Straßenbauverwaltung des Landes Niedersachsen			
Straße / Abschnittsnummer / Station:			
B 70 von Abs. 510 / Stat. 0,446 bis Abs. 500 / Stat. 0,015			
Neubau der Ledabrücke im Zuge der B 70			
PROJIS-Nr.:			

- FESTSTELLUNGSENTWURF -

<u>Unterlage 14.1 D</u> Ermittlung der Belastungsklasse

Deckblatt ersetzt Unterlage 14.1 vom 23.10.2020

Aufgestellt:
Aurich, den01.03.2024 Niedersächsische Landesbehörde für Straßenbau und Verkehr Geschäftsbereich Aurich
im Auftragegez. Kilic

<u>Unterlage 14.1</u> Ermittlung der Belastungsklasse

- Bundestraße B 70 - (Papenburger Straße)

Ermittlung der Belastungsklasse nach RStO 12

(Methode 1.2 = Bestimmung von B bei konstanten Faktoren)

Projektdaten: B 70 Neubau Ledabrücke

Streckenbereich: Abs. 500, Stat. 0,015 bis Abs. 510, Stat. 0446

Eingabedaten:	Straßenklasse	Bundesstraßen		
	DTV ^(SV) Ausgangswert (Schätzung)	1280	Jahr:	2030
	Verkehrsübergabe		Jahr:	2030
	Nutzungszeitraum	30	Jahre	
	Fahrstreifenbreite	3,50	m	
	DTV ^(SV) - Erfassung für	beide Fahrtrichtungen		
	Anzahl der Fahrstreifen, die durch den DTV ^(SV) erfasst sind	2		
	Höchstlängsneigung	2,68	%	

A. Berechnung der dimensionierungsrelevanten Beanspruchung B

1. Berechnung des DTV ^(SV) _{Verkehrsübergabe}			
1.1 DTV ^(SV) Ausgangswert	(Schätzung)	$DTV^{(SV)} =$	1280
1.2 Jahr, in dem der Ausgangswert gilt			2030
1.3 Jahr der Verkehrsübergabe			2030
1.4 Anzahl der Differenzjahre A			0
1.5 Mittlere jährliche Zunahme des Schwerverkehrs p für	Bundesstraßen	p =	0,02
1.6 Korrekturfaktor für DTV ^(SV) Ausgangswert $k = (1+p)^A$		k =	1,000
1.7 DTV ^(SV) _{Verkehrsübergabe} = DTV ^(SV) Ausgangswert ∙ k	DTV ^(SV) Verkehrsi	übergabe =	1280
2. Achszahlfaktor f _A (Tabelle A 1.1) für	Bundesstraßen	$f_A =$	4,0
3. Lastkollektivquotient q _{Bm} (Tabelle A 1.2) für	Bundesstraßen	$q_{Bm} =$	0,25
4. Fahrstreifenfaktor f ₁ (Tabelle A 1.3)		f ₁ =	0,50
5. Fahrstreifenbreitenfaktor f ₂ (Tabelle A 1.4)		$f_2 =$	1,10
6. Steigungsfaktor f ₃ (Tabelle A 1.5)		$f_3 =$	1,02
7. Nutzungszeitraum N	in Jahren	N =	30
8. Mittlerer jährlicher Zuwachsfaktor des Schwerverkehrs $f_Z = \frac{(1+p)^N - 1}{p \cdot N}$		$f_Z =$	1,352
9. Durchschnittliche Anzahl der täglichen Achsübergänge des Schwerverkehrs:			
^(SV) = DTV ^(SV) _{Verkehrsübergabe} • f _A	D	OTA ^(SV) =	5120

10. B = N • DTA^(SV) • q_{Bm} • f_1 • f_2 • f_3 • f_z • 365

Äquivalente 10-t-Achsübergänge im zugrunde gelegten Nutzungszeitraum [Mio.] **B = 10,63**

B. Ermittlung der Belastungsklasse (nach Tabelle 1)

Bk32

Ermittlung der Dicke des frostsicheren Oberbaus nach RStO 12

Projektdaten: B 70 Neubau Ledabrücke

Streckenbereich: Abs. 500, Stat. 0,015 bis Abs. 510, Stat. 0446

Eingabedaten: Frostempfindlichkeitsklasse:

(für Tabelle 6) des anstehenden Bodens (nach ZTV E-StB) F3 - sehr frostempfindlich

(für Tabelle 7) Frosteinwirkung

Bild 6

Kriterium A: Zone I

Kriterium B: keine besonderen Klimaeinflüsse Kleinräumige Klimaunterschiede

Grund- oder Schichtenwasser dauernd

Kriterium C: Wasserverhältnisse im Untergrund oder zeitweise höher als 1,5 m unter

