

Allgemeine Spezifikation des Vestas-Brandschutzes für Mk-3-Windenergieanlagen

Dokument-Nr.: 0068-8865 V01

Klassifizierung: EINGESCHRÄNKTE WEITERGABE

Type: T05

Datum: 16.6.2020

Seite 2 von 17

Windenergieanlagentyp

Vor Aufnahme der Arbeiten das Dokument vollständig durchlesen.

Fragen oder Bedenken hinsichtlich des Dokuments sind an Vestas Wind Systems A/S zu richten.

Windenergieanlagentyp	Markversion
V105-3.45 MW	Mk 3A
V112-3.45 MW	Mk 3A
V117-3.45 MW	Mk 3A
V117-4.0/4.2 MW	Mk 3E
V126-3.45 MW	Mk 3A und 3B
V126-4.0/4.2 MW	Mk 3E
V136-3.45 MW	Mk 3B
V136-4.0/4.2 MW	Mk 3E
V150-4.0/4.2 MW	Mk 3E

Änderungsbeschreibung

Beschreibung der Änderungen

Tabelle der Windenergieanlagentypen aktualisiert.

Aktualisiert wurden <u>Abschnitt 8.2.4 Brandschutzbereiche auf Seite 9</u> sowie <u>Abschnitt 8.2.5</u> Branderkennung und Ereignisabfolge auf Seite 10.

T05 0068-8865 Ver 01 - Approved- Exported from DMS: 2020-08-03 by LEARS

Seite 3 von 17

Allgemeine Spezifikation des Vestas-Brandschutzes für Mk-3-Windenergieanlagen Dokument-Nr.: 0068-8865 V01 \cdot Klassifizierung: EINGESCHRÄNKTE WEITERGABE \cdot Typ: T05

RESTRICTED

Inhaltsverzeichnis

1	Haftungsausschluss	4
2	Zweck	
3	Abkürzungen	
4	Allgemeine Beschreibung	
5 5.1 5.2 5.3	Konstruktive Maßnahmen zur Vorbeugung Verbrennungsdreieck Brandquelle Brennbare Materialien	5 5
6 6.1 6.2	Occupational health and safety (Arbeitsschutz)	6
7	Blitzschutzsystem	8
8 8.1 8.2 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 8.2.6	Meldeanlage Lichtbogendetektoren Hochentwickeltes Rauchmeldesystem (Advanced smoke detection system, ASD) Systembeschreibung ASD Leistungsmerkmale Brandschutzbereiche Branderkennung und Ereignisabfolge Integrierte Brandschutzsteuerung	9 9 10 10 11
8.2.7	Sicherheit	
9	Mk-3-Windenergieanlagen – Brandschutzmaßnahmen	15
9.1	Risikosituation und Brandschutzmaßnahmen	

Seite 4 von 17

Allgemeine Spezifikation des Vestas-Brandschutzes für Mk-3-Windenergieanlagen Dokument-Nr.: 0068-8865 V01 · Klassifizierung: EINGESCHRÄNKTE WEITERGABE · Typ: T05

1 Haftungsausschluss

© 2017 Vestas Wind Systems A/S. Dieses Dokument wurde von Vestas Wind Systems A/S und/oder einer der Tochtergesellschaften des Unternehmens erstellt und enthält urheberrechtlich geschütztes Material, Markenzeichen und andere geschützte Informationen. Alle Rechte vorbehalten. Das Dokument darf ohne vorherige schriftliche Erlaubnis durch Vestas Wind Systems A/S weder als Ganzes noch in Teilen reproduziert oder in irgendeiner Weise oder Form (grafisch, elektronisch oder mechanisch, einschließlich Fotokopien, Bandaufzeichnungen oder mittels Datenspeicherungs- und Datenzugriffssystemen) vervielfältigt werden. Die Nutzung dieses Dokuments über den ausdrücklich von Vestas Wind Systems A/S gestatteten Umfang hinaus ist untersagt. Marken-, Urheberrechts- oder sonstige Vermerke im Dokument dürfen nicht geändert oder entfernt werden.

Die allgemeinen Beschreibungen in diesem Dokument gelten für die aktuelle Version der Windenergieanlagen der 3-MW-Plattform. Bei neueren Versionen der Windenergieanlagen der 3-MW-Plattform, die ggf. zukünftig hergestellt werden, gilt u. U. eine andere allgemeine Beschreibung. Falls Vestas eine neuere Version der 3-MW-Plattform-Windenergieanlagen liefern sollte, wird das Unternehmen hierzu eine aktualisierte allgemeine Beschreibung vorlegen.

