Fachgutachten Fische für den Offshore-Windpark "Gennaker" 1.-4. Jahr der Basisaufnahme

Erfassungszeiträume:

4. Untersuchungsjahr: 2012-2014
 4. Untersuchungsjahr: 2023-2024

OWP Gennaker GmbH

September 2024

Angaben zur Auftragsbearbeitung

Auftraggeber/in: OWP Gennaker GmbH

Ericusspitze 2-4 20457 Hamburg

Ansprechpartner/in: Freerk Nanninga Telefon: 0172 985 66 52

E-Mail: f.nanninga@skybornrenewables.com

Bearbeitung Fachgutachten Fische

Projektnummer: P238083

Auftragnehmerin: IfAÖ Institut für Angewandte Ökosystemforschung GmbH

Postanschrift: IfAÖ GmbH

Alte Dorfstraße 11

18184 Neu Broderstorf

Projektleitung: Dr. Bente Limmer
Telefon: +49 381 252312 25
E-Mail: b.limmer@ifaoe.de

Berichtserstellung: Dr. Robert Dietrich

B.Sc. Norma Hannemann Dipl.-Biol. Frank Gloede

M.Sc. Linda Köhler

Dipl.-Biol. Marcel Hartmann

Fertigstellungsdatum: 23.09.2024

Titelfoto: Holmix eines Windparktrawl-Fangs während des 4. Untersuchungsjahres

der Basisaufnahme im Frühjahr 2024.

Version	Datum	Dokumentbeschreibung	erstellt	geprüft	freigegeben
1	26.08.2024	Fachgutachten Fische, Prüffassung	s. Bearbeiter	RDI	RDI
2	11.09.2024	Fachgutachten Fische, Revision	s. Bearbeiter	RDI	RDI
3	23.09.2024	Fachgutachten Fische, Revision	s. Bearbeiter	RDI	RDI

23.09.2024 I

Inhaltsverzeichnis

1	Zusammenfassung	Seite
2	Anlass und Aufgabenstellung	
3	Material und Methoden	
3.1	Untersuchungsgebiet	
3.2	Untersuchungsprogramm und Fangtechnik	
3.3		
	Bearbeitung der Fänge	
3.4	Datenanalyse	
3.5	Statistische Auswertung und graphische Darstellung	
3.5.1	Vergleich Kenngrößen	13
3.5.2	Gemeinschaftsanalyse	13
3.6	Bestandsbewertung	14
4	Ergebnisse	16
4.1	Ergebnisse der Befischungen des 4. Jahres der Basisaufnahme (Herbst 2023 u Frühjahr 2024)	
4.1.1	Hydrologische Daten	16
4.1.2	Artenspektrum	16
4.1.3	Abundanz, Biomasse sowie Präsenz (Stetigkeit) der Fischarten in den Fängen	18
4.1.4	Dominanzverhältnisse	20
4.1.5	Kenngrößen	21
4.1.6	Gemeinschaftsanalyse	22
4.2	Vergleich der Ergebnisse 14. Jahr der Basisaufnahme (2012-2024)	24
4.2.1	Gesamtartenspektrum	24
4.2.2	Relativer Bedeutungsindex	26
4.2.3	Kenngrößen	28
4.2.4	Abundanz und Längenhäufigkeitsverteilung der dominanten Arten	30
4.2.4.1	Dorsch	30
4.2.4.2	Flunder	32
4.2.4.3	Kliesche	34
4.2.4.4	Sandgrundel	36
4.2.4.5	Scholle	38

4.2.4.6	Steinbutt	40
4.2.4.7	Wittling	42
4.2.5	Gemeinschaftsanalyse	44
5	Diskussion	47
5.1	Methodenkritik	47
5.2	Einordnung Fischfauna im Bereich des OWP "Gennaker"	47
5.3	Bestandsbewertung	52
5.3.1	Vielfalt und Eigenart	52
5.3.2	Seltenheit und Gefährdung	53
5.3.3	Vorbelastung	55
5.3.4	Gesamtbewertung	57
6	Glossar und Abkürzungsverzeichnis	58
7	Literatur- und Quellenverzeichnis	60
8	Anhang	65
8.1	Material und Methoden	65
8.1.1	Koordinaten – 4. Jahr Basisaufnahme	65
8.1.2	Hydrologie und Wetterdaten – 4. Jahr Basisaufnahme	70
8.1.3	Liste Fischarten Fachgutachten	71
8.2	Ergebnisse	72
8.2.1	Statistischer – Vergleich Kenngrößen	72
8.2.2	Statistischer Vergleich – Mittelwerte (Mediane)	82
8.2.3	Statistischer Vergleich – SIMPER	84
8.3	Diskussion	87

Tabellenverzeichnis

	Seite
Tab. 1:	Gegenüberstellung der Vorgaben nach StUK 4 des BSH und des durchgeführten Untersuchungsprogramms
Tab. 2:	Übersicht über die Probenahmethodik und das eingesetzte Fanggerät6
Tab. 3:	Interpretation der in der ANOSIM ermittelten Prüfgröße R (nach CLARKE & WARWICK 2001; CLARKE & GORLEY 2006)
Tab. 4:	Ansatz zur Bewertung von Vielfalt / Eigenart, Seltenheit / Gefährdung und Vorbelastung von Fischen und Rundmäulern (nach BSH 2021)
Tab. 5:	Hydrologische Parameter an der Oberfläche und über dem Grund im OWP "Gennaker" im Herbst 2023 und Frühjahr 2024
Tab. 6:	Liste der im OWP "Gennaker" mit dem WPT und der 2-m-Baumkurre im Herbst 2023 und Frühjahr 2024 nachgewiesenen Fischarten mit ihrer Rote-Liste-Kategorie nach THIEL et al. (2013) (Region Ostsee) und ihrer Lebensweise.
Tab. 7:	Absolute und relative Anzahl der mit dem WPT gefangenen Individuen demersaler und pelagischer Fischarten im OWP "Gennaker" während der Befischungskampagnen im Herbst 2023 und Frühjahr 2024
Tab. 8:	Fischarten im OWP "Gennaker" während der Beprobungen mit dem Windparktrawl und der 2-m-Baumkurre im Herbst 2023 und Frühjahr 2024 mit Angabe ihrer mittleren Abundanz (± Standardabweichung), ihrer mittleren Biomasse (± Standardabweichung) und ihrer Präsenz in den Fängen.
Tab. 9:	Vergleich der Kenngrößen der im OWP "Gennaker" im Herbst 2023 und Frühjahr 2024 mit dem WPT durchgeführten Fänge
Tab. 10:	Präsenzen [%] der im OWP "Gennaker" in den WPT-Fängen nachgewiesenen Benthosarten während der Kampagnen im Herbst 2023 und Frühjahr 2024
Tab. 11:	Ergebnisse der SIMPER basierend auf den quadratwurzeltransformierten Abundanzdaten der im OWP "Gennaker" nachgewiesenen Arten zur Bestimmung der Arten, die hauptsächlich zu den jahreszeitlich bedingten Unterschieden während des 4. Jahres der Basisaufnahme beigetragen haben
Tab. 12:	Liste der in den Jahren 2012-2024 im OWP "Gennaker" mit dem WPT und der 2-m-Baumkurre nachgewiesenen Fischarten mit ihrer Rote-Liste-Kategorie nach THIEL et al. (2013) (Region Ostsee) und ihrer Lebensweise
Tab. 13:	Absolute Anzahl und relativer Anteil der Rote-Liste-Kategorien im OWP "Gennaker" während des 14. Jahres der Basisaufnahme und in der deutschen Ostsee
Tab. 14:	Ergebnisse der ANOSIM und der SIMPER des Jahreszeitlichen Vergleichs basierend auf den Abundanzdaten [Ind./ha] der im OWP "Gennaker" nachgewiesenen Fischarten, getrennt für die vier Untersuchungsjahre der Basisaufnahme

23.09.2024 IV

Tab. 15:	Ergebnisse der ANOSIM und der SIMPER des Jahresbedingten Vergleichs basierend auf den Abundanzdaten [Ind./ha] der im OWP "Gennaker" während der vier Untersuchungsjahre der Basisaufnahme nachgewiesenen Fischarten, getrennt für die beiden Jahreszeiten Frühjahr und Herbst.
Tab. 16:	Liste der nachgewiesenen Fischarten während der vier Untersuchungsjahre der Basisaufnahme (2012-2024) sowie der Fischereisurvey-Daten BITS des THÜNEN INSTITUT FÜR OSTSEEFISCHEREI (2022) und den ICES-BITS Daten (ICES 2024), mit Angabe ihrer Rote-Liste-Kategorie nach THIEL et al. (2013) (Region Ostsee) und ihrer Lebensweise.
Tab. 17:	Bewertungsmatrix zur Bestandsbewertung der Fische im Bereich des OWP "Gennaker"
Tab. 18:	Eckkoordinaten der Außengrenze des vom Landesraumentwicklungsprogramm des Landes Mecklenburg-Vorpommern (LEP) für Windenergieanlagen ausgewiesene Vorhabenfläche
Tab. 19:	Eckkoordinaten und Flächengrößen der drei Teilflächen des Vorhabengebietes OWP "Gennaker" während der Beprobung im Herbst 2023
Tab. 20:	Eckkoordinaten und Flächengrößen der drei Teilflächen des Vorhabengebietes OWP "Gennaker" während der Beprobung im Frühjahr 2024
Tab. 21:	Koordinaten und Daten der durchgeführten Fischfänge im Herbst 2023 und Frühjahr 2024 an den Stationen des OWP "Gennaker"
Tab. 22:	Hydrologische Daten während der Befischungskampagnen im Herbst 2023 und Frühjahr 2024
Tab. 23:	Wetterdaten während der Befischungskampagnen im Herbst 2023 und Frühjahr 2024
Tab. 24:	Liste sämtlicher in diesem Fachgutachten erwähnten Arten mit Angabe des Erstbeschreibers und der Familienzugehörigkeit nach FRICKE et al. (2024a) und FRICKE et al. (2024b).
Tab. 25:	Artenzahl in den durchgeführten Hols während der vier Jahre der Basisaufnahme 72
Tab. 26: (Gesamtabundanz in den durchgeführten Hols während der vier Jahre der Basisaufnahme73
Tab. 27: (Gesamtbiomasse in den durchgeführten Hols während der vier Jahre der Basisaufnahme73
Tab. 28:	Diversität in den durchgeführten Hols während der vier Jahre der Basisaufnahme 74
Tab. 29:	Evenness in den durchgeführten Hols während der vier Jahre der Basisaufnahme75
Tab. 30: \	Wirbellosen-Beifang in den durchgeführten Hols während der vier Jahre der Basisaufnahme76

23.09.2024 V

Tab.	31:	Abundanz des Dorschs in den durchgeführten Hols während der vier Jahre der Basisaufnahme76
Tab.	32:	Abundanz der Flunder in den durchgeführten Hols während der vier Jahre der Basisaufnahme77
Tab.	33:	Abundanz der Kliesche in den durchgeführten Hols während der vier Jahre der Basisaufnahme78
Tab.	34:	Abundanz der Sandgrundel in den durchgeführten Hols während der vier Jahre der Basisaufnahme79
Tab.	35:	Abundanz der Scholle in den durchgeführten Hols während der vier Jahre der Basisaufnahme79
Tab.	36:	Abundanz des Steinbutts in den durchgeführten Hols während der vier Jahre der Basisaufnahme80
Tab.	37:	Abundanz des Wittlings während vier Jahre der Basisaufnahme in den durchgeführten Hols
Tab.	38:	U- und p-Werte des statistischen Vergleichs (Mann-Whitney-U-Test) der Kenngrößen während der Herbst- und Frühjahrskampagnen, getrennt für die vier Untersuchungsjahre der Basisaufnahme.
Tab.	39:	Ergebnisse des Kruskal-Wallis-Test zur Bestimmung des Einflusses des Fangzeitpunktes auf die Kenngrößen während der vier Untersuchungsjahre der Basisaufnahme, getrennt für die Herbst- und Frühjahrskampagnen
Tab.	40:	p-Werte des Statistischen Multiplen Vergleichs (Post-hoc-Test, Dunn-Bonferroni) der untersuchten Kenngrößen während des Untersuchungszeitraumes der Basisaufnahme, getrennt für die vier Herbst- und vier Frühjahrskampagnen83
Tab.	41:	p-Werte des Statistischen Multiplen Vergleichs (Post-hoc-Test, Dunn-Bonferroni) der Abundanz der Charakterarten während des Untersuchungszeitraumes der Basisaufnahme, getrennt für die vier Herbst- und vier Frühjahrskampagnen
Tab.	42:	Ergebnisse der SIMPER basierend auf den quadratwurzeltransformierten Abundanzdaten der im OWP "Gennaker" nachgewiesenen Arten zur Bestimmung der Arten, die hauptsächlich zu Unterschieden zwischen den Fängen der vier Herbstkampagnen der Basisaufnahme beigetragen haben84
Tab.	43:	Ergebnisse der SIMPER basierend auf den quadratwurzeltransformierten Abundanzdaten der im OWP "Gennaker" nachgewiesenen Arten zur Bestimmung der Arten, die hauptsächlich zu Unterschieden zwischen den Fängen der vier Frühjahrskampagnen der Basisaufnahme beigetragen haben
Tab.	44:	Präsenzen der während der Untersuchungen des TI-OF (Thünen Institut für Ostseefischerei) und ICES (International Council for the Exploration of the Sea) im Rahmen des Baltic International Trawl Survey (Jahre 2020-2024) erfassten Fischarten.

23.09.2024 VI

Abbildungsverzeichnis

	Seite
Abb. 1:	Lage des OWP "Gennaker" in der 12-sm-Zonen Mecklenburg-Vorpommerns in der südlichen Ostsee.
Abb. 2:	Übersicht über die im OWP "Gennaker" im Herbst 2023 durchgeführten Schleppstriche.
Abb. 3:	Übersicht über die im OWP "Gennaker" im Frühjahr 2024 durchgeführten Schleppstriche
Abb. 4:	Mittlerer relativer Anteil [%] (± Standardabweichung) der dominanten demersalen Fischarten an der Gesamtabundanz und -biomasse der WPT-Fänge im OWP "Gennaker" im Herbst 2023 und Frühjahr 2024.
Abb. 5:	nMDS-Plot basierend auf der ermittelten quadratwurzeltransformierten Abundanz [Ind./ha] der nachgewiesenen Fischarten in den im OWP "Gennaker" im Herbst 2023 und Frühjahr 2024 durchgeführten Hols.
Abb. 6:	Relativer Bedeutungsindex [%] der im OWP "Gennaker" während der vier Untersuchungsjahre der Basisaufnahme (2012-2024) mit dem WPT nachgewiesenen demersalen Fischarten
Abb. 7:	Box-Whisker-Plots der Kenngrößen der Hols im OWP "Gennaker" während der vier Untersuchungsjahre der Basisaufnahme (2012-2024)
Abb. 8:	Box-Whisker-Plots der Abundanz des Dorsches in den Fängen im OWP "Gennaker" während der durchgeführten Befischungskampagnen der vier Untersuchungsjahre der Basisaufnahme
Abb. 9:	Längenhäufigkeitsverteilung des Dorsches im OWP "Gennaker" während der durchgeführten Befischungskampagnen der vier Untersuchungsjahre der Basisaufnahme
Abb. 10:	Box-Whisker-Plots der Abundanz der Flunder in den Fängen im OWP "Gennaker" während der durchgeführten Befischungskampagnen der vier Untersuchungsjahre der Basisaufnahme
Abb. 11:	Längenhäufigkeitsverteilung der Flunder im OWP "Gennaker" während der durchgeführten Befischungskampagnen der vier Untersuchungsjahre der Basisaufnahme
Abb. 12:	Box-Whisker-Plots der Abundanz der Kliesche in den Fängen im OWP "Gennaker" während der durchgeführten Befischungskampagnen der vier Untersuchungsjahre der Basisaufnahme
Abb. 13:	Längenhäufigkeitsverteilung der Kliesche im OWP "Gennaker" während der durchgeführten Befischungskampagnen der vier Untersuchungsjahre der Basisaufnahme

23.09.2024 VII

Abb. 14:	Box-Whisker-Plots der Abundanz der Sandgrundel in den Fängen im OWP "Gennaker" während der durchgeführten Befischungskampagnen der vier Untersuchungsjahre der Basisaufnahme.
Abb. 15:	Längenhäufigkeitsverteilung der Sandgrundel im OWP "Gennaker" während der durchgeführten Befischungskampagnen der vier Untersuchungsjahre der Basisaufnahme
Abb. 16:	Box-Whisker-Plots der Abundanz der Scholle in den Fängen im OWP "Gennaker" während der durchgeführten Befischungskampagnen der vier Untersuchungsjahre der Basisaufnahme
Abb. 17:	Längenhäufigkeitsverteilung der Scholle im OWP "Gennaker" während der durchgeführten Befischungskampagnen der vier Untersuchungsjahre der Basisaufnahme40
Abb. 18:	Box-Whisker-Plots der Abundanz des Steinbutts in den Fängen im OWP "Gennaker" während der durchgeführten Befischungskampagnen der vier Untersuchungsjahre der Basisaufnahme
Abb. 19:	Längenhäufigkeitsverteilung des Steinbutts im OWP "Gennaker" während der durchgeführten Befischungskampagnen der vier Untersuchungsjahre der Basisaufnahme
Abb. 20:	Box-Whisker-Plots der Abundanz des Wittlings in den Fängen im OWP "Gennaker" während der durchgeführten Befischungskampagnen der vier Untersuchungsjahre der Basisaufnahme
Abb. 21:	Längenhäufigkeitsverteilung des Wittlings im OWP "Gennaker" während der durchgeführten Befischungskampagnen der vier Untersuchungsjahre der Basisaufnahme44
Abb. 22:	nMDS-Plot basierend auf der ermittelten quadratwurzeltransformierten Abundanz [Ind./ha] der nachgewiesenen Fischarten in den im OWP "Gennaker" während der vier Untersuchungsjahre der Basisaufnahme durchgeführten Hols
Abb. 23:	Fischereisurvey-Daten des Thünen Institut für Ostseefischerei im Rahmen des Baltic International Trawl Survey (BITS) in den Jahren 2020-2021
Abb. 24:	Übersicht zur Lage der vom ICES (International Council for the Exploration of the Sea) im Rahmen des Baltic International Trawl Survey (BITS) in den Jahren 2022-2024 durchgeführten Fischereihols

23.09.2024 VIII

1 Zusammenfassung

Die OWP Gennaker GmbH besitzt seit dem 15.05.2019 eine Baugenehmigung zur Errichtung Betrieb **OWP** "Gennaker" Windvorranggebiet "Darß". und zum des im Änderungsgenehmigung für ein modifiziertes Konzept wurde am 05.03.2024 erteilt. Die zugrunde liegenden standortspezifischen Daten wurden im Zeitraum von 2012 bis 2016 erhoben, d.h. mit dem 1., 2. und 3. Jahr der Basisaufnahme. Für das nun gegenständliche Genehmigungsverfahren wurde es für sinnvoll erachtet, die bereits vorhandene Datengrundlage, um einen weiteren vollständigen Jahresgang zu erweitern bzw. zu aktualisieren. Dies erfolgte im Zeitraum 2023 bis 2024 mit dem 4. Jahr der Basisaufnahme.

Das vorliegende Fachgutachten "Fische" stellt die Ergebnisse der Untersuchungen im Herbst 2023 und Frühjahr 2024 dar. Des Weiteren wurden diese Daten des 4. Jahres der Basisaufnahme mit denen der Vorjahre (1., 2. und 3. Jahr der Basisaufnahme) verglichen. Die über den gesamten Zeitraum Herbst 2012 bis Frühjahr 2024 erhobenen Daten dienten der Beschreibung des Status quo der Fische im Bereich der aktuellen Gebietsgrenzen. Dazu gehörten die Erfassung und Bewertung der im Vorhabengebiet ansässigen Fischgemeinschaft anhand der übergeordneten Kriterien "Vielfalt und Eigenart", "Seltenheit und Gefährdung" sowie "Vorbelastung". Die Untersuchungen wurden entsprechend der Vorgaben des standardisierten Untersuchungskonzepts zur Auswirkung von Offshore-Windenergieanlagen auf die Meeresumwelt (StUK 4, BSH 2013) durchgeführt. Für den Fang der Fische kam ein Grundschleppnetz vom Typ "Windparktrawl" (WPT) zum Einsatz.

Zur Erweiterung des mit dem WPT ermittelten Datensatzes wurden die Fischbeifänge aus den 2-m-Baumkurrehols zur Untersuchung der Epifauna berücksichtigt. Die Ergebnisse der 2-m-Baumkurrefänge wurden zur Erweiterung des Artenspektrums im Untersuchungsgebiet herangezogen.

Während der aktuellen Untersuchungen Herbst 2023 und Frühjahr 2024 wurden im OWP "Gennaker" mit den eingesetzten Fanggeräten (WPT und 2-m-Baumkurre) insgesamt 29 Fischarten aus 18 Familien nachgewiesen. Zusammen mit den vorherigen Untersuchungen wurden im betrachteten Untersuchungszeitraum 2012 bis 2024 (1.-4. Jahr der Basisaufnahme) insgesamt 38 Fischarten nachgewiesen.

Die meisten Kenngrößen (Gesamtabundanz, Gesamtbiomasse, Artenzahl, Diversität, Evenness, Wirbellosen-Beifang sowie Abundanz der Charakterarten) wiesen zwischen den Herbst- und Frühjahrskampagnen innerhalb der jeweiligen vier Untersuchungsjahre der Basisaufnahme signifikante Unterschiede auf (Mann-Whitney-U-Test, p < 0,05). Um auch den interannuellen Einfluss auf die Kenngrößen zu untersuchen, wurde ein Kruskal-Wallis-Test durchgeführt. Aufgrund der teilweise deutlichen Unterschiede zwischen beiden Jahreszeiten innerhalb des jeweiligen Untersuchungsjahres wurde der Test separat für die vier Herbst- und vier Frühjahrskampagnen durchgeführt. Bei allen Kenngrößen, mit Ausnahme der Artenzahl im Vergleich der Herbstkampagnen, war der Einfluss des Untersuchungsjahres signifikant. Auch die

Gemeinschaftsanalyse ergab einen deutlichen Einfluss der Jahreszeit (Frühjahr / Herbst) bzw. des Untersuchungsjahres auf die Abundanz und Artzusammensetzung der Fänge.

Im Bereich des OWP "Gennaker" wurde mit dem Spitzschwanz-Schlangenstachelrücken (Lumpenus lampretaeformis) eine Rote-Liste-Art der Gefährdungskategorie 1 (vom Aussterben bedroht, THIEL et al. 2013) nachgewiesen. Allerdings wurde nur ein Einzelexemplar während der Herbstkampagne 2023 gefangen. Mit der Finte (Alosa fallax) wurde im OWP "Gennaker" eine Art der Gefährdungskategorie 3 (gefährdet) gefangen. Die Finte wird weiterhin als eine Art zum Anhang II der Fauna-Flora-Habitat-Richtlinie (FFH-RL) eingeordnet. Insgesamt wurden zwei Individuen während der Befischungskampagne im Herbst 2023 gefangen. In den anderen Untersuchungsjahren bzw. Kampagnen fehlten beide Arten. Weiterhin wurde mit der Aalmutter (Zoarces viviparus) während allen vier Untersuchungsjahren der Basisaufnahme eine Art registriert, die auf der Vorwarnliste steht (Kategorie V, THIEL et al. 2013). Bei acht Arten (Doggerscharbe (Hippoglossoides platessoides), Fleckengrundel (Pomatoschistus pictus), Gefleckter Großer Sandaal (Hyperoplus lanceolatus), Glasgrundel (Aphia minuta), Goldmaid (Symphodus melops), Seeskorpion (Myoxocephalus scorpius), Seestichling (Spinachia spinachia) und Tobiasfisch (Ammodytes tobianus)) ist die Datengrundlage für eine Gefährdungseinschätzung unzureichend (Kategorie D, THIEL et al. 2013). Mit der Schwarzmundgrundel (Neogobius melanostomus) wurde eine gebietsfremde, invasive Art erfasst. Der Seehecht (Merluccius merluccius) gilt in der deutschen Ostsee als nicht etabliert (THIEL et al. 2013). Alle anderen nachgewiesenen Arten werden als ungefährdet eingestuft (THIEL et al. 2013). Die Fischgemeinschaft im Vorhabengebiet des OWP "Gennaker" wurde hinsichtlich des Kriteriums "Seltenheit und Gefährdung" als mittel bis hoch eingestuft.

Zu den bedeutendsten Arten in den Fängen der vier Untersuchungsjahre der Basisaufnahmen zählten Dorsch (Gadus morhua), Flunder (Platichthys flesus), Kliesche (Limanda limanda), Sandgrundel (Pomatoschistus minutus), Scholle (Pleuronectes platessa), (Scophthalmus maximus) und Wittling (Merlangius merlangus). Über den Zeitraum 2012-2024 war die Dominanzstruktur während der Untersuchungen vergleichbar und konstant. Während der Untersuchungen des TI-OF (Thünen-Institut für Ostseefischerei) und des ICES (International Council for the Exploration of the Sea) in den Jahren 2020-2024, in unmittelbarer Nähe des Windparks, wurde eine Art- und Dominanzstruktur festgestellt, die der der Basisaufnahme ähnelt. Die im OWP "Gennaker" erfasste Fischfauna entspricht somit der für die südliche Ostsee typischen Struktur pelagischer und demersaler Arten. Auch die Dominanzverhältnisse und die Artenverteilung waren charakteristisch für das im OWP "Gennaker" vorherrschende Habitat. Deshalb wurde die "Vielfalt und Eigenart" der im Bereich OWP "Gennaker" ansässigen Fischgemeinschaft insgesamt als **hoch** eingestuft.

Unter Berücksichtigung des Bewertungsansatzes wurde die "Vorbelastung" der im Vorhabengebiet des OWP "Gennaker" ansässigen Fischgemeinschaft als **mittel** eingestuft, aufgrund der vorhandenen deutlichen fischereilichen Aktivitäten (allerdings zeitlich begrenzt) sowie den Einfluss auf die Längenverteilung einiger erfasster Arten.

Das untersuchte Vorhabengebiet des OWP "Gennaker" wurde auf Basis der o. g. Einzelkriterien für die Fischfauna insgesamt mit **mittel bis hoch** bewertet.

2 Anlass und Aufgabenstellung

Die OWP Gennaker GmbH plant die Errichtung und den Betrieb des Offshore-Windparks (OWP) "Gennaker" in der südlichen deutschen Ostsee. Das Vorhabengebiet liegt auf drei Teilflächen eines im Landesraumentwicklungsprogramm des Landes Mecklenburg-Vorpommern (LEP) ausgewiesenen Marinen Vorranggebietes für Windenergieanlagen auf See. Aufgrund von Belangen bereits bestehender Nutzungen kann nicht die gesamte LEP-Fläche als Vorhabengebiet genutzt werden. Die LEP-Fläche entspricht daher der so genannten Bruttofläche und umfasst eine Fläche von insgesamt etwa 123,3 km² (ohne Sicherheitszone). Das eigentliche Vorhabengebiet entspricht der nutzbaren Nettofläche innerhalb der LEP-Fläche. Es umfasst eine Gesamtfläche von etwa 44,2 km² und befindet sich innerhalb der 12-Seemeilen-Zone. Der kürzeste Küstenabstand zum Darßer Ort beträgt etwa 10 km, zu den Küstenortschaften auf der Halbinsel Fischland-Darß-Zingst, wie Zingst und Prerow, beträgt der Abstand wie jener vom OWP "Baltic 1" aus, etwa 15 km.

Für dieses Projekt ist eine umwelt- und naturschutzfachliche Begutachtung durchzuführen, die Berücksichtigung der genehmigungsrechtlichen Voraussetzungen gewährleistet. Die Methoden der Untersuchungen folgen den Vorgaben des standardisierten zur Auswirkung von Offshore-Windenergieanlagen Untersuchungskonzepts Meeresumwelt (StUK 4, BSH 2013), da für den Küstenbereich Deutschlands (12-Seemeilen-Zone) keine festgelegten Untersuchungsstandards existieren. In den Jahren 2012 bis 2014 wurden, wie auch vom StUK 4 gefordert, zwei vollständige Jahresgänge (Herbst 2012 / Frühjahr 2013 und Herbst 2013 / Frühjahr 2014) beprobt. Aufgrund Änderungen am Zuschnitt der Vorhabenfläche fanden im Frühjahr 2015 und Herbst 2015 zusätzliche Untersuchungen in dem Vorhabengebiet statt (IFAÖ 2016). Für das nun gegenständliche Verfahren wurde es für sinnvoll erachtet, die Basisuntersuchung, um einen weiteren vollständigen Jahresgang zu erweitern bzw. zu aktualisieren. Das vorliegende Fachgutachten "Fische" stellt die Ergebnisse der Untersuchungen im Herbst 2023 und Frühjahr 2024 dar. Des Weiteren werden diese Daten des 4. Jahres der Basisaufnahme mit denen der Vorjahre (1., 2. und 3. Jahr der Basisaufnahme) verglichen. Die über den gesamten Zeitraum Herbst 2012 bis Frühjahr 2024 durchgeführten Erfassungen dienen der Beschreibung des Status quo der Fische im Bereich des Vorhabengebiets. Dazu gehören die Erfassung und Bewertung der im Vorhabengebiet ansässigen Fischgemeinschaft anhand der übergeordneten Kriterien "Vielfalt und Eigenart", "Seltenheit und Gefährdung" sowie "Vorbelastung".

3 Material und Methoden

3.1 Untersuchungsgebiet

Das Vorhabengebiet für den OWP "Gennaker" liegt ca. 15 km nördlich der Halbinsel Fischland-Darß-Zingst in der südlichen Ostsee innerhalb der 12-Seemeilen-Zone (Abb. 1). Die Eckkoordinaten der Außengrenze der Vorhabenfläche sowie der drei Teilflächen sind im Anhang in Tab. 18, Tab. 19 und Tab. 20 dargestellt. Die Wassertiefe während der Beprobungen betrug 16-20 m (siehe Anhang Tab. 21). Das Substrat im Vorhabengebiet wird vorwiegend von fein- und mittelsandigen Sedimenten bestimmt (IFAÖ 2024).

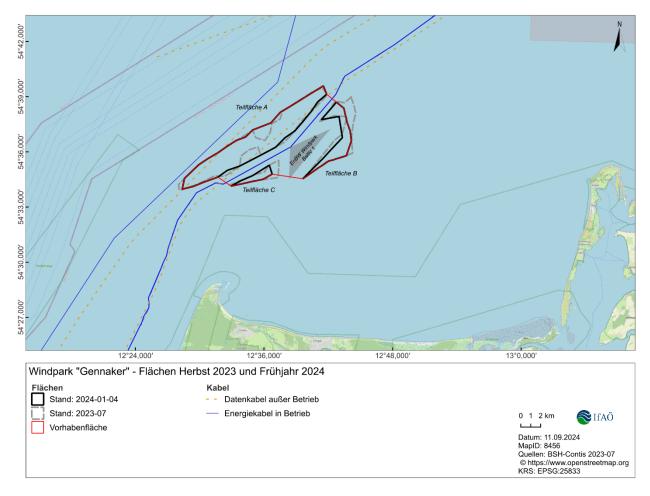


Abb. 1: Lage des OWP "Gennaker" in der 12-sm-Zonen Mecklenburg-Vorpommerns in der südlichen Ostsee.

3.2 Untersuchungsprogramm und Fangtechnik

Das Untersuchungsprogramm der aktuellen Untersuchungen Herbst 2023 und Frühjahr 2024 wurde in Anlehnung an die Vorgaben des StUK 4 des BSH, Stand Oktober 2013, durchgeführt (Tab. 1).

Tab. 1: Gegenüberstellung der Vorgaben nach StUK 4 des BSH und des durchgeführten Untersuchungsprogramms.

	Geforderte Vorgaben nach BSH Standarduntersuchungskonzept (StUK)	Durchgeführtes Untersuchungsprogramm
Ziele	Erfassung und Charakterisierung der Fischgemeinschaft im Vorhabens- und im Referenzgebiet	Auf eine Beprobung eines Referenzgebietes wurde durch den AG verzichtet.
Zeitrahmen	Während der Basisaufnahme mindestens zwei aufeinanderfolgende, vollständige Jahresgänge vor Baubeginn; nur im ersten Jahr der Basisaufnahme Beprobung im Frühjahr und Herbst; Aktualisierung der Basisaufnahme sofern zwischen Ende der Basiserfassung und Baubeginn mehrere Jahre liegen	1. UJ: 2012-2013 2. UJ: 2013-2014 3. UJ: 2015-2016 4. UJ: 2023-2024 - Ein vollständiger Jahresgang (Herbst 2023 und Frühjahr 2024) im aktuellen Vorhabengebiet zur Erweiterung bzw. Aktualisierung der vorangegangenen 3. Untersuchungsjahre
Methode	 Gerätestandard in der Ostsee: Scherbrettnetz (Windparktrawl) In Abhängigkeit von der Gebietsgröße: zufälliges oder festes Stationsnetz Je Kampagne sind bei Gebieten <100 km² beim Einsatz von Scherbrettnetzen eine Anzahl von 20 Hols je Gebiet durchzuführen Durchführung der Fischerei nur bei Tageslicht Schleppdauer 15 min. Schleppgeschwindigkeit 3 bis max. 4 Knoten über Grund 	 - 10 m Scherbrettnetz (Windparktrawl, WPT) - festes Stationsnetz - pro Kampagne 20 Hols - Durchführung der Fischerei nur bei Tageslicht - Schleppdauer 15-30 min. - Schleppgeschwindigkeit 3 bis max. 4 Knoten über Grund
Dokumentation	 Zu ermitteln sind: 1. Position bei Aussetzen und Hieven des Fanggerätes, Schleppzeit, befischte Fläche 2. Pro Fischart: Gewicht, Anzahl, Längenverteilung 3. Semi-quantitative Beschreibung des Wirbellosen-Beifanges 4. Hydrographische und meteorologische Daten 	Keine Abweichung
Darstellung Ergebnisse	Gefordert sind Darstellung von: 1. Gesamtgewicht pro Fläche 2. Gesamtindividuenzahl pro Fläche 3. Individuenzahl pro Art und Fläche 4. Absolute Individuenzahlen 5. Gewicht pro Art und Fläche 6. Dominanzverhältnisse (bezogen auf Individuenzahl und Gewicht) 7. Diversität 8. Längenhäufigkeitsverteilung dominanter Arten 9. Gemeinschaftsanalyse	Keine Abweichung, zusätzlich Darstellung des Relativen Bedeutungsindex (GEORGE & HADLEY 1979)

Im 1. und 2. Jahr der Basisaufnahme erfolgten die Untersuchungen in Anlehnung an das damals noch gültige StUK 3 des BSH, Stand 2007. Diese Untersuchungen erfüllen aber ebenfalls die

Anforderungen des StUK 4. Die Untersuchungen der 3. und 4. Basisaufnahme erfolgten nach StUK 4.

Im Vorhabengebiet wurde die Beprobung mit einem gecharterten kommerziellen Fischkutter ("Heimdall") durchgeführt (Tab. 2). In der Ostsee wird für fischereibiologische Untersuchungen nach StUK 4 ein Netz des Typs "Windparktrawl" (WPT) verwendet (Tab. 2). Das WPT ist ein Grundschleppnetz, welches durch zwei Scherbretter (Typ "Thyborøn") am Grund geöffnet wird. Die Öffnungsbreite des Netzes beträgt dabei 10 m. Im Steert hat das WPT eine Maschenweite von 20 mm. Während der aktuellen zwei Befischungskampagnen wurde das WPT pro Hol 15 min bei einer Geschwindigkeit von 3-4 kn geschleppt. Es wurden im Projektgebiet Gennaker jeweils 20 Hols im Herbst 2023 und Frühjahr 2024 durchgeführt, die repräsentativ über das gesamte Untersuchungsgebiet verteilt waren (Abb. 2 und Abb. 3). Der Zuschnitt der drei Teilflächen des Vorhabengebietes hat sich im Januar 2024 geändert, sodass sich die Stationsnetze während der Beprobungen im Herbst 2023 und Frühjahr 2024 unterscheiden. Nach der Anpassung der Vorhabenfläche für das gegenständliche Genehmigungsverfahren wurde die Lage der Stationen für die Befischung im Frühjahr 2024 überprüft und geringfügig angepasst. In der Abb. 2 für die Untersuchung im Herbst 2023 liegen die beiden Stationen PF13 und PF15 außerhalb des finalen Vorhabengebiets (Abb. 2). Da sowohl der aktuelle als auch der vorherige Zuschnitt innerhalb der Außengrenzen des Vorhabengebietes liegen, sind die Daten der Schleppstriche aus der Befischung im Herbst 2023 mit denen aus 2024 vergleichbar. Während der Kampagne im Frühjahr 2024 wurde die Station PF14 vorsorglich, aufgrund möglicher Haker verlegt (Abb. 3). Die vorsorgliche Verlegung erfolgte durch den Kapitän des FK "Heimdall" beruhend auf seinen Erkenntnissen von früheren Fischereifahrten in diesem Gebiet. Zudem befand sich eine Messtonne für Marine Säuger auf dem Soll-Schleppstrich (Abb. 3). Beide Stationen liegen somit leicht außerhalb der aktuellen Vorhabenfläche, jedoch weiterhin innerhalb der Außengrenzen des Vorhabengebietes.

Zur Erweiterung des mit dem WPT ermittelten Datensatzes wurden die Fischbeifänge aus den 2-m-Baumkurrehols zur Untersuchung der Epifauna berücksichtigt (IFAÖ 2024). Die Ergebnisse der 2-m-Baumkurrefänge wurden jedoch nur für die Darstellung des Artenspektrums im Untersuchungsgebiet herangezogen (siehe Kap. 4.1.2), da während der Beprobung der Epifauna die Fische nur semi-quantitativ erfasst werden. Es wurden im Vorhabengebiet 10 Hols mit einer 2-m-Baumkurre durchgeführt.

Tab. 2: Übersicht über die Probenahmethodik und das eingesetzte Fanggerät.

