GERÄUSCHIMMISSIONSGUTACHTEN

für den Betrieb von

4 WINDENERGIEANLAGEN VOM TYP NORDEX N149 (5,7 MW, STE) MIT 125,4 M NABENHÖHE

am Standort

17495 KARLSBURG

AUFTRAGGEBER: 36. naturwind Windpark GmbH & Co. KG

Schelfstraße 35

D - 19055 Schwerin

AUFTRAGNEHMER: Ingenieurbüro PLANkon

Dipl.-Ing. Roman Wagner vom Berg

Blumenstr. 26

D - 26121 Oldenburg

Tel.: 0441-390340

BERICHTSNUMMER: PK 2019008-SLG

DATUM: 09.06.2020

Inhaltsverzeichnis

1	Einleitung und Aufgabenstellung	5
2	Kartengrundlagen	6
3	Standortbeschreibung	6
4	Daten der emittierenden Windenergieanlagen	8
5	Infraschall	18
6	Randbedingungen und Berechnungsverfahren	22
7	Immissionsrichtwerte und Immissionspunkte	25
8	Betrachtung von gewerblichen Vorbelastungen	28
9	Ermittlung der Geräuschimmissionen	29
10	Beurteilung	37
11	Quellenverzeichnis	39
12	Anlagen zum Geräuschimmissionsgutachten 4 WEA vom Typ Nordex N149, 5,7 MW	(STE)
am	Standort Karlsburg	41

Tabellenverzeichnis

Tabelle 1: Erfassung der relevanten Ortschaften durch die Bauleitplanung
Tabelle 2: Übersicht der berücksichtigten geplanten und vorhandenen WEA
Tabelle 3: Verwendete Oktavbanddaten der geplanten WEA vom Typ Nordex N149 (5,7MW, STE) Tagzeit, Volllastmodus Mode 0
Tabelle 4: Verwendete Oktavbanddaten der geplanten WEA vom Typ Nordex N149 (5,7 MW, STE) Nachtzeit, Mode 18
Tabelle 5: Verwendete Oktavbanddaten der bestehenden WEA "vorh. VB7_RE MD77", Tag- und Nachtzeit
Tabelle 6: Verwendete Oktavbanddaten der bestehenden WEA "vorh. VB9_RE MD77", Tag- und Nachtzeit
Tabelle 7: gemittelte Oktavbanddaten der vermessenen WEA "vorh. VB7, 9 + 19_RE MD77", Tag und Nachtzeit als Ansatz für vorh. WEA "vorh. VB8_RE MD77"
Tabelle 8: Verwendete Oktavbanddaten der 5 bestehenden WEA vorh. VB10, VB12, VB13, VB14 und VB15_RE MD70, Tag- und Nachtzeit
Tabelle 9: Verwendete Oktavbanddaten der 3 bestehenden WEA vorh. VB16, VB17 und VB18_NTK500-41, Tag- und Nachtzeit
Tabelle 10: Für die Prognoseberechnung erforderliche Daten der berücksichtigten WEA 16
Tabelle 11: Wahrnehmungs-und Hörschwellen im Infraschallbereich gem. DIN 45680 /10/ 18
Tabelle 12: Immissionsrichtwerte gemäß TA Lärm
Tabelle 13: Betrachtete Immissionspunkte mit Lagebeschreibung
Tabelle 14: Berechnungsergebnisse der nächtlichen Vorbelastung OHNE Stalleffekt der WEA Nordtank
Tabelle 15: Berechnungsergebnisse der nächtlichen Zusatzbelastung

Tabelle 16:	Berechnungsergebnisse	der Teilpegel	der Zusatzbelast	ung durch 4	geplante	WEA
gepl. WEA	l bis gepl. WEA 4 vom T	Γyp Nordex N14	49 (5,7 MW, STE)	an den Immis	ssionspunk	ten IP
A – K, AA –	- AC und AF					34

Abbildungsverzeichnis

Abbildung 1: Messung des Infraschallpegels in 250 m Entfernung einer Nordex N54	19
Abbildung 2: Ergebnisse der Immissionsmessung durch Kötter Consulting Engineers /12/	20
Abbildung 3: Infraschall von WEA und PKW im Vergleich	21

1 Einleitung und Aufgabenstellung

Am Standort Karlsburg ist die Aufstellung von 4 Windenergieanlagen (WEA) des Typs Nordex N149 (5,7 MW, STE)_R1-R4 geplant. Die geplante Nabenhöhe beträgt 125,4 m, der Rotordurchmesser misst 149,1 m und die Nennleistung der WEA beträgt je WEA 5.700 kW.

Am Standort werden derzeit 19 WEA vorrangig des Herstellers REpower betrieben. 3 WEA sind dem Hersteller NORDTANK zuzuordnen. Von den 19 momentan am Standort vorhandenen WEA sollen 8 WEA durch die geplanten 4 WEA des Herstellers Nordex repowert werden. Auszüge aus dem diesbezüglich zwischen der Fa. Naturwind und den jetzigen Altanlagenbetreibern geschlossenem Vertrag liegen diesem Gutachten im Anhang bei.

Folgende WEA am Standort wurden als Vorbelastung berücksichtigt:

- 3 WEA des Herstellers REpower vom Typ RE MD77 mit einem Rotordurchmesser von 77 m, einer Nabenhöhe von 61,5 m und einer Nennleistung von 1.500 kW
- 5 WEA des Herstellers REpower vom Typ RE MD70 mit einem Rotordurchmesser von 70 m, einer Nabenhöhe von 65 m und einer Nennleistung von 1.500 kW
- 3 WEA des Herstellers NORDTANK vom Typ NTK 500/41 mit einem Rotordurchmesser von 41 m, einer Nabenhöhe von 50 m und einer Nennleistung von 500 kW

Die restlichen 8 WEA der Typen RE MD77 und RE MD70 sollen durch die 4 geplanten WEA des Typs Nordex N149 (5,7 MW, STE) ersetzt werden.

Der Auftraggeber, die Firma 36. naturwind Windpark GmbH & Co. KG, beauftragte das Ingenieurbüro PLANkon mit der Erstellung einer Geräuschimmissionsprognose für die 4 geplanten Windenergieanlagen. Die hier vorgenommene Begutachtung erfolgt im Rahmen des BImSchG-Genehmigungsverfahrens.

Eine Voraussetzung für den Betrieb von Windenergieanlagen ist die genehmigungsfähige Höhe der durch den Anlagenbetrieb verursachten Schallimmissionen an den für die Untersuchung relevanten Immissionspunkten. Die zu beurteilenden Immissionspunkte leiten sich aus den örtlichen Gegebenheiten unter Berücksichtigung ihrer Lage und Nutzung ab, bzw. aus der Festschreibung in der Bauleitplanung. Die Einstufung der Immissionspunkte erfolgte nach der Einstufung der Gebiete gem. Vorgaben der Bauleitplanung.

Folgende Bauleitplanung lag PLANkon zur Auswertung vor:

Tabelle 1: Erfassung der relevanten Ortschaften durch die Bauleitplanung

Ort	Flächennut- zungsplan	B-Pläne	Entwürfe/Satzungen
Brüssow	/	/	Klarstellungssatzung der Gemeinde Lühmannsdorf für den OT Brüssow, Da- tum unbekannt
Lühmannsdorf	/	B-Plan Nr. 1 / Heidberg der Gemeinde Lühmannsdorf vom 05.09.1997	Klarstellungs- und Abrundungssatzung – Ortsbereich südl. der Karl-Marx-Str. vom 22.05.1996, 1. Änderung der Klarstellungs- und Abrundungssatzung vom 14.06.2017

Ort	Flächennut- zungsplan	B-Pläne	Entwürfe/Satzungen
Karlsburg, Stein- furth, Zarnekow, Moeckow	F-Plan der Gemeinde Karlsburg vom 23.03.2002	B-Plan Nr. 1 / Teichweg vom 07.07.1993, 1. Änderung zum B-Plan Nr. 1 vom 14.12.1999, 2. Änder. zum B-Plan Nr. 1 vom 08.06.2000, 3. Änder. zum B-Plan Nr. 1 vom 16.07.2012	Innenbereichssatzungen von Karlsburg, Steinfurth, Zarnekow und Moeckow vom 30.12.1994

Im Rahmen dieses Gutachtens erfolgt eine Prognoseberechnung der entstehenden Geräuschimmissionen, die durch den Betrieb der Windenergieanlagen (WEA) hervorgerufen werden, für jeden untersuchten Immissionspunkt. Die aus den Geräuschimmissionen entstehenden Umwelteinwirkungen werden hinsichtlich einer dem geltenden BImSchG /3/ entsprechenden Genehmigungsfähigkeit untersucht.

Die Windenergieanlagen sollen zu jeder Tages- und Nachtzeit betrieben werden können.

2 Kartengrundlagen

1. Topographische Karte im Maßstab 1:50.000

2. Topografische Karte im Maßstab 1: 10.000

3. Luftbilder im Maßstab 1: 10.000

3 Standortbeschreibung

Die Gemeinde Karlsburg gehört zum Landkreis Vorpommern-Greifswald und liegt im Bundesland Mecklenburg-Vorpommern. Der Auftraggeber plant hier 4 Windenergieanlagen des Typs Nordex N149 (5,7 MW, STE).

Diese 4 geplanten WEA sollen 8 bereits am Standort vorhandene WEA im Zuge des Repowerings ersetzen. Bestehenbleiben werden 11 weitere WEA, die zusammen mit der Planung in Tabelle 2 dargestellt werden:

Tabelle 2: Übersicht der berücksichtigten geplanten und vorhandenen WEA

Anzahl	Тур	Nabenhöhe [m]	Rotordurch- messer [m]	Nenn- leistung [kW]	Status
4	Nordex N149, STE	125,4	149,1	5.700	geplant
3	REpower RE MD77	61,5	77,0	1.500	vorhanden
5	REpower RE MD70	65,0	70,0	1.500	vorhanden
3	NORDTANK NTK500/41	50,0	41,0	500	vorhanden

Am Standort sind Gewerbebetriebe vorhanden, deren Einfluss als mögliche, zu berücksichtigende Vorbelastung untersucht wurde.

Es handelt sich dabei um eine Rindermastanlage nordöstlich der Ortschaft Brüssow, um eine sog. Bauschuttrecyclinganlage mit dazugehörigem Tagebau und um eine Tankstelle südwestlich bzw. westlich von Brüssow.

Nach Inaugenscheinnahme aller Betriebe und aufgrund von Aussagen von Herrn Müller, StALU Vorpommern, werden diese Betriebe nicht als Vorbelastungen im vorliegenden Gutachten angesetzt. Nähere Informationen dazu finden sich im Kapitel 8.

Das Gebiet um den Standort stellt sich als überwiegend landwirtschaftlich genutzter Einwirkungsbereich dar. Der geplante Windpark befindet sich zwischen den Ortschaften Brüssow im Norden, Lühmannsdorf im Nordosten, Steinfurth im Südsüdosten, Karlsburg im Süden und Zarnekow sowie Moeckow im Westen. Weiterhin befinden sich noch kleine Ansiedelungen im näheren Umfeld des geplanten Standortes wie Giesekenhagen im Osten. Die Anlagen besitzen zu den nächstgelegenen Ortschaften eine Entfernung von mindestens ca. 640 m.

Als Immissionspunkte werden die als Wohnhäuser im Außenbereich und an den Ortsrändern gekennzeichneten Gebäude berücksichtigt sowie relevante Wohnbebauungen im Ortsinnern abhängig von deren Einstufungen in der Bauleitplanung. Die Koordinaten der Immissionspunkte wurden mit Hilfe der verwendeten Berechnungssoftware aus dem vom Auftraggeber zur Verfügung gestellten Kartenmaterial im Maßstab 1:10.000 ermittelt und mit online vorliegenden Geodaten der deutschen Landesvermessung des Bundesamtes für Kartographie und Geodäsie abgeglichen. Die Koordinaten der vorhandenen WEA wurden einer Excel-Tabelle entnommen, die Herr Müller, StALU Vorpommern, dem Auftraggeber zur Verfügung gestellt hatte. Die Koordinaten der geplanten WEA wurden vom Auftraggeber vorgegeben.

4 Daten der emittierenden Windenergieanlagen

In diesem Gutachten kommen die aktualisierten "Hinweise zum Schallimmissionsschutz bei Windkraftanlagen (WKA)" des LAI mit Stand 30.06.2016 /7/ zur Anwendung. Diese verweisen unter Kapitel 2, "Schallimmissionsprognosen", auf das Interimsverfahren /18/.

Im Einzelnen bedeutet das, dass die Schallberechnungen der Vor-, Zusatz- und Gesamtbelastung frequenzselektiv und unter Negierung der Bodendämpfung durchgeführt werden (siehe /18/).

Analog den Hinweisen in /7/ sind in den Schallimmissionsprognosen für WKA die Unsicherheit der Typvermessung σ_R , die Unsicherheit der Serienstreuung σ_P sowie die Unsicherheit des Prognosemodells σ_{Prog} zu berücksichtigen.

Die Berechnung der Gesamtunsicherheit (σ_{ges}) erfolgt in /7/ gemäß der nachfolgend dargestellten Formel.

$$\sigma_{\rm ges} = \sqrt{\sigma R^2 + \sigma P^2 + \sigma P r o g^2}$$

 σ_R : Unsicherheit der Emissionsvermessung, Standardwert $\sigma_R = 0.5$ dB, wenn die WEA FGW-konform vermessen wurde.

 σ_P : Unsicherheit durch Serienstreuung, Standardwert: $\sigma_P = 1,2$ dB, wenn eine einzelne Typvermessung herangezogen wird. Ansonsten ist σ_P der Messberichts-Zusammenfassung zu entnehmen bzw. zu berechnen.

 σ_{Prog} : Unsicherheit des Prognosemodells, Standardwert $\sigma_{\text{Prog}} = 1.0 \text{ dB}$

Das Ergebnis aus der Berechnung der Gesamtunsicherheit der Schallimmissionsprognose wird zur Berücksichtigung einer oberen Vertrauensbereichsgrenze von 90 % gem. /7/ mit dem Faktor 1,28 multipliziert:

$$\Delta L = 1,28 \text{ x } \sigma_{\text{ges}}$$

Bei den Vorbelastungsanlagen sind die zu verwendenden Schallleistungspegel den Genehmigungen zu entnehmen, einschließlich der Unsicherheit. Sie ist "in der gleichen Weise zu berücksichtigen, wie sie im Rahmen der Genehmigungen der Vorbelastungsanlagen angewandt wurde" (vgl. /7/, Kap. 3. e) ff.).

Bei vorbelastenden Windenergieanlagen sei auf das Referenzspektrum zurückzugreifen, wenn keine weiteren Informationen über detaillierte anlagenbezogene Oktavspektren zur Verfügung ständen (vgl. /7/, Kap. 1.1).

Bzgl. des Ansatzes der vorbelastenden Anlagen erfolgten am 19. und 24.03.2020 telefonische und schriftliche (per Mail) Abstimmungen mit Frau Freitag, Landesamt für Umwelt, Naturschutz und Geologie (LUNG) Mecklenburg-Vorpommern, Dezernat 510 - Lärm, physikalische Faktoren.

1) Volllast-Betrieb im Mode 0 der geplanten gepl. WEA 1_N149 bis gepl. WEA 4_N149 vom Typ Nordex N149/5,7 MW (STE), **Tagbetrieb**

Die Windenergieanlage vom Typ N149 (5,7 MW, STE) wurde im Volllastbetrieb noch nicht schalltechnisch vermessen. Gemäß Angaben des Herstellers im Dokument "Oktav-Schallleistungspegel" mit der Nummer "F008_275_A19_IN", Rev. 01, vom 30.08.2019, Do-

kument s. Anhang, wird als maximaler Geräuschpegel im Volllastbetrieb ein Wert von 105,6 dB(A) in der Ausstattung mit einer Sägezahnhinterkante an den Rotorblättern der geplanten WEA angenommen.

Dieser Wert wird, zzgl. eines Zuschlages von 2,1 dB(A) zur Würdigung von Unsicherheiten bei einer 90 %-igen Eintrittswahrscheinlichkeit gem. den Hinweisen zum Schallimmissionsschutz bei Windenergieanlagen des LAI /7/, als Emissionspegel im Sinne der oberen Vertrauensbereichsgrenze unter der Verwendung von Oktavbanddaten bei der Berechnung des Tagzustandes angesetzt.

Die vier geplanten WEA werden in der Berechnung des **Tagzeitraumes** also mit einem Summenpegel von **107,7 dB** (A) in die Berechnung eingeführt.

Mögliche Tonhaltigkeiten sind über diesen Wert hinaus nicht zu berücksichtigen.

Die nach /7/ vorgenommene Sicherheitsbetrachtung der verwendeten Emissionspegel berücksichtigt die Unsicherheit für Messwerte (σ_R), die Serienstreuung des jeweiligen Anlagentyps (σ_P) und die Unsicherheit des Berechnungsmodells (σ_{Prog}). Die Berechnung der Gesamtunsicherheit (σ_{ges}) erfolgt gemäß der oben dargestellten Formel.

Aufgrund der Herstellerangabe ist für σ_P der Wert 1,2 zu berücksichtigen. Demnach ergibt sich bei Berechnung mit der einleitend genannten Formel ein emissionsseitig auf den verwendeten Schallleistungspegel aufzuschlagender Zuschlag in Höhe von 2,1 dB(A):

$$\sigma_{ges} = \sqrt{0.5^2 + 1.2^2 + 1^2} \approx 1.64$$

 $\Delta L = 1.28 \times 1.64 = \sim 2.1 \text{ dB(A)}$

Der Wert 107,7 dB(A) ist als Emissionspegel für den Tagbetrieb unter der Verwendung von Oktavbanddaten bei den Berechnungen anzusetzen.

Die Oktavbanddaten wurden der Herstellerangabe Nr. "F008_275_A19_IN", Rev. 01, vom 30.08.2019 entnommen:

Tabelle 3: Verwendete Oktavbanddaten der geplanten WEA vom Typ Nordex N149 (5,7MW, STE), Tagzeit, Volllastmodus Mode $\boldsymbol{0}$

f [Hz]	63	125	250	500	1.000	2.000	4.000	8.000
Oktavband L _{WA} ohne Zuschläge für 125 m NH [dB(A)]	87,3	93,5	97,2	99,8	100,5	98,0	90,4	82,4
Zuschläge gem. LAI 06/2016	2,1	2,1	2,1	2,1	2,1	2,1	2,1	2,1
Oktavband L _{WA} mit Zuschlägen für 125 m NH [dB(A)]	89,4	95,6	99,3	101,9	102,6	100,1	92,5	84,5

Im Nachtzustand werden alle vier geplanten WEA des Typs Nordex N149 (5,7 MW, STE) ausgeschaltet.

Um aufzuzeigen, dass eine nächtliche Reduzierung der vier geplanten WEA in den geräuschärmsten Modus "Mode 18" nicht ausreicht, liegt eine Berechnung der Zusatzbelastung auf Grundlage des Mode 18 dem Gutachten bei. Bei der Verwendung des Mode 18 wurden folgende Schalldaten angesetzt:

2) <u>Überprüfter Mode 18 der gepl. WEA 1_N149 bis gepl. WEA 4_N149 vom Typ Nordex N149 (5,7 MW, STE) für einen möglichen Nachtbetrieb</u>

Die Windenergieanlage vom Typ N149 (5,7 MW, STE) wurde im Betrieb Mode 18 noch nicht vermessen. Gemäß Angaben des Herstellers im Dokument "Oktav-Schallleistungspegel" mit der Nummer "F008_275_A19_IN", Rev. 01, vom 30.08.2019, Dokument s. Anhang, wird als maximaler Geräuschpegel im Betrieb Mode 18 ein Wert von 95,5 dB(A) in der Ausstatung mit einer Sägezahnhinterkante an den Rotorblättern der geplanten WEA angenommen. Dieser Wert wird, zzgl. eines Zuschlages von 2.1 dB(A) zur Würdigung von Unsicherheiten

Dieser Wert wird, zzgl. eines Zuschlages von 2,1 dB(A) zur Würdigung von Unsicherheiten bei einer 90 %-igen Eintrittswahrscheinlichkeit gem. den Hinweisen zum Schallimmissionsschutz bei Windenergieanlagen des LAI /7/, als Emissionspegel im Sinne der oberen Vertrauensbereichsgrenze unter der Verwendung von Oktavbanddaten bei der Berechnung des Nachtzustandes angesetzt.

Die vier geplanten WEA werden in der Berechnung eines möglichen Nachtzeitraumes also mit einem Summenpegel von 97,6 dB (A) in die Berechnung eingeführt.

Mögliche Tonhaltigkeiten sind über diesen Wert hinaus nicht zu berücksichtigen.

Die nach /7/ vorgenommene Sicherheitsbetrachtung der verwendeten Emissionspegel berücksichtigt die Unsicherheit für Messwerte (σ_R), die Serienstreuung des jeweiligen Anlagentyps (σ_P) und die Unsicherheit des Berechnungsmodells (σ_{Prog}). Die Berechnung der Gesamtunsicherheit (σ_{ges}) erfolgt gemäß der oben dargestellten Formel.

Aufgrund der Herstellerangabe ist für σ_P der Wert 1,2 zu berücksichtigen. Demnach ergibt sich bei Berechnung mit der einleitend genannten Formel ein emissionsseitig auf den verwendeten Schallleistungspegel aufzuschlagender Zuschlag in Höhe von 2,1 dB(A):

$$\sigma_{ges} = \sqrt{0.5^2 + 1.2^2 + 1^2} \approx 1.64$$

 $\Delta L = 1.28 \times 1.64 = \sim 2.1 \text{ dB(A)}$

Der Wert 97,6 dB(A) wird als Emissionspegel für einen möglichen Nachtbetrieb unter der Verwendung von Oktavbanddaten bei den Berechnungen angesetzt.

Die Oktavbanddaten wurden der Herstellerangabe Nr. "F008_275_A19_IN", Rev. 01, vom 30.08.2019 entnommen:

Tabelle 4: Verwendete Oktavbanddaten der geplanten WEA vom Typ Nordex N149 (5,7 MW, STE), Nachtzeit, Mode 18

f [Hz]	63	125	250	500	1.000	2.000	4.000	8.000
Oktavband L _{WA} ohne Zuschläge für 125 m NH [dB(A)]	77,2	83,4	87,1	89,7	90,4	87,9	80,3	72,3
Zuschläge gem. LAI 06/2016	2,1	2,1	2,1	2,1	2,1	2,1	2,1	2,1
Oktavband L _{WA} mit Zuschlägen für 125 m NH [dB(A)]	79,3	85,5	89,2	91,8	92,5	90,0	82,4	74,4

PLANkon
Dipl. -Ing. Roman Wagner vom Berg
Blumenstraße 26, 26121 Oldenburg - Postfach 4070, 26030 Oldenburg

Bericht Nr. PK 2019008-SLG Datum: 09.06.2020 Seite 10 von 41 Die für den Bestand am Standort anzusetzenden Schallpegel teilte Herr Müller vom StALU Vorpommern dem Auftraggeber, der Fa. "36. naturwind Windpark GmbH & Co. KG", in einer Excel-Tabelle mit. In der Tabelle waren Tag- und Nachtpegel ("L $_{\rm WA}$ -Tag" und "L $_{\rm WA}$ -Nacht") sowie die Art und Weise des zum Zeitpunkt der Genehmigung angesetzten Zuschlages vermerkt – ob inklusive eines K-Wertes, Vermessung am Standort ohne Beaufschlagung oder zzgl. eines STALL-Zuschlages.

Wie die damalige Zuschlagsvergabe in den hier erforderlichen Berechnungen nach den aktuellen LAI-Hinweisen und dem damit verbundenen Interimsverfahren berücksichtigt werden kann, wurde im Einzelnen mit Frau Freitag vom LUNG telefonisch und per Mail abgeklärt (Telefonat vom 19.03.2020, Mail vom 24.03.2020).

Dementsprechend wurden der Schallpegel der vorhandenen WEA sowie die Unsicherheiten im vorliegenden Gutachten angesetzt. Z. T. wurden die Oktavbanddaten des Bestandes mit Hilfe des Referenzspektrums gem. /7/ ermittelt und in die Berechnungen eingepflegt, zum Teil aus Messberichten entnommen, die PLANkon von Frau Freitag zur Verfügung gestellt wurden.

3) Volllastbetrieb der vorhandenen WEA "vorh. VB7_RE MD77"_tags und nachts

Die vorhandene WEA "vorh. VB7_RE MD77" am Standort wurde lt. Angabe von Herrn Müller, StALU Vorpommern, mit einem Emissionspegel von 102,2 dB(A) vor Ort vermessen. Frau Freitag vom LUNG Mecklenburg-Vorpommern sandte PLANkon per Mail Auszüge dieser Vermessung zu (siehe Auszüge in den Anlagen).

Analog der vorgeschlagenen Vorgehensweise von Frau Freitag werden die direkt vermessenen WEA mit Unsicherheiten für die Vermessung (σ_R) und Unsicherheiten für die Prognose (σ_{Prog}) in die Berechnungen eingeführt. Weiterhin sei das jeweilige Spektrum dem Messbericht zu entnehmen.

Für die WEA "vorh. VB7_RE MD77" konnte PLANkon die benötigten Informationen zwei Auszügen aus dem Messbericht "WICO 037SE205/02" der WIND-consult GmbH vom 13.03.2006 entnehmen.

Dem ersten Auszug, einem Blatt des Textteils zum Gutachten, wurde die kombinierte Gesamtmessunsicherheit U_c mit einem Wert von 0,80 dB(A) bei einer Windgeschwindigkeit von 8 m/s und bei Vorliegen des maximalen Emissionspegels von 102,2 dB(A) entnommen (siehe Auszug in den Anlagen) und für σ_R angesetzt.

 σ_{Prog} wird mit 1,0 dB(A) in die Berechnungen eingeführt.

Demnach ergibt sich bei Berechnung mit der einleitend genannten Formel ein emissionsseitig auf den verwendeten Schallleistungspegel aufzuschlagender Zuschlag in Höhe von 1,64 dB(A):

$$\sigma_{ges} = \sqrt{0.8^2 + \ 1^2} \approx 1.28$$

$$\Delta L = 1.28 \ x \ 1.28 = \sim 1.64 \ dB(A)$$

Die Oktavbanddaten wurden gemäß der Empfehlung von Frau Freitag dem Auszug aus dem Prüfbericht "WICO 037SE205/02" vom 13.03.2006 für die WEA "vorh. VB7_RE MD77" entnommen und mit der oben errechneten Unsicherheit beaufschlagt.

Folgende Oktavband-Schallleistungspegel wurden in das Berechnungsprogramm windPRO eingepflegt:

f [Hz]	63	125	250	500	1.000	2.000	4.000	8.000
Oktavband LWA ohne Zuschläge für 61,5 m NH [dB(A)]	88,3	94,6	98,5	95,2	91,3	89,2	84,5	75,3
Zuschläge gem. LAI 06/2016	1,64	1,64	1,64	1,64	1,64	1,64	1,64	1,64
Oktavband LWA mit Zuschlägen für 61,5 m NH [dB(A)]	89,9	96,2	100,1	96,8	92,9	90,8	86,1	76,9

Tabelle 5: Verwendete Oktavbanddaten der bestehenden WEA "vorh. VB7_RE MD77", Tag- und Nachtzeit

4) Volllastbetrieb der vorhandenen WEA "vorh. VB9_RE MD77"_tags und nachts

Die vorhandene WEA "vorh. VB9_RE MD77" am Standort wurde It. Angabe von Herrn Müller, StALU Vorpommern, mit einem Emissionspegel von 101,9 dB(A) vor Ort vermessen. Frau Freitag vom LUNG Mecklenburg-Vorpommern sandte PLANkon per Mail Auszüge dieser Vermessung zu (siehe Auszüge in den Anlagen).

Analog der vorgeschlagenen Vorgehensweise von Frau Freitag werden die direkt vermessenen WEA mit Unsicherheiten für die Vermessung (σ_R) und Unsicherheiten für die Prognose (σ_{Prog}) in die Berechnungen eingeführt. Weiterhin sei das jeweilige Spektrum dem Messbericht zu entnehmen.

Für die WEA "vorh. VB9_RE MD77" konnte PLANkon die benötigten Informationen zwei Auszügen aus dem Messbericht "WICO 037SE205/01" der WIND-consult GmbH vom 13.03.2006 entnehmen.

Dem ersten Auszug, einem Blatt des Textteils zum Gutachten, wurde die kombinierte Gesamtmessunsicherheit U_c mit einem maximalen Wert von 0,80 dB(A) bei einer Windgeschwindigkeit von 7 m/s entnommen und für σ_R angesetzt, da bei Vorliegen des maximalen Emissionspegels von 101,9 dB(A) und der dazugehörigen Windgeschwindigkeit 9 m/s kein Wert U_c angegeben wurde, da lt. Information im Messbericht nicht ausreichend Werte vorhanden wären (siehe Auszug in den Anlagen.

 σ_{Prog} wird mit 1,0 dB(A) in die Berechnungen eingeführt.

Demnach ergibt sich bei Berechnung mit der einleitend genannten Formel ein emissionsseitig auf den verwendeten Schallleistungspegel aufzuschlagender Zuschlag in Höhe von 1,64 dB(A):

$$\sigma_{ges} = \sqrt{0.8^2 + 1^2} \approx 1.28$$

 $\Delta L = 1.28 \times 1.28 = \sim 1.64 \text{ dB(A)}$

Die Oktavbanddaten wurden gemäß der Empfehlung von Frau Freitag dem Auszug aus dem Prüfbericht "WICO 037SE205/01" vom 13.03.2006 für die WEA "vorh. VB9_RE MD77" entnommen und mit der oben errechneten Unsicherheit beaufschlagt.

PLANkon
Dipl. -Ing. Roman Wagner vom Berg
Blumenstraße 26, 26121 Oldenburg - Postfach 4070, 26030 Oldenburg

Bericht Nr. PK 2019008-SLG Datum: 09.06.2020 Seite 12 von 41 Folgende Oktavband-Schallleistungspegel wurden in das Berechnungsprogramm windPRO eingepflegt:

Tabelle 6: Verwendete Oktavbanddaten der bestehenden WEA "vorh. VB9_RE MD77", Tag- und Nachtzeit

f [Hz]	63	125	250	500	1.000	2.000	4.000	8.000
Oktavband LWA ohne Zuschläge für 61,5 m NH [dB(A)]	86,9	93,7	98,2	95,8	91,1	88,3	82,9	69,4
Zuschläge gem. LAI 06/2016	1,64	1,64	1,64	1,64	1,64	1,64	1,64	1,64
Oktavband LWA mit Zuschlägen für 61,5 m NH [dB(A)]	88,5	95,3	99,8	97,4	92,7	89,9	84,5	71,0

5) Volllastbetrieb der vorhandenen WEA "vorh. VB8_RE MD77"_tags und nachts

Die vorhandene WEA "vorh. VB8_RE MD77" wurde nicht am Standort vermessen. Herr Müller vom StALU Vorpommern gab in der Excel-Tabelle einen L_{WA} -Tag- und Nachtpegel von 103,9 dB(A) inkl. eines (k)-Wertes von 1,6 dB(A) an.

Frau Freitag vom LUNG schlug in ihrer Mail vom 24.03.2020 vor, anhand der drei am Standort vermessenen WEA (WEA VB7, VB9 und VB19) des Typs REpower MD77 einen gemittelten Maximalpegel anzuwenden sowie eine gemittelte Ungenauigkeit der Vermessung σ_R zu errechnen und die Serienstreuung σ_P wie bei der Auswertung einer Dreifachvermessung zu ermitteln. Weiterhin müsste die Unsicherheit des Prognosemodells mit 1,5 dB(A) berücksichtigt werden.

Als mittlerer maximaler Schallpegel ergab sich der Wert 102,1 dB(A).

Bezüglich der Ungenauigkeit der Vermessung σ_R hatte Frau Freitag PLANkon auch den dritten Messbericht zur vorhandenen WEA VB19 zugesandt (Auszüge aus dem Messbericht "WICO 037SE205/03" vom 13.03.2006). Die kombinierte Gesamtmessunsicherheit U_c im Messbericht "WICO 037SE205/03" beträgt 0,93 dB(A) bei einer Windgeschwindigkeit von 8,5 m/s und bei Vorliegen des maximalen Emissionspegels von 102,1 dB(A).

Eine Mittelung der kombinierten Gesamtmessunsicherheit U_c aus den drei vorliegenden Messberichten ergibt folgenden Wert:

$$(0.80 + 0.80 + 0.93) / 3 = 0.84 \, dB(A) = \sigma_R$$

Die Ermittlung der Serienstreuung der WEA ergibt folgenden Wert: $\sigma_P = 0.15 \text{ dB}(A)$.

σ_{Prog} wird mit 1,0 dB(A) in die Berechnungen eingeführt.

Demnach ergibt sich bei Berechnung mit der einleitend genannten Formel ein emissionsseitig auf den verwendeten Schallleistungspegel aufzuschlagender Zuschlag in Höhe von 2,1 dB(A):

$$\sigma_{ges} = \sqrt{0.84^2 + 0.15^2 + 1^2} \approx 1.31$$

$\Delta L = 1.28 \text{ x } 1.31 = ~1.68 \text{ dB(A)}$

Eine Mittelung der drei Oktavspektren der dazugehörigen maximalen Schallleistungspegel ergibt folgendes Spektrum, welches noch mit einem Skalierungsfaktor versehen wird, um einen mittleren maximalen Schallleistungspegel von 102,1 dB(A) zu erhalten:

Tabelle 7: gemittelte Oktavbanddaten der vermessenen WEA "vorh. VB7, 9 + 19_RE MD77", Tag- und Nachtzeit als Ansatz für vorh. WEA "vorh. VB8_RE MD77"

f [Hz]	63	125	250	500	1.000	2.000	4.000	8.000
Oktavband LWA ohne Zuschläge der WEA VB7 [dB(A)]	88,3	94,6	98,5	95,2	91,3	89,2	84,5	75,3
Oktavband LWA ohne Zuschläge der WEA VB9 [dB(A)]	86,9	93,7	98,2	95,8	91,1	88,3	82,9	69,4
Oktavband LWA ohne Zuschläge der WEA VB19 [dB(A)]	85,7	92,3	95,4	96,0	96,0	92,8	88,0	77,0
Gemitteltes Oktavband LWA ohne Zuschläge [dB(A)]	87,0	93,5	97,4	95,7	92,8	90,1	85,1	73,9
Skalierung [dB(A)]	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3
Gemitteltes Oktavband LWA mit Skalierung [dB(A)]	87,3	93,8	97,7	96,0	93,1	90,4	85,4	74,2
Zuschläge gem. LAI 06/2016	1,7	1,7	1,7	1,7	1,7	1,7	1,7	1,7
Oktavband LWA mit Zu- schlägen [dB(A)] für WEA VB8	88,9 *)	95,5	99,3	97,7	94,8	92,1	87,1	75,9

^{*)} Aufgrund von genaueren Berechnungen mit dem Programm Excel, die dieser Tabelle zugrundeliegen, werden hier die Werte 88,9 und 99,3 dB(A) ausgegeben statt 89,0 und 99,4 dB(A).

PLANkon
Dipl. -Ing. Roman Wagner vom Berg
Blumenstraße 26, 26121 Oldenburg - Postfach 4070, 26030 Oldenburg

Bericht Nr. PK 2019008-SLG Datum: 09.06.2020 Seite 14 von 41

6) Volllastbetrieb der vorhandenen WEA vorh. VB10, VB12, VB13, VB14 und VB15_RE MD70 tags und nachts

Die 5 vorhandenen WEA REpower MD70 am Standort werden mit dem von Herrn Müller, StALU Vorpommern, genannten Schalleistungspegel von 103,6 dB(A) inkl. des (k)-Wertes von 1,6 dB(A) in die Berechnungen eingeführt (s. Mail in den Anlagen).

Der genehmigte Schalleistungspegel wird mit Hilfe des Referenzspektrums gemäß /7/ in Oktavbanddaten überführt. In den aktualisierten LAI-Hinweisen /7/ sind keine Werte $L_{WA,norm}$ des Referenzspektrums für die Frequenz von 8.000 Hz angegeben. Zur Berechnung dieser Frequenz wird hierfür ein Wert von -22,9 dB gemäß Windenergie-Handbuch /16/ verwendet. Folgende Oktavband-Schallleistungspegel in das Berechnungsprogramm windPRO eingepflegt:

Tabelle 8: Verwendete Oktavbanddaten der 5 bestehenden WEA vorh. VB10, VB12, VB13, VB14 und VB15_RE MD70, Tag- und Nachtzeit

f [Hz]	63	125	250	500	1.000	2.000	4.000	8.000*)
Referenzspektrum L _{WA,norm} [dB]	-20,3	-11,9	-7,7	-5,5	-6,0	-8,0	-12,0	-22,9
$\begin{array}{c} Oktavband\ L_{WA} \\ f\"{u}r\ Berechnung \\ [dB(A)] \end{array}$	83,3	91,7	95,9	98,1	97,6	95,6	91,6	80,7

7) <u>Volllastbetrieb der vorhandenen WEA vorh. VB16_NTK500-41 bis vorh. VB18_NTK500-41 tags und nachts</u>

Die 3 vorhandenen WEA Nordtank NTK500-41 am Standort werden mit dem von Herrn Müller, StALU Vorpommern, genannten Schalleistungspegel von 105,3 dB(A) inkl. eines Sicherheitszuschlages von 3 dB(A) in die Berechnungen eingeführt (s. Mail in den Anlagen).

Bei diesem WEA-Typ handelt es sich um Stall-WEA. Der Stalleffekt entsteht, wenn bei starkem Wind die Leistung der vorhandenen NTK500-41 auf die Nennleistung begrenzt wird, indem im Nennlastbereich dieser WEA durch den Anstellwinkel der Rotorblätter der Strömungsabriss eintritt. Dies bringt teilweise stärkere Geräuschentwicklungen mit sich. Sollte der Stall-Zustand untersucht werden, wäre den Angaben von Herrn Müller zufolge ein weiterer Zuschlag in Höhe von 2 dB(A) zu beaufschlagen.

Nach Rücksprache mit Frau Freitag vom LUNG ist im vorliegenden Fall allerdings eine Untersuchung des Zustandes ohne Stall ausreichend, da bereits dann alle 4 geplanten WEA nachts ausgeschaltet werden müssen.

Der genehmigte Schalleistungspegel wurde mit Hilfe des Referenzspektrums gemäß /7/ in Oktavbanddaten überführt. In den aktualisierten LAI-Hinweisen /7/ sind keine Werte $L_{WA,norm}$ des Referenzspektrums für die Frequenz von 8.000 Hz angegeben. Zur Berechnung dieser Frequenz wird hierfür ein Wert von -22,9 dB gemäß Windenergie-Handbuch /16/ verwendet.

Folgende Oktavband-Schallleistungspegel wurden in das Berechnungsprogramm windPRO eingepflegt:

 $Tabelle~9:~Verwendete~Oktavbanddaten~der~3~bestehenden~WEA~vorh.~VB16,~VB17~und~VB18_NTK500-41,~Tag-~und~Nachtzeit$

f [Hz]	63	125	250	500	1.000	2.000	4.000	8.000*)
Referenzspektrum L _{WA,norm} [dB]	-20,3	-11,9	-7,7	-5,5	-6,0	-8,0	-12,0	-22,9
Oktavband L _{WA} für Berechnung [dB(A)]	85,0	93,4	97,6	99,8	99,3	97,3	93,3	82,4

Die wichtigsten, für die Prognoseberechnung erforderlichen Daten der untersuchten Windenergieanlagen folgen im Überblick:

Tabelle 10: Für die Prognoseberechnung erforderliche Daten der berücksichtigten WEA

Parameter	4 gepl. WEA, tags	4 gepl. WEA, nachts	4 gepl. WEA, nachts – Überprü- fung
WEA - Typ	Nordex N149, 5,7MW, mit STE	Nordex N149, 5,7MW, mit STE	Nordex N149, 5,7MW, mit STE
Nennleistung	5.700 kW	ausgeschaltet	reduziert auf 3.470 kW, Mode 18
Rotordurchmesser	149,1 m	149,1 m	149,1 m
Nabenhöhe	125,4 m	125,4 m	125,4 m
Angabe Schall	Herstellerangabe	/	Herstellerangabe
max. Schallpegel	105,6 dB(A)	/	95,5 dB(A)
Tonhaltigkeit K _T	/	/	/
Impulshaltigkeit K _I	1	/	/
Zuschlag 2,1 dB(A)		/	2,1 dB(A)
Summe	107,7 dB(A)	/	97,6 dB(A)

Parameter	1 vorh. WEA, tags & nachts_vorh. VB7	1 vorh. WEA, tags & nachts_vorh. VB9	1 vorh. WEA, tags & nachts_vorh. VB8
WEA - Typ	REpower RE MD77	REpower RE MD77	REpower RE MD77
Nennleistung	1.500 kW	1.500 kW	1.500 kW
Rotordurchmesser	77,0 m	77,0 m	77,0 m
Nabenhöhe	61,5 m	61,5 m	61,5 m
Angabe Schall	Angabe Hr. Müller, StALU Vorpommern – Vermessung vor Ort	Angabe Hr. Müller, StALU Vorpommern – Vermessung vor Ort	Auswertung 3fach- Verm. von vor Ort verm. WEA - Emp- fehl. von Fr. Freitag, LUNG
max. Schallpegel	102,2 dB(A)	101,9 dB(A)	102,1 dB(A)
Tonhaltigkeit K _T	/	/	/
Impulshaltigkeit K _I	1	/	/
Zuschlag 1,6 dB(A)		1,6 dB(A)	1,7 dB(A)
Summe	103,8 dB(A)	103,5 dB(A)	103,8 dB(A)

Parameter	5 vorh. WEA, tags & nachts_vorh. VB10, VB12-15	3 vorh. WEA, tags & nachts_ vorh. VB16-18	
WEA - Typ	REpower RE MD70	Nordtank 500-41	
Nennleistung	1.500 kW	500 kW	
Rotordurchmesser	70,0 m	41,0 m	
Nabenhöhe	65,0 m	50,0 m	
Angabe Schall	Angabe Hr. Müller, StALU Vorpommern	Angabe Hr. Müller, StALU Vorpommern	
max. Schallpegel	102,0 dB(A)	102,3 dB(A) OHNE Stall	
Tonhaltigkeit K _T	/	1	
Impulshaltigkeit K _I	1	/	
Zuschlag	1,6 dB(A)	3,0 dB(A)	
Summe	103,6 dB(A)	105,3 dB(A)	

5 Infraschall

Als Infraschall wird der Bereich des Lärmspektrums unterhalb einer Frequenz von 20 Hz definiert /8/. Es gibt verschiedene natürliche Quellen und künstliche Quellen, welche Infraschall verursachen können. Zu den natürlichen Quellen gehören zum Beispiel Vulkaneruptionen, Meeresbrandung, starker Wind, Gewitter etc. Zu den künstlichen Quellen zählen zum Beispiel Verkehrsmittel (Auto, Bus, Bahn, Flugzeug), Pumpen, Kompressoren, Sprengungen etc.