Die vorliegende "Allgemeine Spezifikation" stellt kein Verkaufsangebot dar. Sie beinhaltet keine Garantie oder Zusage und auch keine Prüfung der Leistungskurve bestimmter Optionen.

2 Zweck

Im vorliegenden Dokument werden die für Windenergieanlagen des Typs 3 MW Mk 3 verfügbaren Vestas-Brandschutzmaßnahmen erläutert.

3 Abkürzungen

Tabelle 3.1: Abkürzungen

Abkürzung	Erklärung		
ALARA	So gering wie mit vertretbaren Maßnahmen erzielbar		
ASD	(Advanced Smoke Detection) Hochentwickeltes Rauchmeldesystem		
FR	Fire Retardant (Flammhemmendes Mittel)		
HMI/MMS	Human-machine interface (Mensch-Maschine-Schnittstelle)		
HTq	High torque (Hohes Drehmoment)		
LTq	Low torque (Niedriges Drehmoment)		
ms	Millisekunde		
SCADA	Supervisory Control And Data Acquisition (System zur Prozesssteuerung und Datenerfassung)		

4 Allgemeine Beschreibung

Die Vestas-Brandschutzlösungen für die Windenergieanlagen beruhen auf verschiedenen Technologien und befinden sich in vorgeschriebenen Bereichen im Maschinenhaus und an den Rotorblättern.

Seite 5 von 17

Die Vestas-Brandschutzmaßnahmen beruhen auf fünf Haupttechnologien:

- Konstruktive Maßnahmen zur Vorbeugung
- Blitzschutz
- Lichtbogenerkennung
- Wärme- und Raucherkennung
- Feuermelde- und Feuerlöschsystem (optional)

Vestas bietet das Vestas-Feuermelde- und Feuerlöschsystem aufgrund der Vorschriften der örtlichen Behörden oder Versicherungsunternehmen als Option an.

5 Konstruktive Maßnahmen zur Vorbeugung

Die vorbeugenden Maßnahmen umfassen zur Senkung der Brandentstehungs- und Brandgefahr in der Windenergieanlage die drei Elemente im Verbrennungsdreieck sowie die Gefährdungsbeurteilung hinsichtlich der Brandgefahr. Bekannte Zündquellen werden beispielsweise gegenüber brennbarem Material isoliert und diese Abtrennung begrenzt den Brand.

5.1 Verbrennungsdreieck

Abbildung 5.1: Verbrennungsdreieck

Das Verbrennungsdreieck ist ein Grundlagenmodell, das dem Verständnis der für einen Brand erforderlichen Elemente dient. Das Dreieck zeigt die drei Elemente Brennstoff, Hitze und Oxidationsmittel (normalerweise Sauerstoff in der Luft), die erforderlich sind, damit ein Brand entsteht.

Ein Brand entsteht meistens, wenn die drei Elemente des Verbrennungsdreiecks vorhanden sind und im richtigen Mischungsverhältnis vorliegen. Wird eines der drei Elemente des Verbrennungsdreiecks beseitigt, lässt sich der Brand verhindern oder löschen. Das Verbrennungsdreieck zeigt, dass Brennstoff und Zündquellen durch konstruktive vorbeugende Maßnahmen voneinander getrennt werden müssen. Reicht die Trennung nicht aus, können Brennstoff oder Zündquelle zur Brandverhinderung isoliert werden.

5.2 Brandquelle

Die Risiken und die entsprechenden vorbeugenden konstruktiven Maßnahmen zur Minderung der Risiken auf ein zulässiges Niveau sind in der ALARA-Tabelle aufgelistet. Siehe <u>Abschnitt 8.2.7 Sicherheitauf Seite 12</u>.

Seite 6 von 17

Allgemeine Spezifikation des Vestas-Brandschutzes für Mk-3-Windenergieanlagen Dokument-Nr.: 0068-8865 V01 · Klassifizierung: EINGESCHRÄNKTE WEITERGABE · Typ: T05

5.3 Brennbare Materialien

Bricht in einer Windenergieanlage ein Brand aus, können Flammschutzmittel die Ausbreitung des Brandes auf einige Materialien verhindern. Die Liste brennbarer Materialien in den Windenergieanlagen ist der ALARA-Tabelle zu entnehmen. Siehe <u>Abschnitt 8.2.7</u> <u>Sicherheitauf Seite 12</u>.