Untersuchungsparameter	Probenahmemethodik	
Untersuchungszeitraum	Herbst 2023: 02.1103.11.2023 und Frühjahr 2024: 20.0421.04.2024	
Schiff	Gecharterter kommerzieller Fischkutter "Heimdall" (FKZ: SC58): 22 m Länge, 221 kW Leistung	
Fanggeräte & Fanggeschirr	Windparktrawl: horizontale Netzöffnungsbreite 10,0 m, vertikale Netzöffnungshöhe 1,5 m, Maschenweite im Innensteert 20 mm, Breite Scherbretter 1,5 m	
Holstrategie	Durchführung der Fischerei nur bei Tageslicht	
Schleppgeschwindigkeit	3 bis max. 4 Knoten über Grund	

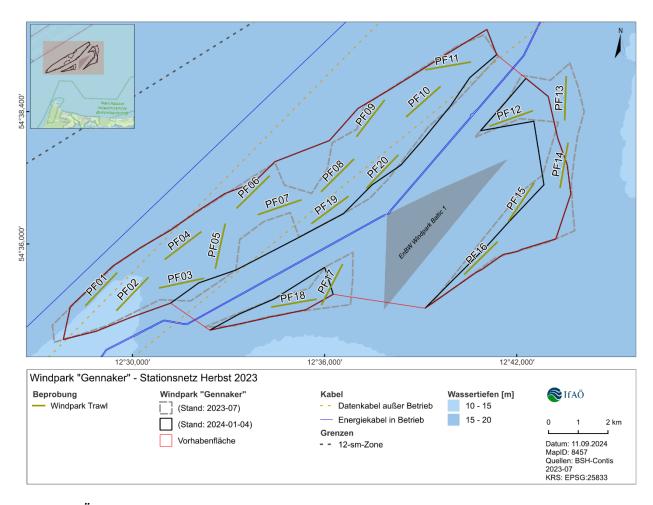


Abb. 2: Übersicht über die im OWP "Gennaker" im Herbst 2023 durchgeführten Schleppstriche.

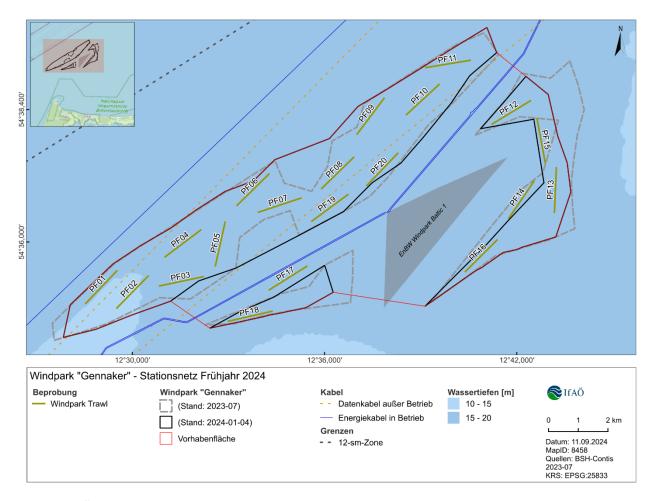


Abb. 3: Übersicht über die im OWP "Gennaker" im Frühjahr 2024 durchgeführten Schleppstriche.

3.3 Bearbeitung der Fänge

Die Bearbeitung der Fischfänge (Hols) erfolgte direkt an Bord des Schiffes. Dazu wurden sämtliche in dem Steert befindlichen Fische und Benthosorganismen auf den schiffseigenen Sortiertisch überführt. Die Fische in jedem Hol wurden auf Artniveau bestimmt und sortiert. Anschließend wurde das Gesamtgewicht der jeweiligen Art mit einer seegangsberuhigten Waage (Modell M1100, Firma Marel) auf 1 g genau ermittelt. Nachfolgend wurden die Längen aller Fische gemessen. Die Fischlänge wurde als Totallänge (TL), gemessen von der Schnauzenspitze bis zum längsten Schwanzflossenstrahl, auf 1 cm genau angegeben. Clupeiden, wie z. B. Hering und Sprotte, wurden auf 0,5 cm genau gemessen. Bei Fischarten mit sehr hoher Individuenzahl (> 150 Individuen) in den Hols wurden für die Längenmessungen, entsprechend StUK 4, repräsentative Unterproben ausgewertet (BSH 2013).

Die Artbestimmung aller gefangenen Fische erfolgte mit Hilfe des von WHITEHEAD et al. (1986) veröffentlichten Standardwerkes zur Bestimmung von Fischen des Nordostatlantiks und des Mittelmeeres sowie weiterführender Bestimmungsliteratur (Neunaugen: RENAUD 2011; Knorpelfische: EBERT & STEHMANN 2013, LYNGHAMMAR 2014; Leierfische: NEUDECKER & DAMM 2004; Grundeln: HAMERLYNCK 1990; FRICKE 1996; BRUNKEN 2008). Die wissenschaftlichen bzw.

die deutschen Bezeichnungen der Arten und Familien richteten sich dabei nach der Nomenklatur von FRICKE et al. (2024a) und FRICKE et al. (2024b) bzw. der Fishbase-Datenbank (FROESE & PAULY 2024) und MUUS & NIELSEN (2013) (siehe Anhang Tab. 24).

Die Unterscheidung der Grundeln der Gattung *Pomatoschistus* spp. ist sehr schwierig und nur mit einem sehr hohen Zeitaufwand realisierbar. Es wurden daher alle gefangenen Grundeln der Gattung *Pomatoschistus* spp. in einer 4 %igen Formaldehydlösung fixiert und anschließend im Labor unter Zuhilfenahme eines Stereomikroskops auf Artniveau bestimmt. Eine Ausnahme davon war die Fleckengrundel (*Pomatoschistus pictus*). Diese Art kann bereits an Bord ohne größeren Aufwand von den anderen Grundeln der Gattung *Pomatoschistus* spp. getrennt und bestimmt werden.

Die nach der Aussortierung der Fische übriggebliebenen Benthosorganismen in den 7-m-Baumkurrenfängen wurden ebenfalls gewogen und die Zusammensetzung des Wirbellosen-Beifanges semi-quantitativ erfasst. Dabei wurde der Wirbellosen-Beifang in jedem Hol, so weit möglich, auf Artniveau bestimmt und das Gesamtgewicht der Benthosorganismen pro Hol erfasst. Für jeden Hol wurde der prozentuale Anteil der nachgewiesen Benthos-Taxa am Gesamtgewicht geschätzt.

Neben den biologischen Daten wurden zu jedem Hol die Start- und Endzeit, die jeweiligen Positionen sowie die Wassertiefe protokolliert (siehe Anhang Tab. 21). Dreimal täglich wurden im Gebiet die hydrologischen Parameter (Wassertemperatur, Salzgehalt und Sauerstoff) mit einer Multisonde (Hach HQ40 d) aufgenommen (siehe Anhang Tab. 22). Ebenfalls mindestens dreimal am Tag wurden die Wetterdaten (Bewölkungsgrad, Windrichtung, Windstärke und Wellengang) erfasst (siehe Anhang Tab. 23).

3.4 Datenanalyse

Zur Beschreibung des Zustandes der Fischgemeinschaft wurden für alle Hols die Kenngrößen Artenzahl, Gesamtabundanz, Gesamtbiomasse, Diversität und Evenness ermittelt. Des Weiteren wurde für jede Art ihre Präsenz (Nachweishäufigkeit / Stetigkeit), ihre Abundanz, ihre Biomasse sowie ihr Relativer Bedeutungsindex in den Hols bestimmt. Weiterhin wurde die Längenverteilung dominanter Arten ermittelt.

Mit dem eingesetzten Grundschleppnetz (WPT) wird die Abundanz und Biomasse von pelagischen Arten nicht repräsentativ erfasst. Daher wurden diese Arten aus den Berechnungen und aus den Darstellungen zu Kenngrößen, welche auf den normierten Abundanzen und Biomassen der nachgewiesenen Fischarten beruhen, herausgenommen. Es handelt sich dabei um die Kenngrößen Diversität, Evenness, Gesamtabundanz, Gesamtbiomasse, Relativer Bedeutungsindex und Dominanz.

Unterproben

Wie im Kap. 3.3 erwähnt, wurden bei Fischarten mit sehr hoher Individuenzahl in den Hols zur Verringerung des zeitlichen Aufwandes repräsentative Unterproben genommen, entsprechend den Vorgaben aus StUK 4 (BSH 2013). Die Rückberechnung der tatsächlichen Anzahl der in

einem Hol befindlichen Individuen erfolgte anhand untenstehender Gleichung, "Extremwerte" (nach oben oder nach unten) wurden aus der Gesamtprobe getrennt und separat vermessen.

$$N_{HOI} = \frac{N_{UP} \ x \ FG_{HoI}}{FG_{UP}}$$

mit:

N_{Hol} = Anzahl aller Individuen der Art i im Hol

 N_{UP} = Anzahl Individuen der Art i in der Unterprobe

FG_{UP} = Feuchtgewicht [kg] Individuen der Art i in der Unterprobe

FG_{Hol} = Feuchtgewicht [kg] aller Individuen der Art i im Hol.

Bestimmung der Abundanz und Biomasse

Aus den WPT-Fängen wurden für die gefangenen Fische die Abundanz und Biomasse mit folgender Gleichung berechnet:

Abundanz [Ind.ha] bzw. Biomasse [kg/ha] =
$$BF_{Beob} x = \frac{10.000 \text{ m}^2}{\text{Schleppstrecke x N\"O}}$$

mit:

BF_{Beob} = Anzahl [Ind.] bzw. Gewicht [kg] je Hol

NÖ = Netzöffnungsbreite [m]

Schleppstrecke = tatsächlich befischte Strecke ([m], Abstand zwischen Anschlepp- und

Hievposition).

Die Berechnung der Biomasse des Wirbellosen-Beifangs [kg/ha] erfolgte ebenfalls nach dieser Gleichung.

Präsenz (Nachweishäufigkeit / Stetigkeit)

Die Präsenzen der nachgewiesenen Fischarten in den Fängen beider Kampagnen wurden nach folgender Gleichung berechnet:

Relativer Bedeutungsindex

Zusätzlich zur Abundanz, Biomasse und Präsenz wurde für jede Art der Bedeutungsindex (Relative Importance Index, RI) in den Fängen der zwei Kampagnen entsprechend zu GEORGE & HADLEY (1979) ermittelt.

$$Rli [\%] = \frac{Ai + Bi + Pi}{\sum (Ai + Bi + Pi)} \times 100$$

mit:

RI_i = Relative Importance Index (Bedeutungsindex) der Fischart i

A_i = Abundanzanteil [%] der Fischart i an der Gesamtabundanz der Fänge

B_i = Biomasseanteil [%] der Fischart i an der Gesamtbiomasse der Fänge

P_i = Präsenz [%] der Fischart i in den Fängen.

Der relative Bedeutungsindex wertet die ermittelten Abundanz-, Biomasse- und Präsenzwerte der Fischarten in den Fängen (siehe oben) gleichermaßen. Dadurch werden Arten, die nur bei einer der drei Kenngrößen hohe Werte aufweisen, geringer gewichtet. Umgekehrt steigt die Bedeutung von Arten mit hohen Werten bei allen drei Kenngrößen. Der relative Bedeutungsindex nach GEORGE & HADLEY (1979) ist daher ein gutes Hilfsmittel, um die Bedeutung der nachgewiesenen Fischarten für die Fischgemeinschaft im Untersuchungsgebiet darzustellen.

Diversität und Evenness

Die **Diversität** der einzelnen Hols bzw. auch vergleichend für die beiden Kampagnen, wurde mit Hilfe des Diversitätsindex von SHANNON & WEAVER (1949) berechnet. Durch den Diversitätsindex können Aussagen über die Artenvielfalt aber auch über die Verteilung der Individuenzahlen einer Gemeinschaft getroffen werden, da der Index sowohl bei zunehmender Artenzahl als auch bei Zunahme der Konstanz der Individuen je Art zunimmt.

Der Diversitätsindex nach SHANNON & WEAVER (1949) berechnet sich wie folgt:

$$H' = -\sum_{i=1}^{s} n_i / N \times \ln n_i / N$$

mit:

H' = Diversitätsindex

S = Artenzahl

N = Summe der Individuen aller Arten

n_i = Anzahl der Individuen der Art i.

Die H' Werte können Werte zwischen 0 (bei Vorkommen nur einer Art) und unendlich aufweisen. Der Diversitätsindex nach Shannon & Weaver (1949) ist umso höher, je mehr Arten in einem Hol nachgewiesen werden können und je ähnlicher dabei deren Häufigkeiten (Anzahl der Individuen) sind (Lozán & Kausch 2007).

Durch die Berechnung der **Evenness** nach Pielou (1966) erfolgt eine Aussage über die Gleichmäßigkeit einer Probe und beschreibt das Verhältnis zwischen ermittelter Diversität (H') zur maximalen Diversität.

Die Evenness nach Pielou (1966) ist wie folgt definiert:

$$J' = H'/H'_{max}$$

mit:

J' = Evenness

H' = Diversität nach Shannon & Weaver (1949)

 H'_{max} = maximale Diversität (log S).

Die Evenness kann formelbedingt Werte zwischen 0 und 1 ergeben. Bei einer Evenness von 1 liegt eine Gleichverteilung der Individuenzahlen aller Arten vor.

Die Berechnungen von Diversität und Evenness wurden mit dem Statistikprogramm PAST 3.23 durchgeführt.

Dominanzverhältnisse und Charakterarten

Die Dominanzverhältnisse der Fischarten in den Fängen wurden auf Grundlage ihrer Anteile an der Gesamtabundanz und der Gesamtbiomasse ermittelt. Dabei wurden alle Arten, die nicht im jeweiligen Gebiet Anteile an der Gesamtabundanz und Gesamtbiomasse von > 3 % aufwiesen, unter der Bezeichnung "Sonstige" zusammengefasst (STÖCKER & BERGMANN 1977).

Weiterhin wurden für beide Befischungskampagnen die Charakterarten ermittelt. Diese Arten stellten in den Hols im Herbst 2023 und Frühjahr 2024 zusammen mehr als 90 % der gefangenen Individuen.

Längenhäufigkeitsverteilung

Zur Darstellung der Längenverteilung der in dem jeweiligen Gebiet am häufigsten vorkommenden Arten (Charakterarten) wurden die relativen Anteile der einzelnen Längen an der Gesamtzahl der vermessenen Individuen der jeweiligen Art pro Gebiet berechnet. Bei Fischarten mit sehr hoher Individuenzahl in den Hols wurden zur Verringerung des zeitlichen Aufwandes repräsentative Unterproben genommen (siehe oben und BSH 2013). Bei diesen Arten wurde die Größenzusammensetzung aller in dem Hol befindlichen Individuen anhand der in der Unterprobe vorgefundenen Größenzusammensetzung untenstehender Gleichung hochgerechnet. Extremwerte (nach oben oder nach unten) wurden aus der Gesamtprobe getrennt und separat vermessen.

$$NLK(x)HoI = \frac{NHoI \times NLK(x)UP}{NUP}$$

mit:

N_{LK(x)Hol} = Anzahl aller Individuen der jeweiligen Längenklasse der Art i im Hol

N_{LK(x)UP} = Anzahl Individuen der jeweiligen Längenklasse der Art i in der Unterprobe

N_{Hol} = Anzahl aller Individuen der Art i im Hol

N_{UP} = Anzahl Individuen der Art i in der Unterprobe.

3.5 Statistische Auswertung und graphische Darstellung

3.5.1 Vergleich Kenngrößen

Für den Vergleich der **Kenngrößen** der Hols (Gesamtabundanz, Gesamtbiomasse, Artenzahl, Diversität, Evenness, Wirbellosen-Beifang sowie Abundanz der Charakterarten) beider Kampagnen (Herbst 2023 und Frühjahr 2024) wurden Einzeltests durchgeführt. Da bei den meisten Kenngrößen die Daten nicht normal verteilt waren, wurde für den paarweisen Vergleich aller Kenngrößen der parameterfreie Mann-Whitney-U-Test angewandt.

Es wurde außerdem die Veränderung der Kenngrößen über die vier Untersuchungsjahre (1. Jahr: Herbst 2012 / Frühjahr 2013, 2. Jahr: Herbst 2013 / Frühjahr 2014, 3. Jahr: Frühjahr 2015 / Herbst 2015, 4. Jahr: Herbst 2023 / Frühjahr 2024) untersucht. Dazu wurden Varianzanalysen (ANOVA, analysis of variance) durchgeführt, um den Einfluss der vier Herbstkampagnen und der vier Frühjahrskampagnen getrennt auf die jeweiligen Kenngrößen zu testen. Aufgrund der fehlenden Normalverteilung bei den Daten der meisten Kenngrößen wurde der parameterfreie Kruskal-Wallis-Test angewandt. Als Post-hoc-Test wurde bei Vorliegen einer Signifikanz der Dunn-Bonferroni-Test verwendet. Für alle verwendeten Tests lag eine Irrtumswahrscheinlichkeit von p < 0,05 zugrunde. Alle erwähnten Berechnungen wurden mit Hilfe des Statistik-Programmes IBM SPSS Statistics 27.0 durchgeführt.

Die graphische Darstellung der Ergebnisse (Kenngrößen) erfolgte mit Hilfe der Software SigmaPlot (Version 14.0). Es wurden unabhängig von den Ergebnissen der Verteilungsanalyse (Shapiro-Wilk-Test) Box-Whiskers-Plots erstellt. Als Datengrundlage dienten die für jeden Hol bzw. jede Station berechneten Werte der jeweiligen Kenngröße (siehe oben). Anhand der Box-Whiskers-Plots können Aussagen über den Median sowie über die Spannweite der Messwerte getroffen werden. Dargestellt wird der Median, der den Wert, über und unter dem die gleiche Menge an Messwerten liegt, bezeichnet. Weiterhin sind in der Abbildung die 25- und 75 %-Quartile (oberes und unteres Ende der Box) sowie die größten und kleinsten nicht-extremen Messwerte (oberer und unterer Strich außerhalb der Box) dargestellt. Außerdem wurden die Mittelwerte (x) und Ausreißer (•) dargestellt. Die graphische Darstellung der Dominanz, des Relativen Bedeutungsindex sowie der Längenhäufigkeitsverteilung der Fische erfolgte ebenfalls mit Hilfe der Software SigmaPlot (Version 14.0).

3.5.2 Gemeinschaftsanalyse

Die Gemeinschaftsanalyse ermöglicht die Darstellung möglicher Unterschiede in der Fischgemeinschaft zwischen den einzelnen Kampagnen / Jahreszeiten bzw. Untersuchungsjahren. Die Statistik basiert dabei auf der Abundanz [Ind./ha] aller Fischarten in den Hols an den jeweils beprobten Stationen. Zur Verringerung des Einflusses dominanter Arten wurde die Abundanz sämtlicher Arten quadratwurzeltransformiert. Für die Berechnungen der Gemeinschaftsanalyse wurde die Statistiksoftware PRIMER 6 (Version 6.1.18) genutzt und die Ergebnisse als nMDS-Plots dargestellt. In der graphischen Darstellung liegen die Stationen / Hols mit einer ähnlichen Zusammensetzung dichter beieinander, während Stationen / Hols mit deutlichen Unterschieden weiter auseinander liegen. Die Güte der Darstellung wird über den

Stress-Wert angegeben (Stress < 0,05: sehr gute Darstellung ohne Möglichkeit der Fehlinterpretation; Stress < 0,1: gute Ordination; Stress < 0,2: potenziell brauchbare Darstellung, die jedoch mit Vorbehalten verwendet werden sollte; Stress > 0,3: Hols sind fast zufällig in der Darstellung verteilt).

Die Verschiedenheit der Fischgemeinschaft zwischen den Kampagnen / Jahreszeiten bzw. Untersuchungsjahren wurde außerdem durch eine ANOSIM (Analysis of Similarities) untersucht. Hierbei wurde die Nullhypothese getestet, dass kein Unterschied zwischen der definierten Gruppe (Kampagnen oder Untersuchungsjahr) besteht. Hierzu wurde der Global R-Wert ermittelt, der Aufschluss über die Unterschiedlichkeit der Gruppen gibt (Tab. 3). Zusätzlich wurde auch noch das Signifikanzlevel (p-Wert) ermittelt, das bei entgegengesetzter Korrelation den Global R-Wert unterstützt (CLARKE & WARWICK 2001). Mit der SIMPER (Similarity Percentage Analysis) können die Arten der Fischgemeinschaft ermittelt werden, die am meisten für die Ähnlichkeit (Similarität) bzw. Unähnlichkeit (Dissimilarität) innerhalb der Gruppe verantwortlich waren (Clarke & Warwick 2001). Eine SIMPER wurde nur durchgeführt, wenn die Unterschiede zwischen den getesteten Gruppen größer waren als die Gemeinsamkeiten (R-Werte ≥ 0,50).

Tab. 3: Interpretation der in der ANOSIM ermittelten Prüfgröße R (nach CLARKE & WARWICK 2001; CLARKE & GORLEY 2006).

R-Wert	Interpretation
< 0,00	Unterschiede innerhalb der getesteten Gruppen sind größer als die Unterschiede zwischen den getesteten Gruppen
> 0,00	Unterschiede innerhalb der getesteten Gruppen sind kleiner als die Unterschiede zwischen den getesteten Gruppen
0,00 - 0,25	sehr gering kaum bzw. keine Unterschiede vorhanden
0,25 - 0,50	gering Unterschiede sind kleiner als die Gemeinsamkeiten
0,50 - 0,75	stark Unterschiede sind größer als die Gemeinsamkeiten
> 0,75	sehr stark kaum bzw. keine Gemeinsamkeiten vorhanden

3.6 Bestandsbewertung

In der nachfolgenden Tabelle wird eine Bewertungsmatrix dargestellt, die bei der Bestandsbewertung des Schutzgutes Fische zur Anwendung kommt. Hierbei werden die Bewertungskriterien Vielfalt und Eigenart, Seltenheit und Gefährdung sowie Vorbelastung herangezogen (BSH 2021).

Tab. 4: Ansatz zur Bewertung von Vielfalt / Eigenart, Seltenheit / Gefährdung und Vorbelastung von Fischen und Rundmäulern (nach BSH 2021).

Vielfalt und Eigenart	Seltenheit und Gefährdung	Vorbelastung	Wertstufe
geringe Anzahl regelmäßig vorkommender Arten	Vorkommen von Arten der Rote- Liste-Kategorien G (Gefährdung unbekannten Ausmaßes), V (Vorwarnliste), R (extrem selten), D (Daten unzureichend) und "nicht gefährdet" (*)	keine oder geringe Störungen	gering
mittlere Anzahl regelmäßig auftretender Arten bzw. die dem Lebensraum entsprechenden Arten kommen in untypisch geringen Dichten oder Häufigkeiten vor	regelmäßiges Vorkommen von Arten der Rote-Liste-Kategorien 2 (stark gefährdet) und 3 (gefährdet)	deutliche Störungen, die zeitlich begrenzt sind oder eine geringe Intensität aufweisen	mittel
hohe Anzahl regelmäßig vorkommender Arten bzw. die dem Lebensraum entsprechende Artengemeinschaft wird stetig mit typischen Dichten festgestellt	und 1 (vom Aussterben bedront)	Störungen, die die Eignung des Gebietes für Fische in größerem Umfang oder über längere Zeit herabsetzt	hoch

4 Ergebnisse

4.1 Ergebnisse der Befischungen des 4. Jahres der Basisaufnahme (Herbst 2023 und Frühjahr 2024)

4.1.1 Hydrologische Daten

Im Rahmen der Untersuchungen im Herbst 2023 und Frühjahr 2024 wurden hydrologische Parameter (Salzgehalt, Wassertemperatur und Sauerstoff) an der Wasseroberfläche sowie am Grund gemessen (Tab. 5). Während der Herbstkampagne hatte die Oberfläche einen mittleren Salzgehalt von 9,45 ± 0,06 PSU, während der mittlere Salzgehalt am Grund leicht höher war (9,48 ± 0,18 PSU). Im Frühjahr 2024 unterschieden sich die ermittelten Salzgehaltswerte zwischen Oberfläche und Grund deutlicher als im Herbst. So war der mittlere Salzgehalt an der Oberfläche mit 9,49 ± 0,15 PSU um mehr als zwei PSU niedriger als am Grund (11,54 ± 0,51 PSU). Bei den Temperaturmessungen waren die Unterschiede zwischen Oberfläche und Grund während beider Kampagnen nicht stark ausgeprägt (Tab. 5). Deutlich höher waren die Unterschiede zwischen den Messungen der beiden Kampagnen, dabei waren die mittleren Temperaturen im Herbst an der Oberfläche und am Grund mit 11,38 ±0,11 °C bzw. $11,40 \pm 0,14$ °C höher als im Frühjahr mit $8,56 \pm 0,09$ °C bzw. $7,98 \pm 0,50$ °C. Die Sauerstoffsättigung zeigte ebenfalls Unterschiede zwischen den Jahreszeiten wie auch zwischen den Tiefen. Im Herbst war die mittlere Sauerstoffsättigung an der Oberfläche mit 102,74 ± 0,51 % höher als am Grund (101,74 ± 1,71 %). Während der Frühjahrskampagne war die mittlere Sauerstoffsättigung in beiden Tiefen geringer, wobei sie mit 98,84 ± 1,45 % wie im Herbst an der Oberfläche höher war als am Grund mit 90,48 ± 2,32 % (Tab. 5). Dennoch war die Sauerstoffsättigung für die im Untersuchungsgebiet vorkommende Fischfauna an der Oberfläche wie auch am Grund während beider Jahreszeiten ausreichend

Tab. 5: Hydrologische Parameter an der Oberfläche und über dem Grund im OWP "Gennaker" im Herbst 2023 und Frühjahr 2024.

MMM	· Mittalwart·	Stahur	Standardabweichung

Kampagne	Parameter	Salzgehalt [PSU]	Temperatur [°C]	Sauerstoff- sättigung [%]
	Oberfläche (Mw ± Stabw)	9,45 ± 0,06	11,38 ± 0,11	102,74 ± 0,51
Herbst 2023	Grund (Mw ± Stabw)	9,48 ± 0,18	11,40 ± 0,14	101,74 ± 1,71
	Anzahl Messwerte	5	5	5
	Oberfläche (Mw ± Stabw)	9,49 ± 0,15	8,56 ± 0,09	98,84 ± 1,45
Frühjahr 2024	Grund (Mw ± Stabw)	11,54 ± 0,51	7,98 ± 0,50	90,48 ± 2,32
	Anzahl Messwerte	5	5	5

4.1.2 Artenspektrum

Im Frühjahr 2024 war die Anzahl der gefangenen Fische (n = 14.779) deutlich höher als im Herbst 2023 (n = 9.401). Während beider Untersuchungen wurden im OWP "Gennaker" mit den eingesetzten Fanggeräten (WPT und 2-m-Baumkurre) zusammen insgesamt 29 Fischarten aus 18 Familien nachgewiesen (Tab. 6). Dabei war die Familie der Clupeidae mit vier Arten die artenreichste Familie, gefolgt von den Gadidae und Pleuronectidae mit jeweils drei Arten. Die

anderen Familien waren in den Hols durch ein bis zwei Arten vertreten. Alle der 29 nachgewiesenen Fischarten wurden im Herbst 2023 erfasst. Während der Frühjahrskampagne wurden dagegen nur 15 Arten nachgewiesen (Tab. 6).

Mit dem WPT wurden deutlich mehr Fischarten (insg. 24 Fischarten, davon alle 24 im Herbst und 13 im Frühjahr) nachgewiesen als mit der 2-m-Baumkurre (insg. 16 Arten, davon 11 im Herbst und 8 im Frühjahr). Grasnadel, Goldmaid, Spitzschwanz-Schlangenstachelrücken, Butterfisch und Schwarzgrundel wurden ausschließlich mit der 2-m-Baumkurre gefangen. Alle anderen mit der 2-m-Baumkurre nachgewiesenen Fischarten wurden auch mit dem WPT erfasst (Tab. 6).

Tab. 6: Liste der im OWP "Gennaker" mit dem WPT und der 2-m-Baumkurre im Herbst 2023 und Frühjahr 2024 nachgewiesenen Fischarten mit ihrer Rote-Liste-Kategorie nach THIEL et al. (2013) (Region Ostsee) und ihrer Lebensweise.

LW: Lebensweise; p: pelagisch; d: demersal; RL: Rote-Liste-Kategorie; H: Herbst; F: Frühjahr; X: Art ausschließlich mit WPT gefangen; ♦: Art ausschließlich mit 2-m-Baumkurre gefangen; X♦: Art mit WPT und 2-m-Baumkurre gefangen

Familie	Fischart	deutscher Name	LW	RL	H23	F24
Clupeidae	Alosa fallax	Finte	р	3	Χ	
	Clupea harengus	Hering	р	*	Χ	Χ
	Sprattus sprattus	Sprotte	р	*	Χ	Χ
	Engraulis encrasicolus	Europäische Sardelle	р	*	Χ	
Gadidae	Gadus morhua	Dorsch	d	*	X♦	X♦
	Melanogrammus aeglefinus	Schellfisch	d	*	Χ	
	Merlangius merlangus	Wittling	d	*	Χ	Χ
Syngnathidae	Syngnathus typhle	Grasnadel	d	*	*	
Gasterosteidae	Gasterosteus aculeatus	Dreistachliger Stichling	d	*	Χ	
Psychrolutidae	Myoxocephalus scorpius	Seeskorpion	d	D	X♦	X♦
Agonidae	Agonus cataphractus	Steinpicker	d	*	X♦	X♦
Cyclopteridae	Cyclopterus lumpus	Seehase	d	*	Χ	
Carangidae	Trachurus trachurus	Holzmakrele	р	*	Χ	
Zoarcidae	Zoarces viviparus	Aalmutter	d	V	X♦	X♦
Lumpenidae	Lumpenus lampretaeformis	Spitzschwanz-Schlangenstachelrücken	d	1	*	
Pholidae	Pholis gunnellus	Butterfisch	d	*	*	*
Labridae	Symphodus melops	Goldmaid	d	D	*	
Ammodytidae	Hyperoplus lanceolatus	Gefleckter Großer Sandaal	d	D	Χ	Χ
Gobiidae	Aphia minuta	Glasgrundel	d	D	X♦	*
	Gobius niger	Schwarzgrundel	d	*	*	
Oxudercidae	Pomatoschistus minutus	Sandgrundel	d	*	X♦	X♦
	Pomatoschistus pictus	Fleckengrundel	d	D	Χ	
Scombridae	Scomber scombrus	Atlantische Makrele	р	*	Χ	
Pleuronectidae	Limanda limanda	Kliesche	d	*	X♦	X♦
	Platichthys flesus	Flunder	d	*	X♦	Χ
	Pleuronectes platessa	Scholle	d	*	X♦	X♦
Scophthalmidae	Scophthalmus maximus	Steinbutt	d	*	X♦	X♦
	Scophthalmus rhombus	Glattbutt	d	*	X♦	
Soleidae	Solea solea	Seezunge	d	*	Χ	
		Artenzahl (Gesan	nt 29)	29	15
		Artenzahl WPT (24	Fischa	arten)	24	13
		Artenzahl 2-m-Baumkurre (16	Fischa	arten)	11	8

Rote-Liste-Kategorie: 0: ausgestorben, 1: vom Aussterben bedroht, 2: stark gefährdet, 3: gefährdet, G: Gefährdung unbekannten Ausmaßes, R: extrem selten, V: Vorwarnliste; D: Daten unzureichend, *: ungefährdet, -: nicht bewertet.

Spitzschwanz-Schlangenstachelrücken Mit dem wurde eine Rote-Liste-Art der Gefährdungskategorie 1 (vom Aussterben bedroht, THIEL et al. 2013) nachgewiesen. Allerdings wurde nur ein Einzelexemplar mit der 2-m-Baumkurre während der Herbstkampagne gefangen. Zudem wurde mit der Finte eine Rote-Liste-Art der Gefährdungskategorie 3 (gefährdet, THIEL et al. 2013) erfasst (Tab. 6). Insgesamt wurden im Herbst mit dem WPT zwei Individuen erfasst. Die Finte wird weiterhin als eine Art des Anhangs II der Fauna-Flora-Habitat-Richtlinie (FFH-RL) geführt. Weiterhin wurde mit der Aalmutter eine Art registriert, die auf der Vorwarnliste steht (Kategorie V, THIEL et al. 2013). Bei fünf Arten (Seeskorpion, Goldmaid, Gefleckter Großer Fleckengrundel) Sandaal. Glasgrundel und ist die Datengrundlage Gefährdungseinschätzung unzureichend (Kategorie D, THIEL et al. 2013). Alle anderen nachgewiesenen Arten werden als ungefährdet eingestuft (THIEL et al. 2013, Tab. 6).

Die meisten (n = 23) der nachgewiesenen Fischarten haben eine demersale Lebensweise (Tab. 6). Mit Finte, Hering, Sprotte, Europäische Sardelle, Holzmakrele und Atlantische Makrele wurden mit dem WPT sechs Arten mit pelagischer Lebensweise gefangen (Definition demersale und pelagische Fischarten siehe Glossar Kap. 6). Der relative Anteil dieser Arten an der Gesamtzahl gefangener Fische war während beider Kampagnen gering, wobei ihr Anteil am Gesamtfang im Frühjahr 2024 mit 9,507 % höher war als im Herbst 2023 (1,564 %, Tab. 7).

Tab. 7: Absolute und relative Anzahl der mit dem WPT gefangenen Individuen demersaler und pelagischer Fischarten im OWP "Gennaker" während der Befischungskampagnen im Herbst 2023 und Frühjahr 2024.

Demersale Fischarten: alle Arten zusammengefasst;

pelagische Fischarten: alle Arten zusammengefasst und Einzelarten

	Herbst 2023	Frühjahr 2024	Gesamt
Anzahl gefangener Fische	9.401	14.779	24.180
		relativer Anteil (%)	
demersal	98,436	90,493	93,581
pelagisch	1,564	9,507	6,419
Atlantische Makrele	0,011	-	0,004
Europäische Sardelle	0,011	-	0,004
Finte	0,021	-	0,008
Hering	0,617	7,693	4,942
Holzmakrele	0,053	-	0,021
Sprotte	0,851	1,813	1,439

4.1.3 Abundanz, Biomasse sowie Präsenz (Stetigkeit) der Fischarten in den Fängen

Während der beiden Kampagnen im Herbst 2023 und Frühjahr 2024 wurden die Arten Kliesche und Scholle an allen im Bereich des OWP "Gennaker" mit dem WPT beprobten Stationen nachgewiesen (Tab. 8). Auch Aalmutter, Dorsch, Flunder, Seeskorpion, Sprotte und Steinbutt waren während beider Kampagnen sehr präsent in den WPT-Fängen (Präsenz von 65-100 %). Einige der erfassten Arten zeigten zwischen den zwei Kampagnen ein stark unterschiedliches Vorkommen in den WPT-Fängen. So zählte z. B. der Wittling während der Herbstkampagne mit 85 % zu den präsentesten Arten. Im Frühjahr wurde er dagegen nur an sieben der 20 Stationen erfasst (Präsenz von 35 %). Beim Hering war es genau umgekehrt. Im Frühjahr wurde diese Art

an allen 20 Stationen (Präsenz von 100 %) und im Herbst lediglich an acht Stationen erfasst (Präsenz von 40 %). Die zwei Arten Sandgrundel und Scholle wurden in den Fängen der 2-m-Baumkurre an allen beprobten Stationen erfasst (Tab. 8). Weiterhin wiesen Aalmutter und Seeskorpion hohe Präsenzen während beider Kampagnen auf (Präsenz von 50-90 %). Auch in den 2-m-Baumkurrefängen zeigten einige Arten ein unterschiedliches Vorkimmen zwischen Herbst und Frühjahr. So zählten Dorsch und Glasgrundel im Herbst zu den präsenten Arten in den Fängen (Präsenz von 70-100 %). Im Frühjahr war die Nachweishäufigkeit beider Arten deutlich geringer (Präsenz von 10-40 %, Tab. 8).

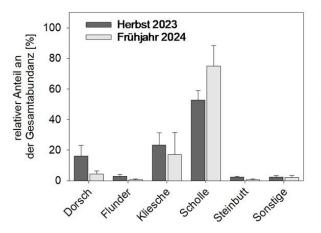
Tab. 8: Fischarten im OWP "Gennaker" während der Beprobungen mit dem Windparktrawl und der 2-m-Baumkurre im Herbst 2023 und Frühjahr 2024 mit Angabe ihrer mittleren Abundanz (± Standardabweichung), ihrer mittleren Biomasse (± Standardabweichung) und ihrer Präsenz in den Fängen.

WPT: Windparktrawl; BK: Baumkurre; X: für die nachgewiesenen pelagischen Arten wurden die mittlere Abundanz und die mittlere Biomasse nicht berechnet; ¹: Mittelwerte in den WPT-Fängen; *: Werte < 0,001

		Herbst 2023				Frühjahr 2024	ahr 2024			
dt. Artname	mittlere	mittlere	Präse	nz [%]	mittlere	mittlere	Präse	nz [%]		
di Airiano	Abundanz¹ [Ind./ha]	Biomasse¹ [kg/ha]	WPT	2-m- BK	Abundanz¹ [Ind./ha]	Biomasse¹ [kg/ha]	WPT	2-m- BK		
Aalmutter	2,40 ± 1,45	0,189 ± 0,135	90	50	4,80 ± 3,32	0,364 ± 0,304	100	70		
Atlantische Makrele	X	X	5	-	I	ı	ı	-		
Butterfisch	_	_	-	20	-	1	-	20		
Dorsch	48,06 ± 19,82	2,615 ± 1,292	100	100	19,15 ± 9,28	1,405 ± 0,644	95	40		
Dreistachliger Stichling	0,07 ± 0,30	0,000 * ± 0,001	5	1	1	1	1	_		
Europäische Sardelle	X	X	5	-	-	1	-	_		
Finte	X	X	10	-	ı	ı	-	_		
Fleckengrundel	0,03 ± 0,15	0,000 * ± 0,000*	5	-	-	-	-	_		
Flunder	8,91 ± 3,55	2,209 ± 0,927	100	10	2,60 ± 1,83	0,501 ± 0,387	90	-		
Gefleckter Großer Sandaal	0,07 ± 0,21	0,001 ± 0,004	10	_	0,17 ± 0,48	0,003 ± 0,009	15	_		
Glasgrundel	0,43 ± 0,92	0,000 * ± 0,001	35	70	-	1	-	10		
Glattbutt	0,23 ± 0,45	0,066 ± 0,164	25	10	-	-	-	_		
Goldmaid	_	-	-	10	ı	ı	-	_		
Grasnadel	_	-	-	10	-	-	-	-		
Hering	X	X	40	-	X	X	100	-		
Holzmakrele	X	X	20	-	1	1	-	_		
Kliesche	73,07 ± 35,16	7,184 ± 3,481	100	30	70,45 ± 53,02	6,424 ± 5,133	100	10		
Sandgrundel	0,03 ± 0,15	0,000 * ± 0,000*	5	100	0,17 ± 0,37	0,000 * ± 0,000*	20	100		
Schellfisch	0,03 ± 0,15	0,001 ± 0,007	5	-	-	-	-	-		
Scholle	163,69 ± 43,10	22,593 ± 6,972	100	100	341,11 ± 109,02	24,773 ± 9,805	100	100		
Schwarzgrundel	_	-	-	10	-	-	-	-		
Seehase	0,03 ± 0,15	0,016 ± 0,070	5	-	-	-	-	_		
Seeskorpion	1,60 ± 0,96	0,176 ± 0,122	90	90	4,11 ± 2,87	0,358 ± 0,279	95	80		
Seezunge	0,07 ± 0,20	0,013 ± 0,046	10	-	ı		-	-		
Spitzschwanz- Schlangen- stachelrücken	-	-	-	10	-	-	-	-		

		Herbst 2023		Frühjahr 2024				
dt. Artname	mittlere	mittlere	Präsenz [%]		mittlere	mittlere	Präsenz [%]	
	Abundanz¹ [Ind./ha]	Biomasse ¹ [kg/ha]	WPT	2-m- BK	Abundanz¹ [Ind./ha]	Biomasse ¹ [kg/ha]	WPT	2-m- BK
Sprotte	X	X	65	-	X	X	100	-
Steinbutt	7,12 ± 2,13	3,179 ± 1,189	100	10	3,07 ± 1,94	1,240 ± 0,781	95	40
Steinpicker	0,10 ± 0,25	0,003 ± 0,007	15	20	0,20 ± 0,38	0,003 ± 0,007	25	40
Wittling	2,14 ± 1,96	0,090 ± 0,075	85	1	0,23 ± 0,33	0,017 ± 0,029	35	-

Die mittlere Abundanz und die mittlere Biomasse der jeweiligen Arten wurde nur für die WPT-Fänge berechnet, da bei der Beprobung mit der 2-m-Baumkurre die Fische lediglich semi-quantitativ erfasst werden (siehe Kap. 3.2). Die pelagischen Arten wurden ebenfalls aus den Berechnungen herausgenommen. Mit dem eingesetzten Grundschleppnetz (WPT) kann die Abundanz und Biomasse von pelagischen Arten nicht repräsentativ erfasst werden (siehe Kap. 3.4). Die Scholle wies während beider Kampagnen von allen erfassten Arten die deutlich höchste mittlere Abundanz auf, wobei die Abundanz im Frühjahr 2024 mit 341,11 \pm 109,02 Ind./ha mehr als doppelt so hoch war wie im Herbst 2023 mit 163,69 \pm 43,10 Ind./ha (Tab. 8). Die Kliesche war während beider Untersuchungen die zweithäufigste Art, gefolgt von Dorsch (mittlere Abundanzen von 19,15 \pm 9,28 Ind./ha - 73,07 \pm 35,16 Ind./ha). Neben den Arten Scholle, Kliesche und Dorsch zählten während der zwei Kampagnen Flunder und Steinbutt zu den abundanzstärksten Arten (mittlere Abundanzen von 3,07 \pm 1,94 Ind./ha - 8,91 \pm 3,55 Ind./ha).


Die Biomasse der Fänge wurde durch die großwüchsigen Arten Scholle und Kliesche bestimmt, wobei im Herbst 2023 sowie im Frühjahr 2024 die Scholle mit $22,593 \pm 6,972$ kg/ha bzw. $24,773 \pm 9,805$ kg/ha höhere mittleren Biomassen aufwies als die Kliesche (mittlere Biomassen von $7,184 \pm 3,481$ kg/ha bzw. $6,424 \pm 5,133$ kg/ha). Im Vergleich zu Scholle und Kliesche war die mittlere Biomasse der übrigen erfassten demersalen Fischarten sehr gering, wobei Dorsch, Flunder und Steinbutt noch die höchsten mittleren Biomassenwerte aufwiesen (Tab. 8).

4.1.4 Dominanzverhältnisse

Die Dominanzverhältnisse der demersalen Fischarten in den WPT-Fängen wurden auf Grundlage ihrer Abundanz- und Biomasseanteile ermittelt. Dabei wurden alle Arten die nicht während der jeweiligen Kampagne an der Gesamtabundanz und Gesamtbiomasse Anteile von > 3 % aufwiesen unter der Bezeichnung "Sonstige" zusammengefasst. Nur fünf der 29 während der Kampagnen im Herbst 2023 und Frühjahr 2024 mit dem WPT nachgewiesenen demersalen Fischarten hatten während der jeweiligen Kampagne einen Anteil an der Gesamtabundanz und Gesamtbiomasse von > 3 % (Abb. 4). Es handelte sich hierbei um die Arten Dorsch, Flunder, Kliesche, Scholle und Steinbutt (Abb. 4). Diese fünf Arten, die im OWP "Gennaker" zusammen mehr als 90 % der Gesamtabundanz der Fänge stellten, waren daher die Charakterarten im Vorhabengebiet.

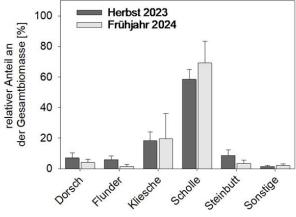


Abb. 4: Mittlerer relativer Anteil [%] (± Standardabweichung) der dominanten demersalen Fischarten an der Gesamtabundanz und -biomasse der WPT-Fänge im OWP "Gennaker" im Herbst 2023 und Frühjahr 2024.

Die Scholle dominierte die Gesamtabundanz der Herbst- und Frühjahrsfänge deutlich (Abb. 4), wobei ihr mittlerer Anteil im Frühjahr mit 75,1 \pm 13,3 % höher war als im Herbst mit 52,8 \pm 6,2 %. Während beider Kampagnen wies die Kliesche die zweithöchsten mittleren Anteile auf (23,3 \pm 8,1 % bzw. 17,1 \pm 14,5 %), gefolgt von Dorsch (16,2 \pm 6,9 % bzw. 4,3 \pm 2,2 %).

Wie die Gesamtabundanz wurde auch die Gesamtbiomasse im Herbst sowie im Frühjahr durch die Scholle dominiert (Abb. 4). Dabei war ihr mittlerer Anteil ebenfalls im Frühjahr (69,1 \pm 14,3 %) höher als im Herbst (58,4 \pm 6,5 %). Den zweithöchsten mittleren Anteil hatte erneut die Kliesche während beider Kampagnen (18,3 \pm 5,7 % bzw. 19,7 \pm 16,4 %). In den Herbstfängen wiesen nach der Scholle und Kliesche der Steinbutt und in den Frühjahrsfängen der Dorsch die höchsten mittleren Anteile auf von 8,7 \pm 3,6 % bzw. 4,1 \pm 2,0 % (Abb. 4).

4.1.5 Kenngrößen

Die ermittelten Werte (Mediane) von sieben der insgesamt elf betrachteten Kenngrößen unterschieden sich zwischen beiden Befischungskampagnen signifikant (Tab. 9). Dabei waren Diversität und Evenness sowie die Abundanz von Flunder, Kliesche und Steinbutt im Herbst 2023 signifikant höher (Mann-Whitney-U-Test, p < 0,05). Die Gesamtabundanz und die Abundanz der Scholle waren dagegen während der Frühjahrskampagne signifikant höher (Tab. 9). Bei den übrigen vier Kenngrößen waren die Unterschiede zwischen beiden Kampagnen geringer und nicht signifikant (Mann-Whitney-U-Test, p > 0,05), wobei mit Ausnahme des Wirbellosen-Beifangs bei den anderen drei Kenngrößen die jeweiligen Werte im Herbst höher waren als im Frühjahr (Tab. 9).

Tab. 9: Vergleich der Kenngrößen der im OWP "Gennaker" im Herbst 2023 und Frühjahr 2024 mit dem WPT durchgeführten Fänge.

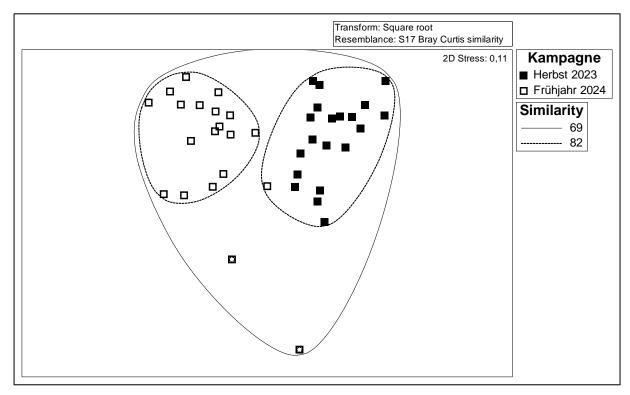
Mittelwert ± Standardabweichung, in Klammern Median; signifikante Unterschiede fett hervorgehoben (Mann-Whitney-U-Test, p < 0,05)

Vonnarë () o	Herbst 2023	Erübiahı 2024	Statist. Vergleich		
Kenngröße	nerbst 2023	Frühjahr 2024	U-Wert	p-Wert	
Artenzahl [n/Hol]	10,3 ± 1,9 (10,0)	9,7 ± 1,3 (10,0)	142,000	0,818	
Gesamtabundanz [Ind./ha]	308,1 ± 68,3 (306,5)	446,1 ± 104,1 (441,6)	49,000	0,001	
Gesamtbiomasse [kg/ha]	38,3 ± 10,3 (37,9)	35,1 ± 9,0 (32,9)	142,000	0,818	
Diversität (H')	1,248 ± 0,106 (1,237)	0,745 ± 0,172 (0,721)	28,000	<0,001	
Evenness (J')	0,578 ± 0,054 (0,582)	0,369 ± 0,085 (0,358)	23,000	<0,001	
Wirbellosen-Beifang [kg/ha]	2,3 ± 2,0 (1,5)	2,5 ± 1,9 (2,6)	94,000	0,083	
Dorsch [Ind./ha]	48,1 ± 19,8 (44,4)	19,2 ± 9,3 (20,6)	89,000	0,058	
Flunder [Ind./ha]	8,9 ± 3,5 (8,3)	2,6 ± 1,8 (2,7)	63,000	0,005	
Kliesche [Ind./ha]	73,1 ± 35,2 (56,4)	70,5 ± 53,0 (55,0)	63,000	0,005	
Scholle [Ind./ha]	163,7 ± 43,1 (166,8)	341,1 ± 109,0 (335,8)	31,000	<0,001	
Steinbutt [Ind./ha]	7,1 ± 2,1 (6,7)	3,1 ± 1,9 (2,7)	59,000	0,004	

Im Untersuchungszeitraum setzte sich der Wirbellosen-Beifang der WPT-Fänge aus sieben Arten zusammen (Tab. 10). Dabei waren die Gemeine Miesmuschel und der Gemeine Seestern am häufigsten in den Fängen beider Kampagnen.

Tab. 10: Präsenzen [%] der im OWP "Gennaker" in den WPT-Fängen nachgewiesenen Benthosarten während der Kampagnen im Herbst 2023 und Frühjahr 2024.

ioo Autuouso	alt Autonomo	Präse	Präsenz [%]				
wiss. Artname	dt. Artname	Herbst 2023	Frühjahr 2024				
Mytilus edulis agg.	Gemeine Miesmuschel agg.	100	90				
Asterias rubens	Gemeiner Seestern	75	75				
Carcinus maenas	Strandkrabbe	40	20				
Crangon crangon	Nordseegarnele	10	30				
Mya arenaria	Sandklaffmuschel	15	5				
Cerastoderma edule	Gemeine Herzmuschel	5	5				
Polynoidae*	Schuppenwurm	-	5				


4.1.6 Gemeinschaftsanalyse

Während der Kampagnen im Herbst 2023, wie auch im Frühjahr 2024 hatte die Mehrzahl der Hols untereinander eine Ähnlichkeit von 82 % (Abb. 5). Die insgesamt 40 während beider Kampagnen durchgeführten Fischereihols wiesen mit einer Ähnlichkeit (Similarität) von 69 % eine relativ hohe Ähnlichkeit in ihrer Fangzusammensetzung auf (Abb. 5).

Die ANOSIM ergab allerdings eine starke Trennung zwischen den zwei Kampagnen (R-Wert von 0,732, p = 0,001, Definition R-Wert siehe Tab. 3). Die festgestellten Unterschiede zwischen beiden Kampagnen wurden nach SIMPER zum Großteil durch die unterschiedlichen Abundanzen der Arten Scholle, Kliesche, Dorsch, Flunder und Wittling bedingt, wobei mit Ausnahme der Scholle alle Arten während der Herbstkampagne höhere mittlere Abundanzen aufwiesen (Tab. 11).

Ohne pelagische Arten

- Abb. 5: nMDS-Plot basierend auf der ermittelten quadratwurzeltransformierten Abundanz [Ind./ha] der nachgewiesenen Fischarten in den im OWP "Gennaker" im Herbst 2023 und Frühjahr 2024 durchgeführten Hols.
- Tab. 11: Ergebnisse der SIMPER basierend auf den quadratwurzeltransformierten Abundanzdaten der im OWP "Gennaker" nachgewiesenen Arten zur Bestimmung der Arten, die hauptsächlich zu den jahreszeitlich bedingten Unterschieden während des 4. Jahres der Basisaufnahme beigetragen haben.

fett hervorgehoben die fünf Arten mit dem höchsten Anteil an den Unterschieden; Stabw: Standardabweichung nachgewiesene Fischarten ohne pelagische Arten

BasisU 4Uj (mitt. Diss.=24,09%)		Abundanz formiert)	mittlere	Stabw	Anteil %	
Art	Herbst 2023	Frühjahr 2024	Dissimilarität	Dissimilarität	Ailleii 70	
Scholle	12,68	18,20	7,69	1,97	31,93	
Kliesche	8,33	7,87	3,76	1,40	15,61	
Dorsch	6,80	4,14	3,60	1,34	14,95	
Flunder	2,93	1,47	1,95	1,72	8,11	
Wittling	1,26	0,29	1,39	1,44	5,77	
Steinbutt	2,64	1,64	1,38	1,53	5,73	
Seeskorpion	1,17	1,90	1,16	1,26	4,83	
Aalmutter	1,43	2,07	1,12	1,19	4,65	

4.2 Vergleich der Ergebnisse 1.-4. Jahr der Basisaufnahme (2012-2024)

In diesem Abschnitt werden die Ergebnisse der Untersuchung während des 4. Jahres der Frühjahr 2024) mit Basisaufnahme (Herbst 2023 und denen des 1. Jahres (Herbst 2013 / Frühjahr 2014) (Herbst 2012 / Frühjahr 2013), 2. Jahres und 3. Jahres (Frühjahr 2015 / Herbst 2015) der Basisaufnahme verglichen. Aufgrund der in Kap. 2 erwähnten Gebietsveränderungen liegen nicht alle in den verschiedenen Untersuchungskampagnen durchgeführten Hols in der final festgelegten Vorhabenfläche für das gegenständliche Genehmigungsverfahren. Für den Vergleich wurden deshalb nur die Daten derjenigen Stationen aus dem 1. und 2. Jahr der Basisaufnahme verwendet, die in den aktuellen Gebietsgrenzen des geplanten OWP "Gennaker" bzw. in der Nähe zu diesen lagen. Im Gegensatz dazu konnten die Daten aller Stationen des dritten Untersuchungsjahres verwendet werden, da diese von vorherein im Bereich der aktuellen Vorhabenfläche lagen.

4.2.1 Gesamtartenspektrum

Während der letzten beiden Jahre der Basisaufnahme wurden, anders als im 1. und 2. Jahr der Basisaufnahme, für die Auswertung des Artenspektrums zusätzlich Fischdaten aus den 2-m-Baumkurrefängen hinzugezogen (Tab. 12). Im betrachteten Untersuchungszeitraum 2012-2024 wurden insgesamt 38 Fischarten (31 demersale und sieben pelagische Arten) nachgewiesen (Tab. 12). Während des aktuellen 4. Jahres der Basisaufnahme wurden mit 29 Arten die meisten Fischarten nachgewiesen (Tab. 12). Die wenigsten Arten wurden im 1. Jahr der Basisaufnahme erfasst (insg. 20 Arten). Von den 38 Arten kamen elf (28,9 %) während aller Untersuchungen vor. Dabei handelte es sich um die Arten Aalmutter, Dorsch, Flunder, Hering, Kliesche, Sandgrundel, Scholle, Seeskorpion, Sprotte, Steinbutt und Wittling. Diese Arten waren im betrachteten Untersuchungszeitraum die typischen Vertreter der Fischfauna im Bereich des Vorhabengebietes.

Die meisten (n = 31) der nachgewiesenen Fischarten haben eine demersale Lebensweise (Tab. 12). Die Arten Atlantische Makrele, Europäische Sardelle, Finte, Hering, Holzmakrele, Sprotte und Stint weisen dagegen eine pelagische Lebensweise auf.

Tab. 12: Liste der in den Jahren 2012-2024 im OWP "Gennaker" mit dem WPT und der 2-m-Baumkurre nachgewiesenen Fischarten mit ihrer Rote-Liste-Kategorie nach THIEL et al. (2013) (Region Ostsee) und ihrer Lebensweise.

LW: Lebensweise; p: pelagisch; d: demersal; RL: Rote-Liste-Kategorie; BasisU: Basisuntersuchung; H: Herbst; F: Frühjahr; ¹: ohne Daten 2-m-Baumkurre; ²: mit Daten 2-m-Baumkurre; X: Art ausschließlich mit WPT gefangen;

♦: Art ausschließlich mit 2-m-Baumkurre gefangen; X♦: Art mit WPT und 2-m-Baumkurre gefangen

dt. Artname	LW	RL	BasisU 1Uj ¹		BasisU 2Uj ¹		Basis 3Uj ²		Basis 4Uj ²	
dt. Arthame	LVV	KL	H12	F13	H13	F14	F15	H15	H23	F24
Aalmutter	d	V	Х	Х	Х	Х	Х	Х	X◆	X♦
Atlantische Makrele	р	*							Х	
Butterfisch	d	*							+	+
Doggerscharbe	d	D			Χ					
Dorsch	d	*	Х	Χ	Х	Χ	Χ	Х	X◆	X♦
Dreistachliger Stichling	d	*						+	Х	
Europäische Sardelle	р	*						Χ	Х	
Finte	р	3							Х	

alt. A stura sur a	LW	RL	Basis	U 1Uj¹	Basis	U 2Uj¹	Basis 3Uj ²		Basis 4Uj ²	
dt. Artname	LVV	KL	H12	F13	H13	F14	F15	H15	H23	F24
Fleckengrundel	d	D							Х	
Flunder	d	*	Х	Х	Х	Χ	Χ	Х	X♦	Χ
Gefleckter Großer Sandaal	d	D		Χ	Χ	Χ	Χ	Χ	Χ	Х
Glasgrundel	d	D			Х			Х	X♦	*
Glattbutt	d	*	Х	Χ	Х		Χ	Х	X♦	
Goldmaid	d	D							•	
Grasnadel	d	*						•	•	
Großer Scheibenbauch	d	*	Χ		Χ			Χ		
Hering	р	*	Х	Х	Х	Χ	Χ	Х	Х	Χ
Holzmakrele	р	*	Χ		Χ			Χ	Χ	
Kliesche	d	*	Х	Х	Х	Χ	Χ	Х	X♦	X♦
Petermännchen	d	*					Χ			
Sandgrundel	d	*	Χ	Х	Χ	Χ	Χ	Χ	X♦	X♦
Schellfisch	d	*							Х	
Scholle	d	*	Х	Х	Х	Χ	Χ	Х	X♦	X♦
Schwarzgrundel	d	*							•	
Schwarzmundgrundel	d	-	Χ		Χ	Χ		Χ		
Schwimmgrundel	d	*	Х							
Seehase	d	*	Х	Χ	Х	Χ	Χ	Х	Х	
Seehecht	d	-			Х		Χ			
Seeskorpion	d	D	Х	Χ	Х	Χ	Χ	Х	X♦	X♦
Seestichling	d	D	Х	Х	Х			Х		
Seezunge	d	*			Χ		Χ		Χ	
Spitzschwanz-Schlangenstachelrücken	d	1							•	
Sprotte	р	*	Х	Х	Х	Χ	Χ	Х	Х	Х
Steinbutt	d	*	Х	Х	Х	Χ	Χ	Х	X♦	X♦
Steinpicker	d	*			Х	Χ	Χ	Х	X♦	X♦
Stint	р	*	Х	Х						
Tobiasfisch	d	D					Х			
Wittling	d	*	Х	Х	Χ	Χ	Х	Χ	Χ	Х
Artonnohl /C	O Final		19	16	23	15	19	23	29	15
Artenzahl (Gesamt 3	o Fiscr	iarten)	2	0	2	3	2	7	2	9

Rote-Liste-Kategorie: 0: ausgestorben, 1: vom Aussterben bedroht, 2: stark gefährdet, 3: gefährdet, G: Gefährdung unbekannten Ausmaßes, R: extrem selten, V: Vorwarnliste; D: Daten unzureichend, *: ungefährdet, -: nicht bewertet.

Mit dem Spitzschwanz-Schlangenstachelrücken und der Finte wurden zwei Rote-Liste-Arten der Gefährdungskategorien 1 bzw. 3 (vom Aussterben bedroht bzw. gefährdet, THIEL et al. 2013) nachgewiesen. Weiterhin wurde mit der Aalmutter eine Art registriert, die auf der Vorwarnliste steht (Kategorie V, THIEL et al. 2013). Bei acht Arten (Doggerscharbe, Fleckengrundel, Gefleckter Großer Sandaal, Glasgrundel, Goldmaid, Seeskorpion, Seestichling und Tobiasfisch) ist die Datengrundlage für eine Gefährdungseinschätzung unzureichend (Kategorie D, THIEL et al. 2013). Mit der Schwarzmundgrundel wurde eine gebietsfremde, invasive Art erfasst. Der Seehecht gilt in der deutschen Ostsee als nicht etabliert (THIEL et al. 2013). Alle anderen nachgewiesenen Arten werden als ungefährdet eingestuft (THIEL et al. 2013, Tab. 12).

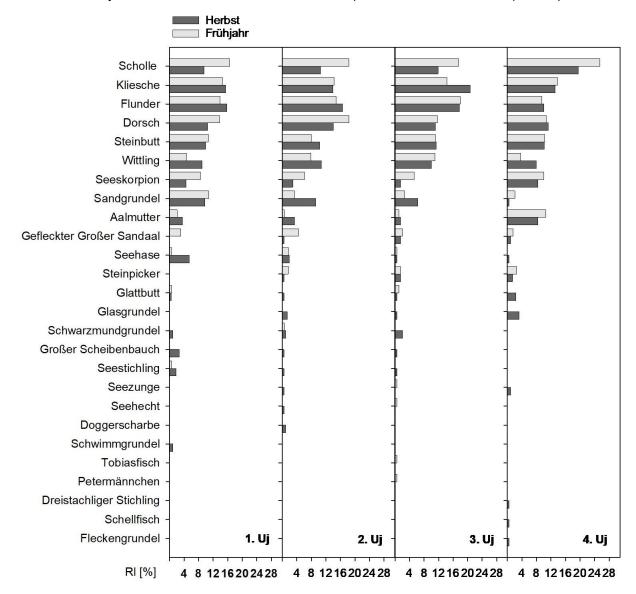
Im Ostseegebiet wurden von insgesamt 89 etablierten Fischarten und Rundmäuler die Gefährdungssituation von THIEL et al. (2013) bewertet, ihr relativer Anteil an den jeweiligen Rote-

Liste-Kategorien sind in Tab. 13 aufgeführt. Demgegenüber gestellt sind die während der Befischungen 2012-2024 im OWP "Gennaker" ermittelten Anteile. Im deutschen Ostseegebiet liegt der Anteil von Arten der Rote-Liste-Kategorie 0-R bei 16,8 %. Während der Untersuchungen des 1.-4. Jahres der Basisaufnahme war der Anteil von Arten der Rote-Liste-Kategorie 0-R mit insgesamt 5,6 % deutlich geringer als im Vergleich zur gesamten deutschen Ostsee. Im Bereich des Vorhabengebietes wurde eine Art der Vorwarnliste erfasst. Im Bereich der deutschen Ostsee liegt der Anteil dieser Arten bei 1,1 %. Der Anteil von ungefährdeten Arten war während der Untersuchungen im OWP "Gennaker" mit 69,4 % etwas höher als im Vergleich zum deutschen Ostseegebiet (Anteil von 61,8 %). Auch der Anteil von Arten der Kategorie D war im Vorhabengebiet mit 22,2 % höher als im Gesamtbereich der deutschen Ostsee (Anteil von 20,2 %, Tab. 13). Das unterstreicht die Bedeutung von räumlich und zeitlich kleinskaligen Untersuchungen wie die im Bereich des Vorhabengebiet, um Wissenslücken bei diesen Arten zu schließen. Diese Daten helfen zukünftig den Gefährdungsstatus der jeweiligen Arten besser bewerten zu können.

Tab. 13: Absolute Anzahl und relativer Anteil der Rote-Liste-Kategorien im OWP "Gennaker" während des 1.-4. Jahres der Basisaufnahme und in der deutschen Ostsee.

** ohno dio in dar Octoon	night atabliartan Artai	r (Schwarzmundarundal u	nd Seehecht, Thiri et al. 2013)
. Unite de in del Osisee	TIICH EIGUNEHEN AHEI	i iscrivarzinanaananaera	NU SECHEUN. TAKI ELALZUTSI

Rote-Liste-Kategorie	_	Region Ostsee (THIEL et al. 2013)		OWP "Gennaker" (2012-2024)	
	absolute Anzahl	relativer Anteil [%]	absolute Anzahl	relativer Anteil [%]	
0: Ausgestorben oder verschollen	1	1,1	0	0,0	
1: Vom Austerben bedroht	2	2,2	1	2,8	
2: Stark gefährdet	1	1,1	0	0,0	
3: Gefährdet	3	3,4	1	2,8	
G: Gefährdung unbekannten Ausmaßes	1	1,1	0	0,0	
R: Extrem selten	7	7,9	0	0,0	
V: Vorwarnliste	1	1,1	1	2,8	
*: Ungefährdet	55	61,8	25	69,4	
D: Daten unzureichend	18	20,2	8	22,2	
Summe Artenzahl	3	89		36**	


4.2.2 Relativer Bedeutungsindex

Während der Untersuchungen 2012-2024 wurden mit dem WPT insgesamt 26 demersale Fischarten erfasst (siehe Tab. 12). Die fünf im Untersuchungszeitraum nur mit der 2-m-Baumkurre erfassten demersalen Arten konnte der Relative Bedeutungsindex (RI-Index) nicht berechnet werden (siehe Kap. 3.4). Auch die sieben pelagischen Arten wurden für die Berechnung des RI-Index nicht berücksichtigt (siehe Kap. 3.4). Von den 26 mit dem WPT erfassten demersalen Fischarten wiesen Scholle, Kliesche, Flunder, Dorsch, Steinbutt und Wittling während des gesamten Untersuchungszeitraums hohe RI-Indizes auf (Abb. 6). Der RI-Index nach GEORGE & HADLEY (1979) wertet die ermittelten Abundanz-, Biomasse- und Präsenzwerte der Fischarten in den Hols gleichwertig (siehe Kap. 3.4). Dadurch werden Arten, die nur bei einer der drei Kenngrößen hohe Werte aufweisen, geringer gewichtet. Umgekehrt steigt die Bedeutung von Arten mit hohen Werten bei allen drei Kenngrößen. Weiterhin zählte die

Sandgrundel während des 1. und 2. Jahres der Basisaufnahme zu den bedeutendsten Arten in den Fängen. Während des 3. und 4. Jahres der Basisaufnahme nahmen die RI-Indizes dagegen etwas ab (Abb. 6). Zudem wiesen Aalmutter und Seeskorpion in einigen der Untersuchungen 2012-2024 relativ hohe RI-Indizes auf. Alle übrigen erfassten demersalen Arten hatten demgegenüber geringe RI-Indizes oder wiesen nur während einer Kampagne (Herbst 2012: Seehase; Frühjahr 2014: Gefleckter Großer Sandaal) relativ hohe Werte auf (Abb. 6).

RI: Relative Importance Index (Relativer Bedeutungsindex); 1. Uj: Herbst 2012 / Frühjahr 2013; 2. Uj: Herbst 2013 / Frühjahr 2014; 3. Uj: Frühjahr 2015 / Herbst 2015; 4. Uj: Herbst 2023 / Frühjahr 2024

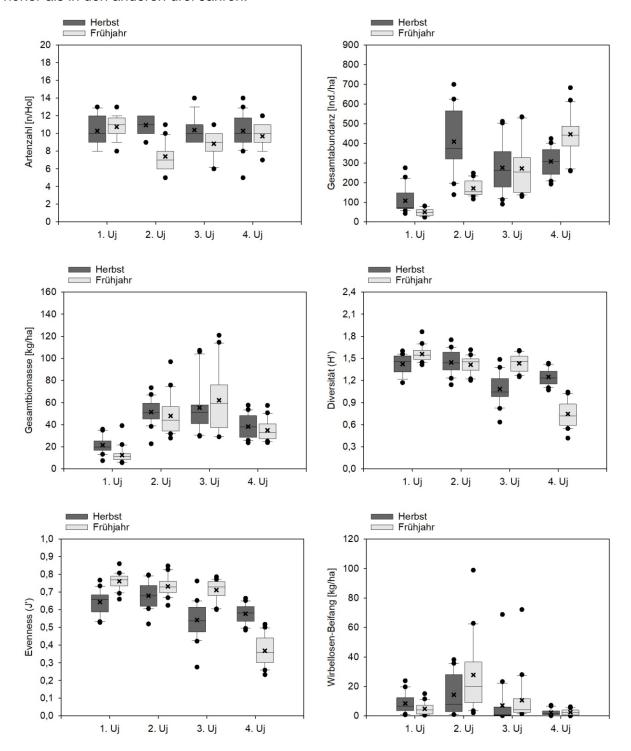
Abb. 6: Relativer Bedeutungsindex [%] der im OWP "Gennaker" während der vier Untersuchungsjahre der Basisaufnahme (2012-2024) mit dem WPT nachgewiesenen demersalen Fischarten.

4.2.3 Kenngrößen

Die genauen Werte der einzelnen Kenngrößen während der vier Untersuchungsjahre der Basisaufnahmen können, getrennt nach Herbst und Frühjahr im Anhang in den Tab. 25 bis Tab. 37 entnommen werden.

Die meisten Kenngrößen wiesen zwischen den Herbst- und Frühjahrskampagnen innerhalb der jeweiligen vier Untersuchungsjahre der Basisaufnahme signifikante Unterschiede auf (Mann-Whitney-U-Test, p < 0,05, siehe Anhang Tab. 38). So war die Gesamtabundanz der Fänge in den ersten drei Untersuchungsjahren jeweils im Herbst höher (Abb. 7), wobei signifikante Unterschiede zwischen beiden Jahreszeiten nur im 1. und 2. Jahr ermittelt wurden (Tab. 38). Im vierten Untersuchungsjahr war dagegen die Gesamtabundanz im Frühjahr signifikant höher. Im Gegensatz dazu war bei den Kenngrößen Diversität, Evenness und Wirbellosen-Beifang keine deutliche Tendenz zwischen Herbst und Frühjahr des jeweiligen Jahres der Basisaufnahme zu erkennen (Abb. 7). So waren die ermittelten Werte der drei Kenngrößen abwechselnd im Herbst oder im Frühjahr höher (Tab. 38). Die Gesamtbiomasse und die Artenzahl waren die einzigen Kenngrößen, welche nur in einem Untersuchungsjahr signifikante Unterschiede zwischen beiden Jahreszeiten aufwiesen (Mann-Whitney-U-Test, p < 0,05, Tab. 38). Dabei war die Gesamtbiomasse im 1. Jahr und die Artenzahl im 2. Jahr jeweils im Herbst signifikant höher. In den anderen drei Untersuchungsjahren (Gesamtbiomasse im 2., 3. und 4. Jahr sowie Artenzahl im 1., 3. und 4. Jahr) waren die Unterschiede zwischen den Jahreszeiten bei beiden Kenngrößen gering und nicht signifikant.

Um den interannuellen Einfluss auf die Kenngrößen zu untersuchen, wurde ein Kruskal-Wallis-Test durchgeführt (siehe Kap. 3.5.1). Aufgrund der teils deutlichen Unterschiede zwischen den beiden Jahreszeiten innerhalb des jeweiligen Untersuchungsjahres (siehe oben) wurde der Test separat für die vier Herbst- und vier Frühjahrskampagnen durchgeführt (siehe Anhang Tab. 39). Bei allen Kenngrößen (Ausnahme Artenzahl, Vergleich Herbstkampagnen) war der Einfluss des Untersuchungsjahres signifikant (Tab. 39). Als Post-hoc-Test wurde der Dunn-Bonferroni-Test (p < 0,05) verwendet. Für die Artenzahl wurde aufgrund der geringen Unterschiede zwischen den vier Herbstkampagnen (10,3 \pm 1,7 - 11,0 \pm 1,0 Arten pro Hol), kein Post-hoc-Test durchgeführt (Abb. 7 und siehe Anhang Tab. 40)

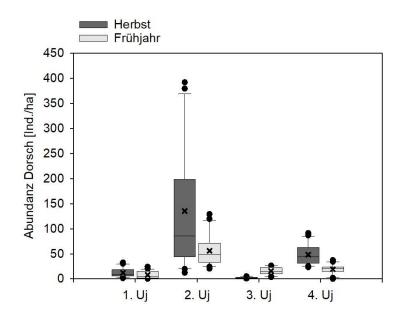

Im Vergleich der vier Herbstkampagnen waren Gesamtabundanz und Gesamtbiomasse im 1. Jahr (Herbst 2012) signifikant am geringsten (Post-hoc-Test, Dunn-Bonferroni, p < 0,05, siehe Anhang Tab. 40). In den drei darauffolgenden Untersuchungsjahren nahmen die Gesamtabundanz wie auch die Gesamtbiomasse in den Fängen zu (Abb. 7), allerdings waren die Unterschiede zwischen diesen Jahren nicht signifikant (Tab. 40). Bei den anderen drei Kenngrößen (Diversität, Evenness und Wirbellosen-Beifang) waren die Werte hingegen in den Fängen des 1. und 2 Untersuchungsjahres signifikant höher (Tab. 40). Im 3. und 4. Untersuchungsjahr gingen die Werte dieser drei Kenngrößen deutlich zurück (Abb. 7).

Beim Vergleich der Frühjahrskampagnen zeigten sich bei allen sechs Kenngrößen deutliche Unterschiede zwischen den ermittelten Werten eines Untersuchungsjahres und denen der anderen Jahre (Abb. 7). So waren die Gesamtabundanz und die Gesamtbiomasse im 1., die Artenzahl im 2. und die Diversität sowie Evenness im 4. Jahr der Basisaufnahme signifikant

geringer als in den Frühjahrskampagnen der anderen Jahre (siehe Anhang Tab. 40). Die Wirbellosen-Biomassen war in den Fängen im Frühjahr des 2. Untersuchungsjahres signifikant höher als in den anderen drei Jahren.

- 1. Uj: Herbst 2012 / Frühjahr 2013; 2. Uj: Herbst 2013 / Frühjahr 2014;3. Uj: Frühjahr 2015 / Herbst 2015;
- 4. Uj: Herbst 2023 / Frühjahr 2024

Abb. 7: Box-Whisker-Plots der Kenngrößen der Hols im OWP "Gennaker" während der vier Untersuchungsjahre der Basisaufnahme (2012-2024).


4.2.4 Abundanz und Längenhäufigkeitsverteilung der dominanten Arten

In diesem Kapitel werden die Abundanz und die Längenhäufigkeitsverteilung der dominanten Fischarten der vier Untersuchungsjahre der Basisaufnahme dargestellt. Der Dorsch und die drei Plattfischarten Flunder, Kliesche und Scholle zählten während aller vier Untersuchungsjahre zu den Charakterarten. Die Sandgrundel war während des 1. und 2. Untersuchungsjahr eine der dominantesten Arten in den Fängen. Neben diesen Arten waren im 3. und 4. Untersuchungsjahr der Steinbutt und der Wittling (nur im 3. Jahr) Charakterarten im Vorhabengebiet des OWP "Gennaker".

Im Folgenden werden die einzelnen Altersgruppen im Text mit römischen Ziffern gekennzeichnet. Fische, die ihr erstes Lebensjahr noch nicht beendet haben, werden als Altersgruppe 0 bezeichnet. Bei allen sieben dominanten Arten ergab die Varianzanalyse (Kruskal-Wallis-Test) bei den vier Herbst- bzw. bei den vier Frühjahrskampagnen einen signifikanten Einfluss des Untersuchungsjahres (siehe Anhang Tab. 39). Als Post-hoc-Test wurde der Dunn-Bonferroni-Test (p < 0.05) verwendet

4.2.4.1 Dorsch

Nur im 3. Untersuchungsjahr war die Abundanz des Dorsches zwischen Herbst und Frühjahr signifikant unterschiedlich (Mann-Whitney-U-Test, p < 0,05, siehe Anhang Tab. 38), wobei der Dorsch während des 4. Basisjahres im Frühjahr abundanter war. In den anderen drei Untersuchungsjahren dagegen war der Dorsch in den Herbstfängen häufiger, allerdings waren in diesen Jahren die Unterschiede zwischen Herbst und Frühjahr nicht signifikant (Tab. 38).

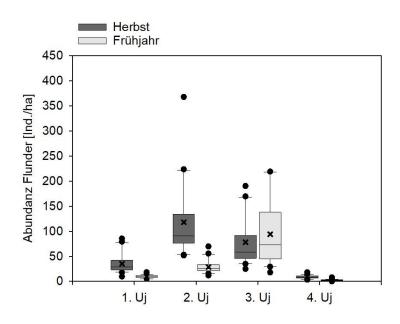
- 1. Uj: Herbst 2012 / Frühjahr 2013; 2. Uj: Herbst 2013 / Frühjahr 2014;
- 3. Uj: Frühjahr 2015 / Herbst 2015; 4. Uj: Herbst 2023 / Frühjahr 2024

Abb. 8: Box-Whisker-Plots der Abundanz des Dorsches in den Fängen im OWP "Gennaker" während der durchgeführten Befischungskampagnen der vier Untersuchungsjahre der Basisaufnahme.

(Kruskal-Wallis-Test) Vergleich Die Varianzanalyse ergab der Herbstund im Frühjahrskampagnen einen signifikanten Einfluss des Untersuchungsjahres auf die Abundanz Dorsches (siehe Anhang Tab. 39). Dabei war der Dorsch im Herbst 2013 (2. Untersuchungsjahr) deutlich abundanter als in den anderen drei Herbstkampagnen (Post-hoc-Test, Dunn-Bonferroni, p < 0,05, siehe Anhang Tab. 41 und Abb. 8). Signifikant war der Unterschied zu den Kampagnen Herbst 2012 und Herbst 2015 (1. und 3. Untersuchungsjahr, Tab. 41). Weiterhin wurde der Dorsch im Herbst 2023 (4. Untersuchungsjahr) signifikant häufiger gefangen als im Herbst 2013 und Herbst 2015. Auch im Vergleich der Frühjahrskampagnen hatte der Dorsch in den Fängen im Frühjahr 2014 (2. Untersuchungsjahr) eine signifikant höhere Abundanz (Abb. 8 und Tab. 41). Die Unterschiede zwischen den anderen Frühjahrskampagnen waren deutlich geringer (Abb. 8), wobei der Dorsch im Frühjahr 2024 (4. Untersuchungsjahr) häufiger war als im Frühjahr 2013 (1. Untersuchungsjahr) und Frühjahr 2015 (3. Untersuchungsjahr) (Abb. 8).

Die vermessenen Dorsche hatten im betrachteten Untersuchungszeitraum Längen zwischen 4-78 cm (Abb. 9). In allen vier Untersuchungsjahren waren während der Herbstkampagnen Dorsche mit Längen von 11-17 cm (Altersgruppe 0, BERNER & BORRMANN 1977) am häufigsten (Anteile zwischen 26-87 %). Im Herbst 2015 (3. Jahr) waren neben den juvenilen Dorschen der Altersgruppe 0 auch Dorsche mit Längen von 64-70 cm zahlreich in den Fängen (Anteil von 23 %). Nach BERNER & BORRMANN (1977) handelte es sich hierbei um adulte Dorsche der Altersgruppen ≥ IV. Zwischen den Frühjahrsfängen waren die Längenunterschiede etwas größer (Abb. 9). So dominierten im Frühjahr 2013 (1. Jahr) Dorsche mit Längen von 6-17 cm (Anteil von 57 %, Altersgruppe 0). In den anderen drei Jahren der Basisaufnahme waren die gefangenen Dorsche im Schnitt etwas größer. Dabei waren im Frühjahr 2014 Dorsche der Längen 20-27 cm, im Frühjahr 2015 Dorsche der Längen 18-25 cm und im Frühjahr 2024 Dorsch der Längen 14-19 cm am häufigsten in den Fängen (Anteile von 49 %, 62 % bzw. 70 %, Altersgruppen 0-I). Ähnlich zu den Herbstkampagnen dominierten somit auch in den Frühjahrskampagnen die juvenilen Dorsche in den Fängen. Mit Ausnahme der Herbstkampagne 2015 waren in allen anderen Herbst- und Frühjahrskampagnen der vier Untersuchungsjahre der Anteil von adulten Dorschen (Altersgruppen ≥ II, Längenbereich > 40 cm,) sehr gering (Anteile von 0-16 %, Abb. 9).

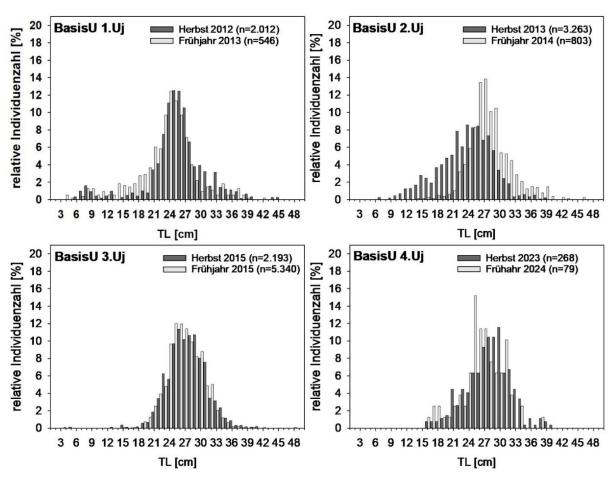
n: Anzahl der Individuen; TL: Total-Länge; BasisU: Basisuntersuchung


Abb. 9: Längenhäufigkeitsverteilung des Dorsches im OWP "Gennaker" während der durchgeführten Befischungskampagnen der vier Untersuchungsjahre der Basisaufnahme.

4.2.4.2 Flunder

Während aller vier Untersuchungsjahre unterschied sich die Abundanz der Flunder zwischen den jeweiligen Herbst- und Frühjahrskampagnen signifikant (Mann-Whitney-U-Test, p < 0,05, siehe Anhang Tab. 38). Dabei wurde die Flunder im 1., 2. und 4. Untersuchungsjahr jeweils im Herbst deutlich häufiger erfasst als im Frühjahr (Tab. 38 und Abb. 10).

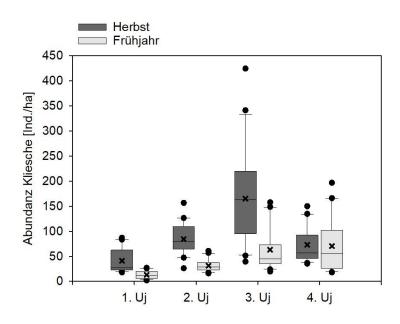
- 1. Uj: Herbst 2012 / Frühjahr 2013; 2. Uj: Herbst 2013 / Frühjahr 2014;
- 3. Uj: Frühjahr 2015 / Herbst 2015; 4. Uj: Herbst 2023 / Frühjahr 2024


Abb. 10: Box-Whisker-Plots der Abundanz der Flunder in den Fängen im OWP "Gennaker" während der durchgeführten Befischungskampagnen der vier Untersuchungsjahre der Basisaufnahme.

Im 3. Jahr der Basisaufnahme dagegen war die Flunder im Frühjahr abundanter als im Herbst. Neben der Jahreszeit beeinflusste auch das Untersuchungsjahr die Abundanz der Flunder signifikant (Kruskal-Wallis-Test, p < 0,05, siehe Anhang Tab. 39). Aufgrund der deutlichen Unterschiede zwischen den beiden Jahreszeiten innerhalb des jeweiligen Untersuchungsjahres (siehe oben) wurde der Test separat für die vier Herbst- und vier Frühjahrskampagnen durchgeführt. Im Vergleich der Herbstkampagnen wurden im 2. Untersuchungsjahr (Herbst 2013) die meisten Flundern erfasst. Signifikant am wenigsten wurden Flundern im 4. Untersuchungsjahr (Herbst 2023) gefangen (Post-hoc-Test, Dunn-Bonferroni, p < 0,05, siehe Anhang Tab. 41). Die Abundanz der Flunder stieg in den Fängen vom Frühjahr 2013 (1. Jahr) zum Frühjahr 2015 (3. Jahr) an (Abb. 10). Im Frühjahr 2024 (4. Jahr) ging die Abundanz der Flunder in den Fängen zurück (Abb. 10). Wie bei den Herbstkampagnen wurden auch im Vergleich der Frühjahrskampagnen im 4. Jahr der Basisaufnahme signifikant weniger Flundern erfasst als in den vorangegangenen Untersuchungsjahren (Tab. 41).

Während der vier Untersuchungskampagnen wurden Flundern mit Längen von 4-48 cm gefangen (Abb. 11), wobei in allen vier Untersuchungsjahren der Anteil von Flundern < 10 cm und > 40 cm sehr gering war (Anteile von 0-4 %). Die Unterschiede zwischen den Herbst und Frühjahrskampagnen waren in allen vier Jahren unerheblich (Abb. 11). In allen vier Untersuchungsjahren waren adulte Flundern der Altersgruppen ≥ II (SAGER & BERNER 1989) mit Längen zwischen 21-31 cm am häufigsten (Anteile von 71-88 %, Abb. 11).

n: Anzahl der Individuen; TL: Total-Länge; BasisU: Basisuntersuchung


Abb. 11: Längenhäufigkeitsverteilung der Flunder im OWP "Gennaker" während der durchgeführten Befischungskampagnen der vier Untersuchungsjahre der Basisaufnahme.

4.2.4.3 Kliesche

Die Kliesche war in allen vier Untersuchungsjahren jeweils im Herbst abundanter als im jeweiligen Frühjahr (Abb. 12). Signifikant waren die Unterschiede zwischen beiden Jahreszeiten allerdings nur während des 2. und 4. Untersuchungsjahres (Mann-Whitney-U-Test, p < 0,05, siehe Anhang Tab. 38). Die Varianzanalyse (Kruskal-Wallis-Test) ergab im Vergleich der Herbst- und Frühjahrskampagnen einen signifikanten Einfluss des Untersuchungsjahres auf die Abundanz der Kliesche (siehe Anhang Tab. 39). Im Vergleich der Herbstkampagnen nahm die Abundanz der Kliesche vom 1. zum 3. Jahr der Basisaufnahme signifikant zu (Post-hoc-Test, Dunn-Bonferroni, p < 0,05, siehe Anhang Tab. 41). Im 4. Untersuchungsjahr ging die Abundanz der Kliesche wieder signifikant zurück (Abb. 12 und Tab. 41). Im Gegensatz zu den Herbstkampagnen stieg im Vergleich der Frühjahrskampagnen die Abundanz der Kliesche vom 1. bis zum 4. Untersuchungsjahr signifikant an (Tab. 41 und Abb. 12).

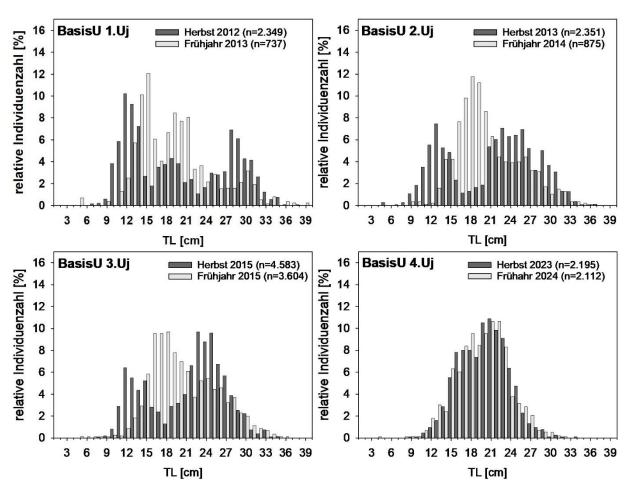
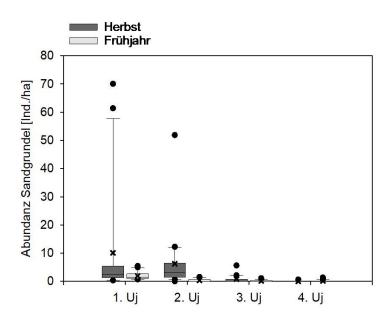

- 1. Uj: Herbst 2012 / Frühjahr 2013; 2. Uj: Herbst 2013 / Frühjahr 2014;
- 3. Uj: Frühjahr 2015 / Herbst 2015; 4. Uj: Herbst 2023 / Frühjahr 2024

Abb. 12: Box-Whisker-Plots der Abundanz der Kliesche in den Fängen im OWP "Gennaker" während der durchgeführten Befischungskampagnen der vier Untersuchungsjahre der Basisaufnahme.

Es wurden im Zeitraum 2012-2024 Klieschen mit Längen von 3-39 cm erfasst (Abb. 13). Im 1. Untersuchungsjahr lag während beider Kampagnen eine dreigipflige Längenverteilung vor. Im Herbst 2012 und Frühjahr 2013 umfassten der erste Gipfel den Längenbereich von 11-16 cm (Altersgruppen I-II, Anteile von 37-38 %, Lozán 1989), der zweite den Längenbereich von 17-21 cm (Altersgruppen II-III, Anteile von 18-35 %) und der dritte den Längenbereich von 27-31 cm (Altersgruppen ≥ IV, Anteile von 10-25 %). Männliche Klieschen erreichen in den Altersgruppen II-III ihre Geschlechtsreife (HEESSEN et al. 2015). Die Weibchen werden im Schnitt in den Altersgruppen III-V geschlechtsreif (HEESSEN et al. 2015). Die meisten der im 1. Untersuchungsjahr gefangenen Klieschen waren demnach adult bzw. befanden sich am Übergang vom juvenilen zum adulten Stadium. Im 2. und 3. Jahr der Basisaufnahme war die Längenverteilung zwischen Herbst und Frühjahr unterschiedlich. Während der beiden Herbstkampagnen (Herbst 2013 und Herbst 2015) war die Längenverteilung zweigipflig. Der erste Gipfel lag im Längenbereich von 12-15 cm (juvenile Kliesche der Altersgruppen I-II, LOZÁN 1989) und der zweite im Längenbereich von 21-27 cm (adulte Klieschen der Altersgruppen ≥ III). Während der beiden Frühjahrskampagnen 2013 und 2015 dominierten Klieschen der Altersgruppen II-III mit Längen von 16-21 cm. Im 4. Untersuchungsjahr war die Längenverteilung wieder während beider Jahreszeiten sehr ähnlich. Am häufigsten wurden im Herbst 2023 und Frühjahr 2024 Klieschen mit Längen von 16-23 cm erfasst (Anteile von 77-78 %, Altersgruppen I-III, LOZÁN 1989)

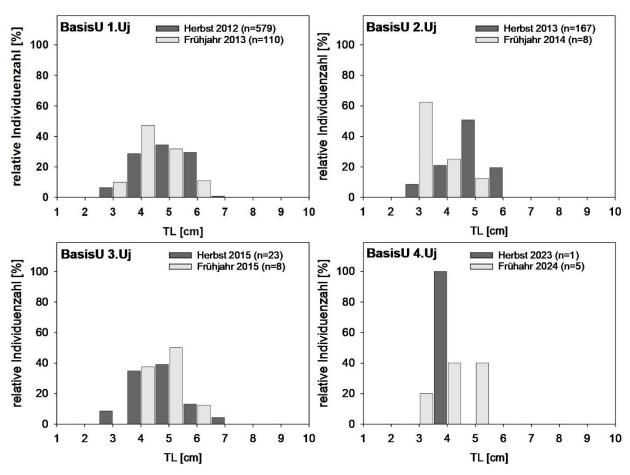
n: Anzahl der Individuen; TL: Total-Länge; BasisU: Basisuntersuchung


Abb. 13: Längenhäufigkeitsverteilung der Kliesche im OWP "Gennaker" während der durchgeführten Befischungskampagnen der vier Untersuchungsjahre der Basisaufnahme.

4.2.4.4 Sandgrundel

Im 2. Untersuchungsjahr (Herbst 2013 und Frühjahr 2014) war die Sandgrundel im Herbst signifikant abundanter als im Frühjahr (Mann-Whitney-U-Test, p < 0,05, siehe Anhang Tab. 38). Bei den anderen drei Untersuchungsjahren waren die Unterschiede zwischen beiden Jahreszeiten nicht signifikant, wobei auch während dieser Jahre die Abundanz der Sandgrundel im Herbst höher war als im Frühjahr (Abb. 14).

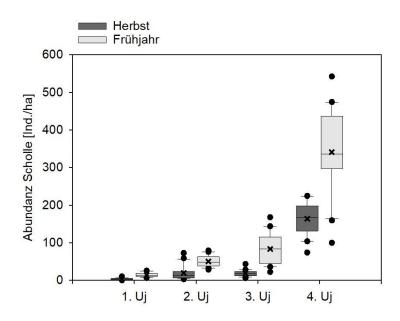
- 1. Uj: Herbst 2012 / Frühjahr 2013; 2. Uj: Herbst 2013 / Frühjahr 2014;
- 3. Uj: Frühjahr 2015 / Herbst 2015; 4. Uj: Herbst 2023 / Frühjahr 2024


Abb. 14: Box-Whisker-Plots der Abundanz der Sandgrundel in den Fängen im OWP "Gennaker" während der durchgeführten Befischungskampagnen der vier Untersuchungsjahre der Basisaufnahme.

Das Untersuchungsjahr beeinflusste die Abundanz der Sandgrundel signifikant (Kruskal-Wallis-Test, p < 0,05, siehe Anhang Tab. 39). Die Sandgrundel wurde im Vergleich der Herbst- und Frühjahrskampagnen während des 1. Jahres der Basisaufnahme signifikant häufiger erfasst als während der anderen drei Jahre (Post-hoc-Test, Dunn-Bonferroni, p < 0,05, siehe Anhang Tab. 41 und Abb. 14). Am niedrigsten war die Abundanz der Sandgrundel während beider Jahreszeiten im 4. Untersuchungsjahr (Abb. 14).

Das Längenspektrum der Sandgrundel war in den Fängen sehr gering (Längen 3-7 cm). In allen Untersuchungsjahren wurden 3-6 cm lange Sandgrundeln am häufigsten gefangen (Abb. 15). Die Sandgrundel ist eine kleinwüchsige (maximale Länge 11 cm) und kurzlebige Art (MUUS & NIELSEN 2013). Die meisten Sandgrundeln überleben ihr zweites Lebensjahr (Altersgruppe I) nicht. Bei den untersuchten Sandgrundeln handelte es sich demnach vorwiegend um Tiere, welche sich in ihrem ersten Lebensjahr befanden (Altersgruppe 0, HEESSEN et al. 2015).

n: Anzahl der Individuen; TL: Total-Länge; BaisU: Basisuntersuchung


Abb. 15: Längenhäufigkeitsverteilung der Sandgrundel im OWP "Gennaker" während der durchgeführten Befischungskampagnen der vier Untersuchungsjahre der Basisaufnahme.

4.2.4.5 Scholle

Die Scholle war während der vier Frühjahrskampagnen abundanter als während der vier Herbstkampagnen (Abb. 16). Signifikant waren die Abundanzunterschiede zwischen beiden Jahreszeiten im 1., 3. und 4. Untersuchungsjahr (Mann-Whitney-U-Test, p < 0.05, siehe Anhang Tab. 38). Auch das Untersuchungsjahr beeinflusste die Abundanz der Scholle signifikant (Kruskal-Wallis-Test, p < 0.05, siehe Anhang Tab. 39). Im Vergleich der Herbst- und Frühjahrskampagnen nahm die Abundanz der Scholle vom 1. zum 4. Jahr stetig zu. Dabei war sie im Herbst 2012 bzw. Frühjahr 2013 signifikant am geringsten und im Herbst 2023 bzw. Frühjahr 2024 signifikant am höchsten (Post-hoc-Test, Dunn-Bonferroni, p < 0.05, siehe Anhang Tab. 41).

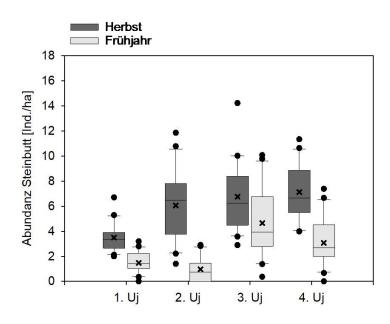

- 1. Uj: Herbst 2012 / Frühjahr 2013; 2. Uj: Herbst 2013 / Frühjahr 2014;
- 3. Uj: Frühjahr 2015 / Herbst 2015; 4. Uj: Herbst 2023 / Frühjahr 2024

Abb. 16: Box-Whisker-Plots der Abundanz der Scholle in den Fängen im OWP "Gennaker" während der durchgeführten Befischungskampagnen der vier Untersuchungsjahre der Basisaufnahme.

Die vermessenen Schollen hatten Längen von 5-54 cm (Abb. 17), wobei der Anteil von kleineren Schollen (< 10 cm, Altersgruppe 0) während aller Kampagnen sehr gering war (Anteile von 0-2 %). Im 1. Untersuchungsjahr wurden im Herbst 2012 und Frühjahr 2013 Schollen mit Längen von 23-32 am häufigsten erfasst (Anteile von 75-76 %). Nach SAGER & BERNER (1989) handelt es sich um einen Mix der Altersgruppen ≥ II. Im 2. Untersuchungsjahr lag im Herbst 2013 eine zweigipflige Verteilung vor, wobei der erste Gipfel Schollen mit Längen von 15-21 cm (Anteil von 55 %, Altersgruppen I-II) und der zweiten Schollen mit Längen von 28-34 cm umfasste (Anteil von 16 %, adulte Scholle der Altersgruppen ≥ III, SAGER & BERNER 1989). Im Frühjahr 2014 war die Längenverteilung der Scholle eingipflig. Dabei dominierten während dieser Kampagne adulte Schollen mit Längen von 28-34 cm (Altersgruppen ≥ III). Im Herbst des 3. Jahres der Basisaufnahme waren Schollen der Längen 22-26 cm am häufigsten (Anteil von 49 %. Während der Frühjahrskampagne dieses Untersuchungsjahres waren die Längen der Schollen zu größeren Längen verschoben (Längenbereich von 24-28 cm, Anteil von 47 %). Nach SAGER & BERNER (1989) handelte es sich bei den im Frühjahr und Herbst 2015 gefangenen Schollen vorwiegend um einen Mix der Altersgruppen II-III. Im 4. Untersuchungsjahr dominierten im Herbst 2023 Schollen mit Längen von 21-27 cm (Anteil von 45 %, Altersgruppen II-III). Im Frühjahr 2024 lag der Längenpeak bei deutlich kleineren Längen (12-18 cm, Altersgruppen I-II, SAGER & BERNER 1989).

n: Anzahl der Individuen; TL: Total-Länge; BasisU: Basisuntersuchung

Längenhäufigkeitsverteilung der im **OWP** "Gennaker" der durchgeführten Befischungskampagnen der vier Untersuchungsjahre der Basisaufnahme.


4.2.4.6 Steinbutt

Während der vier Untersuchungsjahre waren die Steinbutte in den Herbstfängen deutlich häufiger als in den Frühjahrsfängen (Abb. 18). Signifikant waren die Jahreszeitenunterschiede jedoch nur während des 1., 2. und 4. Untersuchungsjahres (Mann-Whitney-U-Test, p < 0,05, siehe Anhang Tab. 38). Neben der Jahreszeit beeinflusste auch das Untersuchungsjahr die Abundanz des Steinbuttes signifikant (Kruskal-Wallis-Test, p < 0,05, siehe Anhang Tab. 39). Signifikant am geringsten war die Abundanz des Steinbuttes im Herbst 2012 (Post-hoc-Test, Dunn-Bonferroni, p < 0,05, siehe Anhang Tab. 41). Zwischen den anderen drei Herbstkampagnen waren die Abundanzunterschiede gering und nicht signifikant. Im Vergleich der Frühjahrskampagnen war der Steinbutt im Frühjahr 2015 (3. Untersuchungsjahr) abundanter als während der anderen drei Kampagnen. Signifikante Unterschiede bestanden allerdings lediglich Frühjahrskampagnen 2013 (1. Untersuchungsjahr) und 2014 (2. Untersuchungsjahr; Post-hoc-Test, Dunn-Bonferroni, p < 0,05, Tab. 41). Weiterhin war der Steinbutt im Frühjahr 2024 (4. Untersuchungsjahr) signifikant häufiger als im Frühjahr 2014 (2. Untersuchungsjahr) (Tab. 41).

27.12.2024 40

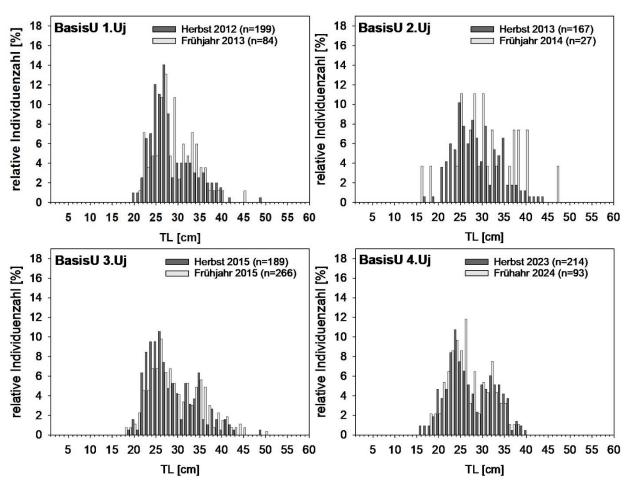

- 1. Uj: Herbst 2012 / Frühjahr 2013; 2. Uj: Herbst 2013 / Frühjahr 2014;
- 3. Uj: Frühjahr 2015 / Herbst 2015; 4. Uj: Herbst 2023 / Frühjahr 2024

Abb. 18: Box-Whisker-Plots der Abundanz des Steinbutts in den Fängen im OWP "Gennaker" während der durchgeführten Befischungskampagnen der vier Untersuchungsjahre der Basisaufnahme.

Im Untersuchungszeitraum wurden 16-50 cm lange Steinbutte erfasst (Abb. 19). Während der vier Herbst- und der vier Frühjahrskampagnen dominierten Steinbutte mit Längen von 20-30 cm (Anteile von 48-71 %). Nach HEESSEN et al. (2015) handelte es sich um einen Mix der Altersgruppen III-V. In der Ostsee sind die meisten männlichen Steinbutte der Altersgruppen II-III (Längen 17-27 cm) und die Weibchen der Altersgruppen IV-VI geschlechtsreif (HEESSEN et al. 2015). Folglich waren die meisten Steinbutte während der vier Untersuchungsjahre geschlechtsreif.

n: Anzahl der Individuen; TL: Total-Länge; BasisU: Basisuntersuchung

Abb. 19: Längenhäufigkeitsverteilung des Steinbutts im OWP "Gennaker" während der durchgeführten Befischungskampagnen der vier Untersuchungsjahre der Basisaufnahme.

4.2.4.7 Wittling

Im Herbst 2013 (2. Jahr) wurden signifikant mehr Wittlinge gefangen als im Frühjahr 2014 desselben Untersuchungsjahres (Mann-Whitney-U-Test, p < 0,05, siehe Anhang Tab. 38). Auch im 3. Untersuchungsjahr waren die Unterschiede zwischen beiden Jahreszeiten signifikant, wobei die Wittlinge während dieses Untersuchungsjahres im Frühjahr signifikant abundanter waren (Tab. 38). Während der beiden anderen Untersuchungsjahre waren die Abundanzunterschiede gering und nicht signifikant (Tab. 38). Allerdings war während dieser Jahre die Abundanz des Wittlings jeweils im Herbst höher (Abb. 20). Wie bei den anderen dominanten Arten wurde auch die Abundanz des Wittlings vom Untersuchungsjahr signifikant beeinflusst (Kruskal-Wallis-Test, p < 0,05, siehe Anhang Tab. 39). Der Post-hoc-Test ergab, dass der Wittling im Herbst 2013 (2. Jahr) signifikant abundanter war als während der anderen drei Herbstkampagnen (Dunn-Bonferroni, p < 0,05, siehe Anhang Tab. 41). Die Unterschiede zwischen diesen Kampagnen waren gering und nicht signifikant (Tab. 41). Im Vergleich der Frühjahrskampagne wurden im Frühjahr 2015 (3. Jahr) signifikant mehr Wittlinge erfasst als in den anderen drei Kampagnen.

Zwischen diesen Kampagnen dagegen waren die Unterschiede sehr gering und nicht signifikant (Tab. 41 und Abb. 20).

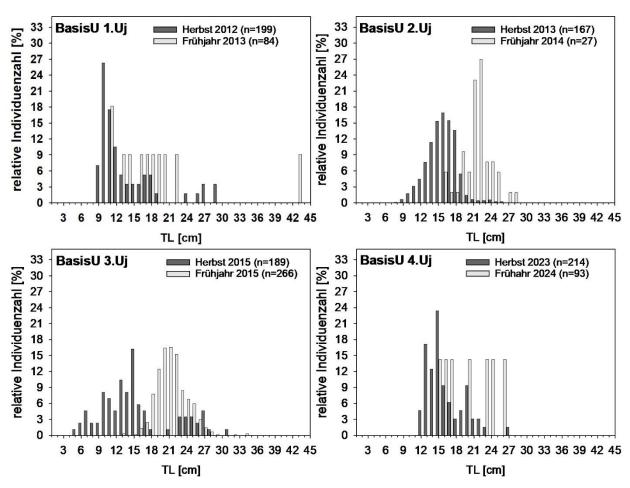
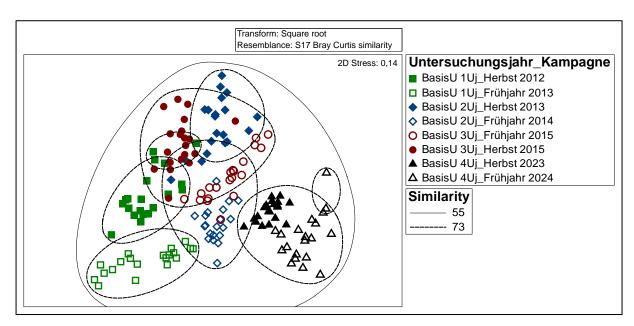

- 1. Uj: Herbst 2012 / Frühjahr 2013; 2. Uj: Herbst 2013 / Frühjahr 2014;
- 3. Uj: Frühjahr 2015 / Herbst 2015; 4. Uj: Herbst 2023 / Frühjahr 2024

Abb. 20: Box-Whisker-Plots der Abundanz des Wittlings in den Fängen im OWP "Gennaker" während der durchgeführten Befischungskampagnen der vier Untersuchungsjahre der Basisaufnahme.

Die vermessenen Wittlinge hatten Längen von 5-43 cm (Abb. 21), allerdings war der Anteil von größeren Tieren (≥ 27 cm) während aller Kampagne gering (Anteile von 0-9 %). Im Herbst 2013 und Herbst 2015 zählte die Mehrzahl der Wittlinge zur Altersgruppe 0 (Längenbereich 9-15 cm). Während der beiden anderen Herbstkampagnen 2013 und 2024 war der Großteil der Wittlinge im Schnitt mit Längen von 13-18 cm größer. Nach HEESSEN et al. (2015) gehören auch Wittlinge dieses Längenbereichs zur Altersgruppe 0. Während der Frühjahrskampagnen war der Längenpeak, im Vergleich zu den Herbstkampagnen, deutlich breiter (Abb. 21). So waren im Frühjahr 2013 (1. Untersuchungsjahr) Wittlinge mit Längen von 11-22 cm am häufigsten (Altersgruppen 0-I). Während der drei folgenden Untersuchungsjahre war der Längenpeak zu größeren Längen verschoben (Längenbereich von 15-26 cm, vorwiegend Altersgruppen I-II). Nach HEESSEN et al. (2015) wird die Mehrzahl (> 80 %) der Wittlinge (Männchen und Weibchen) in der Altersgruppe II geschlechtsreif. Die meisten der im betrachteten Untersuchungszeitraum gefangenen Wittlinge waren demnach juvenil bzw. einige von diesen (Wittlinge der Längen > 20 cm) befanden sich im Übergang vom juvenilen zum adulten Stadium.

n: Anzahl der Individuen; TL: Total-Länge; BasisU: Basisaufnahme


Abb. 21: Längenhäufigkeitsverteilung des Wittlings im OWP "Gennaker" während der durchgeführten Befischungskampagnen der vier Untersuchungsjahre der Basisaufnahme.

4.2.5 Gemeinschaftsanalyse

Die während der vier Jahre der Basisaufnahme jeweils im Herbst und Frühjahr durchgeführten Fischereihols wiesen in ihrer Fangzusammensetzung eine Gesamtähnlichkeit (Similarität) von 55 % auf. Bei einer Ähnlichkeit (Similarität) von 73 % ließen sich sechs größerer Gruppen voneinander trennen. Die erste Gruppe umfasste die meisten Hols des 3. Untersuchungsjahres (Herbst 2015 und Frühjahr 2015) und die zweite Gruppe die meisten Hols des 4. Untersuchungsjahres (Herbst 2023 und Frühjahr 2024). In den anderen vier Gruppen waren jeweils die Hols der übrigen vier Kampagnen vereinigt. Auch die SIMPER ergab, dass die Unähnlichkeit (Dissimilarität) zwischen beiden Jahreszeiten im 3. und 4. Untersuchungsjahr am geringsten war (Tab. 14). Nach ANOSIM allerdings waren die Unterschiede zwischen den Herbstund Frühjahrskampagnen während aller vier Untersuchungsjahres stark bis sehr stark (R-Werte von 0,732-0,926, Tab. 14 und siehe Tab. 3).

Ohne pelagische Arten

Abb. 22: nMDS-Plot basierend auf der ermittelten quadratwurzeltransformierten Abundanz [Ind./ha] der nachgewiesenen Fischarten in den im OWP "Gennaker" während der vier Untersuchungsjahre der Basisaufnahme durchgeführten Hols.

Tab. 14: Ergebnisse der ANOSIM und der SIMPER des Jahreszeitlichen Vergleichs basierend auf den Abundanzdaten [Ind./ha] der im OWP "Gennaker" nachgewiesenen Fischarten, getrennt für die vier Untersuchungsjahre der Basisaufnahme.

Ohne pelagische Arten

		ANC	SIMPER		
	Vergleichsgruppen	R-Wert	p-Wert	mittlere Unähnlichkeit [%]	
BasisU 1. Uj	Herbst 2012 / Frühjahr 2013	0,755	0,001	34,72	
BasisU 2. Uj	Herbst 2013 / Frühjahr 2014	0,926	0,001	36,90	
BasisU 3. Uj Herbst 2015 / Frühjahr 2015		0,735	0,001	26,69	
BasisU 4. Uj Herbst 2023 / Frühjahr 2024		0,732	0,001	24,09	

Neben der Jahreszeit hatte auch das Untersuchungsjahr einen deutlichen Einfluss auf die Fangzusammensetzung. Im Vergleich der Herbst- und auch der Frühjahrskampagnen waren die jahresbedingten Unterschiede stark bis sehr stark (Tab. 15). Nach SIMPER wurden die jahresbedingten Unterschiede zwischen den Frühjahrs- bzw. Herbstkampagnen zu über 90 % durch die dominanten Arten Dorsch, Flunder, Kliesche, Sandgrundel, Scholle, Steinbutt und Wittling sowie durch die Aalmutter hervorgerufen (siehe Anhang Tab. 42 und Tab. 43).

Tab. 15: Ergebnisse der ANOSIM und der SIMPER des Jahresbedingten Vergleichs basierend auf den Abundanzdaten [Ind./ha] der im OWP "Gennaker" während der vier Untersuchungsjahre der Basisaufnahme nachgewiesenen Fischarten, getrennt für die beiden Jahreszeiten Frühjahr und Herbst.

Ohne pelagische Arten

Vergleichsgruppen		ANG	SIMPER	
		R-Wert	p-Wert	mittlere Unähnlichkeit [%]
	2013 vs 2014	0,875	0,001	37,35
	2013 vs 2015	0,925	0,001	44,45
Frühjahr	2013 vs 2024	0,987	0,001	52,79
Frunjani	2014 vs 2015	0,615	0,001	27,51
	2014 vs 2024	0,968	0,001	41,74
	2015 vs 2024	0,942	0,001	40,06
	2012 vs 2013	0,834	0,001	39,34
	2012 vs 2015	0,768	0,001	34,83
Herbst	2012 vs 2023	0,979	0,001	45,29
	2013 vs 2015	0,811	0,001	33,89
	2013 vs 2023	0,982	0,001	40,75
	2015 vs 2023	0,993	0,001	42,41

5 Diskussion

5.1 Methodenkritik

Als Fangmethode wurde, entsprechend zu StUK 4 ein Windparktrawl (siehe Kap. 3.2) eingesetzt. Dieses Fanggerät zeichnet sich aufgrund einer vertikalen Netzöffnung von 1,5 m durch eine relativ hohe Fängigkeit gegenüber den in der unteren Wassersäule auftretenden Fischen (benthopelagische Arten) und auf dem Meeresboden befindlichen bzw. im Meeresboden eingegrabenen Fischen (benthische Arten) aus (MIESKE 2002). Letztere werden dabei durch das mittels Rollen über den Meeresboden gezogenen Fanggeschirr aufgeschreckt, flüchten in die Wassersäule und gelangen so ins Netz. Bei der Bewertung der mit diesem Fanggerät erhobenen Daten bleibt allerdings zu berücksichtigen, dass die Fängigkeit gegenüber kleineren Fischen eingeschränkt ist. Einige der Fische können während des Schleppvorganges durch die zwischen den Rollen befindlichen Freiräume oder durch die Maschen entkommen. Auch Jungfische vieler großwüchsiger demersaler Arten bzw. demersale Kleinfischarten können in den Fängen eines Windparktrawls somit unterrepräsentiert sein. Auch sieben pelagische Arten (Atlantische Makrele, Europäische Sardelle, Finte, Hering, Holzmakrele, Sprotte und Stint) wurden mit diesem Fanggerät während der vier Jahren der Basisaufnahme von 2012-2024 gefangen (siehe Tab. 12). Die Fänge der pelagischen Fischarten stellen jedoch aufgrund des verwendeten Fanggerätes lediglich den Nachweis ihres Vorkommens im Untersuchungsgebiet dar. Aussagen über ihre Abundanz im Untersuchungsgebiet können jedoch aus den Befischungsergebnissen nicht explizit abgeleitet werden. Nach Kube (2000) unterliegen die pelagischen Fischarten starken zeitlichen und räumlichen Veränderungen. Aufgrund des verhältnismäßig kleinen Untersuchungsgebietes wäre der fischereiliche Aufwand für eine repräsentative Erfassung dieser Arten enorm und stünde nicht im Verhältnis zum erwarteten Informationsgewinn. Daher können anhand der während der Untersuchungen 2012-2024 gewonnenen Ergebnisse lediglich Aussagen über die Struktur, der im OWP "Gennaker" ansässigen demersalen Fischfauna getroffen werden.

5.2 Einordnung Fischfauna im Bereich des OWP "Gennaker"

Nach WINKLER et al. (2000) kommen in der gesamten Ostsee 176 Fischarten vor. Für die westliche Ostsee werden von WINKLER & SCHRÖDER (2003) noch 151 Fischarten erwähnt. THIEL et al. (1996) dagegen beschreiben für die Ostsee 144 Fischarten, darunter 97 Meeresfischarten, 7 Wander- und 40 Süßwasserfischarten. Die Anzahl der marinen Fischarten nimmt von Westen nach Osten hin ab (NELLEN & THIEL 1996). Dabei kommen in der Mecklenburger Bucht noch 70, in der südlichen / mittleren Ostsee nur noch 40-50 marine Fischarten vor (NELLEN & THIEL 1996). In der Roten-Liste und Gesamtartenliste der Fische und Neunaugen von THIEL et al. (2013) gelten im deutschen Ostseegebiet 89 Fischarten und Neunaugen als etabliert.

Während der Befischungskampagnen 2012-2024 wurden im OWP "Gennaker" insgesamt 38 Fischarten nachgewiesen (Tab. 16). Während der Untersuchungen im 1. und 2. Jahr der Basisaufnahme wurden fünf weitere Arten erfasst, die im 3. und 4. Jahr der Basisaufnahme nicht mehr nachgewiesen werden konnten. Die Stationen dieser Fänge liegen zwar außerhalb der finalen Grenzen des Vorhabengebiets, dennoch können diese fünf Arten in die Beschreibung der

Artzusammensetzung der Fischfauna aufgenommen werden, da die Fänge in unmittelbarer Nähe des Vorhabengebietes OWP "Gennaker" erfolgten. Diese sehr mobile Arten wurden nicht nur im Nahbereich, sondern auch zum Vorhabengebiet vergleichbarer Wassertiefe und ähnlichem Substrat gefangen. Es kann daher nicht ausgeschlossen werden, dass diese Arten trotz fehlender aktueller Nachweise immer wieder im Vorhabengebiet anzutreffen sind. Mit diesen fünf Arten wurden im Bereich des Vorhabengebietes OWP "Gennaker" daher in den Jahren 2012-2024 insgesamt 43 Fischarten gefangen (Tab. 16). Für die Einordnung der im Bereich des Vorhabengebiets OWP "Gennaker" erfassten Fischfauna wurden zum Vergleich Fischereisurvey-Daten des TI-OF (THÜNEN INSTITUT FÜR OSTSEEFISCHEREI 2022) aus den Jahren 2020-2021 sowie Fangdaten des International Council for the Exploration of the Sea (ICES 2024) aus den Jahren 2022-2024 herangezogen. Dieser Vergleich ist wichtig, um regionale Unterschiede und Gemeinsamkeiten zu erkennen und somit die spezifischen ökologischen Bedingungen und den Zustand der Fischfauna im Vorhabengebiet des OWP "Gennaker" genauer bewerten zu können. Die Befischung vom TI-OF ist nicht so kleinskalig wie die in den Jahren 2012-2024 durchgeführten Befischungen. Insgesamt 28 Hols des durch das TI-OF durchgeführten Baltic International Trawl Surveys (BITS) aus den Jahren 2020-2021 wurden für die Darstellung des Artenspektrums verwendet (Tab. 16). Diese 28 Hols lagen entweder direkt oder im Umfeld des Vorhabengebietes und wiesen eine ähnliche Wassertiefe (< 20 m) zu diesem auf (Abb. 23). Auch die Fangdaten der Baltic International Trawl Surveys (BITS) aus der Datenbank des ICES sind nicht so kleinskalig wie die der Untersuchungen 2012-2024. Daher wurden für den Vergleich ebenfalls nur Fangdaten von Hols verwendet, welche eine Wassertiefe von < 20 m aufwiesen (Abb. 24). Insgesamt wurden 24 Fischdatensätze aus den Jahren 2022-2024 verwendet. Die Befischungen des TI-OF sowie des ICES wurden ebenfalls mit einem Grundschleppnetz durchgeführt. Allerdings wiesen diese Grundschleppnetze größere Maschenweiten auf als die während der Befischungskampagnen im OWP "Gennaker" verwendeten Schleppnetze. Insgesamt wurden bei den Untersuchungen des TI-OF in den Jahren 2020-2021 insgesamt 33 und des ICES in den Jahren 2022-2024 insgesamt 30 Arten registriert (Tab. 16).

Zusammen mit den Befischungskampagnen der vier Basisjahre im OWP "Gennaker" wurden somit insgesamt 49 Fischarten im Untersuchungsgebiet bzw. im näheren Umkreis nachgewiesen (Tab. 16). Von diesen 49 Fischarten wurden zwölf Arten (Aalmutter, Dorsch, Flunder, Gefleckter Großer Sandaal, Hering, Kliesche, Scholle, Seehase, Seeskorpion, Sprotte, Steonbutt und Wittling) während aller Untersuchungsjahre erfasst (Tab. 16). Wie auch während der vier Untersuchungsjahre der Basisaufnahme zählten in den Surveys des TI-OF und ICES Dorsch, Flunder, Kliesche, Scholle, Steinbutt und Wittling zu den am häufigsten vorkommenden Arten in den Fängen (Präsenzen von 67-100 %, siehe im Anhang Tab. 44). Die drei Untersuchungen zeigten daher eine ähnliche und über die Jahre stabile Dominanzstruktur. Lediglich die Sandgrundel wurde in den Fängen des TI-OF nur in geringer Anzahl nachgewiesen und fehlte vollständig in den Fängen des ICES. Dies ist auf die größeren Maschenweiten der Grundschleppnetze im Vergleich zu den während der Basisaufnahmen verwendeten Schleppnetzen zurückzuführen. Während der Basisaufnahmen zählte die Sandgrundel besonders während der ersten beiden Untersuchungsjahre zu den bedeutendsten Arten in den Fängen. Während der Surveys des TI-OF und ICES wurden mit Dreibärteliger Seequappe,

Gestreifter Leierfisch, Klippenbarsch, Lammzunge, Vierbärteliger Seequappe und Zwergdorsch sechs Arten gefangen, welche während der vier Untersuchungsjahre der Basisaufnahme nicht nachgewiesen wurden (Tab. 16). Dagegen wurden 14 Arten Atlantischer Lachs, Atlantische Makrele, Doggerscharbe, Finte, Fleckengrundel, Glasgrundel, Goldmaid, Grasnadel, Großer Scheibenbauch, Schellfisch, Schwimmgrundel, Seelachs, Stint und Streifenbarbe ausschließlich während der Untersuchungen zum OWP "Gennaker" erfasst (Tab. 16). Bei diesen Arten handelte es sich allerdings meist um Einzelnachweise. Auch die genannten Arten, die ausschließlich während der Untersuchungen des TI-OF und ICES erfasst wurden, zeigten nur eine geringe Präsenz (siehe im Anhang Tab. 44). Sie sind daher keine typischen Vertreter der Fischfauna im Untersuchungsgebiet. Die meisten (n = 41) der insgesamt 49 nachgewiesenen Fischarten haben eine demersale Lebensweise (Tab. 16). Daneben wurden acht Arten mit pelagischer Lebensweise erfasst. Die Arten Aalmutter, Dorsch, Flunder, Gefleckter Großer Sandaal, Hering, Kliesche, Scholle, Seehase, Seeskorpion, Sprotte, Steinbutt und Wittling wurden während aller Untersuchung gefangen (Tab. 16).

Spitzschwanz-Schlangenstachelrücken Der wird in der Roten-Liste der in Gefährdungskategorie 1 (vom Aussterben bedroht, THIEL et al. 2013) geführt (Tab. 16). Diese Art wurde neben dem direkten Nachweis im OWP "Gennaker" auch während der Surveys des TI-OF und ICES erfasst. Der Atlantische Lachs und die Finte werden unter THIEL et al. (2013) als gefährdete Arten geführt (Gefährdungskategorie 3). Beide Arten fehlten in den ICES- und den TI-OF-Fangen. Beide Arten werden außerdem im Anhang II der FFH-RL registriert. Beim Lachs bezieht sich diese Listung allerdings nur auf die im Süßwasser liegenden Lebensräume (z. B. Laichplätze). Weiterhin wurde mit der Aalmutter eine Art gefangen, die auf der Vorwarnliste steht (Kategorie V, THIEL et al. 2013). Diese Art wurde während der vier Jahre der Basisaufnahme wie auch während der Untersuchungen des TI-OF und ICES regelmäßig erfasst. Bei elf der insgesamt 51 Arten (Doggerscharbe, Fleckengrundel, Gefleckter Großer Sandaal, Gestreifter Leierfisch, Glasgrundel, Goldmaid, Grauer Knurrhahn, Seebull, Seeskorpion, Seestichling und Tobiasfisch) ist die Datengrundlage für eine Gefährdungseinschätzung unzureichend (Kategorie D, THIEL et al. 2013, Tab. 16). Mit der Schwarzmundgrundel wurde eine gebietsfremde, invasive Art erfasst. Die Dreibärtelige Seequappe, die Lammzunge, der Seehecht und der Zwergdorsch gelten in der deutschen Ostsee als nicht etabliert (THIEL et al. 2013). Alle anderen nachgewiesenen Arten werden als ungefährdet eingestuft (THIEL et al. 2013, Tab. 16).

Für den Vergleich der Daten aus den vier Jahren der Basisaufnahme mit denen des TI-OF und ICES lässt sich Folgendes zusammenfassen: Die Dominanzstruktur war in allen Jahren sehr ähnlich, wobei dieselben Arten dominierten. Sowohl die Artenzahl als auch die Artzusammensetzung während der Basisaufnahme waren vergleichbar mit den Ergebnissen der Untersuchungen des TI-OF und ICES. Die Ergebnisse der vierjährigen Basisaufnahme eignen sich daher gut, um die Fischfauna im Bereich des geplanten OWP "Gennaker" zu beschreiben und zu bewerten.

Tab. 16: Liste der nachgewiesenen Fischarten während der vier Untersuchungsjahre der Basisaufnahme (2012-2024) sowie der Fischereisurvey-Daten BITS des Thünen Institut Für Ostseefischerei (2022) und den ICES-BITS Daten (ICES 2024), mit Angabe ihrer Rote-Liste-Kategorie nach Thiel et al. (2013) (Region Ostsee) und ihrer Lebensweise.

LW: Lebensweise; RL: Rote-Liste-Kategorie; WT: Wassertiefe; d: demersal; p: pelagisch;

- 1: wissenschaftlicher Artname siehe im Anhang Tab. 24; 2: THÜNEN INSTITUT FÜR OSTSEEFISCHEREI (2022);
- ³: ICES (2024); ▲: Nachweise von Fischarten in Stationen, welche nicht mehr im aktuellen Zuschnitt des Vorhabengebiets liegen; **: Anzahl inklusive ▲-Arten

dt. Artname¹	LW	RL	OWP "Gennaker" (< 20 m WT)				BITS 37G2 / 38G2 ² (< 20 m WT)	BITS ICES Area 24 ³ (< 20 m WT)		
			1. Uj	2. Uj	3. Uj	4. Uj	2020-2021	2022	2023	2024
Aalmutter	d	V	Х	Х	Х	Х	Х	Х	X	Х
Atlantischer Lachs	р	3		A						
Atlantische Makrele	р	*				Х				
Butterfisch	d	*				Х			Х	
Doggerscharbe	d	D		Х						
Dorsch	d	*	Χ	X	X	X	X	Х	Х	X
Dreibärtelige Seequappe	d	-					X			
Dreistachliger Stichling	d	*			Х	Х	Х		Х	
Europäische Sardelle	р	*			Х	Х	Х	Х	Х	
Finte	р	3				Х				
Fleckengrundel	d	D				Х				
Flunder	d	*	Х	Х	Х	Х	Х	Х	Х	Х
Gefleckter Großer Sandaal	d	D	Х	Х	Х	Х	Х	Х	Х	Х
Gestreifter Leierfisch	d	D					Х			
Glasgrundel	d	D		Х	Х	Х				
Glattbutt	d	*	Х	Х	Х	Х	Х	Х	Х	
Goldmaid	d	D				Х				
Grauer Knurrhahn	d	D		A			Х		Х	
Grasnadel	d	*	A	A	Х	Х				
Großer Scheibenbauch	d	*	Х	Х	Х					
Hering	р	*	Х	Х	Х	Х	Х	Х	Х	Х
Holzmakrele	р	*	Х	Х	Х	Х	Х	Х	Х	
Kliesche	d	*	Х	Х	Х	Х	Х	Х	Х	Х
Klippenbarsch	d	*					Х		Х	
Lammzunge	d	_					Х	Х		
Petermännchen	d	*			Х		Х		Х	
Sandgrundel	d	*	Х	Х	Х	Х	Х			
Schellfisch	d	*				Х				
Scholle	d	*	Х	Х	Х	Х	Х	Х	Х	Х
Schwarzgrundel	d	*				Х	Х		Х	Х
Schwarzmundgrundel	d	_	Х	Х	Х					Х
Schwimmgrundel	d	*	Х							
Seebull	d	D	A				Х	Х	Х	
Seelachs	d	*	A							
Seehase	d	*	Х	Х	Х	Х	Х	Х	Х	Х
Seehecht	d	-		Х	Х		Х			

dt. Artname¹	LW	RL	OWP "Gennaker" (< 20 m WT)			BITS 37G2 / 38G2 ² (< 20 m WT)	BITS ICES Area 24 ³ (< 20 m WT)			
			1. Uj	2. Uj	3. Uj	4. Uj	2020-2021	2022	2023	2024
Seeskorpion	d	D	Х	Х	Х	Х	Х	Х	Х	Х
Seestichling	d	D	Х	Х	Х		Х		Х	
Seezunge	d	*		Х	Х	Х	Х	Х	Х	Х
SSchlangenstachelrücken	d	1				Χ	Х			Х
Sprotte	р	*	Х	Х	Х	Χ	Х	Χ	Х	Х
Steinbutt	d	*	Х	Х	Х	Х	Х	Х	Х	Х
Steinpicker	d	*		Х	Х	Х	Х	Х	Х	Х
Stint	р	*	Х							
Streifenbarbe	d	*		A						
Tobiasfisch	d	D			Х		Х	Х	Х	
Vierbärtelige Seequappe	d	*					Х		Х	
Wittling	d	*	Х	Х	Х	Х	Х	Х	Х	Х
Zwergdorsch	d	-					Х			
Artenzahl (Gesamt 49 Fischarten)			20 (23)**	23 (27)**	27	29	33	20	27	17
,				38 (4	43)**			·	30	

Rote-Liste-Kategorie: 0: ausgestorben, 1: vom Aussterben bedroht, 2: stark gefährdet, 3: gefährdet, G: Gefährdung unbekannten Ausmaßes, R: extrem selten, V: Vorwarnliste; D: Daten unzureichend, *: ungefährdet, -: nicht bewertet.

Für die während der vier Jahre der Basisaufnahme im Bereich des OWP "Gennaker" ermittelten Charakterarten (Dorsch, Flunder, Kliesche, Sandgrundel, Steinbutt und Wittling) werden im Folgenden die möglichen Funktionen des Untersuchungsgebiet detailliert hergeleitet.

Während der Untersuchungen der Basisaufnahme (2012-2024) stellten juvenile Dorsche den größten Anteil an den Fängen. Der Bereich des Vorhabengebietes hat demnach als Aufwuchsgebiet für den Dorsch eine Bedeutung. Die meisten männlichen Dorsche erreichen als Altersgruppe II ihre Geschlechtsreife (VAINIKKA et al. 2009). Die Weibchen werden im Schnitt ein Jahr später geschlechtsreif (VAINIKKA et al. 2009). In der westlichen Mecklenburger Bucht und der Arkonasee findet das Laichen der Dorsche in Wassertiefen von > 20 m bzw. > 40 m statt (BLEIL & OEBERST 2000). Aufgrund der vergleichsweisen geringen Wassertiefe im Bereich des Vorhabengebietes (Tiefen von 12-21 m während der Untersuchen Herbst 2012-Frühjahr 2024) kann davon ausgegangen werden, dass der Bereich des Vorhabengebietes als Laichhabitat für den Dorsch keine nennenswerte Bedeutung hat. Die meisten der im betrachteten Untersuchungszeitraum gefangenen Wittlinge waren juvenil bzw. einige von ihnen befanden sich im Übergang vom juvenilen zum adulten Stadium. Nach HEESSEN et al. (2015) wird die Mehrzahl (> 80 %) der Wittlinge (Männchen und Weibchen) als Altersgruppe II geschlechtsreif. Die Wittlinge laichen nur in der westlichen Ostsee (Beltsee, Kattegat, HELCOM 2013). Den Bereich des OWP "Gennaker" nutzen die Wittlinge vorwiegend als Aufwuchs- und Nahrungsgebiet. Die Mehrzahl der männlichen Schollen erreichen als Altersgruppen II-III und die meisten Weibchen Altersgruppen III-IV ihre Geschlechtsreife (FLORIN 2005). Während Untersuchungsjahre gehörte der Großteil der Schollen zu den Altersgruppen I-≥II. Es wurden demnach neben juvenilen auch adulten Schollen erfasst. Auch bei den im OWP "Gennaker"

gefangenen Klieschen kann die Mehrzahl den Altersgruppen I-≥II zugeordnet werden. Männliche Klieschen erreichen als Altersgruppen II-III ihre Geschlechtsreife (HEESSEN et al. 2015). Die Weibchen werden im Schnitt als Altersgruppen III-V geschlechtsreif (HEESSEN et al. 2015). Wie bei der Scholle setzten sich die Fänge aus juvenilen und adulten Klieschen zusammen. Nach FLORIN (2005) und MUUS & NIELSEN (2013) ist ein erfolgreiches Laichen in der westlichen Ostsee für Schollen und Klieschen erst bei Tiefen > 20 m möglich. Die Wassertiefen im Vorhabengebiet lagen, wie zuvor genannt, zwischen 12-21 m. Deshalb ist eine Nutzung des Bereichs des OWP "Gennaker" durch beide Arten als Laichgebiet auszuschließen. Für beide Arten hat das Vorhabengebiet als Aufwuchs- und vor allem als Nahrungsgebiet eine Bedeutung. Während der Befischungskampagnen (2012-2024) wurden Flundern der Altersgruppen ≥ II nachgewiesen. Ähnlich zur Scholle erreichen die meisten Männchen in den Altersgruppen II-III und die Mehrzahl der Weibchen in den Altersgruppen III-IV ihre Geschlechtsreife (FLORIN 2005). Bei den meisten der erfassten Flundern handelte es sich daher um adulte Individuen. Im OWP "Gennaker" wurden vorwiegend adulte, geschlechtsreife Steinbutte, welche den Altersgruppen III-IV zugeordnet werden können gefangen (HEESSEN et al. 2015). Die zwei Plattfischarten Flunder und Steinbutt haben keine einheitlichen Laichareale in der westlichen und südlichen Ostsee (FRIEß 1987; FRIEß 1999). Für ein erfolgreiches Laichen benötigen diese Arten optimaler Weise einen Salzgehalt von ca. 12 PSU (FLORIN 2005). Im Untersuchungszeitraum Herbst 2012 bis Frühjahr 2024 wurden im Vorhabengebiet am Grund Salzgehalte von 8,0-17,9 PSU gemessen. Diese Salzgehalte sind somit grundsätzlich geeignet für das Laichen von Flunder und Steinbutt. Optimale Bedingungen für ein potenzielles Laichen beider Arten sind jedoch nicht ausschließlich auf den Bereich des Vorhabengebietes beschränkt, sondern auch im erweiterten Umfeld gegeben. Weiterhin fungiert der Bereich des OWP für diese beiden Arten als Nahrungsgebiet. Die Sandgrundel ist eine kleinwüchsige (maximale Länge 11 cm) und kurzlebige Art (MUUS & NIELSEN 2013). Die meisten Sandgrundeln überleben ihr zweites Lebensjahr (Altersgruppe I) nicht. Bei den untersuchten Sandgrundeln handelte es sich vorwiegend um Tiere der Altersgruppe 0 (HEESSEN et al. 2015). Die Sandgrundel ist standorttreu und nutzt den Bereich des OWP "Gennaker" für ihren gesamten Lebenszyklus als Laich-, Aufwuchs- und Nahrungsgebiet.

5.3 Bestandsbewertung

Die Bewertung der Fischgemeinschaft erfolgt getrennt anhand der übergeordneten Kriterien "Vielfalt und Eigenart", "Seltenheit und Gefährdung" sowie "Vorbelastung". Diese Kriterien zur Bewertung der Fische stammen aus dem Umweltbericht des FEP für die Ostsee (BSH 2021). Die dem jeweiligen Kriterium zugrunde gelegte Bewertungsmatrix ist in Tab. 4 (siehe Kap. 3.6) angeführt.

5.3.1 Vielfalt und Eigenart

Die Bewertung der Vielfalt und Eigenart bezieht sich auf die Zusammensetzung der Artengemeinschaft. Es wird dabei bewertet, inwieweit für das Habitat charakteristische Arten oder Lebensgemeinschaften auftreten und wie regelmäßig diese vorkommen. Die Vielfalt und Eigenart werden als hoch eingestuft, wenn die dem Habitat entsprechenden Fisch-Lebensgemeinschaften stetig auftreten. Eine mittlere Einstufung erfolgt, wenn die typischen Lebensgemeinschaften zwar vertreten sind, die betroffenen Taxa oder Teile davon aber in untypisch geringen Dichten oder

Häufigkeiten vorkommen. Der mittlere Wert wird auch dann verwendet, wenn die Fischdichte insgesamt zwar mittel bis hoch ist, aber auch kleinere bis mittlere Anteile nicht charakteristischer Taxa enthalten sind. Die Eigenart und Vielfalt werden gering bewertet, wenn vorwiegend lebensraumfremde Arten auftreten.

NELLEN & THIEL (1996) unterscheiden drei verschiedene Fischgemeinschaften in der südlichen Ostsee. Die Flachwasserfischgemeinschaft (spielt im Vorhabengebiet keine Rolle), die pelagische Fischgemeinschaft, die von Hering und Sprotte dominiert wird und die benthische oder demersale Fischgemeinschaft mit ihren Hauptarten Dorsch, Flunder und anderen Plattfischarten. Aufgrund des verwendeten Fanggeräts (Grundschleppnetz, Typ "WPT") konnte die pelagische Fischgemeinschaft nicht repräsentativ erfasst werden. Dennoch waren auch im OWP "Gennaker" Hering und Sprotte die häufigsten pelagischen Arten. Wie bei NELLEN & THIEL (1996) wurde die demersale Fischfauna im OWP "Gennaker" durch die typischen Arten bestimmt (Dorsch, Flunder, Kliesche, Scholle und Steinbutt). Daneben waren auch die Sandgrundel und der Wittling dominante Vertreter der demersalen Fischfauna im Untersuchungsgebiet. Somit spiegelt die im Vorhabengebiet vorgefundene Struktur der dort ansässigen Fischfauna die für die südliche Ostsee charakteristische Struktur der pelagischen und der demersalen Arten wider. Auch die Dominanzstruktur und Verteilung der Arten war für das im OWP "Gennaker" vorherrschende Habitat typisch. Deshalb wird die "Vielfalt und Eigenart", entsprechend dem Bewertungsansatz (siehe oben), der im Bereich OWP "Gennaker" ansässigen Fischgemeinschaft insgesamt als **hoch** eingestuft.

5.3.2 Seltenheit und Gefährdung

Die Seltenheit bzw. Gefährdungssituation ist hoch, wenn Arten der Kategorien 0 (ausgestorben bzw. verschollen) und 1 (vom Aussterben bedroht) regelmäßig vorkommen, d. h. wenn nicht nur zu einem Zeitpunkt ein Einzelexemplar nachgewiesen wurde. Die Seltenheit und Gefährdung ist ebenfalls hoch, wenn Arten des Anhangs II der FFH-RL regelmäßig erfasst werden. Diese Taxa stehen im Fokus europaweiter Schutzbemühungen und es sind hinsichtlich ihrer Lebensräume besondere Schutzmaßnahmen zu treffen. Sie ist mittel bei den Kategorien 2 (stark gefährdet) und 3 (gefährdet) sowie gering bei den Kategorien G (Gefährdung unbekannten Ausmaßes), V (Vorwarnliste), R (extrem selten), D (Daten unzureichend) und "nicht gefährdet".

Im Bereich des OWP "Gennaker" wurde mit dem Spitzschwanz-Schlangenstachelrücken eine Rote-Liste-Art der Gefährdungskategorie 1 (vom Aussterben bedroht, THIEL et al. 2013) nachgewiesen. Allerdings wurde nur ein Einzelexemplar während der Herbstkampagne 2023 gefangen. Mit Ausnahme des pelagischen Larvenstadiums lebt diese Art demersal (am Boden bzw. bodennah lebend), in selbstgegrabenen Y-förmigen Röhren (GORDON & DUNCAN 1979). Auch die im Schnitt 600 bis 1.100 Eier werden im Bereich der Röhren am Boden abgelegt (HEESSEN et al. 2015). Daher ist das Verbreitungsgebiet dieser Art nach dem Übergang zum Bodenleben, dies erfolgt bei einer Länge von 3-4 cm (MUUS & NIELSEN 2013), sehr beschränkt. Der Spitzschwanz-Schlangenstachelrücken bevorzugt feinsandige, schlickige Substrate, kommt aber auch auf gröberen Substraten vor (HEESSEN et al. 2015). Der Meeresboden im Vorhabengebiet wird vorwiegend von fein- und mittelsandigen Sedimenten dominiert (IFAÖ

2024). Auch während der Fischereisurveys des TI-OF und ICES wurde der Spitzschwanz-Schlangenstachelrücken nachgewiesen.

Mit der Finte wurde im OWP "Gennaker" eine Art der Gefährdungskategorie 3 (gefährdet) gefangen. Die Finte wird weiterhin als eine Art zum Anhang II der FFH-RL eingeordnet. Insgesamt wurden zwei Individuen während der Befischungskampagne im Herbst 2023 gefangen. Noch bis zur Mitte des vorigen Jahrhunderts war die Finte eine wichtige kommerzielle Fischart, im Mittel wurden in der südlichen Ostsee pro Jahr 87 t angelandet (THIEL & BACKHAUSEN 2006). Nach 1950 gingen die Fänge jedoch stark zurück. Die Finte wurde danach bis Mitte der 90iger Jahre nur noch gelegentlich in der Ostsee gefangen. Bei neueren Untersuchungen (2000-2004) zum Vorkommen von Anhang-II-Arten in der deutschen Ostsee konnten insgesamt an 14 Stationen in der Arkonasee 38 Finten gefangen werden (THIEL et al. 2004; THIEL & WINKLER 2007). Mit den 38 nachgewiesenen Individuen war die Finte einer der häufigsten Anhang-II-Arten während dieser Untersuchungen. Die Ergebnisse dieser Fänge deuten darauf hin, dass die Ostseepopulation der Finte seit Mitte der Neunziger Jahre wieder zunimmt (THIEL & BACKHAUSEN 2006).

Während der Untersuchung des 2. Jahres der Basisaufnahme wurde mit dem Atlantischen Lachs eine weitere Rote-Liste-Art der Gefährdungskategorie 3 (gefährdet) gefangen. In den übrigen drei Jahren der Basisaufnahme konnte der Atlantische Lachs nicht nachgewiesen werden. Diese Art wurde jedoch an einer Station erfasst, die nicht im Bereich der aktuellen Gebietsgrenzen liegt. Allerdings ist nicht auszuschließen, dass sie auch im direkten Bereich des aktuellen Vorhabengebietes vorkommen kann. Der Atlantische Lachs wird neben der Roten-Liste auch im Anhang II der FFH-RL geführt (nur Süßwasser, THIEL et al. 2013). In den letzten Jahren führte der Besatz von Lachsen in vielen Fließgewässern Deutschlands und anderen Ostsee-Anrainerstaaten zu einem deutlichen Anstieg des Ostsee-Lachsbestandes. Allerdings wird davon ausgegangen, dass ohne die Weiterführung dieser Besatzmaßnahmen der Bestand wieder stark zurückgehen würde. Während der Beprobung im Frühjahr 2014 wurde lediglich ein Exemplar gefangen. Der Bereich des Untersuchungsgebietes wird vom Lachs bei seiner Laich- und Nahrungsmigration durchwandert. Das Bauvorhaben könnte den Lachs während der Migrationen beeinträchtigen. Die Beeinträchtigung des Lachses durch das Bauvorhaben ist als gering einzustufen, da die baubedingten Wirkungen räumlich und zeitlich begrenzt sind.

Die äußeren Küstengewässer werden neben den genannten Arten auch noch von anderen gefährdeten Rote-Liste-Arten (wie z. B. vom Europäischen Flussaal) bzw. von weiteren Arten des Anhangs II der FFH-RL (z. B. Maifisch, Meerneunauge und Flussneunauge) als Durchzugs- und Nahrungsgebiet genutzt (THIEL & WINKLER 2007; DOROW & UBL 2011). Keine von diesen Arten wurden während der Untersuchungen zum OWP "Gennaker" erfasst. Auch in den Untersuchungen vom TI-OF und ICES konnten diese Arten nicht nachgewiesen werden. Der Europäische Flussaal wurde allerdings während früherer Untersuchungen im erweiterten Bereich des Untersuchungsgebietes nachgewiesen. Diese Art wurde während der Basisuntersuchungen sowie während der baubegleitenden Untersuchung zum OWP "Baltic I" erfasst (IFAÖ 2004; IFAÖ 2011). Es ist daher nicht ausgeschlossen, dass diese Art auch im Bereich der aktuellen Gebietsgrenzen des OWP "Gennaker" vorkommen könnten. Der Europäische Flussaal ist seit

2007 Gegenstand intensiver Erhaltungsmaßnahmen (Verordnung (EG) Nr. 1100/2007 "Maßnahmen zur Wiederauffüllung des Bestandes des Europäischen Aals"), wobei Deutschland in besonders hohem Maß für die weltweite Erhaltung des Europäischen Flussaals verantwortlich ist (THIEL et al. 2013). In der HELCOM Roten Liste ist der Europäische Flussaal als "endangered" eingestuft und in der IUCN Roten Liste sogar als "critically endangered" aufgeführt (HELCOM 2006, IUCN 2010). Die Gefährdungsursachen für den Europäischen Flussaal sind dabei sehr vielfältig. Neben der direkten Befischung im gesamten Verbreitungsgebiet zählen genauso Wasserbaumaßnahmen, Schadstoffeinträge in den aquatischen Lebensraum sowie die Einschleppung des aus dem asiatischen Raum stammenden Schwimmblasenwurms Anguillicoloides crassus (FRIEDLAND et al. 2007; DURIF et al. 2010) zu diesen Ursachen. Neben der sehr langen Laichmigration, bei der der Europäische Flussaal, je nach Ausgangspunkt, den gesamten Ostseeraum durchwandert, unternimmt der Europäische Flussaal eine weitreichende Nahrungsmigration (WESTIN 1998; SJÖBERG & PETERSON 2005). Dabei (und auch generell) können Aale jahreszeitlich bedingt auch zwischen dem Binnen- und Küstenbereich wechseln (DOROW & UBL 2011). Im Bereich des OWP "Gennaker" ist von einem potenziellen, aber zeitlich begrenzten Auftreten auszugehen. Ein dauerhafter Aufenthalt in dem Vorhabengebiet wird aufgrund der weitgehend homogenen Habitatstrukturen nicht erwartet.

Mit der Aalmutter wurde während allen vier Untersuchungsjahren der Basisaufnahme eine Art registriert, die auf der Vorwarnliste steht (Kategorie V, THIEL et al. 2013). Auch in den Fischfängen des TI-OF und ICES war diese Art in allen Jahren vertreten.

Bei acht Arten (Doggerscharbe, Fleckengrundel, Gefleckter Großer Sandaal, Glasgrundel, Goldmaid, Seeskorpion, Seestichling und Tobiasfisch) ist die Datengrundlage für eine Gefährdungseinschätzung unzureichend (Kategorie D, THIEL et al. 2013). Mit der Schwarzmundgrundel wurde eine gebietsfremde, invasive Art erfasst. Der Seehecht gilt in der deutschen Ostsee als nicht etabliert (THIEL et al. 2013). Alle anderen nachgewiesenen Arten werden als ungefährdet eingestuft (THIEL et al. 2013).

Die Fischgemeinschaft im Vorhabengebiet des OWP "Gennaker" wird hinsichtlich des Kriteriums "Seltenheit und Gefährdung" als **mittel bis hoch** eingestuft. Es wurde zwar im betrachteten Untersuchungszeitraum 2012-2024 mit der Finte eine Art des Anhangs II der FFH-RL (Gefährdungskategorie 3) und mit dem Spitzschwanz-Schlangenstachelrücken eine Rote-Liste-Art der Gefährdungskategorie 1 erfasst, jedoch wurden beide Arten nur in sehr geringer Anzahl (maximal zwei Individuen) und nicht zu jedem Fangzeitpunkt (beide Arten jeweils im Herbst 2023) gefangen (siehe Bewertungsansatz Tab. 4).

5.3.3 Vorbelastung

Die Vorbelastung einer Fischgemeinschaft wird als gering bewertet, wenn keine oder nur geringe Fischereiaktivitäten im betreffenden Seegebiet auftreten. Eine mittlere Einstufung wird dann vorgenommen, wenn eine mittlere Fischereiintensität vorherrscht, die zeitlich begrenzt oder nicht so intensiv ist, dass es zu einer Meidung befischter Gebiete durch Fische kommt bzw. zu einer erheblichen Veränderung in der Struktur der Fischgemeinschaft bzw. in der Altersstruktur einzelner Fischbestände führt. Von einer hohen Vorbelastung wird ausgegangen, wenn eine starke Fischereiintensität vorherrscht und es zu einer starken Veränderung in der Struktur der

Fischgemeinschaft bzw. in der Altersstruktur einzelner Fischbestände kommt (Wachstumsoder / und Rekrutierungsüberfischung ist anhand einer unnatürlichen Längenklassen- bzw. Altersklassenzusammensetzung nachweisbar).

In der Ostsee wurden seit jeher und werden auch heutzutage die Bestände der Arten Hering, Sprotte, Dorsch, Flunder, Kliesche, Scholle, Atlantischer Lachs, Meerforelle und Aal kommerziell genutzt (WEGNER 2003). Nach ZIMMERMANN (2024) sind die Bestände kommerziell genutzter Arten in der Ostsee stark zurückgegangen. Neben Veränderungen der Wassertemperatur, erhöhtem Sauerstoffverbrauch und einem hohen Nährstoffeintrag aus der Landwirtschaft trägt auch der Fischereidruck zu dieser Entwicklung bei (ZIMMERMANN 2024). Viele Jahre hinweg war der Fischereidruck in der Ostsee zu hoch, da die Fangquoten zu großzügig festgelegt wurden. Die Fischereiflotte in der Ostsee ist jedoch nahezu zusammengebrochen, und die Befischung hat erheblich abgenommen – hauptsächlich aufgrund der stark geschrumpften Bestände (ZIMMERMANN 2024). Daher nehmen die Unsicherheiten bei der Bestandsberechnung zu. In der westlichen Ostsee hat der Fischereidruck (mit Ausnahme der Sprotte) keinen wesentlichen Einfluss mehr auf die Bestandsentwicklung der anderen kommerziell genutzten Arten. Ohne eine Veränderung der Umweltbedingungen ist eine Erholung der Bestände unwahrscheinlich oder wird nur sehr langsam erfolgen (ZIMMERMANN 2024).

Bei einer regelmäßigen Befischung eines Bestandes und der damit verbundenen Entnahme größerer Individuen ist von einer deutlichen Veränderung in der Altersstruktur des befischten Bestandes auszugehen ("age-class truncation", STEWART 2011). Anzeichen dafür konnten im Rahmen der aktuellen Untersuchung bei den Arten Dorsch, Kliesche und Scholle gefunden werden (siehe Längenhäufigkeitsverteilungen Kap. 4.2.4). Bei diesen Arten war eine fischereilich bedingte Verjüngung der Bestände zu erkennen. So war bei diesen Arten der Anteil größerer bzw. älterer Individuen an der Gesamtzahl vermessener Individuen sehr gering. Somit ist bei den drei genannten Arten von einem Fischereidruck auszugehen.

Dem IfAÖ lagen für den Bereich des Vorhabengebietes des Offshore-Windparks "Gennaker" (ICES-Rechteck 38G2) VMS-Daten (Vessel Monitoring System) und Aufwandsdaten der Bundesanstalt für Landwirtschaft und Ernährung (BLE) für die Jahre 2020 bis 2022 vor. Im Bereich des Vorhabengebietes wird überwiegend Schleppnetzfischerei betrieben. Zwischen 2020 und 2021 betrug die Fischereitätigkeit im Vorhabengebiet und dessen unmittelbarer Umgebung pro Quartal zwischen 0 und 45 Stunden. Im Jahr 2022 ging die Intensität der Fischerei deutlich zurück, mit einem Rückgang auf 0 bis 5 Stunden pro Quartal. In allen drei betrachteten Jahren unterlag die Fischereiintensität jahreszeitlichen Schwankungen, wobei die höchste Aktivität jeweils im 1. und 4. Quartal verzeichnet wurde, während die Fischereitätigkeit in den anderen Quartalen deutlich geringer war. Hauptsächlich wurden die Arten Hering, Scholle, Flunder, Steinbutt, Wittling und Dorsch angelandet.

Im Vorhabengebiet OWP "Gennaker" und den umliegenden Bereichen ist von einem Fischereiaufwand geringer bis mittlerer Intensität auszugehen. Bei einigen kommerziell genutzten Arten war ein Einfluss auf ihre Längenverteilung zu erkennen. Unter Berücksichtigung des in Tab. 4 aufgeführten Bewertungsansatzes wird die "Vorbelastung" der im Vorhabengebiet des OWP "Gennaker" ansässigen Fischgemeinschaft als **mittel** eingestuft.

5.3.4 Gesamtbewertung

Das untersuchte Vorhabengebiet des OWP "Gennaker" wird auf Basis der o. g. Einzelkriterien für die Fischfauna insgesamt mit **mittel bis hoch** bewertet (Tab. 17).

Tab. 17: Bewertungsmatrix zur Bestandsbewertung der Fische im Bereich des OWP "Gennaker".

Kriterien der Bestandsbewertung	Bewertung für den OWP "Gennaker"	Begründung
Vielfalt und Eigenart	hoch	lebensraumtypische Artengemeinschaft und Dominanzstruktur
Seltenheit und Gefährdung	mittel bis hoch	Zwei Exemplare einer Art des Anhangs II der FFH-RL und Gefährdungskategorie 3 während des 4. Jahr der Basisaufnahme im Herbst 2023 Einzelexemplar einer Roten-Liste-Art mit der Gefährdungskategorie 1 während des 4. Jahr der Basisaufnahme im Herbst 2023
Vorbelastung	mittel	deutliche fischereiliche Aktivitäten vorhanden, allerdings zeitlich begrenzt; Einfluss auf Längenverteilung
Gesamtbewertung	mittel bis hoch	

6 Glossar und Abkürzungsverzeichnis

Abundanz Anzahl Individuen pro Fläche

adult geschlechtsreifes Entwicklungsstadium

ANOSIM Analysis of Similarity; Routine zur Ermittlung signifikanter

Unterschiede zweier multivariater Datensätze

Altersgruppe 0 Fische, die ihr erstes Lebensjahr noch nicht beendet

haben.

rmANOVA repeated measure analysis of variance; Varianzanalyse mit

Messwiederholung

AWZ ausschließliche Wirtschaftszone

benthische Fischfauna Fischarten, die bodengebunden vorkommen

bentho-pelagische Fischfauna Fischarten, die in der Wassersäule knapp über dem

Meeresboden vorkommen

Benthos Lebensgemeinschaft des Gewässerbodens
Bft Angabe der Windstärke, Beaufort-Skala

BSH Bundesamt für Seeschifffahrt und Hydrographie

°C Grad Celsius

ca. zirka

Charakterarten diese Arten stellten in den Hols des jeweiligen Gebietes

mehr als 90 % der gefangenen Individuen

demersale Fischfauna bodennah lebende Fischarten, bestehend aus benthisch

und bentho-pelagisch lebende Fischarten

Diversität Maß für die biologische Vielfalt

Dunn-Bonferroni Test Post-Hoc-Test nach einer Varianzanalyse, gibt Auskunft,

welche Mittelwerte (Mediane) sich signifikant voneinander

unterscheiden

Epifauna auf dem Gewässerboden lebende Tiere

et al. und weitere (Autoren)

Evenness Index, der angibt, wie gleichmäßig die Individuen auf die

Arten verteilt sind

FFH-Arten Anhang II Auflistung von Tier- und Pflanzenarten für die

Schutzgebiete im NATURA 2000-Netz eingerichtet werden

müssen

FFH-RL Flora-Fauna-Habitat-Richtlinie

Grad, min Einheit für Koordinaten

ICES International Council for the exploration of the Sea IfAÖ Institut für Angewandte Ökosystemforschung GmbH

Ind./ha Individuen pro Hektar

juvenil Entwicklungsstadium vor der Geschlechtsreife

Kampagne Untersuchungszeitraum, Befischungszeitraum

kn Knoten Kapitel

kg/ha Kilogramm pro Hektar

Kruskal-Wallis H-Test einfache nicht parametrische Varianzanalyse (ANOVA,

analysis of variance), Vergleich zwischen mehr als zwei Gruppen, testet den Einfluss einer nominalskalierten Variable (z. B. Fangzeitpunkt) auf eine intervallskalierten

Variable (z. B. Abundanz)

LEP Landesraumentwicklungsprogramm

nMDS (nicht metrische) multidimensionale Skalierung;

Abbildungsverfahren einer Ähnlichkeitsanalyse

Mann-Whitney-U-Test nicht-parametrischer Test; prüft ob zwei unabhängige

Stichproben von Datensätzen zu derselben

Grundgesamtheit gehören

max. maximal Mw Mittelwert

OWP Offshore-Windpark

p-Wert im Zusammenhang mit statistischen Analysen: Signifikanz

pelagische Fischfauna Fischarten, die im Freiwasserbereich vorkommen

Präsenz Nachweishäufigkeit einer Art in den Hols, Anteil der Hols

einer Kampagne, in dem eine Art vorkommt

PSU practical salinity unit - Einheit des Salzgehalts

R-Wert in Zusammenhang mit ANOSIM: Korrelationskoeffizient

RI-Index Relative Importance Index, Bedeutungsindex nach George

& Hadley 1979

Similarität bzw. Dissimilarität Ähnlichkeit bzw. Unähnlichkeit: Begriffe im

Zusammenhang mit der Gemeinschaftsanalyse (PRIMER)

SIMPER Similarity Percentages; PRIMER-Routine zur Ermittlung

von trennenden Arten zwischen zwei Gruppen und

verbindenden Arten innerhalb einer Gruppe

"Sonstige" Nicht-Charakterfischarten Stabw Standardabweichung

StUK Standarduntersuchungskonzept

UTC Universal Time Coordinated (entspricht "Greenwich Mean

Time")

WEA Windenergieanlage(n)

WGS 84 World Geodetic System, ein globales Referenzsystem zur

Navigation

WPT Windparktrawl z. B. zum Beispiel

7 Literatur- und Quellenverzeichnis

BERNER, M. & H. BORRMANN (1977):

Die fischereibedingte Entwicklung der Ostseedorschbestände in den ICES-Untergebieten 22 (Beltsee) und 24 (Arkonasee) in den Jahren 1965 - 1976, dargestellt mittels VPA. Fischereiforschung: Wissenschaftliche Schriftenreihe des Instituts für Hochseefischerei und Fischverarbeitung **15**: 7-31.

BLEIL, M. & R. OEBERST (2000):

Laichgebiete des Dorschs in der westlichen Ostsee. Informationen für die Fischwirtschaft aus der Fischereiforschung **47**(4): 186-190.

BRUNKEN, H. (2008):

Bestimmungsschlüssel deutsche Süßwasserfische: Gobiidae, Grundeln. In: Fischfauna-Online - Digitaler Fischartenatlas von Deutschland und Österreich. Hrsg.: H. Brunken & M. Winkler. Gesellschaft für Ichthyologie e.V. und Hochschule Bremen, World Wide Web electronic publication.

BSH (2013):

Untersuchung der Auswirkung von Offshore-Windenergieanlagen auf die Meeresumwelt (StUK 4). Bundesamt für Seeschifffahrt und Hydrographie (BSH).

BSH (2021):

Umweltbericht zum Raumordnungsplan für die deutsche ausschließliche Wirtschaftszone in der Ostsee. Bundesamt für Seeschifffahrt und Hydrographie.

CLARKE, K. R. & R. N. GORLEY (2006):

Primer v6: User manual / tutorial. Plymouth, Primer-E Ltd. 190 S.

CLARKE, K. R. & R. M. WARWICK (2001):

Changes in marine communities: An approach to statistical analysis and interpretation. Plymouth, PRIMER-E. 172 S.

DOROW, M. & C. UBL (2011):

Überwachung des Aalbestandes in den Küstengewässern von Mecklenburg-Vorpommern - Ergebnisse einer zweijährigen Pilotstudie. Mitteilungen der Landesforschungsanstalt für Landwirtschaft und Fischerei Mitteilung der Landesforschungsanstalt für Fischerei und Landwirtschaft **45**: 21-30.

DURIF, C. M. F., J. GJØSAETER & L. A. VØLLESTAD (2010):

Influence of oceanic factors on Anguilla anguilla (L.) over the twentieth century in coastal habitats of the Skagerrak, southern Norway. Proc Biol Sci **278**(1704): 464-473.

EBERT, D. A. & M. F. W. STEHMANN (2013):

Sharks, batoids and chimaeras of the North Atlantic. FAO Species Catalogue for Fishery Purposes **7**. Rome (Italy), Food and Agriculture Organization of the United Nations (FAO). 524 S.

FLORIN, A.-B. (2005):

Flatfishes in the Baltic Sea - a review of biology and fishery with a focus on swedish conditions. Finfo **2005**: **14**.

FRICKE, R. (1996):

Deutsche Meeresfische. Bestimmungsbuch. Hamburg, Deutscher Jugendbund für Naturbeobachtung. 219 S.

FRICKE, R., W. N. ESCHMEYER & J. D. FONG (2024A):

Eschmeyer's catalog of fishes: Species by family/subfamily. Electronic version accessed 17-07-2024.

(http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp.

FRICKE, R., W. N. ESCHMEYER & R. VAN DER LAAN (2024B):

Eschmeyer's catalog of fishes: Genera, species, references. Electronic version accessed 17-07-2024.

http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp.

FRIEDLAND, K. D., M. J. MILLER & B. KNIGHTS (2007):

Oceanic changes in the Sargasso Sea and declines in recruitment of the European eel. ICES Journal of Marine Science **64**: 519-530.

FRIEß, C. C. (1987):

Ergebnisse und Bewertung von Grundfischsurveys des FFS "Eisbär" in der Arkonasee und Mecklenburger Bucht in den Winterhalbjahren 1981-86 für Flunder, Scholle, Steinbutt und Kliesche. Fischerei-Forschung, Rostock **25: 55-62**.

FRIEß, C. C. (1999):

Entwicklungstendenzen der Steinbuttfischerei in der Ostsee. Informationen für die Fischwirtschaft aus der Fischereiforschung, Hamburg und Rostock **46 (24): 18-22**.

FROESE, R. & D. PAULY (2024):

FishBase 2024: concepts, design and data sources. www.fishbase.org. Zugriff am 17.07.2024.

GEORGE, E. L. & W. F. HADLEY (1979):

Food and habitat partitioning between rock bass (*Ambloplites rupestris*) and smallmouth bass (*Micropterus dolomieui*) young of the year. Transactions of the American Fisheries Society **108**(3): 253-261.

GORDON, J. D. M. & J. A. R. DUNCAN (1979):

Some notes on the biology of the snakeblenny, Lumpenus lampretaeformis on the west coast of Scotland. J. Mar. Biol. Assoc. U.K. **59(2): 413-419**.

HAMERLYNCK, O. (1990):

The identification of *Pomatoschistus minutus* (Pallas) and *Pomatoschistus lozanoi* (de Buen) (Pisces, Gobiidae). Journal of Fish Biology **37**(5): 723-728.

HEESSEN, H. J. L., N. DAAN & J. R. ELLIS, EDS. (2015):

Fish atlas of the Celtic Sea, North Sea and Baltic Sea: Based on international research-vessel surveys. Wageningen, Netherlands, Wageningen Academic Publishers. 572 S.

HELCOM (2006):

HELCOM Red list of threatened and declining species of lampreys and fish of the Baltic Sea. Baltic Sea Environment Proceedings **No. 109**: 40 pp.

HELCOM (2013):

Species Information sheet Merlangius merlangus. HELCOM Red List Fish and Lamprey Species Expert Group 2013. www.helcom.fish> Baltic Sea trends > Biodiversity > Red List of species.

ICES (2024):

DATRAS-Datenbank. Baltic International Trawl Survey. https://www.ices.dk/data/data-portals/Pages/DATRAS.aspx. Zugriff am 15.08.2024.

IFAÖ (2004):

Fachgutachten Fische zum Offshore-Windparkprojekt "Baltic I". Pilotvorhaben Mecklenburg-Vorpommern, Betrachtungszeitraum: Sommer 2002 bis Frühjahr 2003. Gutachten im Auftrag von Offshore Ostsee Wind AG, unveröffentlicht.

IFAÖ (2011):

Baubegleitende fischbiologische Untersuchungen im Vorhabensgebiet "Baltic I". Betrachtungszeitraum: 2010. Gutachten im Auftrag von EnBW Ostsee Offshore GmbH, unveröffentlicht.

IFAÖ (2013):

Fachgutachten Fische zum Offshore Windparkprojekt "Gennaker". Gutachten zur Basisuntersuchung (1. Untersuchungsjahr) im Auftrag der OWP Gennaker GmbH, unveröffentlicht.

IFAÖ (2014):

Fachgutachten Fische zum Offshore Windparkprojekt "Gennaker". Gutachten zur Basisuntersuchung (1. und 2. Untersuchungsjahr) im Auftrag der OWP Gennaker GmbH, unveröffentlicht.

IFAÖ (2016):

Fachgutachten Fische zum Offshore Windparkprojekt "Gennaker". Gutachten zur Basisuntersuchung (3. Untersuchungsjahr) im Auftrag der OWP Gennaker GmbH, unveröffentlicht.

IFAÖ (2024):

Fachgutachten Benthos für den Offshore-Windpark "Gennaker" 1.-4. Jahr der Basisaufnahme. Im Auftrag der OWP Gennaker GmbH, unveröffentlicht.

IUCN (2010):

IUCN Red List of Threatened Species. www.iucnredlist.org.

KUBE, J. (2000):

Naturschutzrelevante Untersuchungen zur Offshore-Windenergienutzung. Bundesamt für Naturschutz und Bundesministerium für Umwelt und Reaktorsicherheit, unveröffentlicht: 21 S.

Lozán, J. L. (1989):

Investigation on the growth dab (*Limanda limanda*) in 8 areas of the north-sea and comparisons with earlier findings. Archiv für Fischereiwissenschaft **39**(2): 111-146.

Lozán, J. L. & H. Kausch (2007):

Angewandte Statistik für Naturwissenschaftler. Wissenschaftliche Auswertungen. Hamburg. 304 S.

LYNGHAMMAR, A. (2014):

Identification guide for skates (Chondrichthyes: Rajiformes) in Norwegian waters, for both sexes and all stadiums. 8 S.

MIESKE, B. (2002):

Veränderungen in Fischgesellschaften - mit welchem Schleppnetz kann man sie nachweisen? Informationen für die Fischwirtschaft aus der Fischereiforschung **49**(2): 71-80.

Muus, B. J. & J. G. Nielsen (2013):

Die Meeresfische Europas in Nordsee, Ostsee und Atlantik. Stuttgart (Germany), Franckh-Kosmos Verlag. 340 S.

NELLEN, W. & R. THIEL (1996):

Fische. In: Meereskunde der Ostsee. Hrsg.: G. Reinheimer: S. 190-196. Springer-Verlag, Berlin Heidelberg New York.

NEUDECKER, T. & U. DAMM (2004):

Recognition of a third callionymid species, *Callionymus reticulatus* Valenciennes 1837 (reticulated dragonet), in the south-eastern North Sea. Journal of Applied Ichthyology **20**(3): 204-210.

PIELOU, E. C. (1966):

The measurement of diversity in different types of biological collections. Journal of Theoretical Biology **13**: 131-144.

RENAUD, C. B. (2011):

Lampreys of the world: An annotated and illustrated catalogue of lamprey species known to date. FAO Species Catalogue for Fishery Purposes **5**. Rome (Italy), Food and Agriculture Organization of the United Nations (FAO). 109 S.

SAGER, G. & M. BERNER (1989):

Investigation of growth in length and weight of three flatfish species in the Baltic. Rapports et procès-verbaux des réunions/Conseil permanent international pour l'exploration de la mer **190**: 105-108.

SHANNON, C., E. & W. WEAVER (1949):

The mathematical theory of communication. Urbana, The University of Illinois Press. 144 S.

SJÖBERG, N. B. & E. PETERSON (2005):

Blankålsmärkning. Till hjälp för att förstå blankålens migration i Östersjön. Fiskeriverket informerar, FINFO 3.

STEWART, J. (2011):

Evidence of ageclass truncation in some exploited marine fish populations in New South Wales, Australia. Fisheries Research 108 (1):209-213.

STÖCKER, G. & A. BERGMANN (1977):

Ein Modell der Dominanzstruktur und seine Anwendung. 1. Modellbildung Modellrealisierung, Dominanzklassen. Archiv für Naturschutz und Landschaftsforschung 17(1): 1-26.

THIEL, R. & I. BACKHAUSEN (2006):

Survey of NATURA 2000 fish species in the German North and Baltic Seas. In: Progress in Marine Conservation in Europe. Hrsg.: H. Von Nordheim, D. Boedeker & J. C. Krause: S. 157-178. Springer Verlag, Berlin & Heidelberg.

THIEL, R. & H. M. WINKLER (2007):

Erfassung von FFH-Anhang II-Fischarten in der deutschen AWZ von Nord- und Ostsee (ANFIOS). Schlussbericht über das F+E-Vorhaben. FKZ: 803 85 220. Bundesamt für Naturschutz (BfN), 114 S.

THIEL, R., H. M. WINKLER, U. BÖTTCHER, A. DÄNHARDT, R. FRICKE, M. GEORGE, M. H. F. KLOPPMANN, T. SCHAARSCHMIDT, C. UBL & R. VORBERG (2013):

Rote Liste und Gesamtartenliste der etablierten Fische und Neunaugen (Elasmobranchii, Actinopterygii & Petromyzontidae) der marinen Gewässer Deutschlands. In: Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands, Band 2: Meeresorganismen. Hrsg.: N. Becker, H. Haupt, N. Hofbauer, G. Ludwig & S. Nehring. Naturschutz und Biologische Vielfalt **70(2)**: S. 11-76. Bundesamt für Naturschutz.

THIEL, R., H. M. WINKLER & R. NEUMANN (2004):

Erfassung von FFH-Anhang II Fischarten in der deutschen AWZ von Nord- und Ostsee. F+E-Vorhaben im Auftrag des Bundesamtes für Naturschutz. 1. Zwischenbericht: 67 S.

THIEL, R., H. M. WINKLER & L. URHO (1996):

Zur Veränderung der Fischfauna. In: Warnsignale aus der Ostsee: Wissenschaftliche Fakten. Hrsg.: J. L. Lozán, R. Lampe, W. Matthäus, E. Rachor, H. Rumohr & H. von Westernhagen: S. 181-188. Parey Buchverlag, Berlin.

THÜNEN INSTITUT FÜR OSTSEEFISCHEREI (2022):

Fischereisurvey-Daten BITS 2020-2021. www.fischbestaende-online.de

VAINIKKA, A., A. GARDMARK, B. BLAND & J. HJELM (2009):

Two- and three-dimensional maturation reaction norms for the eastern Baltic cod, Gadus morhua. ICES Journal of Marine Science **66**(2): 248-257.

WEGNER, G. (2003):

Zur Geschichte der Fischerei in Nordsee und Ostsee. In: Fische und Fischerei in Ost- und Nordsee. Meer und Museum 17: S. 45-59. Deutsches Meeresmuseum, Stralsund.

WESTIN, L. (1998):

The spawning migration of European silver eel (*Anguilla anguilla* L.) with particular reference to stocked eel in the Baltic. Fisheries Research **38**(3): 257-270.

WHITEHEAD, P. J. P., M.-L. BAUCHOT, J.-C. HUREAU, J. NIELSEN & E. TORTONESE, EDS. (1986):

Fishes of the North-eastern Atlantic and the Mediterranean **Volume I + II + III**. Paris, United Nations Educational, Scientific and Cutural Organisation (UNESCO).

WINKLER, H. M. & H. SCHRÖDER (2003):

Die Fischfauna der Ostsee, Bodden und Haffe. In: Fische und Fischerei in Ost- und Nordsee. Hrsg.: R. Thiel. Meer und Museum - Schriftenreihe des Deutschen Meeresmuseums: S. 25-35. Deutsches Meeresmuseum, Stralsund.

WINKLER, H. M., K. SKORA, R. REPEČKA, M. PLOKS, A. NEELOV, L. URHO, A. GUSHIN & H. JESPERSEN (2000):

Checklist and state of Baltic Sea fish species Copenhagen (Denmark), International Council for the Exploration of the Sea (ICES): 15 S.

ZIMMERMANN, C. (2024):

Entwicklung der Ostsee-Fischbestände 2024. Vortrag des TI-OF (Thünen-Institut für Ostseefischerei) vor der Zukunftkommission Fischerei am 05.06.2024.

8 Anhang

8.1 Material und Methoden

8.1.1 Koordinaten – 4. Jahr Basisaufnahme

Tab. 18: Eckkoordinaten der Außengrenze des vom Landesraumentwicklungsprogramm des Landes Mecklenburg-Vorpommern (LEP) für Windenergieanlagen ausgewiesene Vorhabenfläche.

Bezeichnung Eckpunkt	Nördliche Breite [Grad, min]	Östliche Länge [Grad, min]	Flächengröße [km²]
V_1	54° 36,110' N	12° 41,470' E	
V_2	54° 35,821' N	12° 40,808' E	
V_3	54° 35,767' N	12° 40,638′ E	
V_4	54° 35,089' N	12° 39,083' E	
V_5	54° 35,285' N	12° 36,201' E	
V_6	54° 34,991' N	12° 35,368′ E	
V_7	54° 34,867' N	12° 34,513' E	
V_8	54° 34,837' N	12° 34,257' E	
V_9	54° 34,798' N	12° 34,040' E	
V_10	54° 34,557' N	12° 32,384' E	
V_11	54° 35,023' N	12° 31,136′ E	
V_12	54° 34,739' N	12° 29,911' E	
V_13	54° 34,464' N	12° 28,837' E	
V_14	54° 34,295' N	12° 27,826' E	
V_15	54° 34,894' N	12° 28,008' E	
V_16	54° 35,657' N	12° 29,288' E	
V_17	54° 36,013′ N	12° 30,143′ E	
V_18	54° 36,345′ N	12° 31,056' E	
V_19	54° 36,694' N	12° 31,838′ E	84,24
V_20	54° 37,042′ N	12° 32,703′ E	
V_21	54° 37,255′ N	12° 33,591' E	
V_22	54° 37,652′ N	12° 34,236′ E	
V_23	54° 38,069′ N	12° 35,919' E	
V_24	54° 38,669′ N	12° 36,777' E	
V_25	54° 39,014' N	12° 37,708′ E	
V_26	54° 39,369' N	12° 38,626′ E	
V_27	54° 39,749' N	12° 39,594' E	
V_28	54° 40,179' N	12° 40,728′ E	
V_29	54° 39,728' N	12° 41,059' E	
V_30	54° 39,316' N	12° 41,999' E	
V_31	54° 39,000' N	12° 42,715' E	
V_32	54° 38,250' N	12° 43,056′ E	
V_33	54° 37,776' N	12° 43,376′ E	
V_34	54° 37,248' N	12° 43,521' E	
V_35	54° 36,424' N	12° 43,098' E	
V_36	54° 36,211' N	12° 42,028' E	
V_37	54° 36,175' N	12° 41,915′ E	

Tab. 19: Eckkoordinaten und Flächengrößen der drei Teilflächen des Vorhabengebietes OWP "Gennaker" während der Beprobung im Herbst 2023.

Fläche	Name	Nördliche Breite	Östliche Länge	Flächengröße [km²]
Teilfläche A	A-1	[Grad, min] 54° 37,408' N	[Grad, min] 12° 37,798' E	
Teilfläche A	A-2	54° 37,048' N	12° 37,730 E	
Teilfläche A	A-3	54° 36,785' N	12° 36,534' E	
Teilfläche A	A-4	54° 36,302' N	12° 35,071' E	
Teilfläche A	A-5	54° 36,740' N	12° 34,771' E	
Teilfläche A	A-6	54° 36,560' N	12° 33,954' E	
Teilfläche A	A-7	54° 36,221' N	12° 33,225' E	
Teilfläche A	A-8	54° 35,662' N	12° 33,138' E	
Teilfläche A	A-9	54° 35,374' N	12° 32,466′ E	
Teilfläche A	A-10	54° 35,074' N	12° 31,752' E	
Teilfläche A	A-11	54° 35,078' N	12° 30,796' E	
Teilfläche A	A-12	54° 34,573' N	12° 29,177' E	
Teilfläche A	A-13	54° 34,395' N	12° 28,351' E	
Teilfläche A	A-14	54° 34,238' N	12° 27,547' E	
Teilfläche A	A-15	54° 34,545' N	12° 27,468' E	
Teilfläche A	A-16	54° 34,995' N	12° 28,199' E	30,29
Teilfläche A	A-17	54° 35,668' N	12° 29,342' E	
Teilfläche A	A-18	54° 35,953' N	12° 30,020' E	
Teilfläche A	A-19	54° 37,353' N	12° 33,531' E	
Teilfläche A	A-20	54° 37,629′ N	12° 34,246′ E	
Teilfläche A	A-21	54° 37,234' N	12° 34,557' E	
Teilfläche A	A-22	54° 37,102' N	12° 35,420′ E	
Teilfläche A	A-23	54° 37,559' N	12° 35,888' E	
Teilfläche A	A-24	54° 38,028' N	12° 36,008' E	
Teilfläche A	A-25	54° 38,295' N	12° 36,767' E	
Teilfläche A	A-26	54° 38,725' N	12° 36,970' E	
Teilfläche A	A-27	54° 39,290' N	12° 38,366′ E	
Teilfläche A	A-28	54° 39,854' N	12° 39,798' E	
Teilfläche A	A-29	54° 40,078' N	12° 40,642′ E	_
Teilfläche A	A-30	54° 39,697' N	12° 41,118′ E	
Teilfläche A	A-31	54° 38,734' N	12° 39,656' E	
Teilfläche A Teilfläche B	A-32 B-1	54° 38,377' N 54° 39,619' N	12° 38,996' E 12° 43,357' E	
Teilfläche B	B-2	54° 39,188' N	12° 43,643' E	
Teilfläche B	B-3	54° 38,745' N	12° 43,854' E	
Teilfläche B	B-4	54° 38,294' N	12° 43,668′ E	
Teilfläche B	B-5	54° 37,865' N	12° 43,585' E	
Teilfläche B	B-6	54° 37,438' N	12° 43,503 E	
Teilfläche B	B-7	54° 36,996' N	12° 43,587' E	11,89
Teilfläche B	B-8	54° 36,585' N	12° 43,679' E	,55
Teilfläche B	B-9	54° 36,363' N	12° 42,878' E	
Teilfläche B	B-10	54° 36,047' N	12° 41,233' E	
Teilfläche B	B-11	54° 35,453' N	12° 39,920' E	
Teilfläche B	B-12	54° 35,163' N	12° 39,261' E	
Teilfläche B	B-13	54° 36,512' N	12° 40,989' E	

Fläche	Name	Nördliche Breite [Grad, min]	Östliche Länge [Grad, min]	Flächengröße [km²]
Teilfläche B	B-14	54° 37,251' N	12° 41,955' E	
Teilfläche B	B-15	54° 37,576' N	12° 42,625′ E	
Teilfläche B	B-16	54° 38,540′ N	12° 43,058' E	
Teilfläche B	B-17	54° 38,582' N	12° 41,849′ E	
Teilfläche B	B-18	54° 38,216′ N	12° 40,463′ E	
Teilfläche B	B-19	54° 38,953' N	12° 41,487' E	
Teilfläche B	B-20	54° 39,371' N	12° 41,860′ E	
Teilfläche B	B-21	54° 39,297' N	12° 42,766′ E	
Teilfläche C	C-1	54° 34,655' N	12° 33,162′ E	
Teilfläche C	C-2	54° 34,612' N	12° 32,229′ E	
Teilfläche C	C-3	54° 35,231' N	12° 34,598' E	
Teilfläche C	C-4	54° 35,374' N	12° 35,439′ E	
Teilfläche C	C-5	54° 35,771' N	12° 35,907' E	2.56
Teilfläche C	C-6	54° 36,059' N	12° 36,774′ E	3,56
Teilfläche C	C-7	54° 35,572' N	12° 36,793' E	
Teilfläche C	C-8	54° 35,109' N	12° 36,752' E	
Teilfläche C	C-9	54° 34,932' N	12° 34,937' E	
Teilfläche C	C-10	54° 34,814' N	12° 34,038' E	
		Teilflächen (A+B+C) ge	samt 45,74 km²	

Tab. 20: Eckkoordinaten und Flächengrößen der drei Teilflächen des Vorhabengebietes OWP "Gennaker" während der Beprobung im Frühjahr 2024.

Fläche	Name	Nördliche Breite [Grad, min]	Östliche Länge [Grad, min]	Flächengröße [km²]
Teilfläche A	A-1	54° 34,295' N	12° 27,826′ E	
Teilfläche A	A-2	54° 34,894' N	12° 28,008′ E	
Teilfläche A	A-3	54° 35,657' N	12° 29,288' E	
Teilfläche A	A-4	54° 36,013′ N	12° 30,143′ E	
Teilfläche A	A-5	54° 36,345′ N	12° 31,056′ E	
Teilfläche A	A-6	54° 36,694' N	12° 31,838′ E	
Teilfläche A	A-7	54° 37,042′ N	12° 32,703′ E	
Teilfläche A	A-8	54° 37,255′ N	12° 33,591' E	
Teilfläche A	A-9	54° 37,652′ N	12° 34,236′ E	
Teilfläche A	A-10	54° 38,069′ N	12° 35,919′ E	
Teilfläche A	A-11	54° 38,669′ N	12° 36,777' E	
Teilfläche A	A-12	54° 39,014' N	12° 37,708′ E	33,73
Teilfläche A	A-13	54° 39,369′ N	12° 38,626′ E	
Teilfläche A	A-14	54° 39,749' N	12° 39,594' E	
Teilfläche A	A-15	54° 40,179′ N	12° 40,728′ E	
Teilfläche A	A-16	54° 39,728′ N	12° 41,059′ E	
Teilfläche A	A-17	54° 39,295' N	12° 40,241′ E	
Teilfläche A	A-18	54° 38,776′ N	12° 39,673′ E	
Teilfläche A	A-19	54° 38,164′ N	12° 38,872′ E	
Teilfläche A	A-20	54° 37,670′ N	12° 38,181' E	
Teilfläche A	A-21	54° 37,292′ N	12° 37,298′ E	
Teilfläche A	A-22	54° 36,755′ N	12° 36,439' E	
Teilfläche A	A-23	54° 36,297' N	12° 35,074' E	

Fläche	Name	Nördliche Breite [Grad, min]	Östliche Länge [Grad, min]	Flächengröße [km²]
Teilfläche A	A-24	54° 35,664' N	12° 33,137' E	
Teilfläche A	A-25	54° 35,407' N	12° 31,990' E	
Teilfläche A	A-26	54° 35,023' N	12° 31,136′ E	
Teilfläche A	A-27	54° 34,739' N	12° 29,911' E	
Teilfläche A	A-28	54° 34,464' N	12° 28,837' E	
Teilfläche B	B-1	54° 36,175' N	12° 41,915' E	
Teilfläche B	B-2	54° 36,110' N	12° 41,470' E	
Teilfläche B	B-3	54° 35,821' N	12° 40,808' E	
Teilfläche B	B-4	54° 35,767' N	12° 40,638' E	
Teilfläche B	B-5	54° 35,089' N	12° 39,083' E	
Teilfläche B	B-6	54° 35,497' N	12° 39,731' E	
Teilfläche B	B-7	54° 36,248' N	12° 40,944' E	
Teilfläche B	B-8	54° 36,691' N	12° 41,591' E	
Teilfläche B	B-9	54° 37,398' N	12° 42,670' E	
Teilfläche B	B-10	54° 38,544' N	12° 42,290' E	8,12
Teilfläche B	B-11	54° 38,340' N	12° 40,631' E	
Teilfläche B	B-12	54° 38,871' N	12° 41,385' E	
Teilfläche B	B-13	54° 39,316' N	12° 41,999' E	
Teilfläche B	B-14	54° 39,000' N	12° 42,715' E	
Teilfläche B	B-15	54° 38,250' N	12° 43,056' E	
Teilfläche B	B-16	54° 37,776' N	12° 43,376' E	
Teilfläche B	B-17	54° 37,248' N	12° 43,521' E	
Teilfläche B	B-18	54° 36,424' N	12° 43,098' E	
Teilfläche B	B-19	54° 36,211' N	12° 42,028' E	
Teilfläche C	C-1	54° 34,867' N	12° 34,513' E	
Teilfläche C	C-2	54° 34,837' N	12° 34,257' E	
Teilfläche C	C-3	54° 34,798' N	12° 34,040' E	
Teilfläche C	C-4	54° 34,557' N	12° 32,384' E	
Teilfläche C	C-5	54° 34,867' N	12° 33,284' E	2,38
Teilfläche C	C-6	54° 35,160′ N	12° 34,349′ E	
Teilfläche C	C-7	54° 35,770' N	12° 35,907' E	
Teilfläche C	C-8	54° 35,285' N	12° 36,201' E	
Teilfläche C	C-9	54° 34,991' N	12° 35,368' E	
		Teilflächen gesamt	: 44,23 km²	

Tab. 21: Koordinaten und Daten der durchgeführten Fischfänge im Herbst 2023 und Frühjahr 2024 an den Stationen des OWP "Gennaker".

Wt: Wassertiefe in m; F: befischte Fläche in ha; UTC: koordinierte Weltzeit (Universal Time Coordinated)

			START	Г	Ende				
Station	Datum	UTC	Nördl. Breite [Grad, min]	Östl. Länge [Grad, min]	UTC	Nördl. Breite [Grad, min]	Östl. Länge [Grad, min]	Wt [m]	F [ha]
PF16	02.11.2023	6:19	54° 35,733'	12° 40,288'	6:34	54° 36,330'	12° 41,267'	18,0	1,53
PF15	02.11.2023	7:09	54° 36,729'	12° 41,611'	7:24	54° 37,414'	12° 42,353'	18,0	1,50
PF14	02.11.2023	7:59	54° 37,362'	12° 43,179'	8:14	54° 38,162'	12° 43,379'	18,0	1,50
PF13	02.11.2023	8:42	54° 38,590'	12° 43,254'	8:57	54° 39,368'	12° 43,255'	19,0	1,44
PF12	02.11.2023	9:29	54° 38,729'	12° 42,229'	9:44	54° 38,432'	12° 40,931'	19,0	1,50
PF10	02.11.2023	10:13	54° 38,554'	12° 38,309'	10:28	54° 39,110'	12° 39,320'	19,0	1,50
PF11	02.11.2023	10:59	54° 39,577'	12° 40,237'	11:14	54° 39,413'	12° 38,866'	20,0	1,51
PF09	02.11.2023	11:38	54° 38,828'	12° 37,589'	11:53	54° 38,168'	12° 36,775'	19,0	1,51
PF06	02.11.2023	12:18	54° 37,383'	12° 34,071'	12:33	54° 36,793'	12° 33,107'	18,0	1,51
PF07	02.11.2023	12:57	54° 36,686'	12° 33,784'	13:12	54° 36,973'	12° 35,088'	18,0	1,50
PF08	02.11.2023	13:35	54° 37,147'	12° 35,729'	13:50	54° 37,741'	12° 36,692'	18,0	1,51
PF20	02.11.2023	14:18	54° 37,844'	12° 38,074'	14:33	54° 37,236'	12° 37,139'	19,0	1,51
PF19	02.11.2023	14:58	54° 37,063'	12° 36,555'	15:13	54° 36,560'	12° 35,463'	18,0	1,50
PF18	03.11.2023	6:17	54° 35,017'	12° 34,300'	6:32	54° 35,184'	12° 35,666'	17,0	1,50
PF17	03.11.2023	7:00	54° 35,826'	12° 36,454'	7:15	54° 35,096'	12° 35,853'	18,0	1,50
PF03	03.11.2023	7:44	54° 35,490'	12° 32,127'	7:59	54° 35,292'	12° 30,773'	17,0	1,50
PF04	03.11.2023	8:24	54° 35,819'	12° 30,918'	8:39	54° 36,331'	12° 32,000'	17,0	1,50
PF05	03.11.2023	9:00	54° 36,485'	12° 32,749'	9:15	54° 35,690'	12° 32,496'	17,0	1,50
PF02	03.11.2023	9:40	54° 35,466'	12° 30,397'	9:55	54° 34,863'	12° 29,467'	16,0	1,50
PF01	03.11.2023	10:17	54° 34,929'	12° 28,491'	10:32	54° 35,532'	12° 29,418'	16,0	1,50
PF01	20.04.2024	8:20	54° 34,928'	12° 28,490'	8:35	54° 35,533'	12° 29,417'	16,0	1,50
PF02	20.04.2024	9:02	54° 35,462'	12° 30,404'	9:17	54° 34,864'	12° 29,466'	16,0	1,50
PF03	20.04.2024	9:44	54° 35,292'	12° 30,775'	9:59	54° 35,486'	12° 32,126′	16,0	1,50
PF05	20.04.2024	10:18	54° 35,691'	12° 32,494'	10:33	54° 36,485'	12° 32,749'	17,0	1,50
PF04	20.04.2024	10:53	54° 36,331'	12° 31,998'	11:08	54° 35,823'	12° 30,915'	17,0	1,50
PF18	20.04.2024	11:37	54° 34,696'	12° 32,962'	11:52	54° 34,903'	12° 34,309'	16,0	1,50
PF17	20.04.2024	12:14	54° 35,291'	12° 34,207'	12:29	54° 35,739'	12° 35,346'	17,0	1,48
PF19	20.04.2024	12:54	54° 36,563'	12° 35,460'	13:09	54° 37,064'	12° 36,553'	18,0	1,50
PF08	20.04.2024	13:32	54° 37,743'	12° 36,695'	13:47	54° 37,160'	12° 35,732'	19,0	1,50
PF07	20.04.2024	14:07	54° 36,972'	12° 35,089'	14:22	54° 36,690'	12° 33,781'	18,0	1,50
PF06	20.04.2024	14:44	54° 36,800'	12° 33,104'	14:59	54° 37,386'	12° 34,063'	18,0	1,50
PF09	20.04.2024	15:22	54° 38,167'	12° 36,780'	15:37	54° 38,831'	12° 37,583'	19,0	1,50
PF11	20.04.2024	15:56	54° 39,416'	12° 38,868'	16:11	54° 39,574'	12° 40,241'	20,0	1,51
PF15	20.04.2024	16:34	54° 38,556'	12° 42,389'	16:49	54° 37,766'	12° 42,689'	19,0	1,50
PF16	21.04.2024	6:06	54° 35,743'	12° 40,309'	6:21	54° 36,332'	12° 41,261'	18,0	1,50
PF14	21.04.2024	6:45	54° 36,732'	12° 41,605'	7:00	54° 37,415'	12° 42,353'	19,0	1,50
PF13	21.04.2024	7:27	54° 36,868'	12° 43,029'	7:42	54° 37,677'	12° 43,043'	18,0	1,50
PF12	21.04.2024	8:06	54° 38,875'	12° 42,162'	8:21	54° 38,433'	12° 40,993'	20,0	1,50
PF10	21.04.2024	8:45	54° 39,117'	12° 39,292'	9:00	54° 38,553'	12° 38,307'	20,0	1,49
PF20	21.04.2024	9:22	54° 37,845'	12° 38,071'	9:37	54° 37,243'	12° 37,141'	19,0	1,50

8.1.2 Hydrologie und Wetterdaten – 4. Jahr Basisaufnahme

Tab. 22: Hydrologische Daten während der Befischungskampagnen im Herbst 2023 und Frühjahr 2024.

Station	Datum	Uhrzeit [UTC]	Ent- nahme- tiefe	Salzgehalt [PSU]	Wasser- temperatur [°C]	Sauerstoff- gehalt [mg/l]	Sauerstoff- sättigung [%]	Sichttiefe [m]
PF16	02.11.2023	06:34	Oberfl.	9,5	11,4	10,4	102,2	4,5
FFIO	02.11.2023	00.34	Grund	9,5	11,5	10,2	101,0	4,5
PF10	02.11.2023	10.20	Oberfl.	9,4	11,4	10,4	102,3	5,5
PFIU	02.11.2023	10:28	Grund	9,8	11,5	10,0	99,1	5,5
PF19	02.11.2023	15:12	Oberfl.	9,5	11,4	10,4	103,4	5,0
PF19	02.11.2023	15:13	Grund	9,5	11,5	10,4	103,3	5,0
PF18	00.44.0000	06.22	Oberfl.	9,5	11,2	10,4	102,7	F 0
PF10	03.11.2023	06:32	Grund	9,3	11,2	10,4	102,9	5,0
PF01	03.11.2023	10:32	Oberfl.	9,4	11,5	10,3	103,1	4,5
PFUI	03.11.2023	10.32	Grund	9,3	11,3	10,3	102,4	4,5
PF01	20.04.2024	08:35	Oberfl.	9,5	8,7	10,3	97,2	6,0
PFUI	20.04.2024	06.33	Grund	10,8	8,2	10,2	92,9	0,0
PF17	20.04.2024	12:29	Oberfl.	9,7	8,5	11,2	100,8	5,5
FFII	20.04.2024	12.29	Grund	12,0	8,7	9,7	89,7	5,5
PF15	20.04.2024	16:49	Oberfl.	9,6	8,5	11,0	99,8	5,0
FF15	20.04.2024	10.49	Grund	11,9	7,4	10,2	91,0	5,0
PF16	21.04.2024	06:21	Oberfl.	9,3	8,6	10,9	98,5	5,0
FFIO	21.04.2024	00.21	Grund	11,2	7,7	10,3	91,9	5,0
DE20	24.04.2024	00.27	Oberfl.	9,3	8,5	10,9	97,9	F 0
PF20	21.04.2024	09:37	Grund	11,8	7,9	9,7	86,9	5,0

Tab. 23: Wetterdaten während der Befischungskampagnen im Herbst 2023 und Frühjahr 2024.

Datum	Uhrzeit (UTC)	Luft- temperatur [°C]	Nieder- schlag [ja/nein]	Bedeckung [Skala 1-8]	Windstärke [Bft]	Wind- richtung [°]	Wellen- höhe [m]
02.11.2023	06:34	5	nein	6	4	135	0,3
02.11.2023	08:57	8	nein	7	4-5	135	0,5
02.11.2023	10:28	8	nein	8	5-6	112,5	1,0
02.11.2023	15:13	8	nein	8	6	112,5	1,5
03.11.2023	06:32	7	nein	8	3	112,5	0,3
03.11.2023	07:59	8	nein	3	4-5	202,5	0,5
03.11.2023	10:32	10	nein	4	4	180	0,5
20.04.2024	08:35	8	nein	4	4-5	45	0,7
20.04.2024	11:08	10	nein	4	2	45	0,5
20.04.2024	14:22	11	nein	3	2	225	0,5
20.04.2024	16:49	10	nein	4	2	225	0,5
21.04.2024	06:21	8	nein	3	2	0	0,2
21.04.2024	09:37	9	nein	7	4-5	22,5	0,5

8.1.3 Liste Fischarten Fachgutachten

Tab. 24: Liste sämtlicher in diesem Fachgutachten erwähnten Arten mit Angabe des Erstbeschreibers und der Familienzugehörigkeit nach FRICKE et al. (2024a) und FRICKE et al. (2024b).

dt. Artname	wiss. Artname	Autor	Familie
Aalmutter	Zoarces viviparus	(Linnaeus 1758)	Zoarcidae
Atlantische Makrele	Scomber scombrus	Linnaeus 1758	Scombridae
Atlantischer Lachs	Salmo salar	Linnaeus 1758	Salmonidae
Butterfisch	Pholis gunnellus	(Linnaeus 1758)	Pholidae
Doggerscharbe	Hippoglossoides platessoides	(Fabricius 1780)	Pleuronectidae
Dorsch	Gadus morhua	Linnaeus 1758	Gadidae
Dreibärtelige Seequappe	Gaidropsarus vulgaris	(Cloquet 1824)	Gaidropsaridae
Dreistachliger Stichling	Gasterosteus aculeatus	Linnaeus 1758	Gasterosteidae
Europäische Sardelle	Engraulis encrasicolus	(Linnaeus 1758)	Engraulidae
Finte	Alosa fallax	(Lacepede 1803)	Clupeidae
Fleckengrundel	Pomatoschistus pictus	(Malm 1865)	Oxudercidae
Flunder	Platichthys flesus	(Linnaeus 1758)	Pleuronectidae
Flussbarsch	Perca fluviatilis	Linnaeus 1758	Percidae
Gefleckter Großer Sandaal	Hyperoplus lanceolatus	(Le Sauvage 1824)	Ammodytidae
Gestreifter Leierfisch	Callionymus lyra	Linnaeus 1758	Callionymidae
Glasgrundel	Aphia minuta	(Risso 1810)	Gobiidae
Glattbutt	Scophthalmus rhombus	(Linnaeus 1758)	Scophthalmidae
Goldmaid	Symphodus melops	(Linnaeus 1758)	Labridae
Grasnadel	Syngnathus typhle	Linnaeus 1758	Syngnathidae
Grauer Knurrhahn	Eutrigla gurnardus	(Linnaeus 1758)	Triglidae
Großer Scheibenbauch	Liparis liparis	(Linnaeus 1766)	Liparidae
Hering	Clupea harengus	Linnaeus 1758	Clupeidae
Holzmakrele	Trachurus trachurus	(Linnaeus 1758)	Carangidae
Kliesche	Limanda limanda	(Linnaeus 1758)	Pleuronectidae
Klippenbarsch	Ctenolabrus rupestris	(Linnaeus 1758)	Labridae
Lammzunge	Arnoglossus laterna	(Walbaum 1792)	Bothidae
Petermännchen	Trachinus draco	Linnaeus 1758	Trachinidae
Sandgrundel	Pomatoschistus minutus	(Pallas 1770)	Oxudercidae
Schellfisch	Melanogrammus aeglefinus	(Linnaeus 1758)	Gadidae
Scholle	Pleuronectes platessa	Linnaeus 1758	Pleuronectidae
Schwarzgrundel	Gobius niger	Linnaeus 1758	Gobiidae
Schwarzmundgrundel	Neogobius melanostomus	(Pallas 1814)	Gobiidae
Schwimmgrundel	Pomatoschistus flavescens	(Fabricius 1779)	Oxudercidae
Seebull	Taurulus bubalis	(Euphrasen 1786)	Psychrolutidae
Seehase	Cyclopterus lumpus	Linnaeus 1758	Cyclopteridae
Seehecht	Merluccius merluccius	(Linnaeus 1758)	Merlucciidae
Seelachs	Pollachius virens	(Linnaeus 1758)	Gadidae
Seeskorpion	Myoxocephalus scorpius	(Linnaeus 1758)	Psychrolutidae
Seestichling	Spinachia spinachia	(Linnaeus 1758)	Gasterosteidae
Seezunge	Solea solea	(Linnaeus 1758)	Soleidae
Spitzschwanz- Schlangenstachelrücken	Lumpenus lampretaeformis	(Walbaum 1792)	Lumpenidae
Sprotte	Sprattus sprattus	(Linnaeus 1758)	Clupeidae

dt. Artname	wiss. Artname	Autor	Familie
Steinbutt	Scophthalmus maximus	(Linnaeus 1758)	Scophthalmidae
Steinpicker	Agonus cataphractus	(Linnaeus 1758)	Agonidae
Stint	Osmerus eperlanus	(Linnaeus 1758)	Osmeridae
Streifenbarbe	Mullus surmuletus	Linnaeus 1758	Mullidae
Tobiasfisch	Ammodytes tobianus	Linnaeus 1758	Ammodytidae
Vierbärtelige Seequappe	Enchelyopus cimbrius	(Linnaeus 1766)	Gaidropsaridae
Wittling	Merlangius merlangus	(Linnaeus 1758)	Gadidae
Zander	Sander lucioperca	(Linnaeus 1758)	Percidae
Zwergdorsch	Trisopterus minutus	(Linnaeus 1758)	Gadidae

8.2 Ergebnisse

8.2.1 Statistischer - Vergleich Kenngrößen

Tab. 25: Artenzahl in den durchgeführten Hols während der vier Jahre der Basisaufnahme.

BasisU: Basisuntersuchung, H: Herbst, F: Frühjahr; Stabw: Standardabweichung

				Artenzal	nl [n/Hol]			
Hol	Basis	U 1Uj	Basis	U 2Uj	Basis	U 3Uj	Basis	U 4Uj
	H12	F13	H13	F14	H15	F15	H23	F24
1	9	12	12	8	11	8	11	7
2	8	12	11	6	13	9	10	8
3	9	11	12	7	10	9	9	9
4	9	11	10	11	11	10	9	10
5	10	11	12	9	10	9	12	9
6	12	11	12	8	11	8	12	9
7	9	12	11	7	10	11	8	11
8	13	10	10	10	11	9	11	12
9	8	10	9	7	11	8	11	11
10	12	9	11	6	9	6	9	9
11	10	9	10	8	9	8	13	10
12	8	10	11	7	11	6	14	11
13	10	11	10	6	9	9	12	9
14	9	12	10	7	9	10	10	8
15	11	11	12	9	14	10	10	11
16	13	10	12	6	9	9	9	11
17	12	11	10	7	9	10	10	10
18	12	8	10	6	9	9	10	10
19	10	11	12	8	9	10	11	9
20	12	13	12	5	13	9	5	10
Deskriptive	Statistik							
Minimum	8,000	8,000	9,000	5,000	9,000	6,000	5,000	7,000
Maximum	13,000	13,000	12,000	11,000	14,000	11,000	14,000	12,000
1. Quartil	9,000	10,000	10,000	6,000	9,000	8,000	9,000	9,000
3. Quartil	12,000	11,750	12,000	8,000	11,000	10,000	11,750	11,000
Median	10,000	11,000	11,000	7,000	10,000	9,000	10,000	10,000
Mittelwert	10,300	10,750	10,950	7,400	10,400	8,850	10,300	9,700
Stabw	0,378	0,270	0,223	0,336	0,343	0,284	0,436	0,282

Tab. 26: Gesamtabundanz in den durchgeführten Hols während der vier Jahre der Basisaufnahme.

BasisU: Basisuntersuchung, H: Herbst, F: Frühjahr; Stabw: Standardabweichung

Dasiso. Dasis	Gesamtabundanz [Ind./ha]								
Hol	Basisl	J 1Uj	Basis	BasisU 2Uj B		U 3Uj	Basis	U 4Uj	
	H12	F13	H13	F14	H15	F15	H23	F24	
1	57,506	80,701	407,822	215,374	203,149	144,558	361,654	261,573	
2	74,780	62,081	343,506	248,239	167,760	136,776	402,419	400,502	
3	73,479	67,535	566,962	147,901	253,697	279,552	290,094	442,220	
4	60,522	80,943	600,745	138,643	267,387	270,440	281,330	551,292	
5	149,928	62,875	557,092	145,199	287,585	190,393	319,726	682,862	
6	177,225	52,489	625,238	234,423	325,383	239,365	267,537	410,940	
7	43,016	77,064	358,711	134,849	511,953	481,782	235,128	472,346	
8	86,905	59,104	699,647	142,616	489,551	534,907	302,925	336,763	
9	71,577	39,184	374,441	151,147	369,189	282,652	319,565	454,583	
10	69,954	30,792	402,065	142,825	477,628	233,857	300,355	485,248	
11	68,783	27,071	400,976	116,496	269,747	271,512	207,555	259,458	
12	69,210	29,812	138,515	132,333	278,645	342,218	221,619	371,554	
13	68,392	40,819	313,289	232,863	177,227	482,789	227,839	422,467	
14	62,906	37,203	271,367	138,865	198,528	533,758	384,312	488,455	
15	109,993	28,426	366,421	186,781	503,653	146,003	192,531	483,224	
16	228,114	23,820	372,438	177,319	189,070	272,360	366,958	619,514	
17	275,176	43,799	609,627	174,272	177,687	169,694	377,806	537,063	
18	154,977	60,646	223,743	189,859	160,086	149,533	424,065	440,940	
19	142,574	58,183	194,516	216,494	90,510	129,802	368,227	382,771	
20	122,372	40,220	347,866	157,403	113,430	153,290	310,077	417,420	
Deskriptive	Statistik								
Minimum	43,016	23,820	138,515	116,496	90,510	129,802	192,531	259,458	
Maximum	275,176	80,943	699,647	248,239	511,953	534,907	424,065	682,862	
1. Quartil	68,490	32,395	320,843	139,803	177,342	150,472	243,230	387,204	
3. Quartil	148,090	62,677	564,495	208,995	358,238	327,327	367,910	487,653	
Median	74,130	48,144	373,440	154,275	260,542	254,903	306,501	441,580	
Mittelwert	108,370	50,138	408,749	171,195	275,593	272,262	308,086	446,060	
Stabw	62,290	18,457	154,193	39,563	131,770	135,829	68,331	104,146	

Tab. 27: Gesamtbiomasse in den durchgeführten Hols während der vier Jahre der Basisaufnahme.

BasisU: Basisuntersuchung, H: Herbst, F: Frühjahr; Stabw: Standardabweichung

				Gesamtbio	masse [Ind./h	a]		23,804 32,810 32,399 41,077						
Hol	Basis	U 1Uj	Basis	BasisU 2Uj		BasisU 3Uj		BasisU 4Uj						
	H12	F13	H13	F14	H15	F15	H23	F24						
1	16,770	13,511	55,621	44,666	43,382	29,075	48,464	23,804						
2	23,373	11,208	52,685	59,499	33,975	29,043	39,819	32,810						
3	21,231	9,419	64,560	31,766	43,705	62,581	29,046	32,399						
4	14,774	11,493	61,824	34,161	52,767	58,895	31,629	41,077						
5	21,030	9,219	59,682	32,539	55,369	43,555	38,004	50,694						
6	35,863	13,817	58,640	96,988	50,903	56,173	32,034	27,770						
7	7,462	17,744	41,722	43,962	85,838	107,251	25,762	39,586						
8	18,337	12,491	73,434	34,519	107,314	120,928	36,803	25,644						
9	19,047	11,396	48,375	40,358	77,484	74,264	39,734	32,709						
10	17,189	7,453	56,749	45,594	106,076	60,104	37,831	32,986						

				Gesamtbio	masse [Ind./h	a]		
Hol	Basis	U 1Uj	Basis	U 2Uj	Basis	sU 3Uj	Basis	U 4Uj
	H12	F13	H13	F14	H15	F15	H23	F24
11	17,012	6,028	49,399	27,937	56,973	65,194	25,812	26,530
12	18,045	8,425	22,780	34,350	58,284	76,801	27,597	25,095
13	13,209	11,140	45,614	54,045	37,812	105,469	28,550	27,454
14	15,920	9,345	45,038	41,113	50,195	114,547	51,307	33,199
15	23,901	5,671	41,575	44,279	51,564	36,798	23,704	42,107
16	34,283	6,575	47,119	75,860	41,657	62,816	53,604	47,789
17	35,007	8,747	67,358	62,819	53,234	38,963	47,143	57,485
18	22,941	22,022	45,500	43,979	40,628	39,423	57,636	35,801
19	29,953	15,295	38,517	56,921	29,644	29,703	48,609	31,145
20	25,887	39,143	54,015	54,506	30,131	32,774	43,614	35,677
Deskriptive	Statistik							
Minimum	7,462	5,671	22,780	27,937	29,644	29,043	23,704	23,804
Maximum	35,863	39,143	73,434	96,988	107,314	120,928	57,636	57,485
1. Quartil	16,831	8,506	45,154	34,392	40,885	37,339	28,674	27,533
3. Quartil	25,391	13,741	59,422	56,317	57,956	76,167	48,134	40,704
Median	20,039	11,174	51,042	44,129	51,234	59,500	37,918	32,898
Mittelwert	21,562	12,507	51,510	47,993	55,347	62,218	38,335	35,088
Stabw	7,559	7,449	11,501	16,733	22,384	29,630	10,274	9,049

Tab. 28: Diversität in den durchgeführten Hols während der vier Jahre der Basisaufnahme.

BasisU: Basisuntersuchung, H: Herbst, F: Frühjahr; Stabw: Standardabweichung

				Divers	ität (H')			
Hol	Basis	sU 1Uj	Basis	U 2Uj	Basis	U 3Uj	Basis	U 4Uj
	H12	F13	H13	F14	H15	F15	H23	F24
1	1,528	1,558	1,357	1,452	1,354	1,404	1,325	0,740
2	1,218	1,450	1,654	1,365	1,219	1,464	1,248	0,929
3	1,512	1,612	1,752	1,481	1,068	1,531	1,280	0,874
4	1,436	1,525	1,398	1,617	1,038	1,530	1,264	0,732
5	1,323	1,646	1,346	1,549	1,021	1,505	1,164	0,807
6	1,536	1,584	1,143	1,300	0,896	1,498	1,362	0,627
7	1,493	1,524	1,480	1,366	0,822	1,330	1,226	1,029
8	1,554	1,541	1,230	1,499	0,979	1,265	1,139	0,969
9	1,446	1,486	1,329	1,457	1,023	1,315	1,225	0,883
10	1,602	1,542	1,343	1,227	1,059	1,325	1,149	0,707
11	1,465	1,414	1,429	1,529	1,044	1,346	1,261	1,043
12	1,392	1,446	1,519	1,504	0,951	1,364	1,422	0,711
13	1,468	1,567	1,501	1,202	0,997	1,251	1,415	0,643
14	1,384	1,702	1,452	1,408	1,193	1,309	1,327	0,418
15	1,315	1,623	1,381	1,469	0,636	1,600	1,433	0,579
16	1,559	1,486	1,596	1,222	1,270	1,456	1,206	0,569
17	1,558	1,480	1,262	1,354	1,229	1,538	1,102	0,547
18	1,218	1,543	1,595	1,467	1,043	1,607	1,148	0,697
19	1,171	1,610	1,642	1,473	1,485	1,475	1,201	0,576
20	1,294	1,861	1,556	1,332	1,379	1,536	1,071	0,826
Deskriptive Statistik								
Minimum	1,171	1,414	1,143	1,202	0,636	1,251	1,071	0,418
Maximum	1,602	1,861	1,752	1,617	1,485	1,607	1,433	1,043

				Diversi	ität (H')								
Hol	Basis	sU 1Uj	Basis	U 2Uj	Basis	U 3Uj	BasisU 4Uj						
	H12	F13	H13	F14	H15	F15	H23	F24					
1. Quartil	1,317	1,486	1,344	1,338	0,984	1,326	1,153	0,591					
3. Quartil	1,534	1,612	1,585	1,495	1,227	1,531	1,327	0,881					
Median	1,456	1,543	1,441	1,455	1,044	1,460	1,237	0,722					
Mittelwert	1,424	1,560	1,448	1,414	1,085	1,432	1,248	0,745					
Stabw	0,129	0,101	0,156	0,115	0,200	0,112	0,106	0,172					

Tab. 29: Evenness in den durchgeführten Hols während der vier Jahre der Basisaufnahme.

BasisU: Basisuntersuchung, H: Herbst, F: Frühjahr; Stabw: Standardabweichung

		Evenness (J')										
Hol	Basis	sU 1Uj	Basis	U 2Uj	Basis	U 3Uj	Basis	U 4Uj				
	H12	F13	H13	F14	H15	F15	H23	F24				
1	0,735	0,709	0,617	0,746	0,616	0,722	0,603	0,460				
2	0,586	0,660	0,795	0,848	0,509	0,752	0,568	0,518				
3	0,688	0,775	0,797	0,761	0,549	0,787	0,616	0,449				
4	0,690	0,733	0,673	0,702	0,499	0,736	0,575	0,352				
5	0,574	0,792	0,613	0,745	0,525	0,724	0,485	0,415				
6	0,667	0,762	0,520	0,625	0,460	0,770	0,620	0,322				
7	0,768	0,693	0,674	0,702	0,423	0,605	0,590	0,468				
8	0,648	0,792	0,632	0,721	0,471	0,608	0,495	0,421				
9	0,696	0,764	0,683	0,749	0,492	0,676	0,532	0,402				
10	0,668	0,861	0,611	0,762	0,591	0,740	0,553	0,363				
11	0,636	0,789	0,687	0,735	0,582	0,692	0,607	0,501				
12	0,669	0,743	0,691	0,773	0,457	0,761	0,593	0,323				
13	0,668	0,754	0,771	0,671	0,512	0,601	0,644	0,330				
14	0,630	0,774	0,746	0,724	0,613	0,629	0,638	0,233				
15	0,599	0,781	0,629	0,669	0,276	0,770	0,652	0,263				
16	0,650	0,764	0,693	0,682	0,653	0,700	0,549	0,259				
17	0,677	0,712	0,607	0,696	0,631	0,740	0,502	0,263				
18	0,529	0,793	0,767	0,819	0,582	0,773	0,552	0,335				
19	0,533	0,774	0,713	0,709	0,763	0,710	0,522	0,296				
20	0,562	0,808	0,676	0,828	0,628	0,738	0,665	0,397				
Deskriptive	Statistik											
Minimum	0,529	0,660	0,520	0,625	0,276	0,601	0,485	0,233				
Maximum	0,768	0,861	0,797	0,848	0,763	0,787	0,665	0,518				
1. Quartil	0,589	0,736	0,620	0,698	0,476	0,680	0,536	0,303				
3. Quartil	0,685	0,791	0,738	0,762	0,615	0,759	0,619	0,442				
Median	0,659	0,769	0,680	0,730	0,537	0,730	0,583	0,358				
Mittelwert	0,644	0,762	0,680	0,733	0,542	0,712	0,578	0,369				
Stabw	0,064	0,045	0,072	0,056	0,103	0,059	0,054	0,085				

Tab. 30: Wirbellosen-Beifang in den durchgeführten Hols während der vier Jahre der Basisaufnahme.

BasisU: Basisuntersuchung, H: Herbst, F: Frühjahr; Stabw: Standardabweichung

	Wirbellosen-Beifang [kg/ha]										
Hol	Basis	U 1Uj	Basis	U 2Uj	Basis	U 3Uj	Basis	U 4Uj			
	H12	F13	H13	F14	H15	F15	H23	F24			
1	12,501	2,983	0,891	46,639	12,182	11,159	1,681	0,033			
2	4,049	3,416	2,003	58,388	68,841	5,467	0,107	0,167			
3	6,577	4,881	0,963	35,114	23,243	5,165	0,260	3,255			
4	6,340	5,164	35,681	36,621	2,026	13,900	0,416	1,422			
5	6,614	11,528	24,849	34,093	0,235	9,657	1,322	0,313			
6	1,887	6,265	21,567	98,868	0,368	3,560	1,448	0,003			
7	19,674	3,790	9,467	62,848	0,476	3,550	1,328	1,370			
8	19,689	1,401	29,190	22,486	0,141	2,607	4,833	4,101			
9	23,859	1,694	21,355	6,867	0,937	1,448	1,339	3,571			
10	8,534	0,504	33,959	13,826	0,797	2,314	2,940	0,805			
11	14,462	0,550	7,481	32,493	0,193	2,623	3,454	2,898			
12	9,104	0,744	38,204	36,584	5,208	2,742	7,191	1,476			
13	11,864	0,828	7,778	11,041	0,603	1,664	6,679	0,531			
14	1,126	8,362	8,086	3,496	1,386	1,608	2,055	3,272			
15	0,760	7,578	29,939	2,121	6,361	10,243	2,788	6,134			
16	1,772	4,344	2,912	17,949	4,645	2,270	1,569	4,966			
17	4,410	1,450	1,268	14,203	0,954	21,068	0,768	5,591			
18	3,401	6,348	4,119	3,869	0,770	72,151	3,767	4,053			
19	6,955	10,303	3,631	8,873	8,439	28,007	1,165	2,209			
20	6,007	15,086	2,875	9,369	3,429	11,854	0,310	3,334			
Deskriptive	Statistik										
Minimum	0,760	0,504	0,891	2,121	0,141	1,448	0,107	0,003			
Maximum	23,859	15,086	38,204	98,868	68,841	72,151	7,191	6,134			
1. Quartil	3,563	1,413	2,884	8,997	0,508	2,387	0,867	0,600			
3. Quartil	12,342	7,271	28,105	36,612	6,073	11,680	3,326	3,933			
Median	6,596	4,067	7,932	20,218	1,170	4,363	1,509	2,554			
Mittelwert	8,479	4,861	14,311	27,787	7,062	10,653	2,271	2,475			
Stabw	6,631	4,065	13,382	24,693	15,581	16,127	2,030	1,917			

Tab. 31: Abundanz des Dorschs in den durchgeführten Hols während der vier Jahre der Basisaufnahme.

BasisU: Basisuntersuchung, H: Herbst, F: Frühjahr; Stabw: Standardabweichung

		Dorsch [Ind./ha]								
Hol	Basis	U 1Uj	BasisU 2Uj		BasisU 3Uj		BasisU 4Uj			
	H12	F13	H13	F14	H15	F15	H23	F24		
1	2,857	12,610	23,771	34,760	1,417	17,279	86,980	0,000		
2	1,424	8,612	63,926	79,698	0,722	5,223	91,277	4,665		
3	8,602	20,010	68,925	41,845	1,514	18,271	65,355	16,675		
4	9,727	24,173	248,308	43,414	2,276	26,001	46,426	22,025		
5	32,398	15,719	274,701	31,944	2,102	17,497	63,279	14,671		
6	30,301	11,514	379,633	119,510	0,729	23,734	56,710	1,998		
7	7,669	16,968	138,307	42,320	1,430	6,252	35,867	34,414		
8	19,350	14,317	392,038	45,939	0,707	3,586	42,516	24,007		

				Dorsch [Inc	d./ha]			
Hol	Basis	U 1Uj	Basis	U 2Uj	Basi	sU 3Uj	Basis	U 4Uj
	H12	F13	H13	F14	H15	F15	H23	F24
9	15,906	2,471	191,188	57,543	0,710	9,609	36,465	24,698
10	11,480	1,050	200,665	73,621	3,623	22,829	27,971	25,294
11	5,644	1,406	170,288	24,331	5,072	14,533	26,440	16,675
12	6,389	1,040	19,581	27,747	2,789	14,090	46,308	18,611
13	8,026	2,767	81,728	129,127	2,067	4,717	49,965	19,263
14	3,657	2,126	60,610	20,442	2,671	14,017	68,485	18,659
15	4,342	1,733	166,624	24,952	1,551	14,311	61,956	22,025
16	17,600	1,051	90,427	94,811	1,425	12,313	33,904	23,315
17	25,401	0,345	63,734	64,488	4,491	21,716	30,597	21,989
18	7,363	16,669	24,000	58,032	3,615	26,459	42,006	37,300
19	18,778	6,031	12,205	54,656	4,145	15,942	25,303	14,102
20	14,474	2,045	38,811	51,718	0,756	24,810	23,339	22,671
Deskriptive	Statistik							
Minimum	1,424	0,345	12,205	20,442	0,707	3,586	23,339	0,000
Maximum	32,398	24,173	392,038	129,127	5,072	26,459	91,277	37,300
1. Quartil	5,830	1,488	44,261	32,648	0,921	10,285	31,424	15,172
3. Quartil	18,484	15,369	198,296	71,338	3,409	22,551	62,948	23,834
Median	9,165	4,399	86,078	48,829	1,809	15,238	44,412	20,626
Mittelwert	12,569	8,133	135,474	56,045	2,191	15,659	48,057	19,153
Stabw	9,019	7,653	115,892	30,405	1,367	7,227	19,820	9,285

Tab. 32: Abundanz der Flunder in den durchgeführten Hols während der vier Jahre der Basisaufnahme.

BasisU: Basisuntersuchung, H: Herbst, F: Frühjahr; Stabw: Standardabweichung

				Flunder	[Ind./ha]			
Hol	Basis	U 1Uj	BasisU 2Uj		Basis	U 3Uj	Basisl	J 4Uj
	H12	F13	H13	F14	H15	F15	H23	F24
1	17,859	11,529	223,596	69,519	94,907	17,999	11,772	1,331
2	22,434	5,024	121,691	55,527	43,342	29,248	13,991	3,332
3	22,581	7,147	194,175	21,644	49,211	76,854	5,335	0,667
4	21,255	5,860	126,703	25,908	73,830	87,042	4,158	3,337
5	24,816	7,145	92,266	39,204	74,550	33,984	3,330	2,667
6	60,954	5,080	53,067	34,474	62,653	68,826	6,005	0,000
7	9,670	5,656	51,773	20,801	145,784	174,566	8,635	1,350
8	32,250	11,747	79,193	23,312	190,241	218,862	9,965	3,334
9	27,836	14,120	53,388	25,319	143,402	86,021	12,597	3,338
10	25,829	9,797	74,974	11,779	169,465	44,856	6,660	1,331
11	28,924	9,493	78,594	35,391	78,643	108,979	6,610	2,668
12	33,008	9,706	67,445	26,324	82,721	147,743	7,277	3,988
13	28,264	11,415	130,764	20,312	51,674	218,914	10,659	7,971
14	28,527	10,275	112,266	15,508	46,749	213,842	17,952	0,000
15	52,102	11,093	89,720	32,081	45,765	46,494	11,325	4,005
16	79,374	10,159	135,641	24,608	54,859	99,718	9,307	3,997
17	85,375	18,278	367,854	26,102	54,645	55,821	6,652	3,332
18	45,231	10,994	87,484	23,643	41,210	45,450	8,001	2,664
19	31,644	10,643	81,621	19,165	24,873	59,875	10,654	2,015

				Flunder [Ind./ha]								
Hol	Basis	U 1Uj	BasisU 2Uj		BasisU 3Uj		BasisU 4Uj					
	H12	F13	H13	F14	H15	F15	H23	F24				
20	29,277	7,158	135,121	22,486	34,785	42,220	7,335	0,667				
Deskriptive	Statistik											
Minimum	9,670	5,024	51,773	11,779	24,873	17,999	3,330	0,000				
Maximum	85,375	18,278	367,854	69,519	190,241	218,914	17,952	7,971				
1. Quartil	23,140	7,146	75,879	21,012	46,011	45,005	6,621	1,331				
3. Quartil	42,175	11,335	134,032	33,876	91,861	138,052	11,159	3,338				
Median	28,726	9,978	90,993	24,964	58,756	72,840	8,318	2,668				
Mittelwert	35,361	9,616	117,867	28,655	78,165	93,866	8,911	2,600				
Stabw	19,775	3,264	74,066	13,497	47,168	65,749	3,547	1,829				

Tab. 33: Abundanz der Kliesche in den durchgeführten Hols während der vier Jahre der Basisaufnahme.

BasisU: Basisuntersuchung, H: Herbst, F: Frühjahr; Stabw: Standardabweichung

		<u> </u>			the [Ind./ha]			
Hol	Basis	U 1Uj	Basisl	J 2Uj	Basis	U 3Uj	Basis	U 4Uj
	H12	F13	H13	F14	H15	F15	H23	F24
1	23,931	25,940	84,684	60,659	63,743	23,758	66,706	158,408
2	39,526	26,914	69,317	38,542	95,524	32,730	55,299	165,932
3	30,467	20,010	112,651	39,681	165,148	72,683	52,017	118,059
4	22,696	26,004	156,558	27,309	165,486	73,266	50,584	68,077
5	79,617	20,006	120,925	34,122	180,098	65,663	36,635	196,723
6	50,736	12,191	125,864	22,217	229,218	46,759	56,710	81,256
7	18,007	24,038	89,493	17,215	341,138	107,780	44,502	108,640
8	22,745	15,051	126,316	29,483	260,416	148,607	40,523	54,682
9	20,244	8,472	67,096	21,483	190,997	40,217	74,256	68,087
10	21,524	3,849	75,709	22,823	250,198	40,252	87,909	55,248
11	23,986	3,164	86,599	23,594	161,937	41,771	56,185	71,368
12	20,940	3,813	26,108	35,573	175,009	48,546	48,955	37,887
13	22,681	7,956	49,037	28,292	109,706	140,071	43,303	34,541
14	22,310	8,858	64,054	32,425	112,377	157,646	89,097	17,992
15	38,353	5,200	72,380	42,061	424,534	34,347	35,308	25,363
16	43,828	2,102	83,530	15,923	95,026	55,110	93,069	29,976
17	82,906	7,242	74,818	22,264	90,854	41,260	122,388	18,657
18	86,956	13,477	61,936	28,658	97,910	29,945	134,687	22,646
19	83,458	16,674	47,294	56,785	39,382	19,565	149,821	23,503
20	66,449	10,907	98,466	25,484	51,421	43,561	123,364	52,011
Deskriptive	Statistik							
Minimum	18,007	2,102	26,108	15,923	39,382	19,565	35,308	17,992
Maximum	86,956	26,914	156,558	60,659	424,534	157,646	149,821	196,723
1. Quartil	22,403	5,711	64,815	22,404	95,151	35,815	45,615	26,516
3. Quartil	62,521	20,009	109,105	37,800	219,663	73,120	92,076	101,794
Median	27,227	11,549	79,620	28,475	163,543	45,160	56,448	54,965
Mittelwert	41,068	13,093	84,642	31,230	165,006	63,177	73,066	70,453
Stabw	24,823	8,315	31,478	11,861	98,506	42,032	35,155	53,023

Tab. 34: Abundanz der Sandgrundel in den durchgeführten Hols während der vier Jahre der Basisaufnahme.

BasisU: Basisuntersuchung, H: Herbst, F: Frühjahr; Stabw: Standardabweichung

	3	<u>, , , , , , , , , , , , , , , , , , , </u>	S S	andgrundel				
Hol	Basisl	J 1Uj	Basisl	J 2Uj	Basis	U 3Uj	Basis	U 4Uj
	H12	F13	H13	F14	H15	F15	H23	F24
1	2,143	1,081	5,200	0,000	5,666	0,000	0,000	0,000
2	0,356	0,718	7,702	0,000	2,167	0,348	0,000	0,000
3	0,717	5,003	51,879	0,000	1,514	0,000	0,000	0,000
4	1,081	1,831	3,641	0,700	0,759	0,000	0,000	0,000
5	3,447	2,858	4,194	0,000	0,701	0,336	0,000	0,000
6	25,721	2,709	0,680	1,532	0,729	0,000	0,000	0,000
7	4,668	1,414	1,479	0,000	0,000	0,695	0,000	0,000
8	5,771	1,468	0,654	0,000	0,707	0,000	0,000	0,667
9	1,085	0,706	1,443	0,767	0,710	0,000	0,000	0,000
10	2,870	2,799	0,000	0,000	0,000	0,000	0,666	0,000
11	3,880	2,461	1,455	0,000	0,000	0,000	0,000	0,667
12	2,130	1,040	2,901	0,000	1,394	0,000	0,000	0,000
13	2,094	1,038	3,405	0,000	0,689	0,000	0,000	0,000
14	1,829	1,772	2,066	0,000	0,668	1,107	0,000	0,000
15	4,704	1,733	3,770	0,713	0,776	0,358	0,000	1,335
16	70,056	1,401	12,261	0,000	0,000	0,000	0,000	0,000
17	61,385	1,035	1,386	0,768	0,000	0,000	0,000	0,666
18	5,610	1,064	6,968	0,000	0,000	0,000	0,000	0,000
19	0,348	1,064	10,679	1,420	0,000	0,000	0,000	0,000
20	2,303	5,454	2,156	0,000	0,000	0,000	0,000	0,000
Deskriptive	Statistik							
Minimum	0,348	0,706	0,000	0,000	0,000	0,000	0,000	0,000
Maximum	70,056	5,454	51,879	1,532	5,666	1,107	0,666	1,335
1. Quartil	1,271	1,046	1,446	0,000	0,000	0,000	0,000	0,000
3. Quartil	5,384	2,647	6,526	0,710	0,772	0,252	0,000	0,000
Median	2,587	1,441	3,153	0,000	0,695	0,000	0,000	0,000
Mittelwert	10,110	1,932	6,196	0,295	0,824	0,142	0,033	0,167
Stabw	19,818	1,313	11,253	0,503	1,289	0,296	0,149	0,367

Tab. 35: Abundanz der Scholle in den durchgeführten Hols während der vier Jahre der Basisaufnahme.

BasisU: Basisuntersuchung, H: Herbst, F: Frühjahr; Stabw: Standardabweichung

	Scholle [Ind./ha]											
Hol	BasisU 1Uj		BasisU 2Uj		BasisU 3Uj		BasisU 4Uj					
	H12	F13	H13	F14	H15	F15	H23	F24				
1	5,358	25,579	40,114	45,665	24,667	74,364	178,538	99,837				
2	5,698	17,943	39,280	73,819	16,614	55,996	224,528	213,246				
3	4,301	13,221	72,630	40,402	22,713	82,580	151,383	295,480				
4	2,522	19,412	8,010	32,910	12,139	63,604	161,453	441,835				
5	3,102	13,575	11,883	34,122	18,921	59,454	197,831	458,798				
6	1,762	18,964	4,762	52,860	23,313	84,461	130,099	321,026				
7	0,333	25,452	5,917	52,362	17,879	167,827	136,162	305,000				
8	2,037	15,418	3,927	39,082	28,286	143,774	196,635	240,069				

				Scho	lle [Ind./ha]			
Hol	Basis	U 1Uj	Basis	U 2Uj	Basi	sU 3Uj	Basis	sU 4Uj
	H12	F13	H13	F14	H15	F15	H23	F24
9	1,085	11,296	4,329	40,664	24,140	131,019	182,987	339,769
10	1,794	10,497	8,820	33,130	43,474	118,309	166,494	391,394
11	1,764	10,196	8,733	28,755	13,315	94,118	108,405	159,410
12	1,065	12,133	7,252	38,419	9,760	107,468	103,863	303,093
13	0,698	14,529	17,027	51,506	6,201	99,882	107,924	354,713
14	1,829	9,921	14,464	64,146	24,042	130,547	192,156	443,808
15	5,427	6,587	3,016	79,132	18,616	36,539	73,948	420,485
16	6,212	7,356	19,925	39,806	21,374	84,254	210,735	542,242
17	10,231	12,415	58,884	59,114	11,977	41,089	208,192	474,428
18	2,454	16,669	22,452	68,063	13,737	35,807	224,701	364,342
19	3,130	19,513	23,647	75,950	8,982	22,464	167,134	331,735
20	5,921	9,203	17,968	56,965	13,612	35,806	150,704	321,400
Deskriptive	Statistik							
Minimum	0,333	6,587	3,016	28,755	6,201	22,464	73,948	99,837
Maximum	10,231	25,579	72,630	79,132	43,474	167,827	224,701	542,242
1. Quartil	1,763	10,271	6,251	38,585	12,433	44,816	131,615	297,383
3. Quartil	5,410	18,709	23,348	62,888	23,860	115,599	197,532	436,498
Median	2,488	13,398	13,174	48,586	18,248	83,417	166,814	335,752
Mittelwert	3,336	14,494	19,652	50,344	18,688	83,468	163,694	341,106
Stabw	2,476	5,376	19,147	15,554	8,421	40,703	43,104	109,020

Tab. 36: Abundanz des Steinbutts in den durchgeführten Hols während der vier Jahre der Basisaufnahme.

BasisU: Basisuntersuchung, H: Herbst, F: Frühjahr; Stabw: Standardabweichung

				Steinb	utt [Ind./ha]			
Hol	Basis	U 1Uj	Basisl	J 2Uj	Basis	U 3Uj	Basisl	J 4Uj
	H12	F13	H13	F14	H15	F15	H23	F24
1	3,215	1,081	7,428	2,045	4,250	2,880	9,156	0,666
2	4,629	1,077	6,162	0,000	5,057	4,178	6,663	0,000
3	3,943	1,072	11,858	1,443	7,539	3,162	8,003	1,334
4	2,162	0,366	3,641	0,700	6,069	2,737	6,236	2,670
5	3,791	1,429	1,398	0,000	8,409	3,701	9,991	5,335
6	5,285	1,016	4,082	0,766	4,371	4,605	6,672	1,998
7	2,001	1,414	5,177	0,717	3,576	10,073	3,985	2,024
8	2,716	0,000	7,854	1,371	4,243	8,247	6,643	2,667
9	3,615	1,765	4,329	0,000	6,390	6,863	6,630	4,673
10	3,229	2,799	2,205	0,000	8,695	3,113	7,992	6,656
11	2,116	0,352	2,911	0,737	6,975	2,768	5,288	2,001
12	3,194	1,733	3,626	1,423	5,577	6,474	5,954	1,329
13	3,489	2,421	8,173	2,902	4,823	9,771	9,327	2,657
14	2,194	3,189	4,821	2,820	10,018	4,426	5,984	1,999
15	3,618	0,693	6,786	0,713	5,430	6,440	4,663	2,670
16	4,831	1,051	8,430	0,724	9,974	6,988	10,636	3,997
17	6,703	2,414	6,928	0,000	14,223	3,152	3,991	5,331
18	3,506	1,419	6,968	0,000	2,892	1,696	11,335	3,330
19	3,130	1,774	7,628	2,129	8,291	0,362	7,990	7,387

27.12.2024

				Steinb	utt [Ind./ha]			
Hol	BasisU 1Uj		BasisU 2Uj		Basis	U 3Uj	BasisU 4Uj	
	H12	F13	H13	F14	H15	F15	H23	F24
20	2,632	2,386	10,781	0,750	8,318	1,378	5,335	2,667
Deskriptive	Statistik							
Minimum	2,001	0,000	1,398	0,000	2,892	0,362	3,985	0,000
Maximum	6,703	3,189	11,858	2,902	14,223	10,073	11,335	7,387
1. Quartil	2,653	1,025	3,751	0,000	4,484	2,796	5,490	1,998
3. Quartil	3,905	2,233	7,798	1,438	8,386	6,766	8,868	4,504
Median	3,359	1,417	6,474	0,731	6,230	3,940	6,653	2,667
Mittelwert	3,500	1,473	6,059	0,962	6,756	4,651	7,124	3,070
Stabw	1,175	0,849	2,745	0,926	2,738	2,730	2,130	1,944

Tab. 37: Abundanz des Wittlings während vier Jahre der Basisaufnahme in den durchgeführten Hols.

BasisU: Basisuntersuchung, H: Herbst, F: Frühjahr; Stabw: Standardabweichung

		<u> </u>	st, F. Frunjani,	Wittling [<u> </u>		
Hol	Basis	U 1Uj	Basis	U 2Uj	Basi	isU 3Uj	Basis	U 4Uj
	H12	F13	H13	F14	H15	F15	H23	F24
1	1,429	0,360	21,543	2,045	6,374	7,919	2,616	0,000
2	0,356	0,359	34,659	0,000	0,722	9,053	5,330	0,000
3	1,434	0,357	52,620	0,000	6,057	24,947	4,001	0,000
4	0,721	1,099	50,972	1,400	6,069	16,421	4,158	0,000
5	0,689	0,000	50,327	1,452	2,803	9,421	2,664	0,000
6	0,352	0,339	55,788	0,000	4,371	10,627	7,339	0,000
7	0,667	0,354	65,086	0,717	1,430	13,894	3,321	0,675
8	0,339	0,367	89,665	0,000	4,243	10,757	1,329	0,667
9	0,723	0,000	52,667	4,603	2,130	8,579	2,652	0,668
10	1,435	0,000	37,487	0,000	2,174	4,497	0,000	0,000
11	0,705	0,000	51,668	2,212	3,804	8,997	0,661	0,000
12	1,065	0,000	10,153	2,134	0,697	17,898	0,662	0,665
13	2,094	0,000	23,156	0,725	2,067	8,760	0,666	0,000
14	1,463	0,354	13,086	2,820	2,004	11,804	1,330	0,000
15	0,724	0,347	22,619	1,426	3,878	6,798	0,666	0,000
16	1,035	0,000	19,925	1,448	5,700	12,978	1,994	0,666
17	0,706	0,000	35,331	0,768	0,749	5,604	2,661	0,000
18	2,454	0,000	13,161	10,030	0,000	8,141	0,000	0,666
19	1,391	0,000	8,391	5,679	4,145	10,145	0,666	0,000
20	0,329	0,000	42,405	0,000	2,269	4,135	0,000	0,667
Deskriptive	Statistik							
Minimum	0,329	0,000	8,391	0,000	0,000	4,135	0,000	0,000
Maximum	2,454	1,099	89,665	10,030	6,374	24,947	7,339	0,675
1. Quartil	0,673	0,000	20,330	0,000	1,574	7,975	0,663	0,000
3. Quartil	1,433	0,356	52,382	2,193	4,339	12,685	3,157	0,666
Median	0,724	0,000	36,409	1,413	2,536	9,237	1,662	0,000
Mittelwert	1,006	0,197	37,535	1,873	3,084	10,569	2,136	0,234
Stabw	0,588	0,275	21,316	2,463	1,978	4,903	1,962	0,327

8.2.2 Statistischer Vergleich – Mittelwerte (Mediane)

Tab. 38: U- und p-Werte des statistischen Vergleichs (Mann-Whitney-U-Test) der Kenngrößen während der Herbst- und Frühjahrskampagnen, getrennt für die vier Untersuchungsjahre der Basisaufnahme.

Fett gedruckt: signifikante p-Werte (p < 0,05); H: Herbst; F: Frühjahr

Kenngröße	H12 vs F13 (1. Uj)		H13 vs F14 (2. Uj)		F15 vs H15 (3. Uj)		H23 vs F24 (4. Uj)	
	U-Wert	p-Wert	U-Wert	p-Wert	U-Wert	p-Wert	U-Wert	p-Wert
Artenzahl [n/Hol]	166,500	0,369	15,500	<0,001	93,500	0,003	152,000	0,201
Gesamtabundanz [Ind./ha]	52,000	<0,001	25,000	<0,001	192,000	0,841	49,000	<0,001
Gesamtbiomasse [kg/ha]	56,000	<0,001	142,000	0,121	176,000	0,529	163,000	0,327
Diversität (H')	85,000	0,001	175,500	0,512	29,000	<0,001	0,000	<0,001
Evenness (J')	24,000	<0,001	114,000	0,020	33,000	<0,001	5,000	<0,001
Wirbellosen-Beifang [kg/ha]	127,000	0,049	120,000	0,030	109,000	0,013	183,000	0,659
Dorsch [Ind./ha]	104,000	0,158	88,000	0,054	65,000	0,007	89,000	0,058
Flunder [Ind./ha]	39,000	<0,001	87,000	0,049	76,000	0,020	63,000	0,005
Kliesche [Ind./ha]	136,000	0,678	70,000	0,011	130,000	0,548	63,000	0,005
Sandgrundel [Ind./ha]	117,000	0,315	54,000	0,002	101,000	0,131	114,000	0,272
Scholle [Ind./ha]	7,000	<0,001	104,000	0,158	26,000	<0,001	31,000	<0,001
Steinbutt [Ind./ha]	36,000	<0,001	57,000	0,003	108,000	0,198	59,000	0,004
Wittling [Ind./ha]	112,000	0,246	34,000	<0,001	29,000	<0,001	109,500	0,209

Tab. 39: Ergebnisse des Kruskal-Wallis-Test zur Bestimmung des Einflusses des Fangzeitpunktes auf die Kenngrößen während der vier Untersuchungsjahre der Basisaufnahme, getrennt für die Herbst- und Frühjahrskampagnen.

Fett gedruckt: Signifikante p-Werte (p < 0,05)

Vannanii 0 a	Herbst 2012-2023	3 (14. Uj)	Frühjahr 2013-202	24 (14. Uj)
Kenngröße	Chi-Quadrat	p-Wert	Chi-Quadrat	p-Wert
Artenzahl [n/Hol]	3,345	0,341	37,261	<0,001
Gesamtabundanz [Ind./ha]	43,099	<0,001	62,928	<0,001
Gesamtbiomasse [kg/ha]	45,449	<0,001	49,289	<0,001
Diversität (H')	38,593	<0,001	53,456	<0,001
Evenness (J')	30,270	<0,001	49,422	<0,001
Wirbellosen-Beifang [kg/ha]	20,231	<0,001	30,998	<0,001
Dorsch [Ind./ha]	63,303	<0,001	48,829	<0,001
Flunder [Ind./ha]	60,234	<0,001	70,511	<0,001
Kliesche [Ind./ha]	36,924	<0,001	42,725	<0,001
Sandgrundel [Ind./ha]	48,920	<0,001	47,408	<0,001
Scholle [Ind./ha]	63,291	<0,001	67,605	<0,001
Steinbutt [Ind./ha]	27,971	<0,001	33,900	<0,001
Wittling [Ind./ha]	51,153	<0,001	52,869	<0,001

Tab. 40: p-Werte des Statistischen Multiplen Vergleichs (Post-hoc-Test, Dunn-Bonferroni) der untersuchten Kenngrößen während des Untersuchungszeitraumes der Basisaufnahme, getrennt für die vier Herbst- und vier Frühjahrskampagnen.

Fett gedruckt: Signifikante p-Werte (p < 0,05); *: kein Vergleich notwendig, aufgrund der Ergebnisse der Varianzanalyse (Kruskal-Wallis-Test, siehe Tab. 39);

Herbst 2012 / Frühjahr 2013: 1. Uj; Herbst 2013 / Frühjahr 2014: 2. U;

Frühjahr 2015 / Herbst 2015: 3. Uj; Herbst 2023 / Frühjahr 2024: 4. Uj

_	ounkt	Artenzahl	Gesamt- abundanz	Gesamt- biomasse	Diversität	Evenness	Wirbellosen- Beifang	
(vergieich i	Kampagnen)	[n/Hol]	[Ind./ha]	[kg/ha]	(H')	(J')	[kg/ha]	
	Herbst 2013		<0,001	<0,001	1,000	1,000	1,000	
Herbst 2012	Herbst 2015		0,001	<0,001	<0,001	0,002	0,047	
	Herbst 2023	kein	<0,001	0,006	0,011	0,034	0,011	
Herbst 2013	Herbst 2015	Vergleich*	0,068	1,000	<0,001	<0,001	0,009	
Helbst 2013	Herbst 2023		0,978	0,053	0,004	<0,001	0,002	
Herbst 2015	Herbst 2023		1,000	0,105	0,368	1,000	1,000	
	Frühjahr 2014	<0,001	0,004	<0,001	0,035	0,637	0,001	
Frühjahr 2013	Frühjahr 2015	0,002	<0,001	<0,001	0,096	0,194	1,000	
	Frühjahr 2024	0,295	<0,001	0,002	<0,001	<0,001	0,677	
Frühjahr 2014	Frühjahr 2015	0,129	0,379	1,000	1,000	1,000	0,035	
Fruinjani 2014	Frühjahr 2024	0,001	<0,001	0,232	<0,001	<0,001	<0,001	
Frühjahr 2015	Frühjahr 2024	0,637	0,091	0,027	<0,001	<0,001	0,049	

Tab. 41: p-Werte des Statistischen Multiplen Vergleichs (Post-hoc-Test, Dunn-Bonferroni) der Abundanz der Charakterarten während des Untersuchungszeitraumes der Basisaufnahme, getrennt für die vier Herbst- und vier Frühjahrskampagnen.

Fett gedruckt: Signifikante p-Werte (p < 0,05);

Herbst 2012 / Frühjahr 2013: 1. Uj; Herbst 2013 / Frühjahr 2014: 2. U;

Frühjahr 2015 / Herbst 2015: 3. Uj; Herbst 2023 / Frühjahr 2024: 4. Uj

Zeitpunkt (Vergleich Kampagnen)		Dorsch	Flunder	Kliesche	Sandgrundel	elloupS	Steinbutt	Wittling
	Herbst 2013	<0,001	<0,001	0,002	1,000	0,007	0,003	<0,001
Herbst 2012	Herbst 2015	0,058	0,058	<0,001	0,002	<0,001	<0,001	0,060
	Herbst 2023	0,005	0,010	0,055	<0,001	<0,001	<0,001	1,000
Herbst 2013	Herbst 2015	<0,001	0,796	0,109	0,004	1,000	1,000	<0,001
Helbst 2013	Herbst 2023	1,000	<0,001	1,000	<0,001	<0,001	1,000	<0,001
Herbst 2015	Herbst 2023	<0,001	<0,001	0,004	0,120	0,001	1,000	0,775
	Frühjahr 2014	<0,001	0,017	0,008	<0,001	0,004	1,000	0,072
Frühjahr 2013	Frühjahr 2015	0,224	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
	Frühjahr 2024	0,018	0,048	<0,001	<0,001	<0,001	0,089	1,000
Frühight 2014	Frühjahr 2015	<0,001	0,171	0,067	1,000	0,918	<0,001	0,001
Frühjahr 2014	Frühjahr 2024	0,001	<0,001	0,122	1,000	<0,001	0,002	0,072
Frühjahr 2015	Frühjahr 2024	1,000	<0,001	1,000	1,000	0,006	0,568	<0,001

8.2.3 Statistischer Vergleich – SIMPER

Tab. 42: Ergebnisse der SIMPER basierend auf den quadratwurzeltransformierten Abundanzdaten der im OWP "Gennaker" nachgewiesenen Arten zur Bestimmung der Arten, die hauptsächlich zu Unterschieden zwischen den Fängen der vier Herbstkampagnen der Basisaufnahme beigetragen haben.

fett hervorgehoben die fünf Arten mit dem höchsten Anteil an den Unterschieden; Stabw: Standardabweichung nachgewiesene Fischarten ohne pelagische Arten

Herbst (mitt. Diss.=39,34%)	mittlere A (√ transf		mittlere	Stabw	Anteil %
Art	2012	2013	 Dissimilarität 	Dissimilarität	
Dorsch	3,32	10,59	10,42	1,56	26,49
Flunder	5,76	10,48	6,99	1,63	17,78
Wittling	0,96	5,87	6,97	3,10	17,73
Kliesche	6,16	9,04	4,68	1,68	11,89
Scholle	1,71	4,02	3,45	1,33	8,77
Sandgrundel	2,36	2,02	2,25	0,95	5,73
Steinbutt	1,85	2,39	1,02	1,51	2,60
Herbst (mitt. Diss.=34,83%)	mittlere A (√ transf		mittlere	Stabw	Anteil %
Art	2012	2015	— Dissimilarität	Dissimilarität	
Kliesche	6,16	12,33	11,18	1,77	32,09
Flunder	5,76	8,51	5,54	1,40	15,92
Scholle	1,71	4,22	4,55	2,29	13,07
Dorsch	3,32	1,41	3,39	1,72	9,73
Sandgrundel	2,36	0,65	3,06	1,01	8,78
Wittling	0,96	1,63	1,50	1,55	4,29
Steinbutt	1,85	2,55	1,43	1,35	4,10
Seehase	0,49	0,04	0,93	1,11	2,67
Herbst (mitt. Diss.=45,29%)	mittlere A (√ transf		mittlere Dissimilarität	Stabw Dissimilarität	Anteil %
Art	2012	2023	Dissimilaritat	Dissimilaritat	
Scholle	4 74		47.00		22.21
	1,71	12,68	17,80	5,60	39,31
Dorsch	3,32	12,68 6,80	5,78	5,60 1,89	39,31 12,76
Dorsch Kliesche	· ·			·	· ·
	3,32	6,80	5,78	1,89	12,76
Kliesche	3,32 6,16	6,80 8,33	5,78 4,63	1,89 1,43	12,76 10,23
Kliesche Flunder	3,32 6,16 5,76	6,80 8,33 2,93	5,78 4,63 4,46	1,89 1,43 2,16	12,76 10,23 9,84
Kliesche Flunder Sandgrundel	3,32 6,16 5,76 2,36	6,80 8,33 2,93 0,04	5,78 4,63 4,46 3,52	1,89 1,43 2,16 1,31	12,76 10,23 9,84 7,77
Kliesche Flunder Sandgrundel Aalmutter	3,32 6,16 5,76 2,36 0,34	6,80 8,33 2,93 0,04 1,43	5,78 4,63 4,46 3,52 1,94	1,89 1,43 2,16 1,31 1,78	12,76 10,23 9,84 7,77 4,28
Kliesche Flunder Sandgrundel Aalmutter Seeskorpion	3,32 6,16 5,76 2,36 0,34 0,39	6,80 8,33 2,93 0,04 1,43 1,17 2,64	5,78 4,63 4,46 3,52 1,94 1,48 1,34 mittlere	1,89 1,43 2,16 1,31 1,78 1,76 1,76	12,76 10,23 9,84 7,77 4,28 3,26
Kliesche Flunder Sandgrundel Aalmutter Seeskorpion Steinbutt Herbst	3,32 6,16 5,76 2,36 0,34 0,39 1,85 mittlere A	6,80 8,33 2,93 0,04 1,43 1,17 2,64	5,78 4,63 4,46 3,52 1,94 1,48 1,34	1,89 1,43 2,16 1,31 1,78 1,76	12,76 10,23 9,84 7,77 4,28 3,26 2,95
Kliesche Flunder Sandgrundel Aalmutter Seeskorpion Steinbutt Herbst (mitt. Diss.=33,89%)	3,32 6,16 5,76 2,36 0,34 0,39 1,85 mittlere A (√ transf	6,80 8,33 2,93 0,04 1,43 1,17 2,64 bundanz ormiert)	5,78 4,63 4,46 3,52 1,94 1,48 1,34 mittlere	1,89 1,43 2,16 1,31 1,78 1,76 1,76	12,76 10,23 9,84 7,77 4,28 3,26 2,95
Kliesche Flunder Sandgrundel Aalmutter Seeskorpion Steinbutt Herbst (mitt. Diss.=33,89%) Art	3,32 6,16 5,76 2,36 0,34 0,39 1,85 mittlere A (√ transf	6,80 8,33 2,93 0,04 1,43 1,17 2,64 bundanz ormiert)	5,78 4,63 4,46 3,52 1,94 1,48 1,34 mittlere Dissimilarität	1,89 1,43 2,16 1,31 1,78 1,76 1,76 Stabw Dissimilarität	12,76 10,23 9,84 7,77 4,28 3,26 2,95 Anteil %
Kliesche Flunder Sandgrundel Aalmutter Seeskorpion Steinbutt Herbst (mitt. Diss.=33,89%) Art Dorsch	3,32 6,16 5,76 2,36 0,34 0,39 1,85 mittlere A (√ transf 2013 10,59	6,80 8,33 2,93 0,04 1,43 1,17 2,64 .bundanz ormiert) 2015 1,41	5,78 4,63 4,46 3,52 1,94 1,48 1,34 mittlere Dissimilarität 11,57	1,89 1,43 2,16 1,31 1,78 1,76 1,76 Stabw Dissimilarität 2,03	12,76 10,23 9,84 7,77 4,28 3,26 2,95 Anteil %
Kliesche Flunder Sandgrundel Aalmutter Seeskorpion Steinbutt Herbst (mitt. Diss.=33,89%) Art Dorsch Wittling	3,32 6,16 5,76 2,36 0,34 0,39 1,85 mittlere A (√ transf 2013 10,59 5,87	6,80 8,33 2,93 0,04 1,43 1,17 2,64 .bundanz ormiert) 2015 1,41 1,63	5,78 4,63 4,46 3,52 1,94 1,48 1,34 mittlere Dissimilarität 11,57 5,36	1,89 1,43 2,16 1,31 1,78 1,76 1,76 Stabw Dissimilarität 2,03 2,39	12,76 10,23 9,84 7,77 4,28 3,26 2,95 Anteil %
Kliesche Flunder Sandgrundel Aalmutter Seeskorpion Steinbutt Herbst (mitt. Diss.=33,89%) Art Dorsch Wittling Kliesche	3,32 6,16 5,76 2,36 0,34 0,39 1,85 mittlere A (√ transf 2013 10,59 5,87 9,04	6,80 8,33 2,93 0,04 1,43 1,17 2,64 bundanz ormiert) 2015 1,41 1,63 12,33	5,78 4,63 4,46 3,52 1,94 1,48 1,34 mittlere Dissimilarität 11,57 5,36 5,23	1,89 1,43 2,16 1,31 1,78 1,76 1,76 Stabw Dissimilarität 2,03 2,39 1,31	12,76 10,23 9,84 7,77 4,28 3,26 2,95 Anteil % 34,14 15,81 15,42
Kliesche Flunder Sandgrundel Aalmutter Seeskorpion Steinbutt Herbst (mitt. Diss.=33,89%) Art Dorsch Wittling Kliesche Flunder	3,32 6,16 5,76 2,36 0,34 0,39 1,85 mittlere A (√ transf 2013 10,59 5,87 9,04 10,48	6,80 8,33 2,93 0,04 1,43 1,17 2,64 bundanz ormiert) 2015 1,41 1,63 12,33 8,51	5,78 4,63 4,46 3,52 1,94 1,48 1,34 mittlere Dissimilarität 11,57 5,36 5,23 4,15	1,89 1,43 2,16 1,31 1,78 1,76 1,76 Stabw Dissimilarität 2,03 2,39 1,31 1,25	12,76 10,23 9,84 7,77 4,28 3,26 2,95 Anteil % 34,14 15,81 15,42 12,24

27.12.2024

Herbst (mitt. Diss.=40,75%)	mittlere A (√ transf		mittlere Dissimilarität	Stabw Dissimilarität	Anteil %
Art	2013	2023	Dissimilaritat	Dissimilaritat	
Scholle	4,02	12,68	10,37	3,37	25,45
Flunder	10,48	2,93	8,95	2,87	21,95
Dorsch	10,59	6,80	5,73	1,31	14,06
Wittling	5,87	1,26	5,40	2,60	13,26
Kliesche	9,04	8,33	2,60	1,46	6,39
Sandgrundel	2,02	0,04	2,35	1,51	5,76
Aalmutter	0,34	1,43	1,42	1,84	3,47
Herbst (mitt. Diss.=42,41%)	mittlere A (√ transf		mittlere Dissimilarität	Stabw Dissimilarität	Anteil %
Art	2015	2023	Dissilliaritat	Dissilliaritat	
Scholle	4,22	12,68	12,05	4,16	28,41
Flunder	8,51	2,93	7,77	2,62	18,33
Dorsch	1,41	6,80	7,64	3,96	18,02
Kliesche	12,33	8,33	6,36	1,47	14,99
Aalmutter	0,13	1,43	1,89	2,15	4,45
Seeskorpion	0,13	1,17	1,50	2,14	3,54
Wittling	1,63	1,26	1,22	1,31	2,88

Tab. 43: Ergebnisse der SIMPER basierend auf den quadratwurzeltransformierten Abundanzdaten der im OWP "Gennaker" nachgewiesenen Arten zur Bestimmung der Arten, die hauptsächlich zu Unterschieden zwischen den Fängen der vier Frühjahrskampagnen der Basisaufnahme beigetragen haben.

fett hervorgehoben die fünf Arten mit dem höchsten Anteil an den Unterschieden; Stabw: Standardabweichung nachgewiesene Fischarten ohne pelagische Arten

Frühjahr (mitt. Diss.=37,35%)		Abundanz formiert)	mittlere Dissimilarität	Stabw Dissimilarität	Anteil %	
Art	2013	2014				
Dorsch	2,50	7,25	10,69	1,97	28,62	
Scholle	3,75	7,02	7,28	2,54	19,50	
Kliesche	3,42	5,50	4,90	1,49	13,13	
Flunder	3,06	5,24	4,76	1,95	12,74	
Sandgrundel	1,33	0,29	2,38	1,80	6,36	
Wittling	0,29	1,06	2,09	1,25	5,59	
Steinbutt	1,14	0,79	1,42	1,30	3,79	
Gefleckter Großer Sandaal	0,24	0,56	1,35	0,93	3,63	
Frühjahr (mitt. Diss.=44,45%)		Abundanz formiert)	mittlere Dissimilarität	Stabw Dissimilarität	Anteil %	
Art	2013	2015	Dissimilaritat	Dissimilaritat		
Flunder	3,06	9,16	11,08	2,46	24,93	
Scholle	3,75	8,86	9,56	2,47	21,50	
Kliesche	3,42	7,60	7,76	1,86	17,45	
Wittling	0,29	3,18	5,55	3,79	12,49	
Dorsch	2,50	3,84	3,62	1,34	8,15	
Sandgrundel	1,33	0,18	2,25	2,14	5,06	
Steinbutt	1,14	2,06	1,85	1,64	4,16	

27.12.2024

Frühjahr (mitt. Diss.=52,79%)	mittlere Abund (√ transformie		mittlere Dissimilarität	Stabw Dissimilarität	Anteil %
Art	2013	2024		Diodilliantat	
Scholle	3,75	18,20	26,31	4,85	49,85
Kliesche	3,42	7,87	8,45	1,38	16,02
Dorsch	2,50	4,14	4,02	1,49	7,62
Aalmutter	0,12	2,07	3,55	2,77	6,73
Flunder	3,06	1,47	3,01	1,79	5,70
Seeskorpion	0,79	1,90	2,19	1,62	4,14
Frühjahr (mitt. Diss.=27,51%)	mittlere Abundanz (√ transformiert)		mittlere Dissimilarität	Stabw Dissimilarität	Anteil %
Art	2014	2015			
Flunder	5,24	9,16	6,08	1,52	22,09
Dorsch	7,25	3,84	5,29	1,69	19,21
Scholle	7,02	8,86	3,81	1,54	13,86
Kliesche	5,50	7,60	3,58	1,26	13,02
Wittling	1,06	3,18	3,34	2,08	12,15
Steinbutt	0,79	2,06	2,01	1,76	7,32
Gefleckter Großer Sandaal	0,56	0,13	0,92	0,84	3,33
Frühjahr	mittlere Abundanz (√ transformiert)		mittlere Dissimilarität	Stabw Dissimilarität	Anteil %
(mitt. Diss.=41,74%)	(\ transi	ioriniert,	Dissimilarität	Dissimilarität	Anteil %
(mitt. Diss.=41,74%) Art	2014	2024	_ Dissimilarität	Dissimilarität	Anteil %
	,	·	Dissimilarität 16,66	Dissimilarität 3,56	39,90
Art	2014	2024			
Art Scholle	2014 7,02	2024 18,20	16,66	3,56	39,90
Art Scholle Flunder	2014 7,02 5,24	2024 18,20 1,47	16,66 5,67	3,56 2,89	39,90 13,59
Art Scholle Flunder Dorsch	2014 7,02 5,24 7,25	2024 18,20 1,47 4,14	16,66 5,67 4,85	3,56 2,89 1,32	39,90 13,59 11,62
Art Scholle Flunder Dorsch Kliesche	2014 7,02 5,24 7,25 5,50	2024 18,20 1,47 4,14 7,87	16,66 5,67 4,85 4,47	3,56 2,89 1,32 1,13	39,90 13,59 11,62 10,70
Art Scholle Flunder Dorsch Kliesche Aalmutter	2014 7,02 5,24 7,25 5,50 0,04	2024 18,20 1,47 4,14 7,87 2,07	16,66 5,67 4,85 4,47 3,02	3,56 2,89 1,32 1,13 2,97	39,90 13,59 11,62 10,70 7,25
Art Scholle Flunder Dorsch Kliesche Aalmutter Seeskorpion Steinbutt Frühjahr (mitt. Diss.=40,06%)	2014 7,02 5,24 7,25 5,50 0,04 0,57 0,79 mittlere A (√ transf	2024 18,20 1,47 4,14 7,87 2,07 1,90 1,64 Abundanz formiert)	16,66 5,67 4,85 4,47 3,02 2,06	3,56 2,89 1,32 1,13 2,97 1,83	39,90 13,59 11,62 10,70 7,25 4,93
Art Scholle Flunder Dorsch Kliesche Aalmutter Seeskorpion Steinbutt Frühjahr (mitt. Diss.=40,06%) Art	2014 7,02 5,24 7,25 5,50 0,04 0,57 0,79 mittlere A (√ transf	2024 18,20 1,47 4,14 7,87 2,07 1,90 1,64 Abundanz formiert)	16,66 5,67 4,85 4,47 3,02 2,06 1,47 mittlere Dissimilarität	3,56 2,89 1,32 1,13 2,97 1,83 1,45 Stabw Dissimilarität	39,90 13,59 11,62 10,70 7,25 4,93 3,53 Anteil %
Art Scholle Flunder Dorsch Kliesche Aalmutter Seeskorpion Steinbutt Frühjahr (mitt. Diss.=40,06%) Art Scholle	2014 7,02 5,24 7,25 5,50 0,04 0,57 0,79 mittlere A (√ transf	2024 18,20 1,47 4,14 7,87 2,07 1,90 1,64 Abundanz formiert) 2024 18,20	16,66 5,67 4,85 4,47 3,02 2,06 1,47 mittlere Dissimilarität 12,90	3,56 2,89 1,32 1,13 2,97 1,83 1,45 Stabw Dissimilarität 2,33	39,90 13,59 11,62 10,70 7,25 4,93 3,53 Anteil %
Art Scholle Flunder Dorsch Kliesche Aalmutter Seeskorpion Steinbutt Frühjahr (mitt. Diss.=40,06%) Art Scholle Flunder	2014 7,02 5,24 7,25 5,50 0,04 0,57 0,79 mittlere A (√ transf	2024 18,20 1,47 4,14 7,87 2,07 1,90 1,64 Abundanz Formiert) 2024 18,20 1,47	16,66 5,67 4,85 4,47 3,02 2,06 1,47 mittlere Dissimilarität 12,90 10,17	3,56 2,89 1,32 1,13 2,97 1,83 1,45 Stabw Dissimilarität 2,33 2,92	39,90 13,59 11,62 10,70 7,25 4,93 3,53 Anteil %
Art Scholle Flunder Dorsch Kliesche Aalmutter Seeskorpion Steinbutt Frühjahr (mitt. Diss.=40,06%) Art Scholle Flunder Kliesche	2014 7,02 5,24 7,25 5,50 0,04 0,57 0,79 mittlere A (√ transf 2015 8,86 9,16 7,60	2024 18,20 1,47 4,14 7,87 2,07 1,90 1,64 Abundanz formiert) 2024 18,20 1,47 7,87	16,66 5,67 4,85 4,47 3,02 2,06 1,47 mittlere Dissimilarität 12,90 10,17 4,02	3,56 2,89 1,32 1,13 2,97 1,83 1,45 Stabw Dissimilarität 2,33 2,92 1,27	39,90 13,59 11,62 10,70 7,25 4,93 3,53 Anteil % 32,22 25,39 10,04
Art Scholle Flunder Dorsch Kliesche Aalmutter Seeskorpion Steinbutt Frühjahr (mitt. Diss.=40,06%) Art Scholle Flunder Kliesche Wittling	2014 7,02 5,24 7,25 5,50 0,04 0,57 0,79 mittlere A (√ transi 2015 8,86 9,16 7,60 3,18	2024 18,20 1,47 4,14 7,87 2,07 1,90 1,64 Abundanz formiert) 2024 18,20 1,47 7,87 0,29	16,66 5,67 4,85 4,47 3,02 2,06 1,47 mittlere Dissimilarität 12,90 10,17 4,02 3,93	3,56 2,89 1,32 1,13 2,97 1,83 1,45 Stabw Dissimilarität 2,33 2,92 1,27 3,68	39,90 13,59 11,62 10,70 7,25 4,93 3,53 Anteil % 32,22 25,39 10,04 9,82
Art Scholle Flunder Dorsch Kliesche Aalmutter Seeskorpion Steinbutt Frühjahr (mitt. Diss.=40,06%) Art Scholle Flunder Kliesche Wittling Aalmutter	2014 7,02 5,24 7,25 5,50 0,04 0,57 0,79 mittlere A (√ transf 2015 8,86 9,16 7,60 3,18 0,06	2024 18,20 1,47 4,14 7,87 2,07 1,90 1,64 Abundanz formiert) 2024 18,20 1,47 7,87 0,29 2,07	16,66 5,67 4,85 4,47 3,02 2,06 1,47 mittlere Dissimilarität 12,90 10,17 4,02 3,93 2,74	3,56 2,89 1,32 1,13 2,97 1,83 1,45 Stabw Dissimilarität 2,33 2,92 1,27 3,68 2,81	39,90 13,59 11,62 10,70 7,25 4,93 3,53 Anteil % 32,22 25,39 10,04 9,82 6,83
Art Scholle Flunder Dorsch Kliesche Aalmutter Seeskorpion Steinbutt Frühjahr (mitt. Diss.=40,06%) Art Scholle Flunder Kliesche Wittling	2014 7,02 5,24 7,25 5,50 0,04 0,57 0,79 mittlere A (√ transi 2015 8,86 9,16 7,60 3,18	2024 18,20 1,47 4,14 7,87 2,07 1,90 1,64 Abundanz formiert) 2024 18,20 1,47 7,87 0,29	16,66 5,67 4,85 4,47 3,02 2,06 1,47 mittlere Dissimilarität 12,90 10,17 4,02 3,93	3,56 2,89 1,32 1,13 2,97 1,83 1,45 Stabw Dissimilarität 2,33 2,92 1,27 3,68	39,90 13,59 11,62 10,70 7,25 4,93 3,53 Anteil % 32,22 25,39 10,04 9,82

8.3 Diskussion

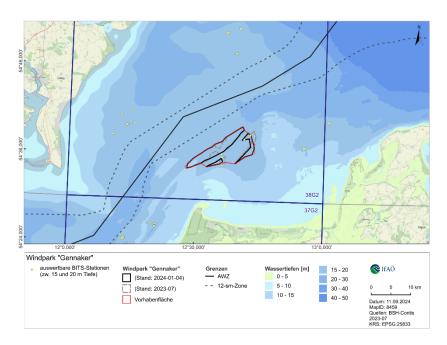


Abb. 23: Fischereisurvey-Daten des Thünen Institut für Ostseefischerei im Rahmen des Baltic International Trawl Survey (BITS) in den Jahren 2020-2021.

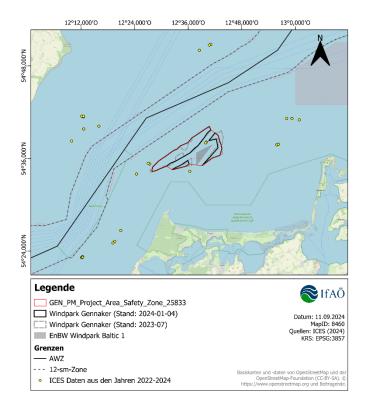


Abb. 24: Übersicht zur Lage der vom ICES (International Council for the Exploration of the Sea) im Rahmen des Baltic International Trawl Survey (BITS) in den Jahren 2022-2024 durchgeführten Fischereihols.

Tab. 44: Präsenzen der während der Untersuchungen des TI-OF (Thünen Institut für Ostseefischerei) und ICES (International Council for the Exploration of the Sea) im Rahmen des Baltic International Trawl Survey (Jahre 2020-2024) erfassten Fischarten.

n: Anzahl durchgeführter Hols.

	Präsenz (Nachweißhäufigkeit) [%]			
dt. Artname	TI-OF 2020-2021 (n=28)	ICES 2022-2024 (n=24)		
Dorsch	100	100		
Flunder	100	100		
Kliesche	100	100		
Scholle	100	100		
Steinbutt	89	96		
Seeskorpion	82	100		
Hering	93	79		
Sprotte	89	79		
Wittling	71	67		
Steinpicker	43	75		
Gefleckter Großer Sandaal	54	58		
Aalmutter	25	71		
Europäische Sardelle	25	33		
Seehase	25	33		
Glattbutt	36	21		
Seezunge	18	29		
Holzmakrele	21	25		
Seebull	7	21		
Petermännchen	7	8		
Schwarzgrundel	7	8		
Seestichling	7	8		
Tobiasfisch	7	8		
Grauer Knurrhahn	7	4		
Klippenbarsch	7	4		
Sandgrundel	11			
Dreistachliger Stichling	4	4		
Lammzunge	4	4		
Spitzschwanz-Schlangenstachelrücken	4	4		
Vierbärtelige Seequappe	4	4		
Butterfisch		4		
Schwarzmundgrundel		4		
Dreibärtelige Seequappe	4			
Gestreifter Leierfisch	4			
Seehecht	4			
Zwergdorsch	4			