Es ist in der Regel feststellbar, dass auch im Lärmspektrum der Windenergieanlagen Infraschall vorkommt /8/ /9/. Schall in diesem Frequenzbereich kann gesundheitsgefährdend für Menschen sein, wenn dieser "gehört" bzw. wahrgenommen werden kann. Bei sehr hohen Schallleistungspegeln kann Infraschall wahrgenommen werden. Er kann bei den Betroffenen zu Ohrendruck, Konzentrationsschwierigkeiten, Unsicherheits- und Angstgefühlen kommen /9/. Liegt der Pegel allerdings unterhalb der Wahrnehmungs- bzw. Hörschwelle, konnten in Studien bisher keine Herz-Kreislauf-Probleme oder andere Symptome an Menschen nachgewiesen werden /8/. Für die Beurteilung, ob ein relevanter, gesundheitsgefährdender Infraschall auftritt, ist also entscheidend mit welchen Pegeln (Schallstärke) Frequenzen im Infraschallbereich auftreten. Gemäß der DIN 45680 und dem Entwurf der DIN 45680 von 2011 sind in der folgenden Tabelle die Wahrnehmungs-und Hörschwellen im Infraschall-Frequenzbereich aufgeführt.

Tabelle 11: Wahrnehmungs-und Hörschwellen im Infraschallbereich gem. DIN 45680 /10/

Frequenz	8 Hz	10 Hz	12,5 Hz	16 Hz	20 Hz
Hörschwelle	103 dB	95 dB	87 dB	79 dB	71 dB
Wahrnehmungsschwelle	100 dB	92 dB	84 dB	76 dB	68,5 dB

Aus der Tabelle wird der physiologische Zusammenhang wie folgt ersichtlich: Je tiefer die Frequenz, desto höher muss der Schalldruckpegel sein, damit der Mensch etwas wahrnimmt und ggf. negative Wirkungen entstehen. Um also Schall im Frequenzbereich von 8 Hz wahrzunehmen, muss der Schallleistungspegel mind. 100 dB betragen.

In einer Studie des bayrischen Landesamtes für Naturschutz wurde der Infraschallpegel einer 1 MW-Windenergieanlage (Nordex N54) in 250 m Entfernung gemessen /8//11/. In der nachfolgenden Grafik wird deutlich, dass die gemessenen Infraschallpegel alle deutlich unterhalb der Wahrnehmungsschwelle liegen (vgl. Abb. 1). Die Messungen haben außerdem ergeben, dass bei hohen Windgeschwindigkeiten der durch den Wind verursachte Infraschall deutlich stärker ist, als der ausschließlich von der Windenergieanlage erzeugte Infraschall /11//8/.

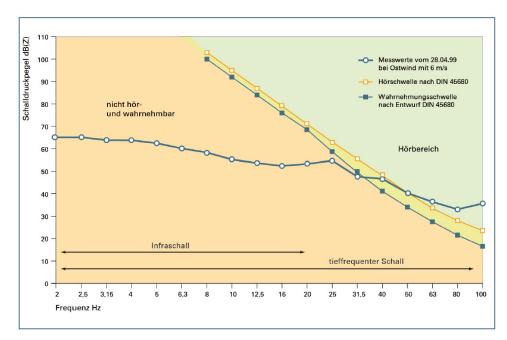


Abbildung 1: Messung des Infraschallpegels in 250 m Entfernung einer Nordex N54 (LfU Bayern 2014 /8/)

Da neu geplante Windenergieanlagen in der Regel nicht weniger als 500 m von den nächstgelegenen Wohnbebauung entfernt liegen, kann davon ausgegangen werden, dass der Infraschallpegel in 500 m Entfernung gemäß der Gesetzmäßigkeit (doppelte Entfernung = Verringerung des Pegels um 6 dB(A)) keinen relevanten Einfluss auf die nächstgelegene Wohnbebauung ausüben würden.

In einer weiteren Studie wurden Daten von 48 Windenergieanlagen unterschiedlicher Leistungsklassen (80 kW bis 3,6 MW) hinsichtlich tieffrequenter Geräusche untersucht /14/. Hier wurde festgestellt, dass die größeren WEA (2,3 MW bis 3,6 MW) einen etwas höheren tieffrequenten Anteil als kleinere WEA (< 2,0 MW) aufweisen. Aber auch diese Studie kommt zu dem Ergebnis, dass der von allen untersuchten Anlagen verursachte, gemessene Infraschall weit unterhalb des normalen Hörempfindens liegt und somit keine relevante Rolle spielt /14/.

Zu dem gleichen Ergebnis kommt die Fa. Kötter Consulting Engineers. Es wurden Immissionsmessungen außerhalb und innerhalb eines Wohnhauses vorgenommen, um den Einfluss der Geräuschimmissionen eines Windparks mit WEA des Typs Südwind S77 zu überprüfen. In 600 m Entfernung zur nächstgelegenen WEA konnte vor dem Wohnhaus bei Frequenzen unterhalb von 10 Hz und in den Räumen des Hauses kein nennenswerter Unterschied zwischen Hintergrundgeräusch und Betriebsgeräusch der WEA gemessen werden. Hierbei wird deutlich, dass auch ohne, dass der Windpark in Betrieb ist, ein gewisser infrafrequenter Anteil gemessen wurde, welcher sich durch den Betrieb der Windenergieanlagen nicht relevant erhöht (vgl. Abb. 2). In der Grafik wird auch deutlich, dass die infrafrequenten Schallpegel alle deutlich unterhalb der Hörschwelle liegen /12/.

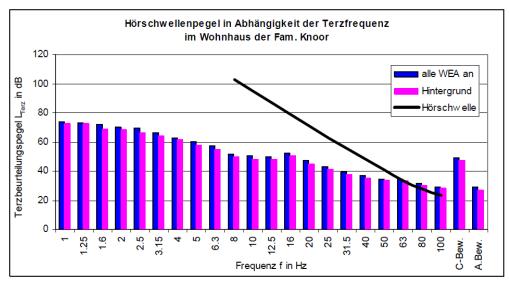


Abbildung 2: Ergebnisse der Immissionsmessung durch Kötter Consulting Engineers /12/

Auch wenn nicht jeder WEA-Typ bezüglich der tieffrequenten Geräuschanteile vermessen wurde, gibt es nach derzeitigem Kenntnisstand keinen Anlass zu der Annahme, dass es sich bei den aktuell geplanten Anlagen (Nordex N149, 5,7 MW) grundsätzlich anders verhält als bei den hier vorgestellten Untersuchungsergebnissen. Somit ist nicht zu erwarten, dass von den im hier vorliegenden Gutachten betrachteten Windenergieanlagen relevante oder gesundheitsschädigende Schallemissionen durch tieffrequente Geräuschanteile ausgehen.

Ein verbreitete Annahme bei dem Thema Infraschall und Windenergieanlagen ist, dass die tieffrequenten Anteile des Schalls mit zunehmender Entfernung nicht oder kaum vermindert werden und somit auf eine sehr große Distanz noch in voller Stärke vorhanden sind. Es ist physikalisch korrekt, dass der tieffrequente Schall im Vergleich zu hochfrequenteren Geräuschen aufgrund der großen Wellenlänge (z.B. bei 10 Hz ist die Wellenlänge 34 m) weniger bis kaum von Boden, Luft oder Hindernisse und Bewuchs gedämpft wird /9/. Trotzdem nimmt auch der langwellige tieffrequente Schall gemäß der geometrischen Gesetzmäßigkeiten auf große Entfernung hin ab: Wie schon erwähnt, nimmt mit einer Verdopplung der Entfernung auch der langwellige tieffrequente Schallpegel gesetzmäßig um 6 dB ab /8/. Es liegt also eine Abnahme der Stärke des Infraschalls mit zunehmender Entfernung vor, auch wenn sie wegen der geringeren Dämpfung geringer ist als bei den hochfrequenteren Schallanteilen. Zudem werden möglicherweise schalldämpfend wirkende Hindernisse in der Berechnung nicht berücksichtigt (vgl. Kap. 6).

Neben Windenergieanlagen ist im täglichen Umfeld eine Vielzahl von natürlichen oder künstlichen Quellen für Infraschall verantwortlich, deren Schallpegel teilweise sogar deutlich höher sein können, als die von Windenergieanlagen erzeugten. Es ist also unumgänglich, dass Menschen täglich, unabhängig von Windenergieanlagen, in Kontakt mit Infraschall aus verschiedenen Quellen (zum Beispiel Auto fahren, starker Wind) kommen. Im Falle des Autofahrens wird Infraschall durch die Motoren und je nach Geschwindigkeit auch durch den Fahrtwind erzeugt und wirkt unmittelbar während der Fahrt auf die Insassen ein. Die nachfolgende Grafik zeigt den durch Windenergieanlagen und beim Autofahren im PKW-Innenraum erzeugten Infraschall im Vergleich:

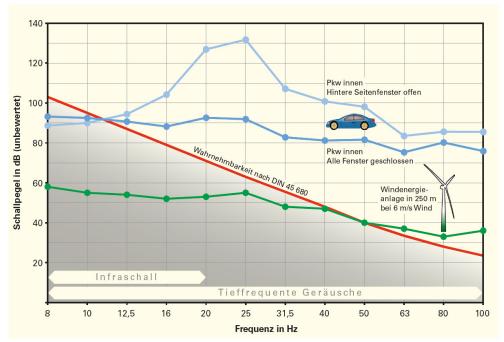


Abbildung 3: Infraschall von WEA und PKW im Vergleich (LUBW & LGA Baden-Württemberg (Darstellung) /13/ und LfU Bayern (Daten) /8/)

In der Grafik wird ersichtlich, dass die tieffrequenten Geräusche beim Autofahren aufgrund der höheren Schallpegel schon bei deutlich geringeren Frequenzen im Bereich des Infraschalls wahrnehmbar sind, als bei Windenergieanlagen. Es ist jedoch nicht bekannt, dass aufgrund der hohen Infraschallpegel durch Kraftfahrzeuge gemäß der dargelegten Annahmen (hoher Infraschall = Gesundheitsschädigung) PKW- und LKW-Fahrer, insbesondere natürlich die Berufskraftfahrer, durch dauerhafte unmittelbare Einwirkung ohne einen mindernden Abstand durch das Einwirken von Infraschall erkrankt oder dauerhaft geschädigt worden sind.

Dass Infraschall von Windenergieanlagen erzeugt wird, ist unzweifelhaft und ist nicht zu bestreiten. Dass Infraschall in sehr hohen Schallstärken gesundheitsschädlich wirkt, steht ebenso außer Frage. Allerdings kann aufgrund der beschriebenen Fakten nicht davon ausgegangen werden, dass durch die in diesem Gutachten betrachteten WEA des Typs Nordex N149 (5,7 MW) relevanter und gesundheitsschädigender Infraschall erzeugt wird, da der nächstgelegene Immissionspunkt IP X ("Whs. Dorfstr. 6, Zarnekow") ca. 640 m von den geplanten WEA entfernt liegt. Wenn davon ausgegangen wird, dass in 250 m Entfernung bei ungünstigen Mitwindbedingungen höchstens 65 dB bei einer Frequenz von 8 Hz gemessen wurde /11/, würde sich die Schallstärke des infrafrequenten Anteils in 500 m Entfernung gemäß der geometrischen Ausbreitung nochmal um ca. 6 dB verringern und läge so mit ca. 59 dB bei Weitem nicht mehr im hör- oder wahrnehmbaren Bereich /10/.

6 Randbedingungen und Berechnungsverfahren

Windenergieanlagen erzeugen abhängig von der Windgeschwindigkeit zwei Arten von Geräuschen. Zum einen entstehen Maschinengeräusche durch Generator und Getriebe mit einem anlagenabhängigen Frequenzspektrum, zum anderen entstehen aerodynamische Geräusche infolge der Luftverwirbelungen an den Rotorblättern, die ein breitbandiges Frequenzspektrum aufweisen.

Schallimmissionspegel werden als A-bewertete Schallpegel in der Einheit Dezibel dB(A) angegeben. Die A-Bewertung berücksichtigt das vom menschlichen Gehör subjektiv wahrnehmbare Frequenzspektrum und Lärmempfinden. Die Schallemissionen der Windenergieanlagen liegen ebenfalls als A-bewertete Schalleistungspegel vor.

Aus den Frequenzspektren der Windenergieanlagen heraustretende Einzeltöne, die abhängig von ihrer Frequenz über weitere Entfernungen hörbar bleiben (Tonhaltigkeiten) und im Hörempfinden als besonders störend gelten, werden durch einen Tonhaltigkeitszuschlag k_T berücksichtigt.

Für eine Betrachtung relevanter Infraschall wird von heutigen Windenergieanlagen nachweislich nicht emittiert, an dieser Stelle sei auf die entsprechende Fachliteratur verwiesen.

Die Berechnung der Schallausbreitung wird nach DIN ISO 9613-2 /6/ vorgenommen.

Da sie sich jedoch nur auf bodennahe Quellen (maximale mittlere Höhe zwischen Quelle und Empfänger von 30 m) bezieht, wurde vom Normenausschuss Akustik, Lärmminderung und Schwingungstechnik (NALS) ein "Interimsverfahren" /19/ veröffentlicht. Dieses gelte für hochliegende Schallquellen (mehr als 30 m) wie WEA. Analog den Vorgaben in /19/ sei der immissionsrelevante Schallleistungspegel mit Hilfe von Oktavbanddaten im Bereich der Oktaven 63 Hz bis 8.000 Hz zu ermitteln.

Die Berechnungen werden mit dem Programm "WINDPRO, Modul: DECIBEL" der Fa. EMD durchgeführt. Die Ergebnisprotokolle sind im Anhang zu finden.

In der Regel wird, aufgrund der vorliegenden Oktavbanddaten als A-bewertete Daten, die Berechnung mit A-bewerteten Oktavbandpegeln der WEA durchgeführt.

Der äquivalente Oktavband-Dauerschalldruckpegel L_{fT} an einem Immissionsort im Abstand d vom Mittelpunkt einer Schallquelle wird für eine Mitwindwetterlage nach folgender Gleichung berechnet:

$$L_{fT}(DW) = L_W + D_C - A$$

In der Formel bedeuten:

L_{fT}: äquivalenter Oktavband-Dauerschalldruckpegel bei Mitwind

L_W: Oktavband-Schallleistungspegel einer Punktschallquelle in dB bezogen auf eine Bezugsschallleistung von einem Picowatt

 D_C : Richtwirkungskorrektur in dB; für eine ungerichtet, ins Freie abstrahlende Punktschallquelle ist D_c = 0 dB

A: Oktavbanddämpfung in Dezibel zwischen der Punktschallquelle (WKA-Gondel) und dem Immissionspunkt, die während der Schallausbreitung vorhanden ist. Sie bestimmt sich aus den folgenden Dämpfungsarten:

PLANkon
Dipl. -Ing. Roman Wagner vom Berg
Blumenstraße 26, 26121 Oldenburg - Postfach 4070, 26030 Oldenburg

Bericht Nr. PK 2019008-SLG Datum: 09.06.2020 Seite 22 von 41

$$A = A_{div} + A_{atm} + A_{gr} + A_{bar} + A_{misc}$$

Die Berechnung der Dämpfungsterme erfolgt analog den Vorgaben der DIN ISO 9613-2:1999-10 /6/.

A_{div}: Dämpfung aufgrund der geometrischen Ausbreitung

$$A_{div} = 20 \lg (d / 1m) + 11 dB$$

d: Abstand zwischen Quelle und Immissionspunkt

Aatm: Dämpfung durch Luftabsorption

$$A_{atm} = \alpha \times d/1.000$$

α: Absorptionskoeffizient der Luft, in dB/km für jedes Oktavband bei der Bandmittenfrequenz

<u>Anmerkung:</u> Im Berechnungsprogramm windPRO sind die frequenzabhängigen Absorptionskoeffizienten für die relevante Temperatur von 10° und der relativen Luftfeuchte von 70% hinterlegt.

 $A_{\rm gr}$: Bodendämpfung. Während bei der Berechnung aller Dämpfungsterme nach den Regelungen der DIN ISO 9613-2:1999-10 /6/ verfahren wird, erfolgt nach den Vorgaben des Interimsverfahrens /18/ an dieser Stelle eine Modifizierung: $A_{\rm gr}$ wird auf -3 dB gesetzt.

 A_{bar} : Dämpfung aufgrund der Abschirmung (Schallschutzmaßnahmen), hier $A_{bar} = 0$

 A_{misc} : Dämpfung aufgrund verschiedener weiterer Effekte (Bewuchs, Bebauung etc.) In der Regel gehen diese Effekte nicht in die Prognose ein; hier $A_{misc} = 0$

In der Praxis dämpfen Bebauung und Bewuchs den Schall, d.h. $A_{misc} > 0$, insofern ist die hier vorgenommene Prognoserechnung konservativ angesetzt.

Bei mehreren Schallquellen werden die Schallpegel L_{ATi} am Immissionsort für jede Quelle getrennt ermittelt und energetisch addiert. Gem. der TA Lärm ist der aus allen Schallquellen resultierende Schallleistungspegel L_{AT} bei Berücksichtigung von eventuell erforderlichen Zuschlägen nach der im Folgenden aufgeführten Gleichung zu ermitteln:

$$L_{AT}(LT) = 101g \left(\sum_{i=1}^{n} 10^{0,1(L_{ATI} - C_{met} + K_{Ti} + K_{1i})} \right)$$

L_{AT}: Beurteilungspegel am Immissionsort

L_{ATi}: Schalllimmissionspegel einer Emissionsquelle i an dem Immissionspunkt

i: Index für alle Geräuschquellen von 1-n

 c_{met} : Meteorologische Korrektur (bei 0 konservativster Ansatz, hier $c_0 = 0$ dB)

K_{Ti}: Zuschlag für die Tonhaltigkeit einer Emissionsquelle i

K_{li}: Zuschlag für die Impulshaltigkeit einer Emissionsquelle i

Für die Entstehung von tonhaltigen Geräuschen bei Windenergieanlagen können Anlagenteile wie Getriebe, Generatoren, Azimutgetriebe und eventuelle Hydraulikanlagen verantwortlich sein. Die Hersteller bemühen sich durch konstruktive Maßnahmen, Tonhaltigkeiten in den Geräuschemissionen bei Windenergieanlagen zu vermeiden, bzw. zu minimieren. Genauere Daten dazu sind in der Regel dem Messbericht zu entnehmen.

Treten aus den Anlagengeräuschen Einzeltöne deutlich hervor, ist gem. TA Lärm /2/, /7/ und /16/ erforderlichenfalls ein Zuschlag K_T anzusetzen. WEA, die im Nahbereich höhere Tonhaltigkeiten erzeugen, seien gemäß /7/ und /16/ nicht mehr Stand der Technik und "seien aus Vorsorgegründen nicht mehr zuzulassen" (vgl. /16/, Kap. 2, 3. Abs.).

Ansonsten gelte gemäß /7/ und /16/:

$$K_T = 0 dB$$
 für $0 dB \le K_{TN} \le 2 dB$

7 Immissionsrichtwerte und Immissionspunkte

Für die Beurteilung von Industrie- und Gewerbegeräuschen sind in der TA Lärm /2/ Immissionsrichtwerte sowohl für den Beurteilungspegel, als auch für Maximalpegel einzelner Geräuschereignisse genannt. Sie sind nach Einwirkungsorten entsprechend der baulichen Nutzung ihrer Umgebung, sowie nach Tag und Nacht unterteilt (s. Tabelle unten). Die Beurteilungspegel beziehen sich auf die Zeiträume tags von 6:00 bis 22:00 Uhr und nachts von 22:00 bis 6:00 Uhr. Somit werden auch die Einflüsse der Ortsüblichkeiten und des Zeitpunktes des Auftretens der Geräusche berücksichtigt. Im vorliegenden Fall ist die lauteste Nachtstunde maßgeblich.

Tabelle 12: Immissionsrichtwerte gemäß TA Lärm

Art der baulichen Nutzung	Immissionsrichtwerte [dB(A)] * 06:00 – 22:00 Uhr ** 22:00 – 06:00 Uhr		
	Tags*)	Nachts**)	
Industriegebiete	70	70	
Gewerbegebiete	65	50	
Kerngebiete, Dorf- und Mischgebiete	60	45	
Allgemeine Wohngebiete und Kleinsiedlungsgebiete	55	40	
Reine Wohngebiete	50	35	
Kurgebiete, Krankenhäuser und Pflegeanstalten	45	35	

Es werden insgesamt 34 Punkte in der näheren Umgebung zu den geplanten Windenergieanlagen als Immissionspunkte untersucht. Bei den Immissionspunkten handelt es sich hauptsächlich um die nächstgelegene Wohnbebauung, die mit Ausnahme von IP R ("Klinikum Karlsburg, Greifswalder Str. 11, Karlsburg") in eingeschossiger Bauweise mit ausgebautem Dachgeschoß ausgebildet ist. Die Einstufung der Immissionspunkte erfolgte nach der Einstufung der Gebiete gem. Vorgaben der Bauleitplanung (siehe Kap. 1, Tabelle 1). Die Koordinaten der Immissionspunkte wurden mit Hilfe der verwendeten Berechnungssoftware aus dem vom Auftraggeber zur Verfügung gestellten Kartenmaterial im Maßstab 1: 10.000 ermittelt und mit online vorliegenden Geodaten der deutschen Landesvermessung des Bundesamtes für Kartographie und Geodäsie abgeglichen. Die Höhe des Aufpunktes wird mit 5 m bzw. 10 m beim Immissionspunkt IP R über Gelände angesetzt. Die Immissionspunkte wurden im Zuge einer Ortsbegehung am 21.02.2020 besichtigt.

Die Bezeichnungen und Lagebeschreibungen sowie zulässigen Richtwerte für die verschiedenen Immissionspunkte sind der folgenden Tabelle zu entnehmen:

Tabelle 13: Betrachtete Immissionspunkte mit Lagebeschreibung

Immissionspunkt	Lagebeschreibung	Richtwert Tag/Nacht in
IP A	Whs. Dorfstr. 5, Moeckow Berg	dB(A) 60/45
IP B	Whs. Dorfstr. 6, Moeckow Berg	60/45
IP C	Whs. Dorfstr. 7, Moeckow Berg	60/45
IP D	Whs. Dorfstr. 8, Moeckow Berg	60/45
IP E	Whs. Feldstr. 9, Brüssow	60/45
IP F	Whs. Feldstr. 8, Brüssow	60/45
IP G	verfallenes Whs. Feldstr. 7, Brüssow	60/45
IP H	Whs. Feldstraße 6, Brüssow	60/45
IP I	unbeb. Grundstck. SW Oberreihe, Lühmannsdorf	55/40
IP J	Whs. Oberreihe 16, Lühmannsdorf	55/40
IP K	unbeb. Grundstck. Am Heidberg SW, Lühmannsdorf	55/40
IP L	unbeb. Grundstck. Am Heidberg SO, Lühmannsdorf	55/40
IP M	Whs. Waldweg 5, Giesekenhagen	60/45
IP N	verfallenes Whs. Waldweg 6, Giesekenhagen	60/45
IP O	Whs. Dorfstr. 1, Steinfurth	55/40
IP P	Whs. Dorfstr. 2a, Steinfurth	55/40
IP Q	unbeb. Grundstck. WR Teichweg Ost, Karlsburg	50/35
IP R	Klinikum Karlsburg, Greifswalder Str. 11, Karlsburg	45/35
IP S	Whs. Dorfstr. 8, Karlsburg	60/45
IP T	Laube Kleingarten Greifswalder Str., Karlsburg	55/55
IP U	Whs. Dorfstr. 4A, Karlsburg	55/40
IP V	Whs. Karolinenweg 7, Karlsburg	60/45
IP W	Whs. Greifswalder Str. 7, Karlsburg	60/45
IP X	Whs. Dorfstr. 6, Zarnekow	60/45
IP Y	Whs. Dorfstr. 4, Zarnekow	60/45
IP Z	Whs. Dorfstr. 1, Zarnekow	60/45

Immissionspunkt	Lagebeschreibung	Richtwert Tag/Nacht in dB(A)
IP AA	Whs. Dorfstr. 24a, Zarnekow	55/40
IP AB	Whs. Dorfstr. 20, Zarnekow	55/40
IP AC	Whs. Dorfstr. 13, Zarnekow	55/40
IP AD	Whs. Greifswalder Str. 9, Moeckow	60/45
IP AE	Whs. Greifswalder Str. 9a, Moeckow	60/45
IP AF	Whs. Dorfstr. 10, Moeckow	55/40
IP AG	Whs. Dorfstr. 1, Moeckow Berg	60/45
IP AH	Whs. Dorfstr. 4, Moeckow Berg	60/45

Bei der Ortsbegehung wurde kein Immissionspunkt gesichtet, bei dem Reflexionen in relevantem Maße möglich sind. Es ist also davon auszugehen, dass bei den in der Umgebung befindlichen Immissionspunkten keine Reflexionseffekte in relevantem Maße stattfinden.

8 Betrachtung von gewerblichen Vorbelastungen

Herr Müller vom StALU Vorpommern nannte dem Auftraggeber, der 36. naturwind Windpark GmbH & Co. KG, im Umkreis der geplanten Standorte drei Betriebe, deren Relevanz als schalltechnische Vorbelastung in diesem Gutachten überprüft wurde. Herr Müller führte eine Rindermastanlage, eine Bauschuttrecyclinganlage sowie einen Tagebau an.

Bei der Rindermastanlage handelt es sich um eine landwirtschaftliche Anlage nordöstlich der Ortschaft Brüssow, nördlich der B111. Auf der von PLANkon durchgeführten Ortsbegehung am 21.02.2020 konnten keine lärmverursachenden Anlagen an den Gebäuden festgestellt werden. Auf Nachfrage gab auch Herr Müller vom Staatlichen Amt für Landwirtschaft und Umwelt Vorpommern, Dienststelle Stralsund, an, dass erfahrungsgemäß die Rinderanlage "keine relevanten Emissionsbeiträge zur Schallimmissionsvorbelastung liefert" (siehe Mail in den Anlagen). Diese Mastanlage wurde somit nicht als Vorbelastung bei den nachfolgenden Berechnungen berücksichtigt.

Weiterhin nannte Herr Müller eine genehmigungsbedürftige <u>Bauschuttrecyclinganlage</u> westlich von Brüssow, die eventuell als Vorbelastung anzusetzen wäre. Ihm selbst lägen jedoch keine verwertbaren Informationen dazu vor (siehe Mail in den Anlagen). Im Zuge der Ortsbegehung wurde das Gelände der sog. Recyclinganlage in Augenschein genommen. Es handelte sich dabei um einen Platz, auf dem Kies, Sand etc. zu Haufen aufgeschüttet wurden. Maschinen, die Baustoffe recyceln könnten, konnten nicht ausfindig gemacht werden, ebenso wenig wie ein Firmenschild, dem der Betreiber der Anlage oder das genaue Betätigungsfeld hätten entnommen werden können.

Augenscheinlich handelt es sich bei der Bauschuttrecyclinganlage also um einen reinen Abladeplatz für Baustoffe wie Sande, Kiese und dergleichen. Es wird nicht davon ausgegangen, dass von der Anlage Schallemissionen freigesetzt werden, vor allem auch nicht während der Nachtzeit oder am Wochenende. Die Anlage wurde somit ebenfalls nicht als Vorbelastung im vorliegenden Gutachten angesetzt.

Direkt nordwestlich der sog. Bauschuttrecyclinganlage befindet sich eine <u>Tankstelle</u> mit dazugehöriger Autowaschanlage. Erfahrungsgemäß wird auch hier davon ausgegangen, dass zur Nacht- und Tagzeit keine relevanten Geräuschemissionen freigesetzt werden.

Südwestlich der Tankstelle wurde ein <u>Tagebau</u> auf der Ortsbegehung in Augenschein genommen. Auf dem nach Möglichkeit abgegangen Gelände wurden keine Maschinen entdeckt, die Schallemittenten darstellen könnten, es wurden auch keine ständigen Einrichtungen auf dem Gelände wie Förderbänder oder dergleichen festgestellt. Auf dem Gelände findet It. Hinweisschild ein Kiestagebau statt. Anhand von vorgefundenen Fahrspuren ist davon auszugehen, dass der Tagebau noch aktiv ist, aber wohl nicht aufgrund der fehlenden Gerätschaften in einem großen Umfang. Lt. Auskunft von Hr. Müller, StALU Vorpommern, würden in seinem Hause zu der Anlage keine verwertbaren Gutachten existieren, zudem würde es sich bei der Anlage nicht um eine BImSch-Anlage handeln, sie falle unter das Bergrecht (siehe Mail in den Anlagen). Da dieser Tagebau somit ausdrücklich nach TA-Lärm, Kap. 1, nicht in den Anwendungsbereich der TA-Lärm fällt, wird er ebenfalls hier nicht als Vorbelastung bei den Berechnungen angesetzt.

9 Ermittlung der Geräuschimmissionen

Grundlage für die Berechnung der Geräuschimmissionen sind die Schallleistungspegel der Windenergieanlagen gem. Kap. 4, sowie die Randbedingungen und Berechnungsgrundlagen gem. Kap. 6.

Die Berechnungen erfolgen mit dem Programmsystem DECIBEL. Das Programmsystem führt die Schallausbreitungsrechnungen auf Grundlage der DIN ISO 9613-2 /6/ und nach Vorgabe durch /7/ unter Berücksichtigung des Interimsverfahrens /18/ durch. Die Berechnungen ermöglichen eine Analyse des Einflusses jeder Emissionsquelle auf die Geräuschimmission an jedem Immissionsort.

Berechnet werden die Zustände im Nachtzeitraum (22:00 bis 06:00 Uhr). Am Tage sind gem. TA Lärm /2/ 15 dB(A) höhere Richtwerte möglich. In der Regel leisten dann die WEA mit ihren Schallpegeln keinen relevanten Beitrag mehr, dennoch wird in diesem Gutachten ebenfalls eine Berechnung des Tages durchgeführt.

Zum Nachweis wurde eine Berechnung der geplanten WEA, im uneingeschränkten Betriebsmode Mode 0 inkl. Sicherheitszuschlag gem. Vorgabe /7/ (vgl. Kap. 4), durchgeführt (siehe Anhang). In dieser Berechnung wurden die berechneten Immissionspegel im uneingeschränkten Betriebsmodus Mode 0 den Immissionsrichtwerten am Tage gegenübergestellt. Hieraus ist zu entnehmen, dass alle berücksichtigten Immissionsrichtwerte durch jede geplante WEA um mehr als 15 dB(A) (z.B. Immissionspunkte IPs I, J, AB und AC) unterschritten werden und die geplanten vier WEA Nordex N149 somit nicht mehr auf sämtliche Immissionspunkte einwirken.

Aufgrund dessen werden nachfolgend nur noch die nächtlichen Betriebsvarianten erläutert und diskutiert.

Berechnet wurden zwei verschiedene Nachtzustände, bedingt durch die 11 als vorhanden angenommenen Anlagen. Am Standort befinden sich derzeit noch 8 weitere WEA, doch sollen diese abgebaut und durch die 4 geplanten WEA ersetzt werden (s. Ausführungen im 1. Kap., siehe Auszug aus dem "Stilllegungs- und Rückbauvertrag" im Anhang). Es wurden die 11 vorhandenen WEA (Vorbelastung) und die 4 geplanten WEA (Zusatzbelastung) jeweils getrennt betrachtet. Da eine Schallreduzierung der 4 geplanten WEA in den letztmöglichen Modus 18 immer noch eine zu hohe Schallbelastung für die umgebenden Immissionspunkte darstellt und diese im Nachtzustand aus diesem Grund ausgeschaltet werden müssen, ist im Gutachten keine nächtliche Berechnung der Gesamtbelastung enthalten, da diese identisch wäre mit der Berechnung der Vorbelastung.

<u>Anmerkung</u>: Gem. TA Lärm /2/ und LAI-Hinweisen /7/ sind die ermittelten Beurteilungspegel mit einer Nachkommastelle anzugeben "und vor dem Vergleich mit Immissionsrichtwerten auf ganze dB(A) zu runden" (Windenergiehandbuch /17/, S. 114 f.). Dabei sei die mathematische Rundung nach der DIN 1333 anzuwenden. Dieses Verfahren wird bei den Rundungen der nachfolgenden Tabellen angewandt.

Hierbei ist zu beachten, dass die geplanten WEA nachts ausgeschaltet werden. Dies wird in den nachfolgenden Berechnungen berücksichtigt.

PLANkon
Dipl. -Ing. Roman Wagner vom Berg
Blumenstraße 26, 26121 Oldenburg - Postfach 4070, 26030 Oldenburg

Bericht Nr. PK 2019008-SLG Datum: 09.06.2020 Seite 29 von 41 Berechnet wurde die nächtliche Vorbelastung durch 11 bestehende WEA am Standort Karlsburg OHNE Stall der WEA Nordtank. In den Berechnungsausdrucken im Anhang sind die Berechnungsergebnisse dokumentiert. Die Ergebnisse der Immissionsberechnungen sind der folgenden Tabelle zu entnehmen:

Tabelle 14: Berechnungsergebnisse der nächtlichen Vorbelastung OHNE Stalleffekt der WEA Nordtank

Immissions- punkt	Berechn. Schall- pegel Ls bei v(10) = 10 m/s [dB(A)]	Richtwert gem. TA Lärm [dB(A)]	Schallpegel L _s gerundet [dB(A)]	Reserve zum Richtwert [dB(A)]
IP A	49,1	45	49	-4
IP B	49,2	45	49	-4
IP C	49,1	45	49	-4
IP D	49,1	45	49	-4
IP E	46,6	45	47	-2
IP F	46,2	45	46	-1
IP G	46,6	45	47	-2
IP H	46,6	45	47	-2
IP I	45,3	40	45	-5
IP J	45,2	40	45	-5
IP K	41,1	40	41	-1
IP L	40,3	40	40	0
IP M	38,6	45	39	6
IP N	38,6	45	39	6
IP O	34,3	40	34	6
IP P	34,1	40	34	6
IP Q	32,1	35	32	3
IP R	32,8	35	33	2
IP S	35,2	45	35	10
IP T	36,4	55	36	19
IP U	35,0	40	35	5
IP V	38,7	45	39	6
IP W	40,2	45	40	5
IP X	41,8	45	42	3
IP Y	42,2	45	42	3
IP Z	44,0	45	44	1

Immissions- punkt	Berechn. Schall- pegel Ls bei v(10) = 10 m/s [dB(A)]	Richtwert gem. TA Lärm [dB(A)]	Schallpegel L _s gerundet [dB(A)]	Reserve zum Richtwert [dB(A)]
IP AA	42,1	40	42	-2
IP AB	42,1	40	42	-2
IP AC	41,4	40	41	-1
IP AD	44,7	45	45	0
IP AE	44,7	45	45	0
IP AF	41,8	40	42	-2
IP AG	43,1	45	43	2
IP AH	43,7	45	44	1

In der Tabelle ist ersichtlich, dass die Richtwerte etlicher Immissionspunkte bereits durch die Vorbelastung massiv überschritten werden. Betroffen sind nahezu alle Ortschaften im Umkreis.

Die höchsten Richtwertüberschreitungen finden statt in der Ortschaft Lühmannsdorf, die südlich der Karl-Marx-Str. im Textteil der Klarstellungs- und Abrundungssatzung als allgemeines Wohngebiet ausgewiesen wird. Durch die elf vorbelastenden WEA ergeben sich im Westen der Ortschaft, an der Straße "Oberreihe", Überschreitungen um gerundete 5 dB(A) (siehe Immissionspunkte IPs I und J).

Signifikante Richtwertüberschreitungen finden ebenfalls statt an den vier hier aufgeführten Immissionspunkten IPs A - D. Der Richtwert der im nördlichen Außenbereich liegenden Wohnhäuser von 45 dB(A) wird um gerundete 4 dB(A) überschritten.

Überschreitungen der zulässigen Richtwerte um 1 bis 2 dB(A) ergeben sich durch die am Standort vorhandenen elf WEA an den Immissionspunkten IPs E-H, K, AA-AC und AF.

Die höchsten Immissionspegel mit 49 dB(A) werden an den Immissionspunkten IP A – IP D erzielt.

An allen weiteren Immissionspunkten werden die Richtwerte eingehalten. Die Immissionspunkte S ("Whs. Dorfstr. 8, Karlsburg") und T ("Laube Kleingarten Greifswalder Str., Karlsburg") liegen nachts gem. TA-Lärm, Kap. 2.2 a), nicht mehr im Einwirkbereich der angesetzten Vorbelastung.

Aufgrund der äußerst massiven Richtwertüberschreitungen an einzelnen Immissionspunkten der Vorbelastungsberechnung ist das Ziel für die nächtliche Betriebsweise der Planung, mit jeder einzelnen der vier geplanten WEA mindestens 15~dB(A) unter dem jeweils gültigen Richtwert an den Immissionspunkten IP A-K, AA-AC und AF zu bleiben.

Anmerkung: Die Ergebnisse der obigen Tabelle beziehen sich auf eine Berechnung des Nachtzustandes, in dem bei den vorhandenen WEA Nordtank 500-41 der Stalleffekt noch nicht eingetreten ist. Bereits im Zustand ohne Stall (s. Tab. 14) ergeben sich an diversen Immissionspunkten massive Überschreitungen, die einen Abstand jeder einzelnen geplanten WEA von

15 dB(A) zu den einzelnen Richtwerten unabdingbar machen. Mit der nachfolgenden Berechnung der Zusatzbelastung wird überprüft, ob dies realisierbar ist.

Berechnet wurde die nächtliche Zusatzbelastung durch 4 geplante WEA Nordex N149 (5,7 MW, STE) R1-R4 am Standort Karlsburg. Um zu untersuchen, ob jede einzelne der 4 geplanten WEA mindestens 15 dB(A) unter den Richtwerten der IPs A – K, AA – AC und AF bleiben kann, wurde für alle 4 Anlagen mit dem Modus 18 die letztmögliche Schallreduzierungsstufe angesetzt. In den Berechnungsausdrucken im Anhang sind die Berechnungsergebnisse dokumentiert. Die Ergebnisse der Immissionsberechnungen sind der folgenden Tabelle zu entnehmen:

Tabelle 15: Berechnungsergebnisse der nächtlichen Zusatzbelastung

Immissi- onspunkt	Berechn. Schall- pegel Ls bei v(10) = 10 m/s [dB(A)]	Richtwert gem. TA Lärm [dB(A)]	Schallpegel L _s gerundet [dB(A)]	Reserve zum Richtwert [dB(A)]
IP A	29,3	45	29	16
IP B	29,4	45	29	16
IP C	29,7	45	30	15
IP D	29,7	45	30	15
IP E	31,4	45	31	14
IP F	31,0	45	31	14
IP G	31,4	45	31	14
IP H	31,4	45	31	14
IP I	32,8	40	33	7
IP J	32,9	40	33	7
IP K	29,5 *)	40	29	11
IP L	29,0	40	29	11
IP M	28,0	45	28	17
IP N	28,1	45	28	17
IP O	24,5	40	25	15
IP P	24,3	40	24	16
IP Q	21,8	35	22	13
IP R	22,8	35	23	12
IP S	25,8	45	26	19
IP T	27,3	55	27	28
IP U	25,5	40	26	14

Immissi- onspunkt	Berechn. Schall- pegel Ls bei v(10) = 10 m/s [dB(A)]	Richtwert gem. TA Lärm [dB(A)]	Schallpegel L _s gerundet [dB(A)]	Reserve zum Richtwert [dB(A)]
IP V	30,2	45	30	15
IP W	32,5	45	33	12
IP X	33,9	45	34	11
IP Y	33,6	45	34	11
IP Z	33,8	45	34	11
IP AA	31,5 **)	40	31	9
IP AB	32,8	40	33	7
IP AC	32,7	40	33	7
IP AD	31,9	45	32	13
IP AE	31,8	45	32	13
IP AF	28,3	40	28	12
IP AG	26,9	45	27	18
IP AH	27,0	45	27	18

^{*)} Der berechnete Schallpegel an diesem Immissionspunkt IP K beträgt 29,46...dB(A). Die ermittelten Beurteilungspegel werden in der obenstehenden Tabelle mit einer Nachkommastelle angegeben, werden jedoch in den Berechnungen mit zwei Nachkommastellen berücksichtigt (vgl. detaillierte Berechnungsergebnisse im Anhang). Vor dem Vergleich mit den Immissionsrichtwerten sind die Ergebnisse jedoch auf ganzzahlige Werte zu runden. Dabei ist gem. Windenergie-Handbuch /17/die Rundung nach DIN 1333 anzuwenden. Demnach ergibt sich aus dem berechneten Schallpegel von 29,46...dB(A) ein gerundeter Schallpegel gem. TA Lärm von erst 29,5 dB(A) und dann 29 dB(A) und nicht 30 dB(A).

Als Immissionspunkt mit dem höchsten Immissionspegel von 34 dB(A) ergeben sich in der Berechnung der Zusatzbelastung die Immissionspunkte IPs X, Y und Z ("Wohnhäuser Dorfstr. 6, 4 und 1, Zarnekow"). Hier wird ein Abstand von 11 dB(A) zum Richtwert eingehalten.

In der Berechnung der Zusatzbelastung wird ersichtlich, dass die Immissionspunkte A-H, K-Z und AD-AH gem. 2.2 a) TA Lärm außerhalb des Einwirkungsbereiches der geplanten WEA liegen, da die Richtwerte an diesen Immissionspunkten um mindestens 10~dB(A) durch die gesamte Zusatzbelastung unterschritten werden.

Die Berechnung der Zusatzbelastung ergibt, dass die Richtwerte an allen Immissionspunkten eingehalten werden.

Durch die vorbelastenden WEA werden die Richtwerte an den Immissionspunkten IP A – K, AA – AC und AF massiv überschritten. An diesen Immissionspunkten muss jede einzelne geplante WEA lt. Vorgabe des Bundeslandes Mecklenburg-Vorpommern in Kombination mit Aussagen des LUNG/Mecklenburg-Vorpommern mindestens 15 dB(A) unter dem jeweiligen Richtwert sein.

^{**)} Der berechnete Schallpegel an diesem Immissionspunkt AA beträgt 31,47...dB(A). Aus den gleichen Gründen wie oben erfolgt zuerst eine Rundung auf 31,5 dB(A) und dann auf 31 dB(A) und nicht 32 dB(A).