6 Occupational health and safety (Arbeitsschutz)

Das Vestas-Handbuch zu Arbeitsschutz und Arbeitssicherheit enthält weitere Informationen zu erforderlichen Vorsichtsmaßnahmen für die Personensicherheit bei Montage, Betrieb und Service.

Siehe auch die entsprechenden Abschnitte von 0055-5622 "Vestas-Handbuch zu Arbeitsschutz und Arbeitssicherheit":

- Abschnitt 2: Schulung.
- Abschnitt 3: Notfallschutzplan und -maßnahmen.
- Abschnitt 5: Brandschutz und Brandverhütung.
- Abschnitt 5.4: Heißarbeit.
- Abschnitt 6: Sicherheitsleitfaden.
- Abschnitt 19: Baustelleneinweisung/Orientierung.

6.1 Brandschutz/Erste Hilfe

Im Maschinenhaus müssen ein tragbarer Feuerlöscher, ein Erste-Hilfe-Kasten und eine Feuerlöschdecke zur Verfügung stehen:

- Ein tragbarer Feuerlöscher (5–6 kg CO₂ oder gleichwertiges Gerät) ist nur während Serviceund Wartungsarbeiten erforderlich. Falls ein fest installierter Feuerlöscher im Maschinenhaus angebracht ist.
- Erste-Hilfe-Kästen sind nur während Service- und Wartungsarbeiten erforderlich.
- Feuerlöschdecken müssen nur bei Schweißarbeiten vorhanden sein.

Seite 7 von 17

6.2 Sicherheitssymbole in Windenergieanlagen und in der Dokumentation

Der Monteur muss bei Wartungsarbeiten in einer Windenergieanlage die mit Brand in Zusammenhang stehenden Schilder und Zeichen kennen und auf diese achten.

Tabelle 6.1: Mit Brand in Zusammenhang stehende Schilder und Zeichen in Windenergieanlagen

Vestas-Handbuch zu Arbeitsschutz, Sicherheit und Umwelt		Alle Wartungsarbeiten an einer Windenergieanlage müssen gemäß Abschnitt 5 "Brandschutz und Brandverhütung" von 0055-5622 "Vestas-Handbuch zu Arbeitsschutz, Sicherheit und Umwelt" ausgeführt werden.		
G W	Zugang nur durch berechtigte Personen	Nur Personen, die eine Genehmigung besitzen, dürfen die Windenergieanlage betreten!		
	Rauch und offene Flammen	Rauch und die Verwendung offener Flammen erhöhen die Brandgefahr! In der Windenergieanlage nicht rauchen!		
4	Elektrische Sicherheit	Elektrischer Strom gilt als Hauptzündquelle. Zur Senkung der Gefahr durch Elektrizität müssen während der Arbeit in der Nähe elektrischer Systeme bewährte Verfahren eingesetzt und die Arbeiten überwacht werden! Verfahren und Anweisungen zur elektrischen Sicherheit und Kontrolle gefährlicher Energie müssen eingesetzt und überwacht werden!		

Allgemeine Spezifikation des Vestas-Brandschutzes für Mk-3-Windenergieanlagen Dokument-Nr.: 0068-8865 V01 · Klassifizierung: EINGESCHRÄNKTE WEITERGABE · Typ: T05 Seite 8 von 17 Verschüttete Damit so wenig wie möglich Flüssigkeiten entflammbares Material, das Zündquellen sowie ausgesetzt werden könnte, vorhanden ist, Aufrechterhalt müssen verschüttetes Öl und brennbare Flüssigkeiten unbedingt beseitigt werden! ung von Ordnung und Den Arbeitsbereich stets sauber halten! Sauberkeit Nach der Verwendung: Lappen, Papierhandtücher, Chemikalien und andere brennbare Materialien müssen aus Windenergieanlage entfernt und entsorgt werden. Siehe dazu die standortspezifischen Abfallbeseitigungspläne. Notausgänge/Flucht- und Flucht- und Rettungswege sowie Rettungswege Notausgänge müssen jederzeit

unverstellt und frei passierbar sein!

7 Blitzschutzsystem

Die Windenergieanlage ist mit einem Blitzschutzsystem ausgestattet, um Schäden an mechanischen Komponenten, Elektrik und Steuerungen möglichst gering zu halten.

