Straßenbauverwaltung des Landes Niedersachsen							
Straße / Abschnittsnummer / Station:							
B 70 von Abs. 510 / Stat. 0,446 bis Abs. 500 / Stat. 0,015							
Neubau der Ledabrücke im Zuge der B 70							

- FESTSTELLUNGSENTWURF -

Unterlage 16.6.2.2 D Erläuterungsbericht zum Verschubkonzept

Deckblatt ergänzt Unterlage 16 vom 23.10.2020

Aufgestellt:
Aurich, den01.03.2024 Niedersächsische Landesbehörde für Straßenbau und Verkehr Geschäftsbereich Aurich
im Auftragegez. Kilic

Ledabrücke

Engineering – Phase 1

Inhaltsverzeichnis

1.	Einleitung	3
	Bauablaufkonzept für den Verschubvorgang	
3.	Zeichnung 033527-000-05: Phase 1 & 2 - Transport auf SPMT	6
4.	Zeichnung 033527-000-03B: Bauablaufplan - Übersicht Lastfällen	7
5.	Zeichnung 033527-000-04: Pontonverankerung	8
6.	Berechnung 033527-000-C01: Pontonverankerung	9
7.	Berechnung 033527-000-C02: Belastungen und Kräften im Ponton	10
8.	Ablaufplan	11
9.	Datenblatt Pontons Wagenborg Barge 14 & 15	12

Revision	Datum
0	31-10-2022
Α	02-11-2022
В	22-11-2022

1. Einleitung

Die im Zuge der Bundesstraße B70 bestehende Brücke über die Leda weist Bauwerksschäden auf und nähert sich dem Ende ihrer Nutzungsdauer. Um die Leistungsfähigkeit der B70 aufrecht erhalten zu können, ist der zeitnahe Neubau der Ledabrücke unabdingbar.

Die neue Brücke wird ca. 15m neben der bestehenden Brücke gebaut.

Es ist geplant, das Stahltragwerk der Strombrücke auf einem Vormontageplatz südlich der Leda an Land vorzufertigen und über Modulfahrwerke und einen Ponton in die endgültige Position zu verschieben. Um das Montagegewicht zu minimieren, wird die Fahrbahnplatte aus Stahlbeton erst nach dem Verschubvorgang hergestellt.

Die hier vorliegende Planung beschäftigt sich ausschließlich mit den technischen Details des Verschubvorgangs im Zuge des Neubaus (Bauphase 3 bis 6 des Bauwerksentwurfes).

Die Planung wurde auf Grundlage folgender Randbedingungen erstellt (Auswahl):

- Bauwerksentwurf der neuen Ledabrücke (Stand: 06/2022)
- Abminderung der natürlichen Tidestände und Gezeitenströmungen (v< 2,5m/s) während der Verschubphase durch temporäre Schließung des Ledasperrwerkes
- Zugrundlegung der Wasserstände und sonstigen Abhängigkeiten gemäß der Stellungnahme des NLWKN vom 04.04.2022 (Einhaltung Mindestwasserstände, ökologische Aspekte, Auswirkungen auf Schifffahrt, Hochwasserschutz, betriebliche Aspekte der Sperrwerke und des Ledaschöpfwerkes u.a.)
- Verzicht auf den planmäßigen Einsatz des Ledaschöpfwerkes (Ausgleich von wechselnden Pegelständen durch hydraulisches Hebesystem)
- Die Abmessungen der Schiffahrtsöffnung des Ledasperrwerk begrenzen die Größe des Verschubpontons, daher ist die Koppelung von 2 Pontons im Baustellenbereich erforderlich.
- Bauseitige Herstellung von Dalben zur Verankerung des Verschubpontons
- Bauseitige Ausführung von Arbeitsbaggerungen im Uferbereich der Leda sind möglich.