Tabelle 16: Berechnungsergebnisse der Teilpegel der Zusatzbelastung durch 4 geplante WEA gepl. WEA 1 bis gepl. WEA 4 vom Typ Nordex N149 $(5,7~\mathrm{MW},\mathrm{STE})$ an den Immissionspunkten IP A – K, AA – AC und AF

Immissions- punkt	gepl. WEA	Berechn. Schallpegel Ls je WEA [dB(A)]	Richtwert gem. TA Lärm [dB(A)]	Schallpegel L _s gerundet je WEA [dB(A)]	Reserve zum Richtwert [dB(A)]
	1	22,4	45	22	23
IP A	2	19,2	45	19	26
II A	3	26,3	45	26	19
	4	22,4	45	22	23
	1	22,4	45	22	23
IP B	2	19,3	45	19	26
IP D	3	26,4	45	26	19
	4	22,5	45	23	22
	1	22,6	45	23	22
ID C	2	19,6	45	20	25
IP C	3	26,6	45	27	18
	4	22,9	45	23	22
	1	22,6	45	23	22
IP D	2	19,7	45	20	25
	3	26,7	45	27	18
	4	23,0	45	23	22
IP E	1	23,3	45	23	22
	2	23,8	45	24	21
	3	27,0	45	27	18
	4	26,2	45	26	19
IP F	1	23,0	45	23	22
	2	23,5	45	24	21
	3	26,6	45	27	18
	4	25,8	45	26	19

Immissions- punkt	gepl. WEA	Berechn. Schallpegel Ls je WEA [dB(A)]	Richtwert gem. TA Lärm [dB(A)]	Schallpegel L _s gerundet je WEA [dB(A)]	Reserve zum Richtwert [dB(A)]
	1	23,3	45	23	22
IP G	2	24,1	45	24	21
IP G	3	26,9	45	27	18
	4	26,4	45	26	19
	1	23,3	45	23	22
IP H	2	24,3	45	24	21
пп	3	26,7	45	27	18
	4	26,4	45	26	19
	1	23,0	40	23	17
IP I	2	29,6	40	30	10
IF I	3	24,1	40	24	16
	4	27,4	40	27	13
	1	23,0	40	23	17
IP J	2	29,8	40	30	10
IP J	3	24,1	40	24	16
	4	27,4	40	27	13
	1	20,2	40	20	20
ID V	2	26,3	40	26	14
IP K	3	20,9	40	21	19
	4	23,6	40	24	16
	1	27,5	40	28	13
ID A A	2	20,0	40	20	20
IP AA	3	27,1	40	27	13
	4	23,5	40	23	17
	1	29,4	40	29	11
IP AB	2	21,0	40	21	19
	3	27,9	40	28	12
	4	24,6	40	25	15

Immissions- punkt	gepl. WEA	Berechn. Schallpegel Ls je WEA [dB(A)]	Richtwert gem. TA Lärm [dB(A)]	Schallpegel L _s gerundet je WEA [dB(A)]	Reserve zum Richtwert [dB(A)]
IP AC	1	29,7	40	30	10
	2	21,2	40	21	19
	3	27,1	40	27	13
	4	24,6	40	25	15
IP AF	1	23,1	40	23	17
	2	17,6	40	18	22
	3	24,6	40	25	15
	4	20,8	40	21	19

In der oberen Tabelle werden die Teilleistungspegel der einzelnen geplanten WEA und ihr Abstand zum Richtwert an den Immissionspunkten dargestellt, die durch die elf vorbelastenden Anlagen massiv überschritten werden. Die Teilleistungspegel wurden einer Schallberechnung entnommen, in der alle 4 geplanten WEA nachts im schallreduzierten Mode 18 betrieben werden (s. Anlagen).

Wie der obigen Tabelle zu entnehmen ist, unterschreitet nicht jede WEA den Richtwert an den stark vorbelasteten Immissionspunkten um mindestens 15 dB(A).

An den Immissionspunkten I und J halten die geplanten WEA 2 und 4 einen Abstand von mindestens 15 dB(A) zum Richtwert nicht ein, am Immissionspunkt K beträgt der Abstand der geplanten WEA 2 zum Richtwert auch nur 14 dB(A).

An den Immissionspunkten AA, AB und AC unterschreiten die geplanten WEA 1 und 3 den jeweiligen Richtwert nicht um mindestens jeweils 15 dB(A).

An den anderen, in Tabelle 16 aufgeführten Immissionspunkten, wird der jeweils geltende Richtwert an den einzelnen Immissionspunkten durch jede einzelne der vier geplanten WEA um mehr als 15 dB(A) unterschritten.

Da dies aber nicht wie erläutert an allen Immissionspunkten der Fall ist, müssen alle geplanten WEA nachts im Zustand OHNE Stall ausgeschaltet werden.

Da die Immissionen aus der Vorbelastung sich im Zustand MIT Stall aufgrund des dann noch hinzukommenden Stallzuschlages bei den WEA des Typs Nordtank sogar noch erhöhen werden, wird sich am nächtlichen ausgeschalteten Zustand der vier geplanten WEA auch dann nichts ändern. Die Richtwerte einzelner Immissionspunkte werden weiterhin stark überschritten werden, und auch im letztmöglichen reduzierten Schallmode 18 werden einzelne WEA nicht den Richtwert eines jeden IPs um mindestens 15 dB(A) unterschreiten können.

Damit müssen die vier geplanten WEA Nordex N149 (5,7 MW, STE) nachts sowohl im Zustand OHNE als auch im Zustand MIT Stall ausgeschaltet werden.

PLANkon
Dipl. -Ing. Roman Wagner vom Berg
Blumenstraße 26, 26121 Oldenburg - Postfach 4070, 26030 Oldenburg

Bericht Nr. PK 2019008-SLG Datum: 09.06.2020 Seite 36 von 41

Berechnung der Gesamtbelastung

- Entfällt, da die zusatzbelastenden Anlagen in beiden nächtlichen Zuständen MIT und OHNE Stall aufgrund nicht einzuhaltender Abstände zu den jeweiligen Richtwerten der Immissionspunkte nicht betrieben werden können.
- Die Gesamtbelastung wäre somit gleich der Vorbelastung (vgl. Tabelle 14).

10 Beurteilung

Folgende Vorschriften werden zur Beurteilung herangezogen:

- BImSchG /3/ mit allen ergänzenden und relevanten Verordnungen
- TA Lärm /2/

Die Begutachtung erfolgt im Rahmen des BImSchG-Genehmigungsverfahrens. In den Berechnungsausdrucken ist der Belastungszustand durch die geplanten WEA aus schalltechnischer Sicht dokumentiert. Bewertet werden die Ergebnisse für die verschiedenen Immissionspunkte gemäß der relevanten Belastung nachts (22:00 bis 6:00Uhr). Aufgrund der um 15 dB(A) höheren Richtwerte tagsüber sind am Tage (6:00 bis 22:00 Uhr) generell höhere Emissionswerte möglich.

Im Rahmen des Schallgutachtens kommen die aktualisierten LAI-Hinweise /7/ mit Stand vom 30.06.2016 und das mitinbegriffene Interimsverfahren aus dem Jahr 2015 /18/ zur Anwendung. Die Berechnungen erfolgen somit auf der Basis der in den LAI-Hinweisen /7/ genannten Qualität der Prognose und unter der Einbeziehung des Referenzspektrums gem. /7/ oder, falls vorhanden, unter Einbeziehung von in Messberichten dargestellten Oktavbanddaten für die am Standort berücksichtigten vorhandenen/beantragten WEA. Das bisherige alternative Verfahren wurde nicht mehr angewandt, stattdessen wurde auf Oktavbandspektren zurückgegriffen, ein Ansatz der Bodendämpfung wurde negiert.

Die Berechnungen enthalten je nach WEA-Typ einen Zuschlag zum Emissionspegel von 1,6 dB(A) bis 3,0 dB(A) zur Würdigung von Unsicherheiten bei einer 90 %-igen Eintrittswahrscheinlichkeit gem. den "Hinweisen Geräusche von Windenergieanlagen" des LAI /7/ im Sinne der oberen Vertrauensbereichsgrenze (s. Kap. 4) bzw. gem. den durch Herrn Müller vom StALU vorliegenden Ansätzen aus den bestehenden Genehmigungen für die Bestands-WEA und in Absprache zu den einzelnen WEA mit Frau Freitag vom LUNG.

Es wurden Berechnungen für den Tag- und den Nachtzeitraum unter Einbezug der vier geplanten WEA durchgeführt.

Am Tag unterschreitet jede der vier geplanten WEA im Volllastmodus Mode 0 den zulässigen Richtwert der berücksichtigten Immissionsorte um mindestens 15 dB(A). Damit wirkt die Planung aus vier geplanten WEA des Typs Nordex N149 (5,7 MW, STE) nicht mehr relevant auf die Immissionsorte im Umfeld des Standortes ein und die evtl. vorhandenen schalltechnischen Vorbelastungen am Standort müssen nicht mehr begutachtet werden, was in Ermangelung einer nicht vorhandenen Datenlage zu z.B. der Bauschuttrecyclinganlage und zum Tagebau sich auch als schwierig herausstellen würde.

Im Nachtzustand erfolgen durch die am Standort berücksichtigten 11 vorhandenen WEA der Hersteller REpower und Nordtank z.T. massive Richtwertüberschreitungen an der in den Ortschaften im Umkreis berücksichtigten Wohnbebauung. Durch diese Richtwertüberschreitungen besteht für jede einzelne der vier geplanten WEA nur noch die Möglichkeit, von 22.00

Uhr bis um 06.00 Uhr mindestens 15 dB(A) unter den Richtwerten eines jeden berücksichtigten Immissionspunktes zu bleiben, um die dort entstehenden Immissionen nicht mehr relevant zu verändern.

Da dies selbst dann nicht gelingt, wenn man alle vier geplanten WEA im schallreduzierten Modus 18 betreibt, bleibt für die Planung nur das nächtliche Ausschalten übrig.

Das gilt dann sowohl für den nächtlichen Zustand mit als auch ohne Stall, da bereits im Zustand ohne den berücksichtigten Stalleffekt der vorhandenen Nordtank-Anlagen die Richtwerte der umliegenden Wohnbebauung stark überschritten werden. Durch den Stallzuschlag, mit dem der Emissionspegel der Nordtank-Anlagen ab dem Aufkommen von bestimmten Windgeschwindigkeiten in Nabenhöhe zu beaufschlagen wäre, würden die Richtwertüberschreitungen noch weiter zunehmen, am Kriterium, dass die einzelnen geplanten WEA mindestens 15 dB(A) unter den Richtwerten zu verbleiben haben, würde sich also nichts ändern, die geplanten WEA müssen weiter ausgeschaltet bleiben.

Eine Berechnung der nächtlichen Gesamtbelastung wurde im vorliegenden Gutachten nicht durchgeführt, da sie sich aufgrund der ausgeschalteten vier zusatzbelastenden WEA nicht von der Vorbelastung unterscheidet.

Die vier geplanten Windenergieanlagen können tagsüber im Volllastmodus Mode 0 betrieben werden, nachts müssen die geplanten Anlagen ausgeschaltet sein. Aus schalltechnischer Sicht bestehen keine Bedenken bei Errichtung der Anlagen.

Oldenburg, den 09. Juni 2020

Erstellt durch

Dipl.-Ing. Martina Vieth

Freigabe durch:

1 100/200

Dipl.-Ing. Roman Wagner vom Berg

ROMAN WAGNER VOM BE

(Technischer Leiter)

ina Vick

11 Quellenverzeichnis

/1/ VDI 2058/1 Beurteilung von Arbeitslärm in der Nachbarschaft.

Fassung vom Februar 1999

/2/ TA Lärm Technische Anleitung zum Schutz gegen Lärm (TA Lärm),

Fassung vom August 1998 mit Änderungen durch Verwaltungsvor-

schrift vom 01.06.2017 (BAnz AT 8.6.2017 B5)

/3/ BImSchG Bundesimmissionsschutzgesetz

Fassung vom September 2002, letzte Änderung Juni 2005

/4/ 4. BImSchV Vierte Verordnung zur Durchführung des

Bundesimmissionsschutzgesetzes

Fassung vom Juni 2005

/5/ DIN 18005 Schallschutz im Städtebau

Teil 1: Berechnungsverfahren

Fassung vom Juli 2002

/6/ DIN ISO 9613-2 "Dämpfung des Schalls bei der Ausbreitung im Freien

Teil 2: Allgemeines Berechnungsverfahren"

Deutsche Fassung ISO 9613-2 vom Oktober 1999

/7/ LAI Länderausschuss für Immissionsschutz (LAI): Hinweise zum Schal-

limmissionsschutz bei Windkraftanlagen (WKA); Stand 30.06.2016

/8/ LfU 2014 Bayrisches Landesamt für Umwelt (LfU) 2014: "Windkraftanlagen-

beeinträchtigt Infraschall die Gesundheit?", Aktualisierung im März

2014, Augsburg

/9/ Kötter 2007 Kötter Engineering Mai 2007: "Tieffrequente Geräusche in der Wind-

energieanlagentechnik" in Lärmbekämpfung Bd. 2, Nr.3 Mai

/10/ DIN 45 680 DIN 45 680: "Messung und Bewertung tieffrequenter Geräusch-

immissionen in der Nachbarschaft" von 1992 und Entwurf der DIN 45680 "Messung und Bewertung tieffrequenter Geräuschimmissionen"

vom August 2011

/11/ Hammler "Langzeit-Geräuschimmissionsmessungen an der 1-MW- Wind-

& Fichtner 2000 energieanlage Nordex N54" Bayrisches Landesamt für Umwelt (LfU)

2000

/12/ Kötter 2010 Kötter Consulting Engineers: Schalltechnischer Bericht Nr.27257-

1.006:-über die Ermittlung und Beurteilung der anlagenbezogenen Geräuschimmissionen der Windenergieanlagen im Windpark Hohen Pritz

vom 26.05.2010

/13/ LUBW 2012 Landesamt für Umwelt, Messungen und Naturschutz Baden-

Württemberg (LUBW) "Physikalische Grundlagen und Messung von tieffrequentem Schall und Infraschall", 18. Umwelttoxikologisches Kol-

loquium Oktober 2012

/14/ Möller & Tieffrequenter Lärm von großen Windenergieanlagen, Abteilung für

Pedersen 2010 Akustik, Institut für Elektronische Systeme, Aalborg Universität

/15/ Piorr, Hillen Akustische Ringversuche zur Geräuschemissionsmessung an

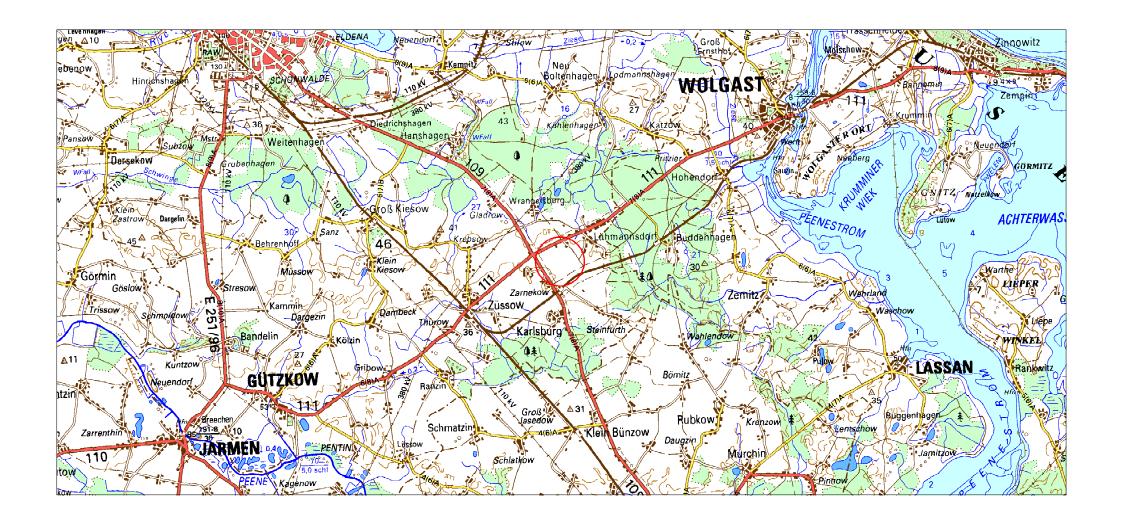
Datum: 09.06.2020 Seite 39 von 41 & Janssen 2001 Windenergieanlagen. Fortschritte der Akustik, Hrsg. Deutsche Gesell-

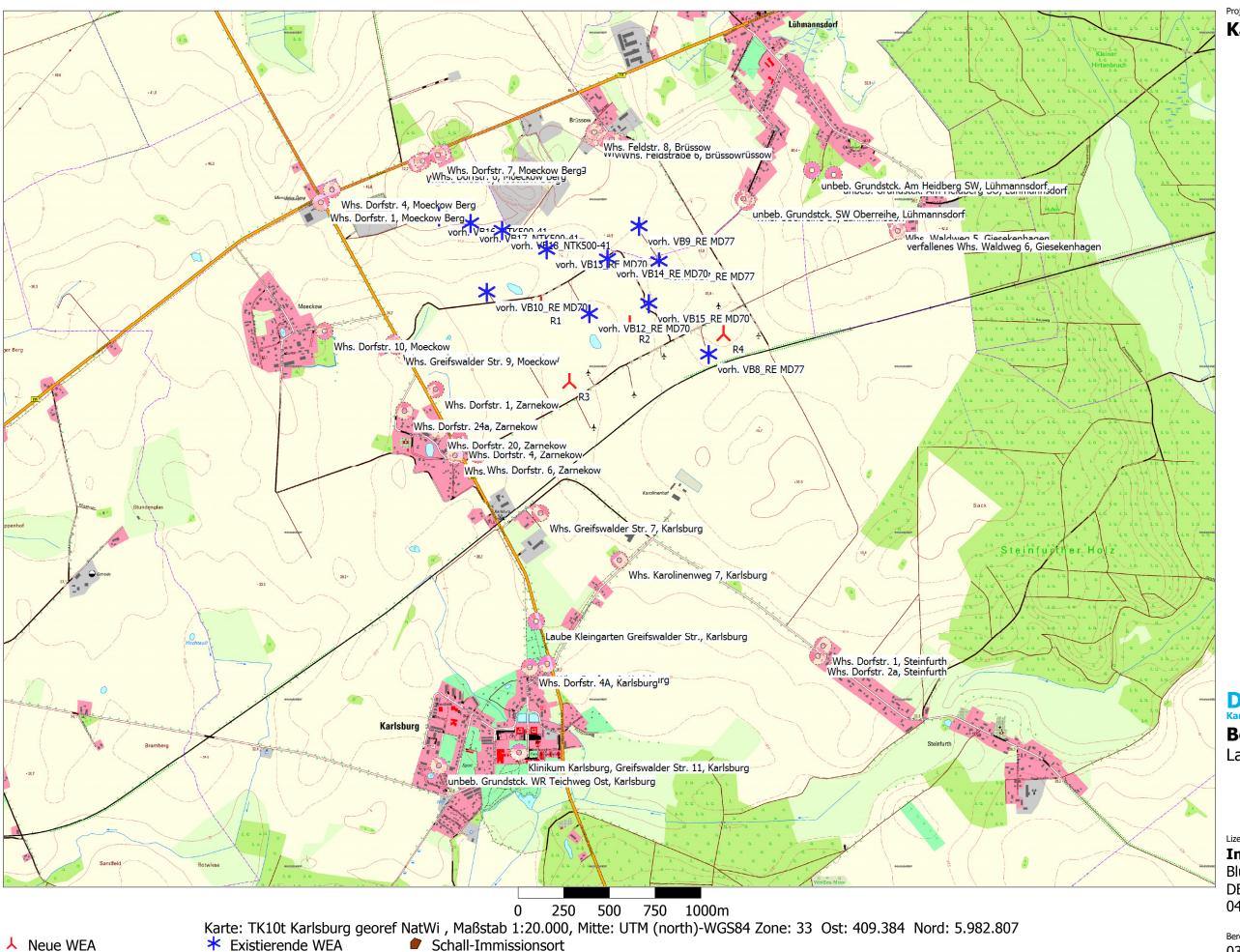
schaft für Akustik e.V., DEGA, von 2001.

/16/ Probst & Die Unsicherheit des Beurteilungspegels bei der Immissionsprognose. Zeitschrift für Lärmbekämpfung, Jhrg. 2000, 49 Nr. 3. Springer-Verlag Donner 2000:

von 2000.

/17/ Agatz 2018 Monika Agatz: Windenergie-Handbuch, 16. Ausgabe, Dezember 2019


/18/ Interimsverfahren Dokumentation zur Schallausbreitung; Interimsverfahren zur


Prognose der Geräuschimmissionen von Windkraftanlagen; Fassung

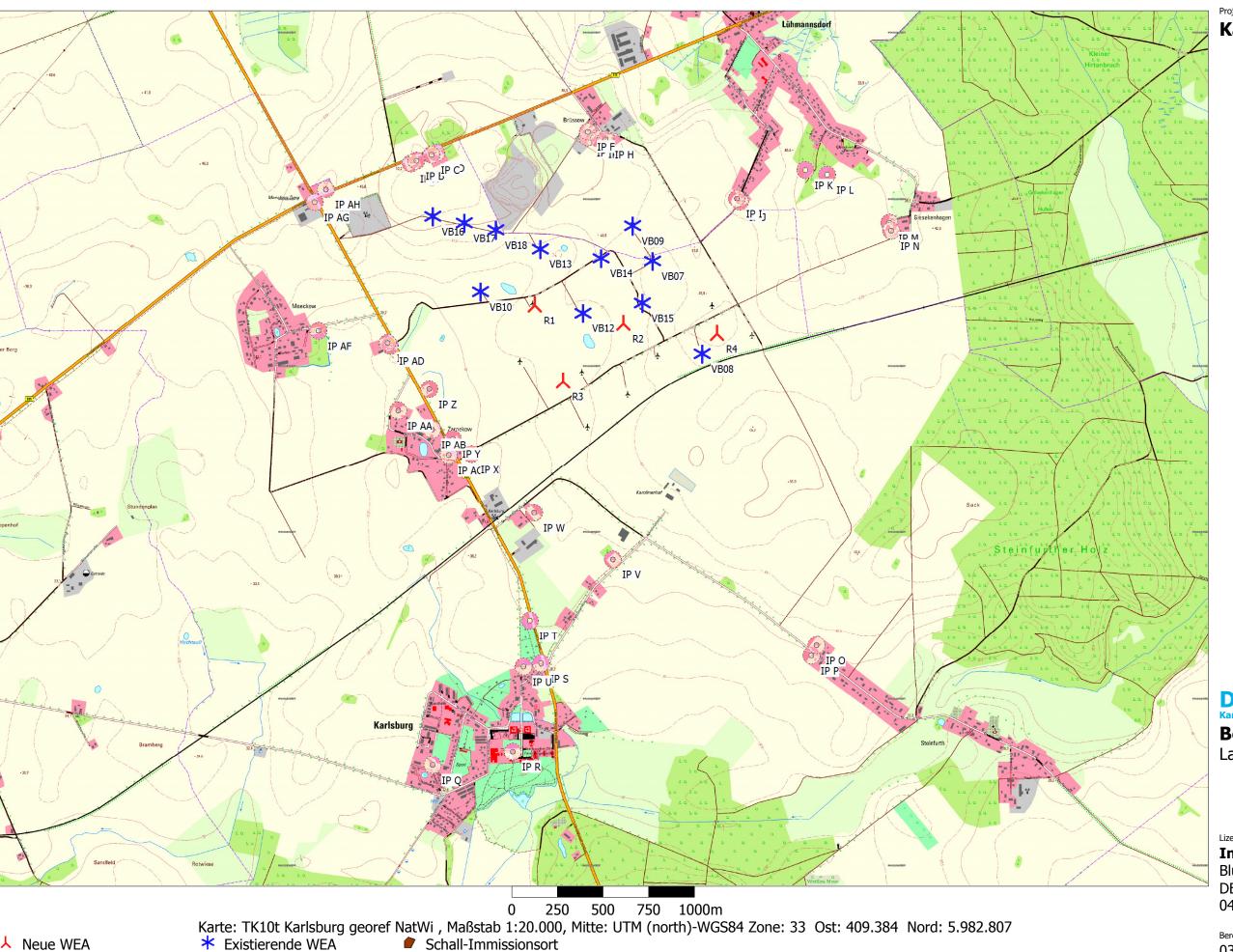
2015-05.1

12 Anlagen zum Geräuschimmissionsgutachten 4 WEA vom Typ Nordex N149, 5,7 MW (STE) am Standort Karlsburg

- 1 Blatt Übersichtskarte
- 2 Blatt Lagepläne Standort Karlsburg
- 10 Blatt Detailansichten (Ortschaften Moeckow Berg, Brüssow, Lühmannsdorf, Giesekenhagen, Steinfurth, Karlsburg, Zarnekow, Moeckow)
- TAGZUSTAND: 10 Blatt Berechnungsprotokolle inkl. Eingabedaten und Isophonendarstellung von 4 gepl. WEA Nordex N149, 5,7 MW (STE) Zusatzbelastung
- NACHTZUSTAND: 14 Blatt Berechnungsprotokolle inkl. Eingabedaten und Isophonendarstellung von 11 vorh. WEA der Hersteller REpower und Nordtank im Zustand ohne Stall Vorbelastung
- NACHTZUSTAND: 10 Blatt Berechnungsprotokolle inkl. Eingabedaten und Isophonendarstellung von 4 gepl. WEA Nordex N149, 5,7 MW (STE) überprüfende Zusatzbelastung für Zustand ohne und mit Stall
- Gesamtbelastungsberechnung nicht notwendig, da aufgrund des n\u00e4chtlichen Ausschaltens der 4 gepl. WEA die Gesamtbelastung gleich der Vorbelastung w\u00e4re
- 4 Blatt Angaben des Herstellers Nordex zu den Betriebsmodi / Oktavbanddaten des Mode 0 und des Mode 18 der geplanten WEA des Typs Nordex N149, 5,7 MW (STE)
- 3 Blatt Angaben von Herrn Müller, StALU Vorpommern, zu gewerblichen Vorbelastungen sowie zum Ansatz der am Standort vorhandenen vorbelastenden WEA
- 1 Blatt Angaben von Frau Freitag, LUNG Mecklenburg-Vorpommern, zu der Art und Weise der Beaufschlagung mit Sicherheiten bei den bestehenden WEA am Standort Karlsburg zzgl. 6 Blatt Auszügen aus Messberichten zu den 3 am Standort vermessenen WEA des Typs REpower RE MD77 (2 Blatt Daten zu WEA VB9 Messbericht "WICO 037SE205/01", 2 Blatt Daten zu WEA VB 7 Messbericht "WICO 037SE205/02" und 2 Blatt Daten zu WEA VB 19 Messbericht "WICO 037SE205/03")
- 4 Seiten Auszug aus dem zwischen der Fa. Naturwind und den jetzigen Altanlagenbetreibern geschlossenem Stilllegungs- und Rückbauvertrag zu den 8 zu repowernden WEA am Standort Karlsburg
- 16 Seiten Fotodokumentation

DECIBEL -

Berechnung:


Lageplan Standort Karlsburg

Lizenzierter Anwender:

Ingenieurbüro PLANkon Blumenstrasse 26

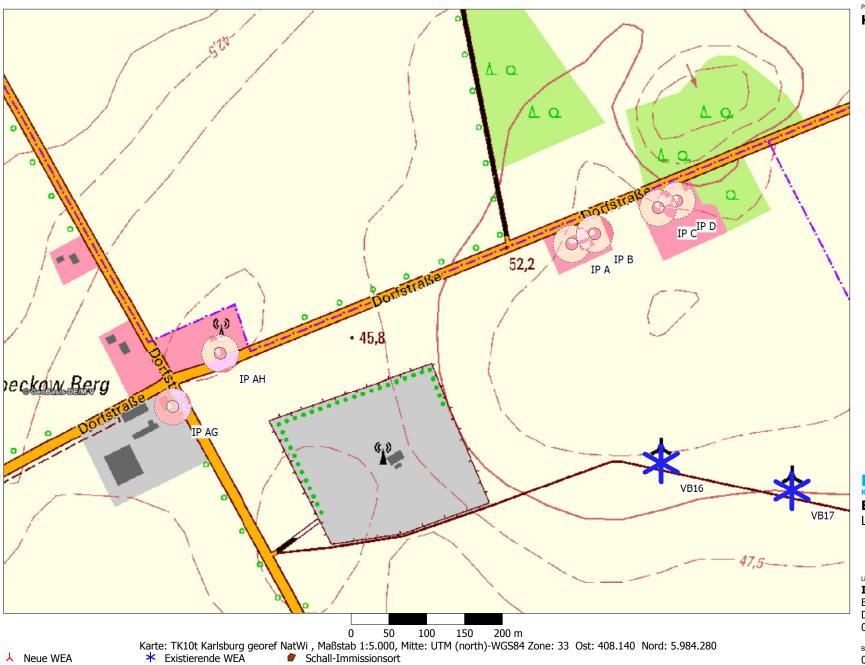
DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

DECIBEL -Karte Lautester Wert bis 95% Nennleistung

Berechnung:

Lageplan Standort Karlsburg


Lizenzierter Anwender:

Ingenieurbüro PLANkon Blumenstrasse 26

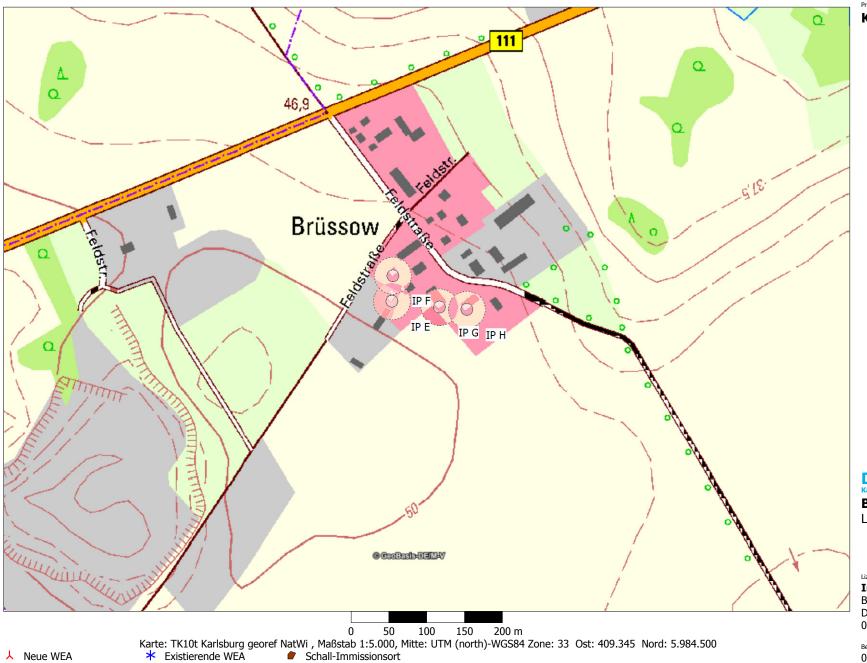
DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

03.04.2020 13:08/3.2.744

DECIBEL -

Berechnung:


Lageplan Standort Karlsburg

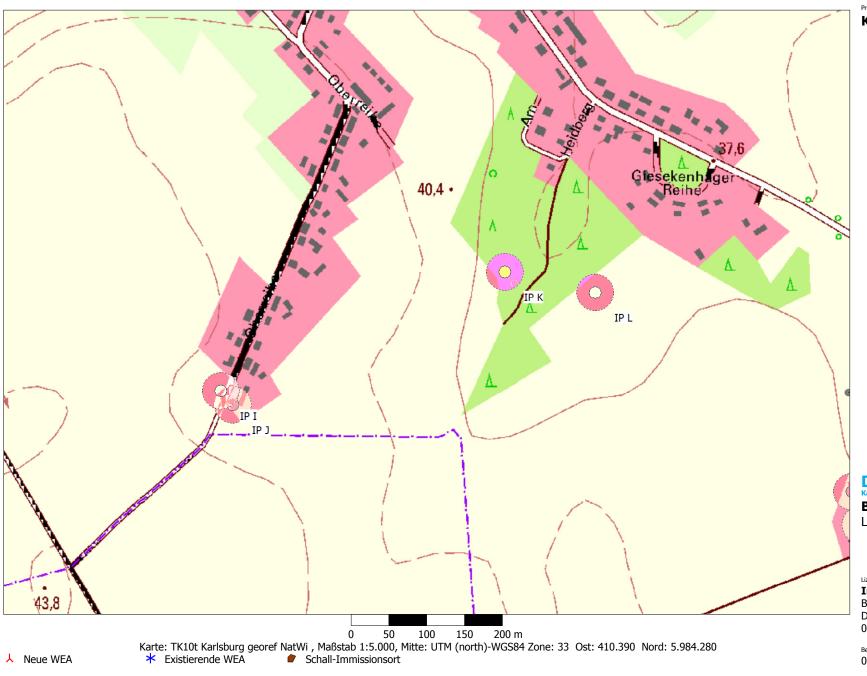
Lizenzierter Anwender:

Ingenieurbüro PLANkon

Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

DECIBEL -


Berechnung:

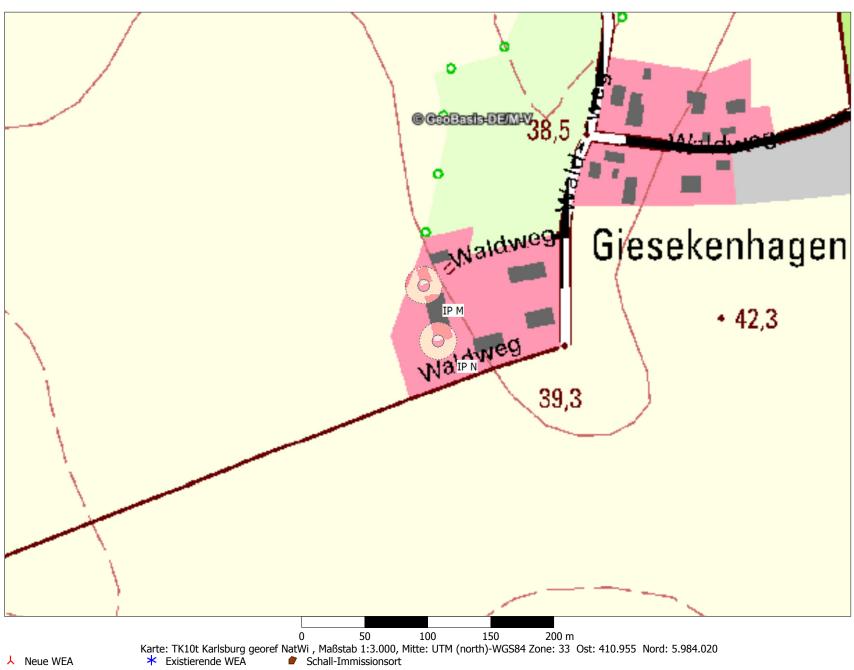
Lageplan Standort Karlsburg

Ingenieurbüro PLANkon

Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

DECIBEL -Karte Lautester Wert bis 95% Nennleistung


Berechnung:

Lageplan Standort Karlsburg

Ingenieurbüro PLANkon

Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

Projek

Karlsburg

DECIBEL -Karte Lautester Wert bis 95% Nennleistur

Berechnung:

Lageplan Standort Karlsburg

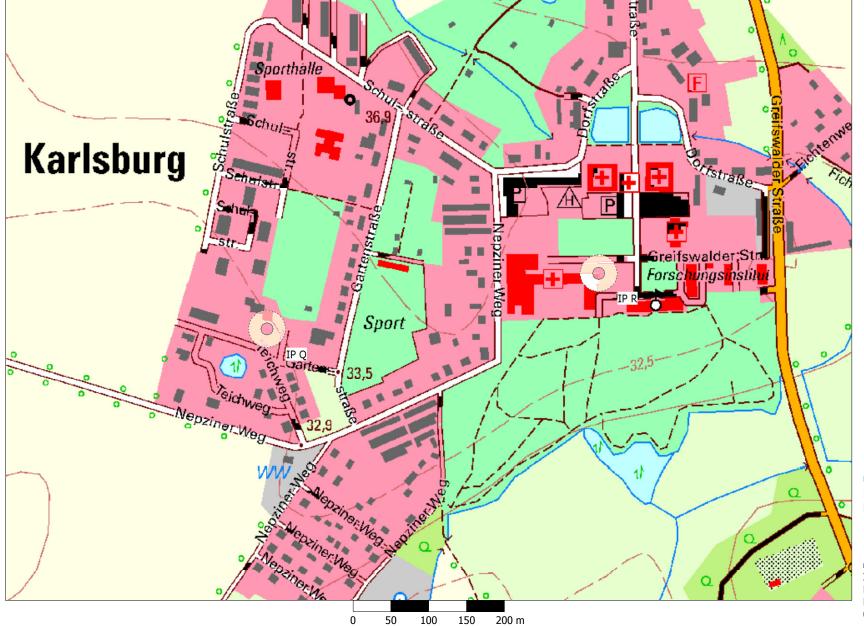
Lizenzierter Anwender:

Ingenieurbüro PLANkon

Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

DECIBEL -


Berechnung:

Lageplan Standort Karlsburg

Ingenieurbüro PLANkon

Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

DECIBEL -

Berechnung:

Lageplan Standort Karlsburg

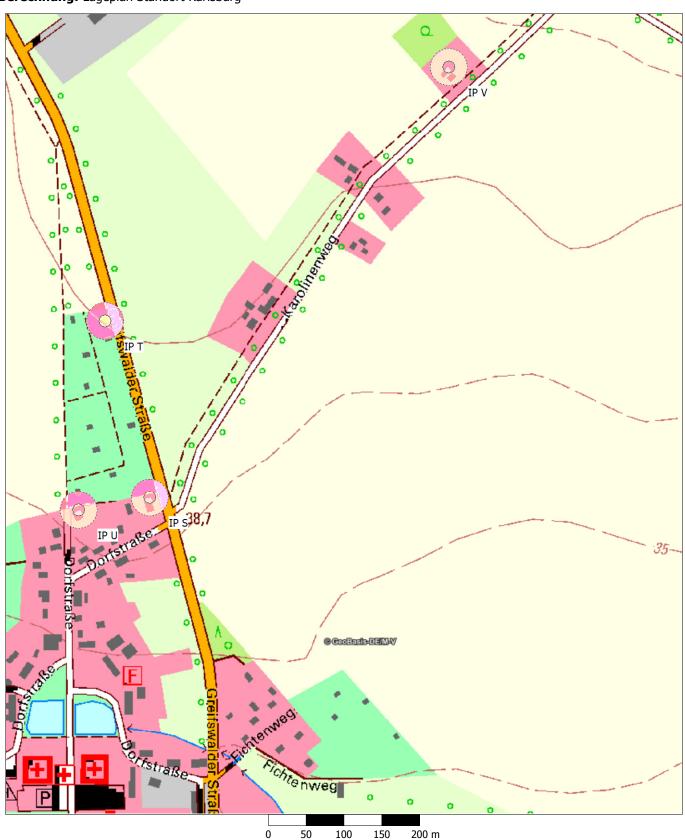
Ingenieurbüro PLANkon

Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

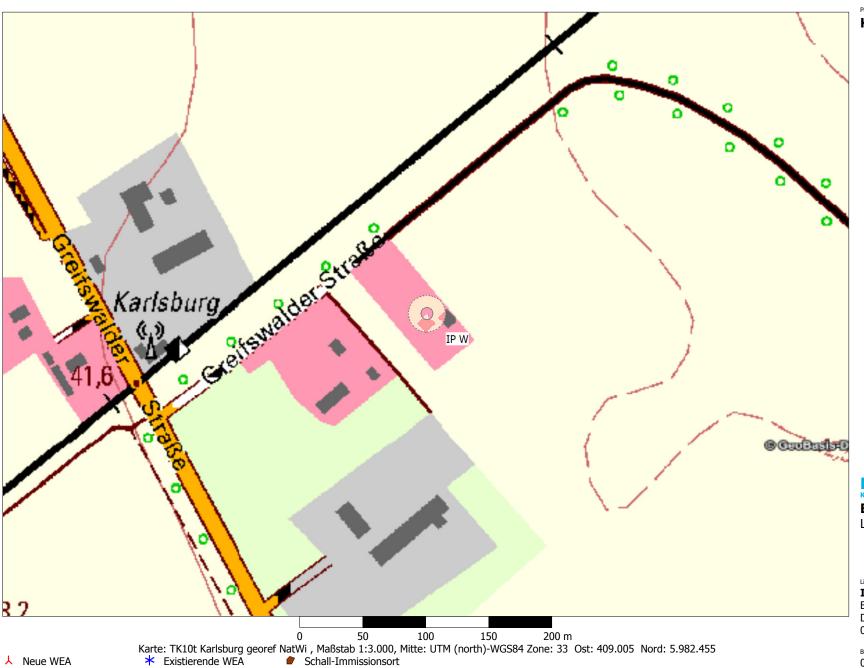
Berechnet:

03.04.2020 13:08/3.2.744

Karte: TK10t Karlsburg georef NatWi , Maßstab 1:5.000, Mitte: UTM (north)-WGS84 Zone: 33 Ost: 408.665 Nord: 5.981.110


* Existierende WEA Schall-Immissionsort

Ingenieurbüro PLANkon Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0


Berechnet: 03.04.2020 13:08/3.2.744

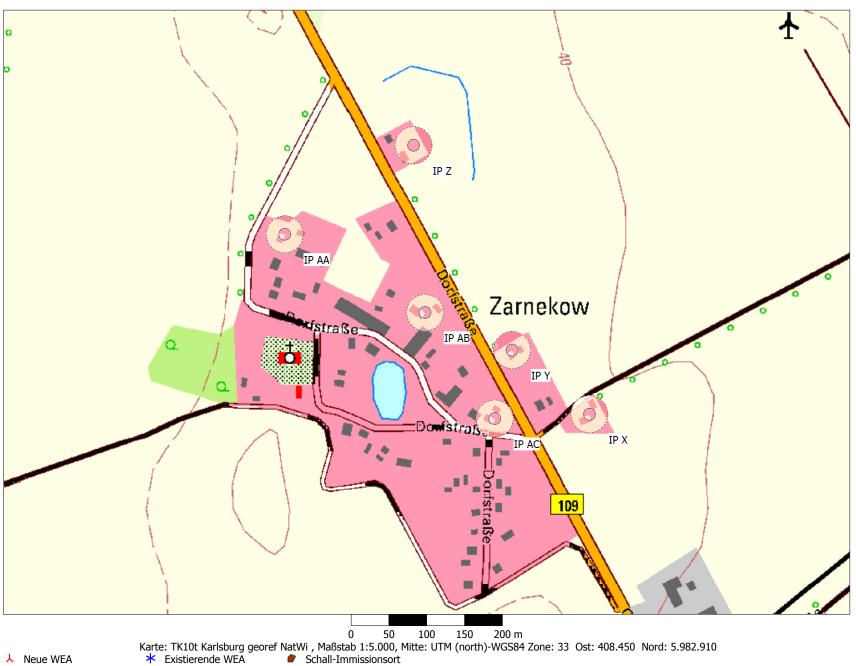
DECIBEL - Karte Lautester Wert bis 95% Nennleistung