Das Blitzschutzsystem umfasst äußere und innere Blitzschutzsysteme.

Das äußere Schutzsystem nimmt direkte Blitzschläge auf und leitet den Blitzstrom in die Erde unter dem Turm.

Das innere Blitzschutzsystem kann den Blitzstrom sicher in den Boden leiten. Es kontrolliert auch die durch einen Blitzschlag induzierten magnetischen Felder.

Weitere Informationen über das Blitzschutzsystem sind 0010-6424 "Blitzschutzsystem" zu entnehmen.

Seite 9 von 17

Allgemeine Spezifikation des Vestas-Brandschutzes für Mk-3-Windenergieanlagen Dokument-Nr.: 0068-8865 V01 · Klassifizierung: EINGESCHRÄNKTE WEITERGABE · Typ: T05

8 Meldeanlage

Die Windenergieanlagen sind in brandgefährdeten Bereichen mit Lichtbogen-Überschlagsdetektoren, Rauch- und Hitzemeldern sowie dem "Vestas-Ready-to-Protect"-System ausgestattet:

- Ein Lichtbogendetektor trennt die Schaltanlage sofort vom Stromnetz, damit die Windenergieanlage ordnungsgemäß abgeschaltet wird.
- Ein Rauch- und Hitzemelder schaltet die Windenergieanlage in kontrollierter Weise ab, indem die Energie, welche die Entstehung des Brandes verursacht, beseitigt wird.
- Das Vestas-Ready-to-Protect-System verringert die Gefahr eines Lichtbogenüberschlags und ermöglicht nach einer Wegschaltung des Stromnetzes einen kontrollierten Neustart in der korrekten Reihenfolge.

8.1 Lichtbogendetektoren

Ein Brand kann in einem elektrischen Bereich der Windenergieanlage entstehen, wenn ein Lichtbogen mit hoher Leistung nicht unter Kontrolle gebracht wird. Die erste und wichtigste Schutzschranke gegen einen Brand im Maschinenhaus ist das Lichtbogendetektorsystem, das den Lichtbogenüberschlag erkennt und die Stromquelle in weniger als 100 ms wegschaltet. Ein Lichtbogenüberschlag reicht aus, um die Windenergieanlage sofort auszuschalten und die Energiequelle zu beseitigen.

8.2 Hochentwickeltes Rauchmeldesystem (Advanced smoke detection system, ASD)

Hauptzielsetzung des ASD ist die Erkennung des Rauchs im Maschinenhaus- und im Schaltanlagenraum. Das ASD schaltet die Windenergieanlage ab, trennt die Schaltanlage und löst das akustische Alarmsignal in der Windenergieanlage aus.

8.2.1 Systembeschreibung

Zur Meldeanlage gehören mehrere intelligente Feuermelder mit optischen Rauchsensoren und Thermistor-Temperatursensoren. Zur Senkung der Wahrscheinlichkeit von Fehlalarmen wird erst dann Alarm ausgelöst, wenn die Detektoren sowohl Rauch als auch Wärme melden. Ein Alarm führt zur Abschaltung der Windenergieanlage und löst den Versand einer Meldung über SCADA aus.

Das Vestas-Brandmeldesystem verwendet das Datenbussystem, das auch unter dem Namen Discovery bekannt ist. Der Discovery-Bus ist ein spezieller Brandschutzdatenbus nach der Norm EN54. Die Brandschutzsteuerung ist ein autonomes Steuergerät. Die Brandschutzsteuerung funktioniert auch dann, wenn die Steuerung der Windenergieanlage nicht in Betrieb ist.

Seite 10 von 17

Allgemeine Spezifikation des Vestas-Brandschutzes für Mk-3-Windenergieanlagen Dokument-Nr.: 0068-8865 V01 · Klassifizierung: EINGESCHRÄNKTE WEITERGABE · Typ: T05

8.2.2 ASD

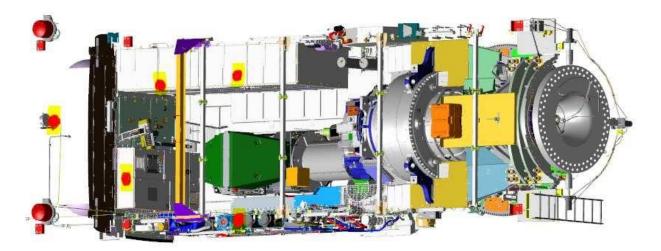
Komponenten des hochentwickelten Rauchmeldesystems (ASD):

- Eine Meldeanlage im Maschinenhaus verfügt über Multisensor-Punktmelder mit Alarmsirene oberhalb der mechanischen Bremse im Triebstrangbereich.
- Eine Meldeanlage im Turmfuß verfügt über Multisensor-Punktmelder mit Alarmsirene oberhalb der Schaltanlage.
- Eine Brandschutzsteuerung (integriert in die Hauptsteuerung der Windenergieanlage), welche die unterschiedlichen Meldertypen, Alarme und Warnmeldungen steuert, sammelt sämtliche Informationen aus dem SCADA-Datensatz und schaltet die Windenergieanlage ab.

8.2.3 Leistungsmerkmale

Das ASD-System verfügt über mehrere Leistungsmerkmale:

- 1. Ein vollständig in die Windenergieanlagenvarianten integriertes Vestas-System.
 - Ein von der Windenergieanlagenplattform unabhängiges Standardprodukt von Vestas.
 - Gekoppelt mit der Schaltanlagensteuerung, den Windenergieanlagensteuerungen, Readyto-Protect und den SCADA-Systemen.
 - Melderdaten werden über SCADA für jeden Raum einzeln zur Fernüberwachung und diagnose bereitgestellt.
- 2. Sicheres System
 - Branchenübliche Warnleuchten, akustische Alarme und Detektoren.
- 3. Robustes System
 - Zur schnellen Erkennung und Lokalisierung entstehender Brände kommen Multisensor-Punktmelder zum Einsatz. Die Windenergieanlage wird abgeschaltet, um die Energie, welche das in der Entstehung befindliche Feuer nährt, zu beseitigen.


Seite 11 von 17

8.2.4 Brandschutzbereiche

Die folgenden Bereiche werden als gefährliche Brandentstehungsbereiche mit der höchsten Entzündungswahrscheinlichkeit in der Windenergieanlage betrachtet:

- Eingangsbereich (Schaltanlage) im Turm
- Umrichter und Schaltschränke
- Triebstrangbereich mit Bremse und Generator
- Transformatorraum

Die Sensoren des Meldesystems befinden sich in den verschiedenen Bereichen des Maschinenhauses.

Abbildung 8.1: Meldesystem (rot) für den Maschinenhausraum

Die Meldeanlage erkennt autonom Brände in den vorgesehenen Räumen, welche die Brandschutzzonen bilden.

Die Rauchdichte im Raumschutzbereich wird durch das SCADA-System für jeden Raum aufgezeichnet. Das SCADA-System ermöglicht den Fernzugriff auf das Rauchprotokoll und verkürzt die Stillstandszeit bei der Diagnose von Vorfällen, bei denen Rauch erkannt wird.

Seite 12 von 17

Allgemeine Spezifikation des Vestas-Brandschutzes für Mk-3-Windenergieanlagen Dokument-Nr.: 0068-8865 V01 · Klassifizierung: EINGESCHRÄNKTE WEITERGABE · Typ: T05

8.2.5 Branderkennung und Ereignisabfolge

Punktförmige Multisensor-Detektoren

Die Multisensor-Punktmelder bestehen aus zwei Sensortypen in einem Meldergehäuse, um das Risiko eines Fehlalarms zu minimieren. Die Melder enthalten zwei Rauch- und Wärmesensoren. Die Signalgewichtung der Sensoren ist vorkonfiguriert. Die Gewichtung der Signale der beiden Sensortypen bewirkt, dass die Wahrscheinlichkeit von Fehlalarmen verringert wird. Dies liegt daran, dass eine höhere Schwelle erforderlich ist, wenn Rauch oder Hitze unabhängig festgestellt werden. Für die Melder sind fünf Modi (1 bis 5) einstellbar (von rein optischer bis ausschließlicher Hitzeerkennung, mit verschiedenen Kombinationsmöglichkeiten dazwischen). Vestas hat bereits einen auf Tests basierenden Modus für den Melder ausgewählt.

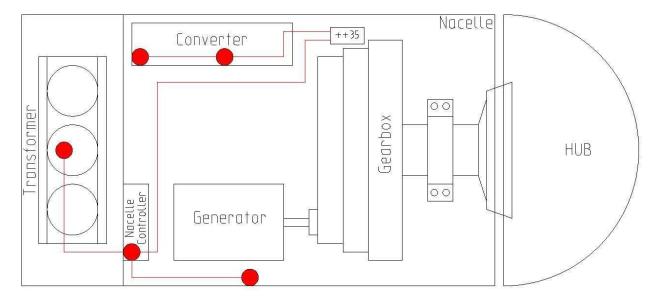


Abbildung 8.2: Systemüberblick

Verhinderung von Fehlalarmen

Rauch kann unter folgenden normalen Betriebsbedingungen in Maschinenhausbereichen auftreten:

- Externer Rauch
- Rauchentwicklung beim ersten Schwerlastbetrieb von Transformatoren
- Qualmentwicklung bei der Betätigung der mechanischen Bremse

Die Bremse ist so ausgelegt, dass sie nur betätigt werden kann, wenn die Drehzahl der schnellen Welle unter 300 U/min liegt. Dies dient der Senkung der Rauchentwicklungsgefahr beim Eingreifen der Bremse.

Von außen eindringender Rauch wird vom Sensor erfasst und die Algorithmen in der Brandschutzsteuerung berechnen die Dichte und Temperatur des Rauchs. Von außen eindringender Rauch ist meist bereits kühl, wenn er in die Windenergieanlage gelangt. Die Alarmschwelle für Rauch an den Meldern und in der Brandschutzsteuerung ist deshalb relativ hoch.

Im Transformatorraum wird das gleiche Verfahren zur Filterung des externen Rauchs eingesetzt. Der Funktionsmodus (1–5) des Sensors wird so eingestellt, dass er für die Bedingungen im Transformatorraum geeignet ist. Der optimierte Schwellenwert in der ASD-Software ist das Ergebnis von Tests und über lange Zeiträume gesammelten Daten.

Systemausfallschutz

705 0068-8865 Ver 01 - Approved- Exported from DMS: 2020-08-03 by LEARS

Wenn ein Sensor beispielsweise ausfällt, die Verbindung unterbrochen ist oder er zu stark verschmutzt ist, wird eine Warnmeldung an die WEA-Steuerung übertragen und dem Überwachungspersonal via SCADA angezeigt. Eine Warnung öffnet die Schaltanlage nicht. Die Windenergieanlage bleibt so lange in Betrieb, wie es der in den Parametern der Windenergieanlage eingestellte Zeitraum vorgibt, bevor die Warnung in einen Alarm übergeht, durch den dann die Windenergieanlage angehalten wird. Der standardmäßige Zeitraum beträgt 90 Tage.

Erkennung von Brandentstehung

Ein Multisensor-Punktmelder enthält zwei Sensorarten, die der Rauchmelder intern zu einem einzigen Rauchalarmsignal kombiniert:

- Optischer Rauchsensor
- Wärmesensor

Der Multisensor-Punktmelder kombiniert diese beiden Signale in Abhängigkeit von dem Modus, in dem er sich befindet (1-5), mithilfe interner Algorithmen zu einem einzigen Signal. Das kombinierte Signal und das eingebettete Wärmesignal werden von der Brandschutzsteuerung überwacht. Überträgt der Multisensor-Punktmelder einen Alarm über den Discovery-Datenbus an die Brandschutzsteuerung, wechselt die Anlage in einen Suchmodus und wartet ab, ob der Wärmesensor des Multisensor-Punktmelders einen Temperaturanstieg meldet. Dies verhindert, dass Fehlalarm ausgelöst wird, obwohl der Rauch im normalen Betrieb entsteht oder von außen eindringt.

Einige der Melder verfügen nicht über die Suchoption zur Deaktivierung der Temperaturanstiegsfunktion, sodass ein Brandalarm in Abhängigkeit von der internen Validierung des Melders aktiviert wird. Dies ist in Bereichen der Fall, in denen ein starker Luftstrom einen Temperaturanstieg verhindert.

Die Brandschutzsteuerung stellt den Modus (1–5) des Multisensor-Punktmelders über den Discovery-Bus ein. Der Temperaturanstieg im Suchmodus beruht auf Langzeittests und Datenaufzeichnungen in Vestas-Windenergieanlagen.

8.2.6 Integrierte Brandschutzsteuerung

Das Brandschutzsystem ist ein eigenständiges System, das ohne menschliches Eingreifen und mit nur minimalen Abhängigkeiten von externen Systemen betrieben wird.