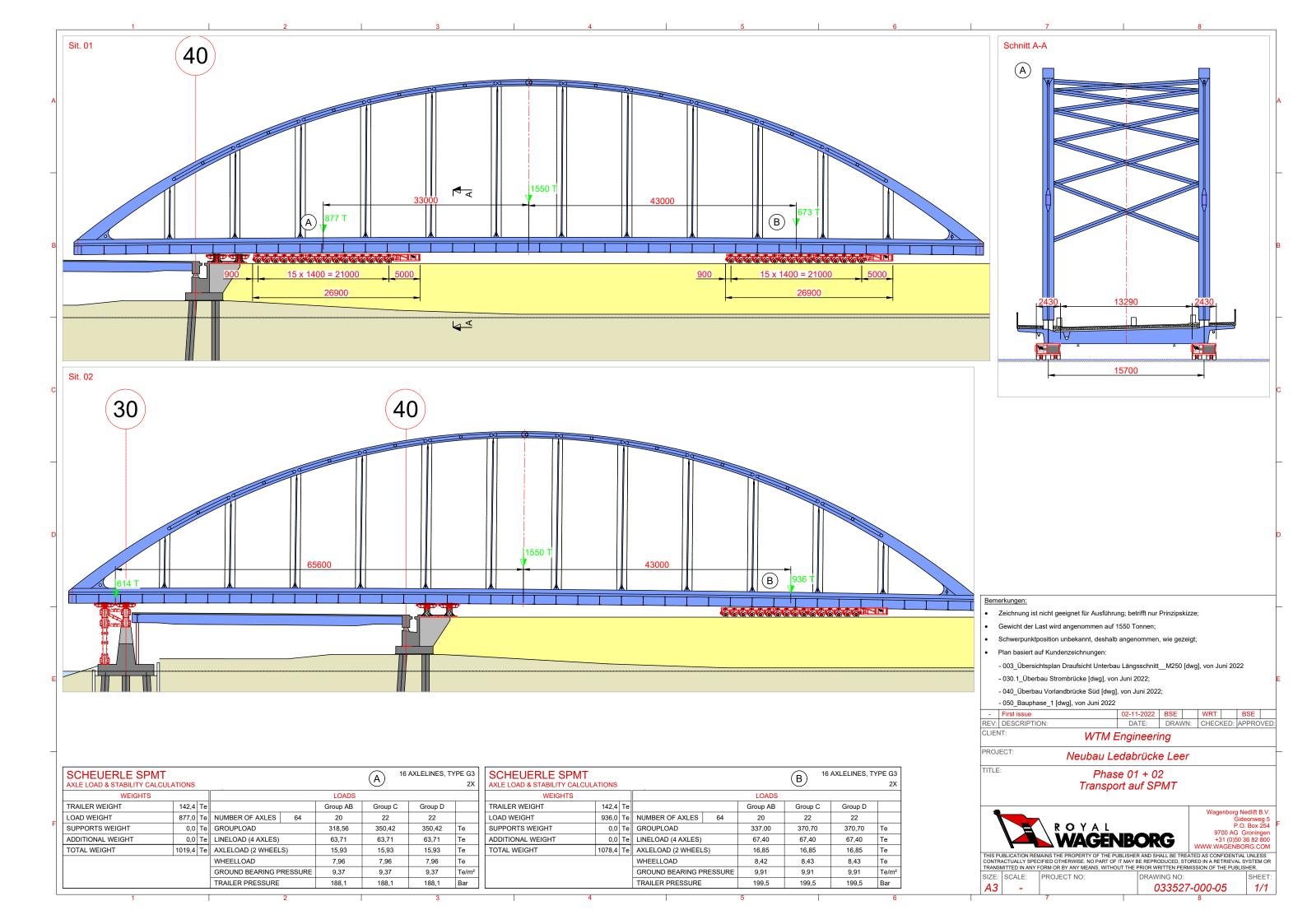
Der Verschubvorgang darf nur begonnen werden, wenn folgende äußeren Randbedingungen beim Start eingehalten werden und keine negative Prognose über den Zeitraum der Montage vorliegt:

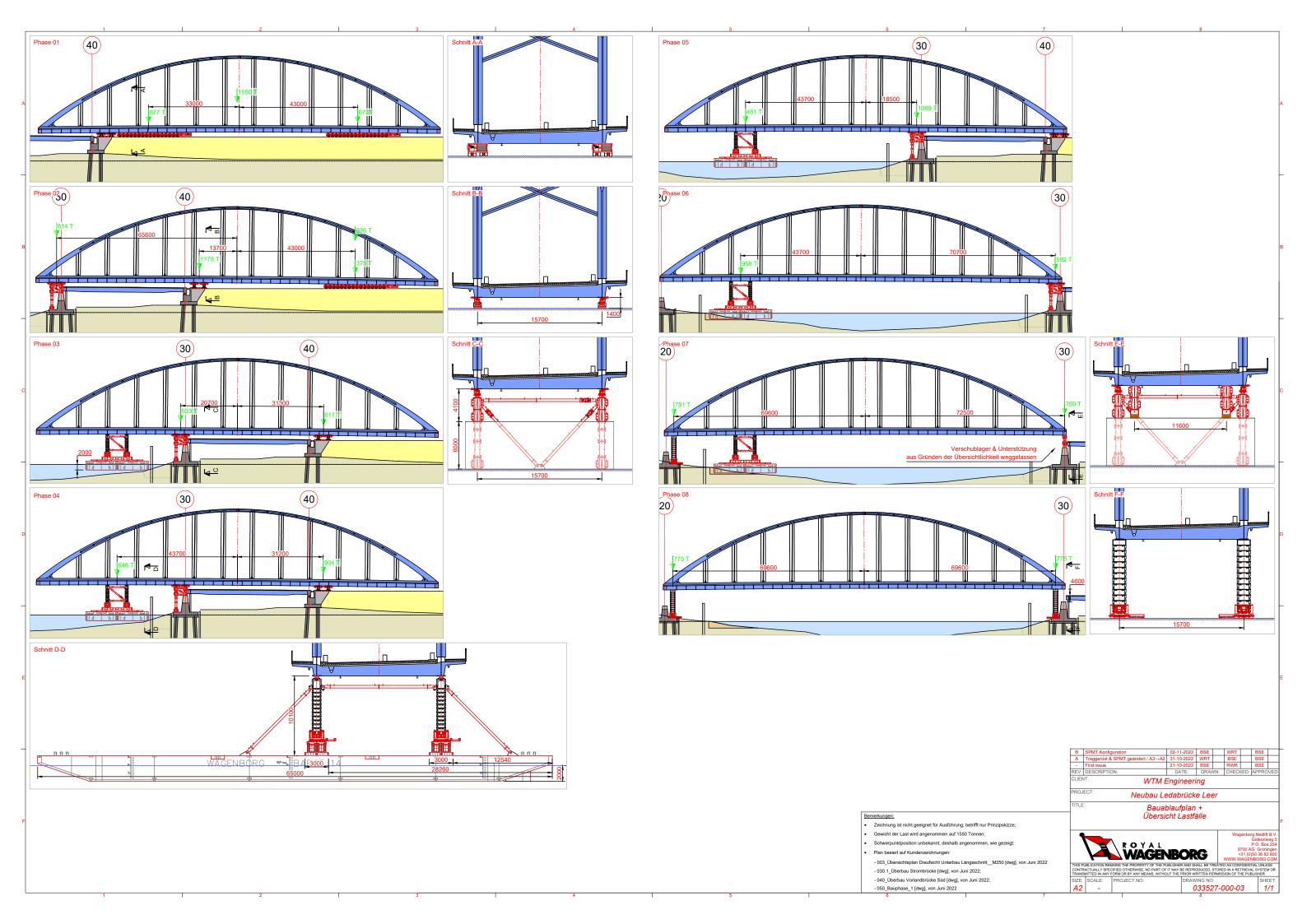
- Ausführung nur außerhalb Hochwassersituation bzw. außerhalb von Phasen mit erhöhter Abflussregenspende (bestehende und prognostizierte Wasserstände im vorher abgestimmten Toleranzbereich)
- maximal zulässige Windgeschwindigkeit = 13,8m/s
- maximal zulässige Strömungsgeschwindigkeit = 2,0 m/s
- max. Zuflußrate oberstrom = 20m³/s (Der Anstieg des Gewässerpegels im Baubereich bei geschlossenem Ledasperrwerk wird mit ca. 2cm/h abgeschätzt. Die konstruktive Lösung muss ausreichende Reserven für einen schnelleren Anstieg (bis max. 5cm/h) berücksichtigten.

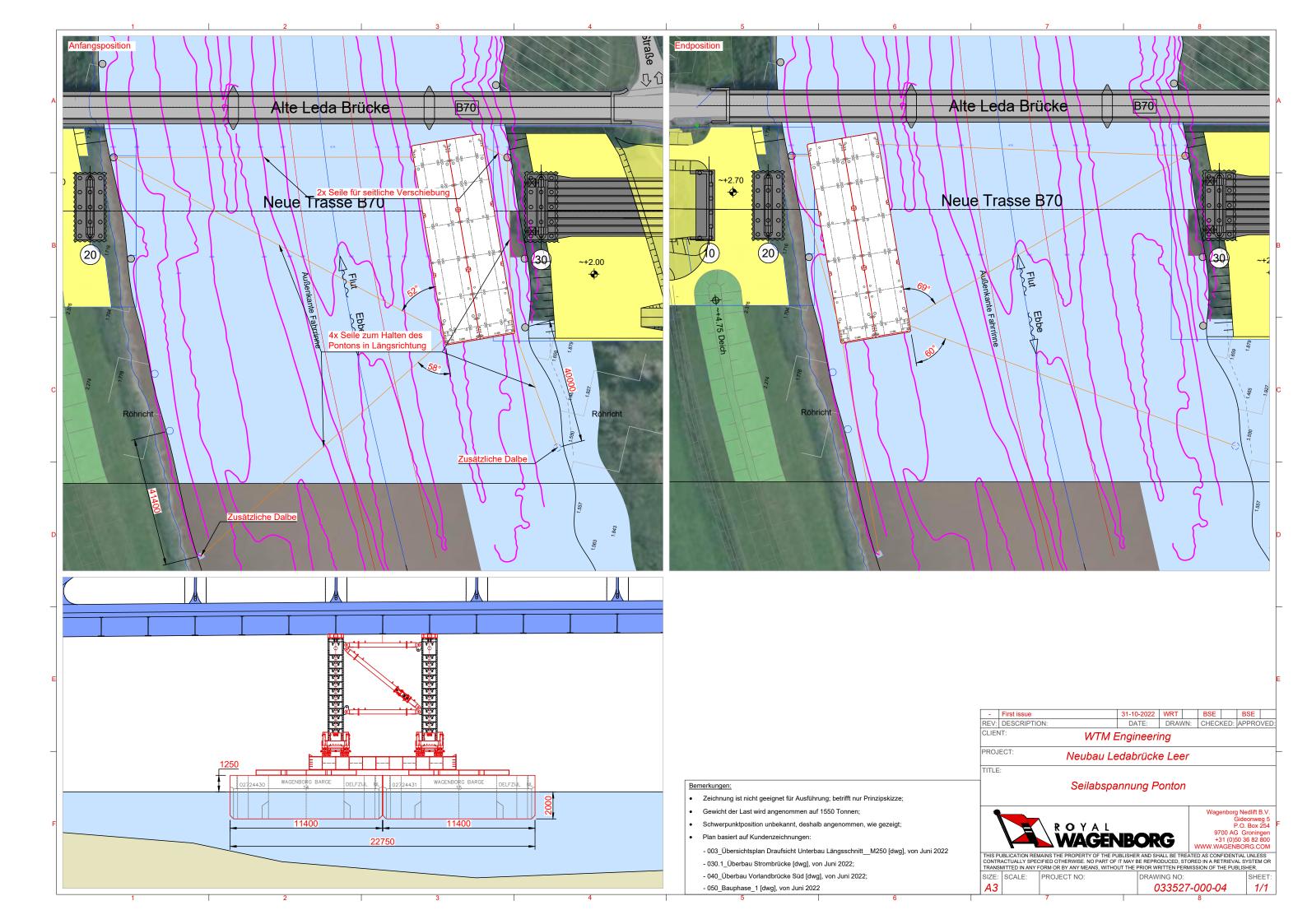
Das Montagekonzept (incl. Tidebeeinflussung der Gewässer) muss eine ausreichende Robustheit gegen Stillstände, Geräteausfälle, Terminverzögerungen u.ä. aufweisen. Im Zuge der weiteren Planung wird ein Havariekonzept auszuarbeitet, dass alle Eventualitäten abdeckt und ausreichende Zeitreserven aufweist.

2. Bauablaufkonzept für den Verschubvorgang

Die maßgeblichen Bauzustände sind auf dem nachfolgend aufgeführten Plan "Bauablaufkonzept + Übersicht Lastfälle" dargestellt. Die einzelnen Bauleistungen, Zeitdauern, Wasserstände sowie Auswirkungen auf den Betrieb des Ledasperrwerkes sind im "Montagekonzept + Zeitplan" erkennbar.


Der landseitige Verschub erfolgt über miteinander gekoppelte Modulfahrwerke (self propelled modular transporter = SPMT). Im Bereich der südlichen Vorlandbrücke wird der Überbau auf Gleitlagern (hydraulisch gekoppelten Verschubwippen) aufgelagert.


Der Verschub im Gewässerbereich erfolgt mit Hilfe eines Pontons. Der Verschubponton besteht aus zwei miteinander verbundenen Pontons und besitzt im gekoppelten Zustand eine Länge von ca. 65m und eine Breite von ca. 22,75m. Der Verschubponton wird über Winden am Bord vom Ponton geführt.

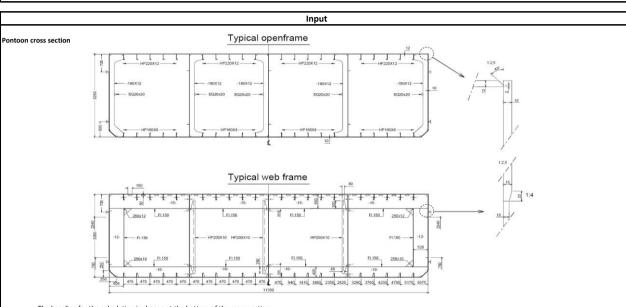

Im nördlichen Uferbereich sind voraussichtlich Arbeitsbaggerungen erforderlich. Die Stahlseile werden an im Uferbereich gerammte Dalben verankert. Nach Abschluss der Montage werden die Dalben zurückgebaut und der ursprüngliche Zustand der Gewässersohle / Uferbefestigung wieder hergestellt.

Auf dem Verschubponton wird ein hydraulisches Hebesystem (Jack-Up-System) angeordnet, mit dem Schwankungen des Wasserstandes während des Verschubzustandes ausgeglichen werden können. Das gewählte System kann Schwankungen des Gewässerpegels bis 400cm pro Stunde und bis zu einer Höhe von + 4m ausgleichen.

						ntonveranker				
	_				-	lient:		M Engineering		
						roject		ıbau Ledabrücke, Leer		
	- V	VAGENBO	KG NEI	JLIFT	<u> </u>	ocumentNr:		527-000-C01		
	_	1	1		T	itle	Pon	tonverankerung		1
Revision	Autor	Datum	Beschreibu	-					Geprüft	Genehmigt
	WRT	27-10-2022	Erste Versio	on					BSE	BSE
									_	
			<u> </u>							
Randbedi	ngungen									
				-		aus gleiche rich	ntung auf d	as schiff und die Brücke einwirken.		
		trömung wird ein maxim	-		-					
		e Windgeschwindigkeit i Berechnung werden nur	-			roil das Schiff n	ur in Länge	richtung im Kanal Liegt		
	iii ulese t	serecillung werden nur	ule belastungen	i iii Laiigsiicii	tung gepruit, v	veii uas sciiiii iii	ui iii Laiigs	inclitung iin kanal Liegt.		
Eigenscha	ften									
		Schwerkraft		g	9,81 [m/s²]				
		Tiefgang		T	2,00 [1	m]				
		Schiff breite		b	22,75 [1	m]				
		Maximale Windgesch	windigkeit	v_{wind}	13,8	m/s]				
		Strömungsgeschwind	igkeit	V _{strömung}	2,50 [1	m/s]				
Belastung	en									
	Wind									
		Windfläche Brücke		$A_{w,b,f}$	700 [1	m ²]				
		Luftdichte		ρ_{luft}	1,2	kg/m³]				
		Widerstandskoeffizie	nt	C _w	2,1 [-	-]				
		Windbelastung auf Br	rücke	$F_{w,b}$	168 [kN]	$F_{w,b}$	= 0,5* c_w * ρ_{luft} * v_{wind} ² * $A_{w,b,f}$		
		Windbelastung Brücke -	- Ponton	F _{w.b1}	104 [kN]	Fwh	₁ = F _{w,b} * (70,8m/(70,8+43,8))		
		Windbelastung Brücke -		F _{w,b2}	64 [1		, .	₂ = F _{w,b} * (43,8m/(70,8+43,8))		
		Windfläche Unterstüt	zungsstahl	$A_{w,S}$	53 [1	m²]				
		Windfläche Schiff	G • • • • • • • • • • • • • • • • • • •	A _{w,p}	28,4					
		Luftdichte		ρ_{luft}		kg/m³]				
		Widerstandskoeffizie	nt	C _w	1,2 [-	.]				
		Windbelastung		$F_{w,p}$	11 [kN]	$F_{w,p}$	= 0,5* c_w * ρ_{luft} * v_{wind} ² * $A_{w,p}$		
	Strömun	g								
		Strömungsfläche		$A_{s,p}$	46 [1	m²]	$A_{s,p}$	= b*T		
		Wasserdichte		ρ_{wasser}	1000 [kg/m³]				
		Widerstandskoeffizie	nt	C _w	1,2					
		Strömungsbelastung		F _{strömung}	173 [F _{Strö}	$_{\text{5mung}} = 0.5 \text{ *c}_{\text{w}} \text{ *p}_{\text{wasser}} \text{ *v}_{\text{strömung}} ^{2} \text{ *A}_{\text{s,p}}$		
	Total									
		Totale Belastung		F_{total}	287 [I	kN]	F _{tota}	$_{al} = F_{w,b1} + F_{w,p} + F_{strömung}$		