Berechnung: Lageplan Standort Karlsburg

DECIBEL -

Berechnung:

Lageplan Standort Karlsburg

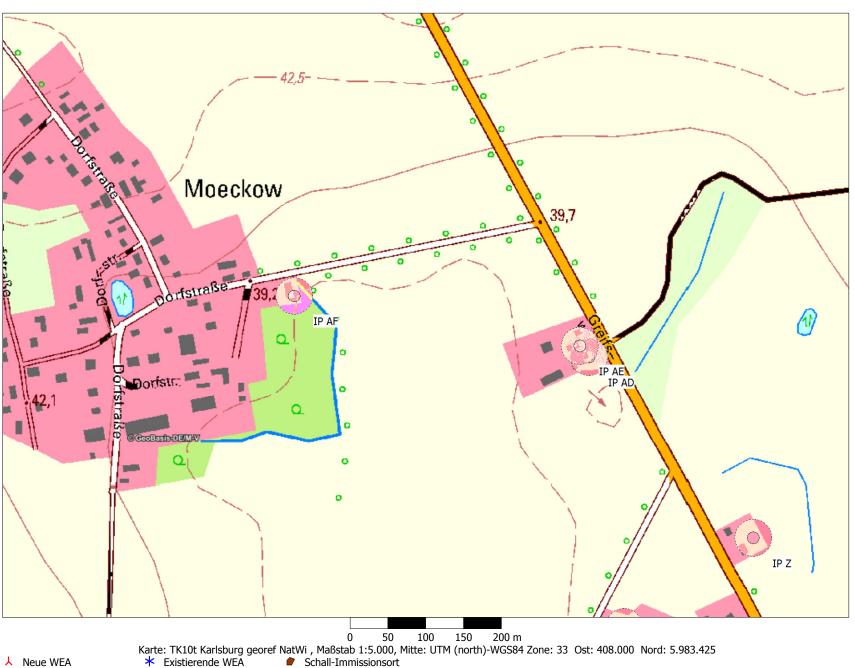

Lizenzierter Anwender:

Ingenieurbüro PLANkon

Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

DECIBEL -


Berechnung:

Lageplan Standort Karlsburg

Ingenieurbüro PLANkon

Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

DECIBEL -

Berechnung:

Lageplan Standort Karlsburg

Ingenieurbüro PLANkon

Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

Lizenzierter Anwender:

Ingenieurbüro PLANkon Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

05.06.2020 13:28/3.2.744

DECIBEL - Hauptergebnis

Berechnung: Tagzustand_Zusatzbelastung aus 4 gepl. WEA Nordex N149, 5,7MW, 125m NH_alle Volllast

ISO 9613-2 Deutschland (Interimsverfahren)

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Lautester Wert bis 95% Nennleistung

Faktor für Meteorologischen Dämpfungskoeffizient, CO: 0,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A)

Dorf- und Mischgebiet, Außenbereich: 45 dB(A) Reines Wohngebiet / Kurgebiet u.ä. : 35 dB(A)

Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

Alle Koordinatenangaben in: UTM (north)-WGS84 Zone: 33

Neue WEA

Maßstab 1:75.000

✓ Schall-Immissionsort

WEA

				WEA	-Тур					Schall	werte			
Ost	Nord	Z	Beschreibung	Ak-	Hersteller	Тур	Nenn-	Rotor-	Naben-	Quelle	Name	Windge-	LWA	Ein-
				tu-			leistung	durch-	höhe			schwin-		zel-
				ell				messer				digkeit		ton
		[m]					[kW]	[m]	[m]			[m/s]	[dB(A)]	
R1 409.009	5.983.594	43,7	7 gepl. WEA 3_N149	Ja	NORDEX	N149/5.X-5.700	5.700	149,1	125,4	USER	Mode 00 STE inkl. OkBD + Sicherheitszuschlag nach LAI	(95%)	107,7	Nein
R2 409.493	5.983.491	45,8	3 gepl. WEA 4_N149	Ja	NORDEX	N149/5.X-5.700	5.700	149,1	125,4	USER	Mode 00 STE inkl. OkBD + Sicherheitszuschlag nach LAI	(95%)	107,7	Nein
R3 409.163	5.983.173	43,6	gepl. WEA 1_N149	Ja	NORDEX	N149/5.X-5.700	5.700	149,1	125,4	USER	Mode 00 STE inkl. OkBD + Sicherheitszuschlag nach LAI	(95%)	107,7	Nein
R4 410.007	5.983.435	47.5	gent, WFA 2 N149	Ja	NORDEX	N149/5.X-5.700	5.700	149.1	125.4	USER	Mode 00 STE inkl, OkBD + Sicherheitszuschlag nach LAI	(95%)	107.7	Nein

Berechnungsergebnisse

Beurteilungspegel

Schall-Immissionsort					Anfordorung	Pourtoilungenogol	Anforderung erfüllt?
Nr. Name	Ost	Nord	Z	Auf-	Schall	Von WEA	Schall
NI. Name	OSL	Noru	_	punkt-	Scriali	VOII VVLA	Schail
				höhe			
			[m]	[m]	[dB(A)]	[dB(A)]	
A Whs. Dorfstr. 5, Moeckow Berg	408.332	5.984.369		5,0			Ja
B Whs. Dorfstr. 6, Moeckow Berg		5.984.382		5,0		,	Ja
C Whs. Dorfstr. 7, Moeckow Berg		5.984.417		5,0			Ja
D Whs. Dorfstr. 8, Moeckow Berg	408.471	5.984.427	51,8	5,0		,	Ja
E Whs. Feldstr. 9, Brüssow	409.299	5.984.510	49,4	5,0			Ja
F Whs. Feldstr. 8, Brüssow	409.300	5.984.545	48,9	5,0	60,0	41,1	Ja
G verfallenes Whs. Feldstr. 7, Brüssow	409.362	5.984.503	49,0	5,0	60,0	41,5	Ja
H Whs. Feldstraße 6, Brüssow	409.398	5.984.499	48,7	5,0	60,0	41,5	Ja
I unbeb. Grundstck. SW Oberreihe, Lühmannsdorf	410.117	5.984.176	44,8	5,0	55,0	42,9	Ja
J Whs. Oberreihe 16, Lühmannsdorf	410.133	5.984.158	44,6	5,0	55,0	43,0	Ja
K unbeb. Grundstck. Am Heidberg SW, Lühmannsdorf	410.493	5.984.333	38,7	5,0	55,0	39,6	Ja
L unbeb. Grundstck. Am Heidberg SO, Lühmannsdorf		5.984.306	,	5,0			Ja
M Whs. Waldweg 5, Giesekenhagen		5.984.043	,	5,0			Ja
N verfallenes Whs. Waldweg 6, Giesekenhagen		5.983.999	,	5,0			Ja
O Whs. Dorfstr. 1, Steinfurth		5.981.730	,	5,0		,	Ja
P Whs. Dorfstr. 2a, Steinfurth		5.981.672		5,0		,	Ja
Q unbeb. Grundstck. WR Teichweg Ost, Karlsburg		5.981.069	,	5,0		,	Ja
R Klinikum Karlsburg, Greifswalder Str. 11, Karlsburg		5.981.143	,	10,0		,	Ja
S Whs. Dorfstr. 8, Karlsburg		5.981.629	,	5,0		,	Ja
T Laube Kleingarten Greifswalder Str., Karlsburg		5.981.863	,	5,0			Ja
U Whs. Dorfstr. 4A, Karlsburg		5.981.613	,	5,0			Ja
V Whs. Karolinenweg 7, Karlsburg		5.982.199	,	5,0			Ja
W Whs. Greifswalder Str. 7, Karlsburg		5.982.455	,	5,0			Ja
X Whs. Dorfstr. 6, Zarnekow		5.982.775	,	5,0		,	Ja
Y Whs. Dorfstr. 4, Zarnekow		5.982.860	,	5,0			Ja
Z Whs. Dorfstr. 1, Zarnekow		5.983.130	,	5,0		,	Ja
AA Whs. Dorfstr. 24a, Zarnekow		5.983.013	,	5,0		,	Ja
AB Whs. Dorfstr. 20, Zarnekow		5.982.910	,	5,0			Ja
AC Whs. Dorfstr. 13, Zarnekow		5.982.769	,	5,0			Ja
AD Whs. Greifswalder Str. 9, Moeckow	408.215	5.983.370	38,0	5,0	60,0	42,0	Ja

(Fortsetzung nächste Seite)...

Ingenieurbüro PLANkon Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

37,0

37,1

60,0

05.06.2020 13:28/3.2.744

Ja

DECIBEL - Hauptergebnis

AH Whs. Dorfstr. 4, Moeckow Berg

Berechnung: Tagzustand_Zusatzbelastung aus 4 gepl. WEA Nordex N149, 5,7MW, 125m NH_alle Volllast

...(Fortsetzung von letzter Seite)
Schall-Immissionsort Anforderung Beurteilungspegel Anforderung erfüllt? Nr. Name Ost Nord Z Auf-Schall Von WEA Schall punkthöhe [m] 408.203 5.983.385 38,0 [m] [dB(A)] [dB(A)] 5,0 5,0 AE Whs. Greifswalder Str. 9a, Moeckow 60,0 41,9 Ja 407.826 5.983.450 37,6 407.804 5.984.154 45,5 407.867 5.984.225 46,1 AF Whs. Dorfstr. 10, Moeckow AG Whs. Dorfstr. 1, Moeckow Berg 55,0 60,0 38,4 Ja Ja

5,0

5,0

Abstände (m)

, ,	WEA			
Schall-Immissionsort	R1	R2	R3	R4
Α	1030	1456	1456	1918
В	1020	1441	1451	1899
С	997	1398	1435	1844
D	992	1386	1432	1829
E	961	1038	1344	1288
F	994	1071	1378	1316
G	975	1020	1344	1247
Н	985	1013	1347	1226
I	1252	927	1384	749
J	1257	924	1382	734
K	1658	1308	1765	1022
L	1754	1385	1840	1061
M	1994	1560	1989	1124
N	1995	1555	1980	1110
0	2421	2056	2004	1791
P	2447	2091	2027	1837
Q	2586	2636	2221	2831
R	2454	2424	2049	2550
S	1965	1915	1549	2047
T	1731	1705	1322	1875
U	1982	1955	1575	2107
V	1459	1293	1012	1360
W	1139	1145	735	1401
X	889	1095	638	1496
Y	860	1125	677	1555
Z	740	1120	732	1604
AA	947	1321	915	1795
AB	885	1196	763	1646
AC	949	1195	742	1611
AD	825	1283	968	1793
AE	833	1294	983	1804
AF	1192	1667	1365	2181
AG	1329	1814	1676	2317
AH	1305	1784	1669	2281

Ingenieurbüro PLANkon Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

05.06.2020 13:28/3.2.744

DECIBEL - Detaillierte Ergebnisse

Berechnung: Tagzustand_Zusatzbelastung aus 4 gepl. WEA Nordex N149, 5,7MW, 125m NH_alle VolllastSchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s Annahmen

Berechneter L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (Wenn mit Bodeneffekt gerechnet ist Dc = Domega)

Schallleistungspegel der WEA

K: Einzeltöne

Dc: Richtwirkungskorrektur

Adiv: Dämpfung aufgrund geometrischer Ausbreitung

Aatm: Dämpfung aufgrund von Luftabsorption Dämpfung aufgrund des Bodeneffekts Agr: Dämpfung aufgrund von Abschirmung Abar:

Dämpfung aufgrund verschiedener anderer Effekte Amisc:

Meteorologische Korrektur Cmet:

Berechnungsergebnisse

Schall-Immissionsort: A Whs. Dorfstr. 5, Moeckow Berg

WE	4		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	1.030	1.036	36,36	107,7	0,00	71,30	3,05	-3,00	0,00	0,00	71,35
R2	1.456	1.461	32,49	107,7	0,00	74,29	3,92	-3,00	0,00	0,00	75,21
R3	1.456	1.461	32,49	107,7	0,00	74,29	3,92	-3,00	0,00	0,00	75,21
R4	1.918	1.922	29,27	107,7	0,00	76,67	4,76	-3,00	0,00	0,00	78,44

Summe 39,40

Schall-Immissionsort: B Whs. Dorfstr. 6, Moeckow Berg

WE/	4		Lautester	Wert bis	s 95%	Nenn	leistu	1g			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	1.020	1.026	36,45	107,7	0,00	71,23	3,03	-3,00	0,00	0,00	71,25
R2	1.441	1.445	32,62	107,7	0,00	74,20	3,89	-3,00	0,00	0,00	75,09
R3	1.451	1.455	32,54	107,7	0,00	74,26	3,91	-3,00	0,00	0,00	75,17
R4	1.899	1.902	29,39	107.7	0,00	76,58	4,73	-3,00	0,00	0,00	78,31

Summe 39,50

Schall-Immissionsort: C Whs. Dorfstr. 7, Moeckow Berg

WE/	4		Lautester	Wert bis	s 95%	Nenn	leistu	ng				
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
R1	997	1.003	36,70	107,7	0,00	71,03	2,98	-3,00	0,00	0,00	71,00	
R2	1.398	1.402	32,96	107,7	0,00	73,94	3,81	-3,00	0,00	0,00	74,75	
R3	1.435	1.440	32,66	107,7	0,00	74,17	3,88	-3,00	0,00	0,00	75,05	
R4	1.844	1.848	29,74	107.7	0,00	76,33	4,63	-3,00	0,00	0,00	77,97	

Summe 39,75

Schall-Immissionsort: D Whs. Dorfstr. 8, Moeckow Berg

WE	4		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	992	998	36,76	107,7	0,00	70,98	2,96	-3,00	0,00	0,00	70,95
R2	1.386	1.391	33,06	107,7	0,00	73,86	3,79	-3,00	0,00	0,00	74,65
R3	1.432	1.436	32,69	107,7	0,00	74,14	3,88	-3,00	0,00	0,00	75,02
DΛ	1 020	1 022	20.04	107.7	0.00	76 26	1 61	2 00	0.00	0.00	77 07

Summe 39,82

Lizenzierter Anwender:

Ingenieurbüro PLANkon Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

05.06.2020 13:28/3.2.744

DECIBEL - Detaillierte Ergebnisse

Berechnung: Tagzustand_Zusatzbelastung aus 4 gepl. WEA Nordex N149, 5,7MW, 125m NH_alle VolllastSchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s

Schall-Immissionsort: E Whs. Feldstr. 9, Brüssow

WE	4		Lautester	Wert bis	95%	Nenn	leistui	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	961	968	37,10	107,7	0,00	70,72	2,90	-3,00	0,00	0,00	70,61
R2	1.038	1.044	36,26	107,7	0,00	71,38	3,07	-3,00	0,00	0,00	71,44
R3	1.344	1.349	33,41	107,7	0,00	73,60	3,70	-3,00	0,00	0,00	74,30
R4	1.288	1.293	33,88	107,7	0,00	73,23	3,59	-3,00	0,00	0,00	73,82

Summe 41,46

Schall-Immissionsort: F Whs. Feldstr. 8, Brüssow

					•					
A		Lautester	Wert bis	95%	Nenn	leistu	ng			
Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
994	1.001	36,73	107,7	0,00	71,01	2,97	-3,00	0,00	0,00	70,98
1.071	1.078	35,92	107,7	0,00	71,65	3,14	-3,00	0,00	0,00	71,79
1.378	1.383	33,12	107,7	0,00	73,82	3,77	-3,00	0,00	0,00	74,59
1.316	1.321	33,64	107,7	0,00	73,42	3,65	-3,00	0,00	0,00	74,07
	[m] 994 1.071 1.378	Abstand Schallweg [m] [m] 994 1.001 1.071 1.078 1.378 1.383	Abstand Schallweg Berechnet [m] [m] [dB(A)] 994 1.001 36,73 1.071 1.078 35,92 1.378 1.383 33,12	Abstand Schallweg Berechnet LWA [m] [m] [dB(A)] [dB(A)] 994 1.001 36,73 107,7 1.071 1.078 35,92 107,7 1.378 1.383 33,12 107,7	Abstand Schallweg Berechnet LWA Dc [m] [m] [dB(A)] [dB(A)] [dB] 994 1.001 36,73 107,7 0,00 1.071 1.078 35,92 107,7 0,00 1.378 1.383 33,12 107,7 0,00	Abstand Schallweg Berechnet LWA Dc Adiv [m] [m] [dB(A)] [dB(A)] [dB] [dB] 994 1.001 36,73 107,7 0,00 71,01 1.071 1.078 35,92 107,7 0,00 71,65 1.378 1.383 33,12 107,7 0,00 73,82	Abstand Schallweg Berechnet LWA Dc Adiv Aatm [m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] 994 1.001 36,73 107,7 0,00 71,01 2,97 1.071 1.078 35,92 107,7 0,00 71,65 3,14 1.378 1.383 33,12 107,7 0,00 73,82 3,77	Abstand Schallweg Berechnet LWA Dc Adiv Aatm Agr [m] [m] [dB(A)] [dB(A)] [dB] -3,00	Abstand Schallweg Berechnet LWA Dc Adiv Aatm Agr Abar [m] [m] [dB(A)] [dB(A)] [dB] [dB]	Abstand Schallweg Berechnet LWA Dc Adiv Aatm Agr Abar Amisc [m] [m] [dB(A)] [dB(A)] [dB] [dB]

Summe 41,13

Schall-Immissionsort: G verfallenes Whs. Feldstr. 7, Brüssow

WE	4		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	975	981	36,95	107,7	0,00	70,84	2,93	-3,00	0,00	0,00	70,76
R2	1.020	1.027	36,45	107,7	0,00	71,23	3,03	-3,00	0,00	0,00	71,26
R3	1.344	1.349	33,40	107,7	0,00	73,60	3,70	-3,00	0,00	0,00	74,30
R4	1.247	1.253	34,24	107,7	0,00	72,96	3,51	-3,00	0,00	0,00	73,47

Summe 41,53

Schall-Immissionsort: H Whs. Feldstraße 6, Brüssow

WE	A		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	985	992	36,83	107,7	0,00	70,93	2,95	-3,00	0,00	0,00	70,88
R2	1.013	1.020	36,53	107,7	0,00	71,17	3,01	-3,00	0,00	0,00	71,18
R3	1.347	1.352	33,38	107,7	0,00	73,62	3,71	-3,00	0,00	0,00	74,33
R4	1.226	1.232	34,43	107,7	0,00	72,81	3,47	-3,00	0,00	0,00	73,28

Summe 41,54

Schall-Immissionsort: I unbeb. Grundstck. SW Oberreihe, Lühmannsdorf

WE	4		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	1.252	1.257	34,20	107,7	0,00	72,99	3,52	-3,00	0,00	0,00	73,51
R2	927	935	37,47	107,7	0,00	70,41	2,82	-3,00	0,00	0,00	70,23
R3	1.384	1.389	33,07	107,7	0,00	73,86	3,78	-3,00	0,00	0,00	74,64
R4	749	759	39,70	107,7	0,00	68,61	2,40	-3,00	0,00	0,00	68,01

Summe 42,92

Schall-Immissionsort: J Whs. Oberreihe 16, Lühmannsdorf

WE	A		Lautester	Wert bis	95%	Nenn	ıleistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	1.257	1.263	34,15	107,7	0,00	73,03	3,53	-3,00	0,00	0,00	73,56
R2	924	932	37,50	107,7	0,00	70,39	2,82	-3,00	0,00	0,00	70,21
R3	1.382	1.387	33,08	107,7	0,00	73,84	3,78	-3,00	0,00	0,00	74,62
R4	734	744	39.91	107.7	0.00	68.43	2.37	-3.00	0.00	0.00	67.80

Summe 43,02

Ingenieurbüro PLANkon Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

05.06.2020 13:28/3.2.744

DECIBEL - Detaillierte Ergebnisse

Berechnung: Tagzustand_Zusatzbelastung aus 4 gepl. WEA Nordex N149, 5,7MW, 125m NH_alle VolllastSchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s

Schall-Immissionsort: K unbeb. Grundstck. Am Heidberg SW, Lühmannsdorf

WE	4		Lautester	Wert bis	95%	Nenn	leistu	ng	_	•	
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	1.658	1.663	30,99	107,7	0,00	75,42	4,30	-3,00	0,00	0,00	76,72
R2	1.308	1.314	33,70	107,7	0,00	73,37	3,63	-3,00	0,00	0,00	74,01
R3	1.765	1.770	30,25	107,7	0,00	75,96	4,50	-3,00	0,00	0,00	77,45
R4	1.022	1.030	36,42	107,7	0,00	71,25	3,03	-3,00	0,00	0,00	71,29

Summe 39,56

Schall-Immissionsort: L unbeb. Grundstck. Am Heidberg SO, Lühmannsdorf

WE	A		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	1.754	1.759	30,33	107,7	0,00	75,90	4,48	-3,00	0,00	0,00	77,38
R2	1.385	1.391	33,06	107,7	0,00	73,86	3,79	-3,00	0,00	0,00	74,65
R3	1.840	1.844	29,76	107,7	0,00	76,32	4,63	-3,00	0,00	0,00	77,94
R4	1.061	1.069	36,01	107,7	0,00	71,58	3,12	-3,00	0,00	0,00	71,70

39,05 Summe

Schall-Immissionsort: M Whs. Waldweg 5, Giesekenhagen

WE	4		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	1.994	1.998	28,81	107,7	0,00	77,01	4,89	-3,00	0,00	0,00	78,90
R2	1.560	1.565	31,70	107,7	0,00	74,89	4,12	-3,00	0,00	0,00	76,01
R3	1.989	1.993	28,83	107,7	0,00	76,99	4,88	-3,00	0,00	0,00	78,87
R4	1.124	1.131	35,39	107,7	0,00	72,07	3,25	-3,00	0,00	0,00	72,32
RΤ	1.127	1.131	33,39	107,7	0,00	12,01	3,23	-3,00	0,00	0,00	12,32

Summe 38,10

Schall-Immissionsort: N verfallenes Whs. Waldweg 6, Giesekenhagen

WE	A		Lautester	Wert bis	95%	Nenn	leistu	ng	•		
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	1.995	1.999	28,80	107,7	0,00	77,02	4,89	-3,00	0,00	0,00	78,91
R2	1.555	1.560	31,73	107,7	0,00	74,86	4,11	-3,00	0,00	0,00	75,98
R3	1.980	1.984	28,89	107,7	0,00	76,95	4,87	-3,00	0,00	0,00	78,82
R4	1.110	1.117	35,52	107,7	0,00	71,96	3,22	-3,00	0,00	0,00	72,19

Schall-Immissionsort: O Whs. Dorfstr. 1, Steinfurth

WE/	Α		Lautester	Wert bis	s 95%	Nenn	leistu	1g			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	2.421	2.424	26,44	107,7	0,00	78,69	5,58	-3,00	0,00	0,00	81,27
R2	2.056	2.060	28,44	107,7	0,00	77,28	5,00	-3,00	0,00	0,00	79,27
R3	2.004	2.008	28,74	107,7	0,00	77,06	4,91	-3,00	0,00	0,00	78,97
R4	1.791	1.795	30,08	107,7	0,00	76,08	4,54	-3,00	0,00	0,00	77,62

Summe 34,63

Summe

38,19

Schall-Immissionsort: P Whs. Dorfstr. 2a, Steinfurth

g
Agr Abar Amisc A
[dB] [dB] [dB] [dB]
-3,00 0,00 0,00 81,41
-3,00 0,00 0,00 79,48
-3,00 0,00 0,00 79,10
-3,00 0,00 0,00 77,93

Summe 34,42

Lizenzierter Anwender:

Ingenieurbüro PLANkon Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

05.06.2020 13:28/3.2.744

DECIBEL - Detaillierte Ergebnisse

Berechnung: Tagzustand_Zusatzbelastung aus 4 gepl. WEA Nordex N149, 5,7MW, 125m NH_alle VolllastSchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s

Schall-Immissionsort: Q unbeb. Grundstck. WR Teichweg Ost, Karlsburg

WE	4		Lautester	wert bis	5 95%	Nenn	ileistui	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	2.586	2.589	25,61	107,7	0,00	79,26	5,83	-3,00	0,00	0,00	82,10
R2	2.636	2.640	25,37	107,7	0,00	79,43	5,91	-3,00	0,00	0,00	82,34
R3	2.221	2.225	27,49	107,7	0,00	77,95	5,27	-3,00	0,00	0,00	80,21
R4	2.831	2.835	24,46	107,7	0,00	80,05	6,19	-3,00	0,00	0,00	83,24

Summe 31,90

Schall-Immissionsort: R Klinikum Karlsburg, Greifswalder Str. 11, Karlsburg

WE	4		Lautester	wert bis	95%	Nenn	ieistui	1g			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	2.454	2.457	26,27	107,7	0,00	78,81	5,63	-3,00	0,00	0,00	81,44
R2	2.424	2.428	26,42	107,7	0,00	78,70	5,59	-3,00	0,00	0,00	81,29
R3	2.049	2.052	28,48	107,7	0,00	77,25	4,98	-3,00	0,00	0,00	79,23
R4	2.550	2.553	25,79	107,7	0,00	79,14	5,78	-3,00	0,00	0,00	81,92

Lautostor Wort his OEO/s Nonnlaistung

Summe 32,89

Schall-Immissionsort: S Whs. Dorfstr. 8, Karlsburg

WE	4		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	1.965	1.969	28,98	107,7	0,00	76,88	4,84	-3,00	0,00	0,00	78,73
R2	1.915	1.919	29,29	107,7	0,00	76,66	4,76	-3,00	0,00	0,00	78,42
R3	1.549	1.554	31,78	107,7	0,00	74,83	4,10	-3,00	0,00	0,00	75,93
R4	2.047	2.051	28,49	107,7	0,00	77,24	4,98	-3,00	0,00	0,00	79,22

Summe 35,86

Schall-Immissionsort: T Laube Kleingarten Greifswalder Str., Karlsburg

										,	
WEA Lautester Wert bis 95% Nennleistung Nr. Abstand Schallweg Berechnet LWA Dc Adiv Aatm Ad											
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	1.731	1.736	30,48	107,7	0,00	75,79	4,43	-3,00	0,00	0,00	77,22
R2	1.705	1.710	30,66	107,7	0,00	75,66	4,39	-3,00	0,00	0,00	77,05
R3	1.322	1.328	33,58	107,7	0,00	73,46	3,66	-3,00	0,00	0,00	74,13
R4	1.875	1.880	29,54	107,7	0,00	76,48	4,69	-3,00	0,00	0,00	78,17

Schall-Immissionsort: U Whs. Dorfstr. 4A, Karlsburg

WE/	Α		Lautester	Wert bis	s 95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	1.982	1.986	28,88	107,7	0,00	76,96	4,87	-3,00	0,00	0,00	78,83
R2	1.955	1.960	29,04	107,7	0,00	76,84	4,83	-3,00	0,00	0,00	78,67
R3	1.575	1.580	31,58	107,7	0,00	74,97	4,15	-3,00	0,00	0,00	76,12
R4	2.107	2.111	28,14	107,7	0,00	77,49	5,08	-3,00	0,00	0,00	79,57

Summe 35,64

Summe

37,37

Schall-Immissionsort: V Whs. Karolinenweg 7, Karlsburg

WE	A		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	1.459	1.464	32,46	107,7	0,00	74,31	3,93	-3,00	0,00	0,00	75,24
R2	1.293	1.299	33,83	107,7	0,00	73,27	3,60	-3,00	0,00	0,00	73,88
R3	1.012	1.020	36,53	107,7	0,00	71,17	3,01	-3,00	0,00	0,00	71,18
R4	1.360	1.366	33.26	107.7	0.00	73.71	3.74	-3.00	0.00	0.00	74.45

Summe 40,33

Lizenzierter Anwender:

Ingenieurbüro PLANkon Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

05.06.2020 13:28/3.2.744

DECIBEL - Detaillierte Ergebnisse

Berechnung: Tagzustand_Zusatzbelastung aus 4 gepl. WEA Nordex N149, 5,7MW, 125m NH_alle VolllastSchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s

Schall-Immissionsort: W Whs. Greifswalder Str. 7, Karlsburg

								•		_	
WE	4		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	1.139	1.145	35,24	107,7	0,00	72,18	3,28	-3,00	0,00	0,00	72,46
R2	1.145	1.151	35,19	107,7	0,00	72,22	3,30	-3,00	0,00	0,00	72,52
R3	735	745	39,89	107,7	0,00	68,45	2,37	-3,00	0,00	0,00	67,82
R4	1.401	1.406	32,93	107,7	0,00	73,96	3,82	-3,00	0,00	0,00	74,78

Summe 42,64

Schall-Immissionsort: X Whs. Dorfstr. 6, Zarnekow

WE	4		Lautester	wert bis	95%	nenn	ileistui	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	889	897	37,92	107,7	0,00	70,06	2,73	-3,00	0,00	0,00	69,79
R2	1.095	1.102	35,67	107,7	0,00	71,84	3,19	-3,00	0,00	0,00	72,04
R3	638	650	41,32	107,7	0,00	67,26	2,13	-3,00	0,00	0,00	66,39
R4	1.496	1.501	32,18	107,7	0,00	74,53	4,00	-3,00	0,00	0,00	75,53

Lautostor Wort his OEO/s Nonnlaistung

Summe 43,99

Schall-Immissionsort: Y Whs. Dorfstr. 4, Zarnekow

WE	4		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	860	869	38,26	107,7	0,00	69,78	2,67	-3,00	0,00	0,00	69,44
R2	1.125	1.132	35,38	107,7	0,00	72,08	3,26	-3,00	0,00	0,00	72,33
R3	677	689	40,71	107,7	0,00	67,76	2,23	-3,00	0,00	0,00	66,99
R4	1.555	1.560	31,73	107,7	0,00	74,86	4,11	-3,00	0,00	0,00	75,98

Summe 43,70

Schall-Immissionsort: Z Whs. Dorfstr. 1, Zarnekow

	•				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	740	751	39,82	107,7	0,00	68,51	2,38	-3,00	0,00	0,00	67,89
R2	1.120	1.127	35,42	107,7	0,00	72,04	3,25	-3,00	0,00	0,00	72,29
R3	732	742	39,93	107,7	0,00	68,41	2,36	-3,00	0,00	0,00	67,78
R4	1.604	1.609	31,37	107,7	0,00	75,13	4,20	-3,00	0,00	0,00	76,33

Lautester Wert his 95% Nennleistung

Summe 43,85

Schall-Immissionsort: AA Whs. Dorfstr. 24a, Zarnekow

WE	4		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	947	955	37,24	107,7	0,00	70,60	2,87	-3,00	0,00	0,00	70,47
R2	1.321	1.327	33,59	107,7	0,00	73,46	3,66	-3,00	0,00	0,00	74,12
R3	915	924	37,60	107,7	0,00	70,31	2,80	-3,00	0,00	0,00	70,11
R4	1.795	1.800	30,05	107,7	0,00	76,11	4,55	-3,00	0,00	0,00	77,66

Summe 41,57

Schall-Immissionsort: AB Whs. Dorfstr. 20, Zarnekow

95% Nennieistung
Dc Adiv Aatm Agr Abar Amisc A
[dB] [dB] [dB] [dB] [dB] [dB]
0,00 70,03 2,73 -3,00 0,00 0,00 69,76
0,00 72,61 3,41 -3,00 0,00 0,00 73,01
0,00 68,76 2,44 -3,00 0,00 0,00 68,20
0,00 75,35 4,28 -3,00 0,00 0,00 76,63

Summe 42,88

Ingenieurbüro PLANkon Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

05.06.2020 13:28/3.2.744

DECIBEL - Detaillierte Ergebnisse

Berechnung: Tagzustand_Zusatzbelastung aus 4 gepl. WEA Nordex N149, 5,7MW, 125m NH_alle VolllastSchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s

Schall-Immissionsort: AC Whs. Dorfstr. 13, Zarnekow

WE	4		Lautester	Wert bis	95%	Nenn	, leistui	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	949	957	37,22	107,7	0,00	70,62	2,87	-3,00	0,00	0,00	70,49
R2	1.195	1.202	34,70	107,7	0,00	72,60	3,40	-3,00	0,00	0,00	73,01
R3	742	753	39,78	107,7	0,00	68,54	2,39	-3,00	0,00	0,00	67,93
R4	1.611	1.616	31,32	107,7	0,00	75,17	4,22	-3,00	0,00	0,00	76,39

Summe 42,81

Schall-Immissionsort: AD Whs. Greifswalder Str. 9, Moeckow

WE	4		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	825	834	38,69	107,7	0,00	69,43	2,59	-3,00	0,00	0,00	69,01
R2	1.283	1.290	33,91	107,7	0,00	73,21	3,58	-3,00	0,00	0,00	73,79
R3	968	976	37,01	107,7	0,00	70,79	2,91	-3,00	0,00	0,00	70,70
R4	1.793	1.797	30,07	107,7	0,00	76,09	4,55	-3,00	0,00	0,00	77,64

Summe 42,01

Schall-Immissionsort: AE Whs. Greifswalder Str. 9a, Moeckow

WE	4		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	833	842	38,59	107,7	0,00	69,51	2,60	-3,00	0,00	0,00	69,11
R2	1.294	1.300	33,82	107,7	0,00	73,28	3,61	-3,00	0,00	0,00	73,89
R3	983	991	36,84	107,7	0,00	70,92	2,95	-3,00	0,00	0,00	70,87
R4	1.804	1.809	29,99	107,7	0,00	76,15	4,57	-3,00	0,00	0,00	77,71

Summe 41,90

Schall-Immissionsort: AF Whs. Dorfstr. 10, Moeckow

***	•		Luuccscci	TTC: C DIS	, ,,	,	Ciscai	.9			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	1.192	1.199	34,74	107,7	0,00	72,57	3,40	-3,00	0,00	0,00	72,97
R2	1.667	1.672	30,92	107,7	0,00	75,47	4,32	-3,00	0,00	0,00	76,79
R3	1.365	1.371	33,22	107,7	0,00	73,74	3,75	-3,00	0,00	0,00	74,49
R4	2.181	2.185	27,72	107,7	0,00	77,79	5,20	-3,00	0,00	0,00	79,99

Lautester Wert his 95% Nennleistung

38,39 Summe

Schall-Immissionsort: AG Whs. Dorfstr. 1, Moeckow Berg

WE	A		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	1.329	1.334	33,53	107,7	0,00	73,50	3,67	-3,00	0,00	0,00	74,18
R2	1.814	1.818	29,93	107,7	0,00	76,19	4,58	-3,00	0,00	0,00	77,78
R3	1.676	1.680	30,87	107,7	0,00	75,50	4,33	-3,00	0,00	0,00	76,84
R4	2.317	2.320	26,98	107,7	0,00	78,31	5,42	-3,00	0,00	0,00	80,73

Summe 36,95

Schall-Immissionsort: AH Whs. Dorfstr. 4, Moeckow Berg

WE	4		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	1.305	1.310	33,74	107,7	0,00	73,35	3,63	-3,00	0,00	0,00	73,97
R2	1.784	1.788	30,13	107,7	0,00	76,05	4,53	-3,00	0,00	0,00	77,58
R3	1.669	1.673	30,92	107,7	0,00	75,47	4,32	-3,00	0,00	0,00	76,79
R4	2.281	2.284	27.17	107.7	0.00	78.17	5.36	-3.00	0.00	0.00	80.54

Summe 37,12

Projekt

Karlsburg

Lizenzierter Anwender:

Ingenieurbüro PLANkon Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

05.06.2020 13:28/3.2.744

DECIBEL - Annahmen für Schallberechnung

Berechnung: Tagzustand_Zusatzbelastung aus 4 gepl. WEA Nordex N149, 5,7MW, 125m NH_alle Volllast

Schallberechnungs-Modell:

ISO 9613-2 Deutschland (Interimsverfahren) Windgeschwindigkeit (in 10 m Höhe): Lautester Wert bis 95% Nennleistung

Bodeneffekt:

Feste Werte, Agr: -3,0, Dc: 0,0

Meteorologischer Koeffizient, CO:

በ በ dB

Art der Anforderung in der Berechnung:

1: WEA-Geräusch vs. Schallrichtwert (DK, DE, SE, NL etc.)

Schallleistungspegel in der Berechnung:

Schallwerte sind Lwa-Werte (Mittlere Schallleistungspegel; Standard)

Einzeltöne:

Fester Zuschlag wird zu Schallemission von WEA mit Einzeltönen zugefügt

WEA-Katalog

Aufpunkthöhe ü.Gr.:

5,0 m; Aufpunkthöhe in Immissionsort-Objekt hat Vorrang vor Angabe im Modell

Unsicherheitszuschlag:

0,0 dB; Unsicherheitszuschlag des IP hat Priorität

verlangte Unter- (negativ) oder zulässige Überschreitung (positiv) des Schallrichtwerts:

0,0 dB(A)

Oktavbanddaten verwendet

Frequenzabhängige Luftdämpfung

63 125 250 500 1.000 2.000 4.000 8.000 [db/km] [db/km] [db/km] [db/km] [db/km] [db/km] [db/km] [db/km] [db/km] 0,1 0,4 1,0 1,9 3,7 9,7 32,8 117,0

WEA: NORDEX N149/5.X 5700 149.1 !O!