Planum

Kriterium D: Geländehöhe bis Damm ≤ 2,0 m Lage der Gradiente

Entwässerung der Fahrbahn/ Ausführung der Randbereiche

Kriterium E:

Entwässerung der Fahrbahn über Mulden, Gräben bzw. Böschungen

Berechnung: aus Blatt 1 folgt Belastungsklasse: Bk32

Ausgangswert des frostsicheren Oberbaus:

65 cm

(nach Tabelle 6)

Mehr- oder Minderdicken infolge örtlicher Verhältnisse: (nach Tabelle 7)

0 cm

Kriterium A: Kriterium B:

0 cm

Kriterium C:

5 cm

Kriterium D:

0 cm 0 cm

Kriterium E:

abzüglich einer verfestigten oberen Zone eines frostempfindlichen

Untergrundes/Unterbaus bis zu einer Dicke von 20 cm

0 cm

Mindestdicke des frostsicheren Oberbaus:

70 cm

Auf volle Dezimeter auf- oder abgerundet (nach Erfahrung) ergibt die:

70 cm Dicke des frostsicheren Oberbaus:

<u>Unterlage 14.1</u> Ermittlung der Belastungsklasse

- Südring -

Ermittlung der Belastungsklasse nach RStO 12

(Methode 1.2 = Bestimmung von B bei konstanten Faktoren)

Projektdaten: B 70 Neubau Ledabrücke

Streckenbereich: Südring

Eingabedaten:	Straßenklasse	Landes- und Kreisstraßen		
	DTV ^(SV) Ausgangswert (Schätzung)	883	Jahr:	2030
	Verkehrsübergabe		Jahr:	2030
	Nutzungszeitraum	30	Jahre	
	Fahrstreifenbreite	3,00	m	
	DTV ^(SV) - Erfassung für	beide Fahrtrichtungen		
	Anzahl der Fahrstreifen, die durch den DTV ^(SV) erfasst sind	4		
	Höchstlängsneigung	1,00	%	

A. Berechnung der dimensionierungsrelevanten Beanspruchung B

1. Berechnung des DTV ^(SV) _{Verkehrsübergabe}	_		
1.1 DTV ^(SV) Ausgangswert	(Schätzung)	DTV ^(SV) =	883
1.2 Jahr, in dem der Ausgangswert gilt			2030
1.3 Jahr der Verkehrsübergabe			2030
1.4 Anzahl der Differenzjahre A			0
1.5 Mittlere jährliche Zunahme des Schwerverkehrs p für	Landes- und Kreisstraßen	p =	0,01
1.6 Korrekturfaktor für DTV ^(SV) Ausgangswert $k = (1+p)^A$		k =	1,000
1.7 DTV ^(SV) _{Verkehrsübergabe} = DTV ^(SV) Ausgangswert ∙ k	$DTV^{(SV)}_{Verkehrs\"{ubergabe}} =$		883
2. Achszahlfaktor f _A (Tabelle A 1.1) für	Landes- und Kreisstraßen	f _A =	3,3
3. Lastkollektivquotient q _{Bm} (Tabelle A 1.2) für	Landes- und Kreisstraßen	$q_{Bm} =$	0,23
4. Fahrstreifenfaktor f ₁ (Tabelle A 1.3)		f ₁ =	0,45
5. Fahrstreifenbreitenfaktor f ₂ (Tabelle A 1.4)		f ₂ =	1,40
6. Steigungsfaktor f ₃ (Tabelle A 1.5)		$f_3 =$	1,00
7. Nutzungszeitraum N	in Jahren	N =	30
8. Mittlerer jährlicher Zuwachsfaktor des Schwerverkehrs $f_Z = \frac{(1+p)^N - 1}{p \cdot N}$		$f_Z =$	1,159
9. Durchschnittliche Anzahl der täglichen Achsübergänge des Schwerverkehrs:			
$DTA^{(SV)} = DTV^{(SV)}_{Verkehrs\"{ubergabe}} \bullet f_{A}$		OTA ^(SV) =	2914
10 B = N • DTA ^(SV) • q_2 • f_4 • f_5 • f_5 • f_7 • 365			

10. B = N • DTA^(3v) • q_{Bm} • f₁ • f₂ • f₃ • f_z • 365
Äquivalente 10-t-Achsübergänge im zugrunde gelegten Nutzungszeitraum [Mio.] B = 5,36

B. Ermittlung der Belastungsklasse (nach Tabelle 1)

Bk10

Ermittlung der Dicke des frostsicheren Oberbaus nach RStO 12

Projektdaten: B 70 Neubau Ledabrücke

Streckenbereich: Südring

Eingabedaten: Frostempfindlichkeitsklasse:

des anstehenden Bodens (nach ZTV E-StB) (für Tabelle 6)

Frosteinwirkung (für Tabelle 7)