Die Brandschutzsteuerung ist an die Batterie des Hilfsstromversorgungskreises für die wichtigen Sicherheitssysteme angeschlossen. Das Brandschutzsystem bleibt betriebsfähig, nachdem die Windenergieanlage vom Stromnetz genommen wurde und kann dem in der Windenergieanlage befindlichen Personal Alarmsignale geben sowie Daten an die Steuerung der Windenergieanlage senden.

Die Laufzeit des Brandschutzsystems nach Öffnung der Mittelspannungsschaltanlage beträgt eine Stunde, damit das akustische Alarmsignal während der Evakuierung aktiv bleibt.

Eine Brandschutzsteuerung verarbeitet alle ein- und ausgehenden Signale für Warnmeldungen und Alarme.

Die Schnittstellen der Brandschutzsteuerung:

- Der Detektorbus f
 ür alle Punktmelder.
- Die Windenergieanlagensteuerung für Abschalt-, Warn-, Fehler- und Abschalt-Handshake-Signale.
- Die Schaltanlage.
- Das SCADA-System durch die Steuerung der

Windenergieanlage. Funktionen der

Brandschutzsteuerung:

- Abschalten aller Kühlgebläse (über die Windenergieanlagesteuerung).
- Kontrolliertes Abschalten der Windenergieanlage und Auslösen der Schaltanlage.
- Überwachen der Melder auf, und Auslösen von Schaltkreisen bei Kabelversagen.
- Signalisiert der Windenergieanlagensteuerung einen Fehler und sendet den Fehler an SCADA
- Automatische Rückkehr aus dem SERVICE-Modus in den Betriebsmodus, wenn der SERVICE-Modus während einer gewissen Zeitspanne nicht durch einen Monteur verwendet wird.

Die Brandschutzsteuerung ist in das Sicherheitssystem der Windenergieanlagensteuerung und das Vestas-Ready-to-Protect-System integriert und besitzt eine Schnittstelle zur Windenergieanlagensteuerung und dem SCADA-System.

Bei einem Alarmzustand leitet die Brandschutzsteuerung das Herunterfahren der Windenergieanlage durch die Windenergieanlagensteuerung ein. Unmittelbar darauf bewirkt die Windenergieanlagensteuerung ein schnelles, aber geordnetes Abschalten und öffnet dann die Schaltanlage (das dauert gewöhnlich 10 Sekunden).

Die Brandschutzsteuerung wartet 30 Sekunden, damit die Windenergieanlagensteuerung Zeit zum Auslösen der Schaltanlage hat. Kann die Windenergieanlagensteuerung die Schaltanlage nicht innerhalb von 30 Sekunden auslösen, löst die Brandschutzsteuerung die Schaltanlage als Notfallmaßnahme aus. Ein Alarm wird an die Steuerung der Windenergieanlage gesandt und dann über SCADA angezeigt.

Die Brandschutzsteuerung übergibt Informationen an das SCADA-System. Um eine Ferndiagnose des Systems zu ermöglichen, enthalten die Daten der Melderebene die Kennung des jeweiligen Raums, damit der jeweilige Schaltschrank und die Brandzone, in denen Rauch erkannt wurde, ermittelt werden können.

Die Hauptfunktion des SCADA-Systems besteht in der Fernüberwachung und -diagnose und der Anzeige der aufgezeichneten Fehler. Das SCADA-System ist kein Steuerungssystem.

Die Schaltanlage kann nur dann in Betrieb gehen, wenn die Brandschutzsteuerung bereit ist und andere Sicherheitssysteme durch das Vestas-Ready-to-Protect-System in Betrieb genommen wurden. Dadurch ist sichergestellt, dass die Brandschutzanlage und andere Sicherheitssysteme schon beim Aufstarten Zwischenfälle erkennen.

Seite 15 von 17

8.2.7 Sicherheit

Stets betriebsbereit

Die Brandschutzanlage ist ein automatisches System mit minimaler Mensch-Maschine-Schnittstelle (HMI).

Eine Funktion der Software des ASD-Systems kehrt automatisch aus dem SERVICE-Modus in den Betriebsmodus zurück, wenn der SERVICE-Modus während einer gewissen Zeitspanne nicht durch einen Monteur verwendet wird.