Schall: Mode 00 STE inkl. OkBD + Sicherheitszuschlag nach LAI

Datenquelle Quelle/Datum Quelle Bearbeitet Hersteller / PLANkon 30.10.2019 USER 30.10.2019 17:16

analog Dokument: F008_275_A19_IN - Rev. 00; alle Nabenhöhen; plus 2,1dB(A) Sicherheitszuschlag nach aktuellen LAI-Hinweisen

Oktavbänder

Schall-Immissionsort: Whs. Dorfstr. 5, Moeckow Berg-A

Vordefinierter Berechnungsstandard:

Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Unsicherheitszuschlag: Standardwert des Berechnungsmodells verwenden

Schallrichtwert: 60,0 dB(A) **Keine Abstandsanforderung**

Schall-Immissionsort: Whs. Dorfstr. 6, Moeckow Berg-B

Vordefinierter Berechnungsstandard:

Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Unsicherheitszuschlag: Standardwert des Berechnungsmodells verwenden

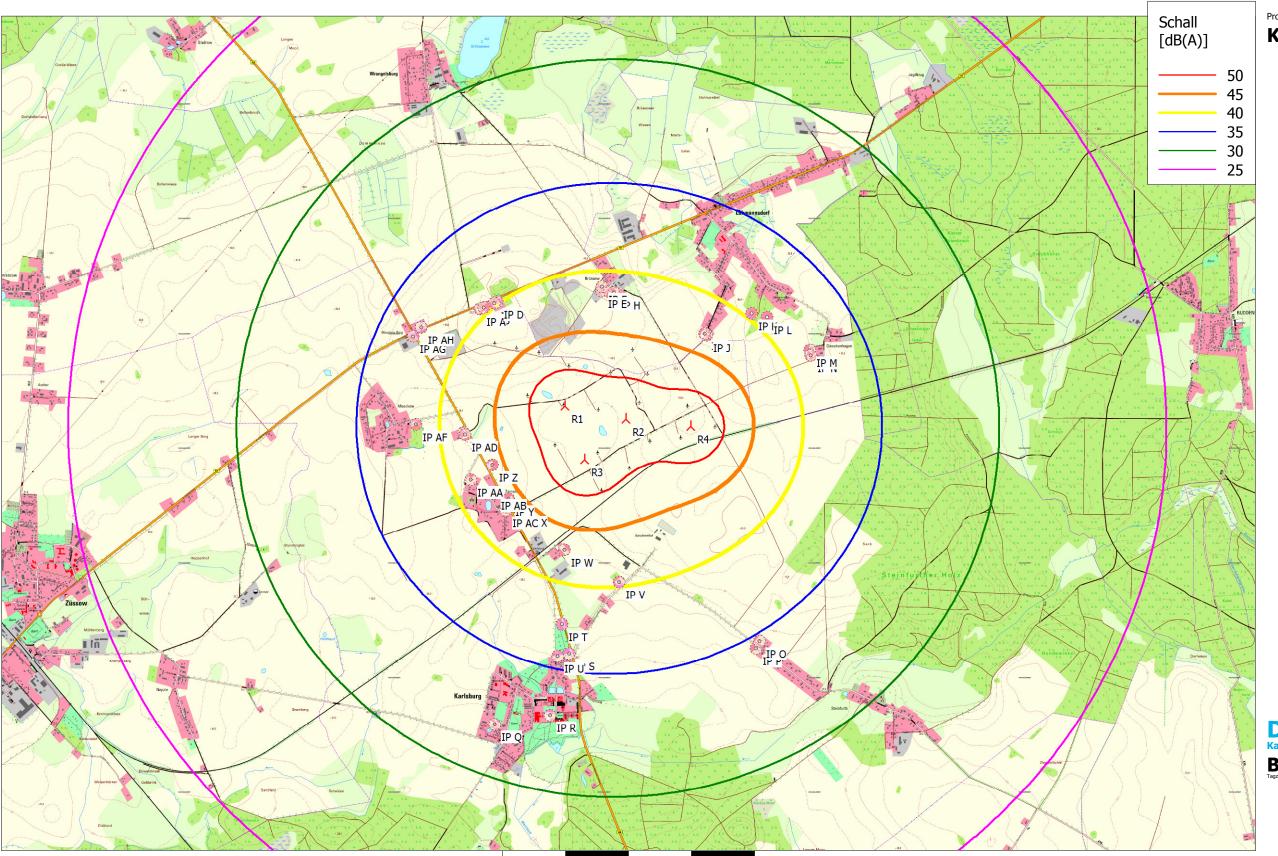
Schallrichtwert: 60,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: Whs. Dorfstr. 7, Moeckow Berg-C

Vordefinierter Berechnungsstandard:

Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Unsicherheitszuschlag: Standardwert des Berechnungsmodells verwenden


Schallrichtwert: 60,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: Whs. Dorfstr. 8, Moeckow Berg-D

Vordefinierter Berechnungsstandard:

Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Unsicherheitszuschlag: Standardwert des Berechnungsmodells verwenden

DECIBEL -Berechnung:

1500 2000 m 500 1000 Karte: TK10t Karlsburg georef NatWi , Maßstab 1:30.000, Mitte: UTM (north)-WGS84 Zone: 33 Ost: 409.508 Nord: 5.983.384

Schall-Immissionsort

Schallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren). Windgeschwindigkeit: Lautester Wert bis 95% Nennleistung Höhe über Meeresspiegel von aktivem Höhenlinien-Objekt

Lizenzierter Anwender:

Ingenieurbüro PLANkon Blumenstrasse 26 DE-26121 Oldenburg

0441 390 34 - 0

Berechnet:

05.06.2020 13:28/3.2.744

Lizenzierter Anwender:

Ingenieurbüro PLANkon Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

27.03.2020 13:40/3.2.744

DECIBEL - Hauptergebnis

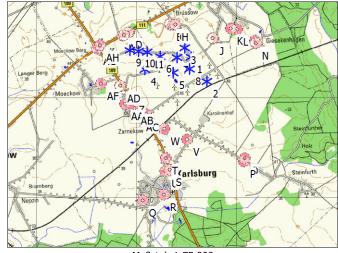
Berechnung: Nachtzustand_Vorbelastung durch 11 am Standort vorh. WEA verschiedener Hersteller_OHNE Stall

ISO 9613-2 Deutschland (Interimsverfahren)

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Lautester Wert bis 95% Nennleistung

Faktor für Meteorologischen Dämpfungskoeffizient, CO: 0,0 dB


Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A)

Dorf- und Mischgebiet, Außenbereich: 45 dB(A) Reines Wohngebiet / Kurgebiet u.ä. : 35 dB(A)

Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

Alle Koordinatenangaben in: UTM (north)-WGS84 Zone: 33

Maßstab 1:75.000

★ Existierende WEA

Maßstab 1:75.000

WEA

					WEA	-Тур					Schall	werte			
	Ost	Nord	Ζ	Beschreibung	Ak-	Hersteller	Тур	Nenn-	Rotor-	Naben-	Quelle	Name	Windge-	LWA	Ein-
					tu-			leistung	durch-	höhe			schwin-		zel-
					ell				messer				digkeit		ton
			[m]					[kW]	[m]	[m]			[m/s]	[dB(A)]	
1	409.655	5.983.833	47,	5 vorh. VB7_RE MI	D77 Ja	REpower	MD 77-1.500	1.500	77,0	61,5	USER	genehmigter Pegel WEA VB7 Karlsburg_102,2 zzgl. 1,6	(95%)	103,8	Nein
2	409.926	5.983.325	47,	5 vorh. VB8_RE MI	D77 Ja	REpower	MD 77-1.500	1.500	77,0	61,5	USER	3fach verm. Pegel für WEA VB8 Karlsburg_102,1+1,7	(95%)	103,8	Nein
3	409.544	5.984.028	47,	5 vorh. VB9_RE MI	D77 Ja	REpower	MD 77-1.500	1.500	77,0	61,5	USER	genehmigter Pegel WEA VB9 Karlsburg_101,9+1,6	(95%)	103,5	Nein
4	408.711	5.983.667	42,	5 vorh. VB10_RE M	1 Ja	REpower	MD 70-1.500	1.500	70,0	65,0	USER	genehm. Pegel WP Karlsburg_WEA VB10-VB15_103,6	(95%)	103,6	Nein
5	409.273	5.983.549	45,0	0 vorh. VB12_RE M	1 Ja	REpower	MD 70-1.500	1.500	70,0	65,0	USER	genehm. Pegel WP Karlsburg_WEA VB10-VB15_103,6	(95%)	103,6	Nein
6	409.039	5.983.901	44,	1 vorh. VB13_RE M	1 Ja	REpower	MD 70-1.500	1.500	70,0	65,0	USER	genehm. Pegel WP Karlsburg_WEA VB10-VB15_103,6	(95%)	103,6	Nein
7	409.371	5.983.849	47,	1 vorh. VB14_RE M	1 Ja	REpower	MD 70-1.500	1.500	70,0	65,0	USER	genehm. Pegel WP Karlsburg_WEA VB10-VB15_103,6	(95%)	103,6	Nein
8	409.599	5.983.605	47,4	4 vorh. VB15_RE M	1 Ja	REpower	MD 70-1.500	1.500	70,0	65,0	USER	genehm. Pegel WP Karlsburg_WEA VB10-VB15_103,6	(95%)	103,6	Nein
9	408.449	5.984.079	52,0	0 vorh. VB16_NTK	5 Ja	NORDTANK	-500	500	41,0	50,0	USER	genehmigter Pegel WP Karlsburg_OHNE Stall_105,3	(95%)	105,3	Nein
10	408.622	5.984.043	50,	1 vorh. VB17_NTK	5 Ja	NORDTANK	-500	500	41,0	50,0	USER	genehmigter Pegel WP Karlsburg_OHNE Stall_105,3	(95%)	105,3	Nein
11	408.795	5.984.005	48	1 vorh VB18 NTK	5 la	NORDTANK	-500	500	41.0	50.0	USER	genehmigter Pegel WP Karlsburg, OHNE Stall, 105.3	(95%)	105.3	Nein

Berechnungsergebnisse

Beurteilungspegel

Schall-Immissionsort					Anforderung	Beurteilungspegel	Anforderung erfüllt?
Nr. Name	Ost	Nord	Z	Auf-	Schall	Von WEA	Schall
				punkt-			
				höhe			
			[m]	[m]	[dB(A)]	[dB(A)]	
A Whs. Dorfstr. 5, Moeckow Berg		5.984.369	- /	5,0	45,0		Nein
B Whs. Dorfstr. 6, Moeckow Berg		5.984.382	- , -	5,0	45,0		Nein
C Whs. Dorfstr. 7, Moeckow Berg		5.984.417	- , -	5,0			Nein
D Whs. Dorfstr. 8, Moeckow Berg		5.984.427		5,0	45,0		Nein
E Whs. Feldstr. 9, Brüssow		5.984.510	- /	5,0		46,6	Nein
F Whs. Feldstr. 8, Brüssow		5.984.545		5,0			Nein
G verfallenes Whs. Feldstr. 7, Brüssow		5.984.503	,	5,0	45,0		Nein
H Whs. Feldstraße 6, Brüssow	409.398	5.984.499	48,7	5,0	45,0		Nein
I unbeb. Grundstck. SW Oberreihe, Lühmannsdorf	410.117	5.984.176	44,8	5,0	40,0		Nein
J Whs. Oberreihe 16, Lühmannsdorf	410.133	5.984.158	44,6	5,0	40,0	45,2	Nein
K unbeb. Grundstck. Am Heidberg SW, Lühmannsdorf				5,0	40,0		Nein
L unbeb. Grundstck. Am Heidberg SO, Lühmannsdorf	410.612	5.984.306	38,4	5,0	40,0	40,3	Nein
M Whs. Waldweg 5, Giesekenhagen	410.952	5.984.043	40,5	5,0	45,0	38,6	Ja
N verfallenes Whs. Waldweg 6, Giesekenhagen	410.963	5.983.999	40,9	5,0	45,0		Ja
O Whs. Dorfstr. 1, Steinfurth	410.554	5.981.730	40,7	5,0	40,0	34,3	Jа
P Whs. Dorfstr. 2a, Steinfurth	410.525	5.981.672	39,7	5,0	40,0	34,1	Ja
Q unbeb. Grundstck. WR Teichweg Ost, Karlsburg	408.451	5.981.069	32,4	5,0	35,0	32,1	Ja
R Klinikum Karlsburg, Greifswalder Str. 11, Karlsburg	408.889	5.981.143	33,8	10,0	35,0	32,8	Ja
S Whs. Dorfstr. 8, Karlsburg	409.044	5.981.629	37,5	5,0	45,0	35,2	Ja
T Laube Kleingarten Greifswalder Str., Karlsburg	408.984	5.981.863	40,0	5,0	55,0	36,4	Ja
U Whs. Dorfstr. 4A, Karlsburg	408.949	5.981.613	37,7	5,0	40,0	35,0	Ja
V Whs. Karolinenweg 7, Karlsburg	409.438	5.982.199	41,4	5,0	45,0	38,7	Ja
W Whs. Greifswalder Str. 7, Karlsburg	409.006	5.982.455	41,5	5,0	45,0	40,2	Ja
X Whs. Dorfstr. 6, Zarnekow	408.665	5.982.775	39,4	5,0	45,0	41,8	Ja

(Fortsetzung nächste Seite)...

Ingenieurbüro PLANkon Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

27.03.2020 13:40/3.2.744

DECIBEL - Hauptergebnis

Berechnung: Nachtzustand_Vorbelastung durch 11 am Standort vorh. WEA verschiedener Hersteller_OHNE Stall

				Anforderung	Reurteilungsnegel	Anforderung erfüllt?
Ost	Nord	Z	Auf- punkt-	Schall	Von WEA	Schall
			höhe	5 ID(4)3	F ID(4)3	
				[dB(A)]		
408.562	5.982.860	38,4	5,0	45,0	42,2	Jа
408.433	5.983.130	38,6	5,0	45,0	44,0	Ja
408.262	5.983.013	37,5	5,0	40,0	42,1	Nein
408.448	5.982.910	38,0	5,0	40,0	42,1	Nein
408.540	5.982.769	38,0	5,0	40,0	41,4	Nein
408.215	5.983.370	38,0	5,0	45,0	44,7	Ja
408.203	5.983.385	38,0	5,0	45,0	44,7	Ja
407.826	5.983.450	37,6	5,0	40,0	41,8	Nein
407.804	5.984.154	45,5	5,0	45,0	43,1	Ja
407.867	5.984.225	46,1	5,0	45,0	43,7	Ja
	408.562 408.433 408.262 408.448 408.540 408.215 408.203 407.826 407.804	408.562 5.982.860 408.433 5.983.130 408.262 5.983.013 408.448 5.982.910 408.540 5.982.769 408.215 5.983.370 408.203 5.983.385 407.826 5.983.450 407.804 5.984.154	Ost Nord Z [m] 408.562 5.982.860 38,4 408.433 5.983.130 38,6 408.262 5.983.013 37,5 408.448 5.982.910 38,0 408.540 5.982.769 38,0 408.215 5.983.370 38,0 408.203 5.983.385 38,0 407.826 5.983.450 37,6 407.826 5.984.154 45,5 407.867 5.984.225 46,1	Ost Nord Z Auf- punkt- höhe [m] [m] [m] 408.562 5.982.860 38,4 5,0 408.433 5.983.130 37,5 5,0 408.448 5.982.910 38,0 5,0 408.540 5.982.769 38,0 5,0 408.215 5.983.370 38,0 5,0 408.203 5.983.385 38,0 5,0 407.826 5.983.450 37,6 5,0 407.804 5.984.154 45,5 5,0	Ost Nord Z Auf- punkt- höhe [m] [m] [dB(A)] 408.562 5.982.860 38,4 5,0 45,0 408.433 5.983.130 38,6 5,0 45,0 408.262 5.983.013 37,5 5,0 40,0 408.448 5.982.910 38,0 5,0 40,0 408.540 5.982.769 38,0 5,0 40,0 408.215 5.983.370 38,0 5,0 45,0 408.203 5.983.385 38,0 5,0 45,0 407.826 5.983.450 37,6 5,0 40,0 407.804 5.984.154 45,5 5,0 45,0	punkt-höhe [m] [m] [dB(A)] [dB(A)] 408.562 5.982.860 38,4 5,0 45,0 42,2 408.433 5.983.130 38,6 5,0 45,0 44,0 408.262 5.983.013 37,5 5,0 40,0 42,1 408.448 5.982.910 38,0 5,0 40,0 42,1 408.540 5.982.769 38,0 5,0 40,0 41,4 408.215 5.983.370 38,0 5,0 45,0 44,7 408.203 5.983.385 38,0 5,0 45,0 44,7 407.826 5.983.450 37,6 5,0 40,0 41,8 407.804 5.984.154 45,5 5,0 45,0 43,1

Ahstände (m)

Abstände (m)											
	WEA										
Schall-Immissionsort	1	2	3	4	5	6	7	8	9	10	11
Α	1428	1906	1260	798	1249	848	1162	1480	313	437	589
В	1405	1888	1235	796	1235	831	1142	1461	315	428	575
C	1343	1839	1165	795	1199	786	1086	1410	337	413	540
D	1325	1825	1145	796	1189	774	1070	1396	348	412	532
E	765	1341	541	1027	961	662	665	954	952	822	713
F	795	1371	571	1056	995	694	699	986	969	843	738
G	731	1306	508	1059	957	682	653	928	1006	870	754
Н	714	1287	493	1079	958	697	650	916	1037	900	779
I	575	872	592	1495	1051	1112	814	771	1671	1501	1333
J	578	858	603	1504	1053	1124	822	768	1686	1515	1347
K	976	1157	997	1902	1450	1517	1222	1153	2060	1893	1729
L	1068	1197	1104	2006	1538	1624	1322	1232	2175	2007	1842
М	1313	1252	1408	2272	1750	1918	1592	1422	2503	2329	2157
N	1318	1236	1419	2276	1748	1926	1599	1419	2515	2341	2168
0	2287	1715	2510	2674	2225	2647	2427	2104	3154	3014	2876
P	2329	1758	2552	2696	2256	2679	2464	2143	3178	3040	2904
Q	3015	2695	3154	2611	2613	2892	2928	2784	3010	2979	2956
R	2797	2416	2959	2531	2437	2762		2563	2969	2913	2864
S	2287	1912	2451	2065			2244		2521	2451	2389
T	2081	1739	2237	1825	1711	2039		1848	2280	2210	2151
U	2330 1649	1972	2488 1832	2068 1638		2290 1748	2276	2096	2517	2452	2398
V W	1524	1228 1267	1663	1248	1360 1126	1/48 1447	1652 1441	1416 1294	2124 1717	2017 1634	1917 1564
vv X	1450	1376	1531	894	985	1187	1286	1250	1322	1269	1237
Ŷ	1464	1441	1526	821	991	1146	1278	1277	1225	1185	1169
Z	1411	1507	1429	605	940	981	1183	1260	949	933	947
AA	1617	1693	1636	794	1145	1180	1389	1463	1083	1091	1127
AB	1521	1536	1567	802	1045	1155	1318	1346	1170	1147	1150
AC	1542	1494	1611	914	1071	1237	1363	1350	1313	1277	1262
AD	1513	1712	1483	578	1073	980	1251	1404	747	787	860
AE	1520	1724	1488	581	1083	983	1257	1413	737	781	858
AF	1869	2104	1813	911	1451	1294	1596	1780	886	993	1117
AG	1879	2278	1745	1029	1589	1261	1596	1877	649	826	1002
AH	1831	2247	1689	1012	1560	1216	1550	1840	600	777	954

Ingenieurbüro PLANkon Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

27.03.2020 13:40/3.2.744

DECIBEL - Detaillierte Ergebnisse

Berechnung: Nachtzustand_Vorbelastung durch 11 am Standort vorh. WEA verschiedener Hersteller_OHNE StallSchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s Annahmen

Berechneter L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (Wenn mit Bodeneffekt gerechnet ist Dc = Domega)

Schallleistungspegel der WEA

K: Einzeltöne

Dc: Richtwirkungskorrektur

Adiv: Dämpfung aufgrund geometrischer Ausbreitung

Aatm: Dämpfung aufgrund von Luftabsorption Agr: Dämpfung aufgrund des Bodeneffekts Dämpfung aufgrund von Abschirmung Abar:

Amisc: Dämpfung aufgrund verschiedener anderer Effekte

Meteorologische Korrektur Cmet:

Berechnungsergebnisse

Schall-Immissionsort: A Whs. Dorfstr. 5, Moeckow Berg

WE	WEA Lautester Wert bis 95% Nennleistung										
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.428	1.429	30,70	103,8	0,00	74,10	1,96	-3,00	0,00	0,00	73,06
2	1.906	1.907	27,34	103,8	0,00	76,61	2,85	-3,00	0,00	0,00	76,45
3	1.260	1.261	31,66	103,5	0,00	73,01	1,80	-3,00	0,00	0,00	71,82
4	798	800	35,05	103,6	0,00	69,06	2,51	-3,00	0,00	0,00	68,57
5	1.249	1.250	30,23	103,6	0,00	72,94	3,45	-3,00	0,00	0,00	73,39
6	848	850	34,40	103,6	0,00	69,59	2,62	-3,00	0,00	0,00	69,21
7	1.162	1.164	31,02	103,6	0,00	72,32	3,28	-3,00	0,00	0,00	72,60
8	1.480	1.481	28,32	103,6	0,00	74,41	3,88	-3,00	0,00	0,00	75,29
9	313	316	46,07	105,3	0,00	60,99	1,26	-3,00	0,00	0,00	59,25
10	437	439	42,86	105,3	0,00	63,84	1,61	-3,00	0,00	0,00	62,46
11	589	591	39,87	105,3	0,00	66,43	2,01	-3,00	0,00	0,00	65,44

Summe 49,12

Schall-Immissionsort: B Whs. Dorfstr. 6, Moeckow Berg

WE/	WEA Lautester Wert bis 95% Nennleistung											
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
1	1.405	1.406	30,87	103,8	0,00	73,96	1,93	-3,00	0,00	0,00	72,89	
2	1.888	1.889	27,44	103,8	0,00	76,52	2,83	-3,00	0,00	0,00	76,35	
3	1.235	1.236	31,87	103,5	0,00	72,84	1,77	-3,00	0,00	0,00	71,61	
4	796	798	35,07	103,6	0,00	69,04	2,51	-3,00	0,00	0,00	68,54	
5	1.235	1.236	30,35	103,6	0,00	72,84	3,42	-3,00	0,00	0,00	73,26	
6	831	833	34,62	103,6	0,00	69,41	2,59	-3,00	0,00	0,00	69,00	
7	1.142	1.143	31,21	103,6	0,00	72,16	3,24	-3,00	0,00	0,00	72,40	
8	1.461	1.463	28,46	103,6	0,00	74,30	3,85	-3,00	0,00	0,00	75,15	
9	315	319	45,98	105,3	0,00	61,07	1,26	-3,00	0,00	0,00	59,33	
10	428	430	43,06	105,3	0,00	63,67	1,59	-3,00	0,00	0,00	62,26	
11	575	576	40,13	105,3	0,00	66,21	1,98	-3,00	0,00	0,00	65,19	

Summe

Schall-Immissionsort: C Whs. Dorfstr. 7, Moeckow Berg

WE/													
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α		
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]		
1	1.343	1.344	31,33	103,8	0,00	73,57	1,86	-3,00	0,00	0,00	72,43		
2	1.839	1.840	27,73	103,8	0,00	76,30	2,77	-3,00	0,00	0,00	76,07		
3	1.165	1.166	32,45	103,5	0,00	72,34	1,69	-3,00	0,00	0,00	71,03		
4	795	796	35,09	103,6	0,00	69,02	2,50	-3,00	0,00	0,00	68,53		
5	1.199	1.200	30,68	103,6	0,00	72,58	3,35	-3,00	0,00	0,00	72,94		
6	786	788	35,20	103,6	0,00	68,93	2,48	-3,00	0,00	0,00	68,41		
7	1.086	1.087	31,76	103,6	0,00	71,72	3,13	-3,00	0,00	0,00	71,85		
8	1.410	1.411	28,87	103,6	0,00	73,99	3,75	-3,00	0,00	0,00	74,75		

(Fortsetzung nächste Seite)...

Ingenieurbüro PLANkon Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

27.03.2020 13:40/3.2.744

DECIBEL - Detaillierte Ergebnisse

Berechnung: Nachtzustand_Vorbelastung durch 11 am Standort vorh. WEA verschiedener Hersteller_OHNE StallSchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s ...(Fortsetzung von letzter Seite)

WE/	۹		Lautester Wert bis 95% Nennleistung								
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
9	337	340	45,35	105,3	0,00	61,63	1,33	-3,00	0,00	0,00	59,96
10	413	415	43,41	105,3	0,00	63,36	1,55	-3,00	0,00	0,00	61,91
11	540	541	40,76	105,3	0,00	65,67	1,89	-3,00	0,00	0,00	64,56

Summe 49,13

Schall-Immissionsort: D Whs. Dorfstr. 8, Moeckow Berg

WE	WEA Lautester Wert bis 95% Nennieistung										
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]			[dB]	[dB]	[dB]	[dB]	[dB]
1	1.325	1.326	31,47	103,8	0,00	73,45	1,84	-3,00	0,00	0,00	72,29
2	1.825	1.826	27,81	103,8	0,00	76,23	2,76	-3,00	0,00	0,00	75,99
3	1.145	1.146	32,63	103,5	0,00	72,19	1,67	-3,00	0,00	0,00	70,85
4	796	798	35,07	103,6	0,00	69,04	2,51	-3,00	0,00	0,00	68,55
5	1.189	1.190	30,77	103,6	0,00	72,51	3,33	-3,00	0,00	0,00	72,85
6	774	776	35,36	103,6	0,00	68,80	2,46	-3,00	0,00	0,00	68,25
7	1.070	1.071	31,92	103,6	0,00	71,60	3,10	-3,00	0,00	0,00	71,69
8	1.396	1.397	28,98	103,6	0,00	73,90	3,73	-3,00	0,00	0,00	74,63
9	348	351	45,05	105,3	0,00	61,90	1,36	-3,00	0,00	0,00	60,26
10	412	414	43,42	105,3	0,00	63,35	1,55	-3,00	0,00	0,00	61,89
11	532	533	40,91	105,3	0,00	65,54	1,87	-3,00	0,00	0,00	64,41

Summe 49,05

Schall-Immissionsort: E Whs. Feldstr. 9, Brüssow

WE	4		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	: LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	765	767	36,87	103,8	0,00	68,70	1,19	-3,00	0,00	0,00	66,89
2	1.341	1.342	31,06	103,8	0,00	73,56	2,18	-3,00	0,00	0,00	72,73
3	541	544	39,88	103,5	0,00	65,71	0,89	-3,00	0,00	0,00	63,60
4	1.027	1.029	32,36	103,6	0,00	71,25	3,01	-3,00	0,00	0,00	71,25
5	961	963	33,07	103,6	0,00	70,67	2,87	-3,00	0,00	0,00	70,54
6	662	664	36,98	103,6	0,00	67,44	2,19	-3,00	0,00	0,00	66,64
7	665	667	36,93	103,6	0,00	67,49	2,20	-3,00	0,00	0,00	66,69
8	954	955	33,16	103,6	0,00	70,60	2,85	-3,00	0,00	0,00	70,46
9	952	954	34,88	105,3	0,00	70,59	2,85	-3,00	0,00	0,00	70,44
10	822	823	36,44	105,3	0,00	69,31	2,56	-3,00	0,00	0,00	68,87
11	713	714	37,92	105,3	0,00	68,08	2,31	-3,00	0,00	0,00	67,39

Summe

Schall-Immissionsort: F Whs. Feldstr. 8, Brüssow

WE	WEA Lautester Wert bis 95% Nennleistung										
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	795	797	36,51	103,8	0,00	69,03	1,23	-3,00	0,00	0,00	67,26
2	1.371	1.372	30,83	103,8	0,00	73,75	2,22	-3,00	0,00	0,00	72,96
3	571	574	39,37	103,5	0,00	66,17	0,93	-3,00	0,00	0,00	64,11
4	1.056	1.058	32,06	103,6	0,00	71,49	3,07	-3,00	0,00	0,00	71,55
5	995	997	32,70	103,6	0,00	70,97	2,94	-3,00	0,00	0,00	70,92
6	694	696	36,49	103,6	0,00	67,85	2,27	-3,00	0,00	0,00	67,12
7	699	701	36,42	103,6	0,00	67,92	2,28	-3,00	0,00	0,00	67,20
8	986	987	32,80	103,6	0,00	70,89	2,92	-3,00	0,00	0,00	70,81
9	969	971	34,69	105,3	0,00	70,74	2,89	-3,00	0,00	0,00	70,63
10	843	844	36,18	105,3	0,00	69,53	2,61	-3,00	0,00	0,00	69,14
11	738	740	37,56	105,3	0,00	68,38	2,37	-3,00	0,00	0,00	67,76

Summe 46,16

Ingenieurbüro PLANkon Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

27.03.2020 13:40/3.2.744

DECIBEL - Detaillierte Ergebnisse

Berechnung: Nachtzustand_Vorbelastung durch 11 am Standort vorh. WEA verschiedener Hersteller_OHNE StallSchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s

Schall-Immissionsort: G verfallenes Whs. Feldstr. 7, Brüssow

WE	VEA Lautester Wert bis 95% Nennieistung										
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	731	733	37,31	103,8	0,00	68,30	1,15	-3,00	0,00	0,00	66,45
2	1.306	1.307	31,34	103,8	0,00	73,32	2,13	-3,00	0,00	0,00	72,46
3	508	511	40,46	103,5	0,00	65,17	0,84	-3,00	0,00	0,00	63,02
4	1.059	1.060	32,04	103,6	0,00	71,50	3,07	-3,00	0,00	0,00	71,58
5	957	959	33,12	103,6	0,00	70,64	2,86	-3,00	0,00	0,00	70,50
6	682	684	36,67	103,6	0,00	67,71	2,24	-3,00	0,00	0,00	66,95
7	653	656	37,10	103,6	0,00	67,34	2,17	-3,00	0,00	0,00	66,51
8	928	930	33,45	103,6	0,00	70,37	2,80	-3,00	0,00	0,00	70,17
9	1.006	1.007	34,29	105,3	0,00	71,06	2,96	-3,00	0,00	0,00	71,02
10	870	872	35,84	105,3	0,00	69,81	2,67	-3,00	0,00	0,00	69,48
11	754	755	37,35	105,3	0,00	68,56	2,41	-3,00	0,00	0,00	67,97

Summe 46,58

Schall-Immissionsort: H Whs. Feldstraße 6, Brüssow

WEA Lautester Wert bis 95% Nennleistung											
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	714	716	37,54	103,8	0,00	68,10	1,13	-3,00	0,00	0,00	66,23
2	1.287	1.289	31,48	103,8	0,00	73,20	2,11	-3,00	0,00	0,00	72,31
3	493	496	40,74	103,5	0,00	64,91	0,82	-3,00	0,00	0,00	62,74
4	1.079	1.080	31,83	103,6	0,00	71,67	3,11	-3,00	0,00	0,00	71,78
5	958	960	33,11	103,6	0,00	70,64	2,86	-3,00	0,00	0,00	70,50
6	697	699	36,44	103,6	0,00	67,89	2,28	-3,00	0,00	0,00	67,17
7	650	653	37,15	103,6	0,00	67,30	2,17	-3,00	0,00	0,00	66,47
8	916	918	33,58	103,6	0,00	70,26	2,77	-3,00	0,00	0,00	70,03
9	1.037	1.038	33,96	105,3	0,00	71,33	3,03	-3,00	0,00	0,00	71,35
10	900	901	35,49	105,3	0,00	70,09	2,74	-3,00	0,00	0,00	69,83
11	779	780	37,00	105,3	0,00	68,84	2,47	-3,00	0,00	0,00	68,31

Summe 46,57

Schall-Immissionsort: I unbeb. Grundstck. SW Oberreihe, Lühmannsdorf

WE	WEA Lautester Wert bis 95% Nennleistung												
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α		
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]		
1	575	578	39,57	103,8	0,00	66,24	0,95	-3,00	0,00	0,00	64,19		
2	872	874	35,41	103,8	0,00	69,83	1,56	-3,00	0,00	0,00	68,39		
3	592	595	39,03	103,5	0,00	66,49	0,96	-3,00	0,00	0,00	64,45		
4	1.495	1.496	28,20	103,6	0,00	74,50	3,91	-3,00	0,00	0,00	75,41		
5	1.051	1.053	32,11	103,6	0,00	71,45	3,06	-3,00	0,00	0,00	71,51		
6	1.112	1.114	31,49	103,6	0,00	71,94	3,18	-3,00	0,00	0,00	72,12		
7	814	817	34,82	103,6	0,00	69,24	2,55	-3,00	0,00	0,00	68,79		
8	771	773	35,40	103,6	0,00	68,77	2,45	-3,00	0,00	0,00	68,22		
9	1.671	1.672	28,63	105,3	0,00	75,46	4,22	-3,00	0,00	0,00	76,68		
10	1.501	1.502	29,86	105,3	0,00	74,53	3,92	-3,00	0,00	0,00	75,45		
11	1.333	1.334	31,20	105,3	0,00	73,50	3,61	-3,00	0,00	0,00	74,11		

Summe 45,28

Schall-Immissionsort: J Whs. Oberreihe 16, Lühmannsdorf

WEA Lautester Wert bis 95% Nennleistung												
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
1	578	581	39,53	103,8	0,00	66,28	0,95	-3,00	0,00	0,00	64,23	
2	858	860	35,57	103,8	0,00	69,69	1,54	-3,00	0,00	0,00	68,23	
3	603	606	38,85	103,5	0,00	66,65	0,98	-3,00	0,00	0,00	64,62	
4	1.504	1.505	28,14	103,6	0,00	74,55	3,93	-3,00	0,00	0,00	75,48	
5	1.053	1.055	32,09	103,6	0,00	71,47	3,06	-3,00	0,00	0,00	71,53	
6	1.124	1.125	31,39	103,6	0,00	72,02	3,20	-3,00	0,00	0,00	72,23	
7	822	824	34,73	103,6	0,00	69,32	2,57	-3,00	0,00	0,00	68,89	
8	768	771	35,43	103,6	0,00	68,74	2,45	-3,00	0,00	0,00	68,18	
9	1.686	1.687	28,53	105,3	0,00	75,54	4,25	-3,00	0,00	0,00	76,79	
10	1.515	1.516	29,75	105,3	0,00	74,61	3,95	-3,00	0,00	0,00	75,56	
11	1.347	1.347	31,09	105,3	0,00	73,59	3,64	-3,00	0,00	0,00	74,23	

Summe 45,23 windPRO 3.2.744 | EMD International A/S, Tel. +45 96 35 44 44, www.emd.dk, windpro@emd.dk

Ingenieurbüro PLANkon Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

27.03.2020 13:40/3.2.744

DECIBEL - Detaillierte Ergebnisse

Berechnung: Nachtzustand_Vorbelastung durch 11 am Standort vorh. WEA verschiedener Hersteller_OHNE StallSchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s

Schall-Immissionsort: K unbeb. Grundstck. Am Heidberg SW, Lühmannsdorf

WEA	1		Lautester	Wert bis	95%	Nenn	ıleistu	1g			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	976	978	34,51	103,8	0,00	70,81	1,45	-3,00	0,00	0,00	69,25
2	1.157	1.158	32,57	103,8	0,00	72,28	1,94	-3,00	0,00	0,00	71,22
3	997	999	34,00	103,5	0,00	70,99	1,49	-3,00	0,00	0,00	69,48
4	1.902	1.903	25,41	103,6	0,00	76,59	4,61	-3,00	0,00	0,00	78,20
5	1.450	1.452	28,55	103,6	0,00	74,24	3,83	-3,00	0,00	0,00	75,07
6	1.517	1.518	28,04	103,6	0,00	74,63	3,95	-3,00	0,00	0,00	75,58
7	1.222	1.224	30,46	103,6	0,00	72,75	3,40	-3,00	0,00	0,00	73,15
8	1.153	1.155	31,10	103,6	0,00	72,25	3,26	-3,00	0,00	0,00	72,52
9	2.060	2.061	26,17	105,3	0,00	77,28	4,86	-3,00	0,00	0,00	79,14
10	1.893	1.894	27,17	105,3	0,00	76,55	4,59	-3,00	0,00	0,00	78,14
11	1.729	1.730	28,23	105,3	0,00	75,76	4,32	-3,00	0,00	0,00	77,08

Summe 41,09

Schall-Immissionsort: L unbeb. Grundstck. Am Heidberg SO, Lühmannsdorf

WE	/EA Lautester Wert bis 95% Nennleistung										
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.068	1.070	33,62	103,8	0,00	71,58	1,55	-3,00	0,00	0,00	70,14
2	1.197	1.199	32,22	103,8	0,00	72,58	2,00	-3,00	0,00	0,00	71,57
3	1.104	1.106	32,99	103,5	0,00	71,87	1,62	-3,00	0,00	0,00	70,49
4	2.006	2.007	24,79	103,6	0,00	77,05	4,78	-3,00	0,00	0,00	78,83
5	1.538	1.540	27,88	103,6	0,00	74,75	3,99	-3,00	0,00	0,00	75,74
6	1.624	1.626	27,26	103,6	0,00	75,22	4,14	-3,00	0,00	0,00	76,36
7	1.322	1.324	29,58	103,6	0,00	73,44	3,59	-3,00	0,00	0,00	74,03
8	1.232	1.234	30,37	103,6	0,00	72,83	3,42	-3,00	0,00	0,00	73,24
9	2.175	2.176	25,52	105,3	0,00	77,75	5,05	-3,00	0,00	0,00	79,80
10	2.007	2.008	26,48	105,3	0,00	77,06	4,78	-3,00	0,00	0,00	78,84
11	1.842	1.843	27,50	105,3	0,00	76,31	4,51	-3,00	0,00	0,00	77,82

Summe 40,32

Schall-Immissionsort: M Whs. Waldweg 5, Giesekenhagen

WE	A		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.313	1.315	31,55	103,8	0,00	73,38	1,83	-3,00	0,00	0,00	72,21
2	1.252	1.253	31,77	103,8	0,00	72,96	2,07	-3,00	0,00	0,00	72,03
3	1.408	1.409	30,52	103,5	0,00	73,98	1,98	-3,00	0,00	0,00	72,95
4	2.272	2.273	23,29	103,6	0,00	78,13	5,20	-3,00	0,00	0,00	80,33
5	1.750	1.751	26,40	103,6	0,00	75,86	4,36	-3,00	0,00	0,00	77,22
6	1.918	1.919	25,32	103,6	0,00	76,66	4,64	-3,00	0,00	0,00	78,30
7	1.592	1.594	27,48	103,6	0,00	75,05	4,08	-3,00	0,00	0,00	76,13
8	1.422	1.423	28,77	103,6	0,00	74,06	3,78	-3,00	0,00	0,00	74,84
9	2.503	2.503	23,80	105,3	0,00	78,97	5,54	-3,00	0,00	0,00	81,51
10	2.329	2.330	24,68	105,3	0,00	78,35	5,28	-3,00	0,00	0,00	80,63
11	2.157	2.157	25,62	105,3	0,00	77,68	5,02	-3,00	0,00	0,00	79,70

Summe 38,61

Schall-Immissionsort: N verfallenes Whs. Waldweg 6, Giesekenhagen

WE/	4		Lautester	Wert bis	95%	Nenn	leistui	ng				
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
1	1.318	1.320	31,52	103,8	0,00	73,41	1,84	-3,00	0,00	0,00	72,25	
2	1.236	1.238	31,90	103,8	0,00	72,85	2,05	-3,00	0,00	0,00	71,90	
3	1.419	1.420	30,44	103,5	0,00	74,05	1,99	-3,00	0,00	0,00	73,04	
4	2.276	2.277	23,27	103,6	0,00	78,15	5,20	-3,00	0,00	0,00	80,35	
5	1.748	1.750	26,40	103,6	0,00	75,86	4,35	-3,00	0,00	0,00	77,21	
6	1.926	1.927	25,27	103,6	0,00	76,70	4,65	-3,00	0,00	0,00	78,35	
7	1.599	1.600	27,44	103,6	0,00	75,08	4,09	-3,00	0,00	0,00	76,18	
8	1.419	1.421	28,79	103,6	0,00	74,05	3,77	-3,00	0,00	0,00	74,82	
9	2.515	2.516	23,74	105,3	0,00	79,01	5,56	-3,00	0,00	0,00	81,57	
10	2.341	2.342	24,62	105,3	0,00	78,39	5,30	-3,00	0,00	0,00	80,69	
11	2.168	2.168	25,56	105,3	0,00	77,72	5,03	-3,00	0,00	0,00	79,76	

Summe 38,61 windPRO 3.2.744 | EMD International A/S, Tel. +45 96 35 44 44, www.emd.dk, windpro@emd.dk

Ingenieurbüro PLANkon Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

27.03.2020 13:40/3.2.744

DECIBEL - Detaillierte Ergebnisse

Berechnung: Nachtzustand_Vorbelastung durch 11 am Standort vorh. WEA verschiedener Hersteller_OHNE StallSchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s

Schall-Immissionsort: O Whs. Dorfstr. 1, Steinfurth

WE	4		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	2.287	2.288	25,74	103,8	0,00	78,19	2,83	-3,00	0,00	0,00	78,02
2	1.715	1.716	28,48	103,8	0,00	75,69	2,63	-3,00	0,00	0,00	75,32
3	2.510	2.511	24,32	103,5	0,00	79,00	3,16	-3,00	0,00	0,00	79,15
4	2.674	2.674	21,28	103,6	0,00	79,54	5,79	-3,00	0,00	0,00	82,33
5	2.225	2.226	23,54	103,6	0,00	77,95	5,12	-3,00	0,00	0,00	80,07
6	2.647	2.648	21,40	103,6	0,00	79,46	5,75	-3,00	0,00	0,00	82,21
7	2.427	2.428	22,48	103,6	0,00	78,70	5,43	-3,00	0,00	0,00	81,13
8	2.104	2.105	24,21	103,6	0,00	77,47	4,94	-3,00	0,00	0,00	79,40
9	3.154	3.155	20,89	105,3	0,00	80,98	6,45	-3,00	0,00	0,00	84,43
10	3.014	3.014	21,47	105,3	0,00	80,58	6,26	-3,00	0,00	0,00	83,85
11	2.876	2.876	22,07	105.3	0,00	80,18	6,07	-3,00	0.00	0,00	83,25

Summe 34,33

Schall-Immissionsort: P Whs. Dorfstr. 2a, Steinfurth

WEA Lautester Wert bis 95% Nennleistung											
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	2.329	2.330	25,54	103,8	0,00	78,35	2,87	-3,00	0,00	0,00	78,22
2	1.758	1.759	28,21	103,8	0,00	75,91	2,68	-3,00	0,00	0,00	75,58
3	2.552	2.553	24,14	103,5	0,00	79,14	3,20	-3,00	0,00	0,00	79,34
4	2.696	2.697	21,18	103,6	0,00	79,62	5,82	-3,00	0,00	0,00	82,44
5	2.256	2.257	23,37	103,6	0,00	78,07	5,17	-3,00	0,00	0,00	80,24
6	2.679	2.679	21,26	103,6	0,00	79,56	5,80	-3,00	0,00	0,00	82,36
7	2.464	2.465	22,30	103,6	0,00	78,83	5,48	-3,00	0,00	0,00	81,32
8	2.143	2.144	23,99	103,6	0,00	77,63	5,00	-3,00	0,00	0,00	79,62
9	3.178	3.179	20,79	105,3	0,00	81,04	6,48	-3,00	0,00	0,00	84,53
10	3.040	3.040	21,36	105,3	0,00	80,66	6,30	-3,00	0,00	0,00	83,96
11	2.904	2.905	21,94	105,3	0,00	80,26	6,11	-3,00	0,00	0,00	83,37

Summe 34,14

Schall-Immissionsort: Q unbeb. Grundstck. WR Teichweg Ost, Karlsburg

,											
A		Lautester	Wert bis	95%	Nenn	leistu	ng				
Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	
[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
3.015	3.016	22,67	103,8	0,00	80,59	3,50	-3,00	0,00	0,00	81,09	
2.695	2.696	23,49	103,8	0,00	79,62	3,69	-3,00	0,00	0,00	80,31	
3.154	3.155	21,71	103,5	0,00	80,98	3,78	-3,00	0,00	0,00	81,76	
2.611	2.612	21,58	103,6	0,00	79,34	5,70	-3,00	0,00	0,00	82,04	
2.613	2.614	21,57	103,6	0,00	79,35	5,70	-3,00	0,00	0,00	82,05	
2.892	2.893	20,29	103,6	0,00	80,23	6,10	-3,00	0,00	0,00	83,32	
2.928	2.929	20,13	103,6	0,00	80,34	6,15	-3,00	0,00	0,00	83,48	
2.784	2.785	20,77	103,6	0,00	79,90	5,95	-3,00	0,00	0,00	82,84	
3.010	3.011	21,48	105,3	0,00	80,57	6,26	-3,00	0,00	0,00	83,83	
2.979	2.980	21,62	105,3	0,00	80,48	6,21	-3,00	0,00	0,00	83,70	
2.956	2.957	21,72	105,3	0,00	80,42	6,18	-3,00	0,00	0,00	83,60	
	[m] 3.015 2.695 3.154 2.611 2.613 2.892 2.928 2.784 3.010 2.979	Abstand Schallweg [m] [m] 3.015 3.016 2.695 2.696 3.154 3.155 2.611 2.612 2.613 2.614 2.892 2.893 2.928 2.929 2.784 2.785 3.010 3.011 2.979 2.980	Abstand Schallweg Berechnet [m] [m] [dB(A)] 3.015 3.016 22,67 2.695 2.696 23,49 3.154 3.155 21,71 2.611 2.612 21,58 2.613 2.614 21,57 2.892 2.893 20,29 2.928 2.929 20,13 2.784 2.785 20,77 3.010 3.011 21,48 2.979 2.980 21,62	Abstand Schallweg Berechnet LWA [m] [m] [dB(A)] [dB(A)] 3.015 3.016 22,67 103,8 2.695 2.696 23,49 103,8 3.154 3.155 21,71 103,5 2.611 2.612 21,58 103,6 2.613 2.614 21,57 103,6 2.892 2.893 20,29 103,6 2.928 2.929 20,13 103,6 2.784 2.785 20,77 103,6 3.010 3.011 21,48 105,3 2.979 2.980 21,62 105,3	Abstand Schallweg Berechnet LWA Dc [m] [m] [dB(A)] [dB(A)]	Abstand Schallweg Berechnet LWA Dc Adiv [m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] 3.015 3.016 22,67 103,8 0,00 80,59 2.695 2.696 23,49 103,8 0,00 79,62 3.154 3.155 21,71 103,5 0,00 80,98 2.611 2.612 21,58 103,6 0,00 79,34 2.613 2.614 21,57 103,6 0,00 79,35 2.892 2.893 20,29 103,6 0,00 80,23 2.928 2.929 20,13 103,6 0,00 80,34 2.784 2.785 20,77 103,6 0,00 79,90 3.010 3.011 21,48 105,3 0,00 80,57 2.979 2.980 21,62 105,3 0,00 80,48	Abstand [m] Schallweg [m] Berechnet [dB(A)] LWA [dB(A)] Dc [dB] Adiv [dB] Adm [dB] 3.015 3.016 22,67 103,8 0,00 80,59 3,50 2.695 2.696 23,49 103,8 0,00 79,62 3,69 3.154 3.155 21,71 103,5 0,00 80,98 3,78 2.611 2.612 21,58 103,6 0,00 79,34 5,70 2.892 2.893 20,29 103,6 0,00 80,23 6,10 2.928 2.929 20,13 103,6 0,00 80,23 6,10 2.784 2.785 20,77 103,6 0,00 79,90 5,95 3.010 3.011 21,48 105,3 0,00 80,48 6,21 2.979 2.980 21,62 105,3 0,00 80,48 6,21	Abstand [m] Schallweg [dB(A)] [dB(A)] [dB(A)] [dB] 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	Abstand [m] Schallweg [dB(A)] [dB(A)] [dB(A)] [dB] [dB]	Abstand [m] Schallweg [dB(A)] [dB(A)] [dB(A)] [dB(A)] [dB] dB/A 3.50 -3,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00	