69 Grad. 401 [kN]

 $F_{ankerseil} = (F_{total}/2)/(cos(69))$


Verankerung

Die maximale Winkel von ein Ankerseil ist

F_{ankerseil}

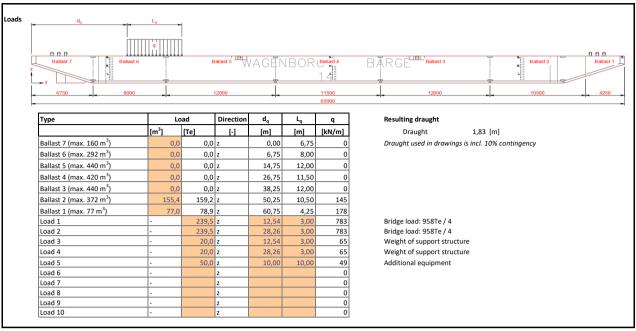
Ankerseilbelastung

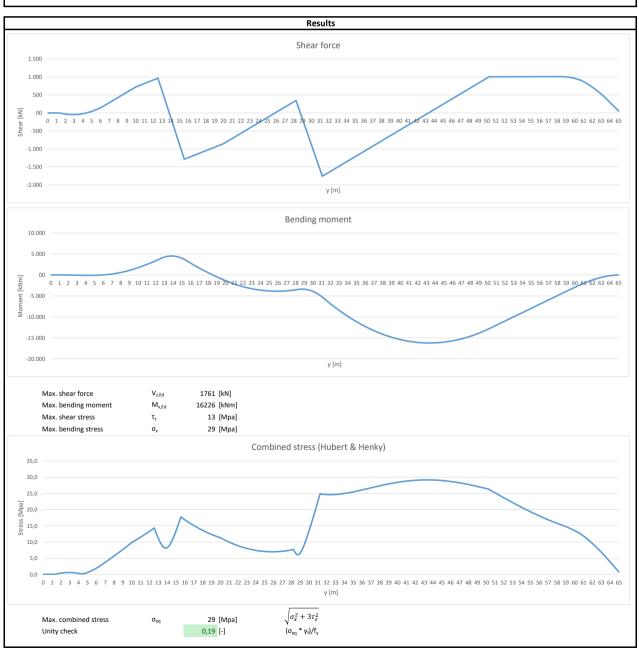
Wagenborg WB14, WB15 pontoon bending strength WTM Engineering Neubau Ledabrücke, Leer Client: Project: WAGENBORG ENGINEERING 033527-000-C02 Ponton Berechnung - Pro Ponton Title: Date 31-10-2022 Revision Author - WRT Checked Approved BSE Description Erste Ausgabe Properties 235 [N/mm²] 1,5 [-] Yield strength Partial load factor 210000 [N/mm²] Partial material factor 1 [-] Young's modulus γмо 1025 [kg/m³] 9,81 [m/s²] Partial material factor 1 [-] Density water Seawater γ_{м1} Weight pontoon W_p 407,3 [Te] Gravity 65,00 [m] 3,27 [m] Length pontoon Depth pontoon Width pontoon 11,37 [m]

The baseline for the calculation is chosen at the bottom of the cross section

Cross section neutral axis

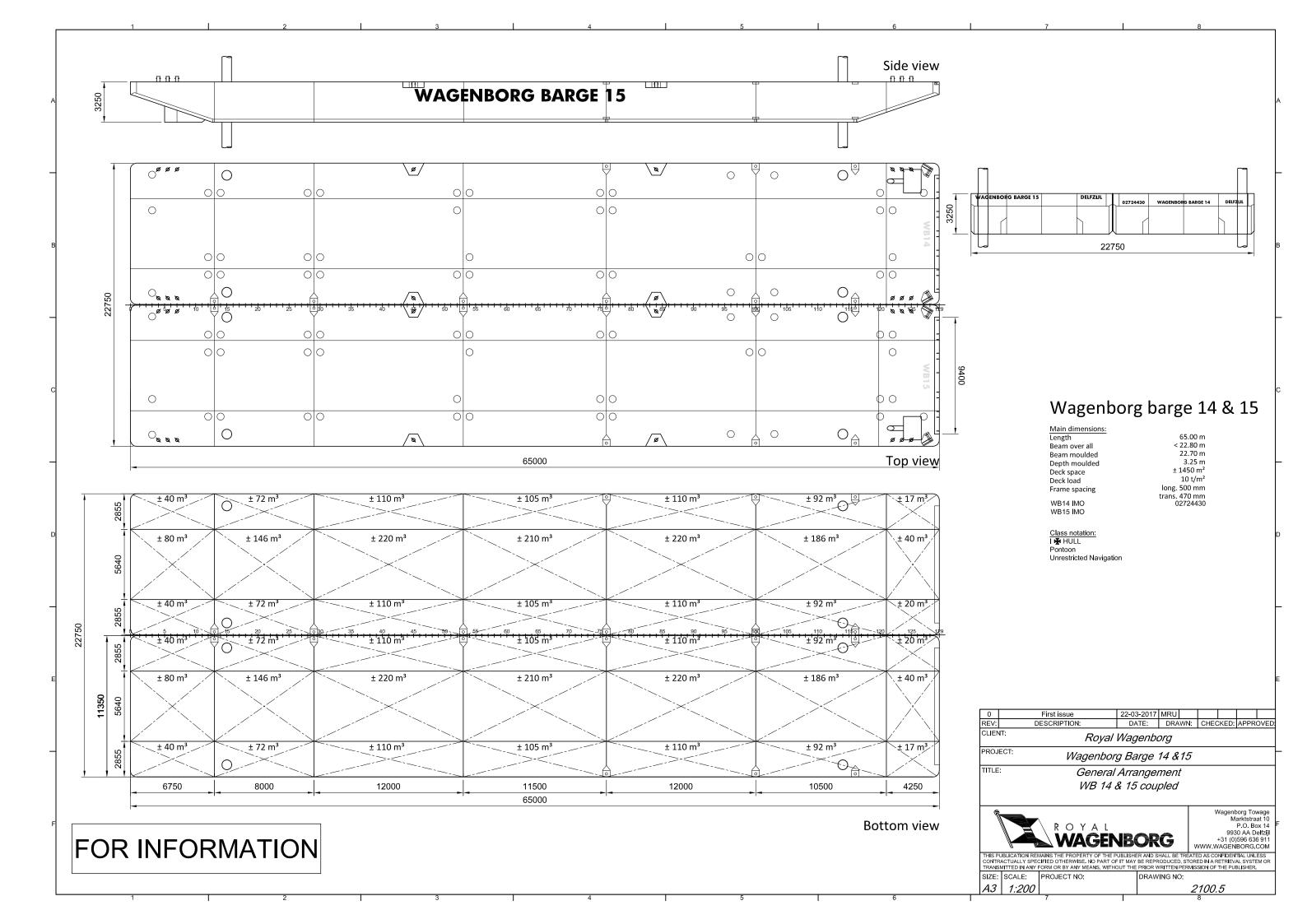
Part	Dimensions	Area (A)	Amount (n)	A*n	Distance baseline - center area (d _b)	A*n*d _b
	[mm]	[mm ²]	[-]	[mm ²]	[mm]	[mm³]
Top plating	11350x12	136200	1	1,36E+05	3266	4,45E+08
Bottom plating	10850x10	108500	1	1,09E+05	5	5,43E+05
Side plating	3012x10	30120	2	6,02E+04	1766	1,06E+08
Extra side plating	712x5	3560	2	7,12E+03	2916	2,08E+07
Bottem corner plating	354x10	3540	2	7,08E+03	135	9,56E+05
Bulkhead	3250x8	26000	3	7,80E+04	1635	1,28E+08
Bottom strenghtening profiles	HP160x8	1620	20	3,24E+04	19	6,31E+05
Top stengthening profiles	HP220x12	3340	20	6,68E+04	3247	2,17E+08
			Σ(a*n)	4,96E+05	$\Sigma(a*n*d_b)$	9,19E+08