9 Mk-3-Windenergieanlagen – Brandschutzmaßnahmen

9.1 Risikosituation und Brandschutzmaßnahmen

Brandge- fährdete Bereiche	Auftreten von Zündung/Brand	Bei der Konstruktion Schutzmaßnahm en gegen Entzündung und die Ausbreitung eines Brandes einplanen	Brennbares Material	Meldertypen: Bei der Erkennung von Lichtbögen oder Rauch wird die Windenergieanlag e abgeschaltet.	
				Lichtb ogenü bersch lagsse nsor	Multisen sor für Rauch und Temperat ur
Eingangs bereich (Schaltan lage)	Lockere Anschlüsse können zu extremer Überhitzung von Mittelspannungsko mponenten führen.	Gekapselt. Schaltschrank IP 65.	Mittelspannu ngskabelisoli erung FR		Х

Seite 16 von 17

Brandgefä hrdete Bereiche	Auftreten von Zündung/Brand	Bei der Konstruktion Schutzmaßnahm en gegen Entzündung und die Ausbreitung eines Brandes einplanen	Brennbares Material	Meldertypen: Bei der Erkennung von Lichtbögen oder Rauch wird die Windenergieanlag e abgeschaltet.	
				Lichtb ogenü bersch lagsse nsor	Multisen sor für Rauch und Temperat ur
	Elektrischer Lichtbogen/Lichtboge nüberschlag.	Gekapselt, gefüllt mit SF6-Gas.			
	Ein SF6-Leck vergrößert die Gefahr eines Lichtbogens und kann zu einer Lichtbogenexplosion der Schaltanlage führen.	Anzeige/Sensor für SF6-Druck.			
	Explosionsgefahr am Anschluss.	Ready-to-Protect.			
	Fehlerhafte Einstellungen des Relais verlängern die Dauer des Lichtbogens und erhöhen die Gefahr von gefährlichen Lichtbogenexplosion en sowie von Stromschlag/Tod.	Schutzrelais.			
Hilfsvers orgungs bereich	Lockere Anschlüsse können zu extremer elektrischer Überhitzung führen.	Gekapselt. Schaltschrank IP 54	NS- Kabelisolie- rung FR		Х
	Lockere Anschlüsse können zu extremer elektrischer Überhitzung führen.	Gekapselt. Schaltschrank IP 54	Kunststoffkom ponenten FR		Х
Umrichter bereich	Kondensatorexplosio n	Gekapselt. Schaltschrank IP 54	Filterkondensa toren – Trockenkonde nsator		Х

RESTRICTED

Allgemeine Spezifikation des Vestas-Brandschutzes für Mk-3-Windenergieanlagen Dokument-Nr.: 0068-8865 V01 · Klassifizierung: EINGESCHRÄNKTE WEITERGABE · Typ: T05 Seite 17 von 17 NS-Χ Lockere Anschlüsse Gekapselt. Schaltschrank Kabelisolierun können zu extremer IP 54 elektrischer g FR Überhitzung führen. Χ Χ Elektrischer Gekapselt. Mittelspannun Lichtbogen/Lichtboge Schaltschrank gskabelisolieru IP 54 nüberschlag. ng FR Χ Komponenten wie Gekapselt. Schmieröl Triebstran (PT100gbereich Lager und Welle verschleißen und Lagertemperaturse können extreme nsoren). mechanische Überhitzung

verursachen.

Brandgefä hrdete Bereiche	Auftreten von Zündung/Brand	Bei der Konstruktion Schutzmaßnahm en gegen Entzündung und die Ausbreitung eines Brandes einplanen	Brennbares Material	Meldertypen: Bei der Erkennung von Lichtbögen oder Rauch wird die Windenergieanlag e abgeschaltet.	
				Lichtbo genüber schlags sensor	Multisen sor für Rauch und Temperat ur
	Komponenten wie Lager und Welle verschleißen und verursachen	Gekapselt.	Schmieröl		Х
	Eine Fehlfunktion der Bremse verursacht Funkenbildung.	Gekapselt. (Bremstempera turthermistor und Verschleißanze	Hydrauliköl		Х
Generatorb ereich	Lagerverschleiß	Kapselung soweit möglich.	Fett		Х
Transforma tor-Raum	Lockere Anschlüsse können zu extremer elektrischer Überhitzung führen.	60076-11 Brandverhaltenskl asse F1	Transformator wicklungen/-isolierungen		Х
	Elektrischer Lichtbogen/Lichtbog enüberschlag.	60076-11 Brandverhaltenskl asse F1	Transformator wicklungen/-isolierungen	Х	

