	209.1586	91.4112	209.1788
30200	5.851	92.4881	209.116	91.4572	209.0863
5801	5.811	92.5421	208.4465	91.5067	208.4306
30190	5.775	92.5897	208.316	91.5502	208.2995
505729	5.729	92.6503	208.0259	91.6056	208.0046
30180	5.714	92.6702	207.6406	91.6238	207.6208
505694	5.700	92.6890	207.2832	91.6409	207.2633
5674	5.675	92.7229	206.8691	91.6719	206.8436
505653	5.669	92.7308	206.2727	91.6791	206.2134
505631	5.654	92.7516	205.8887	91.6981	205.7272
5630	5.653	92.7516	206.7442	91.6981	206.4715
5629	5.640	92.7687	206.3036	91.7125	205.7102
5472	5.484	92.9755	205.3776	91.8892	205.4819
5446	5.465	93.0114	205.1611	91.9218	205.5107
5428	5.441	93.0720	204.7981	91.9817	204.6014
5410	5.423	93.0883	204.4009	91.9957	204.1649
5330	5.350	93.1527	204.3008	92.0500	204.1883
5201	5.273	93.2183	204.2604	92.1119	204.2098
5190	5.209	93.2703	204.0000	92.1000	204.0903
3060	3.074	93.3999	203.2209	92.2109	203.2214
4950	4.970	93.4931	202.4109	92.3003	202.4000
4000	4.902	93.5013	202.1411	92.4209	202.1223
4001	4.099	08 3382	202.4022	92.4209	202.3010
4041	4.000	90.0002	201.0070	90.0307	201.0447
4003	4.010	98 5476	201.3334	90.97 99	201.3203
4719	4.700	98 6243	200.07 40	97 1540	200.0004
4693	4 705	98 6827	200.0002	97 2064	201 0643
4642	4 652	98 8038	200 9951	97 3156	200 9775
4595	4.605	98.9117	200.8832	97.4135	200.8633
4575	4.587	98.9538	199.7059	97.4515	199.6844
4550	4.562	99.0120	199.5245	97.5042	199.5014

		Ist-Zustand		Planzustand		
Profile	km	Q [m³/s]	WSPL [mNN]	Q [m³/s]	WSPL [mNN]	
4496	4.529	99.0889	199.4341	97.5739	199.4135	
4454	4.486	99.1876	199.1651	97.6633	199.1469	
4447	4.454	99.2623	199.0133	97.7309	198.9922	
4403	4.410	99.4738	198.7351	97.9220	198.7063	
4355	4.362	99.4735	198.8641	97.9218	198.8306	
4341	4.353	99.4937	198.5867	97.9401	198.5593	
4327	4.344	99.5150	198.4412	97.9592	198.4133	
4266	4.283	99.6528	198.59	98.0829	198.5564	
4201	4.218	99.8045	198.7199	98.2204	198.6883	
4179	4.187	99.8743	197.9096	98.2838	197.8824	
4137	4.150	99.9612	197.84	98.3626	197.8115	
4133	4.146	99.9701	197.2157	98.3707	197.195	
4084	4.099	100.0768	196.9411	98.4673	196.9196	
4074	4.086	100.1067	196.6434	98.4941	196.6188	
3963	3.977	100.3587	196.1439	98.7223	196.118	
3873	3.896	100.5468	195.2411	98.8929	195.2173	
3773	3.791	100.7869	193.8287	99.1104	193.8051	
10810	3.745	101.3028	193.629	99.6096	193.6085	
3673	3.686	101.3025	193.3417	99.6094	193.3222	
3669	3.682	101.3747	192.8264	99.6751	192.8073	
10800	3.650	101.3720	192.8171	99.6736	192.7984	
3603	3.616	101.4169	192.7904	99.7211	192.752	
3573	3.586	101.4494	192.8764	99.7558	192.7814	
3572	3.585	101.4275	193.0097	99.7355	192.8252	
3557	3.571	101.3126	192.9238	99.5239	192.6571	
53532	3.546	101.3460	193.2858	99.5248	193.1193	
10790	3.524	101.3464	193.1376	99.5504	193.0548	
10780	3.494	101.4272	193.1375	99.5944	193.0707	
10770	3.457	101.5299	193.1624	99.6907	193.099	
3424	3.437	101.5160	193.257	99.6828	193.1952	
10765	3.401	101.5732	193.2721	99.7398	193.2102	
3340	3.354	101.6889	193.2868	99.8546	193.2247	
10750	3.330	101.6850	193.2979	99.8524	193.2365	
10740	3.307	101.7285	193.1512	99.8925	193.0912	
53278	3.307	101.7288	193.0726	99.8932	193.0137	
3261	3.273	101.8271	193.1649	99.9893	193.1053	
53235	3.248	101.8472	192.8309	100.0090	192.7734	
3223	3.236	101.8376	192.4944	100.0043	192.4361	
3214	3.226	101.8435	192.0168	100.0137	191.946	
10710	3.193	102.3742	191.6849	100.5578	191.6153	
3160	3.174	102.3859	191.7941	100.5728	191.7243	
3146	3.158	102.3893	191.8378	100.5826	191.769	
3113	3.125	102.4227	191.8293	100.6156	191.7605	
3095	3.107	102.4376	190.5726	100.6311	190.4703	
3084	3.103	102.4589	190.5704	100.6524	190.4678	
3065	3.084	102.4544	190.5906	100.6498	190.4891	
3060	3.078	102.4566	190.5258	100.6527	190.4222	
3042	3.058	102.4797	190.5971	100.6754	190.4976	
10700	3.055	102.4790	190.5862	100.6750	190.4873	
3039	3.050	102.4871	190.5362	100.6827	190.4372	