1851 [mm] $\Sigma(A^*n^*d_b)/\Sigma(A^*n)$ Distance base line - neutral axis d_{x-x}


Cross section moment of inertia

Part	Dimensions	Area (A)	Amount (n)	Distance neutral axis - area (d)	I _{part}	A*d²	n(I _{part} +A*d²)
	[mm]	[mm ²]	[-]	[mm]	[mm ⁴]	[mm ⁴]	[mm ⁴]
Top plating	11350x12	136200	1	1415	1,63E+06	2,73E+11	2,73E+11
Bottom plating	10850x10	108500	1	-1846	9,04E+05	3,70E+11	3,70E+11
Side plating	3012x10	30120	2	-85	2,28E+10	2,16E+08	4,60E+10
Extra side plating	712x5	3560	2	1065	1,50E+08	4,04E+09	8,38E+09
Bottem corner plating	354x10	3540	2	-1716	3,70E+07	1,04E+10	2,09E+10
Bulkhead	3250x8	26000	3	-216	2,29E+10	1,21E+09	7,23E+10
Bottom strenghtening profiles	HP160x8	1620	20	-1831	4,11E+06	5,43E+09	1,09E+11
Top stengthening profiles	HP220x12	3340	20	1396	1,55E+07	6,51E+09	1,31E+11
	$\Sigma(n(I_{x-x}+A*d^2))$	1,03E+12					

Cross section static moment


Parts above neutral axis	Dimensions	Area (A)	Amount (n)	Distance neutral axis - area (d)		A*n*d
	[mm]	[mm ²]	[-]	[mm]		[mm³]
Top plating	11350x12	136200	1		1415	1,93E+08
Side plating	1421x10	14214	2		711	2,02E+07
Extra side plating	712x5	3560	2		1065	7,59E+06
Bulkhead	1409x8	11275	3		705	2,38E+07
Top stengthening profiles	HP220x12	3340	20		1396	9,33E+07
_			Total moment	of inertia (S _{x-x}) [mm ³]	Σ(A*n*d)	3,38E+08

Ledabrücke - Vorläufiger Ablaufplan:

Tag	Bauvorgänge	Verschub Phase (vgl. Plan "Übersicht Lastfälle")	ungefährer Wasserstand der Leda im Baubereich bzw. Anmerkungen zum Wasserhaltungskonzept	Zeitdauer	Verkehrseinschränkungen auf der Bundeswasser-straße Leda
Tag 1	Anfahrt und Entladen der für den Verschubvorgang erforderlichen Ausrüstung / speziellen Baustelleneinrichtung				
Tag 2	Aufbau der Traggerüste (Auflagerung auf den Pfahlkopfplatten der Pfeiler)				
Tag 3	Aufbau der Traggerüste und Verschubwippen auf den Pfeiler und Widerlager Achse 40				
Tag 4	Anfahrt und Koppeln der Pontons Antransport und Aufbau der Modulfahrwerke (SPMT`s)				
Tag 5	Koppeln der Pontons, Aufbau des hydraulischen Stufenhubsystems (Jack up) auf dem Ponton Anheben des vorgefertigten Stahltragwerkes auf dem Vormontageplatz		Abgesehen von extremen Wetterereignissen bzw. Wasserständen (Sturm, Hochwasser NHN >+2,00m, extreme Niedrigwasserstände u.ä.) haben die wechselnden Tidewasserstände in der Leda keine maßgeblichen		Halbseitige Sperrung der
Tag 6	Aufbau der Modulfahrwerke (SPMT`s) Ausrüstung des Verschubpontons Einfahren der Modulfahrwerke (SPMT`s) unter vorgefertigtes Stahltragwerk und Absetzen des Überbaus auf den SPMT		Auswirkungen auf diese Bauleistungen.		Bundeswassserstraße
Tag 7	Positionieren des Pontons und Auslegen der Ankerkabel				
	Vorfahren der Brücke auf SPMT`s und schrittweise Umlagerung auf Verschubwippen bei Achse 40 und 30	Phase 01+02			
Tag 8	Brücke um ca. 45m vorschieben bis Übernahme mit Ponton möglich ist	Phase 03			
Tag 9	Schließung des Ledasperrwerks		Schließung des Ledasperrwerkes mit einströmender Flut bei ca. NHN +1,00m	< 1/2 Std	
	Auspegeln des Gewässerpegels der Leda		Absinken des Gewässerpegels bis auf ca. NHN +0,60m, Absinken der Strömungsgeschwindigkeit auf < 2,5 m/s	2 Std	
	Brücke mit Ponton übernehmen (Ausfahren des hydraulischen Stufenhubsystems (Jack up), Verschubwippen bei Achse 30 absenken	Phase 04	Ausführung außerhalb Hochwasserereignissen und Zeiten mit erhöhter Abflußregenspende: Ansteigen des Gewässerpegels um ca. 1-2cm/h über die	3 Std	Vollsperrung der Bundeswassserstraße 2-Schichtbetrieb
	Längsverschub um ca. 40m, anschließend Überbau auf Verschubwippen Achse 30 umlagern, Verschubwippen bei Achse 40 absenken	Phase 05	Dauer von 18h durch das sich oberstrom anstauende Wasser + Verzicht auf den planmäßigen Einsatz des Ledaschöpfwerkes während der Flutzeiten in der Ems:	4 Std	
	Längsverschub um ca. 60m bis oberhalb Endlage	Phase 06	voraussichtlicher Anstieg des Gewässerpegels während	5 Std	
Tag 10	Überbau auf hydraulische Pressen an den Pfeilern Achse 20 und 30 auflagern (Absenken des hydraulischen Stufenhubsystems (Jack up))	Phase 07	des Verschubvorgangs bis auf ca. NHN +1,00m (Annahme Qoberstrom ≈ 20m³/s). Ausgleich des langsam ansteigenden Gewässerpegels über das Herunterfahren des	2 Std	
	Ausfahren des Pontons	Phase 08	hydraulischen Stufenhubsystems (Jack up) und/oder ballastieren vom Pontons.	1 Std	
	Öffnung des Ledasperrwerks		Planmäßige Öffnung des Ledasperrwerkes (ca. 18h nach Schließung) mit ablaufender Flut bei ca. NHN +1,00m (bzw. bei ca. NHN +0,75m bei Qoberstrom ≈ 10m³/s)	< 1/2 Std	
Tag 11	Demontage der Verschubwippen				
	Demontage der Modulfahrwerke (SPMT`s)]
	Demontage Ponton		Abgesehen von extremen Wetterereignissen bzw.		
Tag 12	Demontage der Traggerüste		Wasserständen (Sturm, Hochwasser NHN >+2,00m,		Halbseitige Sperrung der
	Demontage der Modulfahrwerke (SPMT`s)		extreme Niedrigwasserstände u.ä.) haben die wechselnden		Bundeswassserstraße
	Demontage des Koppelpontons		Tidewasserstände in der Leda keine maßgeblichen		
Tag 13	Absenken des Überbaus mittels hydraulischem Pressensystem		Auswirkungen auf diese Bauleistungen.		
Tag 14	Demontage des Pressensystems				