Summe 32,06

Schall-Immissionsort: R Klinikum Karlsburg, Greifswalder Str. 11, Karlsburg

WE/	A		Lautester	Wert bis	95%	Nenn	leistu	1g			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	2.797	2.798	23,52	103,8	0,00	79,94	3,31	-3,00	0,00	0,00	80,24
2	2.416	2.417	24,73	103,8	0,00	78,67	3,40	-3,00	0,00	0,00	79,07
3	2.959	2.959	22,46	103,5	0,00	80,42	3,60	-3,00	0,00	0,00	81,02
4	2.531	2.531	21,97	103,6	0,00	79,07	5,58	-3,00	0,00	0,00	81,65
5	2.437	2.438	22,43	103,6	0,00	78,74	5,44	-3,00	0,00	0,00	81,18
6	2.762	2.763	20,87	103,6	0,00	79,83	5,92	-3,00	0,00	0,00	82,74
7	2.749	2.750	20,93	103,6	0,00	79,79	5,90	-3,00	0,00	0,00	82,68
8	2.563	2.564	21,81	103,6	0,00	79,18	5,63	-3,00	0,00	0,00	81,81
9	2.969	2.970	21,66	105,3	0,00	80,45	6,20	-3,00	0,00	0,00	83,66
10	2.913	2.913	21,90	105,3	0,00	80,29	6,12	-3,00	0,00	0,00	83,41
11	2.864	2.864	22,12	105,3	0,00	80,14	6,06	-3,00	0,00	0,00	83,20

Summe 32,77 windPRO 3.2.744 | EMD International A/S, Tel. +45 96 35 44 44, www.emd.dk, windpro@emd.dk

01.04.2020 10:01 / 7 windPRO

Ingenieurbüro PLANkon Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

27.03.2020 13:40/3.2.744

DECIBEL - Detaillierte Ergebnisse

Berechnung: Nachtzustand_Vorbelastung durch 11 am Standort vorh. WEA verschiedener Hersteller_OHNE StallSchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s

Schall-Immissionsort: S Whs. Dorfstr. 8, Karlsburg

WEA Lautester Wert bis 95% Nennleistung											
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]		[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	2.287	2.288	25,74	103,8	0,00	78,19	2,83	-3,00	0,00	0,00	78,02
2	1.912	1.913	27,30	103,8	0,00	76,64	2,85	-3,00	0,00	0,00	76,49
3	2.451	2.452	24,59	103,5	0,00	78,79	3,10	-3,00	0,00	0,00	78,89
4	2.065	2.066	24,44	103,6	0,00	77,30	4,87	-3,00	0,00	0,00	79,18
5	1.934	1.935	25,22	103,6	0,00	76,73	4,66	-3,00	0,00	0,00	78,40
6	2.272	2.273	23,29	103,6	0,00	78,13	5,20	-3,00	0,00	0,00	80,33
7	2.244	2.245	23,44	103,6	0,00	78,03	5,15	-3,00	0,00	0,00	80,18
8	2.053	2.054	24,51	103,6	0,00	77,25	4,85	-3,00	0,00	0,00	79,11
9	2.521	2.522	23,71	105,3	0,00	79,03	5,57	-3,00	0,00	0,00	81,60
10	2.451	2.451	24,06	105,3	0,00	78,79	5,46	-3,00	0,00	0,00	81,25
11	2.389	2.390	24,38	105,3	0,00	78,57	5,37	-3,00	0,00	0,00	80,94

Summe 35,17

Schall-Immissionsort: T Laube Kleingarten Greifswalder Str., Karlsburg

WEA Lautester Wert bis 95% Nennleistung											
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	2.081	2.082	26,76	103,8	0,00	77,37	2,63	-3,00	0,00	0,00	77,00
2	1.739	1.741	28,32	103,8	0,00	75,81	2,66	-3,00	0,00	0,00	75,47
3	2.237	2.237	25,61	103,5	0,00	78,00	2,88	-3,00	0,00	0,00	77,87
4	1.825	1.826	25,90	103,6	0,00	76,23	4,48	-3,00	0,00	0,00	77,71
5	1.711	1.712	26,65	103,6	0,00	75,67	4,29	-3,00	0,00	0,00	76,96
6	2.039	2.040	24,59	103,6	0,00	77,19	4,83	-3,00	0,00	0,00	79,02
7	2.024	2.025	24,68	103,6	0,00	77,13	4,81	-3,00	0,00	0,00	78,93
8	1.848	1.849	25,76	103,6	0,00	76,34	4,52	-3,00	0,00	0,00	77,86
9	2.280	2.281	24,95	105,3	0,00	78,16	5,21	-3,00	0,00	0,00	80,37
10	2.210	2.211	25,32	105,3	0,00	77,89	5,10	-3,00	0,00	0,00	79,99
11	2.151	2.151	25,65	105,3	0,00	77,65	5,01	-3,00	0,00	0,00	79,66

Summe 36,38

Schall-Immissionsort: U Whs. Dorfstr. 4A, Karlsburg

WEA Lautester Wert bis 95% Nennleistung											
Nr.	Abstand	Schallweg	Berechnet	: LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	2.330	2.331	25,54	103,8	0,00	78,35	2,87	-3,00	0,00	0,00	78,22
2	1.972	1.973	26,97	103,8	0,00	76,90	2,92	-3,00	0,00	0,00	76,82
3	2.488	2.489	24,42	103,5	0,00	78,92	3,13	-3,00	0,00	0,00	79,05
4	2.068	2.069	24,42	103,6	0,00	77,32	4,88	-3,00	0,00	0,00	79,19
5	1.964	1.965	25,04	103,6	0,00	76,87	4,71	-3,00	0,00	0,00	78,58
6	2.290	2.291	23,19	103,6	0,00	78,20	5,22	-3,00	0,00	0,00	80,43
7	2.276	2.277	23,26	103,6	0,00	78,15	5,20	-3,00	0,00	0,00	80,35
8	2.096	2.097	24,26	103,6	0,00	77,43	4,92	-3,00	0,00	0,00	79,36
9	2.517	2.517	23,73	105,3	0,00	79,02	5,56	-3,00	0,00	0,00	81,58
10	2.452	2.453	24,05	105,3	0,00	78,79	5,47	-3,00	0,00	0,00	81,26
11	2.398	2.398	24,33	105,3	0,00	78,60	5,39	-3,00	0,00	0,00	80,98

Summe 35,02

Schall-Immissionsort: V Whs. Karolinenweg 7, Karlsburg

WE/	1		Lautester Wert bis 95% Nennleistung								
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.649	1.650	29,22	103,8	0,00	75,35	2,19	-3,00	0,00	0,00	74,54
2	1.228	1.229	31,97	103,8	0,00	72,79	2,04	-3,00	0,00	0,00	71,83
3	1.832	1.833	27,76	103,5	0,00	76,27	2,45	-3,00	0,00	0,00	75,72
4	1.638	1.640	27,16	103,6	0,00	75,29	4,16	-3,00	0,00	0,00	76,46
5	1.360	1.362	29,27	103,6	0,00	73,68	3,66	-3,00	0,00	0,00	74,35
6	1.748	1.750	26,40	103,6	0,00	75,86	4,35	-3,00	0,00	0,00	77,21
7	1.652	1.653	27,06	103,6	0,00	75,37	4,19	-3,00	0,00	0,00	76,55
8	1.416	1.417	28,82	103,6	0,00	74,03	3,77	-3,00	0,00	0,00	74,79
9	2.124	2.125	25,80	105,3	0,00	77,55	4,97	-3,00	0,00	0,00	79,51
10	2.017	2.017	26,42	105,3	0,00	77,10	4,80	-3,00	0,00	0,00	78,89
11	1.917	1.918	27,02	105,3	0,00	76,66	4,63	-3,00	0,00	0,00	78,29

Summe 38,69 windPRO 3.2.744 | EMD International A/S, Tel. +45 96 35 44 44, www.emd.dk, windpro@emd.dk

Ingenieurbüro PLANkon Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

27.03.2020 13:40/3.2.744

DECIBEL - Detaillierte Ergebnisse

Berechnung: Nachtzustand_Vorbelastung durch 11 am Standort vorh. WEA verschiedener Hersteller_OHNE StallSchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s

Schall-Immissionsort: W Whs. Greifswalder Str. 7, Karlsburg

WEA Lautester Wert bis 95% Nennleistung												
	Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
		[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
	1	1.524	1.525	30,04	103,8	0,00	74,66	2,06	-3,00	0,00	0,00	73,72
	2	1.267	1.268	31,65	103,8	0,00	73,06	2,09	-3,00	0,00	0,00	72,15
	3	1.663	1.664	28,79	103,5	0,00	75,42	2,26	-3,00	0,00	0,00	74,69
	4	1.248	1.249	30,24	103,6	0,00	72,93	3,45	-3,00	0,00	0,00	73,38
	5	1.126	1.128	31,36	103,6	0,00	72,05	3,21	-3,00	0,00	0,00	72,26
	6	1.447	1.448	28,58	103,6	0,00	74,22	3,82	-3,00	0,00	0,00	75,04
	7	1.441	1.443	28,62	103,6	0,00	74,18	3,81	-3,00	0,00	0,00	75,00
	8	1.294	1.296	29,83	103,6	0,00	73,25	3,54	-3,00	0,00	0,00	73,79
	9	1.717	1.718	28,32	105,3	0,00	75,70	4,30	-3,00	0,00	0,00	77,00
	10	1.634	1.635	28,89	105,3	0,00	75,27	4,16	-3,00	0,00	0,00	76,42
	11	1.564	1.565	29,39	105,3	0,00	74,89	4,03	-3,00	0,00	0,00	75,93

Summe 40,16

Schall-Immissionsort: X Whs. Dorfstr. 6, Zarnekow

WE	WEA Lautester Wert bis 95% Nennleistung										
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.450	1.451	30,55	103,8	0,00	74,23	1,98	-3,00	0,00	0,00	73,21
2	1.376	1.378	30,79	103,8	0,00	73,78	2,22	-3,00	0,00	0,00	73,01
3	1.531	1.533	29,65	103,5	0,00	74,71	2,12	-3,00	0,00	0,00	73,83
4	894	896	33,84	103,6	0,00	70,05	2,73	-3,00	0,00	0,00	69,77
5	985	987	32,81	103,6	0,00	70,89	2,92	-3,00	0,00	0,00	70,81
6	1.187	1.189	30,78	103,6	0,00	72,50	3,33	-3,00	0,00	0,00	72,83
7	1.286	1.288	29,90	103,6	0,00	73,20	3,52	-3,00	0,00	0,00	73,72
8	1.250	1.252	30,21	103,6	0,00	72,95	3,45	-3,00	0,00	0,00	73,41
9	1.322	1.323	31,29	105,3	0,00	73,43	3,59	-3,00	0,00	0,00	74,02
10	1.269	1.270	31,75	105,3	0,00	73,08	3,49	-3,00	0,00	0,00	73,57
11	1.237	1.239	32,03	105,3	0,00	72,86	3,43	-3,00	0,00	0,00	73,29

Summe 41,83

Schall-Immissionsort: Y Whs. Dorfstr. 4, Zarnekow

WE	WEA Lautester Wert bis 95% Nennleistung										
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.464	1.465	30,45	103,8	0,00	74,32	2,00	-3,00	0,00	0,00	73,31
2	1.441	1.443	30,31	103,8	0,00	74,18	2,30	-3,00	0,00	0,00	73,49
3	1.526	1.528	29,69	103,5	0,00	74,68	2,11	-3,00	0,00	0,00	73,79
4	821	824	34,73	103,6	0,00	69,32	2,57	-3,00	0,00	0,00	68,88
5	991	993	32,75	103,6	0,00	70,94	2,93	-3,00	0,00	0,00	70,87
6	1.146	1.148	31,17	103,6	0,00	72,20	3,25	-3,00	0,00	0,00	72,44
7	1.278	1.280	29,96	103,6	0,00	73,14	3,51	-3,00	0,00	0,00	73,65
8	1.277	1.279	29,97	103,6	0,00	73,14	3,51	-3,00	0,00	0,00	73,64
9	1.225	1.226	32,14	105,3	0,00	72,77	3,40	-3,00	0,00	0,00	73,18
10	1.185	1.186	32,50	105,3	0,00	72,49	3,33	-3,00	0,00	0,00	72,81
11	1.169	1.170	32,65	105,3	0,00	72,37	3,29	-3,00	0,00	0,00	72,66

Summe 42,18

Schall-Immissionsort: Z Whs. Dorfstr. 1, Zarnekow

WE/	4		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.411	1.412	30,83	103,8	0,00	74,00	1,94	-3,00	0,00	0,00	72,94
2	1.507	1.508	29,84	103,8	0,00	74,57	2,38	-3,00	0,00	0,00	73,95
3	1.429	1.431	30,37	103,5	0,00	74,11	2,00	-3,00	0,00	0,00	73,11
4	605	609	37,87	103,6	0,00	66,69	2,06	-3,00	0,00	0,00	65,75
5	940	942	33,31	103,6	0,00	70,48	2,82	-3,00	0,00	0,00	70,30
6	981	984	32,85	103,6	0,00	70,86	2,91	-3,00	0,00	0,00	70,77
7	1.183	1.185	30,82	103,6	0,00	72,47	3,32	-3,00	0,00	0,00	72,79
8	1.260	1.262	30,12	103,6	0,00	73,02	3,47	-3,00	0,00	0,00	73,49
9	949	951	34,91	105,3	0,00	70,56	2,84	-3,00	0,00	0,00	70,41
10	933	934	35,10	105,3	0,00	70,41	2,81	-3,00	0,00	0,00	70,22
11	947	949	34,93	105,3	0,00	70,55	2,84	-3,00	0,00	0,00	70,38

Summe 44,00 windPRO 3.2.744 | EMD International A/S, Tel. +45 96 35 44 44, www.emd.dk, windpro@emd.dk

Lizenzierter Anwender:

Ingenieurbüro PLANkon Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

27.03.2020 13:40/3.2.744

DECIBEL - Detaillierte Ergebnisse

Berechnung: Nachtzustand_Vorbelastung durch 11 am Standort vorh. WEA verschiedener Hersteller_OHNE StallSchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s

Schall-Immissionsort: AA Whs. Dorfstr. 24a, Zarnekow

WE/	1		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.617	1.618	29,42	103,8	0,00	75,18	2,16	-3,00	0,00	0,00	74,34
2	1.693	1.695	28,61	103,8	0,00	75,58	2,60	-3,00	0,00	0,00	75,19
3	1.636	1.637	28,96	103,5	0,00	75,28	2,23	-3,00	0,00	0,00	74,51
4	794	796	35,09	103,6	0,00	69,02	2,50	-3,00	0,00	0,00	68,53
5	1.145	1.147	31,18	103,6	0,00	72,19	3,25	-3,00	0,00	0,00	72,44
6	1.180	1.182	30,84	103,6	0,00	72,45	3,32	-3,00	0,00	0,00	72,77
7	1.389	1.391	29,03	103,6	0,00	73,87	3,72	-3,00	0,00	0,00	74,58
8	1.463	1.464	28,45	103,6	0,00	74,31	3,85	-3,00	0,00	0,00	75,16
9	1.083	1.084	33,49	105,3	0,00	71,70	3,12	-3,00	0,00	0,00	71,82
10	1.091	1.093	33,40	105,3	0,00	71,77	3,14	-3,00	0,00	0,00	71,91
11	1.127	1.128	33,06	105,3	0,00	72,05	3,21	-3,00	0,00	0,00	72,26

Summe 42,07

Schall-Immissionsort: AB Whs. Dorfstr. 20, Zarnekow

WE	4		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.521	1.522	30,06	103,8	0,00	74,65	2,06	-3,00	0,00	0,00	73,70
2	1.536	1.538	29,64	103,8	0,00	74,74	2,42	-3,00	0,00	0,00	74,15
3	1.567	1.568	29,41	103,5	0,00	74,91	2,16	-3,00	0,00	0,00	74,06
4	802	805	34,98	103,6	0,00	69,12	2,52	-3,00	0,00	0,00	68,64
5	1.045	1.047	32,17	103,6	0,00	71,40	3,04	-3,00	0,00	0,00	71,44
6	1.155	1.157	31,08	103,6	0,00	72,27	3,27	-3,00	0,00	0,00	72,53
7	1.318	1.320	29,62	103,6	0,00	73,41	3,58	-3,00	0,00	0,00	73,99
8	1.346	1.348	29,39	103,6	0,00	73,59	3,64	-3,00	0,00	0,00	74,23
9	1.170	1.171	32,65	105,3	0,00	72,37	3,30	-3,00	0,00	0,00	72,67
10	1.147	1.149	32,86	105,3	0,00	72,20	3,25	-3,00	0,00	0,00	72,45
11	1.150	1.151	32,84	105,3	0,00	72,22	3,26	-3,00	0,00	0,00	72,48

Summe 42,14

Schall-Immissionsort: AC Whs. Dorfstr. 13, Zarnekow

WE	WEA Lautester Wert bis 95% Nennleistung										
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.542	1.543	29,92	103,8	0,00	74,77	2,08	-3,00	0,00	0,00	73,85
2	1.494	1.495	29,93	103,8	0,00	74,49	2,37	-3,00	0,00	0,00	73,86
3	1.611	1.612	29,13	103,5	0,00	75,15	2,21	-3,00	0,00	0,00	74,35
4	914	917	33,60	103,6	0,00	70,24	2,77	-3,00	0,00	0,00	70,01
5	1.071	1.073	31,91	103,6	0,00	71,61	3,10	-3,00	0,00	0,00	71,71
6	1.237	1.239	30,32	103,6	0,00	72,86	3,43	-3,00	0,00	0,00	73,29
7	1.363	1.365	29,25	103,6	0,00	73,70	3,67	-3,00	0,00	0,00	74,37
8	1.350	1.351	29,36	103,6	0,00	73,62	3,64	-3,00	0,00	0,00	74,26
9	1.313	1.315	31,37	105,3	0,00	73,38	3,57	-3,00	0,00	0,00	73,95
10	1.277	1.278	31,68	105,3	0,00	73,13	3,50	-3,00	0,00	0,00	73,64
11	1.262	1.263	31,81	105,3	0,00	73,03	3,48	-3,00	0,00	0,00	73,51

Summe 41,39

Schall-Immissionsort: AD Whs. Greifswalder Str. 9, Moeckow

WEA Lautester Wert bis 95% Nennleistung											
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.513	1.514	30,11	103,8	0,00	74,60	2,05	-3,00	0,00	0,00	73,65
2	1.712	1.713	28,49	103,8	0,00	75,67	2,63	-3,00	0,00	0,00	75,30
3	1.483	1.485	29,98	103,5	0,00	74,43	2,06	-3,00	0,00	0,00	73,49
4	578	582	38,33	103,6	0,00	66,30	1,99	-3,00	0,00	0,00	65,29
5	1.073	1.075	31,88	103,6	0,00	71,63	3,10	-3,00	0,00	0,00	71,73
6	980	983	32,86	103,6	0,00	70,85	2,91	-3,00	0,00	0,00	70,76
7	1.251	1.253	30,20	103,6	0,00	72,96	3,46	-3,00	0,00	0,00	73,42
8	1.404	1.406	28,91	103,6	0,00	73,96	3,74	-3,00	0,00	0,00	74,70
9	747	749	37,43	105,3	0,00	68,49	2,40	-3,00	0,00	0,00	67,89
10	787	789	36,89	105,3	0,00	68,94	2,49	-3,00	0,00	0,00	68,43
11	860	862	35,95	105,3	0,00	69,71	2,65	-3,00	0,00	0,00	69,36

Summe 44,65 windPRO 3.2.744 | EMD International A/S, Tel. +45 96 35 44 44, www.emd.dk, windpro@emd.dk

Ingenieurbüro PLANkon Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

27.03.2020 13:40/3.2.744

DECIBEL - Detaillierte Ergebnisse

Berechnung: Nachtzustand_Vorbelastung durch 11 am Standort vorh. WEA verschiedener Hersteller_OHNE StallSchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s

Schall-Immissionsort: AE Whs. Greifswalder Str. 9a, Moeckow

WE/	4		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.520	1.521	30,06	103,8	0,00	74,64	2,06	-3,00	0,00	0,00	73,70
2	1.724	1.725	28,42	103,8	0,00	75,74	2,64	-3,00	0,00	0,00	75,38
3	1.488	1.489	29,95	103,5	0,00	74,46	2,07	-3,00	0,00	0,00	73,52
4	581	585	38,27	103,6	0,00	66,34	2,00	-3,00	0,00	0,00	65,34
5	1.083	1.085	31,79	103,6	0,00	71,71	3,12	-3,00	0,00	0,00	71,83
6	983	985	32,83	103,6	0,00	70,87	2,92	-3,00	0,00	0,00	70,79
7	1.257	1.259	30,15	103,6	0,00	73,00	3,47	-3,00	0,00	0,00	73,47
8	1.413	1.415	28,84	103,6	0,00	74,02	3,76	-3,00	0,00	0,00	74,78
9	737	739	37,57	105,3	0,00	68,38	2,37	-3,00	0,00	0,00	67,75
10	781	783	36,97	105,3	0,00	68,87	2,47	-3,00	0,00	0,00	68,35
11	858	860	35,98	105,3	0,00	69,69	2,65	-3,00	0,00	0,00	69,33

Summe 44,67

Schall-Immissionsort: AF Whs. Dorfstr. 10, Moeckow

WE	WEA Lautester Wert bis 95% Nennleistung											
Nr.	Abstand	Schallweg	Berechnet	: LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
1	1.869	1.870	27,91	103,8	0,00	76,44	2,42	-3,00	0,00	0,00	75,85	
2	2.104	2.105	26,26	103,8	0,00	77,46	3,07	-3,00	0,00	0,00	77,53	
3	1.813	1.814	27,88	103,5	0,00	76,17	2,43	-3,00	0,00	0,00	75,60	
4	911	914	33,63	103,6	0,00	70,22	2,76	-3,00	0,00	0,00	69,98	
5	1.451	1.452	28,55	103,6	0,00	74,24	3,83	-3,00	0,00	0,00	75,07	
6	1.294	1.296	29,82	103,6	0,00	73,25	3,54	-3,00	0,00	0,00	73,79	
7	1.596	1.597	27,46	103,6	0,00	75,07	4,09	-3,00	0,00	0,00	76,16	
8	1.780	1.781	26,19	103,6	0,00	76,01	4,41	-3,00	0,00	0,00	77,42	
9	886	888	35,64	105,3	0,00	69,96	2,71	-3,00	0,00	0,00	69,67	
10	993	995	34,43	105,3	0,00	70,95	2,94	-3,00	0,00	0,00	70,89	
11	1.117	1.118	33,15	105,3	0,00	71,97	3,19	-3,00	0,00	0,00	72,16	

Summe 41,79

Schall-Immissionsort: AG Whs. Dorfstr. 1, Moeckow Berg

WE	WEA Lautester Wert bis 95% Nennleistung											
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
1	1.879	1.880	27,85	103,8	0,00	76,48	2,43	-3,00	0,00	0,00	75,91	
2	2.278	2.279	25,38	103,8	0,00	78,15	3,26	-3,00	0,00	0,00	78,41	
3	1.745	1.746	28,29	103,5	0,00	75,84	2,35	-3,00	0,00	0,00	75,19	
4	1.029	1.031	32,34	103,6	0,00	71,26	3,01	-3,00	0,00	0,00	71,28	
5	1.589	1.590	27,51	103,6	0,00	75,03	4,08	-3,00	0,00	0,00	76,10	
6	1.261	1.262	30,12	103,6	0,00	73,02	3,47	-3,00	0,00	0,00	73,49	
7	1.596	1.598	27,46	103,6	0,00	75,07	4,09	-3,00	0,00	0,00	76,16	
8	1.877	1.878	25,57	103,6	0,00	76,47	4,57	-3,00	0,00	0,00	78,04	
9	649	651	38,87	105,3	0,00	67,28	2,16	-3,00	0,00	0,00	66,44	
10	826	827	36,39	105,3	0,00	69,35	2,57	-3,00	0,00	0,00	68,92	
11	1.002	1.003	34,33	105,3	0,00	71,03	2,95	-3,00	0,00	0,00	70,98	

Summe 43,15

Schall-Immissionsort: AH Whs. Dorfstr. 4, Moeckow Berg

WE	4		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.831	1.832	28,13	103,8	0,00	76,26	2,38	-3,00	0,00	0,00	75,63
2	2.247	2.248	25,54	103,8	0,00	78,04	3,22	-3,00	0,00	0,00	78,26
3	1.689	1.690	28,63	103,5	0,00	75,56	2,29	-3,00	0,00	0,00	74,85
4	1.012	1.013	32,53	103,6	0,00	71,11	2,98	-3,00	0,00	0,00	71,09
5	1.560	1.561	27,72	103,6	0,00	74,87	4,03	-3,00	0,00	0,00	75,89
6	1.216	1.217	30,52	103,6	0,00	72,71	3,39	-3,00	0,00	0,00	73,10
7	1.550	1.552	27,79	103,6	0,00	74,82	4,01	-3,00	0,00	0,00	75,82
8	1.840	1.841	25,81	103,6	0,00	76,30	4,51	-3,00	0,00	0,00	77,81
9	600	602	39,68	105,3	0,00	66,60	2,04	-3,00	0,00	0,00	65,64
10	777	778	37,03	105,3	0,00	68,82	2,46	-3,00	0,00	0,00	68,29
11	954	955	34,86	105,3	0,00	70,60	2,85	-3,00	0,00	0,00	70,45

Summe 43,73 windPRO 3.2.744 | EMD International A/S, Tel. +45 96 35 44 44, www.emd.dk, windpro@emd.dk

Projekt

Karlsburg

Lizenzierter Anwender:

Ingenieurbüro PLANkon Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

27.03.2020 13:40/3.2.744

DECIBEL - Annahmen für Schallberechnung

Berechnung: Nachtzustand_Vorbelastung durch 11 am Standort vorh. WEA verschiedener Hersteller_OHNE Stall

Schallberechnungs-Modell:

ISO 9613-2 Deutschland (Interimsverfahren) Windgeschwindigkeit (in 10 m Höhe): Lautester Wert bis 95% Nennleistung

Bodeneffekt:

Feste Werte, Agr: -3,0, Dc: 0,0

Meteorologischer Koeffizient, CO:

0.0 dB

Art der Anforderung in der Berechnung:

1: WEA-Geräusch vs. Schallrichtwert (DK, DE, SE, NL etc.)

Schallleistungspegel in der Berechnung:

Schallwerte sind Lwa-Werte (Mittlere Schallleistungspegel; Standard)

Einzeltöne:

Fester Zuschlag wird zu Schallemission von WEA mit Einzeltönen zugefügt

WEA-Katalog

Aufpunkthöhe ü.Gr.:

5,0 m; Aufpunkthöhe in Immissionsort-Objekt hat Vorrang vor Angabe im Modell

Unsicherheitszuschlag:

0,0 dB; Unsicherheitszuschlag des IP hat Priorität

verlangte Unter- (negativ) oder zulässige Überschreitung (positiv) des Schallrichtwerts:

0,0 dB(A)

Oktavbanddaten verwendet

Frequenzabhängige Luftdämpfung

63 125 250 500 1.000 2.000 4.000 8.000 [db/km] [db/km] [db/km] [db/km] [db/km] [db/km] [db/km] [db/km] [db/km] 0,1 0,4 1,0 1,9 3,7 9,7 32,8 117,0

WEA: REpower MD 77 1500 77.0 !O!

Schall: genehmigter Pegel WEA VB7 Karlsburg_102,2 zzgl. 1,6

Datenquelle Quelle/Datum Quelle Bearbeitet

Stalu Stralsund, Herr Müller; Fr. Freitag, LUNG 15.11.2018 USER 27.03.2020 11:24

Information erhalten über Sylke/NatWi von Herrn Müller, Stalu Stralsund; WEA wurde vor Ort vermessen, genehmigter Pegel 102,2 dB(A); mit Fr. Freitag Zuschlagsvorgehensweise besprochen; Pegel enthält Sigma R (Uc) aus Messbericht und Sigma Prog; OKTBD Messbericht entnommen

Oktavbänder

Status Windgeschwindigkeit LWA Einzelton 125 250 500 1000 2000 4000 8000 [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB] $\lceil m/s \rceil$ Von WFA-Katalog 95% der Nennleistung Nein 89,9 96,2 100,1 96,8 92,9 76,9 90,8 86,1 103.8

WEA: REpower MD 77 1500 77.0 !O!

Schall: 3fach verm. Pegel für WEA VB8 Karlsburg_102,1+1,7

Datenquelle Quelle/Datum Quelle Bearbeitet

Stalu Stralsund, Herr Müller; Fr. Freitag, LUNG 15.11.2018 USER 27.03.2020 11:23

Information erhalten über Sylke/NatWi von Herrn Müller, Stalu Stralsund und Fr. Freitag/LUNG; genehmigter Pegel 103,9 dB(A) inkl. 1,6 dB(A) für den k-Wert; nach Empfehlung von Fr. Freitag aus 3 am Standort vermessenen WEA Unsicherh. Sigma R, Sigma P und Sigma Prog beaufschlagen; OKTBD aus den 3 Messberichten mitteln und ansetzen, Maximalpegel aus 3 MB bilden

Oktavbänder

WEA: REpower MD 77 1500 77.0 !O!

Schall: genehmigter Pegel WEA VB9 Karlsburg_101,9+1,6

Datenquelle Quelle/Datum Quelle Bearbeitet

Stalu Stralsund, Herr Müller; Fr. Freitag, LUNG 15.11.2018 USER 27.03.2020 13:25

Information erhalten über Sylke/NatWi von Herrn Müller, Stalu Stralsund; WEA wurde vor Ort vermessen, genehmigter Pegel 101,9 dB(A); mit Fr. Freitag Zuschlagsvorgehensweise besprochen; Pegel enthält Sigma R (Uc) aus Messbericht und Sigma Prog; OKTBD Messbericht entnommen

Oktavbänder

Status Windgeschwindigkeit LWA Einzelton 125 250 500 1000 2000 4000 8000 63 [dB] [dB] [dB] [dB] [m/s] [dB(A)] [dB] [dB] [dB] Von WEA-Katalog 95% der Nennleistung Nein 88,5 95,3 99,8 97,4 92,7 89,9 84,5

Projekt

Karlsburg

Lizenzierter Anwender:

Ingenieurbüro PLANkon Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

27.03.2020 13:40/3.2.744

DECIBEL - Annahmen für Schallberechnung

Berechnung: Nachtzustand_Vorbelastung durch 11 am Standort vorh. WEA verschiedener Hersteller_OHNE Stall

WEA: REpower MD 70 1500 70.0 !O!

Schall: genehm. Pegel WP Karlsburg_WEA VB10-VB15_103,6

Datenquelle Quelle/Datum Quelle Bearbeitet Stalu Stralsund, Herr Müller 10.02.2020 USER 10.02.2020 12:57

Information erhalten über Sylke/NatWi von Herrn Müller, Stalu Stralsund; genehmigter Pegel 103,6 dB(A) inkl. 1,6 dB(A) für den k-Wert; per Referenzspektrum in OKTBD umgewandelt mit -22,9 bei 8kHz gem. WEH Agatz

Oktavbänder

WEA: NORDTANK 500 41.0 !O!

Schall: genehmigter Pegel WP Karlsburg_OHNE Stall_105,3

Datenquelle Quelle/Datum Quelle Bearbeitet
Stalu Stralsund, Herr Müller 15.11.2018 USER 13.02.2020 11:56

Information erhalten über Sylke/Naturwind von Hr. Müller/Stalu Stralsund. Genehmigter Pegel setzt sich lt. Angaben in der Liste zusammen aus 105,3 dB(A) inkl. 3 dB(A) SZ OHNE 2 dB(A) für den Stall-Zustand. Per Referenzspektrum wurden aus dem genehmigten Pegel die OKTBD abgeleitet.

Oktavbänder

 Status
 Windgeschwindigkeit [m/s]
 LWA [dB(A)]
 Einzelton [dB] [dB] [dB] [dB] [dB] [dB] [dB]
 500 (dB] [dB] [dB] [dB] [dB] [dB] [dB]
 400 (dB] [dB] [dB] [dB] [dB] [dB]

 Von WEA-Katalog
 95% der Nennleistung
 105,3
 Nein
 85,0
 93,4
 97,6
 99,8
 99,3
 97,3
 93,3
 82,4

Schall-Immissionsort: Whs. Dorfstr. 5, Moeckow Berg-A **Vordefinierter Berechnungsstandard:** Außenbereich

Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Unsicherheitszuschlag: Standardwert des Berechnungsmodells verwenden

Schallrichtwert: 45,0 dB(A) **Keine Abstandsanforderung**

Schall-Immissionsort: Whs. Dorfstr. 6, Moeckow Berg-B **Vordefinierter Berechnungsstandard:** Außenbereich

Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Unsicherheitszuschlag: Standardwert des Berechnungsmodells verwenden

Schallrichtwert: 45,0 dB(A) **Keine Abstandsanforderung**

Schall-Immissionsort: Whs. Dorfstr. 7, Moeckow Berg-C **Vordefinierter Berechnungsstandard:** Außenbereich **Höhe Aufpunkt (ü.Gr.):** Standardwert des Berechnungsmodells

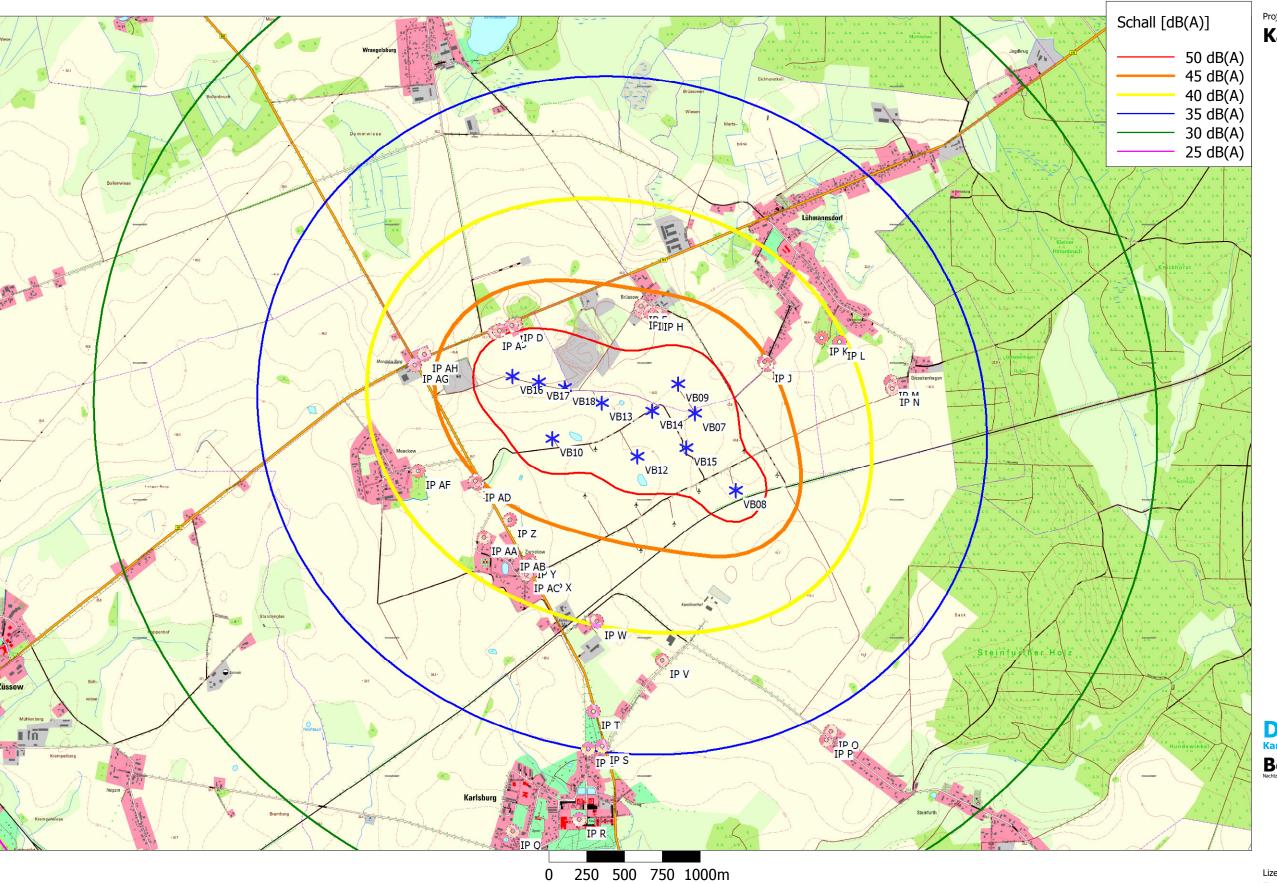
Unsicherheitszuschlag: Standardwert des Berechnungsmodells verwenden

Schallrichtwert: 45,0 dB(A) **Keine Abstandsanforderung**

Schall-Immissionsort: Whs. Dorfstr. 8, Moeckow Berg-D **Vordefinierter Berechnungsstandard:** Außenbereich

Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Unsicherheitszuschlag: Standardwert des Berechnungsmodells verwenden


Schallrichtwert: 45,0 dB(A) **Keine Abstandsanforderung**

Schall-Immissionsort: Whs. Feldstr. 9, Brüssow-E **Vordefinierter Berechnungsstandard:** Dorf- und Mischgebiete **Höhe Aufpunkt (ü.Gr.):** Standardwert des Berechnungsmodells

Unsicherheitszuschlag: Standardwert des Berechnungsmodells verwenden

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

DECIBEL -**Berechnung:**

* Existierende WEA

Karte: TK10t Karlsburg georef NatWi, Maßstab 1:25.000, Mitte: UTM (north)-WGS84 Zone: 33 Ost: 409.188 Nord: 5.983.702 Schall-Immissionsort

Schallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren). Windgeschwindigkeit: Lautester Wert bis 95% Nennleistung Höhe über Meeresspiegel von aktivem Höhenlinien-Objekt

Lizenzierter Anwender:

Ingenieurbüro PLANkon Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

27.03.2020 13:40/3.2.744

Lizenzierter Anwender:

Ingenieurbüro PLANkon Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

05.06.2020 11:34/3.2.744

DECIBEL - Hauptergebnis

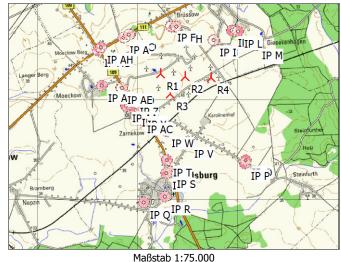
Berechnung: Nachtzustand_Zusatzbelastung aus 4 gepl. WEA N149, 5,7MW, 125m NH_alle im Mode 18_überprüft für Zustand OHNE und MIT Stall

ISO 9613-2 Deutschland (Interimsverfahren)

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Lautester Wert bis 95% Nennleistung

Faktor für Meteorologischen Dämpfungskoeffizient, CO: 0,0 dB


Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A)

Dorf- und Mischgebiet, Außenbereich: 45 dB(A) Reines Wohngebiet / Kurgebiet u.ä. : 35 dB(A)

Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

Alle Koordinatenangaben in: UTM (north)-WGS84 Zone: 33

 ✓ Neue WEA

Maßstab 1:75.000
Schall-Immissionsort

WEA

					WEA	-Тур					Schall	werte			
	Ost	Nord	Z	Beschreibung	Ak-	Hersteller	Тур	Nenn-	Rotor-	Naben-	Quelle	Name	Windge-	LWA	Ein-
					tu-			leistung	durch-	höhe			schwin-		zel-
					ell				messer				digkeit		ton
			[m]					[kW]	[m]	[m]			[m/s]	[dB(A)]	
R1 4	09.009	5.983.594	43,7	7 gepl. WEA 3_N149	Ja	NORDEX	N149/5.X-5.700	5.700	149,1	125,4	USER	Mode 18 STE inkl. OkBD + Sicherheitszuschlag nach LAI	(95%)	97,6	Nein
R2 4	09.493	5.983.491	45,8	3 gepl. WEA 4_N149	Ja	NORDEX	N149/5.X-5.700	5.700	149,1	125,4	USER	Mode 18 STE inkl. OkBD + Sicherheitszuschlag nach LAI	(95%)	97,6	Nein
R3 4	09.163	5.983.173	43,6	gepl. WEA 1_N149	Ja	NORDEX	N149/5.X-5.700	5.700	149,1	125,4	USER	Mode 18 STE inkl. OkBD + Sicherheitszuschlag nach LAI	(95%)	97,6	Nein
R4 4	10.007	5.983.435	47,5	gepl. WEA 2_N149	Ja	NORDEX	N149/5.X-5.700	5.700	149,1	125,4	USER	Mode 18 STE inkl. OkBD + Sicherheitszuschlag nach LAI	(95%)	97,6	Nein

Berechnungsergebnisse

Beurteilungspegel

Schall-Immissionsort					Anforderung	Beurteilungspegel	Anforderung erfüllt?
Nr. Name	Ost	Nord	Z	Auf-	Schall	Von WEA	Schall
				punkt-			
				höhe			
			[m]	[m]	[dB(A)]	[dB(A)]	
A Whs. Dorfstr. 5, Moeckow Berg		5.984.369		5,0			Ja
B Whs. Dorfstr. 6, Moeckow Berg		5.984.382	,	5,0			Ja
C Whs. Dorfstr. 7, Moeckow Berg		5.984.417		5,0			Ja
D Whs. Dorfstr. 8, Moeckow Berg		5.984.427	,	5,0			Ja
E Whs. Feldstr. 9, Brüssow	409.299	5.984.510	49,4	5,0			Ja
F Whs. Feldstr. 8, Brüssow	409.300	5.984.545	48,9	5,0			Jа
G verfallenes Whs. Feldstr. 7, Brüssow		5.984.503	,	5,0			Ja
H Whs. Feldstraße 6, Brüssow	409.398	5.984.499	48,7	5,0			Ja
I unbeb. Grundstck. SW Oberreihe, Lühmannsdorf	410.117	5.984.176	44,8	5,0	40,0	32,8	Ja
J Whs. Oberreihe 16, Lühmannsdorf		5.984.158	, -	5,0			Ja
K unbeb. Grundstck. Am Heidberg SW, Lühmannsdorf				5,0			Ja
L unbeb. Grundstck. Am Heidberg SO, Lühmannsdorf	410.612	5.984.306	38,4	5,0		29,0	Ja
M Whs. Waldweg 5, Giesekenhagen	410.952	5.984.043	40,5	5,0			Ja
N verfallenes Whs. Waldweg 6, Giesekenhagen	410.963	5.983.999	40,9	5,0	45,0	28,1	Ja
O Whs. Dorfstr. 1, Steinfurth	410.554	5.981.730	40,7	5,0			Jа
P Whs. Dorfstr. 2a, Steinfurth	410.525	5.981.672	39,7	5,0			Jа
Q unbeb. Grundstck. WR Teichweg Ost, Karlsburg	408.451	5.981.069	32,4	5,0			Ja
R Klinikum Karlsburg, Greifswalder Str. 11, Karlsburg	408.889	5.981.143	33,8	10,0			Ja
S Whs. Dorfstr. 8, Karlsburg		5.981.629	,	5,0			Ja
T Laube Kleingarten Greifswalder Str., Karlsburg		5.981.863		5,0			Ja
U Whs. Dorfstr. 4A, Karlsburg		5.981.613	,	5,0			Ja
V Whs. Karolinenweg 7, Karlsburg		5.982.199		5,0			Ja
W Whs. Greifswalder Str. 7, Karlsburg	409.006	5.982.455	41,5	5,0	45,0	32,5	Ja
X Whs. Dorfstr. 6, Zarnekow	408.665	5.982.775	39,4	5,0			Ja
Y Whs. Dorfstr. 4, Zarnekow	408.562	5.982.860	38,4	5,0			Jа
Z Whs. Dorfstr. 1, Zarnekow	408.433	5.983.130	38,6	5,0	45,0	33,8	Ja
AA Whs. Dorfstr. 24a, Zarnekow	408.262	5.983.013	37,5	5,0	40,0	31,5	Ja
AB Whs. Dorfstr. 20, Zarnekow	408.448	5.982.910	38,0	5,0	40,0	32,8	Ja
AC Whs. Dorfstr. 13, Zarnekow		5.982.769	/ -	5,0			Ja
AD Whs. Greifswalder Str. 9, Moeckow	408.215	5.983.370	38,0	5,0	45,0	31,9	Ja

(Fortsetzung nächste Seite)...

Ingenieurbüro PLANkon Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

05.06.2020 11:34/3.2.744

DECIBEL - Hauptergebnis

Berechnung: Nachtzustand_Zusatzbelastung aus 4 gepl. WEA N149, 5,7MW, 125m NH_alle im Mode 18_überprüft für Zustand OHNE und MIT Stall

...(Fortsetzung von letzter Seite)

Schall-Immissionsort					Anforderung	Beurteilungspegel	Anforderung erfüllt?
Nr. Name	Ost	Nord	Z	Auf-	Schall	Von WEA	Schall
				punkt-			
				höhe			
			[m]	[m]	[dB(A)]	[dB(A)]	
AE Whs. Greifswalder Str. 9a, Moeckow	408.203	5.983.385	38,0	5,0	45,0	31,8	Ja
AF Whs. Dorfstr. 10, Moeckow	407.826	5.983.450	37,6	5,0	40,0	28,3	Ja
AG Whs. Dorfstr. 1, Moeckow Berg	407.804	5.984.154	45,5	5,0	45,0	26,9	Ja
AH Whs. Dorfstr. 4, Moeckow Berg	407.867	5.984.225	46,1	5,0	45,0	27,0	Ja

Abstände (m)

	WEA			
Schall-Immissionsort	R1	R2	R3	R4
Α	1030	1456	1456	1918
В	1020	1441	1451	1899
С	997	1398	1435	1844
D	992	1386	1432	1829
E	961	1038	1344	1288
F	994	1071	1378	1316
G	975	1020	1344	1247
Н	985	1013	1347	1226
I	1252	927	1384	749
J	1257	924	1382	734
K	1658	1308	1765	1022
L	1754	1385	1840	1061
М	1994	1560	1989	1124
N	1995	1555	1980	1110
0	2421	2056	2004	1791
P	2447	2091	2027	1837
Q	2586	2636	2221	2831
R	2454	2424	2049	2550
S	1965	1915	1549	2047
T	1731	1705	1322	1875
U V	1982 1459	1955 1293	1575 1012	2107 1360
V W	1139	1145	735	1401
VV X	889	1095	638	1496
Ŷ	860	1125	677	1555
Z	740	1120	732	1604
AA	947	1321	915	1795
AB	885	1196	763	1646
AC AC	949	1195	742	1611
AD	825	1283	968	1793
AE	833	1294	983	1804
AF	1192	1667	1365	2181
AG	1329	1814	1676	2317
AH	1305	1784	1669	2281
741	_505	-, 0 1	_000	

Ingenieurbüro PLANkon Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

05.06.2020 11:34/3.2.744

DECIBEL - Detaillierte Ergebnisse

Berechnung: Nachtzustand_Zusatzbelastung aus 4 gepl. WEA N149, 5,7MW, 125m NH_aile im Mode 18_überprüft für Zustand OHNE und MIT Stall Schallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s Annahmen

Berechneter L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (Wenn mit Bodeneffekt gerechnet ist Dc = Domega)

Schallleistungspegel der WEA

K: Einzeltöne

Dc: Richtwirkungskorrektur

Adiv: Dämpfung aufgrund geometrischer Ausbreitung

Aatm: Dämpfung aufgrund von Luftabsorption Dämpfung aufgrund des Bodeneffekts Agr: Dämpfung aufgrund von Abschirmung Abar:

Dämpfung aufgrund verschiedener anderer Effekte Amisc:

Meteorologische Korrektur Cmet:

Berechnungsergebnisse

Schall-Immissionsort: A Whs. Dorfstr. 5, Moeckow Berg

WE	A		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	1.030	1.036	26,26	97,6	0,00	71,30	3,05	-3,00	0,00	0,00	71,35
R2	1.456	1.461	22,39	97,6	0,00	74,29	3,92	-3,00	0,00	0,00	75,21
R3	1.456	1.461	22,39	97,6	0,00	74,29	3,92	-3,00	0,00	0,00	75,21
R4	1.918	1.922	19,17	97,6	0,00	76,67	4,76	-3,00	0,00	0,00	78,44

Summe 29,30

Schall-Immissionsort: B Whs. Dorfstr. 6, Moeckow Berg

WE/	A		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	1.020	1.026	26,35	97,6	0,00	71,23	3,03	-3,00	0,00	0,00	71,25
R2	1.441	1.445	22,52	97,6	0,00	74,20	3,89	-3,00	0,00	0,00	75,09
R3	1.451	1.455	22,44	97,6	0,00	74,26	3,91	-3,00	0,00	0,00	75,17
R4	1.899	1.902	19,29	97.6	0,00	76,58	4,73	-3,00	0,00	0,00	78,31

Summe 29,40

Schall-Immissionsort: C Whs. Dorfstr. 7, Moeckow Berg

Α		Lautester	Wert bis	s 95%	Nenn	ıleistu	ng			
Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
. 997	1.003	26,60	97,6	0,00	71,03	2,98	-3,00	0,00	0,00	71,00
1.398	1.402	22,86	97,6	0,00	73,94	3,81	-3,00	0,00	0,00	74,75
1.435	1.440	22,56	97,6	0,00	74,17	3,88	-3,00	0,00	0,00	75,05
1.844	1.848	19,64	97,6	0,00	76,33	4,63	-3,00	0,00	0,00	77,97
	Abstand [m] 997 1.398 1.435	[m] [m] . 997 1.003 2 1.398 1.402 3 1.435 1.440	Abstand Schallweg Berechnet [m] [m] [dB(A)] 997 1.003 26,60 1.398 1.402 22,86 1.435 1.440 22,56	Abstand Schallweg Berechnet LWA [m] [m] [dB(A)] [dB(A)] . 997 1.003 26,60 97,6 . 1.398 1.402 22,86 97,6 . 1.435 1.440 22,56 97,6	Abstand Schallweg Berechnet LWA Dc [m] [m] [dB(A)] [dB(A)] [dB] 997 1.003 26,60 97,6 0,00 1.398 1.402 22,86 97,6 0,00 1.435 1.440 22,56 97,6 0,00	Abstand Schallweg Berechnet LWA Dc Adiv [m] [m] [dB(A)] [dB(A)] [dB] [dB] 997 1.003 26,60 97,6 0,00 71,03 1.398 1.402 22,86 97,6 0,00 73,94 1.435 1.440 22,56 97,6 0,00 74,17	Abstand Schallweg Berechnet LWA Dc Adiv Aatm [m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] . 997 1.003 26,60 97,6 0,00 71,03 2,98 1.398 1.402 22,86 97,6 0,00 73,94 3,81 1.435 1.440 22,56 97,6 0,00 74,17 3,88	Abstand Schallweg Berechnet LWA Dc Adiv Aatm Agr [m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] 997 1.003 26,60 97,6 0,00 71,03 2,98 -3,00 1.398 1.402 22,86 97,6 0,00 73,94 3,81 -3,00 1.435 1.440 22,56 97,6 0,00 74,17 3,88 -3,00	Abstand Schallweg Berechnet LWA Dc Adiv Aatm Agr Abar [m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB	Abstand Schallweg Berechnet LWA Dc Adiv Aatm Agr Abar Amisc [m] [m] [d B (A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] . 997 1.003 26,60 97,6 0,00 71,03 2,98 -3,00 0,00 0,00 1.398 1.402 22,86 97,6 0,00 73,94 3,81 -3,00 0,00 0,00 1.435 1.440 22,56 97,6 0,00 74,17 3,88 -3,00 0,00 0,00

Summe 29,65

Schall-Immissionsort: D Whs. Dorfstr. 8, Moeckow Berg

WE	4		Lautester	wert bis	5 95 %	Nenn	ileistui	1g				
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
R1	992	998	26,66	97,6	0,00	70,98	2,96	-3,00	0,00	0,00	70,95	
R2	1.386	1.391	22,96	97,6	0,00	73,86	3,79	-3,00	0,00	0,00	74,65	
R3	1.432	1.436	22,59	97,6	0,00	74,14	3,88	-3,00	0,00	0,00	75,02	
P4	1 820	1 832	10 74	97.6	0.00	76 26	4 61	-3 00	0.00	0.00	77 87	

Summe 29,72

Ingenieurbüro PLANkon Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

05.06.2020 11:34/3.2.744

DECIBEL - Detaillierte Ergebnisse

Berechnung: Nachtzustand_Zusatzbelastung aus 4 gepl. WEA N149, 5,7MW, 125m NH_aile im Mode 18_überprüft für Zustand OHNE und MIT Stall Schallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s

Schall-Immissionsort: E Whs. Feldstr. 9, Brüssow

WE/	4		Lautester	wert bis	5 95 %	Nenn	ileistui	1g			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	961	968	27,00	97,6	0,00	70,72	2,90	-3,00	0,00	0,00	70,61
R2	1.038	1.044	26,16	97,6	0,00	71,38	3,07	-3,00	0,00	0,00	71,44
R3	1.344	1.349	23,31	97,6	0,00	73,60	3,70	-3,00	0,00	0,00	74,30
R4	1.288	1.293	23,78	97,6	0,00	73,23	3,59	-3,00	0,00	0,00	73,82

Summe 31,36

Schall-Immissionsort: F Whs. Feldstr. 8, Brüssow

						•					
WE/	4		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	994	1.001	26,63	97,6	0,00	71,01	2,97	-3,00	0,00	0,00	70,98
R2	1.071	1.078	25,82	97,6	0,00	71,65	3,14	-3,00	0,00	0,00	71,79
R3	1.378	1.383	23,02	97,6	0,00	73,82	3,77	-3,00	0,00	0,00	74,59
R4	1.316	1.321	23,54	97,6	0,00	73,42	3,65	-3,00	0,00	0,00	74,07

31,03 Summe

Schall-Immissionsort: G verfallenes Whs. Feldstr. 7, Brüssow

WE	4		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	975	981	26,85	97,6	0,00	70,84	2,93	-3,00	0,00	0,00	70,76
R2	1.020	1.027	26,35	97,6	0,00	71,23	3,03	-3,00	0,00	0,00	71,26
R3	1.344	1.349	23,30	97,6	0,00	73,60	3,70	-3,00	0,00	0,00	74,30
R4	1.247	1.253	24,14	97,6	0,00	72,96	3,51	-3,00	0,00	0,00	73,47

Summe 31,43

Schall-Immissionsort: H Whs. Feldstraße 6, Brüssow

WE	A		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	985	992	26,73	97,6	0,00	70,93	2,95	-3,00	0,00	0,00	70,88
R2	1.013	1.020	26,43	97,6	0,00	71,17	3,01	-3,00	0,00	0,00	71,18
R3	1.347	1.352	23,28	97,6	0,00	73,62	3,71	-3,00	0,00	0,00	74,33
R4	1.226	1.232	24,33	97,6	0,00	72,81	3,47	-3,00	0,00	0,00	73,28

Summe 31,44

Schall-Immissionsort: I unbeb. Grundstck. SW Oberreihe, Lühmannsdorf

WE	4		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	1.252	1.257	24,10	97,6	0,00	72,99	3,52	-3,00	0,00	0,00	73,51
R2	927	935	27,37	97,6	0,00	70,41	2,82	-3,00	0,00	0,00	70,23
R3	1.384	1.389	22,97	97,6	0,00	73,86	3,78	-3,00	0,00	0,00	74,64
R4	749	759	29,60	97,6	0,00	68,61	2,40	-3,00	0,00	0,00	68,01

Summe 32,82

Schall-Immissionsort: J Whs. Oberreihe 16, Lühmannsdorf

WE	Α		Lautester	Wert bis	s 95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	1.257	1.263	24,05	97,6	0,00	73,03	3,53	-3,00	0,00	0,00	73,56
R2	924	932	27,40	97,6	0,00	70,39	2,82	-3,00	0,00	0,00	70,21
R3	1.382	1.387	22,98	97,6	0,00	73,84	3,78	-3,00	0,00	0,00	74,62
R4	734	744	29,81	97,6	0,00	68,43	2,37	-3,00	0,00	0,00	67,80

Summe 32,92

Ingenieurbüro PLANkon Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

05.06.2020 11:34/3.2.744

DECIBEL - Detaillierte Ergebnisse

Berechnung: Nachtzustand_Zusatzbelastung aus 4 gepl. WEA N149, 5,7MW, 125m NH_aile im Mode 18_überprüft für Zustand OHNE und MIT Stall Schallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s

Schall-Immissionsort: K unbeb. Grundstck. Am Heidberg SW, Lühmannsdorf

WE	A		Lautester	wert bis	5 95 %	Nenn	leistui	1g			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	1.658	1.663	20,89	97,6	0,00	75,42	4,30	-3,00	0,00	0,00	76,72
R2	1.308	1.314	23,60	97,6	0,00	73,37	3,63	-3,00	0,00	0,00	74,01
R3	1.765	1.770	20,15	97,6	0,00	75,96	4,50	-3,00	0,00	0,00	77,45
R4	1.022	1.030	26,32	97,6	0,00	71,25	3,03	-3,00	0,00	0,00	71,29

Summe 29,46

Schall-Immissionsort: L unbeb. Grundstck. Am Heidberg SO, Lühmannsdorf

WE	A		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	1.754	1.759	20,23	97,6	0,00	75,90	4,48	-3,00	0,00	0,00	77,38
R2	1.385	1.391	22,96	97,6	0,00	73,86	3,79	-3,00	0,00	0,00	74,65
R3	1.840	1.844	19,66	97,6	0,00	76,32	4,63	-3,00	0,00	0,00	77,94
R4	1.061	1.069	25,91	97,6	0,00	71,58	3,12	-3,00	0,00	0,00	71,70

28,95 Summe

Schall-Immissionsort: M Whs. Waldweg 5, Giesekenhagen

									_		
WE	A		Lautester	Wert bis	s 95 %	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	1.994	1.998	18,71	97,6	0,00	77,01	4,89	-3,00	0,00	0,00	78,90
R2	1.560	1.565	21,60	97,6	0,00	74,89	4,12	-3,00	0,00	0,00	76,01
R3	1.989	1.993	18,73	97,6	0,00	76,99	4,88	-3,00	0,00	0,00	78,87
R4	1.124	1.131	25,29	97,6	0,00	72,07	3,25	-3,00	0,00	0,00	72,32

Summe 28,00

Schall-Immissionsort: N verfallenes Whs. Waldweg 6, Giesekenhagen

WE	A		Lautester	Wert bis	95%	Nenn	leistu	ng	-		
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	1.995	1.999	18,70	97,6	0,00	77,02	4,89	-3,00	0,00	0,00	78,91
R2	1.555	1.560	21,63	97,6	0,00	74,86	4,11	-3,00	0,00	0,00	75,98
R3	1.980	1.984	18,79	97,6	0,00	76,95	4,87	-3,00	0,00	0,00	78,82
R4	1.110	1.117	25,42	97,6	0,00	71,96	3,22	-3,00	0,00	0,00	72,19

28,09 Summe

Schall-Immissionsort: O Whs. Dorfstr. 1, Steinfurth

WE	4		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	2.421	2.424	16,34	97,6	0,00	78,69	5,58	-3,00	0,00	0,00	81,27
R2	2.056	2.060	18,34	97,6	0,00	77,28	5,00	-3,00	0,00	0,00	79,27
R3	2.004	2.008	18,64	97,6	0,00	77,06	4,91	-3,00	0,00	0,00	78,97
R4	1.791	1.795	19,98	97,6	0,00	76,08	4,54	-3,00	0,00	0,00	77,62

Summe 24,53

Schall-Immissionsort: P Whs. Dorfstr. 2a, Steinfurth

WE	4		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	2.447	2.450	16,20	97,6	0,00	78,78	5,62	-3,00	0,00	0,00	81,41
R2	2.091	2.095	18,13	97,6	0,00	77,42	5,05	-3,00	0,00	0,00	79,48
R3	2.027	2.030	18,51	97,6	0,00	77,15	4,95	-3,00	0,00	0,00	79,10
R4	1.837	1.842	19.68	97.6	0.00	76.30	4.62	-3.00	0.00	0.00	77.93

Summe 24,32

Ingenieurbüro PLANkon Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

05.06.2020 11:34/3.2.744

DECIBEL - Detaillierte Ergebnisse

Berechnung: Nachtzustand_Zusatzbelastung aus 4 gepl. WEA N149, 5,7MW, 125m NH_aile im Mode 18_überprüft für Zustand OHNE und MIT Stall Schallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s

Schall-Immissionsort: Q unbeb. Grundstck. WR Teichweg Ost, Karlsburg

WE/	4		Lautester	Wert bis	s 95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	2.586	2.589	15,51	97,6	0,00	79,26	5,83	-3,00	0,00	0,00	82,10
R2	2.636	2.640	15,27	97,6	0,00	79,43	5,91	-3,00	0,00	0,00	82,34
R3	2.221	2.225	17,39	97,6	0,00	77,95	5,27	-3,00	0,00	0,00	80,21
R4	2.831	2.835	14,36	97,6	0,00	80,05	6,19	-3,00	0,00	0,00	83,24

Summe 21,80

Schall-Immissionsort: R Klinikum Karlsburg, Greifswalder Str. 11, Karlsburg

WE	A		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	2.454	2.457	16,17	97,6	0,00	78,81	5,63	-3,00	0,00	0,00	81,44
R2	2.424	2.428	16,32	97,6	0,00	78,70	5,59	-3,00	0,00	0,00	81,29
R3	2.049	2.052	18,38	97,6	0,00	77,25	4,98	-3,00	0,00	0,00	79,23
R4	2.550	2.553	15,69	97,6	0,00	79,14	5,78	-3,00	0,00	0,00	81,92

22,79 Summe

Schall-Immissionsort: S Whs. Dorfstr. 8, Karlsburg

WE	4		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	1.965	1.969	18,88	97,6	0,00	76,88	4,84	-3,00	0,00	0,00	78,73
R2	1.915	1.919	19,19	97,6	0,00	76,66	4,76	-3,00	0,00	0,00	78,42
R3	1.549	1.554	21,68	97,6	0,00	74,83	4,10	-3,00	0,00	0,00	75,93
R4	2.047	2.051	18,39	97,6	0,00	77,24	4,98	-3,00	0,00	0,00	79,22

Summe 25,76

Summe

27,27

Schall-Immissionsort: T Laube Kleingarten Greifswalder Str., Karlsburg

WE	A	ng		•							
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	1.731	1.736	20,38	97,6	0,00	75,79	4,43	-3,00	0,00	0,00	77,22
R2	1.705	1.710	20,56	97,6	0,00	75,66	4,39	-3,00	0,00	0,00	77,05
R3	1.322	1.328	23,48	97,6	0,00	73,46	3,66	-3,00	0,00	0,00	74,13
R4	1.875	1.880	19,44	97,6	0,00	76,48	4,69	-3,00	0,00	0,00	78,17

Schall-Immissionsort: U Whs. Dorfstr. 4A, Karlsburg

١	WE/	Α		Lautester	Wert bis	s 95%	Nenn	leistu	1g			
-	Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
		[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
	R1	1.982	1.986	18,78	97,6	0,00	76,96	4,87	-3,00	0,00	0,00	78,83
	R2	1.955	1.960	18,94	97,6	0,00	76,84	4,83	-3,00	0,00	0,00	78,67
	R3	1.575	1.580	21,48	97,6	0,00	74,97	4,15	-3,00	0,00	0,00	76,12
	R4	2.107	2.111	18,04	97,6	0,00	77,49	5,08	-3,00	0,00	0,00	79,57

Summe 25,54

Schall-Immissionsort: V Whs. Karolinenweg 7, Karlsburg

								_		
A		Lautester	Wert bis	95%	Nenn	leistu	ng			
Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1.459	1.464	22,36	97,6	0,00	74,31	3,93	-3,00	0,00	0,00	75,24
1.293	1.299	23,73	97,6	0,00	73,27	3,60	-3,00	0,00	0,00	73,88
1.012	1.020	26,43	97,6	0,00	71,17	3,01	-3,00	0,00	0,00	71,18
1.360	1.366	23,16	97,6	0,00	73,71	3,74	-3,00	0,00	0,00	74,45
	Abstand [m] 1.459 1.293 1.012	Abstand Schallweg [m] [m] 1.459 1.464 1.293 1.299 1.012 1.020	Abstand Schallweg Berechnet [m] [m] [dB(A)] 1.459 1.464 22,36 1.293 1.299 23,73 1.012 1.020 26,43	Abstand Schallweg Berechnet LWA [m] [m] [dB(A)] [dB(A)] 1.459 1.464 22,36 97,6 1.293 1.299 23,73 97,6 1.012 1.020 26,43 97,6	Abstand Schallweg Berechnet LWA [dB(A)] Dc [dB(A)] [dB(A)] [dB(A)] [dB(A)] [dB(A)] [dB(A)] [dB(A)] [dB(A)] [dB(A)] 97,6 0,00 1.293 1.299 23,73 97,6 0,00 1.012 1.020 26,43 97,6 0,00	Abstand Schallweg Berechnet LWA Dc Adiv [m] [dB(A)] [dB(A)] [dB] [dB] 1.459 1.464 22,36 97,6 0,00 74,31 1.293 1.299 23,73 97,6 0,00 73,27 1.012 1.020 26,43 97,6 0,00 71,17	Abstand Schallweg Berechnet LWA Dc Adiw Aatm [m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] 1.459 1.464 22,36 97,6 0,00 74,31 3,93 1.293 1.299 23,73 97,6 0,00 73,27 3,60 1.012 1.020 26,43 97,6 0,00 71,17 3,01	Abstand Schallweg Berechnet LWA Dc Adiv Aatm Agr [m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] 1.459 1.464 22,36 97,6 0,00 74,31 3,93 -3,00 1.293 1.299 23,73 97,6 0,00 73,27 3,60 -3,00 1.012 1.020 26,43 97,6 0,00 71,17 3,01 -3,00	Abstand Schallweg Berechnet LWA Dc Adiv Aatm Agr Abar [m] [m] [dB(A)] [dB(A)] [dB] [dB]	Abstand Schallweg Berechnet LWA Dc Adiv Aatm Agr Abar Amisc [m] [m] [dB(A)] [dB(A)] [dB] [dB]

Summe 30,23

Ingenieurbüro PLANkon Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

05.06.2020 11:34/3.2.744

DECIBEL - Detaillierte Ergebnisse

Berechnung: Nachtzustand_Zusatzbelastung aus 4 gepl. WEA N149, 5,7MW, 125m NH_aile im Mode 18_überprüft für Zustand OHNE und MIT Stall Schallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s

Schall-Immissionsort: W Whs. Greifswalder Str. 7, Karlsburg

WE	4		Lautester	wert bis	95%	Nenn	ileistui	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	1.139	1.145	25,14	97,6	0,00	72,18	3,28	-3,00	0,00	0,00	72,46
R2	1.145	1.151	25,09	97,6	0,00	72,22	3,30	-3,00	0,00	0,00	72,52
R3	735	745	29,79	97,6	0,00	68,45	2,37	-3,00	0,00	0,00	67,82
R4	1.401	1.406	22,83	97,6	0,00	73,96	3,82	-3,00	0,00	0,00	74,78

Summe 32,54

Schall-Immissionsort: X Whs. Dorfstr. 6, Zarnekow

WE	4		Lautester	wert bis	95%	Nenn	ileistui	ng				
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
R1	889	897	27,82	97,6	0,00	70,06	2,73	-3,00	0,00	0,00	69,79	
R2	1.095	1.102	25,57	97,6	0,00	71,84	3,19	-3,00	0,00	0,00	72,04	
R3	638	650	31,22	97,6	0,00	67,26	2,13	-3,00	0,00	0,00	66,39	
R4	1.496	1.501	22,08	97,6	0,00	74,53	4,00	-3,00	0,00	0,00	75,53	

33,89 Summe

Schall-Immissionsort: Y Whs. Dorfstr. 4, Zarnekow

WE	4		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	860	869	28,16	97,6	0,00	69,78	2,67	-3,00	0,00	0,00	69,44
R2	1.125	1.132	25,28	97,6	0,00	72,08	3,26	-3,00	0,00	0,00	72,33
R3	677	689	30,61	97,6	0,00	67,76	2,23	-3,00	0,00	0,00	66,99
R4	1.555	1.560	21,63	97,6	0,00	74,86	4,11	-3,00	0,00	0,00	75,98

Summe 33,60

Schall-Immissionsort: Z Whs. Dorfstr. 1, Zarnekow

WE	4		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	740	751	29,72	97,6	0,00	68,51	2,38	-3,00	0,00	0,00	67,89
R2	1.120	1.127	25,32	97,6	0,00	72,04	3,25	-3,00	0,00	0,00	72,29
R3	732	742	29,83	97,6	0,00	68,41	2,36	-3,00	0,00	0,00	67,78
R4	1.604	1.609	21,27	97,6	0,00	75,13	4,20	-3,00	0,00	0,00	76,33

Summe 33,75

Schall-Immissionsort: AA Whs. Dorfstr. 24a, Zarnekow

WE	A		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	947	955	27,14	97,6	0,00	70,60	2,87	-3,00	0,00	0,00	70,47
R2	1.321	1.327	23,49	97,6	0,00	73,46	3,66	-3,00	0,00	0,00	74,12
R3	915	924	27,50	97,6	0,00	70,31	2,80	-3,00	0,00	0,00	70,11
R4	1.795	1.800	19,95	97,6	0,00	76,11	4,55	-3,00	0,00	0,00	77,66

Summe 31,47

Schall-Immissionsort: AB Whs. Dorfstr. 20, Zarnekow

WE/	4		Lautester	Wert bis	s 95%	Nenn	leistui	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	885	894	27,85	97,6	0,00	70,03	2,73	-3,00	0,00	0,00	69,76
R2	1.196	1.203	24,59	97,6	0,00	72,61	3,41	-3,00	0,00	0,00	73,01
R3	763	773	29,41	97,6	0,00	68,76	2,44	-3,00	0,00	0,00	68,20
R4	1.646	1.651	20,97	97,6	0,00	75,35	4,28	-3,00	0,00	0,00	76,63

Summe 32,78

Ingenieurbüro PLANkon Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

05.06.2020 11:34/3.2.744

DECIBEL - Detaillierte Ergebnisse

Berechnung: Nachtzustand_Zusatzbelastung aus 4 gepl. WEA N149, 5,7MW, 125m NH_aile im Mode 18_überprüft für Zustand OHNE und MIT Stall Schallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s

Schall-Immissionsort: AC Whs. Dorfstr. 13, Zarnekow

WE	4		Lautester	wert bis	5 95 %	Nenn	ileistui	1g			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	949	957	27,12	97,6	0,00	70,62	2,87	-3,00	0,00	0,00	70,49
R2	1.195	1.202	24,60	97,6	0,00	72,60	3,40	-3,00	0,00	0,00	73,01
R3	742	753	29,68	97,6	0,00	68,54	2,39	-3,00	0,00	0,00	67,93
R4	1.611	1.616	21,22	97,6	0,00	75,17	4,22	-3,00	0,00	0,00	76,39

Summe 32,71

Schall-Immissionsort: AD Whs. Greifswalder Str. 9, Moeckow

WE	4		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	825	834	28,59	97,6	0,00	69,43	2,59	-3,00	0,00	0,00	69,01
R2	1.283	1.290	23,81	97,6	0,00	73,21	3,58	-3,00	0,00	0,00	73,79
R3	968	976	26,91	97,6	0,00	70,79	2,91	-3,00	0,00	0,00	70,70
R4	1.793	1.797	19,97	97,6	0,00	76,09	4,55	-3,00	0,00	0,00	77,64

Summe 31,91

Schall-Immissionsort: AE Whs. Greifswalder Str. 9a, Moeckow

WE	A		Lautester	Wert bis	s 95%	Nenn	ıleistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	833	842	28,49	97,6	0,00	69,51	2,60	-3,00	0,00	0,00	69,11
R2	1.294	1.300	23,72	97,6	0,00	73,28	3,61	-3,00	0,00	0,00	73,89
R3	983	991	26,74	97,6	0,00	70,92	2,95	-3,00	0,00	0,00	70,87
R4	1.804	1.809	19,89	97,6	0,00	76,15	4,57	-3,00	0,00	0,00	77,71

Summe 31,80

Schall-Immissionsort: AF Whs. Dorfstr. 10, Moeckow

WE	4		Lautester	Wert bis	95%	Nenn	leistu	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	1.192	1.199	24,64	97,6	0,00	72,57	3,40	-3,00	0,00	0,00	72,97
R2	1.667	1.672	20,82	97,6	0,00	75,47	4,32	-3,00	0,00	0,00	76,79
R3	1.365	1.371	23,12	97,6	0,00	73,74	3,75	-3,00	0,00	0,00	74,49
R4	2.181	2.185	17,62	97,6	0,00	77,79	5,20	-3,00	0,00	0,00	79,99

28,29 Summe

Schall-Immissionsort: AG Whs. Dorfstr. 1, Moeckow Berg

WE/	Α		Lautester	Wert bis	s 95%	Nenn	leistui	ng			
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
R1	1.329	1.334	23,43	97,6	0,00	73,50	3,67	-3,00	0,00	0,00	74,18
R2	1.814	1.818	19,83	97,6	0,00	76,19	4,58	-3,00	0,00	0,00	77,78
R3	1.676	1.680	20,77	97,6	0,00	75,50	4,33	-3,00	0,00	0,00	76,84
R4	2.317	2.320	16,88	97,6	0,00	78,31	5,42	-3,00	0,00	0,00	80,73

Summe

Schall-Immissionsort: AH Whs. Dorfstr. 4, Moeckow Berg

WE	A		Lautester	Wert bis	s 95%	Nenn	ıleistu	ng				
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
R1	1.305	1.310	23,64	97,6	0,00	73,35	3,63	-3,00	0,00	0,00	73,97	
R2	1.784	1.788	20,03	97,6	0,00	76,05	4,53	-3,00	0,00	0,00	77,58	
R3	1.669	1.673	20,82	97,6	0,00	75,47	4,32	-3,00	0,00	0,00	76,79	
R4	2.281	2.284	17.07	97.6	0.00	78.17	5.36	-3.00	0.00	0.00	80.54	

Summe 27,02

Projekt

Karlsburg

Lizenzierter Anwender:

Ingenieurbüro PLANkon Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

Berechnet:

05.06.2020 11:34/3.2.744

DECIBEL - Annahmen für Schallberechnung

Berechnung: Nachtzustand_Zusatzbelastung aus 4 gepl. WEA N149, 5,7MW, 125m NH_alle im Mode 18_überprüft für Zustand OHNE und MIT Stall

Schallberechnungs-Modell:

ISO 9613-2 Deutschland (Interimsverfahren) **Windgeschwindigkeit (in 10 m Höhe):** Lautester Wert bis 95% Nennleistung

Bodeneffekt:

Feste Werte, Agr: -3,0, Dc: 0,0

Meteorologischer Koeffizient, CO:

0.0 dB

Art der Anforderung in der Berechnung:

1: WEA-Geräusch vs. Schallrichtwert (DK, DE, SE, NL etc.)

Schallleistungspegel in der Berechnung:

Schallwerte sind Lwa-Werte (Mittlere Schallleistungspegel; Standard)

Einzeltöne:

Fester Zuschlag wird zu Schallemission von WEA mit Einzeltönen zugefügt

WEA-Katalog

Aufpunkthöhe ü.Gr.:

5,0 m; Aufpunkthöhe in Immissionsort-Objekt hat Vorrang vor Angabe im Modell

Unsicherheitszuschlag:

0,0 dB; Unsicherheitszuschlag des IP hat Priorität

verlangte Unter- (negativ) oder zulässige Überschreitung (positiv) des Schallrichtwerts:

0,0 dB(A)

Oktavbanddaten verwendet

Frequenzabhängige Luftdämpfung

63 125 250 500 1.000 2.000 4.000 8.000 [db/km] [db/km] [db/km] [db/km] [db/km] [db/km] [db/km] [db/km] [db/km] 0,1 0,4 1,0 1,9 3,7 9,7 32,8 117,0

WEA: NORDEX N149/5.X 5700 149.1 !O!

Schall: Mode 18 STE inkl. OkBD + Sicherheitszuschlag nach LAI

Datenquelle Quelle/Datum Quelle Bearbeitet
Hersteller / PLANkon 30.10.2019 USER 07.02.2020 15:08

analog Dokument: F008_275_A19_IN - Rev. 01 3.8.2019; alle Nabenhöhen; plus 2,1dB(A) Sicherheitszuschlag nach aktuellen LAI-Hinweisen

Oktavbänder

Schall-Immissionsort: Whs. Dorfstr. 5, Moeckow Berg-A **Vordefinierter Berechnungsstandard:** Außenbereich **Höhe Aufpunkt (ü.Gr.):** Standardwert des Berechnungsmodells

Unsicherheitszuschlag: Standardwert des Berechnungsmodells verwenden

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

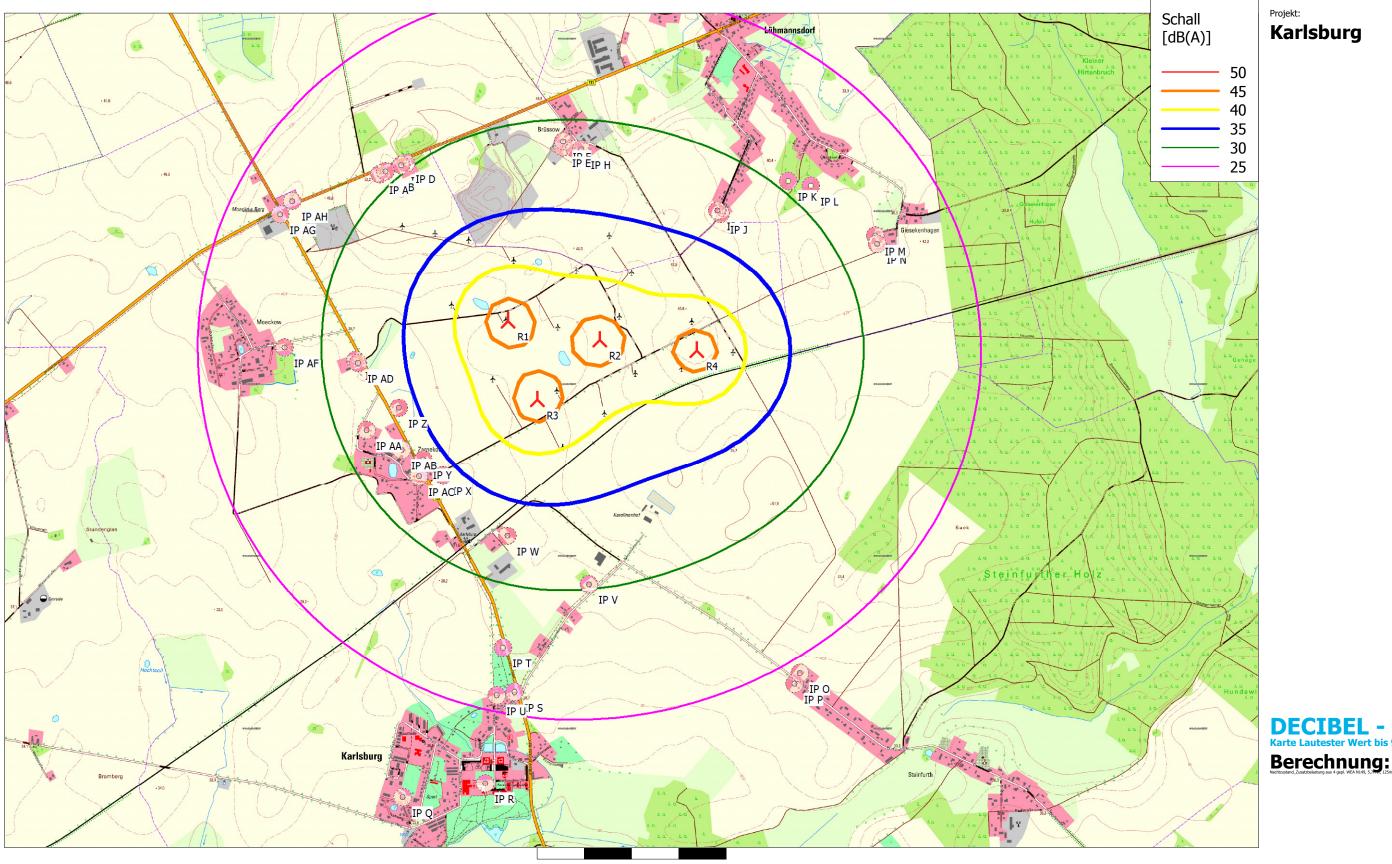
Schall-Immissionsort: Whs. Dorfstr. 6, Moeckow Berg-B **Vordefinierter Berechnungsstandard:** Außenbereich **Höhe Aufpunkt (ü.Gr.):** Standardwert des Berechnungsmodells

Unsicherheitszuschlag: Standardwert des Berechnungsmodells verwenden

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: Whs. Dorfstr. 7, Moeckow Berg-C **Vordefinierter Berechnungsstandard:** Außenbereich

Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells


Unsicherheitszuschlag: Standardwert des Berechnungsmodells verwenden

Schallrichtwert: 45,0 dB(A) **Keine Abstandsanforderung**

Schall-Immissionsort: Whs. Dorfstr. 8, Moeckow Berg-D **Vordefinierter Berechnungsstandard:** Außenbereich **Höhe Aufpunkt (ü.Gr.):** Standardwert des Berechnungsmodells

Unsicherheitszuschlag: Standardwert des Berechnungsmodells verwenden

08.06.2020 11:17 / 9

Lizenzierter Anwender:

Ingenieurbüro PLANkon Blumenstrasse 26 DE-26121 Oldenburg 0441 390 34 - 0

Berechnet: 05.06.2020 11:34/3.2.744

250 500 750 1000m Karte: TK10t Karlsburg georef NatWi, Maßstab 1:20.000, Mitte: UTM (north)-WGS84 Zone: 33 Ost: 409.663 Nord: 5.983.013 Schall-Immissionsort

Schallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren). Windgeschwindigkeit: Lautester Wert bis 95% Nennleistung Höhe über Meeresspiegel von aktivem Höhenlinien-Objekt

Octave sound power levels / Oktav-Schallleistungspegel

Nordex N149/5.X

© Nordex Energy GmbH, Langenhorner Chaussee 600, D-22419 Hamburg, Germany All rights reserved. Observe protection notice ISO 16016.

Alle Rechte vorbehalten. Schutzvermerk ISO 16016 beachten.

Nordex N149/5.X - Operating modes and hub heights / Betriebsweisen und Nabenhöhen

operating mode / Betriebs- weise	rated power / Nennleis- tung		ı	heig	ole hub hts / gbare öhen [m]	
weise	[kW]	105	120	125	145	155	164
Mode 0	5700	•	0	•	•	•	•
Mode 1	5600	•	0	•	•	•	•
Mode 2	5500	•	•	•	•	•	•
Mode 3	5400	•	•	0	•	•	•
Mode 4	5300	•	•	0	•	•	•
Mode 5	5180	•	•	0	•	•	•
Mode 6	5060	•	•	0	-	•	•
Mode 7	4950	•	•	0	-	-	•
Mode 8	4830	0	0	0	-	-	0
Mode 9	4720	0	0	0	-	-	0
Mode 10	4290	0	0	0	0	0	0
Mode 11	4200	0	0	0	0	0	0
Mode 12	4110	•	•	•	•	•	•
Mode 13	4010	•	•	•	•	•	•
Mode 14	3920	•	•	•	•	•	•
Mode 15	3770	•	-	•	•	•	•
Mode 16	3440	•	-	•	•	•	•
Mode 17	3200	•	-	•	•	•	•
Mode 18	2960	•	-	•	•	•	•

- mode available / Betriebsweise verfügbar
- mode on request / Betriebsweise auf Anfrage
- mode not available / Betriebsweise nicht verfügbar

Abbreviations / Abkürzungen

STE ... Serrated Trailing Edge / Serrations

Octave sound power levels / Oktav-Schallleistungspegel Nordex N149/5.X with and without / mit und ohne serrated trailing edge

Basis / Grundlagen:

The expected octave sound power levels of the Nordex N149/5.X are to be determined on basis of aerodynamical calculations and expected sound power levels. These values are valid for 105 m, 120 m, 125 m, 145 m, 155 m and 164 m (see available hub heights on pg. 2).

The expected octave sound power levels are only for information and will not be warranted.

Die erwarteten Oktav-Schallleistungspegel der Nordex N149/5.X werden auf der Basis aerodynamischer Berechnungen und der erwarteten Gesamt-Schallleistungspegel ermittelt. Diese Werte sind gültig für die Nabenhöhen 105 m, 120 m, 125 m, 145 m, 155 m und 164 m (siehe verfügbare Nabenhöhen auf S. 2). Die erwarteten Oktav-Schallleistungspegel dienen nur der Information und werden nicht gewährleistet.

Nordex N149/5.X without STE / ohne STE

	0	ctave sound	power leve	ls / Oktav-S	challleistun	gspegel in d	B(A)		
operation mode / Betriebsweise			octave band	d mid frequ	ency / Okta	vband-Mitt	enfrequenz		
Detriebaweise	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	Total
Mode 0	87.9	94.1	98.3	101.6	103.0	100.6	91.8	83.0	107.6
Mode 1	87.5	93.7	97.9	101.2	102.6	100.2	91.4	82.6	107.2
Mode 2	87.1	93.3	97.5	100.8	102.2	99.8	91.0	82.2	106.8
Mode 3	86.7	92.9	97.1	100.4	101.8	99.4	90.6	81.8	106.4
Mode 4	86.3	92.5	96.7	100.0	101.4	99.0	90.2	81.4	106.0
Mode 5	85.8	92.0	96.2	99.5	100.9	98.5	89.7	80.9	105.5
Mode 6	85.3	91.5	95.7	99.0	100.4	98.0	89.2	80.4	105.0
Mode 7	84.8	91.0	95.2	98.5	99.9	97.5	88.7	79.9	104.5
Mode 8	84.3	90.5	94.7	98.0	99.4	97.0	88.2	79.4	104.0
Mode 9	83.8	90.0	94.2	97.5	98.9	96.5	87.7	78.9	103.5
Mode 10	81.8	88.0	92.2	95.5	96.9	94.5	85.7	76.9	101.5
Mode 11	81.3	87.5	91.7	95.0	96.4	94.0	85.2	76.4	101.0
Mode 12	80.8	87.0	91.2	94.5	95.9	93.5	84.7	75.9	100.5
Mode 13	80.3	86.5	90.7	94.0	95.4	93.0	84.2	75.4	100.0
Mode 14	79.8	86.0	90.2	93.5	94.9	92.5	83.7	74.9	99.5
Mode 15	79.3	85.5	89.7	93.0	94.4	92.0	83.2	74.4	99.0
Mode 16	78.8	85.0	89.2	92.5	93.9	91.5	82.7	73.9	98.5
Mode 17	78.3	84.5	88.7	92.0	93.4	91.0	82.2	73.4	98.0
Mode 18	77.8	84.0	88.2	91.5	92.9	90.5	81.7	72.9	97.5

Nordex N149/5.X with STE / mit STE

	00	ctave sound	power leve	ls / Oktav-S	challleistun	gspegel in d	B(A)		
operation mode /			octave ban	d mid frequ	ency / Okta	vband-Mitte	enfrequenz		
Betriebsweise									
	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	Total
Mode 0	87.3	93.5	97.2	99.8	100.5	98.0	90.4	82.4	105.6
Mode 1	86.9	93.1	96.8	99.4	100.1	97.6	90.0	82.0	105.2
Mode 2	86.5	92.7	96.4	99.0	99.7	97.2	89.6	81.6	104.8
Mode 3	86.1	92.3	96.0	98.6	99.3	96.8	89.2	81.2	104.4
Mode 4	85.7	91.9	95.6	98.2	98.9	96.4	88.8	80.8	104.0
Mode 5	85.2	91.4	95.1	97.7	98.4	95.9	88.3	80.3	103.5
Mode 6	84.7	90.9	94.6	97.2	97.9	95.4	87.8	79.8	103.0
Mode 7	84.2	90.4	94.1	96.7	97.4	94.9	87.3	79.3	102.5
Mode 8	83.7	89.9	93.6	96.2	96.9	94.4	86.8	78.8	102.0
Mode 9	83.2	89.4	93.1	95.7	96.4	93.9	86.3	78.3	101.5
Mode 10	81.2	87.4	91.1	93.7	94.4	91.9	84.3	76.3	99.5
Mode 11	80.7	86.9	90.6	93.2	93.9	91.4	83.8	75.8	99.0
Mode 12	80.2	86.4	90.1	92.7	93.4	90.9	83.3	75.3	98.5
Mode 13	79.7	85.9	89.6	92.2	92.9	90.4	82.8	74.8	98.0
Mode 14	79.2	85.4	89.1	91.7	92.4	89.9	82.3	74.3	97.5
Mode 15	78.7	84.9	88.6	91.2	91.9	89.4	81.8	73.8	97.0
Mode 16	78.2	84.4	88.1	90.7	91.4	88.9	81.3	73.3	96.5
Mode 17	77.7	83.9	87.6	90.2	90.9	88.4	80.8	72.8	96.0
Mode 18	77.2	83.4	87.1	89.7	90.4	87.9	80.3	72.3	95.5

Martina Vieth

Von:Peter.Mueller@staluvp.mv-regierung.deGesendet:Donnerstag, 15. November 2018 11:39

An: Sylke Thimm

Cc:Ina.Berger@staluvp.mv-regierung.deBetreff:AW: Karlsburg - Vorbelastung (Schall)

Anlagen: WEA_WPKarlsburg _2018.xls

Sehr geehrte Frau Timm,

aktuell laufen keine Genehmigungsverfahren in und um das betreffende potentielle Eignungsgebiet 16/2015 Karlsburg.

Anbei eine Übersichtsliste zu den vorhandenen WEA mit den emissionsrelevanten Planungseckdaten für die Vorbelastung. In den zu erstellenden Schallgutachten sollten die vorgegebenen Bezeichnungen (siehe letzte Spalte) zum leichteren Abgleich bei der Prüfung verwendet werden.

Im Umkreis von 5 km um das potentielle Eignungsgebiet befindet sich eine gen.bed. Rinderanlage, die aus der Erfahrung heraus keine relevanten Emissionsbeiträge zur Schallimmissionsvorbelastung liefert. Weiterhin befindet sich im Ortsteil Brüssow eine gen.bed. Bauschuttrecyclinganlage, die geeignet ist relevante Vorbelastungsbeiträge zu liefern, in unserer Fachabteilung existieren jedoch zu dieser Anlage keine verwertbaren Gutachten. Die Anlage liegt an einem Tagebau (keine BImSch-Anlage; Bergrecht).

Mit freundlichem Gruß im Auftrag gez. Peter Müller Dezernent

Staatliches Amt für Landwirtschaft und Umwelt Vorpommern -Dienststelle Stralsund- Peter Müller Badenstr. 18

18439 Stralsund

Telefon: 03831/696-5100 PC-Fax: 03843/777 61-41

<mailto:P.Mueller@staluvp.mv-regierung.de>

Hochwert (ETRS)	Hersteller	WEA-Typ	RD (m)	NH (m)	Leistung (kW)			L _{WA} -Nacht dB(A)	Bemerkungen	Genehmigun gsdatum	Anlg-Bez. LISA			Anlagen-Nr. Schallgutachten Neu
5.982.909	REpower	MD 77	77	61,5	1500	nein	103,9	103,9	inkl. 1,6 dB(A) (K)	01.04.2003	WKA Nr. 7 Typ REpower MD 77 (ges. 9 WKA)	0001		VB1
5.983.210	REpower	MD 77	77	61,5	1500	nein	103,9	103,9	inkl. 1,6 dB(A) (K)	01.04.2003	WKA Nr. 8 Typ REpower MD 77 (ges. 9 WKA)	0002		VB2
5 983 270	REpower	MD 77	77	61,5	1500	nein	103,9	103 9	inkl. 1,6 dB(A) (K)	01 04 2003	WKA Nr. 9 Typ REpower MD 77 (ges. 9 WKA)	0003		VB3
3.303.270	REPOWER	IVID 77	,,,	01,5	1300	nem	103,5	103,3	11KI: 1,0 UD(A) (K)	01.04.2003	With 1.5 Typ repower MD 77 (ged. 5 With)	0003		<u> </u>
5.983.299	REpower	MD 77	77	61,5	1500	nein	103,9	103,9	inkl. 1,6 dB(A) (K)	01.04.2003	WKA Nr. 10 (alt 6) Typ REpower MD 77 (ges. 9 WKA)	0004	6	VB4
5.983.411	REpower	MD 77	77	61,5	1500	nein	103,9	103,9	inkl. 1,6 dB(A) (K)	01.04.2003	WKA Nr. 1 (alt 4) Typ REpower MD 77 (ges. 9 WKA)	0005	4	VB5
5.983.578	REpower	MD 77	77	61,5	1500	nein	103,9	103,9	inkl. 1,6 dB(A) (K)	01.04.2003	WKA Nr. 12 (alt 3) Typ REpower MD 77 (ges. 9 WKA)	0006	3	VB6
5 002 022	DE	NAD 77	77	64.5	4500		402.2		am Standort	04.04.2002	NAME AND ASSISTED FOR THE STATE OF THE STATE	0007	,	V/D7
5.983.833	REpower	MD 77	77	61,5	1500	nein	102,2	102,2	vermessen	01.04.2003	WKA Nr. 13 (alt 2) Typ REpower MD 77 (ges. 9 WKA)	0007	2	VB7
5.983.325	REpower	MD 77	77	61,5	1500	nein	103,9	103,9	inkl. 1,6 dB(A) (K)	01.04.2003	WKA Nr. 14 (alt 5) Typ REpower MD 77 (ges. 9 WKA)	0008	5	VB8
	·						-							
5.984.028	REpower	MD 77	77	61,5	1500	nein	101,9		am Standort vermessen	01.04.2003	WKA Nr. 15 (alt 1) Typ REpower MD 77 (ges. 9 WKA)	0009	1	VB9
5.983.667	REpower	MD 70	70	65	1500	nein	103,6	103,6	inkl. 1,6 dB(A) (K)	25.06.2001	WKA Nr. 11 (alt 1) Typ REpower MD 70 (ges. 6 WKA)	0001	1	VB10
5.983.588	REpower	MD 70	70	65	1500	nein	103,6	103,6	inkl. 1,6 dB(A) (K)	25.06.2001	WKA Nr. 2 Typ REpower MD 70 (ges. 6 WKA)	0002		VB11
5.983.549	RFnower	MD 70	70	65	1500	nein	103,6	103 6	inkl. 1,6 dB(A) (K)	25 06 2001	WKA Nr. 3 Typ REpower MD 70 (ges. 6 WKA)	0003		VB12
3.363.343	REPOWEI	1410 /0	70	03	1300	Heili	103,0	103,6	III. 1,0 ab(A) (K)	23.00.2001	TWO THE STYP REPOWER WID TO (ges. o WKA)	0003		- VIII
5.983.901	REpower	MD 70	70	65	1500	nein	103,6	103,6	inkl. 1,6 dB(A) (K)	25.06.2001	WKA Nr. 4 Typ REpower MD 70 (ges. 6 WKA)	0004		VB13
5.983.849	REpower	MD 70	70	65	1500	nein	103,6	103,6	inkl. 1,6 dB(A) (K)	25.06.2001	WKA Nr. 5 Typ REpower MD 70 (ges. 6 WKA)	0005		VB14

e 1 03.04.2020

WEA_WPKarlsburg _2018

												Anl		Anlagen-Nr.
					Leistung	Leist	L _{WA} -Tag	L _{WA} -Nacht		Genehmigun		Nr.	Anlg	Schallgutachten
lochwert (ETRS)	Hersteller	WEA-Typ	RD (m)	NH (m)	(kW)	reg.	dB(A)	dB(A)	Bemerkungen	gsdatum	Anlg-Bez. LISA	LISA	Nr. alt	Neu
5.983.605	REpower	MD 70	70	65	1500	nein	103,6	103,6	inkl. 1,6 dB(A) (K)	25.06.2001	WKA Nr. 6 Typ REpower MD 70 (ges. 6 WKA)	0006		VB15
	NORDTAN	NTK							inkl. 3 dB(A) SZ					
5.984.079		500/41	41	50	500	nein	105,3		+ 2 dB(A) stall	06.12.1995	WKA 1 Nordtank 500 (gesamt 3 WKA)	0001		VB16
		,						,	,		,			
	NORDTAN	NTK							inkl. 3 dB(A) SZ					
5.984.043		500/41	41	50	500	nein	105,3		+ 2 dB(A) stall	06.12.1995	WKA 2 Nordtank 500 (gesamt 3 WKA)	0002		VB17
0.50		500/11		- 50	300				2 45(7.1) 544.11	00.12.1333	That I have a see (Bessellie a thirty)	0002		
	NORDTAN	NTV							inkl. 3 dB(A) SZ					
5.984.005		500/41	41	50	500	nein	105,3		+ 2 dB(A) stall	06 12 1005	WKA 3 Nordtank 500 (gesamt 3 WKA)	0003		VB18
3.984.003	, IX	300/41	41	30	300	Helli	103,3	103,3	1 2 ab(A) stall	00.12.1993	WICH S HOLD CHILD OF (BESALLES WICH)	0003		4010
									6					
									am Standort					
5.983.089	REpower	MD 77	77	61,5	1500	nein	102,1	102,1	vermessen	07.05.2004	WKA 1 Typ REpower MD 77	0001		VB19

Seite 2 03.04.2020

Martina Vieth

Von: Kathrin.Freitag@lung.mv-regierung.de

Gesendet: Dienstag, 24. März 2020 12:11

An: Martina Vieth

Cc: Hermann.Lewke@lung.mv-regierung.de; Peter.Mueller@staluvp.mv-

regierung.de

Betreff: WP Karlsburg

Anlagen: Unsicherheit_WEA1_1205.pdf; Unsicherheit_WEA2_2205.pdf;

Unsicherheit_WEA10_3205.pdf; WEA1.pdf; WEA2.pdf; WEA10.pdf

Hallo Frau Vieth,

grundsätzlich entsprechen die Werte, die Ihnen Herr Müller gegeben hat, denen, die das LUNG "nach bestem Wissen und Gewissen" ansetzen würde. Und für diesen Fall wäre die hier übliche Vorgehensweise – Bildung von Spektren mittels Referenzspektrum, keine weitere Unsicherheitsbetrachtung – anzuwenden.

In jüngster Vergangenheit haben allerdings Antragsteller darauf bestanden (gerichtlich gestützt!), das die tatsächlich genehmigten Werte anzusetzen sind.

Für die WEA MD77 ist dazu zu sagen, dass diese mit einem LWA von 103,0 dB(A) ohne Sicherheitszuschlag oder (k)-Wert genehmigt wurden, so dass das in MV ansonsten "übliche" Verfahren bei der Ermittlung der Vorbelastung nach dem Interimsverfahren nicht greifen kann. Es würde hier also die allgemeine Verfahrensweise gem. LAI-Hinweisen gelten.

Wir haben aber drei vermessene WEA, so dass auf dieser Basis sicher eine ordentliche Bewertung der Situation für diese WEA erfolgen könnte. Anbei die gewünschten Informationen in Form von Auszügen aus den Messberichten. Dazu schlagen wir folgende Vorgehensweise vor:

Sie verwenden das jeweilige Spektrum und bilden für die anderen WEA ein gemitteltes Spektrum. Die direkt vermessenen WEA werden mit der Unsicherheit für die Vermessung und für die Prognose belegt, die anderen entsprechend den LAI-Hinweisen (Vermessung, Serie, Prognose).

Hinsichtlich der Nordtank-WEA muss ich mich leider in meiner telefonisch getroffenen Aussage revidieren. Der LWA von 105,3 dB(A) enthält lediglich den SZ von 3 dB. Der Wert stammt aus einem MB aus 1995 (Windtest Kaiser-Wilhelm-Koog GmbH, Schalltechnisches Gutachten zur Windkraftanlage NTK 500/41 – 50 m in Silberstedt, 20. Juni 1995). Er liegt mir leider nicht vor.

Für Rückfragen stehe ich gern zur Verfügung.

Mit freundlichen Grüßen

Kathrin Freitag

Landesamt für Umwelt, Naturschutz und Geologie (LUNG) Mecklenburg-Vorpommern Dezernat 510 -Lärm, physikalische Faktoren-

Goldberger Straße 12 18273 Güstrow

Tel.: 03843/777-512 Fax: 03843/777-9512

E-Mail: Kathrin.Freitag@lung.mv-regierung.de

Die Auswertung auf der Grundlage der Approximation für die Referenzpunkte $v_{10} = 6...10~\text{ms}^{-1}$ in 10 m ü.G. führt zu folgenden Ergebnissen:

Standardisierte Windgeschwindigkeit	ms ⁻¹	6	7	8	8,52)		104)
Referenz-Wirkleistung ¹⁾	kW	656	998	Security State of the Control of the		9	10 ⁴⁾
Generatordrehzahl	min ⁻¹			1290	1425	1493	1500
Rotordrehzahl		1651	1708	1754	1780	1795	1796
Trotorarenzam	min ⁻¹	15,9	16,4	16,9	17,1	17,3	17,3
	Anlag	gengeräu	sch	an April 1		17,5	17,3
Anzahl Messwerte je Windklasse	-	36	51	16		1	Ale Passary
Mittelwert L _{Afeq}	dB(A)	54,2	55,4	55,9	56,0	562	-
	Fren	ndgeräusc		1 33,5] 50,0	56,2	•
Anzahl Messwerte je Windklasse	-	10	16	17			
Mittelwert L _{Afeq}	4D(A)			17		8	-
— Aleq	dB(A)	43,2	44,2	45,2	45,6	46,1	-
Störabstand	Schallle	eistungsp	egel				
The state of the s	dB	11,0	11,2	10,7	10,4	10,1	
Unsicherheit Uc		0,79	0,80	0,79		3)	
Mittelwert L _{AFeq, k}	dB(A)	53,8	55,1	55,5			
Schallleistungspegel L _{WA, [P]}	dB(A)	The second second second		10.15 (A. 10.10 A. 10	55,6	55,8	-
5 1 -8 WA, [r]	uD(A)	100,0	101,2	101,6	101,8	101,9	Y LIVE

Tab. 3: Ergebnisse Schalleistungspegel-Bestimmung

- 1) Ermittlungsbasis: Leistungskurve, die der Ermittlung des Schalleistungspegels zugrunde liegt (vgl. Anlage 5).
- 2) Der Betriebspunkt der 95%igen Nennleistung, für den der Schallleistungspegel informativ anzugeben ist, liegt unter Berücksichtigung der verwendeten Leistungskurve und der Nabenhöhe der vermessenen WEA sowie den meteorologischen Bedingungen am Messtag bei $v_{10} = 8.5 \text{ ms}^{-1}$ in 10 m ü.G..
- 3) Unsicherheit nicht bestimmbar, da nicht ausreichend Werte vorhanden sind.
- 4) Im Windgeschwindigkeitsbereich 10 ms⁻¹ liegen keine Werte vor. Da bei dem 9 ms⁻¹ -Wert das Drehzahl und Leistungsmaximum erreicht ist, ist davon auszugehen, dass auch bei höheren Windgeschwindigkeiten (10 ms⁻¹) der Schalleistungspegel den Messwert 101,9 dB(A) nicht übersteigt. Dies ist durch vergleichbare Messungen

Auszug aus dem Prüfbericht

Seite 1/1

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 16 vom 01. Juli 2005 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz. 4, D-24103 Kiel)

Auszug aus dem Prüfbericht WICO 037SE205/01 zur Schallemission der Windenergieanlage vom Typ REpower MD77

Technische Daten (Herstellerangaben) Allgemeine Angaben 1500 kW Nennleistung (Generator): **REpower Systems AG** Anlagenhersteller: 77 m Rotordurchmesser: Rödemis Hallig Nabenhöhe über Grund: 61,5 m **D-25813 HUSUM** kon, Stahlrohrturm Turmbauart: Seriennummer: 70.373 Pitch/Stall/Aktiv-Stall Leistungsregelung: GK RW: 4094650 HW: 5984271 WEA-Standort (ca.): Erg. Daten zu Getriebe und Generator (Herstellerangaben) Ergänzende Daten zum Rotor (Herstellerangaben) Renk o. gleichw. Getriebehersteller: A&R o. gleichw. Rotorblatthersteller: Aerogear A60/130BL o.a Typenbezeichnung Getriebe: Typenbezeichnung Blatt: PP-77-RT o.a Winergy o. gleichw. Generatorhersteller: Blatteinstellwinkel: Variabel Typenbezeichnung Generator: JFEA -500SR04A o.a Rotorblattanzahl Generatornenndrehzahl/bereich: 1000-1800 U/min

Prüfbericht zur Leistungskurve: WT3219/04 vom 12.03.2004

9,6 / 17.3 U/min

Rotornenndrehzahl/-bereich:

					Refere	nzpunkt					nissions- meter	1	Bemerk	ungen	l 		
				Standard ndgeschv in 10 m	vindigkeit		Elektrische /irkleistung										
Schalleistun Pegel L _{WA,P}	gs-			6 ms 7 ms 8 ms 9 ms 10 m <i>8,5m</i>	s ⁻¹ s ⁻¹ s ⁻¹ s ⁻¹	1 1 1 1	656 kW 998 kW 290 kW 493 kW 500 kW 425 kW		10 10 10	01,2 01,6 01,9 - 01,8	dB(A) dB(A) dB(A) dB(A) dB(A) dB(A) bei - Hz		(2 (1				
Tonzuschlag den Nahber K _{TN}				6 ms 7 ms 8 ms 9 ms 10 m 8,5m	s ⁻¹ s ⁻¹ s ⁻¹	1 1	656 kW 998 kW 290 kW 493 kW 500 kW		0 dE 0 dE 0 dE - 0 dE	3 3	bei - Hz bei - Hz bei - Hz - bei - Hz		(2 (*	2) 1)			
Impulszusc für den Nah K _{IN}				6 m: 7 m: 8 m: 9 m 10 m 8,5n	s ⁻¹ s ⁻¹ s ⁻¹ s ⁻¹ is ⁻¹		656 kW 998 kW 1290 kW 1493 kW 1500 kW			0	dB dB dB dB -			2) 1)			
						ngspege	l Referenz	punkt v	₁₀ = 9 n	ıs ⁻¹ i	n dB(A)						
Frequenz	50	63	3	80	100	125	160	200	25	0	315	400	500		630		
L _{WA, P}	77,1	79.		85,5	88,8	87,7	89,9	92,6	94		93,6	92,4	90,9	_	89,4		
Frequenz	800	100	_	1250	1600	2000	2500	3150	40		5000	6300					
L _{WA, P}	87,7	85	,9	84,8	84,4	83,7	82,4	80,5	78		73,2	67,2	67,2 63,3 61,5				
				Oktav-S	challeistu	ıngspeg	el Referen	zpunkt	v ₁₀ = 9	ms ⁻¹							
Frequenz	63			125	250		500	100	00		2000	4000		800			
L _{WA} , P	86,9			93,7	98,2		95,8	91			88,3	82,9		69			

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 14.09.2004. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen). Bemerkungen:

Betriebspunkt der 95%-igen Nennleistung der WEA

In der Windklasse 10 ms⁻¹ liegen keine Minutenmittelwerte vor. (2)

Gemessen durch:

WIND-consult GmbH Reuterstraße 9

D-18211 Bargeshagen

Datum: 13.03.06

Unterschrift Dipl.-Ing. W.Wilke

Unterschrift ✓Dipl.-Ing. J.Schwabe

Die Auswertung auf der Grundlage der Approximation für die Referenzpunkte $v_{10} = 6...10 \text{ ms}^{-1}$ in 10 m ü.G. führt zu folgenden Ergebnissen:

Standardisierte Windgeschwindigkeit	ms ⁻¹	6	7	8	8,52)	9	10
Referenz-Wirkleistung ¹⁾	kW	650	991	1283	1425	1491	1500
Generatordrehzahl	min ⁻¹	1650	1707	1752	1780	1794	1796
Rotordrehzahl	min ⁻¹	15,9	16,4	16,8	17,1	17,3	17,3
	Anlag	engeräus	ch		is the challenger		
Anzahl Messwerte je Windklasse	-	4	33	34	2	.2	8
Mittelwert L _{Afeq}	dB(A)	55,4	57,0	57,2	57,2	57,2	57,2
	Frem	dgeräuscl	n				
Anzahl Messwerte je Windklasse	-	2	15	31	1	4	0
Mittelwert L _{Afeq}	dB(A)	49,1	49,8	50,5	50,9	51,2	51,9
	Schallle	eistungspe	egel				
Störabstand	dB	6,3	7,2	6,7	6,3	6,0	5,3
Unsicherheit Uc		1,00	0,81	0,80	0,	80	0,84
Mittelwert L _{AFeq, k}	dB(A)	54,3	56,1	56,2	56,1	56,0	55,9*
Schallleistungspegel L _{WA, [P]}	dB(A)	100,3	102,1	102,2	102,1	102,0	101,9*

Tab. 3: Ergebnisse Schalleistungspegel-Bestimmung

1) Ermittlungsbasis: Leistungskurve, die der Ermittlung des Schalleistungspegels zugrunde liegt (vgl. Anlage 5).

* gemäß /2/ mit 1,3 dB korrigiert

²⁾ Der Betriebspunkt der 95%igen Nennleistung, für den der Schallleistungspegel informativ anzugeben ist, liegt unter Berücksichtigung der verwendeten Leistungskurve und der Nabenhöhe der vermessenen WEA sowie den meteorologischen Bedingungen am Messtag bei v₁₀ = 8,5 ms⁻¹ in 10 m ü.G..

Auszug aus dem Prüfbericht

Seite 1/1

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 16 vom 01. Juli 2005 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz. 4, D-24103 Kiel)

Auszug aus dem Prüfbericht WICO 037SE205/02 zur Schallemission der Windenergieanlage vom Typ REpower MD77

Allgemeine Angaben		Technische Daten (Herstellerangs	aben)
Anlagenhersteller:	REpower Systems AG	Nennleistung (Generator):	1500 kW
	Rödemis Hallig	Rotordurchmesser:	77 m
	D-25813 HUSUM	Nabenhöhe über Grund:	61,5 m
	70.325	Turmbauart:	kon. Stahlrohrturm
WEA-Standort (ca.):	GK RW: 4096410 HW: 5983828	Leistungsregelung:	Pitch/Stall/Aktiv-Stall
Ergänzende Daten zum Ro	otor (Herstellerangaben)	Erg. Daten zu Getriebe und Gener	The second secon
Rotorblatthersteller:	A&R o. gleichw.	Getriebehersteller:	Renk o. gleichw.
Typenbezeichnung Blatt:	PP-77-RT o.a	Typenbezeichnung Getriebe:	Aerogear A60/130BL o.a
Blatteinstellwinkel:	Variabel	Generatorhersteller:	Winergy o. gleichw.
Rotorblattanzahl	3	Typenbezeichnung Generator:	JFEA -500SR04A o.a
Rotornenndrehzahl/-bereid	ch: 9,6 / 17.3 U/min	Generatornenndrehzahl/bereich:	1000-1800 U/min

Prüfbericht zur Leistungskurve: WT3219/04 vom 12.03.2004

				Refe	renz	pun	kt		So		emissions	S-	E	emerk	ungen
			Windgeso in 10	ardisierte chwindigkei m Höhe	t	ļ	Elektriscl Wirkleistu								
Schalleistu Pegel L _{WA,P}	ungs-		7 i 8 i 9 i 10	ms ⁻¹ ms ⁻¹ ms ⁻¹ ms ⁻¹ ms ⁻¹			650 kV 991 kV 1283 kV 1491 kV 1500 kV	/ / /	1	101,9	1 dB(A) 2 dB(A) 0 dB(A) 0 dB(A)				
Tonzuschla den Nahbe K _{TN}	0		6 r 7 r 8 r 9 r 10	ms ⁻¹ ns ⁻¹ ns ⁻¹ ns ⁻¹ ms ⁻¹			650 kW 991 kW 1283 kW 1491 kW 1500 kW	 	0 d 0 d 0 d 0 d	B B B	bei - Hz bei - Hz bei - Hz bei - Hz bei - Hz bei - Hz			(1)	
Impulszuso für den Nal K_{IN}			7 r 8 r 9 r 10	ns ⁻¹ ns ⁻¹ ns ⁻¹ ns ⁻¹ ms ⁻¹		•	650 kW 991 kW 1283 kW 1491 kW 1500 kW		0 0) dB) dB) dB) dB) dB			(2) (1)	
			Terz-S	challeistu	ngsp	egel	Referen	zpunkt v	10 = 8 n	ns ⁻¹	in dB(A)			(1)	
Frequenz L _{WA, P}	50 79,6	63 80,8	80 86,6	100 87,6	12 89		160 91,5	200	25		315	400	_	500	630
Frequenz	800	1000	1250	1600	200	00	2500	93,7 3150	93		93,6 5000	91,7 6300		90,3	89,0 10000
L _{WA, P}	87,4	86,3		85,3 challeistu	84		83,2	81,6	79		76,3	72,7		69,9	67,6
Frequenz	63		125	250	ngal		500	100			in dB(A) 2000	Δſ	00	1	8000
LWA, P	88,3		94,6 bericht ailt nu	98,5			95,2	91.3	3		89.2		,5	+-	75,3

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 14.09.2004. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

(1) Betriebspunkt der 95%-igen Nennleistung der WEA * gemäß /2/ mit 1,3 dB korrigiert

Gemessen durch: WIND-consult GmbH

Reuterstraße 9 D-18211 Bargeshagen

Datum: 13.03.06

Unterschrift Dipl.-Ing. W.Wilke

Unterschrift Dipl.-Ing. J.Schwabe

5 Abweichungen zur Richtlinie

Zu Abweichungen mit Bezug auf die Vermessungsrichtlinie /1/ werden die folgenden Hinweise gegeben:

- 1. Es sind keine Fotos vom Messstandort vorhanden. Die Situation am Standort kann aus der Beschreibung im Abschnitt 2 sowie dem Lageplan (Anlage 1) entnommen werden.
- 2. Die Daten der Kalibration vor und nach der Messkampagne können dem Messprotokoll entnommen werden. Die Messkette wurde vor und nach der Messung kalibriert.
- 3. Für die Ermittlung der Terzspektren wird keine Unsicherheit ausgewiesen.

6 Zusammenfassung

Am 15.12.2005 wurde die WEA Nr. 10 des Typs REpower MD77 mit einer Nabenhöhe von $h_N=61,5$ m am Standort Karlsburg (Mecklenburg-Vorpommern) akustisch vermessen. Die Datenauswertung erfolgte nach /1/.

Die vermessene WEA zeigte während der Messkampagne dem subjektiven Eindruck nach im auszuwertenden Windgeschwindigkeitsbereich keine Auffälligkeiten des Geräusches. Die subjektive Bewertung des Anlagengeräusches wird durch die objektive Geräuschbewertung nach /1/ gestützt.

Die Ergebnisse der akustischen Vermessung werden in der nachfolgenden Tabelle zusammengefasst dargestellt.

Standardisierte Windgeschwindigkeit	ms ⁻¹	6	7	8	8,5 ²⁾	9	10 ³⁾
Elektrische Wirkleistung ¹⁾	kW	671	1017	1310	1425	1497	1500
Rotordrehzahl	min ⁻¹	16,0	16,5	16,9	17,1	17,3	17,3
Tonhaltigkeit K _{TN}	dB	0	0	0	0	0	0
Impulshaltigkeit K _{IN}	dB	0	0	0	0	0	0
Unsicherheit Uc	dB(A)	0,78	0,91	0,	93	0,77	0,76
Schallleistungspegel L _{WA, P}	dB(A)	99,9	100,9	101,9	102,1	102,1	101,5

Tab. 4: Ergebnisübersicht

- 1) Ermittlungsbasis: Leistungskurve, die der Ermittlung des Schalleistungspegels zugrunde liegt (vgl. Anlage 5).
- 2) Betriebspunkt der 95%-igen Nennleistung der WEA

Das A-bewertete Schalleistungsspektrum für den Maximalwert des Schallleistungspegels ist in Anlage 6 dargestellt.

Die vorliegende Untersuchung wurde von der WIND-consult GmbH gemäß dem Stand von Wissenschaft und Technik nach bestem Wissen und Gewissen unparteiisch erstellt.

Auszug aus dem Prüfbericht

Seite 1/1

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 16 vom 01. Juli 2005 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz. 4, D-24103 Kiel)

Auszug aus dem Prüfbericht WICO 037SE205/03 zur Schallemission der Windenergieanlage vom Typ REpower MD77

Allgemeine Angaben		Technische Daten (Herstellerangaben)					
Anlagenhersteller:	REpower Systems AG	Nennleistung (Generator):	1500 kW				
	Rödemis Hallig	Rotordurchmesser:	77 m				
	D-25813 HUSUM	Nabenhöhe über Grund:	61,5 m				
Seriennummer:	70.454	Turmbauart:	kon. Stahlrohrturm				
WEA-Standort (ca.):	GK RW: 5409618 HW: 5985635	Leistungsregelung:	Pitch/Stall/Aktiv-Stall				
Ergänzende Daten zum R	otor (Herstellerangaben)	Erg. Daten zu Getriebe und Generator (Herstellerangaben)					
Rotorblatthersteller:	LM-Glasfiber o. gleichw.	Getriebehersteller:	Renk o. gleichw.				
Typenbezeichnung Blatt:	LM 37.3_P o.a.	Typenbezeichnung Getriebe:	Aerogear A60/130BL o.a				
Blatteinstellwinkel:	Variabel	Generatorhersteller:	Winergy o. gleichw.				
Rotorblattanzahl	3	Typenbezeichnung Generator:	JFEA -500SR04A o.a				
Rotornenndrehzahl/-berei	ch: 9,6 / 17.3 U/min	Generatornenndrehzahl/bereich:	1000-1800 U/min				

				Referenzpunkt						So	;-	Bemerkungen					
			Windg	gesch 10 n	rdisierte nwindigkei n Höhe	t	Elektrische Wirkleistung										
Schalleistu	ings-			6 ms ⁻¹ 7 ms ⁻¹			671 kW 1017 kW								3,710		
Pegel				8 m			1310 kW										
L _{WA,P}				9 m			1497 kW										
				10 r			1500 kW			102,1 dB(A) 101,5 dB(A)							
				8,41				1425 kV	/	102,1 dB(A)			(1)				
	eu			6 m		1		671 kW		0 0	B	bei - Hz					
Tonzuschlag für 7 ms ⁻¹					1017 kW		0 0		bei - Hz								
den Nahbe	reich		8 ms ⁻¹			1	1310 kW			0 0	-	bei - Hz					
K _{TN} 9 ms ⁻¹					1497 kW		0 0		bei - Hz								
10 ms ⁻¹				1500 kW 0 dB bei - Hz													
	***************************************	8,4ms ⁻¹			_	1425 kW			0 dB bei - Hz				(1)				
lmpulszuschlag 7 ms ⁻¹					671 kW) dB								
für den Nahbereich 8 ms ⁻¹					1017 kW 1310 kW) dB								
K _{IN} 9 ms ⁻¹				1310 KW 1497 KW) dB									
10 ms ⁻¹				1500 kW			0 dB 0 dB										
8,4ms ⁻¹			1425 kW			0 dB 0 dB			(4)								
			pspegel Referenzpunkt v ₁₀ = 9 ms ⁻¹ in dB(A)						(1)								
			16	12-30	maneistu	ngsp	bege	Referen	zpunkt v	10 = 9 1	ms '	in dB(A)					
Frequenz	50	63	80	0	100	1:	25	160	200	2	50	315	4	00	50	00	630
L _{WA, P}	74,7	78,8	84	,3	88,9	86	5,2	87,1	90,6	89	9,7	91,5	9	0,7	90),5	92,3
Frequenz	800	100	0 12	50	1600	20	000	2500	3150	40	000	5000	_	300	80	-	10000
L _{WA, P}	91,6	91,6	90	,5	89,3	88	3,1	86,3	84,9	83	3,3	80,6	7	5,8		9.5	65,7
Oktav-Schalleistungspegel Referenzpunkt $v_{10} = 9 \text{ ms}^{-1}$ in dB(A)																	
Frequenz	63		125		250			500	100	00 3		2000			1000		8000
L _{WA, P}	85,7		92,3		95,4			96,0	96,	0	92.8			88,0			77.0

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 09.12.2004. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen). Bemerkungen:

Betriebspunkt der 95%-igen Nennleistung der WEA

Gemessen durch:

WIND-consult GmbH Reuterstraße 9

D-18211 Bargeshagen

Datum: 13.03.06

Unterschrift Unterschrift Dipl.-Ing. W.Wilke Dipl.-Ing. J.Schwabe

Vertrag über die Verpflichtung zu der Stilllegung und dem Rückbau von Windenergieanlagen des Windparks Wolgast

zwischen der

BGB-Gesellschaft Ira Chini und Thomas Schölkopf Der Schöne Weg 116, 72766 Reutlingen vertreten durch Ira Chini-Schölkopf und Thomas Schölkopf (nachstehend auch "Altanlagenbetreiberin zu 1)" genannt)

BGB-Gesellschaft Anja Chini und Richard Liebe Der Schöne Weg 116, 72766 Reutlingen (nachstehend auch "Altanlagenbetreiberin zu 2)" genannt)

BGB-Gesellschaft Regine Chini und Alexander Chini Wölperwiesenweg 3, 72250 Freudenstadt (nachstehend auch "Altanlagenbetreiberin zu 3)" genannt)

Erbengemeinschaft nach Anita Chini c/o Frau Anja Chini, Der Schöne Weg 116, 72766 Reutlingen vertreten durch Ira Chini-Schölkopf, Anja Chini und Alexander Chini (nachstehend auch "Altanlagenbetreiberin zu 4)" genannt)

(nachstehend gemeinsam auch "Altanlagenbetreiberinnen" genannt)

und

36. naturwind Windpark GmbH & Co. KG
Schelfstraße 35, 19055 Schwerin,
eingetragen im Handelsregister des Amtsgerichts Schwerin unter HRA 3824
vertreten durch die naturwind Verwaltungs GmbH, diese wiederum

vertreten durch die naturwind verwantungs Ginbri, diese wiederum vertreten durch den einzelvertretungsberechtigten und von den Beschränkungen des § 181 BGB befreiten Geschäftsführer Bernd Jeske, geschäftsansässig ebenda

(nachstehend auch "naturwind" genannt)

(nachstehend gemeinsam auch "Vertragspartner" genannt).

Inhalt

Präambel	3
§ 1 – Stilllegung und Rückbau der Alt-WEA	
§ 2 – Vergütung, Kosten, Erlöse	
§ 3 – Schlussbestimmungen	
δ	

Präambel

Die Altanlagenbetreiberinnen betreiben in Karlsburg, Landkreis Vorpommern-Greifswald in Mecklenburg-Vorpommern acht der insgesamt 16 Windenergieanlagen des Typs Repower MD 70/77 (nachstehend einzeln oder gemeinsam auch "Alt-WEA" genannt) im Windpark (nachstehend auch "alter Windpark" genannt).

Die acht Alt-WEA sollen stillgelegt, zurückgebaut und im Rahmen eines sog. Repowerings durch einen neuen Windpark (nachstehend auch "neuer Windpark" genannt) mit voraussichtlich sechs Windenergieanlagen des Typs Vestas V 150 oder vergleichbaren WEA-Typen ähnlicher Größenordnung (nachstehend auch "Neu-WEA" genannt) ersetzt werden.

Die Neu-WEA sollen von der 36. naturwind Windpark GmbH & Co. KG betrieben werden.

Die Standorte der vertragsgegenständlichen acht Alt-WEA sind dem beigefügten Lageplan gemäß Anlage 1 zu diesem Vertrag zu entnehmen (Bezeichnung: WKA 2, WKA 7, WKA 8, WKA 9, WKA 10, WKA 11, WKA 12, WKA 16).

Für die Altanlagenbetreiberin zu 1): Reutlingen, den <u>95,05,00</u>	Für die Altanlagenbetreiberin zu 2): Reutlingen, den <u>(25.05.06.8</u>
BGB-Gesellschaft Ira Chini-Schölkopf und Thomas Schölkopf	BGB-Gesellschaft Anja Chini und Richard Liebe
Für die Altanlagenbetreiberin zu 3): Reutlingen, den	Für die Altanlagenbetreiberin zu 4): Reutlingen, den
BGB-Gesellschaft Alexander	Erbengemeinschaft nach Anita Chini
und Regine Chini	Anja Chini, Alexander Chini, Ira Chini- Schölkopf
Für naturwind: Schwerin, den 9.5. 18	

36. naturwind Windpark GmbH & Co. KG

PLANkon

Ingenieurbüro für Tragwerks-, Objekt- und Energieplanung

Anlagen zum Schallgutachten PK 2019008-SLG vom 09.06.2020 für den Standort Karlsburg

Dokumentation der Immissionspunkte

IPs A+B: Whs. Dorfstr. 5 und 6, Moeckow Berg

IPs C+D: Whs. Dorfstr. 7 und 8, Moeckow Berg

PLANkon

Ingenieurbüro für Tragwerks-, Objekt- und Energieplanung

IP E: Whs. Feldstr. 9, Brüssow

IP F: Whs. Feldstr. 8, Brüssow

IP G: verfallenes Whs. Feldstr. 7, Brüssow

IP H: Whs. Feldstr. 6, Brüssow

IP I: unbeb. Grundstck. SW Oberreihe, Lühmannsdorf

IP J: Whs. Oberreihe 16, Lühmannsdorf

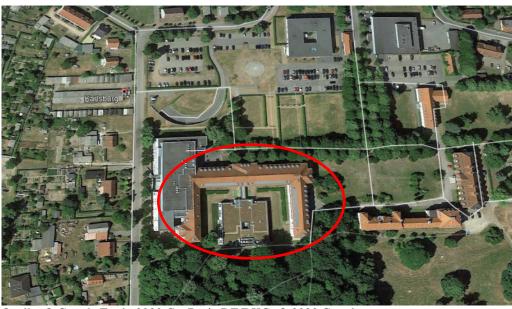
IP K: unbeb. Grundstck. Am Heidberg SW, Lühmannsdorf

IP L: unbeb. Grundstck. Am Heidberg SO, Lühmannsdorf

IP M: Whs. Waldweg 5, Giesekenhagen

IP N: verfallenes Whs. Waldweg 6, Giesekenhagen

IP O: Whs. Dorfstr. 1, Steinfurth



IP P: Whs. Dorfstr. 2a, Steinfurth

Ingenieurbüro für Tragwerks-, Objekt- und Energieplanung

IP Q: unbeb. Grundstck. WR Teichweg Ost, Karlsburg

Quelle: © Google Earth, 2020 GeoBasis-DE/BKG; © 2020 Google

IP R: Klinikum Karlsburg, Greifswalder Str. 11, Karlsburg

IP S: Whs. Dorfstr. 8, Karlsburg

IP T: Laube Kleingarten Greifswalder Str., Karlsburg

IP U: Whs. Dorfstr. 4A, Karlsburg

IP V: Whs. Karolinenweg 7, Karlsburg

IP W: Whs. Greifswalder Str. 7, Karlsburg

IP X: Whs. Dorfstr. 6, Zarnekow

IP Y: Whs. Dorfstr. 4, Zarnekow

IP Z: Whs. Dorfstr. 1, Zarnekow

IP AA: Whs. Dorfstr. 24a, Zarnekow

IP AB: Whs. Dorfstr. 20, Zarnekow

IP AC: Whs. Dorfstr. 13, Zarnekow

IP AD: Whs. Greifswalder Str. 9, Moeckow

IP AE: Whs. Greifswalder Str. 9a, Moeckow

IP AF: Whs. Dorfstr. 10, Moeckow

IP AG: Whs. Dorfstr. 1, Moeckow Berg

IP AH: Whs. Dorfstr. 4, Moeckow Berg