		Ist-Zustand		Planzustand	
Profile	km	Q [m³/s]	WSPL [mNN]	Q [m³/s]	WSPL [mNN]
3032	3.044	102.4890	190.4159	100.6850	190.321
10690	3.025	102.5325	190.4103	100.7254	190.3152
2994	3.006	102.5310	190.4069	100.7244	190.3125
2982	2.991	102.5460	189.8674	100.7389	189.7918
2968	2.982	102.5555	189.8651	100.7482	189.7894
2963	2.974	102.5628	189.7165	100.7552	189.646
2914	2.925	102.6160	189.0308	100.8057	188.9842
2902	2.914	102.7688	188.3281	100.9581	188.2796
10680	2.873	102.9452	188.2038	101.1207	188.1544
2827	2.839	103.1355	188.2268	101.2967	188.1719
2818	2.829	103.2613	188.3428	101.4127	188.2933
10670	2.800	103.2610	188.2978	101.4125	188.2485
10660	2.789	103.3112	187.7784	101.4588	187.7307
2726	2.735	103.5467	187.6648	101.6757	187.6031
52717	2.730	103.5907	186.7818	101.7162	186.7115
2714	2.725	103.5907	186.7593	101.7162	186.687
2708	2.709	103.6640	186.693	101.7836	186.6106
2687	2.697	103.7175	187.1859	101.8328	187.1291
2673	2.683	103.7784	186.4456	101.8888	186.4155
2660	2.669	103.8391	186.4082	101.9447	186.378
2646	2.656	103.8970	185.5929	101.9980	185.5737
2599	2.609	104.3117	185.1405	102.3795	185.1225
2002	2.002	104.3117	100.0000	102.3793	100.320
2000	2.040	104.3042	100.1200	102.4403	100.0040
2513	2.525	104.4033	185 /3/9	102.5574	185 3085
10600	2.010	104.0000	185 4195	102.0454	185 3831
10590	2.450	104.0000	185 3277	102.0404	185 2926
10580	2.403	105.0098	185,2558	103.0220	185,2206
2375	2.385	105.0920	185.296	103.0976	185.262
2358	2.366	105.2780	184.0024	103.2687	183.9764
10570	2.342	105.2779	183.9498	103.2687	183.924
2305	2.315	105.3996	183.6399	103.3806	183.616
10560	2.263	105.6280	183.1167	103.5908	183.0956
2229	2.238	105.7002	182.3739	103.6574	182.3625
2208	2.217	105.7262	179.0023	103.6824	178.9349
2195	2.204	105.7253	180.8742	103.6821	180.7969
2161	2.169	105.7527	181.0581	103.7077	181
2151	2.159	105.8010	180.5735	103.7530	180.5247
2100	2.108	105.8009	180.4879	103.7527	180.4385
2061	2.069	105.8318	179.952	103.7819	179.9071
2051	2.059	105.8398	179.3214	103.7896	179.2822
1985	1.994	105.8903	179.0898	103.8374	179.0478
1953	1.962	105.9144	179.1862	103.8605	179.1403
1917	1.925	105.9718	178.853	103.9146	178.809
10520	1.889	105.9716	1/8./984	103.9143	1/8./537
10510	1.836	106.0135	178.3605	103.9537	178.3138
10500	1.020	100.0210	177,9941	103.9012	177 6570
10490	1.004	100.0409	177 QA11	103.9009	177 8506
1781	1.791	106.0483	177.9411	103.9866	177.8596

		Ist-Zustand		Planzustand	
Profile	km	Q [m³/s]	WSPL [mNN]	Q [m³/s]	WSPL [mNN]
1767	1.776	106.0588	177.328	103.9968	177.2694
1729	1.740	106.0868	177.1516	104.0234	177.0802
1719	1.731	106.0936	177.273	104.0299	177.1997
1680	1.688	106.3865	177.3924	104.3189	177.3284
10480	1.649	106.4094	177.0822	104.3403	177.0172
1608	1.616	106.4294	177.0328	104.3593	176.9661
1587	1.598	106.4399	176.8823	104.3692	176.8137
1575	1.580	106.4506	175.9416	104.3794	175.9093
10470	1.552	106.4673	175.7736	104.3952	175.7393
10460	1.504	106.4958	175.687	104.4218	175.6421
1458	1.469	106.5169	175.9462	104.4414	175.8948
1433	1.440	106.5321	175.3523	104.4558	175.3237
1382	1.392	106.5623	175.0878	104.4844	175.0544
1372	1.382	106.5675	174.5598	104.4894	174.5126
1333	1.343	106.5897	174.7619	104.5108	174.7189
10446	1.316	107.0221	174.9761	104.9408	174.9268
1287	1.291	107.0584	174.0918	104.9750	174.0691
1265	1.276	107.1309	173.9958	105.0432	173.9727
1231	1.241	107.1266	174.2696	105.0405	174.2399
20230	1.171	107.2274	174.354	105.1359	174.3128
20225	1.159	107.2458	174.4291	105.1533	174.3905
20220	1.143	107.2692	174.4025	105.1750	1/4.361/
20210	1.120	107.3302	173.6954	105.2323	1/3.6568
20205	1.101	107.3301	1/3.6/98	105.2321	173.641
20200	1.085	107.3543	1/3.53/8	105.2549	173.5028
20175	1.058	107.3938	173.1978	105.2923	173.1684
20170	0.948	107.5559	172.6344	105.4446	172.6066
20165	0.939	107.5079	172.2700	105.4500	172.2499
20160	0.904	107.0199	171.4922	105.5051	171.4309
20150	0.007	107.0001	171.4973	105.5092	171.4040
20140	0.800	107.0090	171.3212	105.5707	171.2003
20130	0.004	107.7570	171.4020	105.0353	171.4133
20120	0.722	107.0741	171.0037	105.7450	171.010
5020110	0.700	107.3003	171.1273	105.7703	171.00
20105	0.000	107.9148	171 206	105.7030	171 1499
5020100	0.000	107.9140	170 8807	105.7854	170 8201
5020100	0.000	107.9345	171.0626	105.7004	171.0085
20100	0.680	107 9361	171.0020	105 8037	171.0000
20090	0.661	107 9643	170 6083	105 8304	170 5674
20080	0.569	108 0984	170 2927	105 9565	170 2484
20070	0.502	108.1966	169.4061	106.0490	169.3709
20060	0.391	108.6264	169.2731	106.4643	169.2277
20050	0.347	108.7398	169.2115	106.5700	169.156
20040	0.326	108.7962	169.2634	106.6225	169.2035
20030	0.253	108.9857	169.1113	106.7991	169.0483
20020	0.239	109.0234	168.1232	106.8344	168.0994
20010	0.055	109.5137	167.0468	107.2918	167.0321
20005	0.052	109.5607	166.9902	107.3357	166.9834
20000	0.034	109.6350	167.1953	107.4036	167.1871

		Ist-Zustand		Planzustand				
Profile	km	Q [m³/s]	WSPL [mNN]	Q [m³/s]	WSPL [mNN]			
	NG3:							
601	0.067			12.84912	227.2703			
501	0.070			12.84907	227.2774			
503	0.087			12.84906	227.4033			
504	0.101			12.84905	227.3934			
505	0.267			12.85154	228.2957			
506	0.392			12.8582	229.3564			
507	0.541			12.85924	231.3116			
508	0.621			12.85938	231.7531			
509	0.684			12.86018	232.1762			
510	0.692			12.86019	232.4812			
511	0.894			12.86046	235.3608			
512	1.095			12.86296	235.9846			
513	1.136			12.86436	236.3747			
514	1.205			12.865	236.7469			
516	1.226			12.865	236.9915			
616	1.229			12.865	237.0802			
			NG2:					
617	0.016			0.2844366	244.6115			
517	0.017			0.2843091	244.6133			
519	0.036			0.2840842	244.6168			
520	0.039			0.2840292	244.6172			
521	0.055			0.3584611	244.6171			
522	0.095			0.9918543	244.6932			
523	0.110			0.2848395	244.7999			
524	0.128			0.2854616	244.89			
526	0.141			0.2855253	244.7976			
626	0.142			0.2855336	244.7978			
NG1:								
627	0.082			0	0			
527	0.083			0	0			
529	0.100			0	0			
530	0.147			0	0			
531	0.305			0	0			
532	0.482			0	0			
533	0.514			0	0			
535	0.528			0	0			
635	0.529			0	0			

A.2 Rauheiten nach "TIMIS flood"

Die im Rahmen des Projektes "TIMIS flood" verwendeten Rauheitsklassen wurden empirisch ermittelt. Sie entsprechen somit realitätsnahen Werten und werden im Folgenden tabellarisch dargestellt. [18]

Sohlrauheiten im	hydraulischen	Modell
------------------	---------------	--------

Jabron Rauheitsklasse	ks (Sandrauheit)	Тур
Nr.	[m]	-
Aus der Definition während der Vermessung		
1	0,006	Asphalt
2	0,004	Holz, ungehobelt
3	0,010	Beton, glatt
4	0,025	Beton, rauh
5	0,015	Rauhputz
6	0.002	Stahl
7	0,140	Spundwand
8	0.175	Schotter
9	0.026	Bruchstein.glatt
10	0.011	Ziegel
11	0,100	Naturstein rauh
12	0.016	Verbundoflaster
13	0.050	Pflaster
14	0,000	Gittersteine
15	0,300	Gitterrost
21	0,170	Basen
21	0,030	Gras
22	0,550	Wiese
23	0,300	Kroutwuche
24	0,750	Readright
25	0,000	Streeueber
20	0,800	Straeucher
27	0,351	
28	0,801	Acker + Bewuchs
29	0,352	Vvaldboden
30	0,501	felsiger vvaldboden
50	0,150	glatter Fels
51	0,040	Sand, Schlamm
52	0,060	Feinkies
53	0,101	Kies
54	0,176	steinig
55	0,502	grobsteinig
56	0,751	Fels
57	1,200	Fels, grob
58	0,353	Kiesanlandung
59	0,503	Geroellanlandung
60	0,200	Lehm, Wasserpflanzen
61	0,301	Lehm, Wurzeln
62	0,102	glattes Lehmufer
63	0,450	Wurzelstoecke, Kolke
71	0,330	Steinschuettung
72	0,700	Steinsch., grob
73	0,171	Holzgeflecht
Aus ATKIS-Nutzungen		
9001	0,010	sehr glatt
9002	0,050	glatt
9003	0,150	mittel
9004	0,350	rau
9005	0,500	sehr rau

Eidesstattliche Versicherung

Ich versichere hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen als die im Literaturverzeichnis angegeben Quellen benutzt habe.

Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder unveröffentlichten Quellen entnommen sind, sind als solche kenntlich gemacht.

Diese Arbeit hat bei keiner anderen Prüfungsbehörde in gleicher oder ähnlicher Form vorgelegen.

Aachen, Januar 2015