Bild 6

Kriterium A: Zone I

Kleinräumige Klimaunterschiede Kriterium B: keine besonderen Klimaeinflüsse

Grund- oder Schichtenwasser dauernd

F3 - sehr frostempfindlich

oder zeitweise höher als 1,5 m unter Wasserverhältnisse im Untergrund Kriterium C:

Planum

Kriterium D: Geländehöhe bis Damm ≤ 2,0 m Lage der Gradiente

Entwässerung der Fahrbahn/ Ausführung der Randbereiche

Kriterium E:

Entwässerung der Fahrbahn über

Mulden, Gräben bzw. Böschungen

Berechnung: aus Blatt 1 folgt Belastungsklasse: **Bk10**

Ausgangswert des frostsicheren Oberbaus: 65 cm

(nach Tabelle 6)

Mehr- oder Minderdicken infolge örtlicher Verhältnisse:

(nach Tabelle 7)

Kriterium A: 0 cm

Kriterium B: 0 cm

Kriterium C: 5 cm

Kriterium D: 0 cm

Kriterium E: 0 cm

abzüglich einer verfestigten oberen Zone eines frostempfindlichen

Untergrundes/Unterbaus bis zu einer Dicke von 20 cm

0 cm

Mindestdicke des frostsicheren Oberbaus: 70 cm

Auf volle Dezimeter auf- oder abgerundet (nach Erfahrung) ergibt die:

Dicke des frostsicheren Oberbaus: 70 cm

<u>Unterlage 14.1</u> Ermittlung der Belastungsklasse

- Kreisstraße K 20 - (Nettelburger Straße)

Ermittlung der Belastungsklasse nach RStO 12

(Methode 1.2 = Bestimmung von B bei konstanten Faktoren)

Projektdaten: B 70 Neubau Ledabrücke

Streckenbereich: K 20 Abs. 20

Eingabedaten:	Straßenklasse	Landes- und Kreisstraßen		
	DTV ^(SV) Ausgangswert (Zählung)	81	Jahr:	2022
	Verkehrsübergabe		Jahr:	2025
	Nutzungszeitraum	30	Jahre	
	Fahrstreifenbreite	2,75	m	
	DTV ^(SV) - Erfassung für	beide Fahrtrichtungen		
	Anzahl der Fahrstreifen, die durch den DTV ^(SV) erfasst sind	2		
	Höchstlängsneigung	2.50	%	

A. Berechnung der dimensionierungsrelevanten Beanspruchung B

4. Damada ayan adaa DTV(SV)			
1. Berechnung des DTV ^(SV) _{Verkehrsübergabe}			
1.1 DTV ^(SV) Ausgangswert	(Zählung)	DTV ^(SV) =	81
1.2 Jahr, in dem der Ausgangswert gilt			2022
1.3 Jahr der Verkehrsübergabe			2025
1.4 Anzahl der Differenzjahre A			3
1.5 Mittlere jährliche Zunahme des Schwerverkehrs p für	Landes- und Kreisstraßen	p =	0,01
1.6 Korrekturfaktor für DTV ^(SV) Ausgangswert $k = (1+p)^A$		k =	1,030
1.7 DTV ^(SV) _{Verkehrsübergabe} = DTV ^(SV) Ausgangswert ∙ k	DTV ^(SV) Verkehrs	übergabe =	83
2. Achszahlfaktor f _A (Tabelle A 1.1) für	Landes- und Kreisstraßen	$f_A =$	3,3
3. Lastkollektivquotient q _{Bm} (Tabelle A 1.2) für	Landes- und Kreisstraßen	$q_{Bm} =$	0,23
4. Fahrstreifenfaktor f ₁ (Tabelle A 1.3)		f ₁ =	0,50
5. Fahrstreifenbreitenfaktor f ₂ (Tabelle A 1.4)		f ₂ =	1,40
6. Steigungsfaktor f ₃ (Tabelle A 1.5)		f ₃ =	1,02
7. Nutzungszeitraum N	in Jahren	N =	30
8. Mittlerer jährlicher Zuwachsfaktor des Schwerverkehrs $f_Z = \frac{(1+p)^N - 1}{p \cdot N}$		$f_Z =$	1,159
9. Durchschnittliche Anzahl der täglichen Achsübergänge des Schwerver			
$DTA^{(SV)} = DTV^{(SV)}_{Verkehrs\"{ubergabe}} \bullet f_{A}$	С	OTA ^(SV) =	275
(\$1/)			

10. B = N • DTA^(SV) • q_{Bm} • f_1 • f_2 • f_3 • f_Z • 365

Äquivalente 10-t-Achsübergänge im zugrunde gelegten Nutzungszeitraum [Mio.] **B = 0,57**

B. Ermittlung der Belastungsklasse (nach Tabelle 1)

Bk1,0

Bearbeitet:

Aurich, den 07.11.2017

Niedersächsische Landesbehörde für Straßenbau und Verkehr

Regionaler Geschäftsbereich Aurich

im Auftrage

Ermittlung der Dicke des frostsicheren Oberbaus nach RStO 12

Projektdaten: B 70 Neubau Ledabrücke

K 20 Abs. 20 Streckenbereich:

Eingabedaten: Frostempfindlichkeitsklasse:

des anstehenden Bodens (nach ZTV E-StB) (für Tabelle 6)

F3 - sehr frostempfindlich

Frosteinwirkung (für Tabelle 7)

Bild 6

Kriterium A: Zone I

Kleinräumige Klimaunterschiede Kriterium B: keine besonderen Klimaeinflüsse

kein Grund- und Schichtenwasser bis in Kriterium C: Wasserverhältnisse im Untergrund

eine Tiefe von 1,5 m unter Planum

Kriterium D: Geländehöhe bis Damm ≤ 2,0 m Lage der Gradiente

Entwässerung der Fahrbahn/ Ausführung der Randbereiche

Kriterium E:

Entwässerung der Fahrbahn über

Mulden, Gräben bzw. Böschungen

Berechnung: aus Blatt 1 folgt Belastungsklasse: Bk1,0

Ausgangswert des frostsicheren Oberbaus: 60 cm

(nach Tabelle 6)

Mehr- oder Minderdicken infolge örtlicher Verhältnisse:

(nach Tabelle 7)

Kriterium A: 0 cm

Kriterium B: 0 cm

Kriterium C: 0 cm

Kriterium D: 0 cm

Kriterium E: 0 cm

abzüglich einer verfestigten oberen Zone eines frostempfindlichen

Untergrundes/Unterbaus bis zu einer Dicke von 20 cm 0 cm

Mindestdicke des frostsicheren Oberbaus: 60 cm

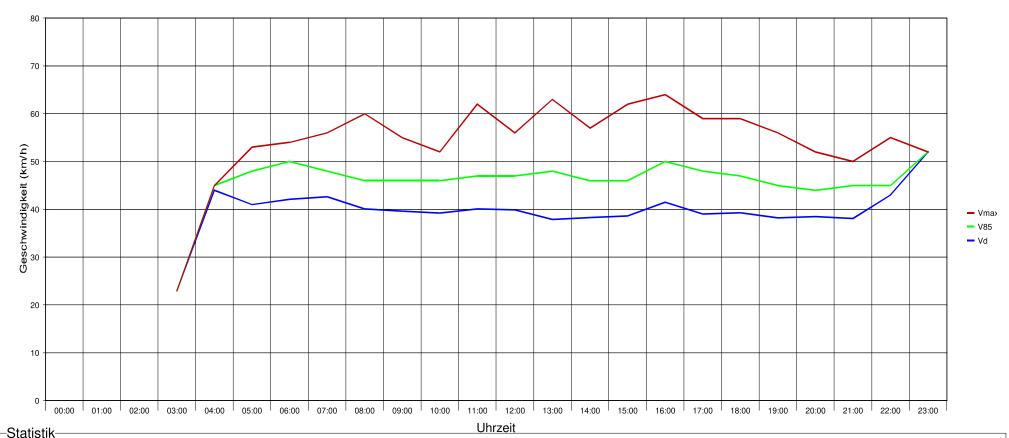
Auf volle Dezimeter auf- oder abgerundet (nach Erfahrung) ergibt die:

Dicke des frostsicheren Oberbaus: 60 cm

Bearbeitet:

X-Stadt. den 00.00.20

Niedersächsische Landesbehörde für Straßenbau und Verkehr


Regionaler Geschäftsbereich X-Stadt

im Auftrage:

Landkreis Leer Straßen- und Tiefbauamt Feldstraße 39 Telefon 0491 97848-0 Fax 0491 97848-19

K 20 Abschn 20 Stat 6500 Fahrtrichtung .. B 70

Zeitraum:

Dienstag, 10. Mai 2022, 00:00 Uhr bis Dienstag, 10. Mai 2022, 23:59 Uhr

% Anzahl -V15 + Vd + V85 + Vmax+ V15 -Vd - V85 - Vmax -Anzahl + Gesamt Geschwindigkeitsübertretung: 0 % Einspurig 10,3 14 2,3 6,1 22 31 46 20 31 60 56 70 59 43 34 58 Durchschnittl. Abstand: 1,5 sec PKW 43 50 449 82,4 550 91,1 999 86.9 35 73 41 46 42 30 29 31 15 % LKW 40 7.3 39 6.5 79 6.9 26 34 42 Kolonnenverkehr: 27 27 27 27 LKW Zug 0,2 0,1 0 -1| DTV: 60 32 41 73 32 Gesamt 545 47,4 604 52.6 1149 100 50 40 Schwerverkehrsanteil:

