#### Übersichtsskizze:



Prüfvermerk:

#### Auftraggeber des Verfassers:

Staatliches Amt für Landwirtschaft und Umwelt Westmecklenburg Am Elbberg 8/9 19258 Boizenburg



#### Bauherr:

Staatliches Amt für Landwirtschaft und Umwelt Westmecklenburg Am Elbberg 8/9 19258 Boizenburg



Projekt:

## Hochwasserschutz Boizenburg

| Bauteil / Gewerk:        |                          | Dokument-ID:    | Revision: |  |
|--------------------------|--------------------------|-----------------|-----------|--|
| Sude S <sub>i</sub>      | HWSB_SP_PFU_STA_SP       | ERRW_6005       | 0         |  |
| Teilbauteil / -gewerk:   |                          | Datum: Seiten:  |           |  |
| Hubtore, Rahmen o        | 20.10.2021               |                 |           |  |
| Fachgebiet: Dokumentart: |                          | Auftragsnummer: | 1 - 102   |  |
| Berechnung               | Standsicherheitsnachweis | eis 30100 0506  |           |  |
| Dokumenttitel:           | Planungskoordination:    |                 |           |  |
| Sude Sperrwerk - St      | RAMBOLL                  | Zin             | ßer       |  |

Projektphase:

## Entwurfsplanung

Verfasser:



Ramboll Deutschland GmbH Jürgen-Töpfer-Straße 48 22763 Hamburg

Tel.: +49-(0)40-32818-0 Fax.: +49-(0)40-32818-139 Bearbeitet: Karen Schok

Schuetz



# RAMBOLL

Projekt: Hochwasserschutz Boizenburg

Sude Sperrwerk

**Dokument-Titel:** Sperrwerk - Stahlwasserbau

**Dokument-Art:** Standsicherheitsnachweis

Dokument-ID: HWSB\_SP\_PFU\_STA\_SPERRW\_6005

<u>Verfasser:</u> Ramboll Deutschland GmbH

Jürgen-Töpfer-Straße 48 | 22763 Hamburg | GERMANY www.ramboll.de/services/transport/wasserbau-und-haefen

M.Sc. Karen Schuetz

Durchwahl: +49 40 32818-112 E-Mail: karen.schuetz@ramboll.com

Auftragsnummer: 30100 0506

<u>Auftraggeber:</u> Staatliches Amt für Landwirtschaft und Umwelt Westmecklenburg

Am Elbberg 8/9 19258 Boizenburg

<u>Bauherr:</u> Staatliches Amt für Landwirtschaft und Umwelt Westmecklenburg

Am Elbberg 8/9 19258 Boizenburg



# <u>Inhaltsverzeichnis</u>

| 1 Dokumenthistorie                                | 3   |
|---------------------------------------------------|-----|
| 2 Allgemeines                                     | 4   |
| 2.1 Vorbemerkung                                  | 4   |
| 2.2 Bauteile                                      | 5   |
| 2.3 Verwendete Unterlagen                         | 6   |
| 2.4 Verwendete Software                           | 7   |
| 2.5 Baustoffe                                     | 7   |
| 3 Übersichtsskizzen                               | 8   |
| 3.1 Übersicht - Bestand                           | 8   |
| 3.2 Übersichtslageplan - Sperrwerk                | 8   |
| 4 Wasserstände                                    | 9   |
| 5 Hochwasserschutztore                            | 9   |
| 5.1 Übersicht der Lastfälle und Lastkombinationen | 9   |
| 5.2 Ausgabe FE Berechnung                         | 11  |
| 6 Rahmentragwerk der Tore                         | 59  |
| 6.1 Übersicht der Lastfälle und Lastkombinationen | 59  |
| 6.2 Ausgabe der FE Berechnung                     | 59  |
| 7 Antriebe                                        | 98  |
| 7.1 Massen                                        | 98  |
| 7.2 Hauptantrieb Vertikal                         | 98  |
| 7.2.1 Berechnung der Hubkraft                     | 98  |
| 7.2.2 Angebot Hubzylinder Vertikal                | 99  |
| 7.3 Antrieb Ouerfeststellung                      | 100 |



# 1 Dokumenthistorie

| Rev    | Datum       | Kapitel   | Seiten  | Verfasser   | gesehen        | Bemerkungen |
|--------|-------------|-----------|---------|-------------|----------------|-------------|
| 00     | 04.10.2021  | 1 - 7     | 1 - 102 | M.Sc. Karen | DiplIng.       |             |
|        |             |           |         | Schuetz     | Benjamin Brunn |             |
|        |             |           |         |             |                |             |
|        |             |           |         |             |                |             |
|        |             |           |         |             |                |             |
|        |             |           |         |             |                |             |
|        |             |           |         |             |                |             |
|        |             |           |         |             |                |             |
|        |             |           |         |             |                |             |
|        |             |           |         |             |                |             |
|        |             |           |         |             |                |             |
|        |             |           |         |             |                |             |
|        |             |           |         |             |                |             |
|        |             |           |         |             |                |             |
|        |             |           |         |             |                |             |
|        |             |           |         |             |                |             |
|        |             |           |         |             |                |             |
| Letzte | Seite des D | okumentes | s:      |             |                | 102         |



## 2 Allgemeines

#### **Hinweis Entwurfsstatik:**

Diese Vorbemessung ist eine überschlägige statische Berechnung und Bemessung. Die nachfolgenden statischen Nachweise erfolgen im Rahmen der beauftragten Leistung mit der hier ausreichenden Genauigkeit. Die Nachweisverfahren werden ingenieurmäßig gewählt und angewendet. Es erfolgt eine überschlägige Bemessung der maßgebenden Bauteile, untergeordnete Bauteile werden ohne weiteren Nachweis gewählt.

Bei Abweichungen von den Zeichnungen des Objektplaners gelten die Angaben dieser Vorbemessung, Sollten sich im Rahmen der weiteren Bearbeitung die Planungsrandbedingungen ändern, sind die hiervon betroffenen Nachweise neu zu führen.

Diese statische Berechnung ersetzt nicht die im Rahmen der weiteren Planung verantwortlich zu erstellende Ausführungsstatik.

#### 2.1 Vorbemerkung

Die Länder Mecklenburg-Vorpommern, Niedersachsen und Schleswig-Holstein haben sich im Jahr 2012 zusammen mit der BfG für die Aufstellung einer gemeinsamen Kooperationsvereinbarung zur Verbesserung des Hochwasserabflusses in der unteren Mittelelbe verabredet. Aufgrund der Ergebnisse erteilte das Ministerium für Landwirtschaft und Umwelt MV dem Staatlichen Amt für Landwirtschaft und Umwelt WM den Auftrag, eine Konzeption zur Verbesserung des Hochwasserschutzes mit weiteren baulichen Maßnahmen, wie z. B. Deichrückverlegungen, Anlage von Flutpoldern oder Erhöhung bestehender Anlagen zu erarbeiten.

Die Planung zur Behebung des Defizits der Hochwasserschutzlinie wurde in zwei Teilprojekte aufgeteilt. Teilprojekt 1 "Rückdeichung Hafendeich" beinhaltet die Planung der Hochwasserschutzlinie zwischen Hafenmauer Boizenburg bis zum Anschluss an den rechten Sudedeich nördlich der Ortschaft Gothmann. **Teilprojekt 2 "Sude Hochwassersperrwerk"** beinhaltet die Planung eines neuen Hochwassersperrwerks sowie die Erhöhung der Elbedeiche Boizenburg und Mahnkenwerder bis zu Landesgrenze.

Das Bauwerk setzt sich aus den folgenden Hauptteilen zusammen. Das Bauwerk wird ohne Wehrfunktion geplant. Das Sudeabschlussbauwerk übernimmt weiterhin die Funktion des Wehres.

- <u>Sperrwerk Massivbau</u>
- Stahlbetonbrücke Massivbau
- Technikgebäude Massivbau
- Spundwandbauwerke/Flügelwände Stahlwasserbau/Spezialtiefbau
- Hochwasserschutztore Stahlwasserbau
- (Spundwandkasten/Baugrube Spezialtiefbau)

Die vorliegende Statik befasst sich ausschließlich mit der den Hochwasserschutztoren des Stahlwasserbaus. Im Rahmen der statischen Berechnungen der Entwurfsplanung wird die Tragfähigkeit der Hochwasserschutztore, sowie des zugehörigen Rahmentragwerks nachgewiesen. Die Lagesicherheit der Hochwasserschutztore wird ebenfalls nachgewiesen. Abschließend werden die vorhandenen Massen zusammengestellt und die Berechnung der Hubkraft der notwendigen Hubzylinder dargestellt.



## 2.2 Bauteile

Innerhalb des folgenden Dokumentes werden die Hochwasserschutztore und die zu deren Aufhängung notwendigen Rahmentragwerke getrennt betrachtet. Die Betrachtung der Tore findet sich in Kapitel 5, das Rahmentragwerk folgt in Kapitel 6.



## 2.3 Verwendete Unterlagen

- [1] INGE Ramboll/IKD, Hochwasserschutz Boizenburg Sude Sperrwerk Design Basis Revision 0,
  Bericht Nr. HWSB\_SP\_LP4\_BER\_SPERRW\_6002\_Design Basis-Stahlwasserbau\_Rev0 Stand 10.2021
- [2] **DIN EN 1993-1-1,** 12.10, Eurocode 3: Bemessung und Konstruktion von Stahlbauten, Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau
- [3] **DIN EN 1993-1-1/A1,** 07.14, Eurocode 3: Bemessung und Konstruktion von Stahlbauten, Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau; Änderung A1
- [4] **DIN EN 1993-1-1/NA,** 12.18, Nationaler Anhang National festgelegte Parameter Eurocode 3: Bemessungs und Konstruktion von Stahlbauten Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau
- [5] **DIN EN 1990,** 12.10, Eurocode 0: Grundlagen der Tragwerksplanung
- [6] **DIN EN 1990/NA,** 12.10, Nationaler Anhang National festgelegte Parameter Eurocode 0: Grundlagen der Tragwerksplanung
- [7] **DIN EN 1990/NA/A1,** 08.12, Nationaler Anhang National festgelegte Parameter Eurocode 0: Grundlagen der Tragwerksplanung; Änderung A1
- [8] **DIN EN 1991-1-7,** 12.10, Eurocode 1: Einwirkungen auf Tragwerke Teil 1-7: Allgemeine Einwirkungen Außergewähnliche Einwirkungen
- [9] **DIN 19704-1,** 11.14, Stahlwasserbauten Teil 1: Berechnungsgrundlagen
- [10] **DIN 19704-2,** 11.14, Stahlwasserbauten Teil 2: Bauliche Durchbildung und Herstellung
- [11] **DIN 19704 als fachspezifische Norm zu DIN EN 1993**, Kapitel 5 Stahlwasserbau neue Entwicklungen, in: Stahlbau Kalender 2015: Eurocode 3 Grundnorm, Leichtbau. Wiley-VCH Verlag GmbH, 2015



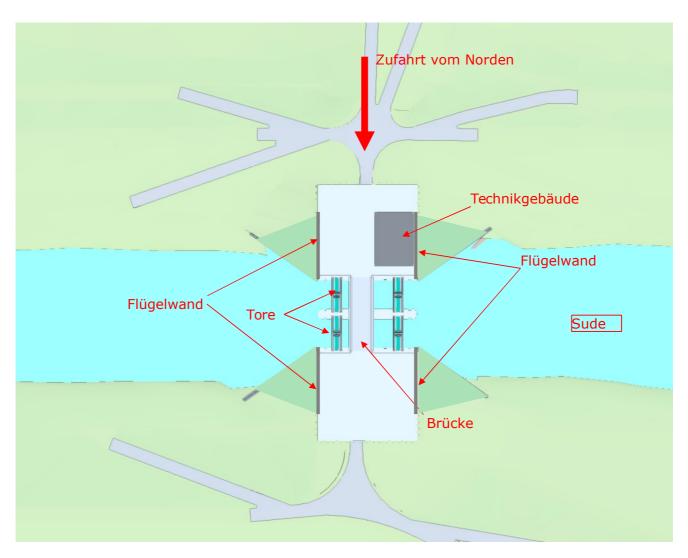
## 2.4 Verwendete Software

| Programm | Version | Hersteller          | Verwendung                          |
|----------|---------|---------------------|-------------------------------------|
| VCMaster | 2020.01 | Veit Christoph GmbH | Erstellung des Dokuments            |
| RFEM     | 5.26    | Dlubal              | Berechnung und Bemessung - Stahlbau |
|          |         |                     |                                     |
|          |         |                     |                                     |
|          |         |                     |                                     |
|          |         |                     |                                     |
|          |         |                     |                                     |

## 2.5 Baustoffe

Baustahl S355




## 3 Übersichtsskizzen

Alle grafischen Darstellungen in diesem Dokument sind - wenn nicht anders angegeben - ohne Maßstab!

## 3.1 Übersicht - Bestand



# 3.2 Übersichtslageplan - Sperrwerk





## 4 Wasserstände

Hier werden die Angaben zu den angesetzten Wasserständen gem. der Design Basis [1] aufgeführt.

Tabelle 3-2: Bemessungswasserstände – Sperrwerk - Flussrichtung

| Bemessungssituation | Elbewasserst                        | and    | Sudewasserstand |
|---------------------|-------------------------------------|--------|-----------------|
|                     | [m NHN]                             |        | [m NHN]         |
| BS-P                | BHW-EZ                              | +11,50 | +8,50           |
| BS-T                | BHW-EZ + Eislast                    | +11,50 | +8,50           |
| D3-1                | Sude HW - ∆h=2m                     | +7,81  | +9,81           |
| BS-A                | bordvoll + Eis                      | +12,50 | +8,50           |
| D3-A                | BHW-EZ + außerge-<br>wöhnliche Last | +11,50 | +8,50           |

#### 5 Hochwasserschutztore

Die Hochwasserschutztore werden als Faltwerke ausgebildet. Sie werden mittels des Finite Elemente Programs RFEM nachgewiesen. Innerhalb der Entwurfsstatik erfolgt der Nachweis der Tragfähigkeit über den Spannungsnachweis entsprechend der aus [9] anzusetzenden Lastfälle und Bemessungssituationen. Die Lastfälle und Lastkombinationen sind folgend zusammengefasst.

## 5.1 Übersicht der Lastfälle und Lastkombinationen



Tabelle 3 - Lastfallübersicht auf Hochwasserschutztore

| Lastfall   | Lastursprung                 | Lastbeschrei-<br>bung                             | Teilsicher-<br>heitsbeiwert | Lastansatz                                        |
|------------|------------------------------|---------------------------------------------------|-----------------------------|---------------------------------------------------|
| LF 1       | Eigenlasten                  | Eigengewicht + Korrosionsschutz + Verschmut- zung | 1,35                        | G+ 10%                                            |
| LF 2       | Hydrostatische               | ВНЖ                                               | 1,35/1,25/1,10              | $\Delta h = 3m$ ,<br>+11,50 m<br>Inkl. Wasserlast |
| LF 3       | Einwirkungen                 | Bordvoll                                          | 1,25/1,10                   | $\Delta h = 4m$ , $+12,50$ Inkl. Wasserlast       |
| LF 4       | Eis                          | Eisauflast                                        | 1,5/1,35/1,10               |                                                   |
| LF 5       | Eis                          | Eisdruck                                          | 1,35/1,10                   | 150 kN/m <sup>2</sup>                             |
| LF 6       | Temperatur                   | Ungleichmäßige<br>Temperaturände-<br>rung         | 1,35/1,10                   | 30 K                                              |
| M 2 – LF 8 | Störfall                     | Einwirkung An-<br>trieb                           | 1,35                        | 390 kN                                            |
| LF 13      | Hydrostatische<br>Einwirkung | Ungünstigster<br>Wasserstand Tor<br>ziehen        | 1,0                         | $\Delta h = -2m$ , Sude Wasser- stand +7,81 m     |

Tabelle 5 – Übersicht der Lastkombinationen zum Nachweis der Tragfähigkeit

| Lastkombination | Kombinierte Lastfälle                   | Bemessungsitu-<br>ation | Beschreibung       |
|-----------------|-----------------------------------------|-------------------------|--------------------|
| LK 1            | 1,35*LF1+1,35*LF2+1,5*LF4               | BS-P                    | BHW                |
| LK 2            | 1,35*LF1+1,25*LF3+1,35*(LF4+LF5+LF6)    | BS-T                    | Eisdruck, Bordvoll |
| M2 - LK 4       | 1,35*LF1+1,1*(LF2+LF4+LF5+LF6)+1,35*LF7 | BS-A                    | BHW, Störfall      |

Neben der Tragfähigkeit des Tores müssen wird weiterhin die Lagesicherheit nachgewiesen.

Tabelle 5 - Übersicht der Lastkombinationen zum Nachweis der Lagesicherheit

| Lastkombination | Kombinierte Lastfälle | Bemessungsitua-<br>tion | Beschreibung |  |
|-----------------|-----------------------|-------------------------|--------------|--|
| LK 6            | 1,1*LF1+1,35*LF2      | BS-P                    | BHW dstb     |  |

Die Dichtheit der Aufstandsdichtung wird über einen notwendigen Schließdruck von 5 kN/m2 nachgewiesen. Der Nachweis erfolgt nach der folgenden Lastfallkombination.



Tabelle 6 - Lastkombination zur Ermittlung des Schließdrucks

| Lastkombination | Kombinierte Lastfälle | Bemessungsitua-<br>tion | Beschreibung |
|-----------------|-----------------------|-------------------------|--------------|
| LK 9            | LF1+LF2+LF5+LF6       | BS-P                    | BHW          |

## 5.2 Ausgabe FE Berechnung

Wie in der Design Basis [1] erläutert wird die LK 4 aufgrund der veränderten Lagerbedingungen in einem zustätzlichen Modell M2 behandelt. Da sich lediglich die Lagerungsbedingungen, sowie die im Lastfall 8 aufgebrachten Lasten unterscheiden, werden nur beim Basismodell allgemeine Informationen zum Modell ausgegeben.





#### Ramboll GmbH

Stadtdeich 7, 20097 HAMBURG

Tel: 040/302020-185 - Fax: 040/302020-199

1/40 Blatt: **MODELL** 

Projekt:

Modell: Faltwerk\_Hubtore\_LP3

Datum: 20.10.2021

#### ■ MODELL-BASISANGABEN

Faltwerk\_Hubtore\_LP3 Allgemein ModelIname Faltwern I Budden - 3D SD Nach oben Nach Norm: EN 1990 Nationaler Anhang: DIN - Deutschland Modelltyp Positive Richtung der globalen Z-Achse Klassifizierung der Lastfälle und Kombinationen

#### FF-NETZ-FINSTELLUNGEN

| FL-NL12-LINGTELLONGEN |           |                                                                               |          |   |                                               |  |  |
|-----------------------|-----------|-------------------------------------------------------------------------------|----------|---|-----------------------------------------------|--|--|
|                       | Allgemein | Angestrebte Länge der Finiten Elemente                                        | FE       | : | 0.500 m                                       |  |  |
|                       |           | Maximaler Abstand zwischen Knoten und Linie<br>um in die Linie zu integrieren | з        | : | 0.001 m                                       |  |  |
|                       |           | Maximale Anzahl der FE-Netz-Knoten (in Tausenden)                             |          | : | 500                                           |  |  |
|                       |           |                                                                               |          |   |                                               |  |  |
|                       | Stäbe     | Anzahl Teilungen von Stäben mit Seil,                                         |          | : | 10                                            |  |  |
|                       |           | Bettung, Voute oder plastischer Charakteristik                                |          |   |                                               |  |  |
|                       |           |                                                                               |          |   |                                               |  |  |
|                       |           | bzw. Durchschlagproblem intern teilen                                         |          |   |                                               |  |  |
|                       |           | ☐ Teilung auch für gerade Stäbe,                                              |          | : | Angestrebte Länge LFE der Finiten<br>Elemente |  |  |
|                       |           | die nicht in Flächen integriert sind, verwenden mit                           |          |   |                                               |  |  |
|                       |           | Mindestanzahl der Stabteilungen:                                              |          | : | 2                                             |  |  |
|                       |           | ☑ Teilung der Stäbe durch den Knoten, der auf den Stäten                      | en liegt |   |                                               |  |  |
|                       |           |                                                                               |          |   |                                               |  |  |
|                       |           |                                                                               |          |   |                                               |  |  |

: 1.800 : 0.50 Maximales Verhältnis der FE-Viereck-Diagonalen  $\Delta_{\mathsf{D}}$ Maximale Neigung von zwei Finiten Elementen aus der Ebene Form der Finiten Elemente:

Drei- und Vierecke
☑ Gleiche Quadrate generieren, wo
möglich



#### **■** 1.1 KNOTEN

| Knoten |           | Bezugs- | Koordinaten- | Knotenkoordinaten |                  |       |           |
|--------|-----------|---------|--------------|-------------------|------------------|-------|-----------|
| Nr.    | Knotentyp | Knoten  | System       | X [m] ,           | Y [m]            | Z [m] | Kommentar |
| 1      | Standard  | -       | Kartesisch   | 0.015             | -0.290           | 0.000 |           |
| 2      | Standard  |         | Kartesisch   | 0.015             | -0.290           | 0.100 |           |
| 3      | Standard  | -       | Kartesisch   | 0.015             | 0.290            | 0.587 |           |
| 4      | Standard  |         | Kartesisch   | 0.015             | 0.290<br>0.290   | 1.704 |           |
| 5      | Standard  | -       | Kartesisch   | 0.015             | -0.290           | 2.190 |           |
| 6      | Standard  | -       | Kartesisch   | 0.015             | -0.290<br>-0.290 | 3.307 |           |
| 7      | Standard  | -       | Kartesisch   | 0.015             | 0.290<br>0.290   | 3.794 |           |
| 8      | Standard  | -       | Kartesisch   | 0.015             | 0.290            | 4.911 |           |
| 9      | Standard  | -       | Kartesisch   | 0.015             | -0.290<br>-0.290 | 5.398 |           |
| 10     | Standard  | -       | Kartesisch   | 0.015             | -0.290           | 6.515 |           |
| 11     | Standard  | -       | Kartesisch   | 0.015             | 0.290            | 7.001 |           |
| 12     | Standard  | -       | Kartesisch   | 0.015             | 0.290            | 7.100 |           |
| 13     | Standard  | -       | Kartesisch   | 0.015             | -0.290           | 7.100 |           |
| 14     | Standard  | -       | Kartesisch   | 0.015             | -0.290<br>-0.290 | 7.000 |           |
| 15     | Standard  | -       | Kartesisch   | 6.985             | -0.290           | 0.000 |           |
| 16     | Standard  | -       | Kartesisch   | 6.985             | -0.290           | 0.100 |           |
| 17     | Standard  | -       | Kartesisch   | 6.985             | 0.290            | 0.587 |           |
| 18     | Standard  |         | Kartesisch   | 6.985             | 0.290            | 1.704 |           |
| 19     | Standard  | -       | Kartesisch   | 6.985             | -0.290           | 2.190 |           |
| 20     | Standard  |         | Kartesisch   | 6.985             | -0.290           | 3.307 |           |
| 21     | Standard  | -       | Kartesisch   | 6.985             | 0.290            | 3.794 |           |
| 22     | Standard  | -       | Kartesisch   | 6.985             | 0.290            | 4.911 |           |
| 23     | Standard  | -       | Kartesisch   | 6.985             | -0.290           | 5.398 |           |
| 24     | Standard  |         | Kartesisch   | 6.985             | -0.290           | 6.515 |           |
| 25     | Standard  | -       | Kartesisch   | 6.985             | 0.290<br>0.290   | 7.001 |           |
| 26     | Standard  | -       | Kartesisch   | 6.985             | 0.290            | 7.100 |           |
| 27     | Standard  | -       | Kartesisch   | 6.985             | -0.290           | 7.100 |           |
| 28     | Standard  | -       | Kartesisch   | 6.985             | -0.290           | 7.000 |           |
| 87     | Standard  | -       | Kartesisch   | -0.142            | 0.307            | 0.000 |           |
| 88     | Standard  | -       | Kartesisch   | 0.015             | 0.307            | 0.000 |           |
| 89     | Standard  | -       | Kartesisch   | 0.015             | -0.307           | 0.000 |           |
| 90     | Standard  | -       | Kartesisch   | -0.142            | -0.307           | 0.000 |           |
| 91     | Standard  | -       | Kartesisch   | -0.142            | 0.307            | 7.100 |           |
| 92     | Standard  | -       | Kartesisch   | 0.015             | 0.307            | 7.100 |           |
| 93     | Standard  | -       | Kartesisch   | 0.015             | -0.307           | 7.100 |           |
| 94     | Standard  | -       | Kartesisch   | -0.142            | -0.307           | 7.100 |           |
| 95     | Standard  | -       | Kartesisch   | 7.142             | 0.307            | 7.100 |           |
| 96     | Standard  | -       | Kartesisch   | 6.985             | 0.307            | 7.100 |           |
| 97     | Standard  | -       | Kartesisch   | 6.985             | -0.307           | 7.100 |           |
| 98     | Standard  | -       | Kartesisch   | 7.142             | -0.307           | 7.100 |           |
| 99     | Standard  | -       | Kartesisch   | 7.142             | 0.307            | 0.000 |           |
| 100    | Standard  | -       | Kartesisch   | 6.985             | 0.307            | 0.000 |           |
| 101    | Standard  | -       | Kartesisch   | 6.985             | -0.307           | 0.000 |           |
| 102    | Standard  | -       | Kartesisch   | 7.142             | -0.307           | 0.000 |           |
| 103    | Standard  | -       | Kartesisch   | 6.985             | 0.000            | 0.343 |           |
| 104    | Standard  | -       | Kartesisch   | 0.015             | 0.000            | 0.343 |           |

#### 1.2 LINIEN

| Linie |           |            | Linienlänge |   |           |
|-------|-----------|------------|-------------|---|-----------|
| Nr.   | Linientyp | Knoten Nr. | L [m]       |   | Kommentar |
| 1     | Polylinie | 15,16      | 0.100       | Z |           |
| 2     | Polylinie | 100,88     | 6.970       | X |           |
| 3     | Polylinie | 15,1       | 6.970       | X |           |
| 4     | Polylinie | 16,2       | 6.970       | Χ |           |
| 5     | Polylinie | 17,3       | 6.970       | X |           |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





#### **12** LINIEN

| ie       |           |                  | Linienlänge |                                 |           |
|----------|-----------|------------------|-------------|---------------------------------|-----------|
| ۸r.      | Linientyp | Knoten Nr.       | L [m]       |                                 | Kommentar |
| 6        | Polylinie | 18,4             | 6.970       | Х                               |           |
| 7        | Polylinie | 19.5             | 6.970       | X                               |           |
| 8        | Polylinie | 20,6<br>21,7     | 6.970       | X<br>X<br>X<br>X<br>X<br>X<br>X |           |
| 8<br>9   | Polylinie | 21.7             | 6.970       | x                               |           |
| 10       | Polylinie | 22,8             | 6.970       | x                               |           |
| 11       | Polylinie | 23,9             | 6.970       | X                               |           |
| 12       | Polylinie | 24,10            | 6.970       | Ŷ                               |           |
| 13       | Polylinie | 25,11            | 6.970       | x                               |           |
| 14       | Polylinie | 26,12            | 6.970       | x                               |           |
| 15       | Polylinie | 27,13            | 6.970       | X                               |           |
| 16       | Polylinie | 14.28            | 6.970       | x                               |           |
| 17       | Polylinie | 14,28<br>100,103 | 0.461       | YZ                              |           |
| 18       | Polylinie | 88,104           | 0.461       | YZ                              |           |
| 19       | Polylinie | 103,104          | 6.970       | X                               |           |
| 20       | Polylinie | 27,97            | 0.017       | X                               |           |
| 22       | Polylinie | 15,101           | 0.017       | Υ                               |           |
| 24       | Polylinie | 1,89             | 0.017       | Y                               |           |
| 25       | Polylinie | 25.26            | 0.099       | Z                               |           |
| 26       | Polylinie | 13,93            | 0.017       | Z<br>Y                          |           |
| 26<br>27 | Polylinie | 27,28            | 0.100       | Z                               |           |
| 28       | Polylinie | 1,2              | 0.100       | Z<br>Z                          |           |
| 38       | Polylinie | 11,12            | 0.099       | Z                               |           |
| 40       | Polylinie | 13,14            | 0.100       | Ž                               |           |
| 41       | Polylinie | 4,5              | 0.757       | YZ                              |           |
| 42       | Polylinie | 12,13            | 0.580       | Y                               |           |
| 43       | Polylinie | 18,19            | 0.757       | YZ                              |           |
| 14       | Polylinie | 26.27            | 0.580       | Y                               |           |
| 48       | Polylinie | 26,27<br>16,103  | 0.379       | YZ                              |           |
| 49       | Polylinie | 20.21            | 0.757       | YZ                              |           |
| 51       | Polylinie | 22 23            | 0.757       | YZ                              |           |
| 53       | Polylinie | 22,23<br>24,25   | 0.757       | YZ                              |           |
| 33       | Polylinie | 2,104            | 0.379       | YZ                              |           |
| 64       | Polylinie | 6,7              | 0.757       | YZ                              |           |
| 66       | Polylinie | 8.9              | 0.757       | Y7                              |           |
| 68       | Polylinie | 8,9<br>10,11     | 0.757       | YZ<br>YZ                        |           |
| 18       | Polylinie | 17,18            | 1.117       | 7                               |           |
| 21       | Polylinie | 19,20            | 1.117       | Z<br>Z                          |           |
| 24       | Polylinie | 21,22            | 1.117       | Z                               |           |
| 27       | Polylinie | 23,24            | 1.117       | Ž                               |           |
| 30       | Polylinie | 9,10             | 1.117       | Z                               |           |
| 33       | Polylinie | 7,8              | 1.117       | Z                               |           |
| 36       | Polylinie | 5,6              | 1.117       | Z                               |           |
| 39       | Polylinie | 3,4              | 1.117       | Z                               |           |
| 40       | Polylinie | 87,88            | 0.157       | Z<br>Z<br>X<br>Y                |           |
| 41       | Polylinie | 88,1             | 0.597       | Y                               |           |
| 42       | Polylinie | 89,90            | 0.157       |                                 |           |
| 43       | Polylinie | 91,92            | 0.157       | X<br>X<br>Z<br>Z<br>Y           |           |
| 44       | Polylinie | 87,91            | 7.100       | Z                               |           |
| 45       | Polylinie | 88 92            | 7,100       | Z                               |           |
| 46       | Polylinie | 92,12            | 0.017       | Υ                               |           |
| 47       | Polylinie | 89,93            | 7.100       | Z                               |           |
| 48       | Polylinie | 93,94            | 0.157       | Z<br>X<br>Z                     |           |
| 49       | Polylinie | 90,94            | 7.100       | Z                               |           |
| 50       | Polylinie | 95,96            | 0.157       | X                               |           |
| 51       | Polylinie | 96,26            | 0.017       | Υ                               |           |
| 52       | Polylinie | 97,98            | 0.157       | X                               |           |
| 53       | Polylinie | 99,100           | 0.157       | X                               |           |
| 54       | Polylinie | 95,99            | 7.100       | Z                               |           |
| 55       | Polylinie | 96,100           | 7.100       | X<br>X<br>Z<br>Z<br>Y           |           |
| 56       | Polylinie | 100,15           | 0.597       | Ÿ                               |           |
| 57       | Polylinie | 97,101           | 7.100       | Z                               |           |
| 58       | Polylinie | 101,102          | 0.157       | X                               |           |
| 59       | Polylinie | 98,102           | 7.100       | Z<br>X<br>Z<br>YZ               |           |
| 60       | Polylinie | 103,17           | 0.379       | YZ                              |           |
| 61       | Polylinie | 104,3            | 0.379       | ΥZ                              |           |

#### **■** 1.3 MATERIALIEN

| 11011 | ,, , , , , , , , , , , , , , , , , , , | -' '                    |             |               |             |                 |                          |  |  |  |  |
|-------|----------------------------------------|-------------------------|-------------|---------------|-------------|-----------------|--------------------------|--|--|--|--|
| Mat.  | Modul                                  | Modul                   | Querdehnzah | Spez. Gewicht | Wärmedehnz. | TeilsichBeiwert | Material-                |  |  |  |  |
| Nr.   | E [kN/cm <sup>2</sup> ]                | G [kN/cm <sup>2</sup> ] | v [-]       | γ [kN/m³]     | α [1/°C]    | γм [-]          | Mode <b>ll</b>           |  |  |  |  |
| 1     | 1 Baustahl S 355   EN 1993-1-1:2005-05 |                         |             |               |             |                 |                          |  |  |  |  |
|       | 21000.00                               | 8076.92                 | 0.300       | 78.50         | 1.20E-05    | 1.00            | Isotrop linear elastisch |  |  |  |  |

#### **■** 1.4 FLÄCHEN

| Fläche | Flächentyp |             |                       | Mat. | Dicke    |        | Fläche              | Gewicht |
|--------|------------|-------------|-----------------------|------|----------|--------|---------------------|---------|
| Nr.    | Geometrie  | Steifigkeit | Begrenzungslinien Nr. | Nr.  | Тур      | d [mm] | A [m <sup>2</sup> ] | G [kg]  |
| 1      | Eben       | Standard    | 1,3,28,4              | 1    | Konstant | 20.0   | 0.697               | 109.43  |
| 3      | Eben       | Standard    | 6,118,5,139           | 1    | Konstant | 20.0   | 7.785               | 1222.32 |
| 4      | Eben       | Standard    | 7,43,6,41             | 1    | Konstant | 20.0   | 5.277               | 828.53  |
| 5      | Eben       | Standard    | 8,121,7,136           | 1    | Konstant | 20.0   | 7.785               | 1222.32 |
| 6      | Eben       | Standard    | 9,49,8,64             | 1    | Konstant | 20.0   | 5.277               | 828.53  |
| 7      | Eben       | Standard    | 10,124,9,133          | 1    | Konstant | 20.0   | 7.785               | 1222.32 |
| 8      | Eben       | Standard    | 12,127,11,130         | 1    | Konstant | 20.0   | 7.785               | 1222.32 |
| 9      | Eben       | Standard    | 13,53,12,68           | 1    | Konstant | 20.0   | 5.277               | 828.53  |
| 10     | Eben       | Standard    | 14,25,13,38           | 1    | Konstant | 20.0   | 0.687               | 107.91  |
| 11     | Eben       | Standard    | 15,44,14,42           | 1    | Konstant | 30.0   | 4.043               | 952.03  |
| 12     | Eben       | Standard    | 40,16,27,15           | 1    | Konstant | 20.0   | 0.697               | 109.43  |
| 13     | Eben       | Standard    | 145,143,144,140       | 1    | Konstant | 26.0   | 1.113               | 227.10  |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





#### Ramboll GmbH

Stadtdeich 7, 20097 HAMBURG
Tel: 040/302020-185 - Fax: 040/302020-199

Blatt: 1

MODELL

Projekt:

Modell: Faltwerk\_Hubtore\_LP3

Datum: 20.10.2021

#### 

| Fläche | Flächentyp |             |                              | Mat. | Dicke    |        | Fläche              | Gewicht |
|--------|------------|-------------|------------------------------|------|----------|--------|---------------------|---------|
| Nr.    | Geometrie  | Steifigkeit | Begrenzungslinien Nr.        | Nr.  | Тур      | d [mm] | A [m <sup>2</sup> ] | G [kg]  |
| 14     | Eben       | Standard    | 147,26,42,146,145,<br>141,24 | 1    | Konstant | 13.5   | 4.359               | 461.99  |
| 15     | Eben       | Standard    | 142,147-149                  | 1    | Konstant | 26.0   | 1.113               | 227.10  |
| 16     | Eben       | Standard    | 155,153,154,150              | 1    | Konstant | 26.0   | 1.113               | 227.10  |
| 17     | Eben       | Standard    | 20,44,151,155,156,22,<br>157 | 1    | Konstant | 13.5   | 4.359               | 461.99  |
| 18     | Eben       | Standard    | 152,157-159                  | 1    | Konstant | 26.0   | 1.113               | 227.10  |
| 19     | Eben       | Standard    | 10,66,11,51                  | 1    | Konstant | 20.0   | 5.277               | 828.53  |
| 20     | Eben       | Standard    | 156,3,141,2                  | 1    | Konstant | 20.0   | 4.161               | 653.29  |
| 21     | Eben       | Standard    | 17,19,18,2                   | 1    | Konstant | 20.0   | 3.210               | 504.01  |
| 22     | Eben       | Standard    | 160,19,161,5                 | 1    | Konstant | 20.0   | 2.639               | 414.26  |
| 23     | Eben       | Standard    | 63,19,48,4                   | 1    | Konstant | 20.0   | 2.639               | 414.26  |

#### **■ 1.4.1 FLÄCHEN - EXZENTRIZITÄTEN**

| Fläche | Exzentrizität       |           |
|--------|---------------------|-----------|
| Nr.    | e <sub>z</sub> [mm] | Kommentar |
| 20     | -10.0               |           |

#### **■ 1.4.2 FLÄCHEN - INTEGRIERTE OBJEKTE**

| ſ | Fläche |        | Integrierte Objekte Nr.                            |           |           |
|---|--------|--------|----------------------------------------------------|-----------|-----------|
|   | Nr.    | Knoten | Linien                                             | Öffnungen | Kommentar |
|   | 14     |        | 18,28,38,40,41,63,64,66,68,130,133,<br>136,139,161 |           |           |
|   | 17     |        | 1,17,25,27,43,48,49,51,53,118,121,<br>124,127,160  |           |           |

#### **■** 1.8 LINIENLAGER

| Lager |                     | Bezugs- | Drehung | Wand | Feste Stützung bzw. Einspannung |                |         |    |    |                 |
|-------|---------------------|---------|---------|------|---------------------------------|----------------|---------|----|----|-----------------|
| Nr.   | Linien Nr.          | system  | β [°]   | in Z | u <sub>X</sub>                  | u <sub>Y</sub> | $u_Z$   | φх | φγ | <sub>I</sub> φz |
| 1     | 140-142,153,156,158 | Global  |         |      |                                 |                | Ausfall |    |    |                 |

#### ■ 1.8.3 LINIENLAGER - AUSFÄLLE

| Lager |                     | Aust            | fall des Lagers bei [kN |                  |  |
|-------|---------------------|-----------------|-------------------------|------------------|--|
| Nr.   | Linien Nr.          | u <sub>X'</sub> | u <sub>Y</sub>          | Kommentar        |  |
| 1     | 140-142,153,156,158 | -               | -                       | Ausfall falls +P |  |

#### **♦** 1.9 FLÄCHENLAGER

| 1.01    |             | -1 \            |                |                   |                   |      |      |
|---------|-------------|-----------------|----------------|-------------------|-------------------|------|------|
| Bettung |             | Federkonstanten | Stützu         | ıng bzw. Feder [k | Schubfeder [kN/m] |      |      |
| Nr.     | Flächen Nr. | RF-SOILIN       | u <sub>x</sub> | u <sub>y</sub>    | u <sub>z</sub>    | V xz | V yz |
| 1       | 18          | -               | 100000.000     |                   | 1000000.000       |      |      |
| 2       | 13,15,16    | -               | 100000.000     |                   | 1000000.000       |      |      |
| 3       | 20          | -               |                |                   | ⊠                 |      |      |

#### 

| 1.0.1   | I D CHEILD             | JEIN MOOI MEE |                            |                |  |  |
|---------|------------------------|---------------|----------------------------|----------------|--|--|
| Bettung | Ausfall des Lagers bei |               | Fließen ab Kontaktspannung | Reibungszahl   |  |  |
| Nr.     | Flächen Nr.            | $\sigma_z$    | σ <sub>z'</sub> [N/mm²]    | μ <b>z</b> [-] |  |  |
| 1       | 18                     | Negativ       |                            |                |  |  |
| 2       | 13,15,16               | Negativ       |                            |                |  |  |
| 3       | 20                     | Negativ       |                            |                |  |  |

#### **■** 1.13 QUERSCHNITTE

| Quers. | Mater.    | I <sub>⊤</sub> [cm <sup>4</sup> ] | l <sub>y</sub> [cm⁴]              | I <sub>z</sub> [cm <sup>4</sup> ] | Hauptachsen | Drehung | Gesamtabme | ssungen [mm] |
|--------|-----------|-----------------------------------|-----------------------------------|-----------------------------------|-------------|---------|------------|--------------|
| Nr.    | Nr.       | A [cm <sup>2</sup> ]              | A <sub>y</sub> [cm <sup>2</sup> ] | A <sub>z</sub> [cm <sup>2</sup> ] | α [°]       | α' [°]  | Breite b   | Höhe h       |
| 1      | UU 156.7. | /156.7/13.5/26/26/64              | 0/27                              |                                   |             |         |            |              |
|        | 1         | 216.52                            | 99739.25                          | 3744.12                           | 0.00        | 0.00    | 156.8      | 640.0        |
|        |           | 160.89                            | 25.72                             | 78.20                             |             |         |            |              |

#### ■ 1.15/1 STABEXZENTRIZITÄTEN - ABSOLUT

| Exz. | Bezugs- | Stabanfang - Exzentrizität [mm] |                  |           | Staber             | nd - Exzentrizitä | Stabendgelenklage |            |          |
|------|---------|---------------------------------|------------------|-----------|--------------------|-------------------|-------------------|------------|----------|
| Nr.  | system  | e <sub>i,X</sub>                | e <sub>i,Y</sub> | $e_{i,Z}$ | $\mathbf{e}_{j,X}$ | $e_{j,Y}$         | $e_{j,Z}$         | Stabanfang | Stabende |
| 1    | Global  | -48.0                           | 0.0              | 0.0       | 0.0                | 0.0               | 0.0               | am Stab    | am Stab  |
| 2    | Global  | 0.0                             | -48.0            | 0.0       | 0.0                | 0.0               | 0.0               | am Stab    | am Stab  |
| 3    | Global  | -48.0                           | 0.0              | 0.0       | -48.0              | 0.0               | 0.0               | am Stab    | am Stab  |
| 4    | Global  | 48.0                            | 0.0              | 0.0       | 48.0               | 0.0               | 0.0               | am Stab    | am Stab  |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM

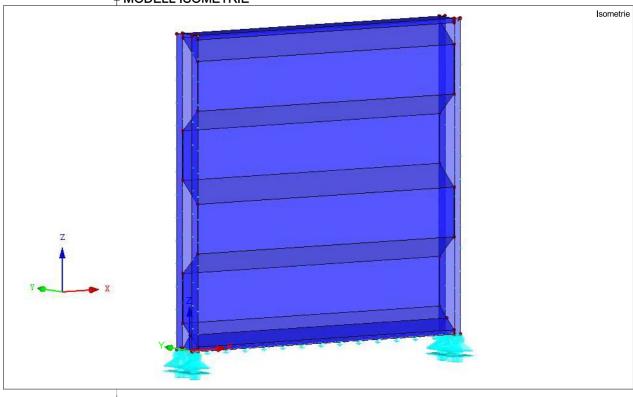






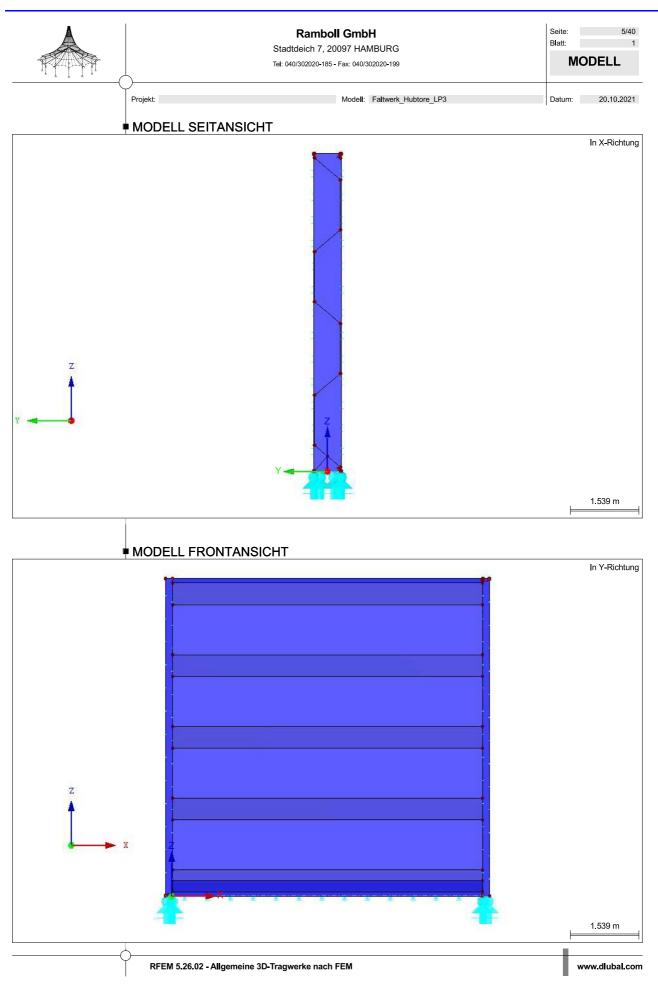




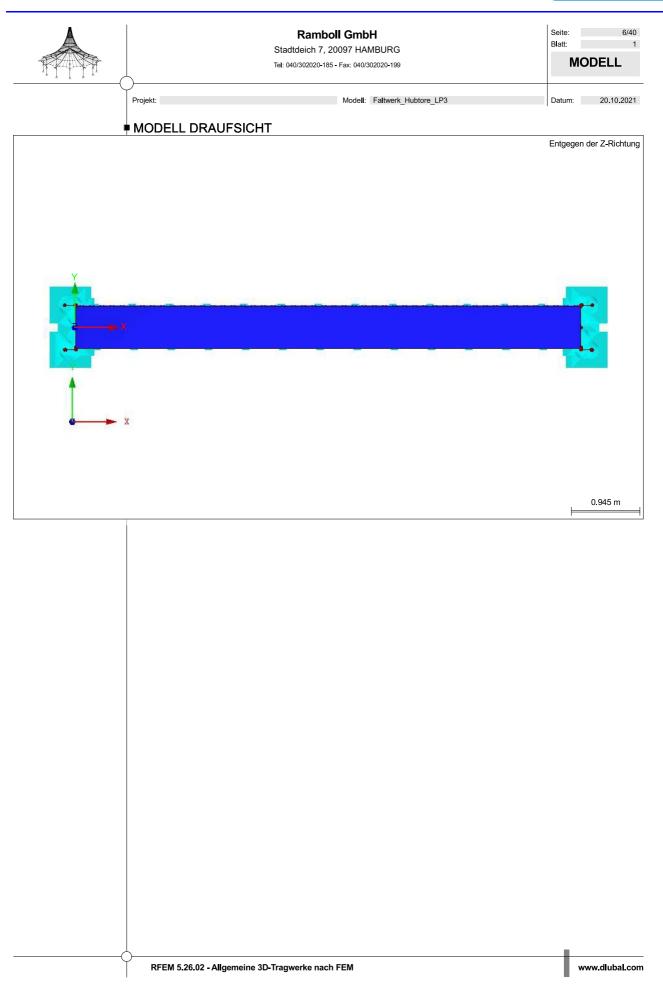

#### ■ 1.15/2 STABEXZENTRIZITÄTEN - RELATIV

| Exz. | Querschnit | tsanordnung | Quervers               | atz vom Quersch      | Axial. Versatz vom anliegenden |         |            |          |
|------|------------|-------------|------------------------|----------------------|--------------------------------|---------|------------|----------|
| Nr.  | y-Achse    | z-Achse     | Objekttyp <sub>I</sub> | Objekttyp Objekt Nr. |                                | z-Achse | Stabanfang | Stabende |
| 1    | Mitte      | Mitte       | Kein                   | 0                    | Mitte                          | Mitte   |            |          |
| 2    | Mitte      | Mitte       | Kein                   | 0                    | Mitte                          | Mitte   |            |          |
| 3    | Mitte      | Mitte       | Kein                   | 0                    | Mitte                          | Mitte   |            |          |
| 4    | Mitte      | Mitte       | Kein                   | 0                    | Mitte                          | Mitte   |            |          |

#### **♦** 1.23 FE-NETZVERDICHTUNGEN


| Verdicht. | FE-Netz Verdichtung | Knoten | Anzahl    | Umkreis    | Angestrebte | FE-Länge [m] |           |
|-----------|---------------------|--------|-----------|------------|-------------|--------------|-----------|
| Nr.       | angewendet auf      | Nr.    | Teilungen | Radius [m] | Innen       | Außen        | Kommentar |
| 1         | Flächen             | 13-18  |           | 0.025      |             |              |           |

#### **■ MODELL ISOMETRIE**




RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM













#### 

| Last- | LF-Bezeichnung                             | EN 1990   DIN           |       | Eigengewicht - Faktor in Richtung |       |        |  |
|-------|--------------------------------------------|-------------------------|-------|-----------------------------------|-------|--------|--|
| fall  |                                            | Einwirkungskategorie    | Aktiv | X                                 | Y     | z      |  |
| LF1   | Eigenlasten                                | Ständig                 | ⊠     | 0.000                             | 0.000 | -1.100 |  |
| LF2   | Bemessungshochwasser                       | Andere                  |       |                                   |       |        |  |
| LF3   | Bordvoll                                   | Andere                  |       |                                   |       |        |  |
| LF4   | Eisauflast                                 | Andere                  |       |                                   |       |        |  |
| LF5   | Eisdruck                                   | Andere                  |       |                                   |       |        |  |
| LF6   | Temperatur                                 | Temperatur (ohne Brand) |       |                                   |       |        |  |
| LF13  | Hubkraft Sude 9,81 Elbe 7,81               | Andere                  |       |                                   |       |        |  |
| LF20  | Gleichmäßige Temperaturänderung<br>+35K    | Temperatur (ohne Brand) |       |                                   |       |        |  |
| LF21  | Gleichmäßige Temperaturänderung<br>-35K    | Temperatur (ohne Brand) |       |                                   |       |        |  |
| LF22  | Ungleichmäßige<br>Temperaturverteilung 30K | Temperatur (ohne Brand) |       |                                   |       |        |  |

#### **■** 2.1.1 LASTFÄLLE - BERECHNUNGSPARAMETER

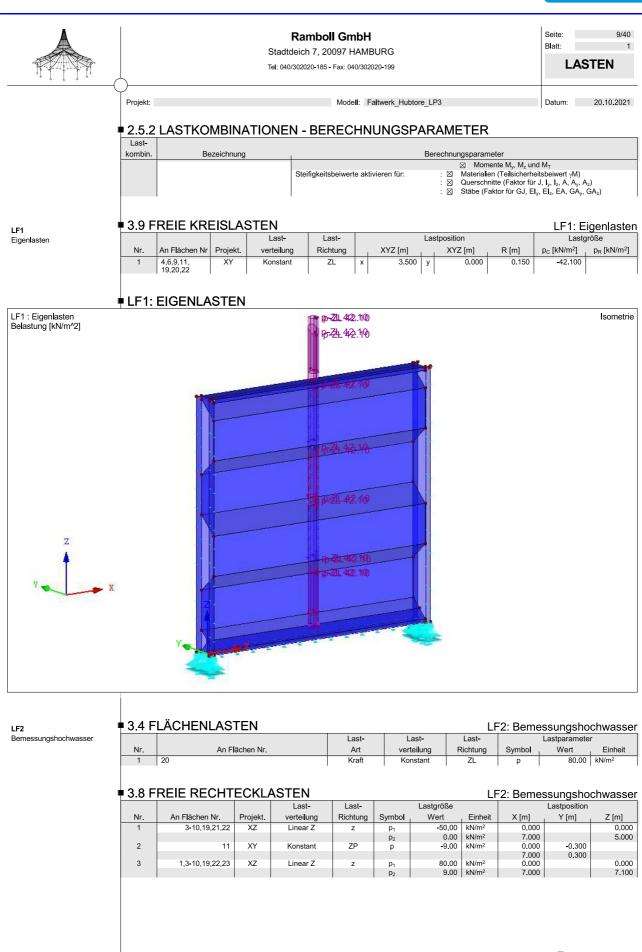
| ast-<br>all | LF-Bezeichnung                             |                                                                                                             | Berechnu   | ingsparameter                                                                                      |
|-------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------|
| .F1         | Eigenlasten                                | Berechnungstheorie                                                                                          | : ●        | Theorie I. Ordnung (linear)                                                                        |
|             |                                            | Berechnungsverfahren für das<br>System der nichtlinearen<br>algebraischen Gleichungen                       | : •        | Newton-Raphson                                                                                     |
|             |                                            | Steifigkeitsbeiwerte aktivieren für:                                                                        | : ⊠        |                                                                                                    |
|             | -                                          | B                                                                                                           |            |                                                                                                    |
| LF2         | Bemessungshochwasser                       | Berechnungstheorie<br>Berechnungsverfahren für das<br>System der nichtlinearen<br>algebraischen Gleichungen | : ◎        | Theorie I. Ordnung (linear)<br>Newton-Raphson                                                      |
|             |                                            | Steifigkeitsbeiwerte aktivieren für:                                                                        | : ⊠        | Querschnitte (Faktor für J, I <sub>y</sub> , I <sub>z</sub> , A, A <sub>y</sub> , A <sub>z</sub> ) |
|             |                                            |                                                                                                             | : ⊠        | Stäbe (Faktor für GJ, El <sub>y</sub> , El <sub>z</sub> , EA, GA <sub>y</sub> , GA <sub>z</sub> )  |
| LF3         | Bordvoll                                   | Berechnungstheorie<br>Berechnungsverfahren für das<br>System der nichtlinearen<br>algebraischen Gleichungen | ; ⊚        | Theorie I. Ordnung (linear)<br>Newton-Raphson                                                      |
|             |                                            | Steifigkeitsbeiwerte aktivieren für:                                                                        | : ⊠        | Querschnitte (Faktor für J, I <sub>y</sub> , I <sub>z</sub> , A, A <sub>y</sub> , A <sub>z</sub> ) |
|             |                                            |                                                                                                             | : ⊠        | Stäbe (Faktor für GJ, El <sub>y</sub> , El <sub>z</sub> , EA, GA <sub>y</sub> , GA <sub>z</sub> )  |
| LF4         | Eisauflast                                 | Berechnungstheorie<br>Berechnungsverfahren für das<br>System der nichtlinearen                              | : •<br>: • | Theorie I. Ordnung (linear)<br>Newton-Raphson                                                      |
|             |                                            | algebraischen Gleichungen                                                                                   |            |                                                                                                    |
|             |                                            | Steifigkeitsbeiwerte aktivieren für:                                                                        | : ⊠        | Querschnitte (Faktor für J, I <sub>y</sub> , I <sub>z</sub> , A, A <sub>y</sub> , A <sub>z</sub> ) |
|             |                                            |                                                                                                             | : ⊠        | Stäbe (Faktor für GJ, El <sub>v</sub> , El <sub>z</sub> , EA, GA <sub>v</sub> , GA <sub>z</sub> )  |
| LF5         | Eisdruck                                   | Berechnungstheorie                                                                                          | : •        | Theorie I. Ordnung (linear)                                                                        |
| <b>-</b>    |                                            | Berechnungsverfahren für das<br>System der nichtlinearen<br>algebraischen Gleichungen                       | : ●        | Newton-Raphson                                                                                     |
|             |                                            | Steifigkeitsbeiwerte aktivieren für:                                                                        | : ⊠        | Querschnitte (Faktor für J, I <sub>y</sub> , I <sub>z</sub> , A, A <sub>y</sub> , A <sub>z</sub> ) |
|             |                                            |                                                                                                             | : ⊠        | Stäbe (Faktor für GJ, El <sub>y</sub> , El <sub>z</sub> , EA, GA <sub>y</sub> , GA <sub>z</sub> )  |
| LF6         | Temperatur                                 | Berechnungstheorie                                                                                          | : •        | Theorie I. Ordnung (linear)                                                                        |
|             |                                            | Berechnungsverfahren für das<br>System der nichtlinearen<br>algebraischen Gleichungen                       | : ⊚        | Newton-Raphson (                                                                                   |
|             |                                            | Steifigkeitsbeiwerte aktivieren für:                                                                        | : ⊠        | Querschnitte (Faktor für J, I <sub>y</sub> , I <sub>z</sub> , A, A <sub>y</sub> , A <sub>z</sub> ) |
|             |                                            |                                                                                                             | : ⊠        | Stäbe (Faktor für GJ, El <sub>y</sub> , El <sub>z</sub> , EA, GA <sub>y</sub> , GA <sub>z</sub> )  |
| LF13        | Hubkraft Sude 9,81 Elbe 7,81               | Berechnungstheorie                                                                                          | : ●        | Theorie I. Ordnung (linear)                                                                        |
|             |                                            | Berechnungsverfahren für das<br>System der nichtlinearen<br>algebraischen Gleichungen                       | : ●        | Newton-Raphson                                                                                     |
|             |                                            | Steifigkeitsbeiwerte aktivieren für:                                                                        | : ⊠        | Querschnitte (Faktor für J, I <sub>y</sub> , I <sub>z</sub> , A, A <sub>y</sub> , A <sub>z</sub> ) |
|             |                                            |                                                                                                             | : ⊠        | Stäbe (Faktor für GJ, El <sub>y</sub> , El <sub>z</sub> , EA, GA <sub>y</sub> , GA <sub>z</sub> )  |
| LF20        | Gleichmäßige<br>Temperaturänderung +35K    | Berechnungstheorie                                                                                          | : ●        | Theorie I. Ordnung (linear)                                                                        |
|             |                                            | Berechnungsverfahren für das<br>System der nichtlinearen<br>algebraischen Gleichungen                       | : ◎        | Newton-Raphson                                                                                     |
|             |                                            | Steifigkeitsbeiwerte aktivieren für:                                                                        | : ⊠        | Querschnitte (Faktor für J, I <sub>y</sub> , I <sub>z</sub> , A, A <sub>y</sub> , A <sub>z</sub> ) |
|             |                                            |                                                                                                             | : 🗵        | Stäbe (Faktor für GJ, El <sub>y</sub> , El <sub>z</sub> , EA, GA <sub>y</sub> , GA <sub>z</sub> )  |
| LF21        | Gleichmäßige<br>Temperaturänderung -35K    | Berechnungstheorie                                                                                          | : ●        | Theorie I. Ordnung (linear)                                                                        |
|             |                                            | Berechnungsverfahren für das<br>System der nichtlinearen<br>algebraischen Gleichungen                       | : ●        | Newton-Raphson                                                                                     |
|             |                                            | Steifigkeitsbeiwerte aktivieren für:                                                                        | : ⊠        | Querschnitte (Faktor für J, I <sub>y</sub> , I <sub>z</sub> , A, A <sub>y</sub> , A <sub>z</sub> ) |
|             |                                            |                                                                                                             | : ⊠        | Stäbe (Faktor für GJ, El <sub>y</sub> , El <sub>z</sub> , EA, GA <sub>y</sub> , GA <sub>z</sub> )  |
| LF22        | Ungleichmäßige<br>Temperaturverteilung 30K | Berechnungstheorie                                                                                          | ; •        | Theorie I. Ordnung (linear)                                                                        |
|             |                                            | Berechnungsverfahren für das<br>System der nichtlinearen<br>algebraischen Gleichungen                       | : ●        | Newton-Raphson                                                                                     |
|             |                                            | Steifigkeitsbeiwerte aktivieren für:                                                                        | : ⊠        | Querschnitte (Faktor für J, I <sub>y</sub> , I <sub>z</sub> , A, A <sub>y</sub> , A <sub>z</sub> ) |
|             |                                            | _                                                                                                           | . 121      | Stäbe (Faktor für GJ, El <sub>y</sub> , El <sub>z</sub> , EA, GA <sub>y</sub> , GA <sub>z</sub> )  |
|             |                                            | I                                                                                                           | . ~        |                                                                                                    |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





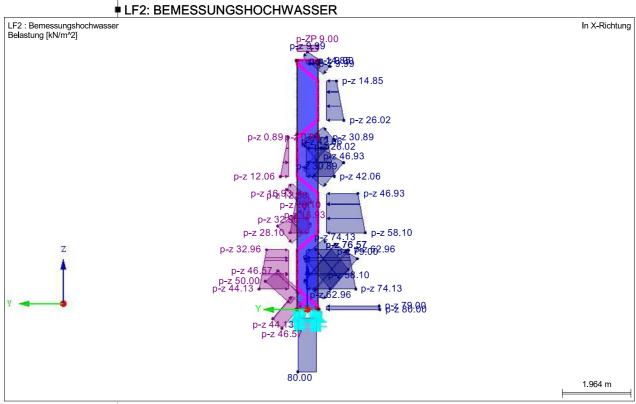
#### **■** 2.5 LASTKOMBINATIONEN


| Last-   |    | Lastkombination                    |     |        |      |                                         |
|---------|----|------------------------------------|-----|--------|------|-----------------------------------------|
| kombin. | BS | Bezeichnung                        | Nr. | Faktor | l    | Lastfa <b>ll</b>                        |
| LK1     |    | Ständige Bemessungsituation - BHW  | 1   | 1.35   | LF1  | Eigenlasten                             |
|         |    |                                    | 2   | 1.35   | LF2  | Bemessungshochwasser                    |
|         |    |                                    | 3   | 1.50   | LF4  | Eisauflast                              |
| LK2     |    | Vorübergehende Bemessungssituation | 1   | 1.35   | LF1  | Eigenlasten                             |
|         |    |                                    | 2   | 1.25   |      | Bordvo <b>ll</b>                        |
|         |    |                                    | 3   | 1.35   |      | Eisauflast                              |
|         |    |                                    | 4   | 1.35   |      | Eisdruck                                |
|         |    |                                    | 5   | 1.35   | LF6  | Temperatur                              |
| LK6     |    | Lagesicherheit BHW dstb            | 1   | 1.10   | LF1  | Eigenlasten                             |
|         |    |                                    | 2   | 1.35   | LF2  | Bemessungshochwasser                    |
| LK9     |    | Dichtheit                          | 1   | 1.00   | LF1  | Eigenlasten                             |
|         |    |                                    | 2   | 1.00   | LF2  | Bemessungshochwasser                    |
|         |    |                                    | 3   | 1.00   | LF5  | Eisdruck                                |
|         |    |                                    | 4   | 1.00   | LF6  | Temperatur                              |
| LK10    |    | Temperatur                         | 1   | 1.00   | LF20 | Gleichmäßige Temperaturänderung<br>+35K |
|         |    |                                    | 2   | 1.00   | LF22 | Ungleichmäßige Temperaturverteilung 30K |

#### ■ 2.5.2 LASTKOMBINATIONEN - BERECHNUNGSPARAMETER

| kombin. | Bezeichnung                           |                                                                                                                         | Berechnu          | ngsparameter                                                                                                                                                                                                                                               |
|---------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LK1     | Ständige Bemessungsituation -         | Berechnungstheorie                                                                                                      | : ⊙               | II. Ordnung (P-Delta)                                                                                                                                                                                                                                      |
|         | BHW                                   | Berechnungsverfahren für das<br>System der nichtlinearen<br>algebraischen Gleichungen                                   | : ●               | Picard                                                                                                                                                                                                                                                     |
|         |                                       | Optionen                                                                                                                | : ⊠               | Entlastende Wirkung von Zugkräften berücksichtigen Schnittgrößen auf das verformte System beziehen für:  ☑ Normalkräfte N  ☑ Querkräfte V <sub>y</sub> und V <sub>z</sub> ☑ Momente M <sub>v</sub> , M <sub>z</sub> und M <sub>T</sub>                     |
|         |                                       | Steifigkeitsbeiwerte aktivieren für:                                                                                    | : 🛭<br>: 🗷<br>: 🖂 | Materialien (Teilsicherheitsbeiwert $\gamma$ M)<br>Querschnitte (Faktor für J, I <sub>y</sub> , I <sub>z</sub> , A, A <sub>y</sub> , A <sub>z</sub> )<br>Stäbe (Faktor für GJ, EI <sub>y</sub> , EI <sub>z</sub> , EA, GA <sub>y</sub> , GA <sub>z</sub> ) |
| LK2     | Vorübergehende<br>Bemessungssituation | Berechnungstheorie                                                                                                      | : ●               | II. Ordnung (P-Delta)                                                                                                                                                                                                                                      |
|         |                                       | Berechnungsverfahren für das<br>System der nichtlinearen<br>algebraischen Gleichungen                                   | : ●               | Picard                                                                                                                                                                                                                                                     |
|         |                                       | Optionen                                                                                                                | : ⊠               | Entlastende Wirkung von Zugkräften berücksichtigen Schnittgrößen auf das verformte System beziehen für:  ☑ Normalkräfte N  ☑ Querkräfte V <sub>y</sub> und V <sub>z</sub> ☑ Momente M <sub>v</sub> , M <sub>y</sub> und M <sub>T</sub>                     |
|         |                                       | Steifigkeitsbeiwerte aktivieren für:                                                                                    | : 🛭<br>: 🗳<br>: 🗳 | Materialien (Teilsicherheitsbeiwert $\gamma$ M)<br>Querschnitte (Faktor für J, I <sub>y</sub> , I <sub>z</sub> , A, A <sub>y</sub> , A <sub>z</sub> )<br>Stäbe (Faktor für GJ, EI <sub>y</sub> , EI <sub>z</sub> , EA, GA <sub>y</sub> , GA <sub>z</sub> ) |
| LK6     | Lagesicherheit BHW dstb               | Berechnungstheorie Berechnungsverfahren für das System der nichtlinearen algebraischen Gleichungen                      | : •               | II. Ordnung (P-Delta)<br>Picard                                                                                                                                                                                                                            |
|         |                                       | Optionen                                                                                                                | : ⊠               | Entlastende Wirkung von Zugkräften berücksichtigen Schnittgrößen auf das verformte System beziehen für:  ☑ Normalkräfte N  ☑ Querkräfte V <sub>y</sub> und V <sub>z</sub> ☑ Momente M <sub>v</sub> , M <sub>v</sub> und M <sub>T</sub>                     |
|         |                                       | Steifigkeitsbeiwerte aktivieren für:                                                                                    | : 🛭<br>: 🗷<br>: 🗷 | Materialien (Teilsicherheitsbeiwert $\gamma M$ )<br>Querschnitte (Faktor für J, $I_y$ , $I_z$ , A, A <sub>y</sub> , A <sub>z</sub> )<br>Stäbe (Faktor für GJ, EI <sub>y</sub> , EI <sub>z</sub> , EA, GA <sub>y</sub> , GA <sub>z</sub> )                  |
| LK9     | Dichtheit                             | Berechnungstheorie Berechnungsverfahren für das System der nichtlinearen algebraischen Gleichungen                      | : 0               | II. Ordnung (P-Delta)<br>Picard                                                                                                                                                                                                                            |
|         |                                       | Optionen                                                                                                                | : ⊠               | Entlastende Wirkung von Zugkräften berücksichtigen Schnittgrößen auf das verformte System beziehen für:  ☑ Normalkräfte N  ☑ Querkräfte V <sub>y</sub> und V <sub>z</sub> ☑ Momente M <sub>v</sub> , M <sub>v</sub> und M <sub>T</sub>                     |
|         |                                       | Steifigkeitsbeiwerte aktivieren für:                                                                                    | : 🗵<br>: 🗵        | Materialien (Teilsicherheitsbeiwert γM) Querschnitte (Faktor für J, I <sub>y</sub> , I <sub>z</sub> , A, A <sub>y</sub> , A <sub>z</sub> ) Stäbe (Faktor für GJ, EI <sub>z</sub> , EA, GA <sub>y</sub> , GA <sub>z</sub> )                                 |
| LK10    | Temperatur                            | Berechnungstheorie<br>Berechnungsverfahren für das<br>System der nichtlinearen<br>algebraischen Gleichungen<br>Optionen | : ©<br>: ©        | II. Ordnung (P-Delta) Picard  Entlastende Wirkung von Zugkräften berücksichtigen Schnittgrößen auf das verformte System beziehen für:  Normalkräfte N Querkräfte V, und V,                                                                                 |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM



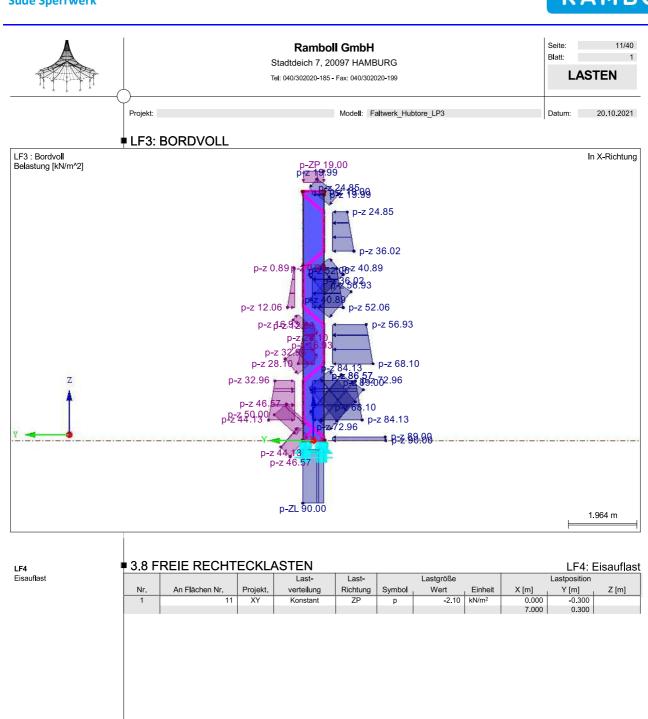



RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





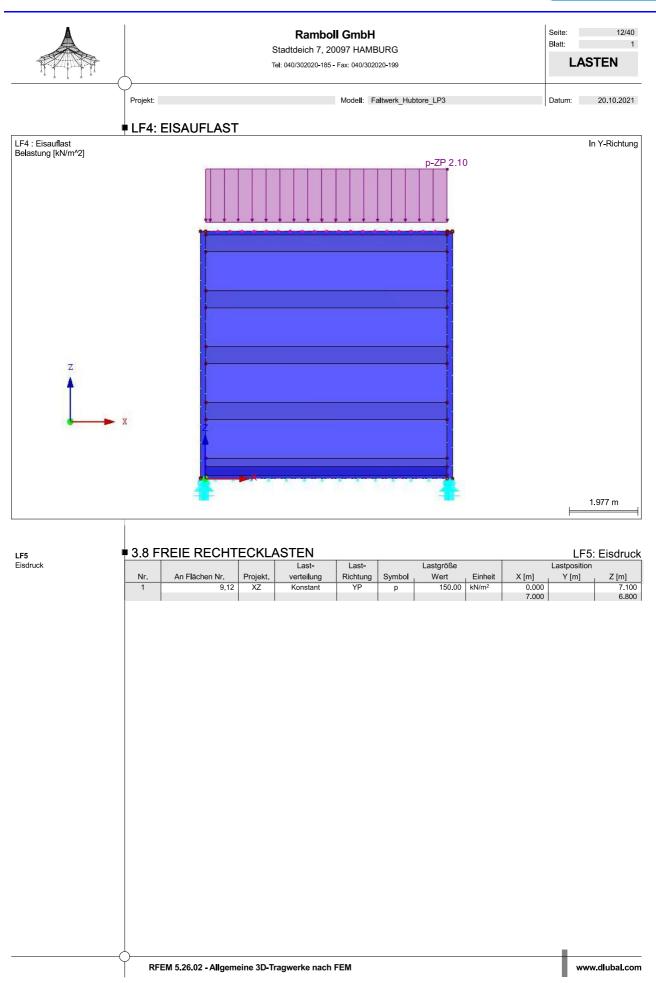



LF3 Bordvoll

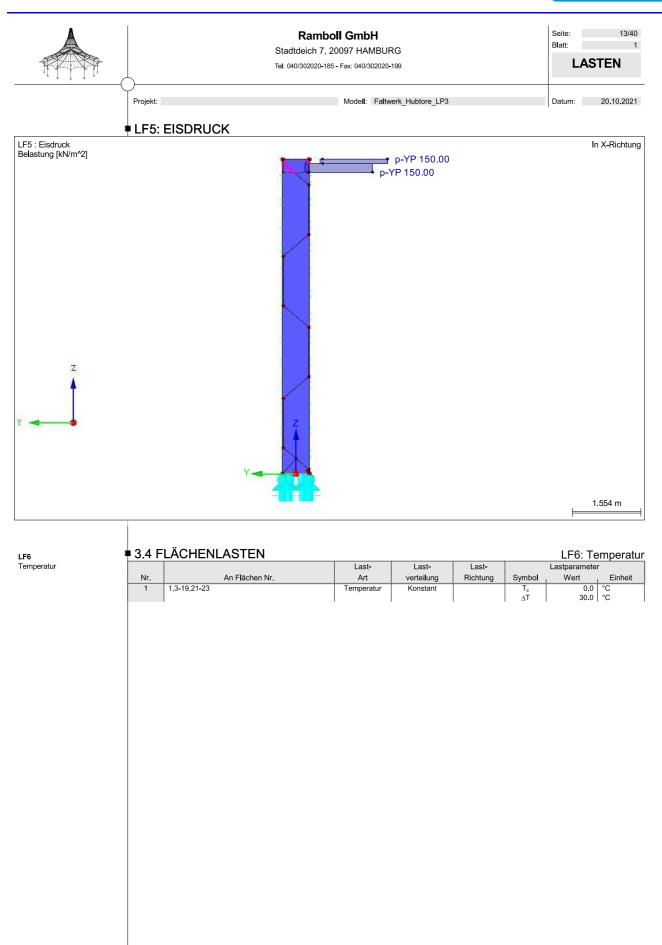
| 3.8 FREIE | RECHTECKL | .ASTEN |
|-----------|-----------|--------|
|-----------|-----------|--------|

| 9.8 F | 3.8 FREIE RECHTECKLASTEN LF3: Bordvoll |          |            |          |                |        |                   |         |              |       |  |  |  |  |
|-------|----------------------------------------|----------|------------|----------|----------------|--------|-------------------|---------|--------------|-------|--|--|--|--|
|       |                                        |          | Last-      | Last-    | Lastgröße      |        |                   |         | Lastposition |       |  |  |  |  |
| Nr.   | An Flächen Nr.                         | Projekt. | verteilung | Richtung | Symbol         | Wert   | Einheit           | X [m]   | Y [m]        | Z [m] |  |  |  |  |
| 1     | 3-10,19,21,22                          | XZ       | Linear Z   | z        | p <sub>1</sub> | -50.00 | kN/m <sup>2</sup> | 0.000   |              | 0.000 |  |  |  |  |
|       |                                        |          |            |          | p <sub>2</sub> | 0.00   | kN/m <sup>2</sup> | 7.000   |              | 5.000 |  |  |  |  |
| 2     | 11                                     | XY       | Konstant   | ZP       | р              | -19.00 | kN/m <sup>2</sup> | 0.000   | -0.300       |       |  |  |  |  |
|       |                                        |          |            |          |                |        |                   | 7.000   | 0.300        |       |  |  |  |  |
| 3     | 1,3-10,19,22,23                        | XZ       | Linear Z   | z        | p₁             | 90.00  | kN/m <sup>2</sup> | 0.000   |              | 0.000 |  |  |  |  |
|       |                                        |          |            |          | p <sub>2</sub> | 19.00  | kN/m <sup>2</sup> | 7.000   |              | 7.100 |  |  |  |  |
| 4     | 20                                     | XY       | Konstant   | ZL       | р              | 90.00  | kN/m <sup>2</sup> | -10.000 | 10.000       |       |  |  |  |  |
|       |                                        |          |            |          |                |        |                   | 10.000  | -10.000      |       |  |  |  |  |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM







HWSB\_SP\_PFU\_STA\_SPER Sperrwerk - Stahlwasserbau

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM









RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM







**LF10**Tor hochziehen

## 3.8 FREIE RECHTECKLASTEN

#### LF10: Tor hochziehen

|     |                 |          | Last-      | Last-    | Lastgröße      |        |                   | Lastposition |         |       |  |
|-----|-----------------|----------|------------|----------|----------------|--------|-------------------|--------------|---------|-------|--|
| Nr. | An Flächen Nr.  | Projekt. | verteilung | Richtung | Symbol         | Wert   | Einheit           | X [m] ,      | Y [m]   | Z [m] |  |
| 1   | 1,3-10,19,22,23 | XZ       | Linear Z   | z        | p <sub>1</sub> | 63.10  | kN/m <sup>2</sup> | 0.000        |         | 0.000 |  |
|     |                 |          |            |          | p <sub>2</sub> | 0.00   | kN/m <sup>2</sup> | 7.000        |         | 6.310 |  |
| 3   | 3-10,19,21,22   | XZ       | Linear Z   | z        | p <sub>1</sub> | -43.10 | kN/m <sup>2</sup> | 0.000        |         | 0.000 |  |
|     |                 |          |            |          | p <sub>2</sub> | 0.00   | kN/m <sup>2</sup> | 7.000        |         | 4.310 |  |
| 4   | 20              | XY       | Konstant   | ZL       | р              | 43.10  | kN/m <sup>2</sup> | -10.000      | 10.000  |       |  |
|     |                 |          |            |          |                |        |                   | 10.000       | -10.000 |       |  |

**LF11**Tor ziehen Elbe Hochwasser

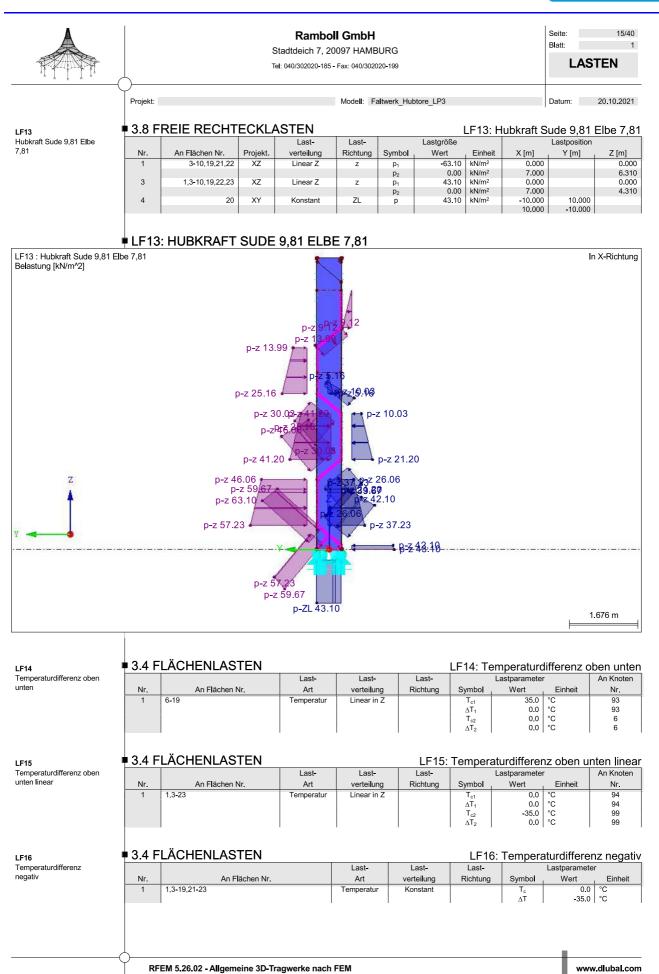
■ 3.8 FREIE RECHTECKLASTEN

LF11: Tor ziehen Elbe Hochwasser

|                                                                              | osition<br>[m] |       |
|------------------------------------------------------------------------------|----------------|-------|
| Nr. An Flächen Nr. Projekt. verteilung Richtung Symbol Wert Einheit X [m]    | [m]            |       |
|                                                                              | F111           | Z [m] |
| 1 3-10,19,21,22 XZ Linear Z z p <sub>1</sub> -63.10 kN/m <sup>2</sup> 0.000  |                | 0.000 |
| p <sub>2</sub>   0.00   kN/m <sup>2</sup>   7.000                            |                | 6.310 |
| 2 11 XY Konstant ZP p -12.10 kN/m <sup>2</sup> 0.000                         | -0.300         |       |
| 7.000                                                                        | 0.300          |       |
| 3 1,3-10,19,22,23 XZ Linear Z z p <sub>1</sub> 83.10 kN/m <sup>2</sup> 0.000 |                | 0.000 |
| $\left  \begin{array}{c cccccccccccccccccccccccccccccccccc$                  |                | 7.100 |
| 4 20 XY Konstant ZL p 83.10 kN/m <sup>2</sup> -10.000                        | 10.000         |       |
| 10.000                                                                       | 10.000         |       |

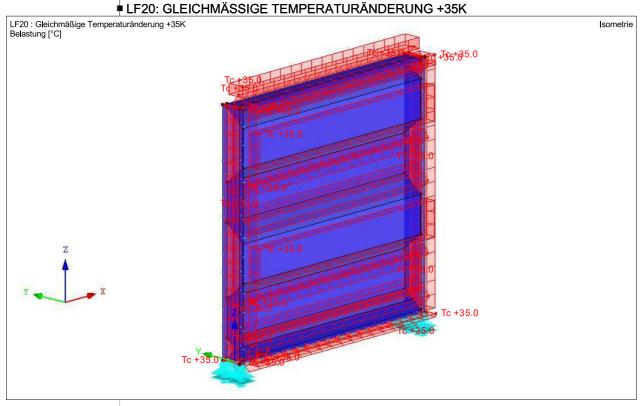
LF12 Hubkraft Elbe Hochwasser deltah=2m

sser J.


■ 3.8 FREIE RECHTECKLASTEN

LF12: Hubkraft Elbe Hochwasser deltah=2m

|   |     |                 |          | Last-      | Last-    | Lastgröße      |        |                   | Lastposition |         |       |
|---|-----|-----------------|----------|------------|----------|----------------|--------|-------------------|--------------|---------|-------|
|   | Nr. | An Flächen Nr.  | Projekt. | verteilung | Richtung | Symbol         | Wert   | Einheit           | X [m]        | Y [m]   | Z [m] |
| ı | 1   | 3-10,19,21,22   | XZ       | Linear Z   | z        | p <sub>1</sub> | -63.10 | kN/m <sup>2</sup> | 0.000        |         | 0.000 |
|   |     |                 |          |            |          | p <sub>2</sub> | 0.00   | kN/m <sup>2</sup> | 7.000        |         | 6.310 |
| ĺ | 2   | 11              | XY       | Konstant   | ZP       | р              | -2.10  | kN/m <sup>2</sup> | 0.000        | -0.300  |       |
| j |     |                 |          |            |          |                |        |                   | 7.000        | 0.300   |       |
|   | 3   | 1,3-10,19,22,23 | XZ       | Linear Z   | z        | p <sub>1</sub> | 73.10  | kN/m <sup>2</sup> | 0.000        |         | 0.000 |
|   |     |                 |          |            |          | p <sub>2</sub> | 2.10   | kN/m <sup>2</sup> | 7.000        |         | 7.100 |
| ĺ | 4   | 20              | XY       | Konstant   | ZL       | р              | 73.10  | kN/m <sup>2</sup> | -10.000      | 10.000  |       |
|   |     |                 |          |            |          |                |        |                   | 10.000       | -10.000 |       |


RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM











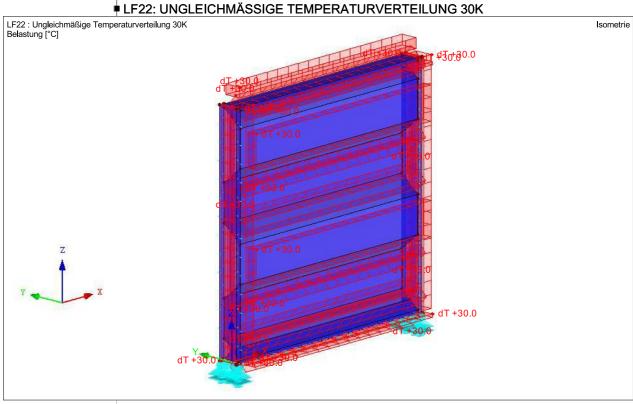
**LF21**Gleichmäßige
Temperaturänderung -35K

## • 3.4 FLÄCHENLASTEN LF21:

LF21: Gleichmäßige Temperaturänderung -35K

|     |                | Last-      | Last-      | Last-    | Lastparameter  |       | r       |
|-----|----------------|------------|------------|----------|----------------|-------|---------|
| Nr. | An Flächen Nr. | Art        | verteilung | Richtung | Symbol         | Wert  | Einheit |
| 1   | 1,3-19,21-23   | Temperatur | Konstant   |          | T <sub>c</sub> | -35.0 | °C      |
|     |                |            |            |          | ΔΤ             | 0.0   | °C      |

**LF22** Ungleichmäßige Temperaturverteilung 30K


| • | ₱ 3.4 FLÄCHENLASTEN |  | LF22: Ungleichmäßige Temperaturverteilung |       |       |               |  |  |
|---|---------------------|--|-------------------------------------------|-------|-------|---------------|--|--|
|   |                     |  | Last-                                     | Last- | Last- | Lastparameter |  |  |

|     |                | Last-      | Last-      | Last-    |                | Lastparamete | r       |
|-----|----------------|------------|------------|----------|----------------|--------------|---------|
| Nr. | An Flächen Nr. | Art        | verteilung | Richtung | Symbol         | Wert         | Einheit |
| 1   | 1,3-19,21-23   | Temperatur | Konstant   |          | T <sub>c</sub> | 0.0          | °C      |
|     |                |            |            | İ        | ΔT             | 30.0         | °C      |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM







RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





#### ■ 4.0 ERGEBNISSE - ZUSAMMENFASSUNG

|                          | Bezeichnung                                    | Wert               | Einheit | Kommentar                                                  |
|--------------------------|------------------------------------------------|--------------------|---------|------------------------------------------------------------|
| stfall LF1 - Eigenlasten | ·                                              |                    |         |                                                            |
| Summe Belast             | ung in Richtung X                              | 0.00               | kN      |                                                            |
| Summe Lager              | kräfte in X                                    | 0.00               | kN      |                                                            |
| Summe Belast             | ung in Richtung Y                              | 0.00               | kN      |                                                            |
| Summe Lager              |                                                | 0.00               | kN      |                                                            |
| Summe Belast             | ung in Richtung Z                              | -169.74            | kN      |                                                            |
| Summe Lager              | kräfte in Z                                    | -169.74            | kN      | Abweichung -0.00%                                          |
| Resultierende            | der Reaktionen um X                            | -0.035             | kNm     | Im Schwerpunkt des Modells (X:3.500, Y:0.004, Z:3.531 m)   |
| Resultierende            | der Reaktionen um Y                            | 0.000              | kNm     | Im Schwerpunkt des Modells                                 |
| Resultierende            | der Reaktionen um Z                            | 0.000              | kNm     | Im Schwerpunkt des Modells                                 |
| Max. Verschie            | bung in X                                      | -0.0               | mm      | FE-Netzknoten Nr. 13167 (X: -0.116, Y: -0.307, Z: 5.125 m) |
| Max. Verschie            | bung in Y                                      | 0.5                | mm      | FE-Netzknoten Nr. 2759 (X: 3.500, Y: 0.000, Z: 6.758 m)    |
| Max. Verschie            | bung in Z                                      | -1.5               | mm      | FE-Netzknoten Nr. 2835 (X: 3.500, Y: -0.290, Z: 7.100 m)   |
| Max. Verschie            | bung vektoriell                                | 1.6                | mm      | FE-Netzknoten Nr. 3033 (X: 3.500, Y: -0.290, Z: 7.000 m)   |
| Max. Verdrehu            | ing um X                                       | 2.2                | mrad    | FE-Netzknoten Nr. 2835 (X: 3.500, Y: -0.290, Z: 7.100 m)   |
| Max. Verdrehu            | ing um Y                                       | -0.6               | mrad    | FE-Netzknoten Nr. 3038 (X: 5.989, Y: -0.290, Z: 7.000 m)   |
| Max. Verdrehu            | ing um Z                                       | 0.2                | mrad    | FE-Netzknoten Nr. 14 (X: 0.015, Y: -0.290, Z: 7.000 m)     |
| Maximale Fläc            | henverzerrung                                  | 0.000              | %       | FE-Netzknoten Nr. 0 (X: 0.000, Y: 0.000, Z: 0.000 m)       |
| Berechnungst             | neorie                                         | I. Ordnung         |         | Theorie I. Ordnung (linear)                                |
| Steifigkeitsred          | uzierung                                       | _                  |         | Querschnitte, Stäbe, Flächen                               |
| Anzahl der La            | ststufen                                       | 1                  |         |                                                            |
| Anzahl der Ite           | rationen                                       | 22                 |         |                                                            |
|                          | rt des Elementes der<br>trix auf der Diagonale | 2.612E+13          |         |                                                            |
| Minimaler We             | rt des Elementes der<br>trix auf der Diagonale | 8.081E+04          |         |                                                            |
|                          | der Steifigkeitsmatrix                         | 1.727E+1136<br>350 |         |                                                            |
| Unendlich-Nor            | m                                              | 2,613E+13          |         |                                                            |

| Berechnungsstatus :                  |             |      |                                                                      |
|--------------------------------------|-------------|------|----------------------------------------------------------------------|
|                                      |             |      | en eingestellten Wert 1.50 % der größten Modellabmessung (152.8 mm). |
| Summe Belastung in Richtung X        | 0.00        |      |                                                                      |
| Summe Lagerkräfte in X               | 0.00        |      |                                                                      |
| Summe Belastung in Richtung Y        | 1330.92     |      |                                                                      |
| Summe Lagerkräfte in Y               | 1330.92     |      | Abweichung 0.00%                                                     |
| Summe Belastung in Richtung Z        | 39.83       |      |                                                                      |
| Summe Lagerkräfte in Z               | 39.67       |      | Abweichung 0.39%                                                     |
| Resultierende der Reaktionen um X    | -6.13E+06   |      | Im Schwerpunkt des Modells (X:3.500, Y:0.004, Z:3.531 m)             |
| Resultierende der Reaktionen um Y    | 0.000       |      | Im Schwerpunkt des Modells                                           |
| Resultierende der Reaktionen um Z    | -0.002      |      | Im Schwerpunkt des Modells                                           |
| Max. Verschiebung in X               | -0.5        |      | FE-Netzknoten Nr. 23978 (X: 7.089, Y: -0.307, Z: 1.025 m)            |
| Max. Verschiebung in Y               | 4.9         |      | FE-Netzknoten Nr. 494 (X: 3.500, Y: 0.290, Z: 1.145 m)               |
| Max. Verschiebung in Z               | 4606750.0   |      | FE-Netzknoten Nr. 24512 (X: 3.002, Y: 0.307, Z: 0.000 m)             |
| Max. Verschiebung vektoriell         | 4606750.0   |      | FE-Netzknoten Nr. 24512 (X: 3.002, Y: 0.307, Z: 0.000 m)             |
| Max. Verdrehung um X                 | 3.9         |      | FE-Netzknoten Nr. 2403 (X: 3.500, Y: -0.290, Z: 5.956 m)             |
| Max. Verdrehung um Y                 | 0.9         | mrad | FE-Netzknoten Nr. 24550 (X: 6.927, Y: 0.009, Z: 0.000 m)             |
| Max. Verdrehung um Z                 | -4.1        | mrad | FE-Netzknoten Nr. 14124 (X: 6.985, Y: 0.307, Z: 1.150 m)             |
| Maximale Flächenverzerrung           | 0.000       | ‰    | FE-Netzknoten Nr. 0 (X: 0.000, Y: 0.000, Z: 0.000 m)                 |
| Berechnungstheorie                   | I. Ordnung  |      | Theorie I. Ordnung (linear)                                          |
| Steifigkeitsreduzierung              |             |      | Querschnitte, Stäbe, Flächen                                         |
| Anzahl der Laststufen                | 1           |      |                                                                      |
| Anzahl der Iterationen               | 71          |      |                                                                      |
| Maximaler Wert des Elementes der     | 1.884E+10   |      |                                                                      |
| Steifigkeitsmatrix auf der Diagonale |             |      |                                                                      |
| Minimaler Wert des Elementes der     | 8.081E+04   |      |                                                                      |
| Steifigkeitsmatrix auf der Diagonale |             |      |                                                                      |
| Determinante der Steifigkeitsmatrix  | 2.476E+1135 |      |                                                                      |
|                                      | 923         |      |                                                                      |

| Die Summe der Lasten und die Summe der Lagerl | kräfte in Richtung Z sind | nicht im | Gleichgewicht (Abweichung 266394496,00%).                 |
|-----------------------------------------------|---------------------------|----------|-----------------------------------------------------------|
| Summe Belastung in Richtung X                 | 0.00                      | kN       |                                                           |
| Summe Lagerkräfte in X                        | 0.00                      | kN       |                                                           |
| Summe Belastung in Richtung Y                 | 1825.79                   | kN       |                                                           |
| Summe Lagerkräfte in Y                        | 1825.79                   | kN       | Abweichung 0.00%                                          |
| Summe Belastung in Richtung Z                 | 0.59                      | kN       | ·                                                         |
| Summe Lagerkräfte in Z                        | 0.00                      | kN       |                                                           |
| Resultierende der Reaktionen um X             | 404.562                   | kNm      | Im Schwerpunkt des Modells (X:3.500, Y:0.004, Z:3.531 m)  |
| Resultierende der Reaktionen um Y             | 0.000                     | kNm      | Im Schwerpunkt des Modells                                |
| Resultierende der Reaktionen um Z             | -0.002                    | kNm      | Im Schwerpunkt des Modells                                |
| Max. Verschiebung in X                        | -0.7                      | mm       | FE-Netzknoten Nr. 23973 (X: 7.063, Y: -0.307, Z: 1.050 m) |
| Max. Verschiebung in Y                        | 6.6                       | mm       | FE-Netzknoten Nr. 494 (X: 3.500, Y: 0.290, Z: 1.145 m)    |
| Max. Verschiebung in Z                        | 4.1                       | mm       | FE-Netzknoten Nr. 3033 (X: 3.500, Y: -0.290, Z: 7.000 m)  |
| Max. Verschiebung vektoriell                  | 6.6                       | mm       | FE-Netzknoten Nr. 494 (X: 3.500, Y: 0.290, Z: 1.145 m)    |
| Max. Verdrehung um X                          | 7.0                       | mrad     | FE-Netzknoten Nr. 3033 (X: 3.500, Y: -0.290, Z: 7.000 m)  |
| Max. Verdrehung um Y                          | -2.0                      | mrad     | FE-Netzknoten Nr. 3040 (X: 6.487, Y: -0.290, Z: 7.000 m)  |
| Max. Verdrehung um Z                          | -5.5                      | mrad     | FE-Netzknoten Nr. 14124 (X: 6.985, Y: 0.307, Z: 1.150 m)  |
| Maximale Flächenverzerrung                    | 0.000                     | ‰        | FE-Netzknoten Nr. 0 (X: 0.000, Y: 0.000, Z: 0.000 m)      |
| Berechnungstheorie                            | I. Ordnung                |          | Theorie I. Ordnung (linear)                               |
| Steifigkeitsreduzierung                       |                           |          | Querschnitte, Stäbe, Flächen                              |
| Anzahl der Laststufen                         | 1                         |          |                                                           |
| Anzahl der Iterationen                        | 26                        |          |                                                           |
| Maximaler Wert des Elementes der              | 1.306E+13                 |          |                                                           |
| Steifigkeitsmatrix auf der Diagonale          |                           |          |                                                           |
| Minimaler Wert des Elementes der              | 8.081E+04                 |          |                                                           |
| Steifigkeitsmatrix auf der Diagonale          |                           |          |                                                           |
| Determinante der Steifigkeitsmatrix           | 3.580E+1135               |          |                                                           |

Lastfall LF4 - Eisauflast

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





| Projekt:                                                                 |                     |            | Modell: Faltwerk_Hubtore_LP3                                                                                         | Datum: 20.10.2 |
|--------------------------------------------------------------------------|---------------------|------------|----------------------------------------------------------------------------------------------------------------------|----------------|
| 0 ERGEBNISSE - ZUSAMMENFA                                                | ASSUNG              |            |                                                                                                                      |                |
|                                                                          |                     | F:114      | Kananantan                                                                                                           |                |
| Bezeichnung Summe Belastung in Richtung X                                | 0.00                | Einheit    | Kommentar                                                                                                            |                |
| Summe Lagerkräfte in X                                                   | 0.00                | kN         |                                                                                                                      |                |
| Summe Belastung in Richtung Y                                            | 0.00                | kN         |                                                                                                                      |                |
| Summe Lagerkräfte in Y Summe Belastung in Richtung Z                     | 0.00<br>-8.49       | kN<br>kN   |                                                                                                                      |                |
| Summe Lagerkräfte in Z                                                   | -8.49               | kN         | Abweichung 0.00%                                                                                                     |                |
| Resultierende der Reaktionen um X                                        | 0.032               | kNm        | Im Schwerpunkt des Modells (X:3.500, Y:0.004, Z:3.531 m)                                                             |                |
| Resultierende der Reaktionen um Y Resultierende der Reaktionen um Z      | 0.000               | kNm        | Im Schwerpunkt des Modells                                                                                           |                |
| Max. Verschiebung in X                                                   | -0.0                | kNm<br>mm  | Im Schwerpunkt des Modells<br>FE-Netzknoten Nr. 3027 (X: 0.762, Y: -0.290, Z: 7.000 m)                               |                |
| Max. Verschiebung in Y                                                   | 0.1                 | mm         | FE-Netzknoten Nr. 3033 (X: 3.500, Y: -0.290, Z: 7.000 m)                                                             |                |
| Max. Verschiebung in Z                                                   | -0.5                | mm         | FE-Netzknoten Nr. 3033 (X: 3.500, Y: -0.290, Z: 7.000 m)                                                             |                |
| Max. Verschiebung vektoriell Max. Verdrehung um X                        | 0.5<br>0.8          | mm<br>mrad | FE-Netzknoten Nr. 3033 (X: 3.500, Y: -0.290, Z: 7.000 m)<br>FE-Netzknoten Nr. 2835 (X: 3.500, Y: -0.290, Z: 7.100 m) |                |
| Max. Verdrehung um Y                                                     | -0.2                | mrad       | FE-Netzknoten Nr. 3039 (X: 6.238, Y: 0.290, Z: 7.000 m)                                                              |                |
| Max. Verdrehung um Z                                                     | 0.1                 | mrad       | FE-Netzknoten Nr. 5627 (X: 0.015, Y: -0.289, Z: 6.975 m)                                                             |                |
| Maximale Flächenverzerrung                                               | 0.000               | ‰          | FE-Netzknoten Nr. 0 (X: 0.000, Y: 0.000, Z: 0.000 m)                                                                 |                |
| Berechnungstheorie Steifigkeitsreduzierung                               | I. Ordnung          |            | Theorie I. Ordnung (linear) Querschnitte, Stäbe, Flächen                                                             |                |
| Anzahl der Laststufen                                                    | 1                   |            | Quoi oo iiinko, okabo, i kasioii                                                                                     |                |
| Anzahl der Iterationen                                                   | 22                  |            |                                                                                                                      |                |
| Maximaler Wert des Elementes der<br>Steifigkeitsmatrix auf der Diagonale | 2.612E+13           |            |                                                                                                                      |                |
| Minimaler Wert des Elementes der                                         | 8.081E+04           |            |                                                                                                                      |                |
| Steifigkeitsmatrix auf der Diagonale                                     |                     |            |                                                                                                                      |                |
| Determinante der Steifigkeitsmatrix                                      | 9.248E+1136         |            |                                                                                                                      |                |
| Unendlich-Norm                                                           | 302<br>2.613E+13    |            |                                                                                                                      |                |
| all LF5 - Eisdruck                                                       | , 210102 10         |            |                                                                                                                      |                |
| Summe Belastung in Richtung X                                            | 0.00                |            |                                                                                                                      |                |
| Summe Lagerkräfte in X                                                   | 0.00                |            |                                                                                                                      |                |
| Summe Belastung in Richtung Y Summe Lagerkräfte in Y                     | 315.10<br>315.10    | kN<br>kN   | Abweichung 0.00%                                                                                                     |                |
| Summe Belastung in Richtung Z                                            | 0.00                |            | Abwelchung 0.00 %                                                                                                    |                |
| Summe Lagerkräfte in Z                                                   | 0.00                | kN         |                                                                                                                      |                |
| Resultierende der Reaktionen um X                                        | -1077.310           | kNm        | Im Schwerpunkt des Modells (X:3.500, Y:0.004, Z:3.531 m)                                                             |                |
| Resultierende der Reaktionen um Y Resultierende der Reaktionen um Z      | 0.000               | kNm<br>kNm | Im Schwerpunkt des Modells<br>Im Schwerpunkt des Modells                                                             |                |
| Max. Verschiebung in X                                                   | -0.7                | mm         | FE-Netzknoten Nr. 4194 (X: -0.063, Y: 0.307, Z: 6.825 m)                                                             |                |
| Max. Verschiebung in Y                                                   | 6.8                 | mm         | FE-Netzknoten Nr. 3033 (X: 3.500, Y: -0.290, Z: 7.000 m)                                                             |                |
| Max. Verschiebung in Z Max. Verschiebung vektoriell                      | -5.0<br>8.4         | mm<br>mm   | FE-Netzknoten Nr. 3033 (X: 3.500, Y: -0.290, Z: 7.000 m)                                                             |                |
| Max. Verschiebung verkonell Max. Verdrehung um X                         | 7.3                 | mrad       | FE-Netzknoten Nr. 3033 (X: 3.500, Y: -0.290, Z: 7.000 m)<br>FE-Netzknoten Nr. 2007 (X: 3.500, Y: -0.290, Z: 6.515 m) |                |
| Max. Verdrehung um Y                                                     | -2.4                | mrad       | FE-Netzknoten Nr. 2841 (X: 6.238, Y: 0.290, Z: 7.100 m)                                                              |                |
| Max. Verdrehung um Z                                                     | -5.0                | mrad       | FE-Netzknoten Nr. 96 (X: 6.985, Y: 0.307, Z: 7.100 m)                                                                |                |
| Maximale Flächenverzerrung Berechnungstheorie                            | 0.000<br>I. Ordnung | %          | FE-Netzknoten Nr. 0 (X: 0.000, Y: 0.000, Z: 0.000 m) Theorie I. Ordnung (linear)                                     |                |
| Steifigkeitsreduzierung                                                  | i. Ordinarig        |            | Querschnitte, Stäbe, Flächen                                                                                         |                |
| Anzahl der Laststufen                                                    | 1                   |            |                                                                                                                      |                |
| Anzahl der Iterationen                                                   | 22                  |            |                                                                                                                      |                |
| Maximaler Wert des Elementes der<br>Steifigkeitsmatrix auf der Diagonale | 1.306E+13           |            |                                                                                                                      |                |
| Minimaler Wert des Elementes der                                         | 8.081E+04           |            |                                                                                                                      |                |
| Steifigkeitsmatrix auf der Diagonale                                     |                     |            |                                                                                                                      |                |
| Determinante der Steifigkeitsmatrix                                      | 3.730E+1135         |            |                                                                                                                      |                |
| Unendlich-Norm                                                           | 940<br>1.307E+13    |            |                                                                                                                      |                |
| all LF6 - Temperatur                                                     | 2.55                | I t.N.     |                                                                                                                      |                |
| Summe Belastung in Richtung X Summe Lagerkräfte in X                     | 0.00<br>0.00        |            |                                                                                                                      |                |
| Summe Belastung in Richtung Y                                            | 0.00                | kN         |                                                                                                                      |                |
| Summe Lagerkräfte in Y                                                   | 0.00                | kN         |                                                                                                                      |                |
| Summe Belastung in Richtung Z                                            | 0.00                |            |                                                                                                                      |                |
| Summe Lagerkräfte in Z Resultierende der Reaktionen um X                 | 0.00                | kN<br>kNm  | Im Schwerpunkt des Modells (X:3.500, Y:0.004, Z:3.531 m)                                                             |                |
| Resultierende der Reaktionen um Y                                        | 0.000               | kNm        | Im Schwerpunkt des Modells (A.S.500, Y.0.004, Z.S.551 III)                                                           |                |
| Resultierende der Reaktionen um Z                                        | 0.000               | kNm        | Im Schwerpunkt des Modells                                                                                           |                |
| Max. Verschiebung in X                                                   | 0.3                 | mm         | FE-Netzknoten Nr. 8522 (X: 0.015, Y: 0.012, Z: 2.750 m)                                                              |                |
| Max. Verschiebung in Y Max. Verschiebung in Z                            | -0.9<br>1.2         | mm<br>mm   | FE-Netzknoten Nr. 2759 (X: 3.500, Y: 0.000, Z: 6.758 m)<br>FE-Netzknoten Nr. 2835 (X: 3.500, Y: -0.290, Z: 7.100 m)  |                |
| Max. Verschiebung vektoriell                                             | 1.3                 | mm         | FE-Netzknoten Nr. 3033 (X. 3.500, Y: -0.290, Z: 7.100 m)                                                             |                |
| Max. Verdrehung um X                                                     | -6.6                | mrad       | FE-Netzknoten Nr. 2784 (X: 3.500, Y: 0.290, Z: 7.100 m)                                                              |                |
| Max. Verdrehung um 7                                                     | -3.4                | mrad       | FE-Netzknoten Nr. 2884 (X: 0.015, Y: -0.013, Z: 7.100 m)                                                             |                |
| Max. Verdrehung um Z Maximale Flächenverzerrung                          | -2.6<br>0.000       | mrad<br>‰  | FE-Netzknoten Nr. 957 (X: 0.015, Y: -0.290, Z: 2.761 m)<br>FE-Netzknoten Nr. 0 (X: 0.000, Y: 0.000, Z: 0.000 m)      |                |
| Berechnungstheorie                                                       | I. Ordnung          | /00        | Theorie I. Ordnung (linear)                                                                                          |                |
| Steifigkeitsreduzierung                                                  |                     |            | Querschnitte, Stäbe, Flächen                                                                                         |                |
| Anzahl der Laststufen                                                    | 1                   |            |                                                                                                                      |                |
| Anzahl der Iterationen Maximaler Wert des Elementes der                  | 6.778E+11           |            |                                                                                                                      |                |
| Steifigkeitsmatrix auf der Diagonale                                     |                     |            |                                                                                                                      |                |
| Minimaler Wert des Elementes der                                         | 8.081E+04           |            |                                                                                                                      |                |
| Steifigkeitsmatrix auf der Diagonale                                     | 5.890E+1136         |            |                                                                                                                      |                |
| Determinante der Steifigkeitsmatrix                                      | 425                 |            |                                                                                                                      |                |
| Unendlich-Norm                                                           | 1.536E+12           | l          |                                                                                                                      |                |
| all LF13 - Hubkraft Sude 9,81 Elbe 7,81                                  | 0.00                | L PNI      |                                                                                                                      |                |
| Summe Belastung in Richtung X Summe Lagerkräfte in X                     | 0.00                |            |                                                                                                                      |                |
| Summe Belastung in Richtung V                                            | -740.21             | LNI        |                                                                                                                      |                |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





|                                                          | Projekt:         |                     |              | Modell: Faltwerk_Hubtore_LP3                                                                                          | Datum: 20.10.202 |
|----------------------------------------------------------|------------------|---------------------|--------------|-----------------------------------------------------------------------------------------------------------------------|------------------|
|                                                          |                  |                     |              |                                                                                                                       |                  |
| 4.0 ERGEBNISSE                                           | - ZUSAMMENFAS    | SUNG                |              |                                                                                                                       |                  |
| F                                                        | ezeichnung       | Wert                | Einheit      | Kommentar                                                                                                             |                  |
| Summe Belastung in R                                     | Richtung Z       | -40.93              | kN           |                                                                                                                       |                  |
| Summe Lagerkräfte in<br>Resultierende der Rea            |                  | -40.93<br>-624.025  | kN<br>kNm    | Abweichung 0.00%<br>Im Schwerpunkt des Modells (X:3.500, Y:0.004, Z:3.531 m)                                          |                  |
| Resultierende der Rea                                    | ktionen um Y     | 0.000               | kNm          | Im Schwerpunkt des Modells                                                                                            |                  |
| Resultierende der Rea<br>Max. Verschiebung in            | X                | -0.4                | kNm<br>mm    | Im Schwerpunkt des Modells<br>FE-Netzknoten Nr. 11941 (X: -0.089, Y: -0.307, Z: 0.000 m)                              |                  |
| Max. Verschiebung in Max. Verschiebung in Max.           |                  | -3.0<br>-0.6        | mm<br>mm     | FE-Netzknoten Nr. 494 (X: 3.500, Y: 0.290, Z: 1.145 m)<br>FE-Netzknoten Nr. 2835 (X: 3.500, Y: -0.290, Z: 7.100 m)    |                  |
| Max. Verschiebung vel                                    | ktorie <b>ll</b> | 3.0                 | mm           | FE-Netzknoten Nr. 494 (X: 3.500, Y: 0.290, Z: 1.145 m)                                                                |                  |
| Max. Verdrehung um X Max. Verdrehung um Y                | (                | 2.7                 | mrad<br>mrad | FE-Netzknoten Nr. 2403 (X: 3.500, Y: -0.290, Z: 5.956 m)                                                              |                  |
| Max. Verdrehung um Z                                     |                  | 2.7                 | mrad         | FE-Netzknoten Nr. 7110 (X: 0.015, Y: -0.135, Z: 2.250 m)<br>FE-Netzknoten Nr. 24083 (X: 7.011, Y: -0.307, Z: 0.600 m) |                  |
| Maximale Flächenverz Berechnungstheorie                  | errung           | 0.000<br>I. Ordnung | ‰            | FE-Netzknoten Nr. 0 (X: 0.000, Y: 0.000, Z: 0.000 m) Theorie I. Ordnung (linear)                                      |                  |
| Steifigkeitsreduzierung                                  | 1                | 1                   |              | Querschnitte, Stäbe, Flächen                                                                                          |                  |
| Anzahl der Laststufen<br>Anzahl der Iterationen          |                  | 21                  |              |                                                                                                                       |                  |
| Maximaler Wert des El<br>Steifigkeitsmatrix auf d        |                  | 6.212E+11           |              |                                                                                                                       |                  |
| Minimaler Wert des Ele                                   | ementes der      | 8.081E+04           |              |                                                                                                                       |                  |
| Steifigkeitsmatrix auf d<br>Determinante der Steif       |                  | 5.908E+1135         |              |                                                                                                                       |                  |
|                                                          | igheriamatix     | 948                 |              |                                                                                                                       |                  |
| Unendlich-Norm                                           |                  | 1.185E+12           | I            |                                                                                                                       |                  |
| Lastfall LF20 - Gleichmäßige Tem<br>Summe Belastung in R |                  | 0.00                | kN           |                                                                                                                       |                  |
| Summe Lagerkräfte in                                     | X -              | 0.00                | kN           |                                                                                                                       |                  |
| Summe Belastung in R<br>Summe Lagerkräfte in             |                  | 0.00                | kN<br>kN     |                                                                                                                       |                  |
| Summe Belastung in R<br>Summe Lagerkräfte in             | tichtung Z       | 0.00                | kN<br>kN     |                                                                                                                       |                  |
| Resultierende der Rea                                    | ktionen um X     | 0.000               | kNm          | Im Schwerpunkt des Modells (X:3.500, Y:0.004, Z:3.531 m)                                                              |                  |
| Resultierende der Rea<br>Resultierende der Rea           | ktionen um Y     | 0.000               | kNm<br>kNm   | Im Schwerpunkt des Modells Im Schwerpunkt des Modells                                                                 |                  |
| Max. Verschiebung in                                     |                  | -1.5                | mm           | FE-Netzknoten Nr. 91 (X: -0.142, Y: 0.307, Z: 7.100 m)                                                                |                  |
| Max. Verschiebung in Max. Verschiebung in                |                  | 1.0                 | mm<br>mm     | FE-Netzknoten Nr. 890 (X: 3.500, Y: -0.290, Z: 0.000 m)<br>FE-Netzknoten Nr. 2831 (X: 1.509, Y: -0.290, Z: 7.100 m)   |                  |
| Max. Verschiebung vel                                    | ktorie <b>li</b> | 3.4                 | mm           | FE-Netzknoten Nr. 92 (X: 0.015, Y: 0.307, Z: 7.100 m)                                                                 |                  |
| Max. Verdrehung um X<br>Max. Verdrehung um Y             |                  | 1.4                 | mrad<br>mrad | FE-Netzknoten Nr. 49 (X: 1.011, Y: -0.290, Z: 0.100 m)<br>FE-Netzknoten Nr. 16025 (X: 6.985, Y: 0.257, Z: 0.027 m)    |                  |
| Max. Verdrehung um Z                                     |                  | -1.5                | mrad         | FE-Netzknoten Nr. 16157 (X: 6.985, Y: -0.275, Z: 0.148 m)                                                             |                  |
| Maximale Flächenverz Berechnungstheorie                  | errung           | 0.000<br>I. Ordnung | <b>‰</b>     | FE-Netzknoten Nr. 0 (X: 0.000, Y: 0.000, Z: 0.000 m) Theorie I. Ordnung (linear)                                      |                  |
| Steifigkeitsreduzierung                                  | 1                |                     |              | Querschnitte, Stäbe, Flächen                                                                                          |                  |
| Anzahl der Laststufen<br>Anzahl der Iterationen          |                  | 1 1                 |              |                                                                                                                       |                  |
| Maximaler Wert des El<br>Steifigkeitsmatrix auf d        | lementes der     | 6.778E+11           |              |                                                                                                                       |                  |
| Minimaler Wert des Ele                                   | ementes der      | 8.081E+04           |              |                                                                                                                       |                  |
| Steifigkeitsmatrix auf d<br>Determinante der Steif       |                  | 5.890E+1136         |              |                                                                                                                       |                  |
|                                                          | ignotistitatiix  | 425                 |              |                                                                                                                       |                  |
| Unendlich-Norm                                           |                  | 1.536E+12           | l            |                                                                                                                       |                  |
| Lastfall LF21 - Gleichmäßige Tem<br>Summe Belastung in R |                  | 0.00                | kN           |                                                                                                                       |                  |
| Summe Lagerkräfte in                                     | X                | 0.00                | kN           |                                                                                                                       |                  |
| Summe Belastung in R<br>Summe Lagerkräfte in             | Y                | 0.00                | kN<br>kN     |                                                                                                                       |                  |
| Summe Belastung in R                                     | Richtung Z       | 0.00                | kN           |                                                                                                                       |                  |
| Summe Lagerkräfte in<br>Resultierende der Rea            |                  | 0.00                | kN<br>kNm    | Im Schwerpunkt des Modells (X:3.500, Y:0.004, Z:3.531 m)                                                              |                  |
| Resultierende der Rea                                    | ktionen um Y     | 0.000               |              | Im Schwerpunkt des Modells<br>Im Schwerpunkt des Modells                                                              |                  |
| Resultierende der Rea<br>Max. Verschiebung in            | X                | 0.000               | mm           | FE-Netzknoten Nr. 91 (X: -0.142, Y: 0.307, Z: 7.100 m)                                                                |                  |
| Max. Verschiebung in Max. Verschiebung in                | Υ                | -1.0<br>-3.1        | mm<br>mm     | FE-Netzknoten Nr. 890 (X: 3.500, Y: -0.290, Z: 0.000 m)<br>FE-Netzknoten Nr. 2831 (X: 1.509, Y: -0.290, Z: 7.100 m)   |                  |
| Max. Verschiebung vel                                    | ktorie <b>ll</b> | 3.4                 | mm           | FE-Netzknoten Nr. 92 (X: 0.015, Y: 0.307, Z: 7.100 m)                                                                 |                  |
| Max. Verdrehung um X<br>Max. Verdrehung um Y             |                  | -1.4<br>-1.8        | mrad<br>mrad | FE-Netzknoten Nr. 49 (X: 1.011, Y: -0.290, Z: 0.100 m)<br>FE-Netzknoten Nr. 16025 (X: 6.985, Y: 0.257, Z: 0.027 m)    |                  |
| Max. Verdrehung um Z                                     |                  | 1.5                 | mrad         | FE-Netzknoten Nr. 16157 (X: 6.985, Y: 0.275, Z: 0.148 m)                                                              |                  |
| Maximale Flächenverz<br>Berechnungstheorie               | errung           | 0.000<br>I. Ordnung | ‰            | FE-Netzknoten Nr. 0 (X: 0.000, Y: 0.000, Z: 0.000 m) Theorie I. Ordnung (linear)                                      |                  |
| Steifigkeitsreduzierung                                  |                  |                     |              | Querschnitte, Stäbe, Flächen                                                                                          |                  |
| Anzahl der Laststufen<br>Anzahl der Iterationen          |                  | 1 1                 |              |                                                                                                                       |                  |
| Maximaler Wert des El                                    |                  | 6.778E+11           |              |                                                                                                                       |                  |
| Steifigkeitsmatrix auf d<br>Minimaler Wert des Ele       | ementes der      | 8.081E+04           |              |                                                                                                                       |                  |
| Steifigkeitsmatrix auf d<br>Determinante der Steif       | er Diagonale     | 5.890E+1136         |              |                                                                                                                       |                  |
|                                                          | igkeitsmatrix    | 425                 |              |                                                                                                                       |                  |
| Unendlich-Norm                                           |                  | 1.536E+12           | l<br>        | <u> </u>                                                                                                              |                  |
| astfall LF22 - Ungleichmäßige Te<br>Summe Belastung in R |                  | 0.00                | kN           |                                                                                                                       |                  |
| Summe Lagerkräfte in                                     | X                | 0.00                | kN           |                                                                                                                       |                  |
| Summe Belastung in R<br>Summe Lagerkräfte in             |                  | 0.00                | kN<br>kN     |                                                                                                                       |                  |
| Summe Belastung in R                                     | Richtung Z       | 0.00                | kN           |                                                                                                                       |                  |
|                                                          | /                | 0.00                | kN           |                                                                                                                       |                  |
| Summe Lagerkräfte in<br>Resultierende der Rea            |                  | 0.000               | kNm          | Im Schwerpunkt des Modells (X:3,500, Y:0,004, Z:3,531 m)                                                              |                  |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





#### ■ 4.0 ERGEBNISSE - ZUSAMMENFASSUNG

| Bezeichnung                          | Wert        | Einheit | Kommentar                                                |
|--------------------------------------|-------------|---------|----------------------------------------------------------|
| Resultierende der Reaktionen um Z    | 0.000       | kNm     | Im Schwerpunkt des Modells                               |
| Max. Verschiebung in X               | 0.3         | mm      | FE-Netzknoten Nr. 8522 (X: 0.015, Y: -0.012, Z: 2.750 m) |
| Max. Verschiebung in Y               | -0.9        | mm      | FE-Netzknoten Nr. 2759 (X: 3.500, Y: 0.000, Z: 6.758 m)  |
| Max. Verschiebung in Z               | 1.2         | mm      | FE-Netzknoten Nr. 2835 (X: 3.500, Y: -0.290, Z: 7.100 m) |
| Max. Verschiebung vektoriell         | 1.3         | mm      | FE-Netzknoten Nr. 3033 (X: 3.500, Y: -0.290, Z: 7.000 m) |
| Max. Verdrehung um X                 | -6.6        | mrad    | FE-Netzknoten Nr. 2784 (X: 3.500, Y: 0.290, Z: 7.100 m)  |
| Max. Verdrehung um Y                 | -3.4        | mrad    | FE-Netzknoten Nr. 2884 (X: 0.015, Y: -0.013, Z: 7.100 m) |
| Max. Verdrehung um Z                 | -2.6        | mrad    | FE-Netzknoten Nr. 957 (X: 0.015, Y: -0.290, Z: 2.761 m)  |
| Maximale Flächenverzerrung           | 0.000       | %       | FE-Netzknoten Nr. 0 (X: 0.000, Y: 0.000, Z: 0.000 m)     |
| Berechnungstheorie                   | I. Ordnung  |         | Theorie I. Ordnung (linear)                              |
| Steifigkeitsreduzierung              |             |         | Querschnitte, Stäbe, Flächen                             |
| Anzahl der Laststufen                | 1           |         |                                                          |
| Anzahl der Iterationen               | 1           |         |                                                          |
| Maximaler Wert des Elementes der     | 6.778E+11   |         |                                                          |
| Steifigkeitsmatrix auf der Diagonale |             |         |                                                          |
| Minimaler Wert des Elementes der     | 8.081E+04   |         |                                                          |
| Steifigkeitsmatrix auf der Diagonale |             |         |                                                          |
| Determinante der Steifigkeitsmatrix  | 5.890E+1136 |         |                                                          |
|                                      | 425         |         |                                                          |
| Unendlich-Norm                       | 1.536E+12   |         |                                                          |

| Summe Belastung in Richtung X                                            | 0.00               | kN   |                                                           |
|--------------------------------------------------------------------------|--------------------|------|-----------------------------------------------------------|
| Summe Lagerkräfte in X                                                   | 0.00               | kN   |                                                           |
| Summe Belastung in Richtung Y                                            | 1796.74            | kN   |                                                           |
| Summe Lagerkräfte in Y                                                   | 1796.74            | kN   | Abweichung 0.00%                                          |
| Summe Belastung in Richtung Z                                            | -188.11            | kN   | 0                                                         |
| Summe Lagerkräfte in Z                                                   | -188.11            | kN   | Abweichung 0.00%                                          |
| Resultierende der Reaktionen um X                                        | 557.5              | kNm  | Im Schwerpunkt des Modells (X:3.5, Y:0.0, Z:3.5 m)        |
| Resultierende der Reaktionen um Y                                        | 0.0                | kNm  | Im Schwerpunkt des Modells                                |
| Resultierende der Reaktionen um Z                                        | 0.0                | kNm  | Im Schwerpunkt des Modells                                |
| Max. Verschiebung in X                                                   | -0.7               | mm   | FE-Netzknoten Nr. 15700 (X: 6.985, Y: -0.307, Z: 0.850 m) |
| Max. Verschiebung in Y                                                   | 6.6                | mm   | FE-Netzknoten Nr. 1240 (X: 3.500, Y: -0.290, Z: 2.749 m)  |
| Max. Verschiebung in Z                                                   | -4.6               | mm   | FE-Netzknoten Nr. 3033 (X: 3.500, Y: -0.290, Z: 7.000 m)  |
| Max. Verschiebung vektoriell                                             | 6.6                | mm   | FE-Netzknoten Nr. 1240 (X: 3.500, Y: -0.290, Z: 2.749 m)  |
| Max. Verdrehung um X                                                     | 7.3                | mrad | FE-Netzknoten Nr. 3033 (X: 3.500, Y: -0.290, Z: 7.000 m)  |
| Max. Verdrehung um Y                                                     | -2.0               | mrad |                                                           |
| Max. Verdrehung um Z                                                     | 5.4                | mrad |                                                           |
| Maximale Flächenverzerrung                                               | 0.000              | ‰    | FE-Netzknoten Nr. 0 (X: 0.000, Y: 0.000, Z: 0.000 m)      |
| Berechnungstheorie                                                       | II. Ordnung        |      | Theorie II. Ordnung (nichtlinear, Timoshenko)             |
| Schnittgrößen bezogen auf verformtes System für                          | ×                  |      | $N, V_y, V_z, M_y, M_z, M_T$                              |
| Steifigkeitsreduzierung                                                  |                    |      | Materialien, Querschnitte, Stäbe, Flächen                 |
| Entlastende Wirkung der Zugkräfte berücksichtigen                        |                    |      |                                                           |
| Ergebnisse durch LK-Faktor zurückdividieren                              |                    |      |                                                           |
| Anzahl der Laststufen                                                    | 1                  |      |                                                           |
| Anzahl der Iterationen                                                   | 22                 |      |                                                           |
| Maximaler Wert des Elementes der<br>Steifigkeitsmatrix auf der Diagonale | 2.612E+13          |      |                                                           |
| Minimaler Wert des Elementes der<br>Steifigkeitsmatrix auf der Diagonale | 8.081E+04          |      |                                                           |
| Determinante der Steifigkeitsmatrix                                      | 2.650E+1137<br>150 |      |                                                           |
| Unendlich-Norm                                                           | 2,613E+13          |      |                                                           |

| Summe Belastung in Richtung Y         2707.63         kN           Summe Lagerkräfte in Y         2707.63         kN         Abweicht           Summe Belastung in Richtung Z         -239.87         kN         kN           Summe Lagerkräfte in Z         -239.87         kN         Abweicht           Resuttierende der Reaktionen um X         -949.5         kNm         Im Schwei | g 0.00%<br>punkt des Modells (X:3.5, Y:0.0, Z:3.5 m)<br>punkt des Modells |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Summe Lagerkräfte in Y 2707.63 kN Abweicht Summe Belastung in Richtung Z -239.87 kN Summe Lagerkräfte in Z -239.87 kN Abweicht Resultierende der Reaktionen um X -949.5 kNm Im Schwe                                                                                                                                                                                                      | g 0.00%<br>punkt des Modells (X:3.5, Y:0.0, Z:3.5 m)<br>punkt des Modells |
| Summe Belastung in Richtung Z -239.87 kN Summe Lagerkräfte in Z Resultierende der Reaktionen um X -949.5 kNm Im Schwe                                                                                                                                                                                                                                                                     | g 0.00%<br>punkt des Modells (X:3.5, Y:0.0, Z:3.5 m)<br>punkt des Modells |
| Summe Lagerkräfte in Z -239.87 kN Abweicht Resultierende der Reaktionen um X -949.5 kNm Im Schwe                                                                                                                                                                                                                                                                                          | punkt des Modells (X:3.5, Y:0.0, Z:3.5 m)<br>punkt des Modells            |
| Resultierende der Reaktionen um X -949.5 kNm Im Schwe                                                                                                                                                                                                                                                                                                                                     | punkt des Modells (X:3.5, Y:0.0, Z:3.5 m)<br>punkt des Modells            |
|                                                                                                                                                                                                                                                                                                                                                                                           | punkt des Modells                                                         |
| Resultierende der Reaktionen um V 0.0 kNm Im Schwe                                                                                                                                                                                                                                                                                                                                        |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                           | rounkt des Modells                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                           |                                                                           |
| Max. Verschiebung in X -1.5 mm FE-Netzk                                                                                                                                                                                                                                                                                                                                                   | oten Nr. 4192 (X: -0.063, Y: 0.307, Z: 6.775 m)                           |
| Max. Verschiebung in Y 16.3 mm FE-Netzk                                                                                                                                                                                                                                                                                                                                                   | oten Nr. 3033 (X: 3.500, Y: -0.290, Z: 7.000 m)                           |
| Max. Verschiebung in Z -14.4 mm FE-Netzk                                                                                                                                                                                                                                                                                                                                                  | oten Nr. 3033 (X: 3.500, Y: -0.290, Z: 7.000 m)                           |
| Max. Verschiebung vektoriell 21.7 mm FE-Netzk                                                                                                                                                                                                                                                                                                                                             | oten Nr. 3033 (X: 3.500, Y: -0.290, Z: 7.000 m)                           |
|                                                                                                                                                                                                                                                                                                                                                                                           | oten Nr. 3033 (X: 3.500, Y: -0.290, Z: 7.000 m)                           |
| Max. Verdrehung um Y -6.6 mrad FE-Netzk                                                                                                                                                                                                                                                                                                                                                   | oten Nr. 2841 (X: 6.238, Y: -0.290, Z: 7.100 m)                           |
|                                                                                                                                                                                                                                                                                                                                                                                           | oten Nr. 3593 (X: 0.015, Y: 0.307, Z: 6.575 m)                            |
|                                                                                                                                                                                                                                                                                                                                                                                           | oten Nr. 0 (X: 0.000, Y: 0.000, Z: 0.000 m)                               |
|                                                                                                                                                                                                                                                                                                                                                                                           | Ordnung (nichtlinear, Timoshenko)                                         |
|                                                                                                                                                                                                                                                                                                                                                                                           | $M_y, M_z, M_T$                                                           |
| für                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                           | n, Querschnitte, Stäbe, Flächen                                           |
| Entlastende Wirkung der Zugkräfte ⊠ □                                                                                                                                                                                                                                                                                                                                                     |                                                                           |
| berücksichtigen                                                                                                                                                                                                                                                                                                                                                                           |                                                                           |
| Ergebnisse durch LK-Faktor zurückdividieren                                                                                                                                                                                                                                                                                                                                               |                                                                           |
| Anzahl der Laststufen 1                                                                                                                                                                                                                                                                                                                                                                   |                                                                           |
| Anzahl der Iterationen 26                                                                                                                                                                                                                                                                                                                                                                 |                                                                           |
| Maximaler Wert des Elementes der 2.612E+13                                                                                                                                                                                                                                                                                                                                                |                                                                           |
| Steifigkeitsmatrix auf der Diagonale                                                                                                                                                                                                                                                                                                                                                      |                                                                           |
| Minimaler Wert des Elementes der   8.081E+04                                                                                                                                                                                                                                                                                                                                              |                                                                           |
| Steifigkeitsmatrix auf der Diagonale                                                                                                                                                                                                                                                                                                                                                      |                                                                           |
| Determinante der Steifigkeitsmatrix 1.507E+1137                                                                                                                                                                                                                                                                                                                                           |                                                                           |
| 046                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           |
| Unendlich-Norm 2.613E+13                                                                                                                                                                                                                                                                                                                                                                  |                                                                           |

Lastkombination LK6 - Lagesicherheit BHW dstb

Summe Belastung in Richtung X
Summe Lagerkräfte in X
0.00 kN

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





| Bezeichnung                                                              | Wert               | Einheit | Kommentar                                                |
|--------------------------------------------------------------------------|--------------------|---------|----------------------------------------------------------|
| Summe Belastung in Richtung Y                                            | 1796.74            | kN      |                                                          |
| Summe Lagerkräfte in Y                                                   | 1796.74            | kN      | Abweichung 0.00%                                         |
| Summe Belastung in Richtung Z                                            | -132.94            | kN      | E <sub>d,dstb</sub> <r<sub>d,stb</r<sub>                 |
| Summe Lagerkräfte in Z                                                   | -132.94            | kN      | Abweichung 0.00%                                         |
| Resultierende der Reaktionen um X                                        | 557.5              | kNm     | Im Schwerpunkt des Modells (X:3.5, Y:0.0, Z:3.5 m)       |
| Resultierende der Reaktionen um Y                                        | 0.0                | kNm     | Im Schwerpunkt des Modells                               |
| Resultierende der Reaktionen um Z                                        | 0.0                | kNm     | Im Schwerpunkt des Modells                               |
| Max. Verschiebung in X                                                   | -0.7               | mm      | FE-Netzknoten Nr. 15701 (X: 6.985, Y: 0.307, Z: 0.875 m) |
| Max. Verschiebung in Y                                                   | 6.6                | mm      | FE-Netzknoten Nr. 1240 (X: 3.500, Y: -0.290, Z: 2.749 m) |
| Max. Verschiebung in Z                                                   | -3.5               | mm      | FE-Netzknoten Nr. 3033 (X: 3.500, Y: -0.290, Z: 7.000 m) |
| Max. Verschiebung vektoriell                                             | 6.6                | mm      | FE-Netzknoten Nr. 1240 (X: 3.500, Y: -0.290, Z: 2.749 m) |
| Max. Verdrehung um X                                                     | 5.7                | mrad    | FE-Netzknoten Nr. 3033 (X: 3.500, Y: -0.290, Z: 7.000 m) |
| Max. Verdrehung um Y                                                     | -1.6               | mrad    | FE-Netzknoten Nr. 3040 (X: 6.487, Y: -0.290, Z: 7.000 m) |
| Max. Verdrehung um Z                                                     | 5.4                | mrad    | FE-Netzknoten Nr. 3161 (X: 0.015, Y: 0.307, Z: 1.175 m)  |
| Maximale Flächenverzerrung                                               | 0.000              | ‰       | FE-Netzknoten Nr. 0 (X: 0.000, Y: 0.000, Z: 0.000 m)     |
| Berechnungstheorie                                                       | II. Ordnung        |         | Theorie II. Ordnung (nichtlinear, Timoshenko)            |
| Schnittgrößen bezogen auf verformtes System für                          | ⊠                  |         | $N, V_y, V_z, M_y, M_z, M_T$                             |
| Steifigkeitsreduzierung                                                  |                    |         | Materialien, Querschnitte, Stäbe, Flächen                |
| Entlastende Wirkung der Zugkräfte berücksichtigen                        | ⊠                  |         |                                                          |
| Ergebnisse durch LK-Faktor zurückdividieren                              |                    |         |                                                          |
| Anzahl der Laststufen                                                    | 1                  |         |                                                          |
| Anzahl der Iterationen                                                   | 22                 |         |                                                          |
| Maximaler Wert des Elementes der<br>Steifigkeitsmatrix auf der Diagonale | 2.612E+13          |         |                                                          |
| Minimaler Wert des Elementes der                                         | 8.081E+04          |         |                                                          |
| Steifigkeitsmatrix auf der Diagonale                                     |                    |         |                                                          |
| Determinante der Steifigkeitsmatrix                                      | 1.082E+1137<br>137 |         |                                                          |
| Unendlich-Norm                                                           | 2.613E+13          |         |                                                          |
| nation LK9 - Dichtheit                                                   |                    |         |                                                          |
| Summe Belastung in Richtung X                                            | 0.00               | kN      |                                                          |
| Summe Lagerkräfte in X                                                   | 0.00               | kN      |                                                          |
| Summe Belastung in Richtung Y                                            | 1646.02            | kN      |                                                          |
| Summe Lagerkräfte in Y                                                   | 1646.02            | kN      | Abweichung 0.00%                                         |

| Summe Belastung in Richtung X                   | 0.00             | kN   |                                                          |
|-------------------------------------------------|------------------|------|----------------------------------------------------------|
| Summe Lagerkräfte in X                          | 0.00             | kN   |                                                          |
| Summe Belastung in Richtung Y                   | 1646.02          | kN   |                                                          |
| Summe Lagerkräfte in Y                          | 1646.02          | kN   | Abweichung 0.00%                                         |
| Summe Belastung in Richtung Z                   | -129.91          | kN   |                                                          |
| Summe Lagerkräfte in Z                          | -129.91          | kN   | Abweichung 0.00%                                         |
| Resultierende der Reaktionen um X               | -664.2           | Nm   | Im Schwerpunkt des Modells (X:3.5, Y:0.0, Z:3.5 m)       |
| Resultierende der Reaktionen um Y               | 0.0              | kNm  | Im Schwerpunkt des Modells                               |
| Resultierende der Reaktionen um Z               | 0.0              |      |                                                          |
| Max. Verschiebung in X                          | -1.0             | mm   | FE-Netzknoten Nr. 4477 (X: -0.089, Y: 0.307, Z: 6.775 m) |
| Max. Verschiebung in Y                          | 10.2             |      | FE-Netzknoten Nr. 3033 (X: 3.500, Y: -0.290, Z: 7.000 m) |
| Max. Verschiebung in Z                          | -7.6             | mm ` | FE-Netzknoten Nr. 3033 (X: 3.500, Y: -0.290, Z: 7.000 m) |
| Max. Verschiebung vektoriell                    | 12.7             | mm   | E-Netzknoten Nr. 3033 (X: 3.500, Y: -0.290, Z: 7.000 m)  |
| Max. Verdrehung um X                            | 16.4             | mrad | FE-Netzknoten Nr. 3033 (X: 3.500, Y: -0.290, Z: 7.000 m) |
| Max. Verdrehung um Y                            | -3.5             | mrad | FE-Netzknoten Nr. 2841 (X: 6.238, Y: -0.290, Z: 7.100 m) |
| Max. Verdrehung um Z                            | 8.6              |      |                                                          |
| Maximale Flächenverzerrung                      | 0.000            | ‰    | FE-Net knoten Nr. 0 (X: 0.000, Y: 0.000, Z: 0.000 m)     |
| Berechnungstheorie                              | II. Ordnung      |      | Theorie N. Ordnung (nichtlinear, Timoshenko)             |
| Schnittgrößen bezogen auf verformtes System für |                  |      | $N, V_y, V_z, M_y, M_z, M_T$                             |
| Steifigkeitsreduzierung                         |                  |      | Materialien, Querschnitte, Stäbe, Flächen                |
| Entlastende Wirkung der Zugkräfte               | $\boxtimes$      |      | ' <b>\</b>                                               |
| berücksichtigen                                 |                  |      | 400111/-                                                 |
| Ergebnisse durch LK-Faktor zurückdividieren     |                  |      | 129 kN / 7 m = 18,4 kN/m                                 |
| Anzahl der Laststufen                           | 1                |      | ,                                                        |
| Anzahl der Iterationen                          | 26               |      |                                                          |
| Maximaler Wert des Elementes der                | 2.612E+13        |      | > 5 kN/m                                                 |
| Steifigkeitsmatrix auf der Diagonale            |                  |      |                                                          |
| Minimaler Wert des Elementes der                | 8.081E+04        |      | notwendiger                                              |
| Steifigkeitsmatrix auf der Diagonale            |                  |      |                                                          |
| Determinante der Steifigkeitsmatrix             | 1.100E+1137      |      | Schließdruck                                             |
| Unendlich-Norm                                  | 143<br>2.613E+13 |      |                                                          |

| Chandian Hom                                | 1 2.0102.10 |      |                                                            |
|---------------------------------------------|-------------|------|------------------------------------------------------------|
| ombination LK10 - Temperatur                |             |      |                                                            |
| Summe Belastung in Richtung X               | 0.00        | kN   |                                                            |
| Summe Lagerkräfte in X                      | 0.00        |      |                                                            |
| Summe Belastung in Richtung Y               | 0.00        |      |                                                            |
| Summe Lagerkräfte in Y                      | 0.00        | kN   |                                                            |
| Summe Belastung in Richtung Z               | 0.00        | kN   |                                                            |
| Summe Lagerkräfte in Z                      | 0.00        | kN   |                                                            |
| Resultierende der Reaktionen um X           | -0.1        | kNm  | Im Schwerpunkt des Modells (X:3.5, Y:0.0, Z:3.5 m)         |
| Resultierende der Reaktionen um Y           | 0.0         | kNm  | Im Schwerpunkt des Modells                                 |
| Resultierende der Reaktionen um Z           | 0.0         |      | Im Schwerpunkt des Modells                                 |
| Max. Verschiebung in X                      | -1.7        | mm   | FE-Netzknoten Nr. 13474 (X: -0.142, Y: -0.307, Z: 6.400 m) |
| Max. Verschiebung in Y                      | -1.0        | mm   | FE-Netzknoten Nr. 2759 (X: 3.500, Y: 0.000, Z: 6.758 m)    |
| Max. Verschiebung in Z                      | 4.3         | mm   | FE-Netzknoten Nr. 2835 (X: 3.500, Y: -0.290, Z: 7.100 m)   |
| Max. Verschiebung vektoriell                | 4.3         | mm   | FE-Netzknoten Nr. 2835 (X: 3.500, Y: -0.290, Z: 7.100 m)   |
| Max. Verdrehung um X                        | -6.7        | mrad | FE-Netzknoten Nr. 2784 (X: 3.500, Y: 0.290, Z: 7.100 m)    |
| Max. Verdrehung um Y                        | -3.6        |      | FE-Netzknoten Nr. 2884 (X: 0.015, Y: -0.013, Z: 7.100 m)   |
| Max. Verdrehung um Z                        | -3.4        |      | FE-Netzknoten Nr. 957 (X: 0.015, Y: -0.290, Z: 2.761 m)    |
| Maximale Flächenverzerrung                  | 0.000       |      | FE-Netzknoten Nr. 0 (X: 0.000, Y: 0.000, Z: 0.000 m)       |
| Berechnungstheorie                          | II. Ordnung |      | Theorie II. Ordnung (nichtlinear, Timoshenko)              |
| Schnittgrößen bezogen auf verformtes System |             |      | $N, V_y, V_z, M_y, M_z, M_T$                               |
| für                                         |             |      |                                                            |
| Steifigkeitsreduzierung                     |             |      | Materialien, Querschnitte, Stäbe, Flächen                  |
| Entlastende Wirkung der Zugkräfte           |             |      |                                                            |
| berücksichtigen                             |             |      |                                                            |
| Ergebnisse durch LK-Faktor zurückdividieren |             |      |                                                            |
| Anzahl der Laststufen                       | 1           |      |                                                            |
| Anzahl der Iterationen                      | 23          |      |                                                            |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





#### ■ 4.0 ERGEBNISSE - ZUSAMMENFASSUNG

| Bezeichnung                                                              | Wert               | Einheit | Kommentar |
|--------------------------------------------------------------------------|--------------------|---------|-----------|
| Maximaler Wert des Elementes der<br>Steifigkeitsmatrix auf der Diagonale | 2.612E+13          |         |           |
| Minimaler Wert des Elementes der<br>Steifigkeitsmatrix auf der Diagonale | 8.081E+04          |         |           |
| Determinante der Steifigkeitsmatrix                                      | 1.339E+1136<br>987 |         |           |
| Unendlich-Norm                                                           | 2.613E+13          |         |           |

| Offendict-North                                     | 2.013E+13   |      |                                                                  |
|-----------------------------------------------------|-------------|------|------------------------------------------------------------------|
|                                                     |             |      |                                                                  |
| Berechnungsstatus: Problem in LF2, LF3              |             |      |                                                                  |
| Max. Verschiebung in X                              | -1.7        | mm   | LK10, FE-Netzknoten Nr. 13474 (X: -0.142, Y: -0.307, Z: 6.400 m) |
| Max. Verschiebung in Y                              | 16.3        | mm   | LK2, FE-Netzknoten Nr. 3033 (X: 3.500, Y: -0.290, Z: 7.000 m)    |
| Max. Verschiebung in Z                              | 4606750.0   | mm   | LF2, FE-Netzknoten Nr. 24512 (X: 3.002, Y: 0.307, Z: 0.000 m)    |
| Max, Verschiebung vektoriell                        | 4606750.0   | mm   | LF2, FE-Netzknoten Nr. 24512 (X: 3,002, Y: 0,307, Z: 0,000 m)    |
| Max, Verdrehung um X                                | 28.5        | mrad | LK2, FE-Netzknoten Nr. 3033 (X: 3.500, Y: -0.290, Z: 7.000 m)    |
| Max. Verdrehung um Y                                | -6.6        | mrad | LK2, FE-Netzknoten Nr. 2841 (X: 6.238, Y: -0.290, Z: 7.100 m)    |
| Max. Verdrehung um Z                                | 13.0        | mrad | LK2, FE-Netzknoten Nr. 3593 (X: 0.015, Y: 0.307, Z: 6.575 m)     |
| Sonstige Einstellungen:                             |             |      |                                                                  |
| Anzahl 1D-Finite-Elemente                           | 0           |      |                                                                  |
| Anzahl 2D-Finite-Elemente                           | 25535       |      |                                                                  |
| Anzahl 3D-Finite-Elemente                           | 0           |      |                                                                  |
| Anzahl FE-Netzknoten                                | 25040       |      |                                                                  |
| Anzahl der Gleichungen                              | 150240      |      |                                                                  |
| Schnittgrößen bezogen auf verformtes System für:    |             |      |                                                                  |
| Maximale Anzahl Iterationen                         | 100         |      |                                                                  |
| Anzahl der Stabteilungen für Ergebnisverläufe       | 10          |      |                                                                  |
| Stabteilung Seil-, Bettungs- und Voutenstäbe        | 10          |      |                                                                  |
| Anzahl der Stabteilungen für das Suchen der         | 10          |      |                                                                  |
| Maximalwerte                                        |             |      |                                                                  |
| Unterteilungen des FE-Netzes für grafische          | 0           |      |                                                                  |
| Ergebnisse                                          |             |      |                                                                  |
| Prozentuelle Anzahl der Iterationen der Methode     | 5           | %    |                                                                  |
| nach Picard kombiniert mit der Methode nach         |             | /*   |                                                                  |
| Newton-Raphson                                      |             |      |                                                                  |
| Ausgefallene Lager aktivieren                       |             |      |                                                                  |
| Optionen:                                           |             |      |                                                                  |
| Schubsteifigkeit (Ay, Az) der Stäbe aktivieren      |             | 1    |                                                                  |
| Stäbe bei Theorie III. Ordnung bzw.                 |             |      |                                                                  |
| Durchschlagproblem teilen                           |             |      |                                                                  |
| Die eingestellten Steifigkeitsänderungen aktivieren |             |      |                                                                  |
| Rotationsfreiheitsgrade ignorieren                  |             |      |                                                                  |
| Kontrolle der kritischen Kräfte der Stäbe           | $\boxtimes$ |      |                                                                  |
| Unsymmetrischer direkter Gleichungslöser, falls     |             |      |                                                                  |
| für nichtlineares Modell erfordert                  |             |      |                                                                  |
| Lösungsmethode für das Gleichungssystem             | Gerade      |      |                                                                  |
| Platten-Biegetheorie                                | Mindlin     |      |                                                                  |
| Solver-Version                                      | 64-bit      |      |                                                                  |
| Genauigkeit und Toleranz:                           |             |      |                                                                  |
| Standardeinstellung ändern                          |             |      |                                                                  |
| Nichtlineare Effekte - Aktivieren:                  | _           |      |                                                                  |
| Lager und elastische Bettungen                      |             |      |                                                                  |

#### ■ 4.3 LINIEN - LAGERKRÄFTE

| Linie |       | Knoten | Stelle | 1              | Lagerkräfte [kN/m] |                |                | Lagermomente [kNm/m] |       |  |  |
|-------|-------|--------|--------|----------------|--------------------|----------------|----------------|----------------------|-------|--|--|
| Nr.   | LF/LK | Nr.    | x [m]  | p <sub>X</sub> | p <sub>Y</sub>     | p <sub>Z</sub> | m <sub>X</sub> | m <sub>Y</sub>       | $m_Z$ |  |  |
| 140   | LF1   | 87     | 0.000  | 0.00           | 0.00               | -102.09        | 0.00           | 0.00                 | 0.00  |  |  |
|       |       |        | 0.026  | 0.00           | 0.00               | -154.44        | 0.00           | 0.00                 | 0.00  |  |  |
|       |       |        | 0.052  | 0.00           | 0.00               | -135.78        | 0.00           | 0.00                 | 0.00  |  |  |
|       |       |        | 0.078  | 0.00           | 0.00               | -121.92        | 0.00           | 0.00                 | 0.00  |  |  |
|       |       |        | 0.104  | 0.00           | 0.00               | -112.75        | 0.00           | 0.00                 | 0.00  |  |  |
|       |       |        | 0.131  | 0.00           | 0.00               | -101.92        | 0.00           | 0.00                 | 0.00  |  |  |
|       |       | 88     | 0.157  | 0.00           | 0.00               | -61.57         | 0.00           | 0.00                 | 0.00  |  |  |
|       | LF2   | 87     | 0.000  | 0.00           | 0.00               | 0.00           | 0.00           | 0.00                 | 0.00  |  |  |
|       |       |        | 0.026  | 0.00           | 0.00               | 0.00           | 0.00           | 0.00                 | 0.00  |  |  |
|       |       |        | 0.052  | 0.00           | 0.00               | 0.00           | 0.00           | 0.00                 | 0.00  |  |  |
|       |       |        | 0.078  | 0.00           | 0.00               | 0.00           | 0.00           | 0.00                 | 0.00  |  |  |
|       |       |        | 0.104  | 0.00           | 0.00               | 0.00           | 0.00           | 0.00                 | 0.00  |  |  |
|       |       |        | 0.131  | 0.00           | 0.00               | 0.00           | 0.00           | 0.00                 | 0.00  |  |  |
|       |       | 88     | 0.157  | 0.00           | 0.00               | 0.00           | 0.00           | 0.00                 | 0.00  |  |  |
|       | LF3   | 87     | 0.000  | 0.00           | 0.00               | 0.00           | 0.00           | 0.00                 | 0.00  |  |  |
|       |       |        | 0.026  | 0.00           | 0.00               | 0.00           | 0.00           | 0.00                 | 0.00  |  |  |
|       |       |        | 0.052  | 0.00           | 0.00               | 0.00           | 0.00           | 0.00                 | 0.00  |  |  |
|       |       |        | 0.078  | 0.00           | 0.00               | 0.00           | 0.00           | 0.00                 | 0.00  |  |  |
|       |       |        | 0.104  | 0.00           | 0.00               | 0.00           | 0.00           | 0.00                 | 0.00  |  |  |
|       |       |        | 0.131  | 0.00           | 0.00               | 0.00           | 0.00           | 0.00                 | 0.00  |  |  |
|       |       | 88     | 0.157  | 0.00           | 0.00               | 0.00           | 0.00           | 0.00                 | 0.00  |  |  |
|       | LF4   | 87     | 0.000  | 0.00           | 0.00               | -5.64          | 0.00           | 0.00                 | 0.00  |  |  |
|       |       |        | 0.026  | 0.00           | 0.00               | -8.63          | 0.00           | 0.00                 | 0.00  |  |  |
|       |       |        | 0.052  | 0.00           | 0.00               | -7.69          | 0.00           | 0.00                 | 0.00  |  |  |
|       |       |        | 0.078  | 0.00           | 0.00               | -7.00          | 0.00           | 0.00                 | 0.00  |  |  |
|       |       |        | 0.104  | 0.00           | 0.00               | -6.56          | 0.00           | 0.00                 | 0.00  |  |  |
|       |       |        | 0.131  | 0.00           | 0.00               | -6.04          | 0.00           | 0.00                 | 0.00  |  |  |
|       |       | 88     | 0.157  | 0.00           | 0.00               | -3.96          | 0.00           | 0.00                 | 0.00  |  |  |
|       | LF5   | 87     | 0.000  | 0.00           | 0.00               | 0.00           | 0.00           | 0.00                 | 0.00  |  |  |
|       |       |        | 0.026  | 0.00           | 0.00               | 0.00           | 0.00           | 0.00                 | 0.00  |  |  |
|       |       |        | 0.052  | 0.00           | 0.00               | 0.00           | 0.00           | 0.00                 | 0.00  |  |  |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





#### ■ 4.3 LINIEN - LAGERKRÄFTE

| Linie | IIVILIV | Knoten   | RKRAFTE<br>Stelle |              | Lagerkräfte [kN/m] |                      | La             | germomente [kNm/r | m]             |  |
|-------|---------|----------|-------------------|--------------|--------------------|----------------------|----------------|-------------------|----------------|--|
| Nr.   | LF/LK   | Nr.      | x [m]             | $p_X$        | p <sub>Y</sub>     | p <sub>Z</sub>       | m <sub>X</sub> | m <sub>Y</sub>    | m <sub>Z</sub> |  |
| 140   | LF5     | 87       | 0.078             | 0.00<br>0.00 | 0.00<br>0.00       | 0.00<br>0.00         | 0.00<br>0.00   | 0.00<br>0.00      | 0.00<br>0.00   |  |
|       |         |          | 0.104<br>0.131    | 0.00         | 0.00               | 0.00<br>0.00<br>0.00 | 0.00           | 0.00              | 0.00           |  |
|       | LF6     | 88<br>87 | 0.157             | 0.00         | 0.00               | 0.00<br>-56.29       | 0.00           | 0.00              | 0.00           |  |
|       |         |          | 0.026<br>0.052    | 0.00         | 0.00<br>0.00       | -76.14<br>-58.71     | 0.00<br>0.00   | 0.00<br>0.00      | 0.00<br>0.00   |  |
|       |         |          | 0.078             | 0.00         | 0.00               | -47.69               | 0.00           | 0.00              | 0.00           |  |
|       |         |          | 0.104<br>0.131    | 0.00<br>0.00 | 0.00<br>0.00       | -41.27<br>-23.51     | 0.00<br>0.00   | 0.00<br>0.00      | 0.00<br>0.00   |  |
|       | LF13    | 88<br>87 | 0.157<br>0.000    | 0.00         | 0.00               | 403.67<br>0.00       | 0.00           | 0.00              | 0.00<br>0.00   |  |
|       | LF13    | 01       | 0.026             | 0.00         | 0.00               | 0.00                 | 0.00           | 0.00              | 0.00           |  |
|       |         |          | 0.052<br>0.078    | 0.00<br>0.00 | 0.00<br>0.00       | 0.00<br>0.00         | 0.00           | 0.00<br>0.00      | 0.00<br>0.00   |  |
|       |         |          | 0.104             | 0.00<br>0.00 | 0.00<br>0.00       | 0.00<br>0.00         | 0.00           | 0.00              | 0.00<br>0.00   |  |
|       |         | 88       | 0.131<br>0.157    | 0.00         | 0.00               | 0.00                 | 0.00<br>0.00   | 0.00<br>0.00      | 0.00           |  |
|       | LF20    | 87       | 0.000<br>0.026    | 0.00         | 0.00               | -621.62<br>-802.48   | 0.00           | 0.00<br>0.00      | 0.00<br>0.00   |  |
|       |         |          | 0.052             | 0.00         | 0.00               | <b>-</b> 522.65      | 0.00           | 0.00              | 0.00           |  |
|       |         |          | 0.078<br>0.104    | 0.00<br>0.00 | 0.00<br>0.00       | -296.78<br>-147.76   | 0.00           | 0.00<br>0.00      | 0.00<br>0.00   |  |
|       |         | 88       | 0.131<br>0.157    | 0.00<br>0.00 | 0.00<br>0.00       | -143.58<br>-291.46   | 0.00           | 0.00<br>0.00      | 0.00<br>0.00   |  |
|       | LF21    | 87       | 0.000             | 0.00         | 0.00               | 621.62               | 0.00           | 0.00              | 0.00           |  |
|       |         |          | 0.026<br>0.052    | 0.00<br>0.00 | 0.00<br>0.00       | 802.48<br>522.65     | 0.00           | 0.00<br>0.00      | 0.00<br>0.00   |  |
|       |         |          | 0.078<br>0.104    | 0.00<br>0.00 | 0.00<br>0.00       | 296.78<br>147.76     | 0.00<br>0.00   | 0.00<br>0.00      | 0.00<br>0.00   |  |
|       |         |          | 0.131             | 0.00         | 0.00               | 143.58               | 0.00           | 0.00              | 0.00           |  |
|       | LF22    | 88<br>87 | 0.157<br>0.000    | 0.00         | 0.00               | 291.46<br>-56.29     | 0.00           | 0.00              | 0.00           |  |
|       |         |          | 0.026<br>0.052    | 0.00         | 0.00               | -76.14               | 0.00           | 0.00              | 0.00           |  |
|       |         |          | 0.078             | 0.00<br>0.00 | 0.00<br>0.00       | -58.71<br>-47.69     | 0.00<br>0.00   | 0.00<br>0.00      | 0.00<br>0.00   |  |
|       |         |          | 0.104<br>0.131    | 0.00         | 0.00               | -41.27<br>-23.51     | 0.00           | 0.00<br>0.00      | 0.00<br>0.00   |  |
|       |         | 88<br>87 | 0.157             | 0.00         | 0.00               | 403.67               | 0.00           | 0.00              | 0.00           |  |
|       | LK1     | 8/       | 0.000<br>0.026    | 0.00<br>0.00 | 0.00<br>0.00       | -361.68<br>-464.16   | 0.00<br>0.00   | 0.00<br>0.00      | 0.00<br>0.00   |  |
|       |         |          | 0.052<br>0.078    | 0.00<br>0.00 | 0.00<br>0.00       | -314.92<br>-187.85   | 0.00           | 0.00<br>0.00      | 0.00<br>0.00   |  |
|       |         |          | 0.104             | 0.00         | 0.00               | <del>-</del> 26.32   | 0.00           | 0.00              | 0.00           |  |
|       |         | 88       | 0.131<br>0.157    | 0.00<br>0.00 | 0.00<br>0.00       | 0.00<br>0.00         | 0.00<br>0.00   | 0.00<br>0.00      | 0.00<br>0.00   |  |
|       | LK2     | 87       | 0.000<br>0.026    | 0.00<br>0.00 | 0.00<br>0.00       | -249.51<br>0.00      | 0.00<br>0.00   | 0.00<br>0.00      | 0.00<br>0.00   |  |
|       |         |          | 0.052             | 0.00         | 0.00               | 0.00                 | 0.00           | 0.00              | 0.00           |  |
|       |         |          | 0.078<br>0.104    | 0.00<br>0.00 | 0.00<br>0.00       | 0.00<br>0.00         | 0.00           | 0.00              | 0.00<br>0.00   |  |
|       |         | 00       | 0.131             | 0.00         | 0.00               | 0.00                 | 0.00           | 0.00              | 0.00<br>0.00   |  |
|       | LK6     | 88<br>87 | 0.157<br>0.000    | 0.00         | 0.00               | 0.00<br>-329.55      | 0.00           | 0.00              | 0.00           |  |
|       |         |          | 0.026<br>0.052    | 0.00<br>0.00 | 0.00<br>0.00       | -417.21<br>-275.72   | 0.00<br>0.00   | 0.00<br>0.00      | 0.00<br>0.00   |  |
|       |         |          | 0.078             | 0.00         | 0.00               | -154.29<br>0.00      | 0.00           | 0.00              | 0.00           |  |
|       |         |          | 0.104<br>0.131    | 0.00<br>0.00 | 0.00               | 0.00                 | 0.00<br>0.00   | 0.00<br>0.00      | 0.00<br>0.00   |  |
|       | LK9     | 88<br>87 | 0.157<br>0.000    | 0.00         | 0.00               | 0.00<br>-234.62      | 0.00           | 0.00              | 0.00<br>0.00   |  |
|       |         | ŭ.       | 0.026             | 0.00         | 0.00               | <del>-</del> 226.55  | 0.00           | 0.00              | 0.00           |  |
|       |         |          | 0.052<br>0.078    | 0.00         | 0.00<br>0.00       | -21.56<br>0.00       | 0.00           | 0.00<br>0.00      | 0.00<br>0.00   |  |
|       |         |          | 0.104<br>0.131    | 0.00         | 0.00               | 0.00<br>0.00         | 0.00           | 0.00<br>0.00      | 0.00<br>0.00   |  |
|       | LK10    | 88       | 0.157             | 0.00         | 0.00               | 0.00                 | 0.00           | 0.00              | 0.00           |  |
|       | LK10    | 87       | 0.000<br>0.026    | 0.00<br>0.00 | 0.00<br>0.00       | -847.89<br>-831.33   | 0.00<br>0.00   | 0.00<br>0.00      | 0.00<br>0.00   |  |
|       |         |          | 0.052<br>0.078    | 0.00         | 0.00<br>0.00       | -31.71<br>0.00       | 0.00           | 0.00<br>0.00      | 0.00<br>0.00   |  |
|       |         |          | 0.104             | 0.00         | 0.00               | 0.00                 | 0.00           | 0.00              | 0.00           |  |
|       |         | 88       | 0.131<br>0.157    | 0.00<br>0.00 | 0.00<br>0.00       | 0.00<br>0.00         | 0.00<br>0.00   | 0.00<br>0.00      | 0.00<br>0.00   |  |
| 141   | LF1     | 88       | 0.000<br>0.025    | 0.00<br>0.00 | 0.00<br>0.00       | -61.57<br>-51.16     | 0.00<br>0.00   | 0.00<br>0.00      | 0.00<br>0.00   |  |
|       |         |          | 0.050             | 0.00         | 0.00               | -46.32               | 0.00           | 0.00              | 0.00           |  |
|       |         |          | 0.075<br>0.100    | 0.00<br>0.00 | 0.00               | -46.98<br>-47.25     | 0.00<br>0.00   | 0.00<br>0.00      | 0.00<br>0.00   |  |
|       |         |          | 0.124<br>0.149    | 0.00         | 0.00               | -47.58<br>-47.70     | 0.00           | 0.00              | 0.00<br>0.00   |  |
|       |         |          | 0.174             | 0.00         | 0.00               | -47.72               | 0.00           | 0.00              | 0.00           |  |
|       |         |          | 0.199<br>0.224    | 0.00<br>0.00 | 0.00<br>0.00       | -47.38<br>-47.25     | 0.00           | 0.00<br>0.00      | 0.00<br>0.00   |  |
|       |         |          | 0.249<br>0.274    | 0.00<br>0.00 | 0.00<br>0.00       | -47.14<br>-46.50     | 0.00<br>0.00   | 0.00<br>0.00      | 0.00<br>0.00   |  |
|       |         |          | 0.299             | 0.00         | 0.00               | -46.22               | 0.00           | 0.00              | 0.00           |  |
|       |         |          | 0.323<br>0.348    | 0.00<br>0.00 | 0.00<br>0.00       | -46.02<br>-45.04     | 0.00<br>0.00   | 0.00<br>0.00      | 0.00<br>0.00   |  |
|       |         |          | 0.373<br>0.398    | 0.00         | 0.00               | -44.62<br>-44.27     | 0.00           | 0.00<br>0.00      | 0.00           |  |
|       |         |          | 0.423             | 0.00         | 0.00               | -42.79               | 0.00           | 0.00              | 0.00           |  |
|       |         |          | 0.448<br>0.473    | 0.00         | 0.00<br>0.00       | -42.16<br>-41.32     | 0.00<br>0.00   | 0.00<br>0.00      | 0.00<br>0.00   |  |
|       |         | Ī        |                   |              |                    |                      |                |                   |                |  |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





|    |       | Knoten  | Stelle                  |                | Lagerkräfte [kN/m] |                   | La             | germomente [kNm/n | ո]           |  |
|----|-------|---------|-------------------------|----------------|--------------------|-------------------|----------------|-------------------|--------------|--|
| r. | LF/LK | Nr.     | x [m]                   | p <sub>X</sub> | p <sub>Y</sub>     | p <sub>z</sub>    | m <sub>X</sub> | m <sub>Y</sub>    | $m_Z$        |  |
| 11 | LF1   | 88      | 0.498<br>0.522          | 0.00           | 0.00<br>0.00       | -38.78<br>-37.42  | 0.00<br>0.00   | 0.00              | 0.00<br>0.00 |  |
|    |       |         | 0.547<br>0.572          | 0.00           | 0.00               | -34.92<br>-34.69  | 0.00           | 0.00              | 0.00         |  |
|    |       | 1       | 0.572<br>0.597          | 0.00<br>0.00   | 0.00<br>0.00       | -34.69<br>-116.20 | 0.00<br>0.00   | 0.00              | 0.00<br>0.00 |  |
|    | LF2   | 88      | 0.000                   | 0.00           | 0.00               | 0.00              | 0.00           | 0.00              | 0.00         |  |
|    |       |         | 0.025<br>0.050          | 0.00           | 0.00<br>0.00       | 0.00<br>0.00      | 0.00<br>0.00   | 0.00              | 0.00<br>0.00 |  |
|    |       |         | 0.075                   | 0.00           | 0.00               | 0.00              | 0.00           | 0.00              | 0.00         |  |
|    |       |         | 0.100<br>0.124          | 0.00<br>0.00   | 0.00<br>0.00       | 0.00<br>0.00      | 0.00<br>0.00   | 0.00              | 0.00<br>0.00 |  |
|    |       |         | 0.149                   | 0.00           | 0.00               | 0.00              | 0.00           | 0.00              | 0.00         |  |
|    |       |         | 0.174<br>0.199          | 0.00<br>0.00   | 0.00<br>0.00       | 0.00<br>0.00      | 0.00<br>0.00   | 0.00<br>0.00      | 0.00<br>0.00 |  |
|    |       |         | 0.224                   | 0.00           | 0.00               | 0.00              | 0.00           | 0.00              | 0.00         |  |
|    |       |         | 0.249<br>0.274          | 0.00<br>0.00   | 0.00<br>0.00       | 0.00<br>0.00      | 0.00           | 0.00              | 0.00<br>0.00 |  |
|    |       |         | 0.274                   | 0.00           | 0.00               | 0.00              | 0.00<br>0.00   | 0.00<br>0.00      | 0.00         |  |
|    |       |         | 0.323                   | 0.00           | 0.00               | 0.00              | 0.00           | 0.00              | 0.00         |  |
|    |       |         | 0.348<br>0.373          | 0.00<br>0.00   | 0.00<br>0.00       | 0.00<br>0.00      | 0.00<br>0.00   | 0.00<br>0.00      | 0.00<br>0.00 |  |
|    |       |         | 0.398                   | 0.00           | 0.00               | 0.00              | 0.00           | 0.00              | 0.00         |  |
|    |       |         | 0.423<br>0.448          | 0.00<br>0.00   | 0.00<br>0.00       | 0.00<br>0.00      | 0.00<br>0.00   | 0.00<br>0.00      | 0.00<br>0.00 |  |
|    |       |         | 0.473                   | 0.00           | 0.00               | 0.00              | 0.00           | 0.00              | 0.00         |  |
|    |       |         | 0.498<br>0.522          | 0.00           | 0.00<br>0.00       | 0.00<br>0.00      | 0.00<br>0.00   | 0.00<br>0.00      | 0.00<br>0.00 |  |
|    |       |         | 0.547                   | 0.00           | 0.00               | 0.00              | 0.00           | 0.00              | 0.00         |  |
|    |       | 1       | 0.572<br>0.597          | 0.00<br>0.00   | 0.00<br>0.00       | 0.00<br>0.00      | 0.00<br>0.00   | 0.00              | 0.00<br>0.00 |  |
| F  | LF3   | 88      | 0.000                   | 0.00           | 0.00               | 0.00              | 0.00           | 0.00              | 0.00         |  |
|    |       |         | 0.025<br>0.050          | 0.00<br>0.00   | 0.00<br>0.00       | 0.00<br>0.00      | 0.00<br>0.00   | 0.00<br>0.00      | 0.00<br>0.00 |  |
| i  |       |         | 0.030<br>0.075<br>0.100 | 0.00           | 0.00               | 0.00              | 0.00           | 0.00              | 0.00         |  |
|    |       |         | 0.100                   | 0.00           | 0.00               | 0.00              | 0.00           | 0.00              | 0.00         |  |
|    |       |         | 0.124<br>0.149          | 0.00<br>0.00   | 0.00<br>0.00       | 0.00<br>0.00      | 0.00<br>0.00   | 0.00<br>0.00      | 0.00<br>0.00 |  |
|    |       |         | 0.174                   | 0.00           | 0.00               | 0.00              | 0.00           | 0.00              | 0.00         |  |
|    |       |         | 0.199<br>0.224          | 0.00<br>0.00   | 0.00<br>0.00       | 0.00<br>0.00      | 0.00<br>0.00   | 0.00<br>0.00      | 0.00<br>0.00 |  |
|    |       |         | 0.249                   | 0.00           | 0.00               | 0.00              | 0.00           | 0.00              | 0.00         |  |
|    |       |         | 0.274<br>0.299          | 0.00<br>0.00   | 0.00<br>0.00       | 0.00<br>0.00      | 0.00<br>0.00   | 0.00<br>0.00      | 0.00<br>0.00 |  |
|    |       |         | 0.323                   | 0.00           | 0.00               | 0.00              | 0.00           | 0.00              | 0.00         |  |
|    |       |         | 0.348<br>0.373          | 0.00<br>0.00   | 0.00<br>0.00       | 0.00<br>0.00      | 0.00<br>0.00   | 0.00<br>0.00      | 0.00<br>0.00 |  |
|    |       |         | 0.398                   | 0.00           | 0.00               | 0.00              | 0.00           | 0.00              | 0.00         |  |
|    |       |         | 0.423<br>0.448          | 0.00           | 0.00<br>0.00       | 0.00<br>0.00      | 0.00<br>0.00   | 0.00<br>0.00      | 0.00<br>0.00 |  |
|    |       |         | 0.473                   | 0.00           | 0.00               | 0.00              | 0.00           | 0.00              | 0.00         |  |
|    |       |         | 0.498                   | 0.00           | 0.00               | 0.00              | 0.00           | 0.00              | 0.00         |  |
|    |       |         | 0.522<br>0.547          | 0.00<br>0.00   | 0.00<br>0.00       | 0.00<br>0.00      | 0.00<br>0.00   | 0.00<br>0.00      | 0.00<br>0.00 |  |
|    |       | _       | 0.572                   | 0.00           | 0.00               | 0.00              | 0.00           | 0.00              | 0.00         |  |
| -  | LF4   | 1<br>88 | 0.597<br>0.000          | 0.00           | 0.00               | 0.00<br>-3.96     | 0.00           | 0.00              | 0.00         |  |
|    |       |         | 0.025                   | 0.00           | 0.00               | -3.11             | 0.00           | 0.00              | 0.00         |  |
|    |       |         | 0.050<br>0.075          | 0.00<br>0.00   | 0.00<br>0.00       | -2.76<br>-2.79    | 0.00<br>0.00   | 0.00<br>0.00      | 0.00<br>0.00 |  |
| į  |       |         | 0.100                   | 0.00           | 0.00               | -2.80             | 0.00           | 0.00              | 0.00         |  |
|    |       |         | 0.124<br>0.149          | 0.00<br>0.00   | 0.00<br>0.00       | -2.81<br>-2.82    | 0.00<br>0.00   | 0.00<br>0.00      | 0.00<br>0.00 |  |
|    |       |         | 0.174                   | 0.00           | 0.00               | -2.83             | 0.00           | 0.00              | 0.00         |  |
|    |       |         | 0.199<br>0.224          | 0.00           | 0.00<br>0.00       | -2.83<br>-2.85    | 0.00<br>0.00   | 0.00              | 0.00<br>0.00 |  |
|    |       |         | 0.249                   | 0.00           | 0.00               | -2.86             | 0.00           | 0.00<br>0.00      | 0.00         |  |
|    |       |         | 0.274<br>0.299          | 0.00<br>0.00   | 0.00<br>0.00       | -2.85<br>-2.87    | 0.00<br>0.00   | 0.00              | 0.00<br>0.00 |  |
|    |       |         | 0.323                   | 0.00           | 0.00               | -2.88             | 0.00           | 0.00              | 0.00         |  |
|    |       |         | 0.348<br>0.373          | 0.00<br>0.00   | 0.00<br>0.00       | -2.86<br>-2.87    | 0.00<br>0.00   | 0.00<br>0.00      | 0.00         |  |
|    |       |         | 0.398                   | 0.00           | 0.00               | -2.87             | 0.00           | 0.00              | 0.00         |  |
|    |       |         | 0.423<br>0.448          | 0.00<br>0.00   | 0.00<br>0.00       | -2.83<br>-2.82    | 0.00<br>0.00   | 0.00<br>0.00      | 0.00<br>0.00 |  |
|    |       |         | 0.473                   | 0.00           | 0.00               | -2.79             | 0.00           | 0.00              | 0.00         |  |
|    |       |         | 0.498<br>0.522          | 0.00<br>0.00   | 0.00<br>0.00       | -2.68<br>-2.61    | 0.00<br>0.00   | 0.00<br>0.00      | 0.00<br>0.00 |  |
|    |       |         | 0.547                   | 0.00           | 0.00               | 2.46              | 0.00           | 0.00              | 0.00         |  |
|    |       |         | 0.572                   | 0.00           | 0.00               | -2.48             | 0.00           | 0.00              | 0.00         |  |
| H  | LF5   | 1<br>88 | 0.597                   | 0.00           | 0.00               | -8.16<br>0.00     | 0.00           | 0.00              | 0.00         |  |
|    |       |         | 0.025                   | 0.00           | 0.00               | 0.00              | 0.00           | 0.00              | 0.00         |  |
|    |       |         | 0.050<br>0.075          | 0.00           | 0.00<br>0.00       | 0.00<br>0.00      | 0.00<br>0.00   | 0.00<br>0.00      | 0.00<br>0.00 |  |
|    |       |         | 0.100                   | 0.00           | 0.00               | 0.00              | 0.00           | 0.00              | 0.00         |  |
|    |       |         | 0.124<br>0.149          | 0.00           | 0.00<br>0.00       | 0.00<br>0.00      | 0.00<br>0.00   | 0.00              | 0.00         |  |
|    |       |         | 0.174                   | 0.00           | 0.00               | 0.00              | 0.00           | 0.00              | 0.00         |  |
|    |       |         | 0.199<br>0.224          | 0.00<br>0.00   | 0.00<br>0.00       | 0.00<br>0.00      | 0.00<br>0.00   | 0.00<br>0.00      | 0.00<br>0.00 |  |
|    |       |         | 0.249                   | 0.00           | 0.00               | 0.00              | 0.00           | 0.00              | 0.00         |  |
|    |       |         | 0.274<br>0.299          | 0.00<br>0.00   | 0.00<br>0.00       | 0.00<br>0.00      | 0.00<br>0.00   | 0.00<br>0.00      | 0.00<br>0.00 |  |
|    |       |         |                         |                |                    |                   |                |                   |              |  |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





| Linie |       | Knoten  | Ste <b>ll</b> e |                | Lagerkräfte [kN/m] |                           | La                   | germomente [kNm/ | m]             |  |
|-------|-------|---------|-----------------|----------------|--------------------|---------------------------|----------------------|------------------|----------------|--|
| Nr.   | LF/LK | Nr.     | x [m]           | p <sub>X</sub> | p <sub>Y</sub>     | p <sub>Z</sub>            | m <sub>X</sub>       | m <sub>Y</sub>   | m <sub>Z</sub> |  |
| 141   | LF5   | 88      | 0.348           | 0.00<br>0.00   | 0.00               | 0.00<br>0.00              | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.373<br>0.398  | 0.00           | 0.00               | 0.00                      | 0.00<br>0.00<br>0.00 | 0.00             | 0.00           |  |
|       |       |         | 0.423<br>0.448  | 0.00<br>0.00   | 0.00               | 0.00<br>0.00              | 0.00<br>0.00         | 0.00             | 0.00           |  |
|       |       |         | 0.473           | 0.00           | 0.00               | 0.00                      | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.498           | 0.00           | 0.00               | 0.00<br>0.00              | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.522<br>0.547  | 0.00           | 0.00               | 0.00                      | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.572           | 0.00           | 0.00               | 0.00<br>0.00              | 0.00<br>0.00         | 0.00             | 0.00           |  |
|       | LF6   | 1<br>88 | 0.597<br>0.000  | 0.00           | 0.00               | 403.67                    | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.025           | 0.00           | 0.00               | -61.77                    | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.050<br>0.075  | 0.00<br>0.00   | 0.00               | 64.10<br>31.43            | 0.00                 | 0.00             | 0.00<br>0.00   |  |
|       |       |         | 0.100           | 0.00           | 0.00               | 44.17                     | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.124<br>0.149  | 0.00<br>0.00   | 0.00<br>0.00       | 42.35<br>32.95            | 0.00<br>0.00         | 0.00             | 0.00<br>0.00   |  |
|       |       |         | 0.174           | 0.00           | 0.00               | 32.95<br>45.23            | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.199<br>0.224  | 0.00<br>0.00   | 0.00               | 46.07<br>37.45            | 0.00<br>0.00         | 0.00             | 0.00<br>0.00   |  |
|       |       |         | 0.249           | 0.00           | 0.00               | 52.68                     | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.274<br>0.299  | 0.00           | 0.00               | 57.50<br>48.17            | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.323           | 0.00           | 0.00               | 64.66                     | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.348<br>0.373  | 0.00<br>0.00   | 0.00               | 67.66                     | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.398           | 0.00           | 0.00               | 54.64<br>73.23            | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.423<br>0.448  | 0.00<br>0.00   | 0.00<br>0.00       | 75.69<br>59.36            | 0.00<br>0.00         | 0.00             | 0.00<br>0.00   |  |
|       |       |         | 0.473           | 0.00           | 0.00               | 75.80                     | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.498           | 0.00           | 0.00               | 70 45                     | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.522<br>0.547  | 0.00<br>0.00   | 0.00               | 48.53<br>61.92<br>112.20  | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.547<br>0.572  | 0.00           | 0.00               | 112.20                    | 0.00                 | 0.00             | 0.00           |  |
|       | LF13  | 88      | 0.597<br>0.000  | 0.00           | 0.00               | 73.23<br>0.00             | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.025           | 0.00           | 0.00               | 0.00                      | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.050<br>0.075  | 0.00<br>0.00   | 0.00<br>0.00       | 0.00<br>0.00              | 0.00<br>0.00         | 0.00             | 0.00<br>0.00   |  |
|       |       |         | 0.100           | 0.00           | 0.00               | 0.00                      | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.124<br>0.149  | 0.00<br>0.00   | 0.00               | 0.00<br>0.00              | 0.00<br>0.00         | 0.00<br>0.00     | 0.00           |  |
|       |       |         | 0.174           | 0.00           | 0.00               | 0.00                      | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.199<br>0.224  | 0.00<br>0.00   | 0.00<br>0.00       | 0.00<br>0.00              | 0.00<br>0.00         | 0.00             | 0.00<br>0.00   |  |
|       |       |         | 0.249           | 0.00           | 0.00               | 0.00                      | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.274<br>0.299  | 0.00           | 0.00               | 0.00<br>0.00              | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.323           | 0.00           | 0.00               | 0.00                      | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.348<br>0.373  | 0.00<br>0.00   | 0.00               | 0.00<br>0.00              | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.373           | 0.00           | 0.00               | 0.00                      | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.423<br>0.448  | 0.00<br>0.00   | 0.00               | 0.00<br>0.00              | 0.00                 | 0.00             | 0.00<br>0.00   |  |
|       |       |         | 0.473           | 0.00           | 0.00               | 0.00                      | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.498           | 0.00           | 0.00<br>0.00       | 0.00<br>0.00              | 0.00<br>0.00         | 0.00             | 0.00<br>0.00   |  |
|       |       |         | 0.522<br>0.547  | 0.00<br>0.00   | 0.00               | 0.00                      | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.572           | 0.00           | 0.00               | 0.00                      | 0.00                 | 0.00             | 0.00           |  |
|       | LF20  | 1<br>88 | 0.597<br>0.000  | 0.00           | 0.00               | 0.00<br>-291.46           | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.025<br>0.050  | 0.00<br>0.00   | 0.00               | -134.34<br>-90.24         | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.075           | 0.00           | 0.00               | 93.05                     | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.100           | 0.00           | 0.00               | 93.05<br>107.28<br>124.02 | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.124<br>0.149  | 0.00           | 0.00               | 174.18                    | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.174           | 0.00           | 0.00               | 178.97                    | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.199<br>0.224  | 0.00<br>0.00   | 0.00<br>0.00       | 167.25<br>184.66          | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.249           | 0.00           | 0.00               | 174.82                    | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.274<br>0.299  | 0.00<br>0.00   | 0.00<br>0.00       | 164.34<br>163.24          | 0.00<br>0.00         | 0.00             | 0.00<br>0.00   |  |
|       |       |         | 0.323           | 0.00           | 0.00               | 141.55                    | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.348<br>0.373  | 0.00<br>0.00   | 0.00               | 138.62<br>122.94          | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.398           | 0.00           | 0.00               | 85.37                     | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.423<br>0.448  | 0.00<br>0.00   | 0.00               | 85.83<br>51.15            | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.473           | 0.00           | 0.00               | -14.43                    | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.498<br>0.522  | 0.00<br>0.00   | 0.00<br>0.00       | -27.01<br>-108.56         | 0.00<br>0.00         | 0.00             | 0.00<br>0.00   |  |
|       |       |         | 0.547           | 0.00           | 0.00               | <b>-</b> 289.33           | 0.00                 | 0.00             | 0.00           |  |
|       |       | 1       | 0.572<br>0.597  | 0.00           | 0.00               | -399.94<br>-2369.17       | 0.00                 | 0.00             | 0.00           |  |
|       | LF21  | 88      | 0.000           | 0.00           | 0.00               | 291.46                    | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.025<br>0.050  | 0.00<br>0.00   | 0.00               | 134.34<br>90.24           | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.075           | 0.00           | 0.00               | -93.05                    | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.100<br>0.124  | 0.00<br>0.00   | 0.00<br>0.00       | -107.28<br>-124.02        | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.149           | 0.00           | 0.00               | -174.18                   | 0.00                 | 0.00             | 0.00           |  |
|       |       |         | 0.174           | 0.00           | 0.00               | -178.97                   | 0.00                 | 0.00             | 0.00           |  |
|       |       |         |                 |                |                    |                           |                      |                  |                |  |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





| inie | IINIEIN | Knoten  | Stelle                  | <u> </u>             | Lagerkräfte [kN/m]           |                                                                                    | La                                           | germomente [kNm/i            | ml             |  |
|------|---------|---------|-------------------------|----------------------|------------------------------|------------------------------------------------------------------------------------|----------------------------------------------|------------------------------|----------------|--|
| Nr.  | LF/LK   | Nr.     | x [m]                   | p <sub>X</sub>       | p <sub>Y</sub>               | pz                                                                                 | m <sub>X</sub>                               | m <sub>Y</sub>               | m <sub>Z</sub> |  |
| 141  | LF21    | 88      | 0.199<br>0.224          | 0.00<br>0.00         | 0.00<br>0.00                 | -167.25<br>-184.66                                                                 | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|      |         |         | 0.249                   | 0.00                 | 0.00<br>0.00<br>0.00         | -174.82                                                                            | 0.00<br>0.00<br>0.00                         | 0.00<br>0.00<br>0.00         | 0.00           |  |
|      |         |         | 0.274<br>0.299          | 0.00<br>0.00         | 0.00<br>0.00                 | -174.82<br>-164.34<br>-163.24<br>-141.55                                           | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|      |         |         | 0.323                   | 0.00                 | 0.00                         | -141.55                                                                            | 0.00                                         | 0.00                         | 0.00           |  |
|      |         |         | 0.348<br>0.373          | 0.00<br>0.00         | 0.00                         | -138.62                                                                            | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|      |         |         | 0.398                   | 0.00                 | 0.00                         | -85.37                                                                             | 0.00                                         | 0.00                         | 0.00           |  |
|      |         |         | 0.423                   | 0.00                 | 0.00                         | -85.83                                                                             | 0.00                                         | 0.00                         | 0.00<br>0.00   |  |
|      |         |         | 0.423<br>0.448<br>0.473 | 0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00 | -85.37<br>-85.83<br>-51.15<br>14.43                                                | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00 | 0.00           |  |
|      |         |         | 0.498<br>0.522          | 0.00<br>0.00         | 0.00<br>0.00                 | 27.01<br>108.56                                                                    | 0.00                                         | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|      |         |         | 0.522                   | 0.00                 | 0.00                         | 289.33                                                                             | 0.00                                         | 0.00                         | 0.00           |  |
|      |         |         | 0.572                   | 0.00                 | 0.00                         | 289.33<br>399.94                                                                   | 0.00                                         | 0.00                         | 0.00           |  |
| -    | LF22    | 1<br>88 | 0.597<br>0.000          | 0.00<br>0.00         | 0.00                         | 399.94<br>2369.17<br>403.67<br>-61.77<br>64.10<br>31.43<br>44.17<br>42.35<br>32.95 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00         | 0.00                         | 0.00           |  |
|      |         |         | 0.025                   | 0.00                 | 0.00                         | -61.77                                                                             | 0.00                                         | 0.00                         | 0.00           |  |
|      |         |         | 0.050<br>0.075          | 0.00<br>0.00         | 0.00<br>0.00                 | 64.10                                                                              | 0.00                                         | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|      |         |         | 0.100                   | 0.00                 | 0.00                         | 44.17                                                                              | 0.00                                         | 0.00                         | 0.00           |  |
|      |         |         | 0.124<br>0.149          | 0.00<br>0.00         | 0.00<br>0.00                 | 42.35<br>32.95                                                                     | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|      |         |         | 0.174                   | 0.00                 | 0.00                         | 45.23<br>46.07<br>37.45<br>52.68                                                   | 0.00                                         | 0.00                         | 0.00           |  |
|      |         |         | 0.199<br>0.224          | 0.00<br>0.00         | 0.00<br>0.00                 | 46.07<br>37.45                                                                     | 0.00                                         | 0.00                         | 0.00<br>0.00   |  |
|      |         |         | 0.249                   | 0.00                 | 0.00                         | 52.68                                                                              | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00           |  |
|      |         |         | 0.274<br>0.299          | 0.00<br>0.00         | 0.00<br>0.00                 | 57.50<br>48.17                                                                     | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|      |         |         | 0.323                   | 0.00                 | 0.00                         | 64.66                                                                              | 0.00                                         | 0.00                         | 0.00           |  |
|      |         |         | 0.348                   | 0.00                 | 0.00                         | 67.66                                                                              | 0.00                                         | 0.00                         | 0.00           |  |
| i    |         |         | 0.373<br>0.398          | 0.00<br>0.00         | 0.00<br>0.00                 | 73.23                                                                              | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|      |         |         | 0.423<br>0.448          | 0.00                 | 0.00                         | 54.64<br>73.23<br>75.69<br>59.36<br>75.80<br>72.45                                 | 0.00                                         | 0.00                         | 0.00           |  |
|      |         |         | 0.448<br>0.473          | 0.00<br>0.00         | 0.00<br>0.00                 | 59.36<br>75.80                                                                     | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|      |         |         | 0.498                   | 0.00                 | 0.00                         | 72.45                                                                              | 0.00                                         | 0.00                         | 0.00           |  |
|      |         |         | 0.522<br>0.547          | 0.00<br>0.00         | 0.00<br>0.00                 | 48.53                                                                              | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|      |         |         | 0.572<br>0.597          | 0.00                 | 0.00                         | 48.53<br>61.92<br>112.20<br>73.23                                                  | 0.00<br>0.00<br>0.00                         | 0.00                         | 0.00           |  |
|      | LK1     | 1<br>88 | 0.597<br>0.000          | 0.00<br>0.00         | 0.00                         | 73.23<br>0.00                                                                      | 0.00                                         | 0.00                         | 0.00           |  |
|      | LKI     | 00      | 0.025                   | 0.00                 | 0.00                         | 0.00                                                                               | 0.00<br>0.00<br>0.00<br>0.00<br>0.00         | 0.00<br>0.00                 | 0.00           |  |
|      |         |         | 0.050                   | 0.00                 | 0.00                         | 0.00                                                                               | 0.00                                         | 0.00                         | 0.00           |  |
|      |         |         | 0.075<br>0.100          | 0.00<br>0.00         | 0.00                         | -57.09<br>-107.50                                                                  | 0.00                                         | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|      |         |         | 0.124                   | 0.00                 | 0.00                         | 107.21                                                                             | 0.00                                         | 0.00                         | 0.00           |  |
|      |         |         | 0.149<br>0.174          | 0.00<br>0.00         | 0.00<br>0.00                 | -107.21<br>-117.66<br>-124.71<br>-118.35<br>-126.04<br>-130.25<br>-125.22          | 0.00<br>0.00<br>0.00<br>0.00<br>0.00         | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|      |         |         | 0.199                   | 0.00                 | 0.00                         | -118.35                                                                            | 0.00                                         | 0.00                         | 0.00           |  |
|      |         |         | 0.224<br>0.249          | 0.00<br>0.00         | 0.00                         | -126.04<br>-130.25                                                                 | 0.00                                         | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|      |         |         | 0.274                   | 0.00                 | 0.00                         | -125.22                                                                            | 0.00                                         | 0.00                         | 0.00           |  |
|      |         |         | 0.299<br>0.323          | 0.00<br>0.00         | 0.00                         | 131.99                                                                             | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|      |         |         | 0.348                   | 0.00                 | 0.00<br>0.00                 | 135.93                                                                             | 0.00                                         | 0.00                         | 0.00           |  |
|      |         |         | 0.373                   | 0.00                 | 0.00                         | -143.43                                                                            | 0.00                                         | 0.00                         | 0.00           |  |
|      |         |         | 0.398<br>0.423          | 0.00<br>0.00         | 0.00<br>0.00                 | -153.12<br>-151.06                                                                 | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|      |         |         | 0.448                   | 0.00                 | 0.00                         | -135.49<br>-135.93<br>-143.43<br>-153.12<br>-151.06<br>-160.75                     | 0.00                                         | 0.00                         | 0.00           |  |
|      |         |         | 0.473<br>0.498          | 0.00<br>0.00         | 0.00                         | -169.16<br>-166.41                                                                 | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|      |         |         | 0.522                   | 0.00                 | 0.00                         | -176.17                                                                            | 0.00                                         | 0.00                         | 0.00           |  |
|      |         |         | 0.547<br>0.572          | 0.00<br>0.00         | 0.00<br>0.00                 | -177.57<br>-202.41                                                                 | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|      |         | 1       | 0.597                   | 0.00                 | 0.00                         | -716.19                                                                            | 0.00                                         | 0.00                         | 0.00           |  |
|      | LK2     | 88      | 0.000<br>0.025          | 0.00<br>0.00         | 0.00                         | 0.00<br>0.00                                                                       | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00<br>0.00   |  |
| į    |         |         | 0.050                   | 0.00                 | 0.00                         | 0.00                                                                               | 0.00                                         | 0.00                         | 0.00           |  |
|      |         |         | 0.075<br>0.100          | 0.00<br>0.00         | 0.00<br>0.00                 | 0.00<br>0.00                                                                       | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|      |         |         | 0.124                   | 0.00                 | 0.00                         | 0.00                                                                               | 0.00                                         | 0.00                         | 0.00           |  |
|      |         |         | 0.149<br>0.174          | 0.00<br>0.00         | 0.00                         | 0.00<br>0.00                                                                       | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|      |         |         | 0.199                   | 0.00                 | 0.00                         | 0.00                                                                               | 0.00                                         | 0.00                         | 0.00           |  |
|      |         |         | 0.224<br>0.249          | 0.00<br>0.00         | 0.00<br>0.00                 | 0.00<br>0.00                                                                       | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|      |         |         | 0.249                   | 0.00                 | 0.00                         | 0.00                                                                               | 0.00                                         | 0.00                         | 0.00           |  |
|      |         |         | 0.299                   | 0.00                 | 0.00                         | 0.00                                                                               | 0.00<br>0.00                                 | 0.00                         | 0.00           |  |
|      |         |         | 0.323<br>0.348          | 0.00<br>0.00         | 0.00<br>0.00                 | 0.00                                                                               | 0.00                                         | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|      |         |         | 0.373                   | 0.00                 | 0.00                         | -32.39                                                                             | 0.00                                         | 0.00                         | 0.00           |  |
|      |         |         | 0.398<br>0.423          | 0.00<br>0.00         | 0.00                         | -46.59<br>-43.48                                                                   | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|      |         |         | 0.448                   | 0.00                 | 0.00                         | -100.32                                                                            | 0.00                                         | 0.00                         | 0.00           |  |
|      |         |         | 0.473<br>0.498          | 0.00<br>0.00         | 0.00                         | -123.10<br>-146.39                                                                 | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|      |         |         | 0.522                   | 0.00                 | 0.00                         | -204.64                                                                            | 0.00                                         | 0.00                         | 0.00           |  |
|      |         |         | 0.547                   | 0.00                 | 0.00                         | -184.55<br>151.52                                                                  | 0.00                                         | 0.00                         | 0.00           |  |
|      |         | 1       | 0.572<br>0.597          | 0.00<br>0.00         | 0.00<br>0.00                 | -151.52<br>-1133.54                                                                | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|      |         |         |                         |                      |                              | 0.00                                                                               |                                              |                              | 0.00           |  |
|      | LK6     | 88      | 0.000<br>0.025          | 0.00<br>0.00         | 0.00                         | 0.00<br>0.00                                                                       | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00           |  |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





| Linie |       | Knoten   | Stelle                  |                              | Lagerkräfte [kN/m]           |                                                                              | l a                                          | germomente [kNm/n            | m]             |  |
|-------|-------|----------|-------------------------|------------------------------|------------------------------|------------------------------------------------------------------------------|----------------------------------------------|------------------------------|----------------|--|
| Nr.   | LF/LK | Nr.      | x [m]                   | p <sub>X</sub>               | p <sub>Y</sub>               | p <sub>z</sub>                                                               | m <sub>X</sub>                               | m <sub>Y</sub>               | m <sub>Z</sub> |  |
| 141   | LK6   | 88       | 0.050                   | 0.00                         | 0.00                         | 0.00<br>-48.43                                                               | 0.00                                         | 0.00                         | 0.00           |  |
|       |       |          | 0.075<br>0.100          | 0.00                         | 0.00<br>0.00<br>0.00         | -48.43<br>-97.19                                                             | 0.00<br>0.00<br>0.00                         | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|       |       |          | 0.124<br>0.149          | 0.00                         | 0.00<br>0.00                 | -100.52                                                                      | 0.00<br>0.00                                 | 0.00                         | 0.00<br>0.00   |  |
|       |       |          | 0.174                   | 0.00                         | 0.00                         | -97.19<br>-100.52<br>-110.26<br>-116.75                                      | 0.00                                         | 0.00                         | 0.00           |  |
|       |       |          | 0.199<br>0.224          | 0.00                         | 0.00<br>0.00                 | -110.53                                                                      | 0.00<br>0.00                                 | 0.00                         | 0.00           |  |
|       |       |          | 0.249                   | 0.00                         | 0.00                         | -119.97                                                                      | 0.00                                         | 0.00                         | 0.00           |  |
|       |       |          | 0.274<br>0.299<br>0.323 | 0.00<br>0.00<br>0.00         | 0.00                         | -114.74<br>-120.24                                                           | 0.00                                         | 0.00                         | 0.00           |  |
|       |       |          | 0.323                   | 0.00                         | 0.00<br>0.00<br>0.00<br>0.00 | -119.97<br>-114.74<br>-120.24<br>-125.72                                     | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00 | 0.00           |  |
|       |       |          | 0.348<br>0.373          | 0.00                         | 0.00<br>0.00                 | -122.77<br>-128.54                                                           | 0.00                                         | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|       |       |          | 0.398                   | 0.00                         | 0.00                         | -136.69                                                                      | 0.00                                         | 0.00                         | 0.00           |  |
|       |       |          | 0.423<br>0.448          | 0.00                         | 0.00<br>0.00                 | -133.68<br>-142.70                                                           | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00           |  |
|       |       |          | 0.473                   | 0.00                         | 0.00<br>0.00                 | -149.61                                                                      | 0.00                                         | 0.00                         | 0.00           |  |
|       |       |          | 0.498<br>0.522          | 0.00                         | 0.00                         | -142.70<br>-149.61<br>-149.22<br>-158.86<br>-160.80                          | 0.00<br>0.00<br>0.00<br>0.00<br>0.00         | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|       |       |          | 0.547<br>0.572          | 0.00<br>0.00                 | 0.00<br>0.00                 | -160.80<br>-184.92                                                           | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|       |       | 1        | 0.597                   | 0.00                         | 0.00                         | -642.19                                                                      | 0.00                                         | 0.00                         | 0.00           |  |
|       | LK9   | 88       | 0.000<br>0.025          | 0.00<br>0.00                 | 0.00<br>0.00                 | 0.00<br>0.00                                                                 | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|       |       |          | 0.023<br>0.050<br>0.075 | 0.00                         | 0.00                         | 0.00                                                                         | 0.00                                         | 0.00                         | 0.00           |  |
|       |       |          | 0.075<br>0.100          | 0.00<br>0.00                 | 0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00                                                         | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|       |       |          | 0.124                   | 0.00                         | 0.00                         | 0.00                                                                         | 0.00                                         | 0.00                         | 0.00           |  |
|       |       |          | 0.149<br>0.174          | 0.00                         | 0.00<br>0.00                 | 0.00<br>-2.67                                                                | 0.00<br>0.00                                 | 0.00                         | 0.00<br>0.00   |  |
|       |       |          | 0.199                   | 0.00                         | 0.00                         | 5.54                                                                         | 0.00                                         | 0.00                         | 0.00           |  |
|       |       |          | 0.224<br>0.249          | 0.00                         | 0.00<br>0.00                 | -26.10<br>-25.60                                                             | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|       |       |          | 0.274<br>0.299          | 0.00                         | 0.00                         | -26.10<br>-25.60<br>-13.86<br>-31.07<br>-24.33<br>-15.54                     | 0.00<br>0.00                                 | 0.00                         | 0.00           |  |
|       |       |          | 0.323                   | 0.00<br>0.00                 | 0.00<br>0.00                 | -24.33                                                                       | 0.00                                         | 0.00                         | 0.00<br>0.00   |  |
|       |       |          | 0.348<br>0.373          | 0.00                         | 0.00                         | -15.54                                                                       | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|       |       |          | 0.398                   | 0.00                         | 0.00<br>0.00                 | -37.62<br>-28.43                                                             | 0.00                                         | 0.00                         | 0.00           |  |
|       |       |          | 0.423                   | 0.00                         | 0.00<br>0.00<br>0.00<br>0.00 | -26.43<br>-20.74<br>-47.45<br>-45.03<br>-61.98<br>-98.34<br>-76.68<br>-31.87 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00                         | 0.00<br>0.00   |  |
|       |       |          | 0.448<br>0.473<br>0.498 | 0.00<br>0.00                 | 0.00                         | -45.03                                                                       | 0.00                                         | 0.00<br>0.00<br>0.00         | 0.00           |  |
|       |       |          | 0.498                   | 0.00                         | 0.00                         | -61.98<br>-98.34                                                             | 0.00                                         | 0.00                         | 0.00<br>0.00   |  |
|       |       |          | 0.522<br>0.547          | 0.00                         | 0.00                         | -76.68                                                                       | 0.00                                         | 0.00                         | 0.00           |  |
|       |       | 1        | 0.572<br>0.597          | 0.00                         | 0.00<br>0.00                 | -31.87<br>-439.83                                                            | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|       | LK10  | 88       | 0.000                   | 0.00                         | 0.00                         | -31.87<br>-439.83<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                    | 0.00<br>0.00                                 | 0.00                         | 0.00           |  |
|       |       |          | 0.025<br>0.050<br>0.075 | 0.00<br>0.00                 | 0.00<br>0.00                 | 0.00                                                                         | 0.00                                         | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|       |       |          | 0.075<br>0.100          | 0.00                         | 0.00<br>0.00                 | 0.00                                                                         | 0.00<br>0.00<br>0.00                         | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|       |       |          | 0.124                   | 0.00<br>0.00                 | 0.00                         | 0.00                                                                         | 0.00                                         | 0.00                         | 0.00           |  |
|       |       |          | 0.149<br>0.174          | 0.00<br>0.00                 | 0.00<br>0.00                 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                         | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|       |       |          | 0.199                   | 0.00                         | 0.00                         | 0.00                                                                         | 0.00                                         | 0.00                         | 0.00           |  |
|       |       |          | 0.224<br>0.249          | 0.00<br>0.00                 | 0.00                         | 0.00                                                                         | 0.00<br>0.00<br>0.00                         | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|       |       |          | 0.274                   | 0.00                         | 0.00                         | 0.00                                                                         | 0.00                                         | 0.00                         | 0.00           |  |
|       |       |          | 0.299<br>0.323          | 0.00                         | 0.00<br>0.00                 | 0.00                                                                         | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|       |       |          | 0.348<br>0.373          | 0.00                         | 0.00<br>0.00                 | 0.00<br>0.00                                                                 | 0.00<br>0.00                                 | 0.00                         | 0.00           |  |
|       |       |          | 0.398                   | 0.00                         | 0.00<br>0.00                 | 0.00                                                                         | 0.00                                         | 0.00                         | 0.00           |  |
|       |       |          | 0.423<br>0.448          | 0.00                         | 0.00                         | 0.00<br>0.00<br>0.00                                                         | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|       |       |          | 0.473                   | 0.00                         | 0.00                         | 0.00                                                                         | 0.00                                         | 0.00                         | 0.00           |  |
|       |       |          | 0.498                   | 0.00                         | 0.00                         | 0.00                                                                         | 0.00                                         | 0.00                         | 0.00           |  |
|       |       |          | 0.547                   | 0.00                         | 0.00                         | 0.00                                                                         | 0.00                                         | 0.00                         | 0.00           |  |
|       |       | 1        | 0.572<br>0.597          | 0.00                         | 0.00<br>0.00                 | -60.60<br>-2478.75                                                           | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00<br>0.00   |  |
| 142   | LF1   | 89       | 0.000<br>0.026          | 0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00                 | -88.84<br>-87.01                                                             | 0.00                                         | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|       |       |          | 0.052                   | 0.00                         | 0.00                         | -94.18                                                                       | 0.00<br>0.00                                 | 0.00                         | 0.00           |  |
|       |       |          | 0.078<br>0.104          | 0.00<br>0.00                 | 0.00<br>0.00                 | -103.39<br>-117.74                                                           | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|       |       |          | 0.131                   | 0.00                         | 0.00                         | -135.11                                                                      | 0.00                                         | 0.00                         | 0.00           |  |
|       | LF2   | 90<br>89 | 0.157<br>0.000          | 0.00                         | 0.00                         | -88.97<br>0.00                                                               | 0.00                                         | 0.00                         | 0.00           |  |
|       | _     |          | 0.026<br>0.052          | 0.00                         | 0.00                         | 0.00                                                                         | 0.00<br>0.00                                 | 0.00                         | 0.00           |  |
|       |       |          | 0.052                   | 0.00                         | 0.00                         | 0.00<br>0.00                                                                 | 0.00                                         | 0.00<br>0.00                 | 0.00           |  |
|       |       |          | 0.104                   | 0.00                         | 0.00                         | 0.00                                                                         | 0.00                                         | 0.00                         | 0.00           |  |
|       |       | 90       | 0.131<br>0.157          | 0.00<br>0.00                 | 0.00<br>0.00                 | 0.00<br>0.00                                                                 | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|       | LF3   | 89       | 0.000<br>0.026          | 0.00<br>0.00                 | 0.00<br>0.00                 | 0.00<br>0.00                                                                 | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|       |       |          | 0.052                   | 0.00                         | 0.00                         | 0.00                                                                         | 0.00                                         | 0.00                         | 0.00           |  |
|       |       |          | 0.078<br>0.104          | 0.00<br>0.00                 | 0.00<br>0.00                 | 0.00<br>0.00                                                                 | 0.00<br>0.00                                 | 0.00<br>0.00                 | 0.00<br>0.00   |  |
|       |       |          | 0.131                   | 0.00                         | 0.00                         | 0.00                                                                         | 0.00                                         | 0.00                         | 0.00           |  |
|       |       | 90       | 0.157                   | 0.00                         | 0.00                         | 0.00                                                                         | 0.00                                         | 0.00                         | 0.00           |  |
|       |       |          |                         |                              |                              |                                                                              |                                              |                              |                |  |
|       |       |          | ,                       |                              |                              |                                                                              |                                              |                              |                |  |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





| = 4.3 L | IINIEIN | - LAGEI  | RKRAFTE        | _              |                      |                               |                              |                   |                |     |
|---------|---------|----------|----------------|----------------|----------------------|-------------------------------|------------------------------|-------------------|----------------|-----|
| Linie   |         | Knoten   | Stelle         |                | Lagerkräfte [kN/m]   |                               | La                           | germomente [kNm/r | m]             |     |
| Nr.     | LF/LK   | Nr.      | x [m]          | p <sub>X</sub> | p <sub>Y</sub>       | pz                            | m <sub>X</sub>               | m <sub>Y</sub> ,  | m <sub>z</sub> | ı İ |
| 142     | LF4     | 89       | 0.000          | 0.00           | 0.00                 | -6.28                         | 0.00                         | 0.00              | 0.00           |     |
|         |         |          | 0.026          | 0.00           | 0.00                 | -5 95                         | 0.00<br>0.00<br>0.00<br>0.00 | 0.00              | 0.00           |     |
|         |         |          | 0.052<br>0.078 | 0.00<br>0.00   | 0.00<br>0.00         | -6.13<br>-6.40                | 0.00                         | 0.00              | 0.00           |     |
|         |         |          | 0.078          | 0.00           | 0.00                 | -6.40                         | 0.00                         | 0.00              | 0.00           |     |
|         |         |          | 0.104<br>0.131 | 0.00<br>0.00   | 0.00<br>0.00         | -6.94<br>-7.65                | 0.00                         | 0.00<br>0.00      | 0.00<br>0.00   |     |
|         |         | 90       | 0.157          | 0.00           | 0.00                 | -7.03<br>-4.91                | 0.00                         | 0.00              | 0.00           |     |
|         | LF5     | 89       | 0.000          | 0.00           | 0.00                 | 0.00                          | 0.00                         | 0.00              | 0.00           |     |
|         |         |          | 0.026          | 0.00           | 0.00                 | 0.00                          | 0.00                         | 0.00              | 0.00           |     |
|         |         |          | 0.052<br>0.078 | 0.00<br>0.00   | 0.00<br>0.00<br>0.00 | 0.00                          | 0.00<br>0.00<br>0.00         | 0.00              | 0.00<br>0.00   |     |
|         |         |          | 0.104          | 0.00           | 0.00                 | 0.00                          | 0.00                         | 0.00              | 0.00           |     |
|         |         |          | 0.131          | 0.00           | 0.00                 | 0.00                          | 0.00                         | 0.00              | 0.00           |     |
|         |         | 90       | 0.157          | 0.00           | 0.00                 | 0.00                          | 0.00                         | 0.00              | 0.00           |     |
|         | LF6     | 89       | 0.000          | 0.00           | 0.00                 | 233.17                        | 0.00                         | 0.00              | 0.00           |     |
|         |         |          | 0.026<br>0.052 | 0.00<br>0.00   | 0.00<br>0.00         | 43.43<br>-27.81               | 0.00<br>0.00                 | 0.00<br>0.00      | 0.00<br>0.00   |     |
|         |         |          | 0.032          | 0.00           | 0.00                 | -83.44                        | 0.00                         | 0.00              | 0.00           |     |
|         |         |          | 0.104          | 0.00           | 0.00<br>0.00         | -141.26                       | 0.00                         | 0.00              | 0.00           |     |
|         |         |          | 0.131          | 0.00           | 0.00                 | -213.96                       | 0.00                         | 0.00              | 0.00           |     |
|         | LF13    | 90<br>89 | 0.157<br>0.000 | 0.00           | 0.00                 | -167.45<br>0.00               | 0.00                         | 0.00              | 0.00           |     |
|         | LF13    | 09       | 0.000          | 0.00           | 0.00                 | 0.00                          | 0.00                         | 0.00              | 0.00           |     |
|         |         |          | 0.052          | 0.00           | 0.00                 | 0.00                          | 0.00                         | 0.00              | 0.00           |     |
|         |         |          | 0.078          | 0.00           | 0.00                 | 0.00                          | 0.00                         | 0.00              | 0.00           |     |
|         |         |          | 0.104          | 0.00           | 0.00                 | 0.00                          | 0.00                         | 0.00              | 0.00           |     |
|         |         | 90       | 0.131<br>0.157 | 0.00<br>0.00   | 0.00<br>0.00         | 0.00                          | 0.00<br>0.00                 | 0.00<br>0.00      | 0.00<br>0.00   |     |
|         | LF20    | 89       | 0.000          | 0.00           | 0.00                 | 2136.19                       | 0.00                         | 0.00              | 0.00           |     |
|         |         |          | 0.026          | 0.00           | 0.00                 | -1033.09                      | 0.00                         | 0.00              | 0.00           |     |
|         |         |          | 0.052          | 0.00           | 0.00                 | -542.42                       | 0.00                         | 0.00              | 0.00           |     |
|         |         |          | 0.078<br>0.104 | 0.00<br>0.00   | 0.00<br>0.00         | -221.10<br>17.89              | 0.00<br>0.00                 | 0.00<br>0.00      | 0.00<br>0.00   |     |
|         |         |          | 0.104          | 0.00           | 0.00                 | 17.89<br>236.60               | 0.00                         | 0.00              | 0.00           |     |
|         |         | 90       | 0.157          | 0.00           | 0.00<br>0.00         | 235.18                        | 0.00                         | 0.00              | 0.00           |     |
|         | LF21    | 89       | 0.000          | 0.00           | 0.00                 | 2136.19                       | 0.00                         | 0.00              | 0.00           |     |
|         |         |          | 0.026<br>0.052 | 0.00<br>0.00   | 0.00                 | 1033.09<br>542.42             | 0.00                         | 0.00<br>0.00      | 0.00           |     |
|         |         |          | 0.052          | 0.00           | 0.00<br>0.00         | 221.10                        | 0.00                         | 0.00              | 0.00<br>0.00   |     |
|         |         |          | 0.104          | 0.00           | 0.00                 | -17.89                        | 0.00                         | 0.00              | 0.00           |     |
|         |         |          | 0.131          | 0.00           | 0.00                 | -236 60                       | 0.00                         | 0.00              | 0.00           |     |
|         | 1.500   | 90       | 0.157          | 0.00           | 0.00                 | -235.18<br>233.17             | 0.00                         | 0.00              | 0.00           |     |
|         | LF22    | 89       | 0.000<br>0.026 | 0.00<br>0.00   | 0.00<br>0.00         | 43.43                         | 0.00                         | 0.00<br>0.00      | 0.00<br>0.00   |     |
|         |         |          | 0.052          | 0.00           | 0.00                 | -27.81                        | 0.00                         | 0.00              | 0.00           |     |
|         |         |          | 0.078          | 0.00           | 0.00                 | -83.44                        | 0.00                         | 0.00              | 0.00           |     |
|         |         |          | 0.104          | 0.00           | 0.00                 | -141.26                       | 0.00                         | 0.00              | 0.00           |     |
|         |         | 90       | 0.131<br>0.157 | 0.00<br>0.00   | 0.00<br>0.00         | -213.96<br>-167.45            | 0.00<br>0.00                 | 0.00              | 0.00<br>0.00   |     |
|         | LK1     | 89       | 0.000          | 0.00           | 0.00                 | -593.52                       | 0.00                         | 0.00              | 0.00           |     |
|         |         |          | 0.026          | 0.00           | 0.00<br>0.00         | -503.43                       | 0.00                         | 0.00              | 0.00           |     |
|         |         |          | 0.052          | 0.00           | 0.00                 | -463.67                       | 0.00                         | 0.00              | 0.00           |     |
|         |         |          | 0.078<br>0.104 | 0.00<br>0.00   | 0.00<br>0.00         | -429.08<br>-411.19            | 0.00<br>0.00                 | 0.00<br>0.00      | 0.00<br>0.00   |     |
|         |         |          | 0.131          | 0.00           | 0.00                 | -402.24                       | 0.00                         | 0.00              | 0.00           |     |
|         |         | 90       | 0.157          | 0.00           | 0.00                 | -238.67                       | 0.00                         | 0.00              | 0.00           |     |
|         | LK2     | 89       | 0.000          | 0.00           | 0.00                 | -676.13                       | 0.00                         | 0.00              | 0.00           |     |
|         |         |          | 0.026<br>0.052 | 0.00<br>0.00   | 0.00                 | -742.02<br>-771.11            | 0.00<br>0.00                 | 0.00<br>0.00      | 0.00<br>0.00   |     |
|         |         |          | 0.032          | 0.00           | 0.00<br>0.00         | 813.59                        | 0.00                         | 0.00              | 0.00           |     |
|         |         |          | 0.104          | 0.00           | 0.00                 | -904.83                       | 0.00                         | 0.00              | 0.00           |     |
|         |         |          | 0.131          | 0.00           | 0.00                 | -1042.23                      | 0.00                         | 0.00              | 0.00           |     |
|         | LK6     | 90<br>89 | 0.157<br>0.000 | 0.00           | 0.00                 | -700.35<br>-529.38            | 0.00                         | 0.00              | 0.00           |     |
|         | LINO    | 03       | 0.026          | 0.00           | 0.00                 | -455.29                       | 0.00                         | 0.00              | 0.00           |     |
|         |         |          | 0.052          | 0.00           | 0.00<br>0.00<br>0.00 | -455.29<br>-420.39<br>-387.68 | 0.00<br>0.00<br>0.00         | 0.00<br>0.00      | 0.00           |     |
|         |         |          | 0.078          | 0.00           | 0.00                 | -387.68                       | 0.00                         | 0.00              | 0.00           |     |
|         |         |          | 0.104<br>0.131 | 0.00<br>0.00   | 0.00<br>0.00         | -368.61<br>-357.11            | 0.00<br>0.00                 | 0.00<br>0.00      | 0.00<br>0.00   |     |
|         |         | 90       | 0.157          | 0.00           | 0.00                 | -210.38                       | 0.00                         | 0.00              | 0.00           |     |
|         | LK9     | 89       | 0.000          | 0.00           | 0.00                 | -154.33                       | 0.00                         | 0.00              | 0.00           |     |
|         |         |          | 0.026          | 0.00           | 0.00                 | -326.90                       | 0.00                         | 0.00              | 0.00           |     |
|         |         |          | 0.052<br>0.078 | 0.00<br>0.00   | 0.00<br>0.00         | -409.98<br>-486.07            | 0.00<br>0.00                 | 0.00              | 0.00<br>0.00   |     |
|         |         |          | 0.104          | 0.00           | 0.00                 | -586.44                       | 0.00                         | 0.00              | 0.00           |     |
|         |         |          | 0.131          | 0.00           | 0.00                 | -717.47                       | 0.00                         | 0.00              | 0.00           |     |
|         |         | 90       | 0.157          | 0.00           | 0.00                 | -498.81                       | 0.00                         | 0.00              | 0.00           |     |
|         | LK10    | 89       | 0.000<br>0.026 | 0.00<br>0.00   | 0.00<br>0.00         | -1990.77<br>-948.55           | 0.00<br>0.00                 | 0.00<br>0.00      | 0.00<br>0.00   |     |
|         |         |          | 0.052          | 0.00           | 0.00                 | -447.81                       | 0.00                         | 0.00              | 0.00           |     |
|         |         |          | 0.078          | 0.00           | 0.00                 | -40.53                        | 0.00                         | 0.00              | 0.00           |     |
|         |         |          | 0.104          | 0.00           | 0.00                 | 0.00                          | 0.00                         | 0.00              | 0.00           |     |
|         |         | 00       | 0.131          | 0.00<br>0.00   | 0.00                 | 0.00<br>0.00                  | 0.00<br>0.00                 | 0.00<br>0.00      | 0.00<br>0.00   |     |
| 153     | LF1     | 90<br>99 | 0.157<br>0.000 | 0.00           | 0.00                 | -102.09                       | 0.00                         | 0.00              | 0.00           |     |
|         |         | 50       | 0.026          | 0.00           | 0.00                 | -154.44                       | 0.00                         | 0.00              | 0.00           |     |
|         |         |          | 0.052          | 0.00           | 0.00                 | -135.78                       | 0.00                         | 0.00              | 0.00           |     |
|         |         |          | 0.078          | 0.00           | 0.00<br>0.00         | -121.92<br>-112.75            | 0.00                         | 0.00              | 0.00<br>0.00   |     |
|         |         |          | 0.104<br>0.131 | 0.00<br>0.00   | 0.00                 | -112.75  <br>-101.92          | 0.00                         | 0.00              | 0.00           |     |
|         |         | 100      | 0.157          | 0.00           | 0.00                 | -61.57                        | 0.00                         | 0.00              | 0.00           |     |
|         | LF2     | 99       | 0.000          | 0.00           | 0.00                 | 0.00                          | 0.00                         | 0.00              | 0.00           |     |
|         |         |          | 0.026          | 0.00           | 0.00                 | 0.00                          | 0.00                         | 0.00              | 0.00           |     |
|         |         | 1        | 0.052          | 0.00           | 0.00                 | 0.00                          | 0.00                         | 0.00              | 0.00           |     |
|         |         |          |                |                |                      |                               |                              |                   |                |     |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





| е | 15024        | Knoten    | Stelle                  |                | Lagerkräfte [kN/m]                   |                                                     |                                      | igermomente [kNm/i  |              |  |
|---|--------------|-----------|-------------------------|----------------|--------------------------------------|-----------------------------------------------------|--------------------------------------|---------------------|--------------|--|
| - | LF/LK<br>LF2 | Nr.<br>99 | x [m]<br>0.078          | p <sub>X</sub> | P <sub>Y</sub> 0.00                  | Pz 0.00                                             | m <sub>X</sub> 0.00                  | m <sub>Y</sub> 0.00 | 0.00         |  |
|   | LF2          | 99        | 0.078   0.104           | 0.00           | 0.00                                 | 0.00                                                | 0.00                                 | 0.00                | 0.00         |  |
|   |              |           | 0.131                   | 0.00           | 0.00<br>0.00                         | 0.00<br>0.00                                        | 0.00<br>0.00                         | 0.00                | 0.00         |  |
| ŀ | LF3          | 100<br>99 | 0.157<br>0.000          | 0.00           | 0.00                                 | 0.00                                                | 0.00                                 | 0.00                | 0.00         |  |
|   | LIS          | 33        | 0.026                   | 0.00           | 0.00                                 | 0.00                                                | 0.00                                 | 0.00                | 0.00         |  |
|   |              |           | 0.052                   | 0.00           | 0.00                                 | 0.00<br>0.00                                        | 0.00                                 | 0.00                | 0.00         |  |
|   |              |           | 0.078<br>0.104          | 0.00<br>0.00   | 0.00<br>0.00                         | 0.00                                                | 0.00                                 | 0.00<br>0.00        | 0.00         |  |
|   |              |           | 0.131<br>0.157          | 0.00           | 0.00                                 | 0.00<br>0.00                                        | 0.00<br>0.00                         | 0.00                | 0.00         |  |
| - | LF4          | 100<br>99 | 0.157                   | 0.00<br>0.00   | 0.00<br>0.00                         | 0.00<br>-5.64                                       | 0.00                                 | 0.00                | 0.00         |  |
|   | LI 4         | 99        | 0.026                   | 0.00           | 0.00                                 | -8.63                                               | 0.00                                 | 0.00                | 0.00         |  |
| į |              |           | 0.052                   | 0.00           | 0.00                                 | -8.63<br>-7.69                                      | 0.00<br>0.00                         | 0.00                | 0.00         |  |
|   |              |           | 0.078<br>0.104          | 0.00<br>0.00   | 0.00<br>0.00                         | -7.00<br>-6.56                                      | 0.00                                 | 0.00<br>0.00        | 0.00         |  |
|   |              |           | 0.131                   | 0.00           | 0.00                                 | 6.04                                                | 0.00                                 | 0.00                | 0.00         |  |
| - | 1.55         | 100<br>99 | 0.157                   | 0.00           | 0.00                                 | -3.96                                               | 0.00                                 | 0.00                | 0.00         |  |
| ŀ | LF5          | 99        | 0.000<br>0.026          | 0.00<br>0.00   | 0.00<br>0.00                         | -3.96<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00       | 0.00                                 | 0.00                | 0.00         |  |
|   |              |           | 0.052                   | 0.00           | 0.00                                 | 0.00                                                | 0.00<br>0.00                         | 0.00                | 0.00         |  |
|   |              |           | 0.078<br>0.104          | 0.00<br>0.00   | 0.00<br>0.00                         | 0.00                                                | 0.00<br>0.00                         | 0.00<br>0.00        | 0.00         |  |
|   |              |           | 0.104                   | 0.00           | 0.00                                 | 0.00                                                | 0.00                                 | 0.00                | 0.00         |  |
|   |              | 100       | 0.157                   | 0.00           | 0.00                                 | 0.00                                                | 0.00                                 | 0.00                | 0.00         |  |
|   | LF6          | 99        | 0.000<br>0.026          | 0.00<br>0.00   | 0.00                                 | 3.88<br>-1.62                                       | 0.00<br>0.00                         | 0.00<br>0.00        | 0.00<br>0.00 |  |
|   |              |           | 0.052                   | 0.00           | 0.00<br>0.00                         | -8.69                                               | 0.00                                 | 0.00                | 0.00         |  |
|   |              |           | 0.078                   | 0.00           | 0.00                                 | -12.53                                              | 0.00                                 | 0.00                | 0.00         |  |
|   |              |           | 0.104<br>0.131          | 0.00<br>0.00   | 0.00<br>0.00                         | -12.39<br>0.41                                      | 0.00                                 | 0.00<br>0.00        | 0.00         |  |
|   |              | 100       | 0.157                   | 0.00           | 0.00                                 | 236.52                                              | 0.00                                 | 0.00                | 0.00         |  |
|   | LF13         | 99        | 0.000                   | 0.00<br>0.00   | 0.00<br>0.00                         | 0.00<br>0.00                                        | 0.00                                 | 0.00<br>0.00        | 0.00         |  |
|   |              |           | 0.026<br>0.052          | 0.00           | 0.00                                 | 0.00                                                | 0.00                                 | 0.00                | 0.00         |  |
|   |              |           | 0.078                   | 0.00           | 0.00                                 | 0.00                                                | 0.00                                 | 0.00                | 0.00         |  |
|   |              |           | 0.104<br>0.131          | 0.00<br>0.00   | 0.00<br>0.00                         | 0.00<br>0.00                                        | 0.00                                 | 0.00<br>0.00        | 0.00         |  |
|   |              | 100       | 0.157                   | 0.00           | 0.00                                 | 0.00                                                | 0.00                                 | 0.00                | 0.00         |  |
|   | LF20         | 99        | 0.000                   | 0.00           | 0.00                                 | 621.62                                              | 0.00                                 | 0.00                | 0.00         |  |
|   |              |           | 0.026                   | 0.00<br>0.00   | 0.00                                 | -802.48<br>-522.65                                  | 0.00                                 | 0.00                | 0.00<br>0.00 |  |
|   |              |           | 0.052<br>0.078<br>0.104 | 0.00           | 0.00<br>0.00<br>0.00<br>0.00         | -802.48<br>-522.65<br>-296.78<br>-147.76<br>-143.58 | 0.00<br>0.00                         | 0.00<br>0.00        | 0.00         |  |
|   |              |           | 0.104                   | 0.00           | 0.00                                 | -147.76                                             | 0.00                                 | 0.00                | 0.00         |  |
|   |              | 100       | 0.131<br>0.157          | 0.00<br>0.00   | 0.00<br>0.00                         | -143.56                                             | 0.00<br>0.00                         | 0.00<br>0.00        | 0.00<br>0.00 |  |
| Ī | LF21         | 99        | 0.000                   | 0.00           | 0.00                                 | -291.46<br>621.62                                   | 0.00                                 | 0.00                | 0.00         |  |
|   |              |           | 0.026<br>0.052          | 0.00<br>0.00   | 0.00                                 | 802.48                                              | 0.00                                 | 0.00<br>0.00        | 0.00         |  |
|   |              |           | 0.032                   | 0.00           | 0.00<br>0.00                         | 296.78                                              | 0.00                                 | 0.00                | 0.00         |  |
|   |              |           | 0.104                   | 0.00           | 0.00                                 | 522.65<br>296.78<br>147.76<br>143.58<br>291.46      | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00                | 0.00         |  |
|   |              | 100       | 0.131<br>0.157          | 0.00<br>0.00   | 0.00<br>0.00                         | 143.58                                              | 0.00                                 | 0.00<br>0.00        | 0.00<br>0.00 |  |
| ı | LF22         | 99        | 0.000                   | 0.00           | 0.00                                 | 3.88                                                | 0.00                                 | 0.00                | 0.00         |  |
|   |              |           | 0.026                   | 0.00           | 0.00                                 | -1.62                                               | 0.00                                 | 0.00                | 0.00         |  |
|   |              |           | 0.052<br>0.078          | 0.00<br>0.00   | 0.00                                 | -8.69<br>-12.53                                     | 0.00<br>0.00                         | 0.00<br>0.00        | 0.00<br>0.00 |  |
|   |              |           | 0.104                   | 0.00           | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | -12.39                                              | 0.00                                 | 0.00                | 0.00         |  |
| ı |              | 100       | 0.131<br>0.157          | 0.00<br>0.00   | 0.00                                 | 0.41<br>236.52                                      | 0.00                                 | 0.00<br>0.00        | 0.00         |  |
| ŀ | LK1          | 99        | 0.000                   | 0.00           | 0.00                                 | -361.68                                             | 0.00                                 | 0.00                | 0.00         |  |
|   |              |           | 0.026                   | 0.00           | 0.00                                 | -464.16                                             | 0.00                                 | 0.00                | 0.00         |  |
|   |              |           | 0.052<br>0.078          | 0.00<br>0.00   | 0.00<br>0.00                         | -314.92<br>-187.85                                  | 0.00                                 | 0.00<br>0.00        | 0.00         |  |
|   |              |           | 0.104                   | 0.00           | 0.00<br>0.00<br>0.00                 | -26.32<br>0.00                                      | 0.00                                 | 0.00                | 0.00         |  |
|   |              | 100       | 0.131                   | 0.00           | 0.00                                 | 0.00                                                | 0.00                                 | 0.00                | 0.00         |  |
| - | LK2          | 100<br>99 | 0.157<br>0.000          | 0.00           | 0.00                                 | 0.00                                                | 0.00                                 | 0.00                | 0.00         |  |
|   |              |           | 0.026                   | 0.00           | 0.00                                 | 0.00                                                | 0.00                                 | 0.00                | 0.00         |  |
|   |              |           | 0.052<br>0.078          | 0.00<br>0.00   | 0.00<br>0.00                         | 0.00<br>0.00                                        | 0.00                                 | 0.00<br>0.00        | 0.00<br>0.00 |  |
|   |              |           | 0.104                   | 0.00           | 0.00                                 | 0.00                                                | 0.00                                 | 0.00                | 0.00         |  |
|   |              | 465       | 0.131                   | 0.00           | 0.00                                 | 0.00                                                | 0.00                                 | 0.00                | 0.00         |  |
| - | LK6          | 100<br>99 | 0.157<br>0.000          | 0.00<br>0.00   | 0.00                                 | 0.00<br>-329.55                                     | 0.00                                 | 0.00                | 0.00         |  |
|   | LINO         | 33        | 0.026                   | 0.00           | 0.00                                 | -417.21                                             | 0.00                                 | 0.00                | 0.00         |  |
|   |              |           | 0.052                   | 0.00           | 0.00                                 | -275.72                                             | 0.00                                 | 0.00                | 0.00         |  |
|   |              |           | 0.078<br>0.104          | 0.00<br>0.00   | 0.00<br>0.00                         | -154.29<br>0.00                                     | 0.00                                 | 0.00<br>0.00        | 0.00         |  |
|   |              |           | 0.131                   | 0.00           | 0.00                                 | 0.00                                                | 0.00                                 | 0.00                | 0.00         |  |
| ŀ | LK9          | 100<br>99 | 0.157                   | 0.00           | 0.00                                 | 0.00                                                | 0.00                                 | 0.00                | 0.00         |  |
|   | LN9          | 99        | 0.000<br>0.026          | 0.00<br>0.00   | 0.00<br>0.00                         | -128.50<br>-93.26                                   | 0.00<br>0.00                         | 0.00                | 0.00         |  |
|   |              |           | 0.052                   | 0.00           | 0.00                                 | 0.00                                                | 0.00                                 | 0.00                | 0.00         |  |
|   |              |           | 0.078                   | 0.00<br>0.00   | 0.00<br>0.00                         | 0.00<br>0.00                                        | 0.00                                 | 0.00<br>0.00        | 0.00         |  |
|   |              |           | 0.104<br>0.131          | 0.00           | 0.00                                 | 0.00                                                | 0.00                                 | 0.00                | 0.00         |  |
|   | 11/40        | 100       | 0.157                   | 0.00           | 0.00                                 | 0.00                                                | 0.00                                 | 0.00                | 0.00         |  |
|   | LK10         | 99        | 0.000<br>0.026          | 0.00<br>0.00   | 0.00<br>0.00                         | -783.90<br>-770.62                                  | 0.00                                 | 0.00                | 0.00         |  |
|   |              |           | 0.052                   | 0.00           | 0.00                                 | -27.07                                              | 0.00                                 | 0.00                | 0.00         |  |
|   |              |           | 0.078                   | 0.00           | 0.00                                 | 0.00                                                | 0.00                                 | 0.00                | 0.00         |  |
|   |              |           | 0.104<br>0.131          | 0.00<br>0.00   | 0.00<br>0.00                         | 0.00<br>0.00                                        | 0.00                                 | 0.00<br>0.00        | 0.00<br>0.00 |  |
|   |              |           | 0.101                   | 0.00           | 0.00                                 | 0.00                                                | 0.00                                 | 0.00                | 0.00         |  |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





|       |       |           | KKKAFI         | <u> </u>             |                              |                                                          |                              |                   |              |  |
|-------|-------|-----------|----------------|----------------------|------------------------------|----------------------------------------------------------|------------------------------|-------------------|--------------|--|
| Linie |       | Knoten    | Stelle         |                      | Lagerkräfte [kN/m]           |                                                          | La                           | germomente [kNm/i | m]           |  |
| Nr.   | LF/LK | Nr.       | x [m]          | p <sub>X</sub>       | l p <sub>Y</sub>             | p <sub>z</sub>                                           | m <sub>X</sub>               | m <sub>Y</sub>    | $m_Z$        |  |
| 153   | LK10  | 100       | 0.157          |                      | 0.00                         | 0.00                                                     | 0.00                         | 0.00              | 0.00         |  |
| 156   | LF1   | 100       | 0.000<br>0.025 | 0.00                 | 0.00                         | -61.57                                                   | 0.00                         | 0.00<br>0.00      | 0.00         |  |
|       |       |           | 0.023          | 0.00                 | 0.00<br>0.00                 | -51.16<br>-46.32                                         | 0.00<br>0.00                 | 0.00              | 0.00<br>0.00 |  |
|       |       |           | 0.075          | 0.00                 | 0.00                         | -46.98                                                   | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.100          | 0.00                 | 0.00                         | -46.98<br>-47.25                                         | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.124          | 0.00                 | 0.00                         | -47.58                                                   | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.149<br>0.174 | 0.00                 | 0.00                         | -47.70<br>-47.72                                         | 0.00                         | 0.00<br>0.00      | 0.00<br>0.00 |  |
|       |       |           | 0.199          | 0.00                 | 0.00                         | 47.72                                                    | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.224<br>0.249 | 0.00                 | 0.00                         | -47.25                                                   | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.249          | 0.00                 | 0.00<br>0.00<br>0.00<br>0.00 | -47.14                                                   | 0.00<br>0.00<br>0.00<br>0.00 | 0.00              | 0.00         |  |
|       |       |           | 0.274<br>0.299 | 0.00                 | 0.00<br>0.00                 | -47.72<br>-47.38<br>-47.25<br>-47.14<br>-46.50<br>-46.22 | 0.00<br>0.00                 | 0.00<br>0.00      | 0.00<br>0.00 |  |
|       |       |           | 0.323          | 0.00                 | 0.00                         | -46.02                                                   | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.348          | 0.00                 | 0.00                         | -45.04                                                   | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.373          | 0.00                 | 0.00                         | -44.62                                                   | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.398<br>0.423 | 0.00                 | 0.00                         | -44.27                                                   | 0.00                         | 0.00              | 0.00<br>0.00 |  |
|       |       |           | 0.423          | 0.00                 | 0.00<br>0.00<br>0.00<br>0.00 | -42.79<br>-42.16                                         | 0.00<br>0.00<br>0.00         | 0.00              | 0.00         |  |
|       |       |           | 0.473          | 0.00                 | 0.00                         | -41.32                                                   | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.498          | 0.00                 | 0.00                         | -38.78                                                   | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.522<br>0.547 | 0.00                 | 0.00<br>0.00                 | -37.42<br>-34.92                                         | 0.00<br>0.00                 | 0.00<br>0.00      | 0.00<br>0.00 |  |
|       |       |           | 0.572          | 0.00                 | 0.00                         | -34.69                                                   | 0.00                         | 0.00              | 0.00         |  |
|       |       | 15        | 0.597          | 0.00                 | 0.00                         | -116.20                                                  | 0.00                         | 0.00              | 0.00         |  |
|       | LF2   | 100       | 0.000          | 0.00                 | 0.00                         | 0.00                                                     | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.025<br>0.050 | 0.00                 | 0.00<br>0.00                 | 0.00<br>0.00                                             | 0.00<br>0.00                 | 0.00<br>0.00      | 0.00<br>0.00 |  |
|       |       |           | 0.050          | 0.00                 | 0.00                         | 0.00                                                     | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.100          | 0.00                 | 0.00                         | 0.00                                                     | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.124          | 0.00                 | 0.00                         | 0.00                                                     | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.149<br>0.174 | 0.00                 | 0.00                         | 0.00<br>0.00                                             | 0.00<br>0.00                 | 0.00<br>0.00      | 0.00<br>0.00 |  |
|       |       |           | 0.174          | 0.00                 | 0.00                         | 0.00                                                     | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.224          | 0.00                 | 0.00                         | 0.00                                                     | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.249          | 0.00                 | 0.00                         | 0.00                                                     | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.274<br>0.299 | 0.00                 | 0.00                         | 0.00<br>0.00                                             | 0.00<br>0.00                 | 0.00<br>0.00      | 0.00<br>0.00 |  |
|       |       |           | 0.299          | 0.00                 | 0.00                         | 0.00                                                     | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.348          | 0.00                 | 0.00                         | 0.00                                                     | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.373          | 0.00<br>0.00         | 0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00             | 0.00<br>0.00<br>0.00<br>0.00 | 0.00              | 0.00         |  |
|       |       |           | 0.398<br>0.423 | 0.00                 | 0.00                         | 0.00                                                     | 0.00                         | 0.00<br>0.00      | 0.00         |  |
|       |       |           | 0.423          | 0.00                 | 0.00                         | 0.00                                                     | 0.00                         | 0.00              | 0.00<br>0.00 |  |
|       |       |           | 0.473          | 0.00                 | 0.00                         | 0.00                                                     | 0.00<br>0.00                 | 0.00              | 0.00         |  |
|       |       |           | 0.498          | 0.00                 | 0.00                         | 0.00                                                     | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.522          | 0.00                 | 0.00                         | 0.00<br>0.00                                             | 0.00<br>0.00                 | 0.00              | 0.00<br>0.00 |  |
|       |       |           | 0.547<br>0.572 | 0.00                 | 0.00                         | 0.00                                                     | 0.00                         | 0.00              | 0.00         |  |
|       |       | 15        | 0.597          | 0.00                 | 0.00                         | 0.00                                                     | 0.00<br>0.00                 | 0.00              | 0.00         |  |
|       | LF3   | 100       | 0.000          | 0.00                 | 0.00                         | 0.00                                                     | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.025<br>0.050 | 0.00                 | 0.00<br>0.00                 | 0.00<br>0.00                                             | 0.00<br>0.00                 | 0.00<br>0.00      | 0.00<br>0.00 |  |
|       |       |           | 0.075          | 0.00                 | 0.00                         | 0.00                                                     | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.100          | 0.00                 | 0.00<br>0.00                 | 0.00                                                     | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.124          | 0.00                 | 0.00                         | 0.00<br>0.00                                             | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.149<br>0.174 | 0.00<br>0.00         | 0.00<br>0.00<br>0.00         | 0.00                                                     | 0.00<br>0.00                 | 0.00<br>0.00      | 0.00<br>0.00 |  |
|       |       |           | 0.199          | 0.00                 | 0.00                         | 0.00<br>0.00                                             | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.224          | 0.00                 | 0.00                         | 0.00                                                     | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.249<br>0.274 | 0.00                 | 0.00<br>0.00                 | 0.00<br>0.00                                             | 0.00<br>0.00                 | 0.00<br>0.00      | 0.00<br>0.00 |  |
|       |       |           | 0.274          | 0.00                 | 0.00                         | 0.00                                                     | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.323          | 0.00                 | 0.00                         | 0.00                                                     | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.348          | 0.00                 | 0.00                         | 0.00                                                     | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.373<br>0.398 | 0.00                 | 0.00<br>0.00                 | 0.00<br>0.00                                             | 0.00<br>0.00                 | 0.00<br>0.00      | 0.00<br>0.00 |  |
|       |       |           | 0.396          | 0.00                 | 0.00                         | 0.00                                                     | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.448          | 0.00                 | 0.00                         | 0.00                                                     | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.473          | 0.00                 | 0.00                         | 0.00                                                     | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.498<br>0.522 | 0.00                 | 0.00<br>0.00                 | 0.00<br>0.00                                             | 0.00<br>0.00                 | 0.00<br>0.00      | 0.00<br>0.00 |  |
|       |       |           | 0.547          | 0.00                 | 0.00                         | 0.00                                                     | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.547<br>0.572 | 0.00<br>0.00<br>0.00 | 0.00                         | 0.00                                                     | 0.00<br>0.00<br>0.00         | 0.00<br>0.00      | 0.00         |  |
|       | LF4   | 15<br>100 | 0.597<br>0.000 | 0.00                 | 0.00                         | 0.00<br>-3.96                                            | 0.00                         | 0.00              | 0.00         |  |
|       | -14   | 100       | 0.000          | 0.00                 | 0.00                         | -3.11                                                    | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.050          | 0.00                 | 0.00                         | -2.76                                                    | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.075          | 0.00                 | 0.00                         | -2.79                                                    | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.100<br>0.124 | 0.00                 | 0.00<br>0.00                 | -2.80<br>-2.81                                           | 0.00                         | 0.00<br>0.00      | 0.00<br>0.00 |  |
|       |       |           | 0.149          | 0.00                 | 0.00                         | 2.82                                                     | 0.00<br>0.00<br>0.00         | 0.00              | 0.00         |  |
|       |       |           | 0.174          | 0.00                 | 0.00                         | -2.81<br>-2.82<br>-2.83                                  | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.199          | 0.00                 | 0.00                         | -2.83                                                    | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.224<br>0.249 | 0.00                 | 0.00                         | -2.85<br>-2.86                                           | 0.00<br>0.00                 | 0.00              | 0.00<br>0.00 |  |
|       |       |           | 0.274          | 0.00                 | 0.00                         | -2.85                                                    | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.299          | 0.00                 | 0.00                         | -2.87                                                    | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.323          |                      | 0.00                         | -2.88                                                    | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.348<br>0.373 | 0.00                 | 0.00<br>0.00                 | -2.86<br>-2.87                                           | 0.00<br>0.00                 | 0.00<br>0.00      | 0.00<br>0.00 |  |
|       |       |           | 0.398          | 0.00                 | 0.00                         | -2.87                                                    | 0.00                         | 0.00              | 0.00         |  |
|       |       |           | 0.423          |                      | 0.00                         | -2.83                                                    | 0.00                         | 0.00              | 0.00         |  |
|       |       |           |                |                      |                              |                                                          |                              |                   |              |  |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





| ■ 4.3 L | INIEN | - LAGEI   | RKRAFTI        | <u> </u>       |                      |                    |                      |                   |              |  |
|---------|-------|-----------|----------------|----------------|----------------------|--------------------|----------------------|-------------------|--------------|--|
| Linie   |       | Knoten    | Stelle         |                | Lagerkräfte [kN/m]   |                    | La                   | germomente [kNm/r | m]           |  |
| Nr.     | LF/LK | Nr.       | x [m]          | p <sub>X</sub> | $p_{Y}$              | $p_Z$              | m <sub>X</sub>       | m <sub>Y</sub>    | $m_Z$        |  |
| 156     | LF4   | 100       | 0.448          | 0.00           | 0.00                 | -2.82              | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.473          | 0.00           | 0.00                 | -2.79              | 0.00<br>0.00<br>0.00 | 0.00              | 0.00         |  |
|         |       |           | 0.498<br>0.522 | 0.00<br>0.00   | 0.00<br>0.00         | -2.68<br>-2.61     | 0.00                 | 0.00<br>0.00      | 0.00<br>0.00 |  |
|         |       |           | 0.522          | 0.00           | 0.00                 | -2.46              | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.572          | 0.00           | 0.00                 | -2.48              | 0.00                 | 0.00              | 0.00         |  |
|         |       | 15        | 0.597          | 0.00           | 0.00                 | -8.16              | 0.00                 | 0.00              | 0.00         |  |
|         | LF5   | 100       | 0.000<br>0.025 | 0.00<br>0.00   | 0.00<br>0.00         | 0.00<br>0.00       | 0.00<br>0.00         | 0.00<br>0.00      | 0.00<br>0.00 |  |
|         |       |           | 0.023          | 0.00           | 0.00                 | 0.00               | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.075          | 0.00           | 0.00<br>0.00         | 0.00               | 0.00<br>0.00         | 0.00              | 0.00         |  |
|         |       |           | 0.100          | 0.00           | 0.00                 | 0.00               | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.124          | 0.00<br>0.00   | 0.00<br>0.00         | 0.00<br>0.00       | 0.00<br>0.00         | 0.00<br>0.00      | 0.00<br>0.00 |  |
|         |       |           | 0.149<br>0.174 | 0.00           | 0.00                 | 0.00               | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.199          | 0.00           | 0.00                 | 0.00               | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.224          | 0.00           | 0.00                 | 0.00               | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.249<br>0.274 | 0.00<br>0.00   | 0.00                 | 0.00<br>0.00       | 0.00<br>0.00         | 0.00<br>0.00      | 0.00<br>0.00 |  |
|         |       |           | 0.299          | 0.00           | 0.00<br>0.00<br>0.00 | 0.00               | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.323          | 0.00           | 0.00                 | 0.00               | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.348          | 0.00           | 0.00                 | 0.00               | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.373<br>0.398 | 0.00<br>0.00   | 0.00<br>0.00         | 0.00<br>0.00       | 0.00<br>0.00         | 0.00<br>0.00      | 0.00<br>0.00 |  |
|         |       |           | 0.423          | 0.00           | 0.00                 | 0.00               | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.448          | 0.00           | 0.00                 | 0.00               | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.473          | 0.00           | 0.00                 | 0.00               | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.498<br>0.522 | 0.00<br>0.00   | 0.00<br>0.00         | 0.00<br>0.00       | 0.00<br>0.00         | 0.00<br>0.00      | 0.00<br>0.00 |  |
|         |       |           | 0.522          | 0.00           | 0.00                 | 0.00               | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.572          | 0.00           | 0.00                 | 0.00               | 0.00                 | 0.00              | 0.00         |  |
|         | LEC   | 15        | 0.597          | 0.00           | 0.00                 | 0.00               | 0.00                 | 0.00              | 0.00         |  |
|         | LF6   | 100       | 0.000<br>0.025 | 0.00<br>0.00   | 0.00<br>0.00         | 236.52<br>-222.11  | 0.00<br>0.00         | 0.00<br>0.00      | 0.00<br>0.00 |  |
|         |       |           | 0.050          | 0.00           | 0.00                 | -108.41            | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.075          | 0.00           | 0.00                 | -106.61            | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.100          | 0.00           | 0.00                 | -119.42            | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.124<br>0.149 | 0.00<br>0.00   | 0.00<br>0.00         | -121.89<br>-102.40 | 0.00<br>0.00         | 0.00<br>0.00      | 0.00<br>0.00 |  |
|         |       |           | 0.174          | 0.00           | 0.00                 | -118.49            | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.199          | 0.00           | 0.00                 | -116 33            | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.224<br>0.249 | 0.00<br>0.00   | 0.00<br>0.00         | -95.59             | 0.00<br>0.00         | 0.00<br>0.00      | 0.00         |  |
|         |       |           | 0.249          | 0.00           | 0.00                 | -110.62<br>-108.81 | 0.00                 | 0.00              | 0.00<br>0.00 |  |
|         |       |           | 0.299          | 0.00           | 0.00                 | -90.39             | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.323          | 0.00           | 0.00                 | -102.07            | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.348<br>0.373 | 0.00<br>0.00   | 0.00<br>0.00         | -97.90<br>-80.76   | 0.00<br>0.00         | 0.00<br>0.00      | 0.00<br>0.00 |  |
|         |       |           | 0.373          | 0.00           | 0.00                 | -92.12             | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.423          | 0.00           | 0.00<br>0.00<br>0.00 | -92.49             | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.448          | 0.00           | 0.00                 | -79.82             | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.473<br>0.498 | 0.00<br>0.00   | 0.00                 | -92.60<br>-94.44   | 0.00<br>0.00         | 0.00<br>0.00      | 0.00<br>0.00 |  |
|         |       |           | 0.522          | 0.00           | 0.00<br>0.00         | -88.36             | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.547          | 0.00           | 0.00                 | -106.07            | 0.00                 | 0.00              | 0.00         |  |
|         |       | 45        | 0.572          | 0.00           | 0.00<br>0.00         | -47.71<br>-240.48  | 0.00<br>0.00         | 0.00              | 0.00<br>0.00 |  |
|         | LF13  | 15<br>100 | 0.597<br>0.000 | 0.00           | 0.00                 | 0.00               | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.025          | 0.00           | 0.00                 | 0.00               | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.050          | 0.00           | 0.00                 | 0.00               | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.075<br>0.100 | 0.00<br>0.00   | 0.00<br>0.00         | 0.00<br>0.00       | 0.00<br>0.00         | 0.00<br>0.00      | 0.00<br>0.00 |  |
|         |       |           | 0.124          | 0.00           | 0.00                 | 0.00               | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.149          | 0.00           | 0.00                 | 0.00               | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.174<br>0.199 | 0.00<br>0.00   | 0.00<br>0.00         | 0.00<br>0.00       | 0.00<br>0.00         | 0.00<br>0.00      | 0.00<br>0.00 |  |
|         |       |           | 0.133          | 0.00           | 0.00                 | 0.00               | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.249          | 0.00           | 0.00                 | 0.00               | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.274          | 0.00           | 0.00                 | 0.00               | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.299<br>0.323 | 0.00<br>0.00   | 0.00<br>0.00         | 0.00<br>0.00       | 0.00<br>0.00         | 0.00<br>0.00      | 0.00<br>0.00 |  |
|         |       |           | 0.348          | 0.00           | 0.00                 | 0.00               | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.373          | 0.00           | 0.00                 | 0.00               | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.398          | 0.00<br>0.00   | 0.00<br>0.00         | 0.00<br>0.00       | 0.00<br>0.00         | 0.00<br>0.00      | 0.00<br>0.00 |  |
|         |       |           | 0.423<br>0.448 | 0.00           | 0.00                 | 0.00               | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.473          | 0.00           | 0.00                 | 0.00               | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.498          | 0.00           | 0.00                 | 0.00               | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.522<br>0.547 | 0.00<br>0.00   | 0.00                 | 0.00<br>0.00       | 0.00<br>0.00         | 0.00<br>0.00      | 0.00<br>0.00 |  |
|         |       |           | 0.572          | 0.00           | 0.00                 | 0.00               | 0.00                 | 0.00              | 0.00         |  |
|         |       | 15        | 0.597          | 0.00           | 0.00                 | 0.00               | 0.00                 | 0.00              | 0.00         |  |
|         | LF20  | 100       | 0.000          | 0.00           | 0.00                 | -291.46            | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.025<br>0.050 | 0.00<br>0.00   | 0.00<br>0.00         | -134.35<br>-90.24  | 0.00<br>0.00         | 0.00<br>0.00      | 0.00<br>0.00 |  |
|         |       |           | 0.030          | 0.00           | 0.00                 | 93.05              | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.100          | 0.00           | 0.00                 | 107.27             | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.124          | 0.00<br>0.00   | 0.00<br>0.00         | 124.02<br>174.18   | 0.00<br>0.00         | 0.00<br>0.00      | 0.00<br>0.00 |  |
|         |       |           | 0.149<br>0.174 | 0.00           | 0.00                 | 174.18             | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.199          | 0.00           | 0.00                 | 167.26             | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.224          | 0.00           | 0.00                 | 184.67             | 0.00                 | 0.00              | 0.00         |  |
|         |       |           | 0.249<br>0.274 | 0.00<br>0.00   | 0.00<br>0.00         | 174.83<br>164.36   | 0.00<br>0.00         | 0.00<br>0.00      | 0.00<br>0.00 |  |
| 1       |       |           | 0.274          | 0.00           | 0.00                 | 107.00             | 5.00                 | 0.00              | 0.00         |  |
|         |       | 1         |                |                |                      |                    |                      |                   |              |  |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





| LETTY | Knoten     | Stelle<br>v [m] |              | Lagerkräfte [kN/m]  | n_                       |                | germomente [kNm/m   | -              |  |
|-------|------------|-----------------|--------------|---------------------|--------------------------|----------------|---------------------|----------------|--|
| LF/LK | Nr.<br>100 | x [m]<br>0.299  | 9x<br>0.00   | P <sub>Y</sub> 0.00 | p <sub>Z</sub><br>163.24 | m <sub>X</sub> | m <sub>Y</sub> 0.00 | m <sub>z</sub> |  |
| LF20  | 100        | 0.323           | 0.00         | 0.00                | 141 53                   | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.348<br>0.373  | 0.00         | 0.00                | 138.58<br>122.92         | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.373           | 0.00         | 0.00                | 122.92                   | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.398<br>0.423  | 0.00<br>0.00 | 0.00<br>0.00        | 85.40<br>85.85           | 0.00<br>0.00   | 0.00                | 0.00           |  |
|       |            | 0.448           | 0.00         | 0.00                | 51.16                    | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.473           | 0.00         | 0.00                | -14.43                   | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.498<br>0.522  | 0.00<br>0.00 | 0.00<br>0.00        | -27.02<br>-108.57        | 0.00<br>0.00   | 0.00<br>0.00        | 0.00<br>0.00   |  |
|       |            | 0.522           | 0.00         | 0.00                | -289.34                  | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.572           | 0.00         | 0.00                | -399.94                  | 0.00           | 0.00                | 0.00           |  |
| 1504  | 15         | 0.597           | 0.00         | 0.00                | -2369.16                 | 0.00           | 0.00                | 0.00           |  |
| LF21  | 100        | 0.000<br>0.025  | 0.00<br>0.00 | 0.00<br>0.00        | 291.46<br>134.35         | 0.00<br>0.00   | 0.00<br>0.00        | 0.00<br>0.00   |  |
|       |            | 0.050           | 0.00         | 0.00                | 90.24                    | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.075           | 0.00         | 0.00                | -93.05                   | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.100<br>0.124  | 0.00<br>0.00 | 0.00                | -107.27                  | 0.00<br>0.00   | 0.00<br>0.00        | 0.00<br>0.00   |  |
|       |            | 0.124           | 0.00         | 0.00<br>0.00        | -124.02<br>-174.18       | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.174           | 0.00         | 0.00                | -178.97                  | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.199           | 0.00         | 0.00                | -167.26                  | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.224<br>0.249  | 0.00<br>0.00 | 0.00<br>0.00        | -184.67<br>-174.83       | 0.00<br>0.00   | 0.00                | 0.00<br>0.00   |  |
|       |            | 0.274           | 0.00         | 0.00                | -164.36                  | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.299           | 0.00         | 0.00                | -163.24                  | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.323           | 0.00         | 0.00                | -141.53                  | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.348<br>0.373  | 0.00<br>0.00 | 0.00<br>0.00        | -138.58<br>-122.92       | 0.00<br>0.00   | 0.00<br>0.00        | 0.00           |  |
|       |            | 0.398           | 0.00         | 0.00                | -85.40                   | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.423           | 0.00         | 0.00                | -85.85                   | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.448           | 0.00         | 0.00                | -51.16                   | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.473<br>0.498  | 0.00<br>0.00 | 0.00<br>0.00        | 14.43<br>27.02           | 0.00<br>0.00   | 0.00                | 0.00           |  |
|       |            | 0.522           | 0.00         | 0.00                | 108.57                   | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.547           | 0.00         | 0.00                | 289.34<br>399.94         | 0.00           | 0.00                | 0.00           |  |
|       | 15         | 0.572           | 0.00         | 0.00<br>0.00        | 399.94                   | 0.00<br>0.00   | 0.00                | 0.00           |  |
| LF22  | 15<br>100  | 0.597<br>0.000  | 0.00         | 0.00                | 2369.16<br>236.52        | 0.00           | 0.00                | 0.00           |  |
|       | 100        | 0.025           | 0.00         | 0.00                | -222.11                  | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.050           | 0.00         | 0.00                | -108.41                  | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.075<br>0.100  | 0.00<br>0.00 | 0.00<br>0.00        | -106.61<br>-119.42       | 0.00<br>0.00   | 0.00                | 0.00<br>0.00   |  |
|       |            | 0.100           | 0.00         | 0.00                | -121.89                  | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.149           | 0.00         | 0.00                | -102.40                  | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.174           | 0.00         | 0.00                | -118.49                  | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.199<br>0.224  | 0.00<br>0.00 | 0.00<br>0.00        | -116.33<br>-95.59        | 0.00<br>0.00   | 0.00<br>0.00        | 0.00<br>0.00   |  |
|       |            | 0.249           | 0.00         | 0.00                | -110.62                  | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.274           | 0.00         | 0.00                | -108.81                  | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.299           | 0.00         | 0.00                | -90.39                   | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.323<br>0.348  | 0.00<br>0.00 | 0.00<br>0.00        | -102.07<br>-97.90        | 0.00<br>0.00   | 0.00<br>0.00        | 0.00<br>0.00   |  |
|       |            | 0.373           | 0.00         | 0.00                | -80.76                   | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.398           | 0.00         | 0.00                | -92.12                   | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.423           | 0.00         | 0.00                | -92.49                   | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.448<br>0.473  | 0.00<br>0.00 | 0.00<br>0.00        | -79.82<br>-92.60         | 0.00<br>0.00   | 0.00<br>0.00        | 0.00<br>0.00   |  |
|       |            | 0.498           | 0.00         | 0.00                | -94.44                   | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.522           | 0.00         | 0.00                | -94.44<br>-88.36         | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.547           | 0.00         | 0.00                | -106.07                  | 0.00           | 0.00                | 0.00           |  |
|       | 15         | 0.572<br>0.597  | 0.00<br>0.00 | 0.00<br>0.00        | -47.71<br>-240.48        | 0.00<br>0.00   | 0.00<br>0.00        | 0.00<br>0.00   |  |
| LK1   | 100        | 0.000           | 0.00         | 0.00                | 0.00                     | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.025           | 0.00         | 0.00                | 0.00                     | 0.00           | 0.00<br>0.00        | 0.00           |  |
|       |            | 0.050<br>0.075  | 0.00         | 0.00<br>0.00        | 0.00<br>-57.09           | 0.00<br>0.00   | 0.00                | 0.00           |  |
|       |            | 0.100           | 0.00         | 0.00                | -107.50                  | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.124           | 0.00         | 0.00                | -107.21                  | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.149           | 0.00         | 0.00                | -117.66<br>124.70        | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.174<br>0.199  | 0.00<br>0.00 | 0.00<br>0.00        | -124.70<br>-118.34       | 0.00<br>0.00   | 0.00<br>0.00        | 0.00<br>0.00   |  |
|       |            | 0.224           | 0.00         | 0.00                | -126 04                  | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.249           | 0.00         | 0.00                | -130.25<br>-125.21       | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.274<br>0.299  | 0.00         | 0.00<br>0.00        | -125.21<br>-131.99       | 0.00           | 0.00<br>0.00        | 0.00<br>0.00   |  |
|       |            | 0.299           | 0.00         | 0.00                | -138.49                  | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.348           | 0.00         | 0.00                | -135.93                  | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.373<br>0.398  | 0.00         | 0.00<br>0.00        | -143.43<br>-153.12       | 0.00<br>0.00   | 0.00                | 0.00<br>0.00   |  |
|       |            | 0.398           | 0.00         | 0.00                | -151.07                  | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.448           | 0.00         | 0.00                | -160.76                  | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.473           | 0.00         | 0.00                | -169.17                  | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.498           | 0.00         | 0.00                | -166.41                  | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.522<br>0.547  | 0.00         | 0.00<br>0.00        | -176.17<br>-177.57       | 0.00<br>0.00   | 0.00                | 0.00           |  |
|       |            | 0.572           | 0.00         | 0.00                | -202.41                  | 0.00           | 0.00                | 0.00           |  |
|       | 15<br>100  | 0.597           | 0.00         | 0.00                | -716.19                  | 0.00           | 0.00                | 0.00           |  |
| LK2   | 100        | 0.000           | 0.00         | 0.00                | 0.00<br>0.00             | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.025<br>0.050  | 0.00<br>0.00 | 0.00<br>0.00        | 0.00                     | 0.00<br>0.00   | 0.00                | 0.00<br>0.00   |  |
|       |            | 0.075           | 0.00         | 0.00                | 0.00                     | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.100           | 0.00         | 0.00                | 0.00                     | 0.00           | 0.00                | 0.00           |  |
|       |            | 0.124           | 0.00         | 0.00                | 0.00                     | 0.00           | 0.00                | 0.00           |  |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





| LF/LK | Knoten<br>Nr. | Stelle<br>x [m]         | p <sub>X</sub>       | Lagerkräfte [kN/m]                           | p <sub>z</sub>                | m <sub>X</sub>               | germomente [kNm/r<br>m <sub>Y</sub> | nj<br>m <sub>z</sub> |  |
|-------|---------------|-------------------------|----------------------|----------------------------------------------|-------------------------------|------------------------------|-------------------------------------|----------------------|--|
| LK2   | 100           | 0.149                   | 0.00                 | 0.00                                         | 0.00                          | 0.00                         | 0.00                                | 0.00                 |  |
|       |               | 0.174<br>0.199          | 0.00<br>0.00         | 0.00                                         | 0.00<br>0.00                  | 0.00<br>0.00                 | 0.00<br>0.00                        | 0.00<br>0.00         |  |
|       |               | 0.224                   | 0.00                 | 0.00<br>0.00                                 | 0.00                          | 0.00                         | 0.00                                | 0.00                 |  |
|       |               | 0.249<br>0.274          | 0.00<br>0.00         | 0.00<br>0.00                                 | 0.00<br>-86.73                | 0.00<br>0.00                 | 0.00<br>0.00                        | 0.00<br>0.00         |  |
|       |               | 0.299                   | 0.00                 | 0.00                                         | -125.79                       | 0.00                         | 0.00                                | 0.00                 |  |
|       |               | 0.323<br>0.348          | 0.00<br>0.00         | 0.00                                         | -171.04<br>-156.83            | 0.00                         | 0.00<br>0.00                        | 0.00<br>0.00         |  |
|       |               | 0.373                   | 0.00                 | 0.00                                         | -186.68                       | 0.00                         | 0.00                                | 0.00                 |  |
|       |               | 0.398<br>0.423          | 0.00                 | 0.00<br>0.00<br>0.00<br>0.00                 | -186.68<br>-220.24<br>-212.40 | 0.00<br>0.00<br>0.00<br>0.00 | 0.00                                | 0.00                 |  |
|       |               | 0.423                   | 0.00<br>0.00         | 0.00                                         | -254.83                       | 0.00                         | 0.00<br>0.00                        | 0.00<br>0.00         |  |
|       |               | 0.473                   | 0.00                 | 0.00<br>0.00                                 | -285.67                       | 0.00                         | 0.00                                | 0.00                 |  |
|       |               | 0.498<br>0.522          | 0.00<br>0.00         | 0.00<br>0.00                                 | -289.68<br>-337.51            | 0.00<br>0.00                 | 0.00<br>0.00                        | 0.00<br>0.00         |  |
|       |               | 0.547                   | 0.00                 | 0.00                                         | -349.96                       | 0.00                         | 0.00                                | 0.00                 |  |
|       | 15            | 0.572<br>0.597          | 0.00<br>0.00         | 0.00<br>0.00                                 | -409.83<br>-2236.33           | 0.00<br>0.00                 | 0.00<br>0.00                        | 0.00<br>0.00         |  |
| LK6   | 100           | 0.000                   | 0.00                 | 0.00                                         | 0.00                          | 0.00                         | 0.00                                | 0.00                 |  |
|       |               | 0.025<br>0.050          | 0.00<br>0.00         | 0.00<br>0.00                                 | 0.00<br>0.00                  | 0.00<br>0.00                 | 0.00<br>0.00                        | 0.00<br>0.00         |  |
|       |               | 0.075                   | 0.00                 | 0.00                                         | -48.43                        | 0.00                         | 0.00                                | 0.00                 |  |
|       |               | 0.100<br>0.124          | 0.00<br>0.00         | 0.00                                         | -97.19<br>-100.52             | 0.00<br>0.00                 | 0.00<br>0.00                        | 0.00<br>0.00         |  |
|       |               | 0.149                   | 0.00<br>0.00         | 0.00                                         | -110.26                       | 0.00                         | 0.00                                | 0.00                 |  |
|       |               | 0.174                   | 0.00                 | 0.00<br>0.00<br>0.00<br>0.00                 | -116.75                       | 0.00                         | 0.00                                | 0.00                 |  |
|       |               | 0.199<br>0.224          | 0.00<br>0.00         | 0.00                                         | -110.53<br>-116.70            | 0.00<br>0.00                 | 0.00<br>0.00                        | 0.00<br>0.00         |  |
|       |               | 0.249                   | 0.00                 | 0.00                                         | -119.97                       | 0.00                         | 0.00                                | 0.00                 |  |
|       |               | 0.274<br>0.299          | 0.00<br>0.00         | 0.00<br>0.00                                 | -114.74<br>-120.24            | 0.00<br>0.00                 | 0.00<br>0.00                        | 0.00<br>0.00         |  |
|       |               | 0.323                   | 0.00                 | 0.00                                         | -125.72<br>-122.77            | 0.00                         | 0.00                                | 0.00                 |  |
|       |               | 0.348<br>0.373          | 0.00<br>0.00         | 0.00                                         | -122.77<br>-128.54            | 0.00<br>0.00                 | 0.00<br>0.00                        | 0.00                 |  |
|       |               | 0.373                   | 0.00                 | 0.00<br>0.00                                 | -136.69                       | 0.00                         | 0.00                                | 0.00                 |  |
|       |               | 0.423                   | 0.00                 | 0.00                                         | -133.68                       | 0.00                         | 0.00                                | 0.00                 |  |
|       |               | 0.448<br>0.473          | 0.00<br>0.00         | 0.00<br>0.00                                 | -142.71<br>-149.61            | 0.00<br>0.00                 | 0.00<br>0.00                        | 0.00<br>0.00         |  |
|       |               | 0.498                   | 0.00                 | 0.00                                         | -149.23                       | 0.00                         | 0.00                                | 0.00                 |  |
|       |               | 0.522                   | 0.00<br>0.00         | 0.00<br>0.00<br>0.00                         | -158.86<br>-160.80            | 0.00                         | 0.00<br>0.00                        | 0.00<br>0.00         |  |
|       |               | 0.547<br>0.572          | 0.00                 | 0.00                                         | -184.92<br>-642.19            | 0.00<br>0.00                 | 0.00                                | 0.00                 |  |
| 11/0  | 15            | 0.597                   | 0.00                 | 0.00                                         | -642.19                       | 0.00                         | 0.00                                | 0.00                 |  |
| LK9   | 100           | 0.000<br>0.025          | 0.00<br>0.00         | 0.00<br>0.00                                 | 0.00<br>0.00                  | 0.00<br>0.00                 | 0.00<br>0.00                        | 0.00<br>0.00         |  |
|       |               | 0.050                   | 0.00                 | 0.00                                         | 0.00                          | 0.00                         | 0.00                                | 0.00                 |  |
|       |               | 0.075<br>0.100          | 0.00<br>0.00         | 0.00<br>0.00                                 | 0.00<br>-66.58                | 0.00<br>0.00                 | 0.00<br>0.00                        | 0.00<br>0.00         |  |
|       |               | 0.124                   | 0.00                 | 0.00                                         | -67 14                        | 0.00<br>0.00<br>0.00         | 0.00                                | 0.00                 |  |
|       |               | 0.149                   | 0.00                 | 0.00<br>0.00                                 | -82.76<br>-97.28<br>-98.85    | 0.00                         | 0.00                                | 0.00                 |  |
|       |               | 0.174<br>0.199          | 0.00<br>0.00         | 0.00                                         | -97.28<br>-98.85              | 0.00<br>0.00                 | 0.00<br>0.00                        | 0.00<br>0.00         |  |
|       |               | 0.224                   | 0.00                 | 0.00                                         | -111.90                       | 0.00                         | 0.00                                | 0.00                 |  |
|       |               | 0.249<br>0.274          | 0.00<br>0.00         | 0.00                                         | -131.17<br>-132.26            | 0.00<br>0.00                 | 0.00<br>0.00                        | 0.00<br>0.00         |  |
|       |               | 0.299                   | 0.00                 | 0.00                                         | -138.65                       | 0.00                         | 0.00                                | 0.00                 |  |
|       |               | 0.323<br>0.348          | 0.00<br>0.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | -152.68<br>-139.06            | 0.00<br>0.00                 | 0.00<br>0.00                        | 0.00<br>0.00         |  |
|       |               | 0.373                   | 0.00                 | 0.00                                         | -145.90                       | 0.00                         | 0.00                                | 0.00                 |  |
|       |               | 0.398                   | 0.00                 | 0.00                                         | -155.93                       | 0.00                         | 0.00                                | 0.00                 |  |
|       |               | 0.423<br>0.448          | 0.00<br>0.00         | 0.00                                         | -148.26<br>-165.15            | 0.00<br>0.00                 | 0.00<br>0.00                        | 0.00<br>0.00         |  |
|       |               | 0.473                   | 0.00                 | 0.00                                         | -175.61                       | 0.00                         | 0.00                                | 0.00                 |  |
|       |               | 0.498<br>0.522          | 0.00<br>0.00         | 0.00                                         | -176.75<br>-197.00            | 0.00<br>0.00                 | 0.00<br>0.00                        | 0.00<br>0.00         |  |
|       |               | 0.547                   | 0.00                 | 0.00<br>0.00<br>0.00<br>0.00                 | -194.84                       | 0.00                         | 0.00                                | 0.00                 |  |
|       | 15            | 0.572                   | 0.00                 | 0.00                                         | -213.31<br>1204.05            | 0.00                         | 0.00                                | 0.00                 |  |
| LK10  | 100           | 0.597                   | 0.00                 | 0.00                                         | -1204.05<br>0.00              | 0.00                         | 0.00                                | 0.00                 |  |
|       |               | 0.025                   | 0.00                 | 0.00                                         | 0.00                          | 0.00                         | 0.00                                | 0.00                 |  |
|       |               | 0.050<br>0.075          | 0.00<br>0.00         | 0.00<br>0.00                                 | 0.00<br>0.00                  | 0.00<br>0.00                 | 0.00<br>0.00                        | 0.00<br>0.00         |  |
|       |               | 0.100                   | 0.00                 | 0.00                                         | 0.00                          | 0.00                         | 0.00                                | 0.00                 |  |
|       |               | 0.124<br>0.149          | 0.00<br>0.00         | 0.00<br>0.00                                 | 0.00<br>0.00                  | 0.00<br>0.00                 | 0.00<br>0.00                        | 0.00<br>0.00         |  |
|       |               | 0.174                   | 0.00                 | 0.00                                         | 0.00                          | 0.00                         | 0.00                                | 0.00                 |  |
|       |               | 0.199<br>0.224          | 0.00<br>0.00         | 0.00<br>0.00                                 | 0.00<br>0.00                  | 0.00<br>0.00                 | 0.00<br>0.00                        | 0.00<br>0.00         |  |
|       |               | 0.224                   | 0.00                 | 0.00                                         | 0.00                          | 0.00                         | 0.00                                | 0.00                 |  |
|       |               | 0.274                   | 0.00                 | 0.00                                         | 0.00                          | 0.00                         | 0.00                                | 0.00                 |  |
|       |               | 0.299<br>0.323          | 0.00<br>0.00         | 0.00<br>0.00                                 | 0.00<br>0.00                  | 0.00<br>0.00                 | 0.00<br>0.00                        | 0.00<br>0.00         |  |
|       |               | 0.348                   | 0.00                 | 0.00                                         | 0.00                          | 0.00                         | 0.00                                | 0.00                 |  |
|       |               | 0.373<br>0.398          | 0.00<br>0.00         | 0.00<br>0.00                                 | 0.00<br>0.00                  | 0.00<br>0.00                 | 0.00<br>0.00                        | 0.00<br>0.00         |  |
|       |               | 0.398                   | 0.00                 | 0.00                                         | 0.00                          | 0.00                         | 0.00                                | 0.00                 |  |
|       |               | 0.448                   | 0.00                 | 0.00                                         | 0.00                          | 0.00                         | 0.00                                | 0.00                 |  |
|       |               | 0.473<br>0.498          | 0.00<br>0.00         | 0.00<br>0.00                                 | 0.00<br>0.00                  | 0.00<br>0.00                 | 0.00<br>0.00                        | 0.00<br>0.00         |  |
|       |               |                         | 0.00                 | 0.00                                         | 0.00                          | 0.00                         | 0.00                                | 0.00                 |  |
|       |               | 0.522                   |                      | 0.00                                         |                               |                              |                                     | 0.00                 |  |
|       |               | 0.522<br>0.547<br>0.572 | 0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00                         | 0.00<br>0.00<br>-154.41       | 0.00<br>0.00                 | 0.00                                | 0.00<br>0.00         |  |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





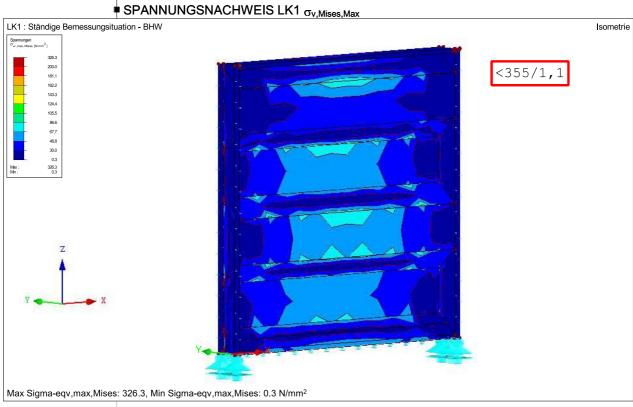
| LF/LK | Knoten<br>Nr. | Ste <b>ll</b> e<br>x [m] | p <sub>X</sub>       | Lagerkräfte [kN/m]                   | p <sub>z</sub>                               | m <sub>X</sub>       | germomente [kNm/r<br>m <sub>Y</sub> | m <sub>Z</sub> |  |
|-------|---------------|--------------------------|----------------------|--------------------------------------|----------------------------------------------|----------------------|-------------------------------------|----------------|--|
| LF1   | 101           | 0.000                    | 0.00                 | 0.00                                 | -88.84                                       | 0.00                 | 0.00                                | 0.00           |  |
|       |               | 0.026<br>0.052           | 0.00                 | 0.00                                 | -87.01                                       | 0.00<br>0.00         | 0.00                                | 0.00<br>0.00   |  |
|       |               | 0.078                    | 0.00<br>0.00         | 0.00<br>0.00                         | -94.18<br>-103.39                            | 0.00                 | 0.00                                | 0.00           |  |
|       |               | 0.104                    | 0.00                 | 0.00                                 | -117.74                                      | 0.00                 | 0.00                                | 0.00           |  |
|       | 102           | 0.131<br>0.157           | 0.00                 | 0.00<br>0.00                         | -135.11<br>-88.97                            | 0.00<br>0.00         | 0.00                                | 0.00<br>0.00   |  |
| LF2   | 101           | 0.000                    | 0.00                 | 0.00                                 | 0.00                                         | 0.00                 | 0.00                                | 0.00           |  |
|       |               | 0.026                    | 0.00                 | 0.00<br>0.00<br>0.00<br>0.00         | 0.00                                         | 0.00                 | 0.00                                | 0.00           |  |
|       |               | 0.052                    | 0.00                 | 0.00                                 | 0.00                                         | 0.00                 | 0.00                                | 0.00<br>0.00   |  |
|       |               | 0.078<br>0.104           | 0.00<br>0.00         | 0.00                                 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00 | 0.00<br>0.00                        | 0.00           |  |
|       |               | 0.131                    | 0.00                 | 0.00<br>0.00                         | 0.00                                         | 0.00                 | 0.00                                | 0.00           |  |
| LF3   | 102<br>101    | 0.157                    | 0.00                 | 0.00                                 | 0.00                                         | 0.00                 | 0.00                                | 0.00           |  |
| LIG   | 101           | 0.026                    | 0.00                 | 0.00                                 | 0.00                                         | 0.00                 | 0.00                                | 0.00           |  |
|       |               | 0.052                    | 0.00                 | 0.00                                 | 0.00                                         | 0.00                 | 0.00                                | 0.00           |  |
|       |               | 0.078<br>0.104           | 0.00<br>0.00         | 0.00                                 | 0.00                                         | 0.00<br>0.00         | 0.00                                | 0.00<br>0.00   |  |
|       |               | 0.131                    | 0.00                 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00                 | 0.00                                | 0.00           |  |
| LF4   | 102<br>101    | 0.157                    | 0.00                 | 0.00                                 | 0.00                                         | 0.00                 | 0.00                                | 0.00<br>0.00   |  |
| LF4   | 101           | 0.000<br>0.026           | 0.00                 | 0.00<br>0.00                         | -6.28<br>-5.95                               | 0.00<br>0.00         | 0.00<br>0.00                        | 0.00           |  |
|       |               | 0.052                    | 0.00                 | 0.00                                 | 6.13                                         | 0.00                 | 0.00                                | 0.00           |  |
|       |               | 0.078<br>0.104           | 0.00                 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | -6.40<br>-6.94                               | 0.00                 | 0.00                                | 0.00<br>0.00   |  |
|       |               | 0.104                    | 0.00<br>0.00<br>0.00 | 0.00                                 | -7.65                                        | 0.00<br>0.00<br>0.00 | 0.00                                | 0.00           |  |
|       | 102           | 0.157                    | 0.00                 | 0.00                                 | -4.91                                        | 0.00                 | 0.00                                | 0.00           |  |
| LF5   | 101           | 0.000<br>0.026           | 0.00<br>0.00         | 0.00<br>0.00                         | 0.00<br>0.00                                 | 0.00<br>0.00         | 0.00<br>0.00                        | 0.00<br>0.00   |  |
|       |               | 0.052                    | 0.00                 | 0.00                                 | 0.00                                         | 0.00                 | 0.00                                | 0.00           |  |
|       |               | 0.078                    | 0.00                 | 0.00                                 | 0.00                                         | 0.00                 | 0.00                                | 0.00           |  |
|       |               | 0.104<br>0.131           | 0.00<br>0.00         | 0.00<br>0.00                         | 0.00<br>0.00                                 | 0.00<br>0.00         | 0.00<br>0.00                        | 0.00<br>0.00   |  |
|       | 102           | 0.157                    | 0.00                 | 0.00                                 | 0.00                                         | 0.00                 | 0.00                                | 0.00           |  |
| LF6   | 101           | 0.000                    | 0.00                 | 0.00                                 | 307.61                                       | 0.00                 | 0.00                                | 0.00           |  |
|       |               | 0.026<br>0.052           | 0.00                 | 0.00<br>0.00                         | 1.77<br>-33.64                               | 0.00<br>0.00         | 0.00                                | 0.00<br>0.00   |  |
|       |               | 0.078                    | 0.00                 | 0.00                                 | -53.81                                       | 0.00                 | 0.00                                | 0.00           |  |
|       |               | 0.104<br>0.131           | 0.00<br>0.00         | 0.00<br>0.00                         | -79.39                                       | 0.00<br>0.00         | 0.00<br>0.00                        | 0.00<br>0.00   |  |
|       | 102           | 0.157                    | 0.00                 | 0.00                                 | -114.43<br>-88.58                            | 0.00                 | 0.00                                | 0.00           |  |
| LF13  | 101           | 0.000                    | 0.00                 | 0.00                                 | 0.00                                         | 0.00                 | 0.00                                | 0.00           |  |
|       |               | 0.026<br>0.052           | 0.00<br>0.00         | 0.00                                 | 0.00                                         | 0.00<br>0.00         | 0.00                                | 0.00<br>0.00   |  |
|       |               | 0.078                    | 0.00                 | 0.00<br>0.00                         | 0.00<br>0.00                                 | 0.00                 | 0.00                                | 0.00           |  |
|       |               | 0.104                    | 0.00                 | 0.00                                 | 0.00                                         | 0.00                 | 0.00                                | 0.00           |  |
|       | 102           | 0.131                    | 0.00<br>0.00         | 0.00<br>0.00                         | 0.00                                         | 0.00                 | 0.00<br>0.00                        | 0.00<br>0.00   |  |
| LF20  | 102<br>101    | 0.157<br>0.000           | 0.00                 | 0.00                                 | 0.00<br>-2136.19                             | 0.00<br>0.00<br>0.00 | 0.00                                | 0.00           |  |
|       |               | 0.026                    | 0.00                 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | -1033.09<br>-542.42                          | 0.00                 | 0.00                                | 0.00           |  |
|       |               | 0.052<br>0.078           | 0.00                 | 0.00                                 | -221.09                                      | 0.00<br>0.00         | 0.00                                | 0.00<br>0.00   |  |
|       |               | 0.104                    | 0.00                 | 0.00                                 | -221.09<br>17.89<br>236.60                   | 0.00                 | 0.00                                | 0.00           |  |
|       | 102           | 0.131<br>0.157           | 0.00<br>0.00         | 0.00<br>0.00                         | 235 18                                       | 0.00<br>0.00         | 0.00<br>0.00                        | 0.00<br>0.00   |  |
| LF21  | 101           | 0.000                    | 0.00                 | 0.00                                 | 2136.19                                      | 0.00                 | 0.00                                | 0.00           |  |
|       |               | 0.026                    | 0.00<br>0.00         | 0.00                                 | 1033.09                                      | 0.00<br>0.00         | 0.00                                | 0.00           |  |
|       |               | 0.052<br>0.078           | 0.00  <br>0.00       | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 2136.19<br>1033.09<br>542.42<br>221.09       | 0.00<br>0.00         | 0.00<br>0.00                        | 0.00<br>0.00   |  |
|       |               | 0.104                    | 0.00                 | 0.00                                 | -17.89                                       | 0.00                 | 0.00                                | 0.00           |  |
|       | 100           | 0.131                    | 0.00                 | 0.00                                 | -236.60                                      | 0.00                 | 0.00                                | 0.00<br>0.00   |  |
| LF22  | 102<br>101    | 0.157<br>0.000           | 0.00                 | 0.00                                 | -235.18<br>307.61                            | 0.00                 | 0.00                                | 0.00           |  |
|       | .,,           | 0.026                    | 0.00                 | 0.00<br>0.00<br>0.00<br>0.00         | 1.77                                         | 0.00                 | 0.00                                | 0.00           |  |
|       |               | 0.052<br>0.078           | 0.00                 | 0.00                                 | -33.64<br>-53.81                             | 0.00                 | 0.00                                | 0.00<br>0.00   |  |
|       |               | 0.104                    | 0.00                 | 0.00                                 | -79.39                                       | 0.00                 | 0.00                                | 0.00           |  |
|       | 400           | 0.131                    | 0.00                 | 0.00                                 | -114.43                                      | 0.00                 | 0.00                                | 0.00           |  |
| LK1   | 102<br>101    | 0.157<br>0.000           | 0.00                 | 0.00                                 | -88.58<br>-593.52                            | 0.00                 | 0.00                                | 0.00           |  |
|       | .51           | 0.026                    | 0.00                 | 0.00                                 | -503.42                                      | 0.00                 | 0.00                                | 0.00           |  |
|       |               | 0.052                    | 0.00                 | 0.00                                 | -463.67                                      | 0.00                 | 0.00                                | 0.00           |  |
|       |               | 0.078<br>0.104           | 0.00<br>0.00         | 0.00<br>0.00                         | -429.08<br>-411.19                           | 0.00<br>0.00         | 0.00<br>0.00                        | 0.00<br>0.00   |  |
|       |               | 0.131                    | 0.00                 | 0.00                                 | -402.24                                      | 0.00                 | 0.00                                | 0.00           |  |
| LK2   | 102<br>101    | 0.157<br>0.000           | 0.00                 | 0.00<br>0.00                         | -238.68<br>-1284.99                          | 0.00                 | 0.00                                | 0.00<br>0.00   |  |
| LINZ  | 101           | 0.026                    | 0.00                 | 0.00                                 | -1074.01                                     | 0.00                 | 0.00                                | 0.00           |  |
|       |               | 0.052                    | 0.00                 | 0.00                                 | -824.02                                      | 0.00                 | 0.00                                | 0.00           |  |
|       |               | 0.078<br>0.104           | 0.00<br>0.00         | 0.00<br>0.00                         | -613.85<br>-441.77                           | 0.00<br>0.00         | 0.00<br>0.00                        | 0.00<br>0.00   |  |
|       |               | 0.131                    | 0.00                 | 0.00                                 | -277.34                                      | 0.00                 | 0.00                                | 0.00           |  |
| LVC   | 102           | 0.157                    | 0.00                 | 0.00                                 | -92.06                                       | 0.00                 | 0.00                                | 0.00           |  |
| LK6   | 101           | 0.000<br>0.026           | 0.00<br>0.00         | 0.00<br>0.00                         | -529.38<br>-455.29                           | 0.00<br>0.00         | 0.00<br>0.00                        | 0.00<br>0.00   |  |
|       |               | 0.052                    | 0.00                 | 0.00                                 | -420.38                                      | 0.00                 | 0.00                                | 0.00           |  |
|       |               | 0.078                    | 0.00                 | 0.00<br>0.00                         | -387.68<br>368.61                            | 0.00                 | 0.00                                | 0.00<br>0.00   |  |
|       |               | 0.104<br>0.131           | 0.00                 | 0.00                                 | -368.61<br>-357.11                           | 0.00<br>0.00         | 0.00                                | 0.00           |  |
|       | 102           | 0.157                    | 0.00                 | 0.00                                 | -210.38                                      | 0.00                 | 0.00                                | 0.00           |  |
| LK9   | 101           | 0.000<br>0.026           | 0.00<br>0.00         | 0.00<br>0.00                         | -560.61<br>-550.32                           | 0.00<br>0.00         | 0.00<br>0.00                        | 0.00<br>0.00   |  |
|       |               | 0.026                    | 0.00                 | 0.00                                 | -440.42                                      | 0.00                 | 0.00                                | 0.00           |  |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM



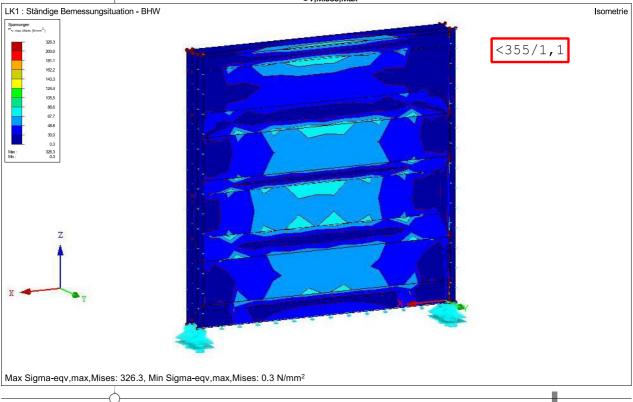


|                    | -11411-14    |        | XIXIV II I |                |                    |                    |                |                   |       |  |
|--------------------|--------------|--------|------------|----------------|--------------------|--------------------|----------------|-------------------|-------|--|
| Linie              |              | Knoten | Stelle     |                | Lagerkräfte [kN/m] |                    | Lag            | germomente [kNm/n | n]    |  |
| Nr.                | LF/LK        | Nr.    | x [m]      | p <sub>X</sub> | PY                 | pz                 | m <sub>X</sub> | m <sub>Y</sub>    | $m_Z$ |  |
| 158                | LK9          | 101    | 0.078      | 0.00           | 0.00               | -340.79            | 0.00           | 0.00              | 0.00  |  |
|                    |              |        | 0.104      | 0.00           | 0.00               | -257.25            | 0.00           | 0.00              | 0.00  |  |
|                    |              |        | 0.131      | 0.00           | 0.00               | -176.73            | 0.00           | 0.00              | 0.00  |  |
|                    |              | 102    | 0.157      | 0.00           | 0.00               | -69.40             | 0.00           | 0.00              | 0.00  |  |
|                    | LK10         | 101    | 0.000      | 0.00           | 0.00               | -1828.32           | 0.00           | 0.00              | 0.00  |  |
|                    |              |        | 0.026      | 0.00           | 0.00               | -951.03            | 0.00           | 0.00              | 0.00  |  |
|                    |              |        | 0.052      | 0.00           | 0.00               | -448.83            | 0.00           | 0.00              | 0.00  |  |
|                    |              |        | 0.078      | 0.00           | 0.00               | -34.70             | 0.00           | 0.00              | 0.00  |  |
|                    |              |        | 0.104      | 0.00           | 0.00               | 0.00               | 0.00           | 0.00              | 0.00  |  |
|                    |              |        | 0.131      | 0.00           | 0.00               | 0.00               | 0.00           | 0.00              | 0.00  |  |
|                    |              | 102    | 0.157      | 0.00           | 0.00               | 0.00               | 0.00           | 0.00              | 0.00  |  |
| Σ Lager            | LF1          |        |            | 0.00           | 0.00               | -124.96            |                |                   |       |  |
| Σ Laste            | LF1          |        |            | 0.00           | 0.00               | -169.74            |                |                   |       |  |
| Σ Lager            | LF2          |        |            | 0.00           | 0.00               | 0.00               |                |                   |       |  |
| Σ Laste            | LF2          |        |            | 0.00           | 1330.92            | 39.83              |                |                   |       |  |
| Σ Lager            | LF3          |        |            | 0.00           | 0.00               | 0.00               |                |                   |       |  |
| Σ Laste            | LF3          |        |            | 0.00           | 1825.79            | 0.59               |                |                   |       |  |
| Σ Lager            | LF4          |        |            | 0.00           | 0.00               | -7.65              |                |                   |       |  |
| Σ Laste            | LF4          |        |            | 0.00           | 0.00               | -8.49              |                |                   |       |  |
| Σ Lager            | LF5          |        |            | 0.00           | 0.00               | 0.00               |                |                   |       |  |
| Σ Laste            | LF5          |        |            | 0.00           | 315.10             | 0.00               |                |                   |       |  |
| Σ Lager            | LF6          |        |            | 0.00           | 0.00               | -38.02             |                |                   |       |  |
| Σ Laste            | LF6          |        |            | 0.00           | 0.00               | 0.00               |                |                   |       |  |
| Σ Lager            | LF13         |        |            | 0.00           | 0.00               | 0.00               |                |                   |       |  |
| Σ Laste            | LF13         |        |            | 0.00           | -740.21            | -40.93             |                |                   |       |  |
| Σ Lager            | LF20         |        |            | 0.00           | 0.00               | -265.79            |                |                   |       |  |
| Σ Laste            | LF20         |        |            | 0.00           | 0.00               | 0.00               |                |                   |       |  |
| Σ Lager            | LF21         |        |            | 0.00           | 0.00               | 265.79             |                |                   |       |  |
| Σ Laste            | LF21<br>LF22 |        |            | 0.00           | 0.00               | 0.00               |                |                   |       |  |
| Σ Lager<br>Σ Laste | LF22<br>LF22 |        |            | 0.00<br>0.00   | 0.00<br>0.00       | -38.02<br>0.00     |                |                   |       |  |
|                    | LF22<br>LK1  |        |            | 0.00           | 0.00               | -361.61            |                |                   |       |  |
| Σ Lager<br>Σ Laste | LK1          |        |            | 0.00           | 1796.74            |                    |                |                   |       |  |
| Σ Laste            | LK2          |        |            | 0.00           | 0.00               | -188.11<br>-379.64 |                |                   |       |  |
| Σ Lager<br>Σ Laste | LK2<br>LK2   |        |            | 0.00           | 2707.63            | -239.87            |                |                   |       |  |
| Σ Laste<br>Σ Lager | LK2<br>LK6   |        |            | 0.00           | 0.00               | -323.85            |                |                   |       |  |
| Σ Lager            | LK6          |        |            | 0.00           | 1796.74            | -132.94            |                |                   |       |  |
| Σ Laste<br>Σ Lager | LK9          |        |            | 0.00           | 0.00               | -247.15            |                |                   |       |  |
| Σ Lager            | LK9          |        |            | 0.00           | 1646.02            | 120.01             |                |                   |       |  |
| Σ Laste<br>Σ Lager | LK10         |        |            | 0.00           | 0.00               | -129.91<br>-259.10 |                |                   |       |  |
| Σ Lager            | LK10         |        |            | 0.00           | 0.00               | 0.00               |                |                   |       |  |
| ∠ Lasie            | LLKIU        | ١.     |            | 0.00           | 0.00               | 0.00               | I              | I                 | I     |  |


RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM

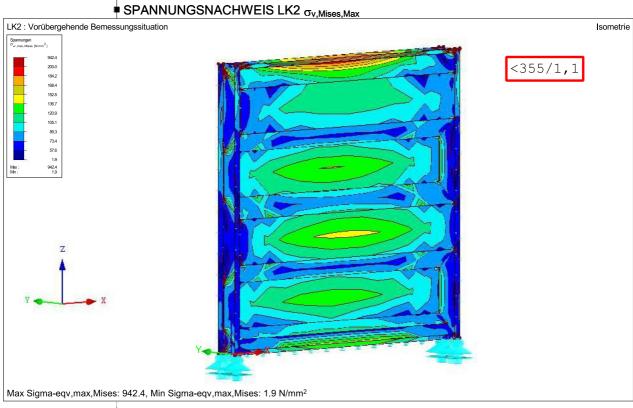
www.dlubal.com

20.10.2021

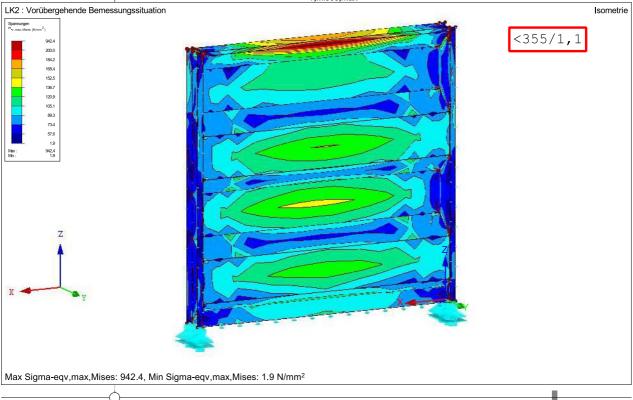






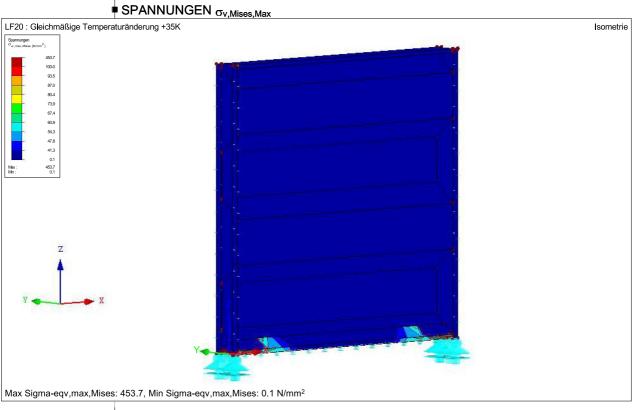


### SPANNUNGSNACHWEIS LK1 Ov, Mises, Max

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM

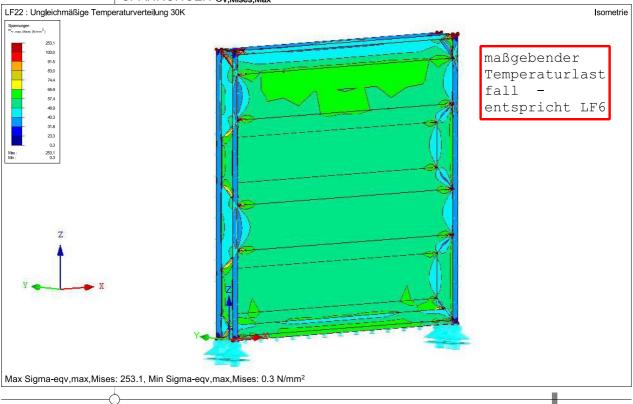






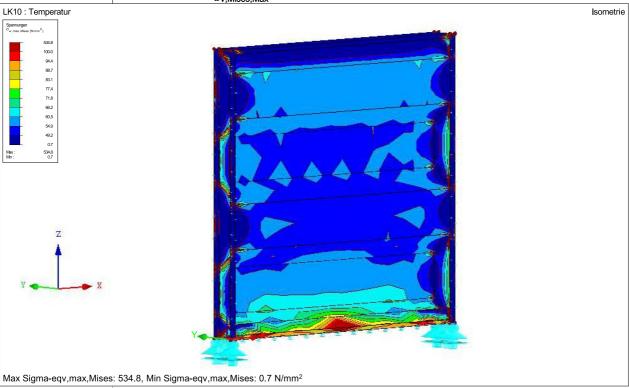





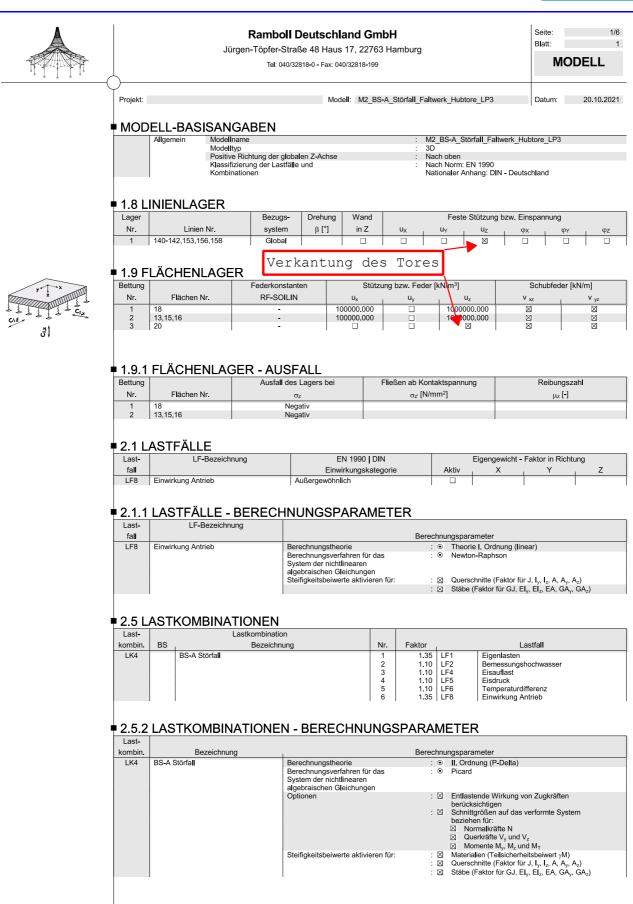




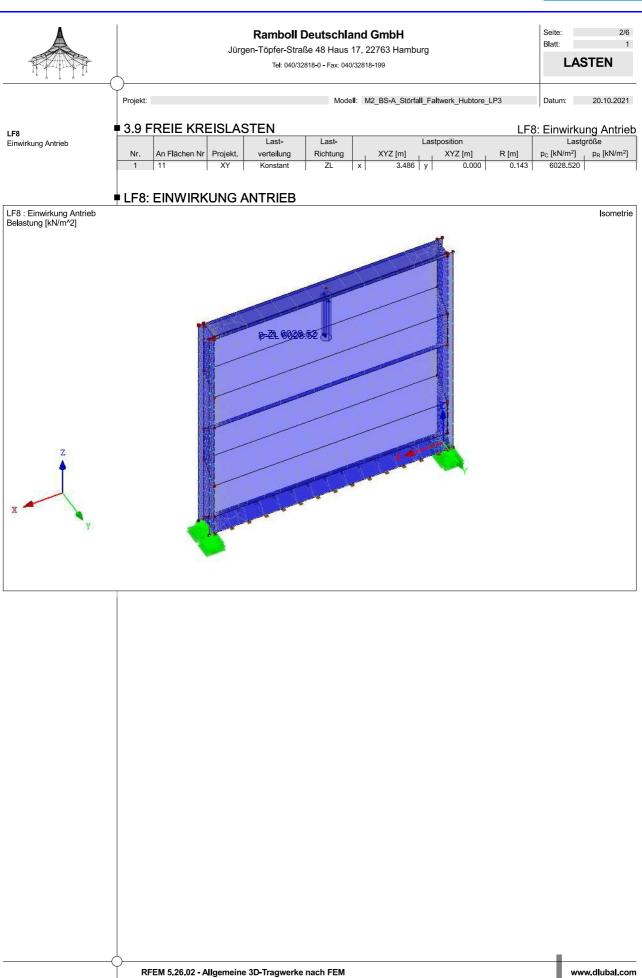
























#### ■ 4.0 ERGEBNISSE - ZUSAMMENFASSUNG

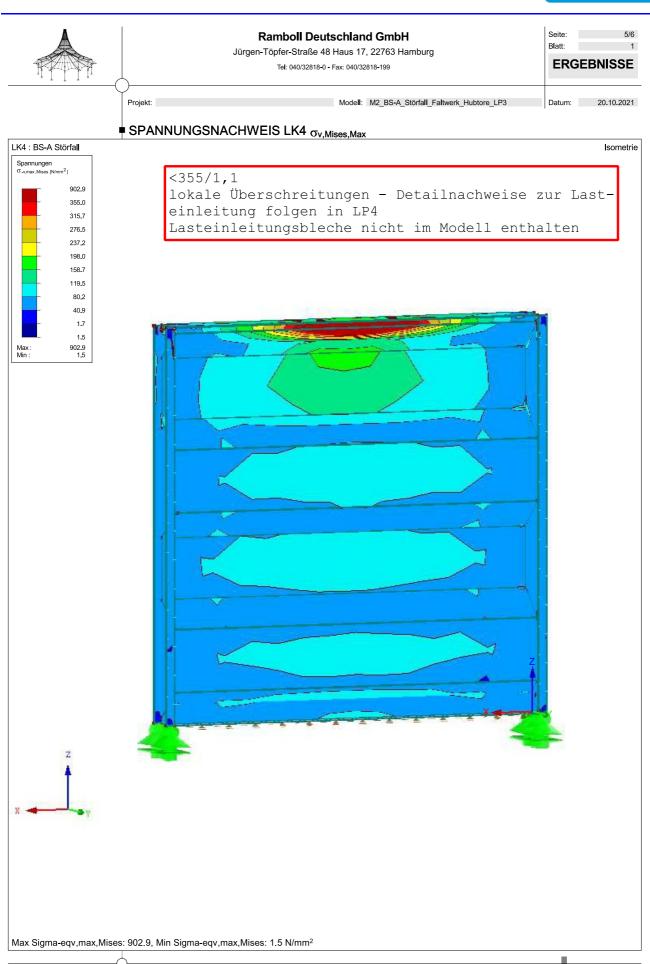
| Bezeichnung                                                              | Wert               | Einheit | Kommentar                                                |
|--------------------------------------------------------------------------|--------------------|---------|----------------------------------------------------------|
| stfall LF8 - Einwirkung Antrieb                                          | <u> </u>           |         |                                                          |
| Summe Belastung in Richtung X                                            | 0.00               | kN      |                                                          |
| Summe Lagerkräfte in X                                                   | 0.00               | kN      |                                                          |
| Summe Belastung in Richtung Y                                            | 0.00               | kN      |                                                          |
| Summe Lagerkräfte in Y                                                   | 0.00               | kN      | Hubkraft des Hubzylinders                                |
| Summe Belastung in Richtung Z                                            | 390.00             | kN      | Habitate accomably infacts                               |
| Summe Lagerkräfte in Z                                                   | 390.00             | kN      | Abweichung 0.00%                                         |
| Resultierende der Reaktionen um X                                        |                    |         | Im Schwerpunkt des Modells (X:3.500, Y:0.004, Z:3.531 m) |
| Resultierende der Reaktionen um Y                                        | 5.265              | kNm     | Im Schwerpunkt des Modells                               |
| Resultierende der Reaktionen um Z                                        | 0.000              | kNm     | Im Schwerpunkt des Modells                               |
| Max. Verschiebung in X                                                   | -1.6               | mm      | FE-Netzknoten Nr. 3035 (X: 4.496, Y: -0.290, Z: 7.000 m) |
| Max. Verschiebung in Y                                                   | -11.5              | mm      | FE-Netzknoten Nr. 3033 (X: 3.500, Y: -0.290, Z: 7.000 m) |
| Max. Verschiebung in Z                                                   | 48.3               | mm      | FE-Netzknoten Nr. 2835 (X: 3.500, Y: -0.290, Z: 7.100 m) |
| Max. Verschiebung vektoriell                                             | 49.6               | mm      | FE-Netzknoten Nr. 3033 (X: 3.500, Y: -0.290, Z: 7.000 m) |
| Max. Verdrehung um X                                                     | -78.7              | mrad    | FE-Netzknoten Nr. 2835 (X: 3.500, Y: -0.290, Z: 7.100 m) |
| Max, Verdrehung um Y                                                     | 20.8               | mrad    | FE-Netzknoten Nr. 3035 (X: 4.496, Y: -0.290, Z: 7.000 m) |
| Max. Verdrehung um Z                                                     | -4.3               | mrad    | FE-Netzknoten Nr. 3030 (X: 2.006, Y: -0.290, Z: 7.000 m) |
| Maximale Flächenverzerrung                                               | 0.000              | ‰       | FE-Netzknoten Nr. 0 (X: 0.000, Y: 0.000, Z: 0.000 m)     |
| Berechnungstheorie                                                       | I. Ordnung         |         | Theorie I. Ordnung (linear)                              |
| Steifigkeitsreduzierung                                                  |                    |         | Querschnitte, Stäbe, Flächen                             |
| Anzahl der Laststufen                                                    | 1                  |         |                                                          |
| Anzahl der Iterationen                                                   | 52                 |         |                                                          |
| Maximaler Wert des Elementes der<br>Steifigkeitsmatrix auf der Diagonale | 6.778E+11          |         |                                                          |
| Minimaler Wert des Elementes der<br>Steifigkeitsmatrix auf der Diagonale | 8.081E+04          |         |                                                          |
| Determinante der Steifigkeitsmatrix                                      | 3.957E+1135<br>483 |         |                                                          |
| Unendlich-Norm                                                           | 1.536E+12          |         |                                                          |

| mbination LK4 - BS-A Störfall               | 0.00        | LANI |                                                          |
|---------------------------------------------|-------------|------|----------------------------------------------------------|
| Summe Belastung in Richtung X               | 0.00        |      |                                                          |
| Summe Lagerkräfte in X                      | 0.00        |      |                                                          |
| Summe Belastung in Richtung Y               | 1810.63     |      |                                                          |
| Summe Lagerkräfte in Y                      | 1810.63     |      | Abweichung 0.00%                                         |
| Summe Belastung in Richtung Z               | 331.83      |      |                                                          |
| Summe Lagerkräfte in Z                      | 331.83      |      | Abweichung 0.00%                                         |
| Resultierende der Reaktionen um X           | -732.7      |      | Im Schwerpunkt des Modells (X:3.5, Y:0.0, Z:3.5 m)       |
| Resultierende der Reaktionen um Y           | 7.0         |      | Im Schwerpunkt des Modells                               |
| Resultierende der Reaktionen um Z           | 0.0         | kNm  | Im Schwerpunkt des Modells                               |
| Max. Verschiebung in X                      | 2.2         | mm   | FE-Netzknoten Nr. 3031 (X: 2.504, Y: -0.290, Z: 7.000 m) |
| Max. Verschiebung in Y                      | 10.7        | mm   | FE-Netzknoten Nr. 2403 (X: 3.500, Y: -0.290, Z: 5.956 m) |
| Max. Verschiebung in Z                      | 53.2        | mm   | FE-Netzknoten Nr. 2835 (X: 3.500, Y: -0.290, Z: 7.100 m) |
| Max. Verschiebung vektoriell                | 53.4        | mm   | FE-Netzknoten Nr. 2835 (X: 3.500, Y: -0.290, Z: 7.100 m) |
| Max. Verdrehung um X                        | -84.8       |      | FE-Netzknoten Nr. 2835 (X: 3.500, Y: -0.290, Z: 7.100 m) |
| Max. Verdrehung um Y                        | 24.2        |      | FE-Netzknoten Nr. 3035 (X: 4.496, Y: -0.290, Z: 7.000 m) |
| Max. Verdrehung um Z                        | 9.4         |      | FE-Netzknoten Nr. 3593 (X: 0.015, Y: 0.307, Z: 6.575 m)  |
| Maximale Flächenverzerrung                  | 0.000       | %    | FE-Netzknoten Nr. 0 (X: 0.000, Y: 0.000, Z: 0.000 m)     |
| Berechnungstheorie                          | II. Ordnung |      | Theorie II. Ordnung (nichtlinear, Timoshenko)            |
| Schnittgrößen bezogen auf verformtes System | ×           |      | $N, V_y, V_z, M_y, M_z, M_T$                             |
| für                                         |             |      | , - ,                                                    |
| Steifigkeitsreduzierung                     |             |      | Materialien, Querschnitte, Stäbe, Flächen                |
| Entlastende Wirkung der Zugkräfte           | $\boxtimes$ |      |                                                          |
| berücksichtigen                             |             |      |                                                          |
| Ergebnisse durch LK-Faktor zurückdividieren |             |      |                                                          |
| Anzahl der Laststufen                       | 1           |      |                                                          |
| Anzahl der Iterationen                      | 10          |      |                                                          |
| Maximaler Wert des Elementes der            | 6.778E+11   |      |                                                          |
| Steifigkeitsmatrix auf der Diagonale        | 1           |      |                                                          |
| Minimaler Wert des Elementes der            | 8.081E+04   |      |                                                          |
| Steifigkeitsmatrix auf der Diagonale        |             |      |                                                          |
| Determinante der Steifigkeitsmatrix         | 9.211E+1136 |      |                                                          |
|                                             | 384         |      |                                                          |
| Unendlich-Norm                              | 1.536E+12   |      |                                                          |

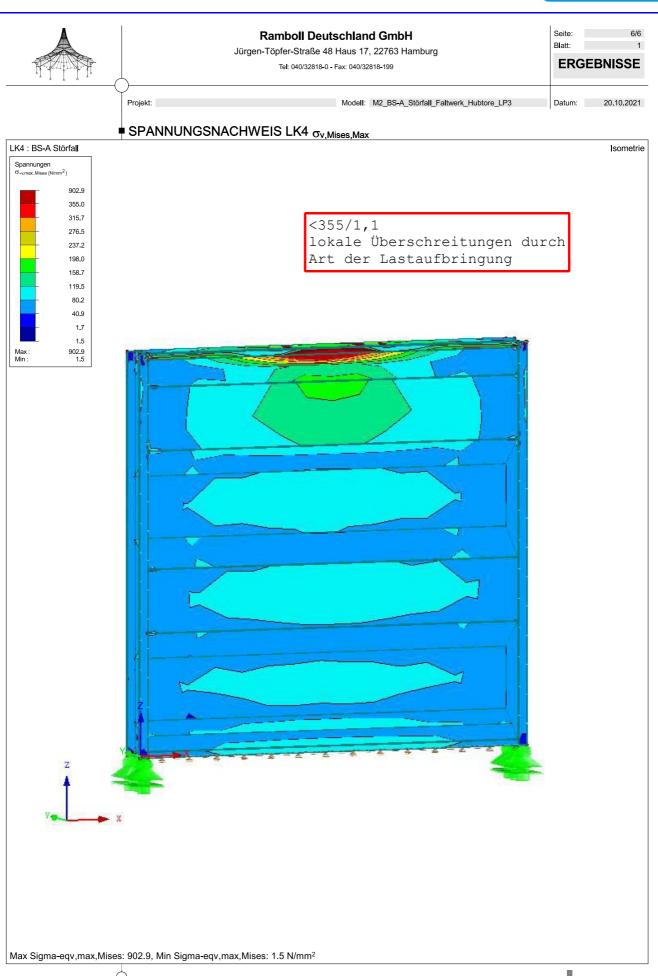
| amt                                                                                                              |             |   |  |
|------------------------------------------------------------------------------------------------------------------|-------------|---|--|
| Sonstige Einstellungen:                                                                                          |             |   |  |
| Anzahl 1D-Finite-Elemente                                                                                        | 0           |   |  |
| Anzahl 2D-Finite-Elemente                                                                                        | 25535       |   |  |
| Anzahl 3D-Finite-Elemente                                                                                        | 0           |   |  |
| Anzahl FE-Netzknoten                                                                                             | 25040       |   |  |
| Anzahl der Gleichungen                                                                                           | 150240      |   |  |
| Schnittgrößen bezogen auf verformtes System                                                                      |             |   |  |
| Maximale Anzahl Iterationen                                                                                      | 100         |   |  |
| Anzahl der Stabteilungen für Ergebnisverläufe                                                                    | 100         |   |  |
| Stabteilung Seil-, Bettungs- und Voutenstäbe                                                                     | 10          |   |  |
| Anzahl der Stabteilungen für das Suchen der<br>Maximalwerte                                                      | 10          |   |  |
| Unterteilungen des FE-Netzes für grafische<br>Ergebnisse                                                         | 0           |   |  |
| Prozentuelle Anzahl der Iterationen der Methode<br>nach Picard kombiniert mit der Methode nach<br>Newton-Raphson | 5           | % |  |
| Ausgefallene Lager aktivieren                                                                                    | $\boxtimes$ |   |  |
| Optionen:                                                                                                        | _           |   |  |
| Schubsteifigkeit (Ay, Az) der Stäbe aktivieren                                                                   |             |   |  |
| Stäbe bei Theorie III. Ordnung bzw.                                                                              | ⊠           |   |  |
| Durchschlagproblem teilen                                                                                        | 571         |   |  |
| Die eingestellten Steifigkeitsänderungen aktivieren Rotationsfreiheitsgrade ignorieren                           |             |   |  |
| Kontrolle der kritischen Kräfte der Stäbe                                                                        |             |   |  |
| Unsymmetrischer direkter Gleichungslöser, falls f                                                                |             |   |  |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM




| Ramboll Deutschland GmbH  Jürgen-Töpfer-Straße 48 Haus 17, 22763 Hamburg | Seite:<br>Blatt: | 4/6        |  |
|--------------------------------------------------------------------------|------------------|------------|--|
| Tel: 040/32818-0 - Fax: 040/32818-199                                    | ERG              | ERGEBNISSE |  |
| Projekt: Modell: M2_BS-A_Störfall_Faltwerk_Hubtore_LP3                   | Datum:           | 20.10.2021 |  |

## ■ 4.0 ERGEBNISSE - ZUSAMMENFASSUNG


| T.U L | F.O ENGERNIOSE - ZOGANINIENT AGGOING    |                 |  |  |  |  |  |  |  |
|-------|-----------------------------------------|-----------------|--|--|--|--|--|--|--|
|       | für nichtlineares Modell erfordert      |                 |  |  |  |  |  |  |  |
|       | Lösungsmethode für das Gleichungssystem | Gerade          |  |  |  |  |  |  |  |
| [     | Platten-Biegetheorie                    | Mindlin         |  |  |  |  |  |  |  |
|       | Solver-Version                          | 64 <b>-</b> bit |  |  |  |  |  |  |  |
|       |                                         |                 |  |  |  |  |  |  |  |
|       | Genauigkeit und Toleranz:               |                 |  |  |  |  |  |  |  |
|       | Standardeinstellung ändern              |                 |  |  |  |  |  |  |  |
| [     |                                         |                 |  |  |  |  |  |  |  |
|       | Nichtlineare Effekte - Aktivieren:      |                 |  |  |  |  |  |  |  |
|       | Lager und elastische Bettungen          | $\boxtimes$     |  |  |  |  |  |  |  |
|       |                                         |                 |  |  |  |  |  |  |  |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM











## 6 Rahmentragwerk der Tore

Die Hochwasserschutztore sind jeweils an dreieckigen Stahlrahmen aufgehängt. Die Tore werden durch einen Hubzylinder nach oben gezogen. In der oberen Position werden die Tore durch eine Arretierung gehalten.

## 6.1 Übersicht der Lastfälle und Lastkombinationen

**Tabelle 4 - Übersicht Lastfälle Rahmentragwerk** 

| Lastfall | Lastursprung     | Lastbeschrei-<br>bung              | Teilsicher-<br>heitsbeiwert | Lastansatz                |
|----------|------------------|------------------------------------|-----------------------------|---------------------------|
| LF 1     | Eigenlasten      | Eigengewicht des<br>Rahmentragwerk | 1,35                        | Querarretierung<br>~10 kN |
| LF 2     | Wind             | Wind senkrecht<br>zum Tor          | 1,5                         |                           |
| LF 3     |                  | Eg an Hubzylin-<br>der             | 1,35                        | ~167 kN                   |
| LF 4     | Eigengewicht Tor | Eg an Querarre-<br>tierung         | 1,35                        | ~167 kN                   |
| LF 5     |                  | Eg an Querarre-<br>tierung asym.   | 1,35                        | ~167 kN                   |

Tabelle 7 - Übersicht Lastkombinationen Rahmen

| Lastkombination | Kombinierte Lastfälle     | Bemessungsituation | Beschreibung                          |
|-----------------|---------------------------|--------------------|---------------------------------------|
| LK 2            | 1,35*LF1+1,5*LF2+1,35*LF3 | BS-P               | Last Tor am vert. Hubzylinder         |
| LK 3            | 1,35*LF1+1,5*LF2+1,35*LF4 | BS-P               | Last Tor an Querarretierung           |
| LK 4            | 1,35*LF1+1,5*LF2+1,35*LF5 | BS-P               | Last Tor an Querarretierung<br>(asym) |

## 6.2 Ausgabe der FE Berechnung





#### Ramboll GmbH

Stadtdeich 7, 20097 HAMBURG

Tel: 040/302020-185 - Fax: 040/302020-199

1/38 Blatt: **MODELL** 

Projekt:

Modell: Rahmentragwerk\_Hubtore\_LP3

Datum: 20.10.2021

#### MODELL-BASISANGABEN

Allgemein

Flächen

Rahmentragwerk\_Hubtore\_LP3 Allgemein ModelIname Nach oben
Nach Norm: EN 1990
Nationaler Anhang: DIN - Deutschland Modellname Modelltyp Positive Richtung der globalen Z-Achse Klassifizierung der Lastfälle und Kombinationen

FE-NETZ-EINSTELLUNGEN

Angestrebte Länge der Finiten Elemente
Maximaler Abstand zwischen Knoten und Linie
um in die Linie zu integrieren
Maximale Anzahl der FE-Netz-Knoten (in Tausenden) : 0.500 m : 0.001 m I FE

: 500

Anzahl Teilungen von Stäben mit Seil,
Bettung, Voute oder plastischer Charakteristik
Stäbe bei Theorie III. Ordnung
bzw. Durchschlagproblem intern teilen
Teilung der Stäbe durch den Knoten, der auf den Stäben liegt 10 Stäbe

Maximales Verhältnis der FE-Viereck-Diagonalen 1.800  $\Delta_{\mathsf{D}}$ Maximale Neigung von zwei Finiten Elementen aus der Ebene Form der Finiten Elemente: 0.50

Drei- und Vierecke ☑ Gleiche Quadrate generieren, wo möglich



#### 1 1 KNOTEN

| Knoten |           | Bezugs- |            | Koordinaten- Knotenkoordinaten |       |        |           |  |
|--------|-----------|---------|------------|--------------------------------|-------|--------|-----------|--|
| Nr.    | Knotentyp | Knoten  | System     | X [m]                          | Y [m] | Z [m]  | Kommentar |  |
| 1      | Standard  | -       | Kartesisch | 1.000                          | 0.000 | 13.000 |           |  |
| 2      | Standard  | -       | Kartesisch | 1.000                          | 2.000 | 13.000 |           |  |
| 3      | Standard  | -       | Kartesisch | 5.500                          | 2.000 | 19.363 |           |  |
| 4      | Standard  | -       | Kartesisch | 10.140                         | 1.000 | 9.810  | Gelagert  |  |
| 5      | Standard  | -       | Kartesisch | 10.000                         | 0.000 | 13.000 | _         |  |
| 6      | Standard  | -       | Kartesisch | 10.000                         | 2.000 | 13.000 |           |  |
| 7      | Standard  | -       | Kartesisch | 0.860                          | 1.000 | 9.810  |           |  |
| 8      | Standard  | -       | Kartesisch | 5.500                          | 0.000 | 19.363 |           |  |
| 9      | Standard  | -       | Kartesisch | 10.140                         | 1.000 | 10.810 | Gelagert  |  |
| 10     | Standard  | -       | Kartesisch | 0.860                          | 1.150 | 9.810  | Gelagert  |  |
| 11     | Standard  | -       | Kartesisch | 0.860                          | 1.000 | 10.810 | _         |  |
| 15     | Standard  | -       | Kartesisch | 0.860                          | 0.900 | 9.810  |           |  |
| 16     | Standard  | -       | Kartesisch | 10.140                         | 1.150 | 9.810  | Gelagert  |  |
| 17     | Standard  | -       | Kartesisch | 0.860                          | 1.000 | 17.810 |           |  |
| 18     | Standard  | -       | Kartesisch | 10.140                         | 1.000 | 17.810 | Gelagert  |  |
| 19     | Standard  | -       | Kartesisch | 5.500                          | 1.000 | 18.647 |           |  |
| 20     | Standard  | -       | Kartesisch | 10.140                         | 1.000 | 13.000 | Gelagert  |  |
| 21     | Standard  | -       | Kartesisch | 5.500                          | 1.000 | 17.810 |           |  |
| 22     | Standard  | -       | Kartesisch | 10.140                         | 0.900 | 9.810  |           |  |
| 23     | Standard  | -       | Kartesisch | 0.860                          | 1.000 | 13.000 |           |  |
| 24     | Standard  | -       | Kartesisch | 0.860                          | 1.100 | 13.000 |           |  |
| 25     | Standard  | -       | Kartesisch | 0.860                          | 0.900 | 13.000 |           |  |
| 26     | Standard  | -       | Kartesisch | 10.140                         | 1.100 | 13.000 | Gelagert  |  |
| 27     | Standard  | -       | Kartesisch | 10.140                         | 0.900 | 13.000 |           |  |
| 28     | Standard  | -       | Kartesisch | 4.993                          | 0.000 | 18.647 |           |  |
| 29     | Standard  | -       | Kartesisch | 4.993                          | 2.000 | 18.647 |           |  |
| 30     | Standard  | -       | Kartesisch | 6.007                          | 0.000 | 18.647 |           |  |
| 31     | Standard  | -       | Kartesisch | 6.007                          | 2.000 | 18.647 |           |  |
| 32     | Standard  | -       | Kartesisch | 4.993                          | 1.000 | 18.647 |           |  |
| 33     | Standard  | -       | Kartesisch | 6.007                          | 1.000 | 18.647 |           |  |
| 34     | Standard  | -       | Kartesisch | 6.671                          | 0.000 | 17.708 |           |  |
| 35     | Standard  | -       | Kartesisch | 4.329                          | 0.000 | 17.708 |           |  |
| 36     | Standard  | -       | Kartesisch | 4.329                          | 2.000 | 17.708 |           |  |
| 37     | Standard  | -       | Kartesisch | 6.671                          | 2.000 | 17.708 |           |  |
| 39     | Standard  | -       | Kartesisch | 10.140                         | 1.000 | 14.000 | Gelagert  |  |
| 42     | Standard  | -       | Kartesisch | 0.860                          | 1.000 | 14.000 |           |  |

#### 121 MIEN

| Linie |           |            | Linienlänge |   |           |
|-------|-----------|------------|-------------|---|-----------|
| Nr.   | Linientyp | Knoten Nr. | L [m]       |   | Kommentar |
| 1     | Polylinie | 28,32      | 1.000       | Υ |           |
| 2     | Polylinie | 30,33      | 1.000       | Υ |           |
| 3     | Polylinie | 7,10       | 0.150       | Υ |           |
| 4     | Polylinie | 18,20      | 4.810       | Z |           |
| 5     | Polylinie | 17,23      | 4.810       | Z |           |
| 6     | Polylinie | 17,21      | 4.640       | X |           |
| 7     | Polylinie | 32,29      | 1.000       | Υ |           |
| 8     | Polylinie | 33,31      | 1.000       | Υ |           |
| 9     | Polylinie | 7,4        | 9.280       | X |           |
| 10    | Polylinie | 21,18      | 4.640       | X |           |
| 11    | Polylinie | 32,19      | 0.507       | Χ |           |
| 12    | Polylinie | 19,21      | 0.837       | Z |           |
| 13    | Polylinie | 4,16       | 0.150       | Υ |           |
| 14    | Polylinie | 7,15       | 0.100       | Υ |           |
| 15    | Polylinie | 4,22       | 0.100       | Υ |           |
| 16    | Polylinie | 23,24      | 0.100       | Υ |           |
| 17    | Polylinie | 20,26      | 0.100       | Υ |           |
| 18    | Polylinie | 23,25      | 0.100       | Υ |           |
| 19    | Polylinie | 20,27      | 0.100       | Y |           |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





#### 1.2 LINIEN ■

| Linie |           |            | Linien <b>l</b> änge |    |           |
|-------|-----------|------------|----------------------|----|-----------|
| Nr.   | Linientyp | Knoten Nr. | L [m]                |    | Kommentar |
| 20    | Polylinie | 20,4       | 3.190                | Z  |           |
| 21    | Polylinie | 23,7       | 3.190                | Z  |           |
| 22    | Polylinie | 37,36      | 2.342                | Х  |           |
| 23    | Polylinie | 34,35      | 2.341                | Х  |           |
| 24    | Polylinie | 28,30      | 1.013                | Х  |           |
| 28    | Polylinie | 39,9       | 3.190                | Z  |           |
| 30    | Polylinie | 3,29       | 0.878                | XZ |           |
| 31    | Polylinie | 8,28       | 0.878                | XZ |           |
| 32    | Polylinie | 3,31       | 0.878                | XZ |           |
| 33    | Polylinie | 8,30       | 0.878                | XZ |           |
| 35    | Polylinie | 19,33      | 0.507                | Х  |           |
| 36    | Polylinie | 42,11      | 3.190                | Z  |           |
| 40    | Polylinie | 31,37      | 1,150                | XZ |           |
| 41    | Polylinie | 30,34      | 1.150                | XZ |           |
| 42    | Polylinie | 29,36      | 1.150                | XZ |           |
| 43    | Polylinie | 28,35      | 1.150                | XZ |           |
| 44    | Polylinie | 34,5       | 5.766                | XZ |           |
| 45    | Polylinie | 35,1       | 5.766                | XZ |           |
| 46    | Polylinie | 36,2       | 5.766                | XZ |           |
| 47    | Polylinie | 37,6       | 5.766                | XZ |           |

#### 

| - 1.3 IV | IATERIALIE              | IN .                    |              |               |             |                 |                             |
|----------|-------------------------|-------------------------|--------------|---------------|-------------|-----------------|-----------------------------|
| Mat.     | Modul                   | Modul                   | Querdehnzahl | Spez. Gewicht | Wärmedehnz. | TeilsichBeiwert | Material-                   |
| Nr.      | E [kN/cm <sup>2</sup> ] | G [kN/cm <sup>2</sup> ] | v [-]        | γ [kN/m³]     | α [1/°C]    | γм [-]          | Modell                      |
| 1        | Baustahl S 355   E      | N 1993-1-1:2005-05      |              |               |             |                 |                             |
|          | 21000.00                | 8076.92                 | 0.300        | 78.50         | 1.20E-05    | 1.00            | Isotrop linear<br>elastisch |
| 3        | Baustahl S 355   E      | N 1993-1-1:2005-05      |              |               |             |                 |                             |
|          | 21000.00                | 8076.92                 | 0.300        | 78.50         | 1.20E-05    | 1.00            | Isotrop linear<br>elastisch |
| 4        | HE-PE                   |                         | 1            |               |             |                 |                             |
|          | 135.00                  | 46.23                   | 0.460        | 9.00          | 2.30E-05    | 1.00            | Isotrop linear elastisch    |
| 5        | HE-PE                   |                         |              |               |             |                 |                             |
|          | 135.00                  | 46.23                   | 0.460        | 9.00          | 2.30E-05    | 1.00            | Isotrop linear elastisch    |
| 6        | HE-PE                   |                         |              |               |             |                 |                             |
|          | 135.00                  | 46.23                   | 0.460        | 9.00          | 2.30E-05    | 1.00            | Isotrop linear<br>elastisch |

#### **■ 1.4 FLÄCHEN**

| ı | Fläche | e Flächentyp |             |                       | Mat. | Dicke    |        | Fläche              | Gewicht | ı |
|---|--------|--------------|-------------|-----------------------|------|----------|--------|---------------------|---------|---|
|   | Nr.    | Geometrie    | Steifigkeit | Begrenzungslinien Nr. | Nr.  | Тур      | d [mm] | A [m <sup>2</sup> ] | G [kg]  | ı |
| Ī | 1      | Eben         | Starr       | 4,20,9,21,5,6,10      | -    | Konstant | -      | 74.240              |         | ĺ |

#### **■** 1.4.2 FLÄCHEN - INTEGRIERTE OBJEKTE

| Fläche |        | Integrierte Objekte Nr. |           |           |
|--------|--------|-------------------------|-----------|-----------|
| Nr.    | Knoten | Linien                  | Öffnungen | Kommentar |
| 1      |        | 28,36                   |           |           |

# Z

#### **■** 1.7 KNOTENLAGER

| Lager |                |                              | Stütze |                                 |                                | Lagerung b                      | zw. Feder |                    |       |
|-------|----------------|------------------------------|--------|---------------------------------|--------------------------------|---------------------------------|-----------|--------------------|-------|
| Nr.   | Knoten Nr.     | Achsensystem                 | in Z   | u <sub>X</sub> /u <sub>X'</sub> | u <sub>Y</sub> /u <sub>Y</sub> | u <sub>z</sub> /u <sub>z'</sub> | φχ/φχ     | $\phi_Y/\phi_{Y'}$ | φz/φz |
| 2     | 1,2,5,6        | Benutzerdefiniertes X',Y',Z' |        | $\boxtimes$                     | $\boxtimes$                    | ×                               |           |                    |       |
| 4     | 18             | Global X,Y,Z                 |        | $\boxtimes$                     |                                |                                 |           |                    |       |
| 5     | 16             | Global X,Y,Z                 |        | ⊠                               | $\boxtimes$                    |                                 |           |                    |       |
| 6     | 10,15,22,24-27 | Global X,Y,Z                 |        |                                 | Feder                          |                                 |           |                    |       |

#### **■** 1.7.2 KNOTENLAGER - FEDERN

| Lager |                |                   | Wegfeder [kN/m]   |            |               | rehfeder [kNm/rad | d]            |
|-------|----------------|-------------------|-------------------|------------|---------------|-------------------|---------------|
| Nr.   | Knoten Nr.     | C <sub>u,X'</sub> | C <sub>u,Y'</sub> | $C_{u,Z'}$ | $C_{\phi,X'}$ | $C_{\varphi,Y}$   | $C_{\phi,Z'}$ |
| 6     | 10,15,22,24-27 | -                 | 100000000.0       | -          | -             | -                 | -             |

#### ■ 1.7.10 KNOTENLAGER - BENUTZERDEFINIERTES ACHSENSYSTEM

| Lager | Richtungs-    |       | ∨    | /erdrehung [' | °]   | Koordinaten- | 1. Ac | Knoten | Knoten | 2. Ac | Bezugs- | Stab/Linie |   |
|-------|---------------|-------|------|---------------|------|--------------|-------|--------|--------|-------|---------|------------|---|
| Nr.   | typ:          | Folge | um X | um Y          | um Z | system       |       | Nr.    | Nr.    |       | Knoten  | Nr.        |   |
| 2     | Identisch mit |       |      |               |      |              |       |        |        |       |         | 8          | ľ |
|       | dem Stab      |       |      | I .           |      |              |       |        |        |       |         |            |   |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





#### **■** 1.13 QUERSCHNITTE

| HEB 300           | HEB 400           |
|-------------------|-------------------|
| RD 140            | Rechteck 400/1000 |
| Rechteck 400/1000 | Rechteck 400/1000 |

| 1.13   | QULIN    | OCHIVII I E                       |                                   |                                   |             |         |             |              |
|--------|----------|-----------------------------------|-----------------------------------|-----------------------------------|-------------|---------|-------------|--------------|
| Quers. | Mater.   | I <sub>T</sub> [cm <sup>4</sup> ] | I <sub>y</sub> [cm⁴]              | I <sub>z</sub> [cm <sup>4</sup> ] | Hauptachsen | Drehung | Gesamtabmes | ssungen [mm] |
| Nr.    | Nr.      | A [cm <sup>2</sup> ]              | A <sub>y</sub> [cm <sup>2</sup> ] | A <sub>z</sub> [cm <sup>2</sup> ] | α[°]        | α' [°]  | Breite b    | Höhe h       |
| 2      | HEB 300  |                                   |                                   |                                   |             |         |             |              |
|        | 1        | 185.00<br>149.10                  | 25170.00<br>94.97                 | 8563.00<br>28.65                  | 0.00        | 0.00    | 300.0       | 300.0        |
| 5      | HEB 400  |                                   |                                   |                                   |             |         |             |              |
|        | 1        | 355.70<br>197.80                  | 57680.00<br>120.15                | 10820.00<br>48.08                 | 0.00        | 0.00    | 300.0       | 400.0        |
| 6      | RD 140   |                                   |                                   |                                   |             |         |             |              |
|        | 1        | 3771.48                           | 1885.74                           | 1885.74                           | 0.00        | 0.00    | 140.0       | 140.0        |
|        |          | 154.00                            | 129.36                            | 129.36                            |             |         |             |              |
| 10     | Rechteck |                                   |                                   |                                   |             |         |             |              |
|        | 4        | 1596869.25                        | 3333333.25                        | 533333.35                         | 0.00        | 0.00    | 400.0       | 1000.0       |
|        |          | 4000.00                           | 3333.33                           | 3333.33                           |             |         |             |              |
| 11     | Rechteck |                                   |                                   |                                   |             |         |             |              |
| ļ      | 5        | 1596869.25                        | 3333333.25                        | 533333.35                         | 0.00        | 0.00    | 400.0       | 1000.0       |
|        |          | 4000.00                           | 3333.33                           | 3333.33                           |             |         |             |              |
| 12     | Rechteck |                                   |                                   |                                   |             |         |             |              |
|        | 6        | 1596869.25                        | 3333333.25                        | 533333.35                         | 0.00        | 0.00    | 400.0       | 1000.0       |
|        |          | 4000.00                           | 3333.33                           | 3333.33                           |             |         |             |              |

#### **■ 1.14 STABENDGELENKE**



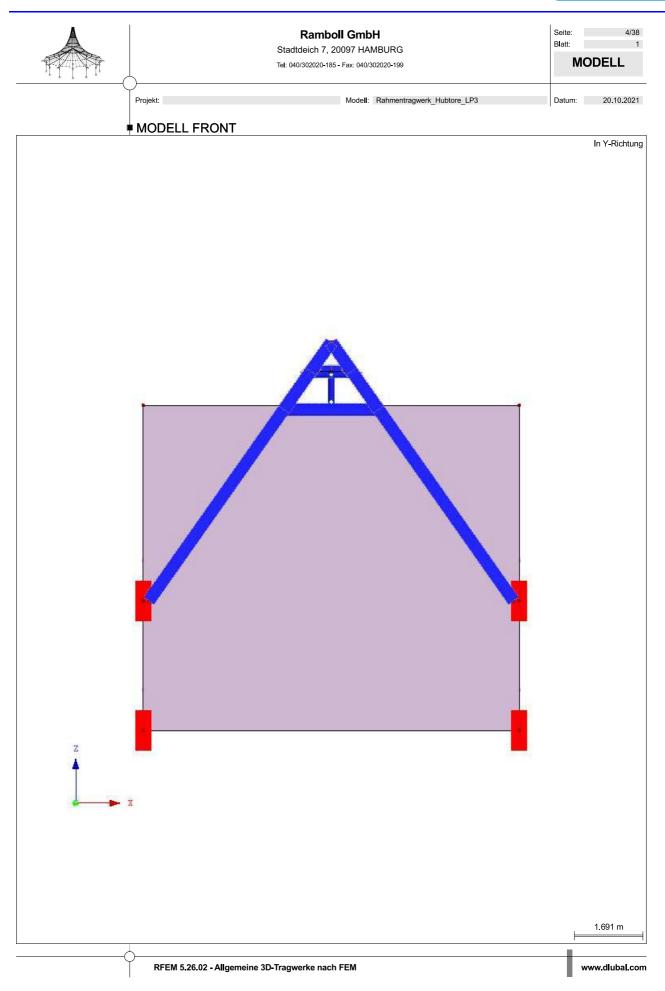
| Gelenk | Bezugs-     | Axial/Quer-Gelenk bzw. Feder[kN/m] |                |                | Momenteng  | elenk bzw. Fed |             |           |
|--------|-------------|------------------------------------|----------------|----------------|------------|----------------|-------------|-----------|
| Nr.    | system      | u <sub>x</sub>                     | u <sub>y</sub> | u <sub>z</sub> | $\phi_{x}$ | р фу           | φz          | Kommentar |
| 1      | Lokal x,y,z |                                    |                |                |            | ×              | $\boxtimes$ |           |
| 2      | Lokal x,y,z |                                    |                |                |            | ×              | ×           |           |
| 3      | Lokal x,y,z |                                    |                |                |            |                | $\boxtimes$ |           |

#### **■** 1.17 STÄBE

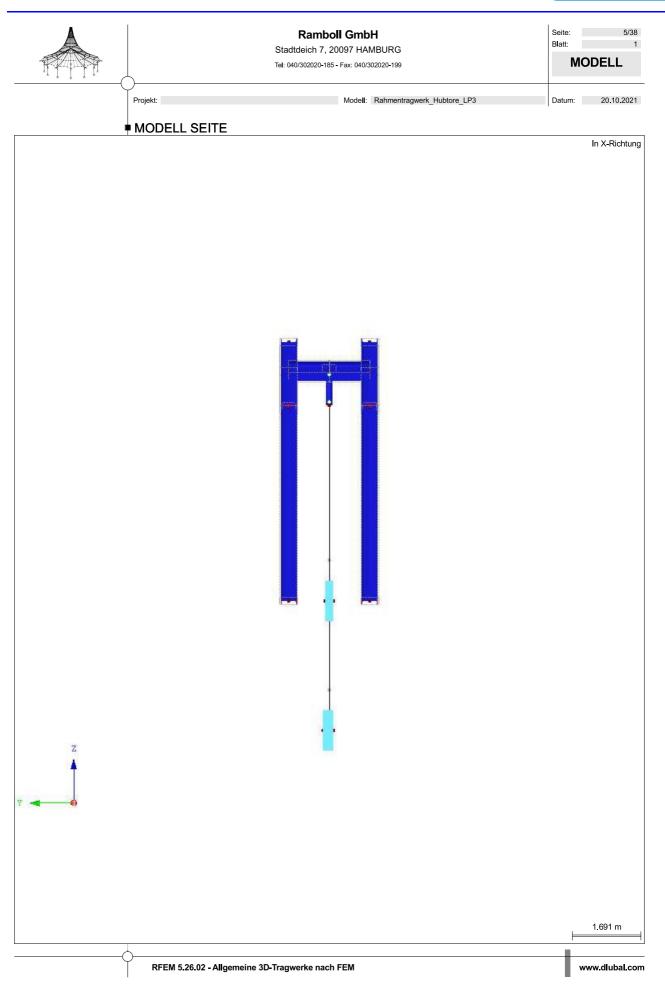


| Stab | Linie |            | Dreh   | nung   | Quers  | schnitt | Geler  | nk Nr. | Exz. | Teilung | Länge |    |
|------|-------|------------|--------|--------|--------|---------|--------|--------|------|---------|-------|----|
| Nr.  | Nr.   | Stabtyp    | Тур    | β [°]  | Anfang | Ende    | Anfang | Ende   | Nr.  | Nr.     | L [m] |    |
| 1    | 40    | Balkenstab | Winkel | 90.00  | 5      | 5       | -      | -      | -    | -       | 1.150 | XZ |
| 2    | 41    | Balkenstab | Winkel | 90.00  | 5      | 5       | -      | -      | -    | -       | 1.150 | XZ |
| 3    | 42    | Balkenstab | Winkel | 90.00  | 5      | 5       | -      | -      | -    | -       | 1.150 | XZ |
| 4    | 43    | Balkenstab | Winkel | 90.00  | 5      | 5       | -      | -      | -    | -       | 1.150 | XZ |
| 5    | 1     | Balkenstab | Winkel | 45.00  | 5      | 5       | -      | -      | -    | -       | 1.000 | Y  |
| 6    | 7     | Balkenstab | Winkel | 45.00  | 5      | 5       | -      | -      | -    | -       | 1.000 | Y  |
| 8    | 30    | Balkenstab | Winkel | 90.00  | 5      | 5       | -      | -      | -    | -       | 0.878 | XZ |
| 9    | 31    | Balkenstab | Winkel | 90.00  | 5      | 5       | -      | -      | -    | -       | 0.878 | XZ |
| 10   | 32    | Balkenstab | Winkel | 90.00  | 5      | 5       | -      | -      | -    | -       | 0.878 | XZ |
| 11   | 2     | Balkenstab | Winkel | -45.00 | 5      | 5       | -      | -      | -    | -       | 1.000 | Y  |
| 12   | 8     | Balkenstab | Winkel | -45.00 | 5      | 5       | -      | -      | -    | -       | 1.000 | Y  |
| 13   | 33    | Balkenstab | Winkel | 90.00  | 5      | 5       | -      | -      | -    | -       | 0.878 | XZ |
| 15   | 12    | Balkenstab | Winkel | 0.00   | 6      | 6       | 2      | 3      | -    | -       | 0.837 | Z  |
| 16   | 11    | Balkenstab | Winkel | 0.00   | 2      | 2       | -      | -      | -    | -       | 0.507 | X  |
| 17   | 35    | Balkenstab | Winkel | 0.00   | 2      | 2       | -      | -      | -    | -       | 0.507 | X  |
| 18   | 3     | Balkenstab | Winkel | 0.00   | 10     | 10      | -      | -      | -    | -       | 0.150 | Y  |
| 19   | 13    | Balkenstab | Winkel | 0.00   | 10     | 10      | -      | -      | -    | -       | 0.150 | Y  |
| 20   | 14    | Balkenstab | Winkel | 0.00   | 10     | 10      | -      | -      | -    | -       | 0.100 | Y  |
| 21   | 15    | Balkenstab | Winkel | 0.00   | 10     | 10      | -      | -      | -    | -       | 0.100 | Y  |
| 22   | 16    | Balkenstab | Winkel | 0.00   | 10     | 10      | -      | -      | -    | -       | 0.100 | Y  |
| 23   | 17    | Balkenstab | Winkel | 0.00   | 10     | 10      | -      | -      | -    | -       | 0.100 | Y  |
| 24   | 18    | Balkenstab | Winkel | 0.00   | 10     | 10      | -      | -      | -    | -       | 0.100 | Y  |
| 25   | 19    | Balkenstab | Winkel | 0.00   | 10     | 10      | -      | -      | -    | -       | 0.100 | Y  |
| 30   | 44    | Balkenstab | Winkel | 90.00  | 5      | 5       | -      | -      | -    | -       | 5.766 | XZ |
| 31   | 45    | Balkenstab | Winkel | 90.00  | 5      | 5       | -      | -      | -    | -       | 5.766 | XZ |
| 32   | 46    | Balkenstab | Winkel | 90.00  | 5      | 5       | -      | -      | -    | -       | 5.766 | XZ |
| 33   | 47    | Balkenstab | Winkel | 90.00  | 5      | 5       | -      | -      | -    | -       | 5.766 | XZ |
| 34   | 22    | Balkenstab | Winkel | 0.00   | 2      | 2       | -      | -      | -    | -       | 2.342 | X  |
| 35   | 23    | Balkenstab | Winkel | 0.00   | 2      | 2       | -      | -      | -    | -       | 2.341 | X  |

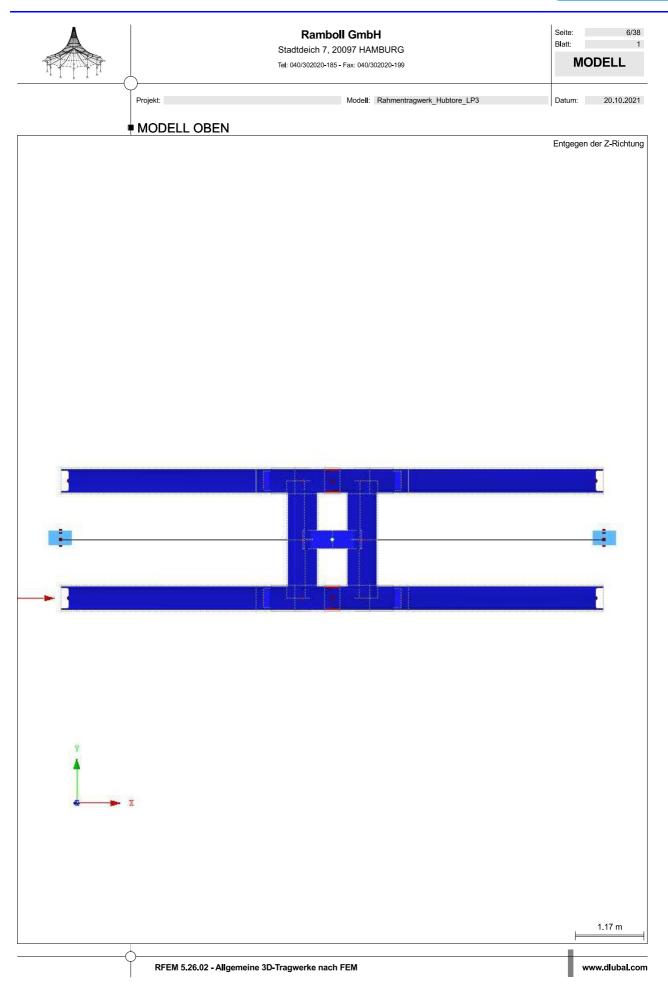
#### **■** 1.20 STABNICHTLINEARITÄTEN


|   | Nichtl. | An Stäben |                             | Nic            | ht <b>l</b> inearität-Parame | eter    |           |
|---|---------|-----------|-----------------------------|----------------|------------------------------|---------|-----------|
|   | Nr.     | Nr.       | Typ der Nichtlinearität     | Symbol         | Wert                         | Einheit | Kommentar |
| Ì | 1       | 18-25     | Ausfall bei Zug mit Schlupf | u <sub>x</sub> | 20.00                        | mm      |           |

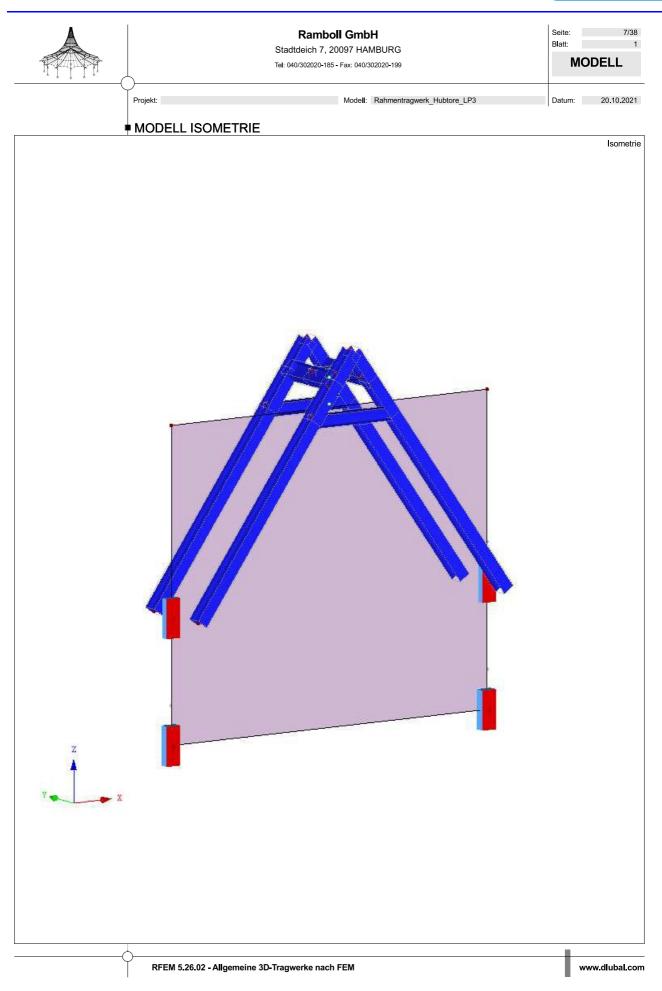
#### 


| 121  | OIADOAIZL    |         |          |       |           |
|------|--------------|---------|----------|-------|-----------|
| Satz | Stabsatz     |         |          | Länge |           |
| Nr.  | Bezeichnung  | Тур     | Stab Nr. | [m]   | Kommentar |
| 1    | Träger 1     | Stabzug | 10,1,33  | 7.794 |           |
| 2    | Quer_y_oben  | Stabzug | 11,12    | 2.000 |           |
| 3    | Schräg_x1_y1 | Stabzug | 31,4,9   | 7.794 |           |
| 4    | Schräg_x2_y1 | Stabzug | 30,2,13  | 7.794 |           |
| 5    | Schräg_x1_y2 | Stabzug | 32,3,8   | 7.794 |           |
| 6    | Schräg_x2_y2 | Stabzug | 33,1,10  | 7.794 |           |
| 7    | Quer_x_y1    | Stabzug | 35       | 2.341 |           |
| 8    | Quer_x_y2    | Stabzug | 34       | 2.342 |           |
| 9    | Quer_y_x1    | Stabzug | 5,6      | 2.000 |           |
| 10   | Quer_x_oben  | Stabzug | 16,17    | 1.014 |           |

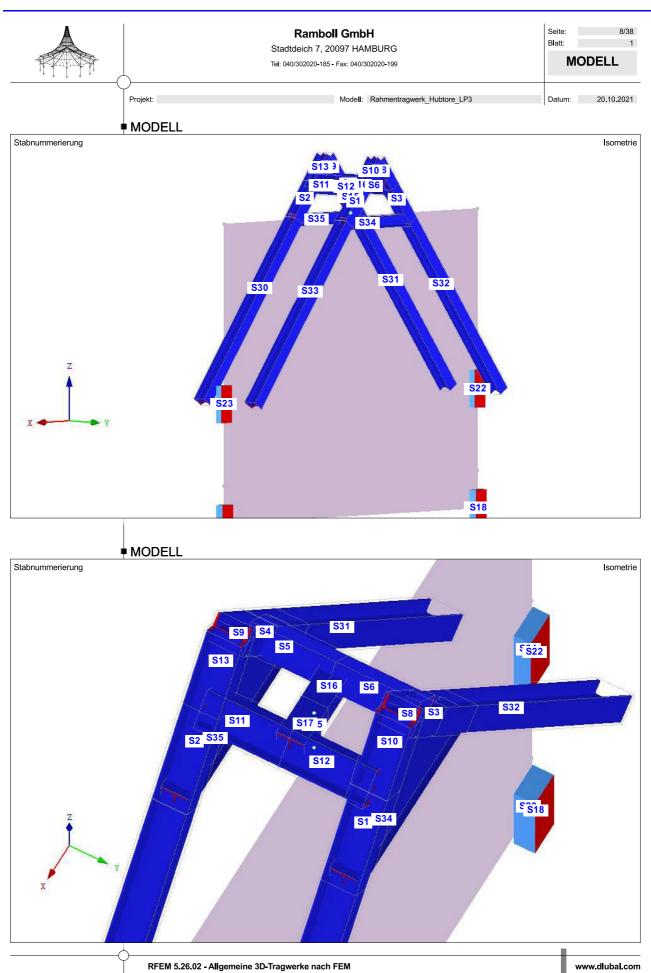
RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM



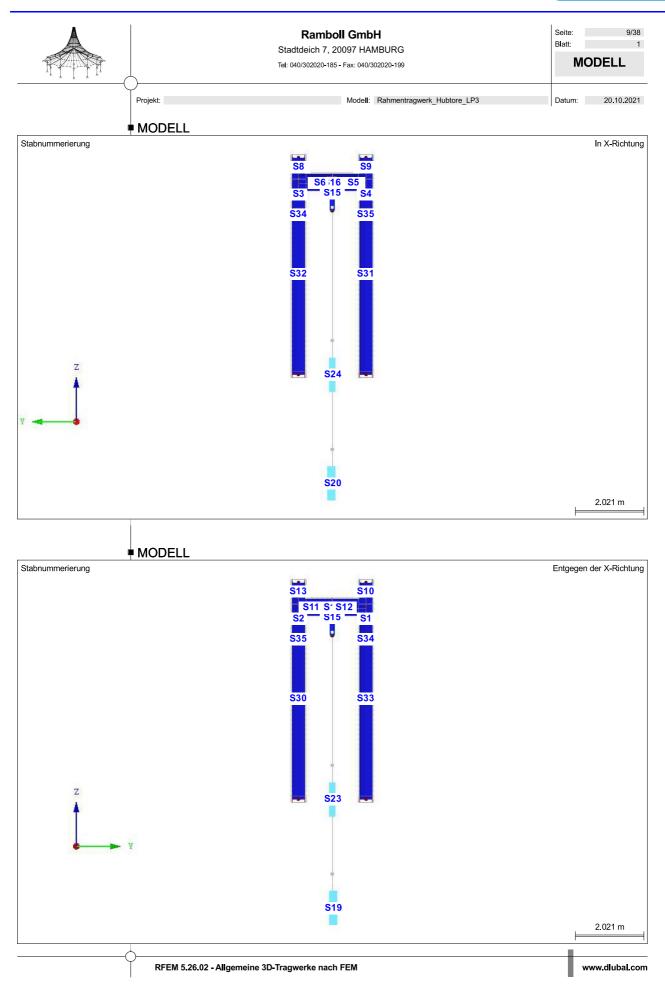


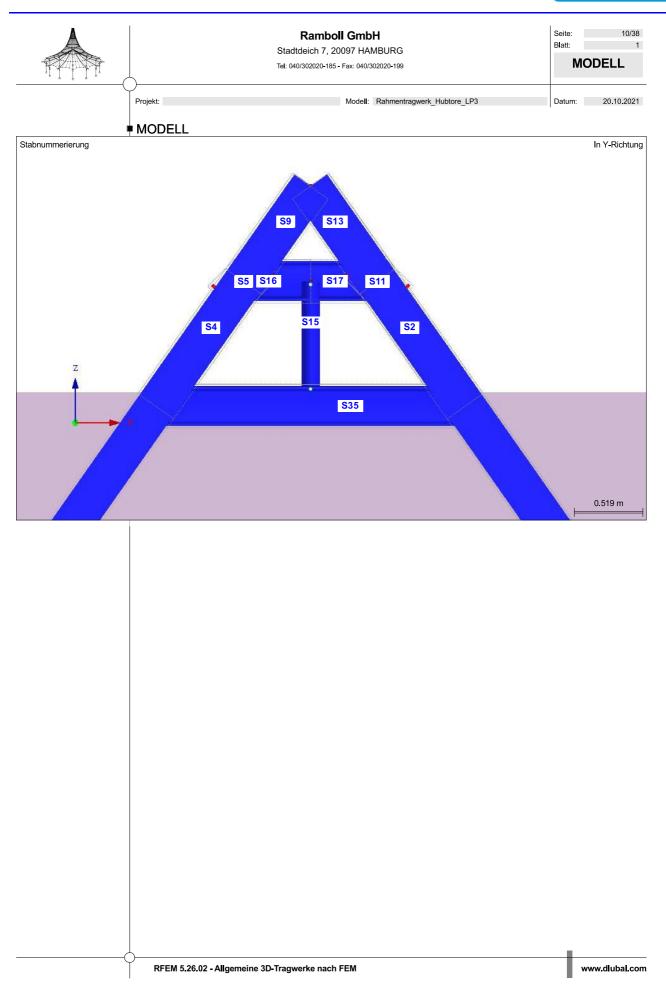





















#### Ramboll GmbH

Stadtdeich 7, 20097 HAMBURG Tel: 040/302020-185 - Fax: 040/302020-199 Seite: 11/38 Blatt: 1 **LASTEN** 

Datum: 20.10.2021

#### 2.1 LASTFÄLLE

Projekt:

| Last- | LF-Bezeichnung                            | EN 1990   DIN        |             | Eigengewicht - | Faktor in Richtu | ıng    |
|-------|-------------------------------------------|----------------------|-------------|----------------|------------------|--------|
| fall  |                                           | Einwirkungskategorie | Aktiv       | X              | Υ                | Z      |
| LF1   | Eigengewicht                              | Ständig              | $\boxtimes$ | 0.000          | 0.000            | -1.000 |
| LF2   | Wind senkrecht zum Tor                    | Wind                 |             |                |                  |        |
| LF3   | Eigengewicht Tor an Hubzylinder           | Ständig              |             |                |                  |        |
| LF4   | Eigengewicht Tor an Queraretierung        | Ständig              |             |                |                  |        |
| LF5   | Eigengewicht Tor an Queraretierung schief | Ständig              |             |                |                  |        |

Modell: Rahmentragwerk\_Hubtore\_LP3

#### ■ 2 1 1 LASTEÄLLE - BERECHNUNGSPARAMETER

| Last- | LF-Bezeichnung                               |                                                                                       |          |                                                                                                    |
|-------|----------------------------------------------|---------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------|
| fall  |                                              |                                                                                       | Berechnu | ngsparameter                                                                                       |
| LF1   | Eigengewicht                                 | Berechnungstheorie                                                                    | : •      | Theorie I. Ordnung (linear)                                                                        |
|       |                                              | Berechnungsverfahren für das<br>System der nichtlinearen<br>algebraischen Gleichungen | : ●      | Newton-Raphson                                                                                     |
|       |                                              | Optionen                                                                              | : ⊠      | Versuch der Berechnung des kinematischen<br>Mechanismus                                            |
|       |                                              | Steifigkeitsbeiwerte aktivieren für:                                                  | : ⊠      | Querschnitte (Faktor für J, I <sub>v</sub> , I <sub>z</sub> , A, A <sub>v</sub> , A <sub>z</sub> ) |
|       |                                              | -                                                                                     | : 🗵      | Stäbe (Faktor für GJ, El <sub>v</sub> , El <sub>z</sub> , EA, GA <sub>v</sub> , GA <sub>z</sub> )  |
| LF2   | Wind senkrecht zum Tor                       | Berechnungstheorie                                                                    | : ●      | Theorie I. Ordnung (linear)                                                                        |
|       |                                              | Berechnungsverfahren für das<br>System der nichtlinearen<br>algebraischen Gleichungen | : ●      | Newton-Raphson                                                                                     |
|       |                                              | Steifigkeitsbeiwerte aktivieren für:                                                  | : ⊠      | Querschnitte (Faktor für J, I <sub>v</sub> , I <sub>z</sub> , A, A <sub>v</sub> , A <sub>z</sub> ) |
|       |                                              | _                                                                                     | : 🗵      | Stäbe (Faktor für GJ, El <sub>y</sub> , El <sub>z</sub> , EA, GA <sub>y</sub> , GA <sub>z</sub> )  |
| LF3   | Eigengewicht Tor an Hubzylinder              | Berechnungstheorie                                                                    | : •      | Theorie I. Ordnung (linear)                                                                        |
|       |                                              | Berechnungsverfahren für das<br>System der nichtlinearen<br>algebraischen Gleichungen | : ●      | Newton-Raphson                                                                                     |
|       |                                              | Optionen                                                                              | : ⊠      | Versuch der Berechnung des kinematischen<br>Mechanismus                                            |
|       |                                              | Steifigkeitsbeiwerte aktivieren für:                                                  | : ⊠      | Querschnitte (Faktor für J, I <sub>v</sub> , I <sub>z</sub> , A, A <sub>v</sub> , A <sub>z</sub> ) |
|       |                                              | _                                                                                     | : 🗵      | Stäbe (Faktor für GJ, El <sub>y</sub> , El <sub>z</sub> , EA, GA <sub>y</sub> , GA <sub>z</sub> )  |
| LF4   | Eigengewicht Tor an<br>Queraretierung        | Berechnungstheorie                                                                    | : ●      | Theorie I. Ordnung (linear)                                                                        |
|       | -                                            | Berechnungsverfahren für das<br>System der nichtlinearen<br>algebraischen Gleichungen | : ●      | Newton-Raphson                                                                                     |
|       |                                              | Steifigkeitsbeiwerte aktivieren für:                                                  | : ⊠      | Querschnitte (Faktor für J, I <sub>y</sub> , I <sub>z</sub> , A, A <sub>y</sub> , A <sub>z</sub> ) |
|       |                                              |                                                                                       | : ⊠      | Stäbe (Faktor für GJ, El <sub>v</sub> , El <sub>z</sub> , EA, GA <sub>v</sub> , GA <sub>z</sub> )  |
| LF5   | Eigengewicht Tor an<br>Queraretierung schief | Berechnungstheorie                                                                    | : •      | Theorie I. Ordnung (linear)                                                                        |
|       |                                              | Berechnungsverfahren für das<br>System der nichtlinearen<br>algebraischen Gleichungen | : ●      | Newton-Raphson                                                                                     |
|       |                                              | Steifigkeitsbeiwerte aktivieren für:                                                  | : ⊠      | Querschnitte (Faktor für J, I <sub>y</sub> , I <sub>z</sub> , A, A <sub>y</sub> , A <sub>z</sub> ) |
|       |                                              |                                                                                       | : ⊠      | Stäbe (Faktor für GJ, El <sub>v</sub> , El <sub>z</sub> , EA, GA <sub>v</sub> , GA <sub>z</sub> )  |

#### **■** 2.5 LASTKOMBINATIONEN

| 2.0 -   |                                         | I CINDII TI TI CITEI                   |     |        |     |                                    |  |  |  |  |
|---------|-----------------------------------------|----------------------------------------|-----|--------|-----|------------------------------------|--|--|--|--|
| Last-   |                                         | Lastkombination                        |     |        |     |                                    |  |  |  |  |
| kombin. | BS                                      | Bezeichnung                            | Nr. | Faktor | ı   | Lastfall                           |  |  |  |  |
| LK2     |                                         | Last aus Tor am Hubzylinder            | 1   | 1.35   | LF1 | Eigengewicht                       |  |  |  |  |
|         |                                         |                                        | 2   | 1.50   | LF2 | Wind senkrecht zum Tor             |  |  |  |  |
|         |                                         |                                        |     | 1.35   | LF3 | Eigengewicht Tor an Hubzylinder    |  |  |  |  |
| LK3     | 3 Last aus Tor an Querarretierung (sym) |                                        | 1   | 1.35   | LF1 | Eigengewicht                       |  |  |  |  |
|         |                                         |                                        | 2   | 1.50   | LF2 | Wind senkrecht zum Tor             |  |  |  |  |
|         |                                         |                                        | 3   | 1.35   | LF4 | Eigengewicht Tor an Queraretierung |  |  |  |  |
| LK4     |                                         | Last aus Tor an Querarretierung (asym) | 1   | 1.35   | LF1 | Eigengewicht                       |  |  |  |  |
|         |                                         |                                        | 2   | 1.50   | LF2 | Wind senkrecht zum Tor             |  |  |  |  |
|         |                                         |                                        | 3   | 1.35   | LF5 | Eigengewicht Tor an Queraretierung |  |  |  |  |
|         |                                         |                                        |     |        |     | schief                             |  |  |  |  |

| 2.5.2   | LASTKOMBINATIONEN - BERECHNUNGSPARAMETER |                                                                                       |               |                                                                                                                                                                               |  |  |  |  |  |
|---------|------------------------------------------|---------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Last-   |                                          |                                                                                       |               |                                                                                                                                                                               |  |  |  |  |  |
| kombin. | Bezeichnung                              | ı                                                                                     | ungsparameter |                                                                                                                                                                               |  |  |  |  |  |
| LK2     | Last aus Tor am Hubzylinder              | Berechnungstheorie                                                                    | : ⊚           | II. Ordnung (P-Delta)                                                                                                                                                         |  |  |  |  |  |
|         |                                          | Berechnungsverfahren für das<br>System der nichtlinearen<br>algebraischen Gleichungen | : ●           | Picard                                                                                                                                                                        |  |  |  |  |  |
|         |                                          | Optionen                                                                              | ; ⊠           | Schnittgrößen auf das verformte System beziehen für:  Mormalkräfte N Querkräfte V <sub>y</sub> und V <sub>z</sub> Momente M <sub>vr</sub> , M <sub>z</sub> und M <sub>T</sub> |  |  |  |  |  |
|         |                                          | Steifigkeitsbeiwerte aktivieren für:                                                  | : ⊠           | Materialien (Teilsicherheitsbeiwert γM)                                                                                                                                       |  |  |  |  |  |
|         |                                          |                                                                                       | : ⊠           | Querschnitte (Faktor für J, I <sub>y</sub> , I <sub>z</sub> , A, A <sub>y</sub> , A <sub>z</sub> )                                                                            |  |  |  |  |  |
|         |                                          |                                                                                       | : ⊠           | Stäbe (Faktor für GJ, El <sub>y</sub> , El <sub>z</sub> , EA, GA <sub>y</sub> , GA <sub>z</sub> )                                                                             |  |  |  |  |  |
| LK3     | Last aus Tor an Querarretierung (sym)    | Berechnungstheorie                                                                    | : ◉           | II. Ordnung (P-Delta)                                                                                                                                                         |  |  |  |  |  |
|         |                                          | Berechnungsverfahren für das<br>System der nichtlinearen<br>algebraischen Gleichungen | : ●           | Picard                                                                                                                                                                        |  |  |  |  |  |
|         |                                          | Optionen                                                                              | : ⊠           | Schnittgrößen auf das verformte System beziehen für:  Normalkräfte N                                                                                                          |  |  |  |  |  |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





## Ramboll GmbH

Stadtdeich 7, 20097 HAMBURG
Tel: 040/302020-185 - Fax: 040/302020-199

 Seite:
 12/38

 Blatt:
 1

 LASTEN

Projekt:

Modell: Rahmentragwerk\_Hubtore\_LP3

Datum: 20.10.2021

#### **■ 2.5.2 LASTKOMBINATIONEN - BERECHNUNGSPARAMETER**

|         | LASTRONBINATIONE                       | IT BEILESI III OII OOI                                                                | II V IIVIL I LI I                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|---------|----------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Last-   | 6                                      |                                                                                       | B                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| kombin. | Bezeichnung                            | Berechnungsparameter                                                                  |                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|         |                                        |                                                                                       | Querkräfte V <sub>y</sub> und V <sub>z</sub>                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|         |                                        |                                                                                       |                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|         |                                        | Steifigkeitsbeiwerte aktivieren für:                                                  | :   Materialien (Teilsicherheitsbeiwert γM)                                                                                                                                                                                                                                    |  |  |  |  |  |  |
|         |                                        |                                                                                       | : ⊠ Querschnitte (Faktor für J, I <sub>y</sub> , I <sub>z</sub> , A, A <sub>y</sub> , A <sub>z</sub> )                                                                                                                                                                         |  |  |  |  |  |  |
|         |                                        |                                                                                       | :   Stäbe (Faktor f  GJ, El  El  El  El  EA, GA  GA  El  EA  EA  EA  EA  EA  EA  EA  EA  E                                                                                                                                                                                     |  |  |  |  |  |  |
| LK4     | Last aus Tor an Querarretierung (asym) | Berechnungstheorie                                                                    | :   II. Ordnung (P-Delta)                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|         |                                        | Berechnungsverfahren für das<br>System der nichtlinearen<br>algebraischen Gleichungen | :                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|         |                                        | Optionen                                                                              | <ul> <li>: ⊠ Schnittgrößen auf das verformte System beziehen für:</li> <li>☑ Normalkräfte N</li> <li>☑ Querkräfte V<sub>y</sub> und V<sub>z</sub></li> <li>☑ Momente M<sub>y</sub>, M<sub>z</sub> und M<sub>T</sub></li> </ul>                                                 |  |  |  |  |  |  |
|         |                                        | Steifigkeitsbeiwerte aktivieren für:                                                  | <ul> <li>: ⊠ Materialien (Teilsicherheitsbeiwert γM)</li> <li>: ⊠ Querschnitte (Faktor für J, I<sub>y</sub>, I<sub>z</sub>, A, A<sub>y</sub>, A<sub>z</sub>)</li> <li>: ⊠ Stäbe (Faktor für GJ, EI<sub>y</sub>, EI<sub>z</sub>, EA, GA<sub>y</sub>, GA<sub>z</sub>)</li> </ul> |  |  |  |  |  |  |

**LF1** Eigengewicht **■** 3.2 STABLASTEN

LF1: Eigengewicht

| 0.2 0 |          |           | Li i. Ligoi | 19CW1011   |                        |                |                |               |         |  |
|-------|----------|-----------|-------------|------------|------------------------|----------------|----------------|---------------|---------|--|
|       | Beziehen | An Stäben | Last-       | Last-      | Last-                  | Last- Bezugs-  |                | Lastparameter |         |  |
| Nr.   | auf      | Nr.       | Art         | verteilung | Richtung               | Richtung Länge |                | Wert          | Einheit |  |
| 1     | Stäbe    | 34        | Kraft       | 2 х Ф      | 2 х Ф ZL Wahre Länge P |                | P <sub>1</sub> | -3.000        | kN      |  |
|       |          |           |             |            |                        |                | P <sub>2</sub> | -3.000        | rad     |  |
|       |          |           |             |            |                        |                | Α              | 33.000        | %       |  |
|       |          |           |             |            |                        |                | В              | 33.000        | %       |  |
| 2     | Stäbe    | 35        | Kraft       | 2 х Ф      | ZL                     | Wahre Länge    | P <sub>1</sub> | -2.000        | kN      |  |
|       |          |           |             |            |                        |                | P <sub>2</sub> | -2.000        | rad     |  |
|       |          |           |             |            |                        |                | Α              | 33.000        | %       |  |
|       |          |           |             |            |                        |                | В              | 33.000        | %       |  |

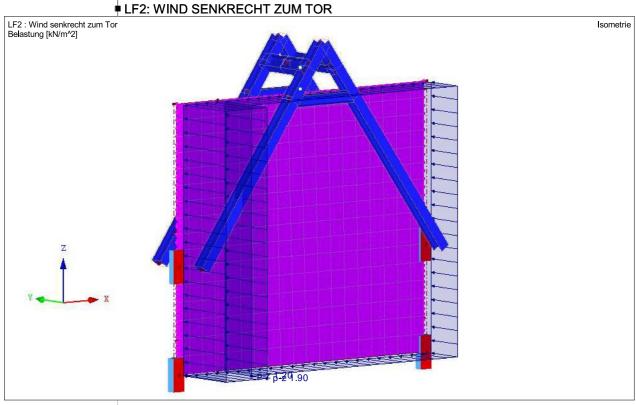
**■** 3.2/1 STABLASTEN - LASTAUSMITTE

LF1: Eigengewicht

|    |                | Beziehen | An Stäben | Absoluter Versatz                                           |         | Absoluter Versatz   |                     | Relative   | r Versatz  | Relativer Versatz |          |
|----|----------------|----------|-----------|-------------------------------------------------------------|---------|---------------------|---------------------|------------|------------|-------------------|----------|
| N  | ۱r.            | auf      | Nr.       | Stabanfang Stabanfang                                       |         | Stabende            | Stabende            | Stabanfang | Stabanfang | Stabende          | Stabende |
|    |                |          |           | e <sub>Y</sub> [mm] e <sub>Z</sub> [mm] e <sub>Y</sub> [mm] |         | e <sub>Y</sub> [mm] | e <sub>Z</sub> [mm] | y-Achse    | z-Achse    | y-Achse           | z-Achse  |
|    | 1              | Stäbe    | 34        | 0.0                                                         | 0.0 0.0 |                     | 0.0                 | Mitte      | Mitte      | Mitte             | Mitte    |
| 1. | 2              | Stäbe    | 35        | 0.0                                                         | 0.0     | 0.0                 | 0.0                 | Mitte      | Mitte      | Mitte             | Mitte    |
|    | 2   0.000   00 |          |           |                                                             |         |                     |                     |            |            |                   |          |

**LF2**Wind senkrecht zum Tor

**♦** 3.8 FREIE RECHTECKLASTEN


LF2: Wind senkrecht zum Tor

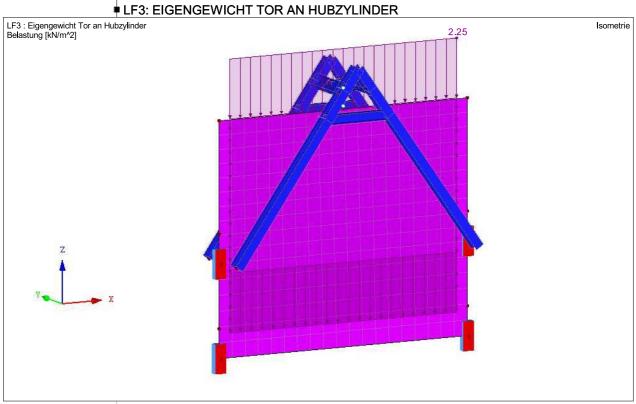
| 0.0. |                |                                           |          | El E. Willia coma come Zami Tor |           |       |                   |              |  |        |
|------|----------------|-------------------------------------------|----------|---------------------------------|-----------|-------|-------------------|--------------|--|--------|
|      |                |                                           | Last-    | Last-                           | Lastgröße |       |                   | Lastposition |  |        |
| Nr.  | An Flächen Nr. | Projekt verteilung Richtung Symbol Wert E |          | Einheit                         | X [m]     | Y [m] | Z [m]             |              |  |        |
| 1    | 1              | XZ                                        | Konstant | z                               | р         | 1.90  | kN/m <sup>2</sup> | 0.750        |  | 17.810 |
|      |                |                                           |          |                                 |           |       |                   | 2.400        |  | 9.810  |
| 2    | 1              | XZ                                        | Konstant | z                               | р         | 1.20  | kN/m <sup>2</sup> | 2.400        |  | 17.810 |
|      |                |                                           |          |                                 |           |       |                   | 10.250       |  | 9.810  |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM








**LF3** Eigengewicht Tor an Hubzylinder

| 1 | ■ 3.4 FLÄCHENLASTEN LF3: Eigengewicht Tor an Hubzylinder |                |       |            |          |               |       |                   |  |  |  |  |  |  |
|---|----------------------------------------------------------|----------------|-------|------------|----------|---------------|-------|-------------------|--|--|--|--|--|--|
|   |                                                          |                | Last- | Last-      | Last-    | Lastparameter |       |                   |  |  |  |  |  |  |
|   | Nr.                                                      | An Flächen Nr. | Art   | verteilung | Richtung | Symbol        | Wert  | Einheit           |  |  |  |  |  |  |
| İ | 1                                                        | 1              | Kraft | Konstant   | ZL       | р             | -2.25 | kN/m <sup>2</sup> |  |  |  |  |  |  |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





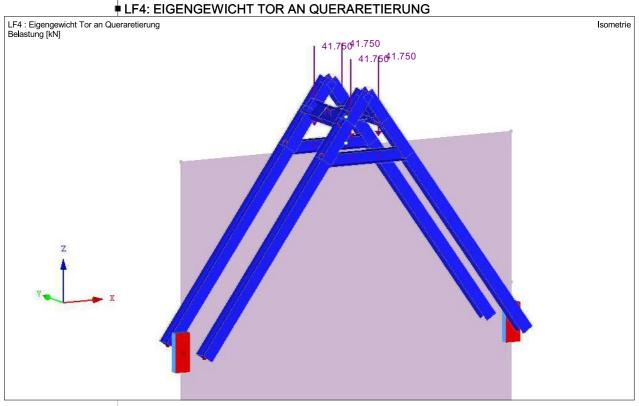


**LF4**Eigengewicht Tor an Queraretierung

#### ■ 3.2 STABLASTEN LF4: Eigengewicht Tor an Queraretierung

|     | Beziehen | An Stäben | Last- | Last-      | Last-    | Bezugs-     |                | Lastparameter | .       |
|-----|----------|-----------|-------|------------|----------|-------------|----------------|---------------|---------|
| Nr. | auf      | Nr.       | Art   | verteilung | Richtung | Länge       | Symbol         | Wert          | Einheit |
| 1   | Stäbe    | 34        | Kraft | 2 х Ф      | ZL       | Wahre Länge | P <sub>1</sub> | -41.750       | kN      |
|     |          |           |       |            |          |             | P <sub>2</sub> | -41.750       | rad     |
|     |          |           |       |            |          |             | Α              | 33.000        | %       |
|     |          |           |       |            |          |             | В              | 33.000        | %       |
| 2   | Stäbe    | 35        | Kraft | 2 x Φ      | ZL       | Wahre Länge | P <sub>1</sub> | -41.750       | kN      |
|     |          |           |       |            |          |             | P <sub>2</sub> | -41.750       | rad     |
|     |          |           |       |            |          |             | Α              | 33.000        | %       |
|     |          |           |       |            |          |             | В              | 33.000        | %       |
|     | '        | •         |       |            | •        |             |                |               |         |

■ 3.2/1 STABLASTEN - LASTAUSMITTE


| ΙF4·  | Figengewicht  | Tor an  | Queraretierung |
|-------|---------------|---------|----------------|
| LI 4. | Lidelidewicht | TOI all | Quelalellelull |

|     | Beziehen | An Stäben | Absolute            | r Versatz           | Absolute            | r Versatz           | Relativer  | Versatz    | Relativer Versatz |          |
|-----|----------|-----------|---------------------|---------------------|---------------------|---------------------|------------|------------|-------------------|----------|
| Nr. | auf      | Nr.       | Stabanfang          | Stabanfang          | Stabende            | Stabende            | Stabanfang | Stabanfang | Stabende          | Stabende |
|     |          |           | e <sub>Y</sub> [mm] | e <sub>Z</sub> [mm] | e <sub>Y</sub> [mm] | e <sub>Z</sub> [mm] | y-Achse    | z-Achse    | y-Achse           | z-Achse  |
| 1   | Stäbe    | 34        | 0.0                 | 0.0                 | 0.0                 | 0.0                 | Mitte      | Mitte      | Mitte             | Mitte    |
| 2   | Stäbe    | 35        | 0.0                 | 0.0                 | 0.0                 | 0.0                 | Mitte      | Mitte      | Mitte             | Mitte    |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM







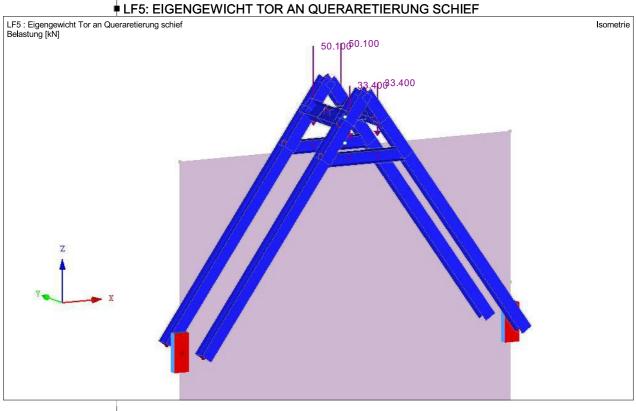
**LF5**Eigengewicht Tor an Queraretierung schief

#### **■** 3.2 STABLASTEN

LF5

| 0.2 0 | TABLACT  | LI1       |       |            |          |             |                |               | LI C    |
|-------|----------|-----------|-------|------------|----------|-------------|----------------|---------------|---------|
|       | Beziehen | An Stäben | Last- | Last-      | Last-    | Bezugs-     |                | Lastparameter |         |
| Nr.   | auf      | Nr.       | Art   | verteilung | Richtung | Länge       | Symbol         | Wert          | Einheit |
| 1     | Stäbe    | 34        | Kraft | 2 х Ф      | ZL       | Wahre Länge | P <sub>1</sub> | -50.100       | kN      |
|       |          |           |       |            |          |             | P <sub>2</sub> | -50.100       | rad     |
|       |          |           |       |            |          |             | Α              | 33.000        | %       |
|       |          |           |       |            |          |             | В              | 33.000        | %       |
| 2     | Stäbe    | 35        | Kraft | 2 x Φ      | ZL       | Wahre Länge | P <sub>1</sub> | -33.400       | kN      |
|       |          |           |       |            |          |             | P <sub>2</sub> | -33.400       | rad     |
|       |          |           |       |            |          |             | Α              | 33.000        | %       |
|       |          |           |       |            |          |             | В              | 33.000        | %       |

#### **■** 3.2/1 STABLASTEN - LASTAUSMITTE


LF5

|     | Beziehen | An Stäben | Absolute            | r Versatz           | Absolute            | r Versatz           | Relative   | Versatz    | Relativer Versatz |          |
|-----|----------|-----------|---------------------|---------------------|---------------------|---------------------|------------|------------|-------------------|----------|
| Nr. | auf      | Nr.       | Stabanfang          | Stabanfang          | Stabende            | Stabende            | Stabanfang | Stabanfang | Stabende          | Stabende |
|     |          |           | e <sub>Y</sub> [mm] | e <sub>Z</sub> [mm] | e <sub>Y</sub> [mm] | e <sub>Z</sub> [mm] | y-Achse    | z-Achse    | y-Achse           | z-Achse  |
| 1   | Stäbe    | 34        | 0.0                 | 0.0                 | 0.0                 | 0.0                 | Mitte      | Mitte      | Mitte             | Mitte    |
| 2   | Stäbe    | 35        | 0.0                 | 0.0                 | 0.0                 | 0.0                 | Mitte      | Mitte      | Mitte             | Mitte    |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM







#### ■ 4.1 KNOTEN - LAGERKRÄFTE

| LF/LK<br>LF1<br>LF2      | P <sub>X'</sub> | _                          |                          |                                 |                                     |                                               |                                                            |  |  |
|--------------------------|-----------------|----------------------------|--------------------------|---------------------------------|-------------------------------------|-----------------------------------------------|------------------------------------------------------------|--|--|
|                          |                 | P <sub>Y</sub>             | P <sub>Z'</sub>          | M <sub>X'</sub>                 | M <sub>Y</sub>                      | $M_{Z'}$                                      |                                                            |  |  |
| I EO                     | 21              | 2                          | 0                        | 0                               | 0                                   | 0                                             | Eigengewicht                                               |  |  |
| LFZ                      | 0               | 0                          | 0                        | 0                               | 0                                   | 0                                             | Wind senkrecht zum Tor                                     |  |  |
| LF3                      | 51              | 0                          | 1                        | 0                               | 0                                   | 0                                             | Eigengewicht Tor an Hubzylinder                            |  |  |
| LF4                      | 51              | 0                          | 0                        | 0                               | 0                                   | 0                                             | Eigengewicht Tor an Queraretierung                         |  |  |
| LF5                      | 41              | 0                          | 0                        | 0                               | 0                                   | 0                                             | Eigengewicht Tor an Queraretierung schief                  |  |  |
| LK1                      | 72              | 2                          | 1                        | 0                               | 0                                   | 0                                             |                                                            |  |  |
| LK2                      | 98              | 3                          | 2                        | 0                               | 0                                   | 0                                             | Last aus Tor am Hubzylinder                                |  |  |
| LK3                      | 98              | 2                          | 0                        | 0                               | 0                                   | 0                                             | Last aus Tor an Querarretierung (sym)                      |  |  |
| LK4                      | 84              | 2                          | 0                        | 0                               | 0                                   | 0                                             | Last aus Tor an Querarretierung (asym)                     |  |  |
| LK5                      | 72              | 2                          | 0                        | 0                               | 0                                   | 0                                             |                                                            |  |  |
| LK6                      | 62              | 2                          | 0                        | 0                               | 0                                   | 0                                             |                                                            |  |  |
| LF1                      | 22              | 2                          | 0                        | 0                               | 0                                   | 0                                             | Eigengewicht                                               |  |  |
| LF2                      | 0               | 0                          | 0                        | 0                               | 0                                   | 0                                             | Wind senkrecht zum Tor                                     |  |  |
| LF3                      | 51              | 0                          | -1                       | 0                               | 0                                   | 0                                             | Eigengewicht Tor an Hubzylinder                            |  |  |
| LF4                      | 51              | 0                          | 0                        | 0                               | 0                                   | 0                                             | Eigengewicht Tor an Queraretierung                         |  |  |
| LF5                      | 62              | -1                         | 0                        | 0                               | 0                                   | 0                                             | Eigengewicht Tor an Queraretierung schief                  |  |  |
| LK1                      | 73              | 2                          | -1                       | 0                               | 0                                   | 0                                             |                                                            |  |  |
| LK2                      | 99              | 3                          | <b>-2</b>                | 0                               | 0                                   | 0                                             | Last aus Tor am Hubzylinder                                |  |  |
| LK3                      | 100             | 2                          | 0                        | 0                               | 0                                   | 0                                             | Last aus Tor an Querarretierung (sym)                      |  |  |
| LK4                      | 113             | 2                          | 0                        | 0                               | 0                                   | 0                                             | Last aus Tor an Querarretierung (asym)                     |  |  |
| LK5                      | 74              | 2                          | 0                        | 0                               | 0                                   | 0                                             |                                                            |  |  |
| LK6                      | 84              | 1                          | 0                        | 0                               | 0                                   | 0                                             |                                                            |  |  |
| LF1                      | 9               | 19                         | 0                        | 0                               | 0                                   | 0                                             | Eigengewicht                                               |  |  |
| LF2                      | 0               | 0                          | 0                        | 0                               | 0                                   | 0                                             | Wind senkrecht zum Tor                                     |  |  |
| LF3                      | 17              | 48                         | 1                        | 0                               | 0                                   | 0                                             | Eigengewicht Tor an Hubzylinder                            |  |  |
| LF4                      | 17              | 49                         | 0                        | 0                               | 0                                   | 0                                             | Eigengewicht Tor an Queraretierung                         |  |  |
| LF5                      | 13              | 39                         | 0                        | 0                               | 0                                   | 0                                             | Eigengewicht Tor an Queraretierung schief                  |  |  |
| LK1                      | 26              | 67                         | 1                        | 0                               | 0                                   | 0                                             |                                                            |  |  |
| LK2                      | 35              | 91                         | 2                        | 0                               | 0                                   | 0                                             | Last aus Tor am Hubzylinder                                |  |  |
| LK3                      | 35              | 92                         | 0                        | 0                               | 0                                   | 0                                             | Last aus Tor an Querarretierung (sym)                      |  |  |
| LK4                      | 30              | 79                         | 0                        | 0                               | 0                                   | 0                                             | Last aus Tor an Querarretierung (asym)                     |  |  |
| LK5                      | 26              | 68                         | 0                        | 0                               | 0                                   | 0                                             |                                                            |  |  |
| LK6                      | 22              | 58                         | 0                        | 0                               | 0                                   | 0                                             |                                                            |  |  |
| LF1                      | 9               | 20                         | 0                        | 0                               | 0                                   | 0                                             | Eigengewicht                                               |  |  |
| LF2                      | 0               | 0                          | 0                        | 0                               | 0                                   | 0                                             | Wind senkrecht zum Tor                                     |  |  |
| LF3                      | 17              | 48                         | -1                       | 0                               | 0                                   | 0                                             | Eigengewicht Tor an Hubzylinder                            |  |  |
| LF4                      | 17              | 49                         | 0                        | 0                               | 0                                   | 0                                             | Eigengewicht Tor an Queraretierung                         |  |  |
| LF5                      | 20              | 58                         | 0                        | 0                               | 0                                   | 0                                             | Eigengewicht Tor an Queraretierung schief                  |  |  |
|                          |                 |                            | -1                       |                                 |                                     | 0                                             |                                                            |  |  |
|                          |                 |                            | <b>-</b> 2               | 0                               | 0                                   | 0                                             | Last aus Tor am Hubzylinder                                |  |  |
|                          |                 |                            | 0                        | 0                               | 0                                   | 0                                             | Last aus Tor an Querarretierung (sym)                      |  |  |
|                          |                 |                            | 0                        | 0                               | 0                                   | 0                                             | Last aus Tor an Querarretierung (asym)                     |  |  |
| LK5                      | 26              | 69                         | 0                        | 0                               | 0                                   | 0                                             |                                                            |  |  |
| LK1<br>LK2<br>LK3<br>LK4 |                 | 26<br>36<br>35<br>40<br>26 | 36 93<br>35 93<br>40 106 | 36 93 -2<br>35 93 0<br>40 106 0 | 36 93 -2 0<br>35 93 0 0<br>40 106 0 | 36 93 -2 0 0<br>35 93 0 0 0 0<br>40 106 0 0 0 | 36 93 -2 0 0 0 0 35 93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |  |  |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





#### ■ 4.1 KNOTEN - LAGERKRÄFTE

| 15  | LF/LK  LK6  LF1  LF2  LF3  LF4  LF5  LK1  LK2  LK3  LK4  LK5  LK6  LF1  LF2  LF3  LF4  LF5  LK1  LF2  LF3  LK4  LK5  LK6  LF1  LF2  LF3  LK4  LK5  LK6  LK1  LK2  LK3  LK4  LK5  LK6  LK1  LK2  LK3  LK4  LK5  LK6  LK1  LK2  LK3  LK4  LK5  LK6  LK5  LK6  LK1  LK2  LK3  LK4  LK5  LK6  LK5  LK6  LK5  LK6  LK6  LK5  LK6  LK6                                                                                                                | P <sub>X</sub> 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                          | P <sub>Y</sub> 79  0  0  0  0  0  0  0  0  0  0  10  17  19  19  12  12  10  0  0  10  17  19  19  10  10  10  10  10  10  10  10 | P <sub>Z</sub> :                                                                            | M <sub>X</sub>             | Lagermomente [kNm                                  | M <sub>Z</sub> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                          | Eigengewicht Wind senkrecht zum Tor Eigengewicht Tor an Hubzylinder Eigengewicht Tor an Oueraretierung Eigengewicht Tor an Queraretierung schief Last aus Tor am Hubzylinder Last aus Tor am Querarretierung (sym) Last aus Tor an Querarretierung (asym)  Eigengewicht Wind senkrecht zum Tor Eigengewicht Tor an Hubzylinder Eigengewicht Tor an Querarretierung Eigengewicht Tor an Querarretierung Eigengewicht Tor an Queraretierung |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15  | LK6 LF1 LF2 LF3 LF4 LK1 LK2 LK3 LK4 LK5 LK6 LF1 LF2 LF3 LK4 LK5 LK6 LF1 LF2 LF3 LK4 LK5 LK6 LK1 LK2 LK3 LK4 LK5 LK6 LF1 LF2 LK3 LK4 LK5 LK6 LK1 LK2 LK3 LK4 LK5 LK6 LK1 LK2 LK3 LK4 LK5 LK6 LK6 LK1 LK5 LK6 LK6 LK5 LK6 LK6 LK5 LK6 LK6 LK5 LK6 LK5 LK6 LK5 LK6 LK5 LK6 LK5 LK6 LK5 LK6 LK5 LK6 LK5 LK6 LK5 LK6 LK5 LK6 LK5 LK6 LK5 LK6 LK5 LK6 LK5 LK6 LK5 LK6 LK5 LK6 LK5 LK6                                                                 | 30<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                            | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Wind senkrecht zum Tor Eigengewicht Tor an Hubzylinder Eigengewicht Tor an Queraretierung Eigengewicht Tor an Queraretierung schief Last aus Tor am Hubzylinder Last aus Tor an Querarretierung (sym) Last aus Tor an Querarretierung (asym)  Eigengewicht Wind senkrecht zum Tor Eigengewicht Tor an Hubzylinder Eigengewicht Tor an Queraretierung                                                                                      |
| 15  | LF2 LF3 LF4 LF5 LK1 LK2 LK3 LK4 LK5 LF1 LF2 LF3 LF4 LK5 LK4 LK5 LK1 LK5 LK1 LK2 LK2 LK3 LK4 LF5 LK1 LK5 LK1 LK2 LK3 LK4 LK5 LK4 LK5 LK4 LK5 LK6 LF1 LF5 LK1 LK5 LK6 LF1 LF5 LK1 LK5 LK6 LF1 LF5 LK1 LK5 LK6 LK6 LK6 LK6 LK6 LK6 LK6 LK6 LK6 LK6                                                                                                                                                                                                 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                       | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                            | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Wind senkrecht zum Tor Eigengewicht Tor an Hubzylinder Eigengewicht Tor an Queraretierung Eigengewicht Tor an Queraretierung schief Last aus Tor am Hubzylinder Last aus Tor an Querarretierung (sym) Last aus Tor an Querarretierung (asym)  Eigengewicht Wind senkrecht zum Tor Eigengewicht Tor an Hubzylinder Eigengewicht Tor an Queraretierung                                                                                      |
| 15  | LF3 LF4 LF5 LK1 LK2 LK3 LK4 LK5 LK6 LF1 LF2 LF3 LF4 LF5 LK4 LK5 LK6 LF2 LK3 LK4 LK5 LK6 LF2 LK3 LK4 LK5 LK6 LF5 LK4 LK5 LK6 LF6 LF6 LF7 LK4 LK5 LK6 LF6 LF6 LF7 LK5 LK6 LF6 LF7 LK5 LK6 LF6 LF7 LF7 LF8 LF8 LF8 LF8 LF8 LF8                                                                                                                                                                                                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                       | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                            | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Eigengewicht Tor an Hubzylinder Eigengewicht Tor an Queraretierung Eigengewicht Tor an Queraretierung schief  Last aus Tor am Hubzylinder Last aus Tor an Querarretierung (sym) Last aus Tor an Querarretierung (asym)  Eigengewicht Wind senkrecht zum Tor Eigengewicht Tor an Hubzylinder Eigengewicht Tor an Querarretierung                                                                                                           |
| 15  | LF4 LF5 LK1 LK2 LK3 LK4 LK5 LF1 LF2 LF3 LF4 LK5 LK4 LK5 LK4 LK5 LK1 LK2 LK3 LK4 LK5 LK1 LK2 LK3 LK4 LK5 LK4 LK5 LK6 LF1 LF2 LK3 LK4 LK5 LK6 LK6 LF1 LF2 LF3 LF4 LF5 LK1 LF5 LK6 LF1 LF2 LF3 LF4 LF5 LK4 LK5 LK6 LK6 LK6 LK6 LK6 LK6 LK5 LK6 LK6 LK5 LK6 LK5 LK6 LK5 LK6 LK5 LK6 LK5 LK6 LK6 LK5 LK6 LK5 LK6 LK5 LK6 LK5 LK6 LK6 LK5 LK6 LK5 LK6 LK5 LK6 LK5 LK6 LK5 LK6 LK6 LK5 LK6 LK6 LK5 LK6 LK6 LK5 LK6 LK6 LK6 LK6 LK6 LK6 LK6 LK6 LK6 LK6 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                       | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                            | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                    | Eigengewicht Tor an Queraretierung Eigengewicht Tor an Queraretierung schief  Last aus Tor am Hubzylinder Last aus Tor an Querarretierung (sym) Last aus Tor an Querarretierung (asym)  Eigengewicht Wind senkrecht zum Tor Eigengewicht Tor an Hubzylinder Eigengewicht Tor an Queraretierung                                                                                                                                            |
| 15  | LK1 LK2 LK3 LK4 LK5 LK6 LF1 LF2 LF3 LF4 LF5 LK1 LK2 LK3 LK4 LK5 LK6 LK1 LK2 LK3 LK4 LK5 LK6 LF1 LF1 LF2 LF3 LF4 LF5 LK6 LF1 LF2 LF3 LF4 LF5 LK4 LK5 LK6 LK6                                                                                                                                                                                                                                                                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>-12<br>0<br>0<br>0<br>-17<br>-19<br>-19<br>-12<br>-12                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          |                            | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                   | Last aus Tor am Hubzylinder Last aus Tor an Querarretierung (sym) Last aus Tor an Querarretierung (asym)  Eigengewicht Wind senkrecht zum Tor Eigengewicht Tor an Hubzylinder Eigengewicht Tor an Queraretierung                                                                                                                                                                                                                          |
| 15  | LK2 LK3 LK4 LK5 LK6 LF1 LF2 LF3 LF4 LF5 LK1 LK2 LK3 LK4 LK5 LK6 LF1 LK2 LK3 LK4 LK5 LK6 LF1 LF2 LF1 LF2 LF3 LF4 LF5 LK1 LF2 LK1 LK5 LK4 LK5 LK5 LK4 LK5 LK5 LK4 LK5 LK5 LK4 LK5                                                                                                                                                                                                                                                                 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>12<br>0<br>0<br>0<br>10<br>-17<br>-19<br>-19<br>-12<br>-12                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                    |                            | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                        | Last aus Tor an Querarretierung (sym) Last aus Tor an Querarretierung (asym)  Eigengewicht Wind senkrecht zum Tor Eigengewicht Tor an Hubzylinder Eigengewicht Tor an Queraretierung                                                                                                                                                                                                                                                      |
| 15  | LK3 LK4 LK5 LK6 LF1 LF2 LF3 LF4 LF5 LK1 LK2 LK3 LK4 LK5 LK6 LF1 LF2 LF3 LF4 LF5 LK6 LF1 LF2 LF3 LF4 LF5 LK4                                                                                                                                                                                                                                                                                                                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0  | 0<br>0<br>0<br>0<br>0<br>12<br>0<br>0<br>0<br>0<br>-12<br>-17<br>-19<br>-19<br>-12<br>-12                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                         |                            | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0              | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                             | Last aus Tor an Querarretierung (sym) Last aus Tor an Querarretierung (asym)  Eigengewicht Wind senkrecht zum Tor Eigengewicht Tor an Hubzylinder Eigengewicht Tor an Queraretierung                                                                                                                                                                                                                                                      |
| 15  | LK4<br>LK6<br>LK6<br>LF1<br>LF2<br>LF3<br>LF4<br>LK5<br>LK1<br>LK2<br>LK3<br>LK4<br>LK5<br>LK6<br>LF1<br>LF1<br>LF2<br>LF3<br>LF4<br>LF4<br>LF5<br>LK4<br>LK5<br>LK6<br>LK5<br>LK6<br>LK1<br>LK5<br>LK6<br>LK5<br>LK6<br>LK4<br>LK5<br>LK4<br>LK5<br>LK6<br>LK6<br>LK7<br>LK6<br>LK7<br>LK6<br>LK7<br>LK7<br>LK8<br>LK9<br>LK9<br>LK9<br>LK9<br>LK9<br>LK9<br>LK9<br>LK9                                                                        | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0  | 0<br>0<br>0<br>0<br>12<br>12<br>12<br>0<br>0<br>0<br>10<br>-10<br>-17<br>-19<br>-19<br>-12<br>-12                                 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                         |                            | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0              | 0<br>0<br>0<br>0<br>0<br>0                                                                  | Last aus Tor an Querarretierung (asym)  Eigengewicht Wind senkrecht zum Tor Eigengewicht Tor an Hubzylinder Eigengewicht Tor an Queraretierung                                                                                                                                                                                                                                                                                            |
| 15  | LK6 LF1 LF2 LF3 LF4 LF5 LK1 LK2 LK3 LK4 LK5 LK6 LF1 LF1 LF2 LF3 LF4 LF5 LK1                                                                                                                                                                                                                                                                                                                                                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                     | 0<br>0<br>12<br>0<br>0<br>0<br>-10<br>-17<br>-19<br>-19<br>-12<br>-12                                                             | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                   |                            | 0 0 0<br>0 0 0<br>0 0 0<br>0 0 0<br>0 0 0<br>0 0 0 | 0<br>0<br>0<br>0<br>0                                                                       | Wind senkrecht zum Tor<br>Eigengewicht Tor an Hubzylinder<br>Eigengewicht Tor an Queraretierung                                                                                                                                                                                                                                                                                                                                           |
| 16  | LF1 LF2 LF3 LF4 LF5 LK1 LK2 LK3 LK4 LK5 LK6 LF1 LF2 LF1 LF2 LF3 LF4 LF5 LK1                                                                                                                                                                                                                                                                                                                                                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                               | 0<br>-12<br>0<br>0<br>0<br>0<br>-10<br>-17<br>-19<br>-19<br>-12<br>-12                                                            | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                             | (<br>(<br>(<br>(<br>(<br>( | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0              | 0<br>0<br>0<br>0                                                                            | Wind senkrecht zum Tor<br>Eigengewicht Tor an Hubzylinder<br>Eigengewicht Tor an Queraretierung                                                                                                                                                                                                                                                                                                                                           |
| 116 | LF2<br>LF3<br>LF4<br>LF5<br>LK1<br>LK2<br>LK3<br>LK4<br>LK5<br>LK6<br>LF1<br>LF2<br>LF2<br>LF3<br>LF4<br>LF5<br>LK1                                                                                                                                                                                                                                                                                                                             | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                               | -12<br>0<br>0<br>0<br>-10<br>-17<br>-19<br>-19<br>-12<br>-12                                                                      | 0<br>0<br>0<br>0<br>0<br>0                                                                  | (<br>(<br>(<br>(<br>(<br>( | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0              | 0<br>0<br>0<br>0                                                                            | Wind senkrecht zum Tor<br>Eigengewicht Tor an Hubzylinder<br>Eigengewicht Tor an Queraretierung                                                                                                                                                                                                                                                                                                                                           |
| 16  | LF3 LF4 LF5 LK1 LK2 LK3 LK4 LK5 LK6 LF1 LF2 LF2 LF3 LF4 LF5 LK1                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                    | 0<br>0<br>0<br>-10<br>-17<br>-19<br>-19<br>-12<br>-12                                                                             | 0<br>0<br>0<br>0<br>0                                                                       | (<br>(<br>(<br>(<br>(      | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0              | 0<br>0<br>0                                                                                 | Eigengewicht Tor an Hubzylinder<br>Eigengewicht Tor an Queraretierung                                                                                                                                                                                                                                                                                                                                                                     |
| 16  | LF5 LK1 LK2 LK3 LK4 LK5 LK6 LF1 LF1 LF2 LF3 LF4 LF5 LK1                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                         | 0<br>-10<br>-17<br>-19<br>-19<br>-12<br>-12                                                                                       | 0<br>0<br>0<br>0                                                                            | (<br>(<br>(                | 0<br>0<br>0<br>0                                   | 0                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 16  | LK1<br>LK2<br>LK3<br>LK4<br>LK5<br>LK6<br>LF1<br>LF2<br>LF3<br>LF4<br>LF4<br>LF5                                                                                                                                                                                                                                                                                                                                                                | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                              | -10<br>-17<br>-19<br>-19<br>-12<br>-12                                                                                            | 0<br>0<br>0<br>0                                                                            | (<br>(                     | 0 0                                                |                                                                                             | Eigengewicht Tor an Queraretierung schief                                                                                                                                                                                                                                                                                                                                                                                                 |
| 16  | LK2<br>LK3<br>LK4<br>LK5<br>LK6<br>LF1<br>LF2<br>LF3<br>LF4<br>LF5<br>LK1                                                                                                                                                                                                                                                                                                                                                                       | 0<br>0<br>0<br>0<br>0<br>0                                                                   | -17<br>-19<br>-19<br>-12<br>-12<br>0                                                                                              | 0<br>0<br>0<br>0                                                                            | (                          | 0 0                                                |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 16  | LK3<br>LK4<br>LK5<br>LK6<br>LF1<br>LF2<br>LF3<br>LF4<br>LF5<br>LK1                                                                                                                                                                                                                                                                                                                                                                              | 0<br>0<br>0<br>0<br>0                                                                        | -19<br>-19<br>-12<br>-12<br>0                                                                                                     | 0<br>0<br>0                                                                                 | (                          |                                                    | 0                                                                                           | Last aus Tor am Hubzylinder                                                                                                                                                                                                                                                                                                                                                                                                               |
| 16  | LK5<br>LK6<br>LF1<br>LF2<br>LF3<br>LF4<br>LF5<br>LK1                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>0<br>0<br>0                                                                             | -12<br>-12<br>0                                                                                                                   | 0                                                                                           | (                          | 0   0                                              | Ö                                                                                           | Last aus Tor an Querarretierung (sym)                                                                                                                                                                                                                                                                                                                                                                                                     |
| 16  | LK6<br>LF1<br>LF2<br>LF3<br>LF4<br>LF5<br>LK1                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>0<br>0<br>0                                                                             | -12<br>0                                                                                                                          |                                                                                             |                            | 0 0                                                | 0                                                                                           | Last aus Tor an Querarretierung (asym)                                                                                                                                                                                                                                                                                                                                                                                                    |
| 16  | LF1<br>LF2<br>LF3<br>LF4<br>LF5<br>LK1                                                                                                                                                                                                                                                                                                                                                                                                          | 0<br>0<br>0                                                                                  | 0                                                                                                                                 |                                                                                             |                            | 0 0                                                | 0                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | LF2<br>LF3<br>LF4<br>LF5<br>LK1                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                            |                                                                                                                                   | 0                                                                                           |                            | 0 0                                                | 0                                                                                           | Eigengewicht                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | LF4<br>LF5<br>LK1                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                              | 0                                                                                                                                 | ő                                                                                           |                            | 0 0                                                | 0                                                                                           | Wind senkrecht zum Tor                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | LF5<br>LK1                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                            | 0                                                                                                                                 | 0                                                                                           | (                          | 0 0                                                | 0                                                                                           | Eigengewicht Tor an Hubzylinder                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | LK1                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ö                                                                                            | 0                                                                                                                                 | 0                                                                                           |                            | 0 0 0                                              | 0                                                                                           | Eigengewicht Tor an Queraretierung Eigengewicht Tor an Queraretierung schief                                                                                                                                                                                                                                                                                                                                                              |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                            | 0                                                                                                                                 | 0                                                                                           |                            | 0 0                                                | 0                                                                                           | Ligongewion: For an Queraretierung schief                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | LK2                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | 0                                                                                                                                 | 0                                                                                           | (                          | 0 0                                                | 0                                                                                           | Last aus Tor am Hubzylinder                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | LK3                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | 0                                                                                                                                 | 0                                                                                           |                            | 0 0                                                | 0                                                                                           | Last aus Tor an Querarretierung (sym)                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | LK4                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | 0                                                                                                                                 | 0                                                                                           |                            | 0 0                                                | 0                                                                                           | Last aus Tor an Querarretierung (asym)                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | LK5<br>LK6                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                            | 0                                                                                                                                 | 0                                                                                           |                            | 0 0 0                                              | 0                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | LF1                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | 0                                                                                                                                 | 0                                                                                           |                            | 0 0                                                | 0                                                                                           | Eigengewicht                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | LF2                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | 0                                                                                                                                 | 0                                                                                           | (                          | 0 0                                                | 0                                                                                           | Wind senkrecht zum Tor                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | LF3                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | 0                                                                                                                                 | 0                                                                                           |                            | 0 0                                                | 0                                                                                           | Eigengewicht Tor an Hubzylinder<br>Eigengewicht Tor an Queraretierung                                                                                                                                                                                                                                                                                                                                                                     |
|     | LF4<br>LF5                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                            | 0 0                                                                                                                               | 0                                                                                           |                            | 0 0 0                                              | 0                                                                                           | Eigengewicht Tor an Queraretierung Eigengewicht Tor an Queraretierung schief                                                                                                                                                                                                                                                                                                                                                              |
|     | LK1                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | ő                                                                                                                                 | ő                                                                                           |                            | 0 0                                                | 0                                                                                           | Ligerige wicht for an Queraretterang scriter                                                                                                                                                                                                                                                                                                                                                                                              |
|     | LK2                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | 0                                                                                                                                 | 0                                                                                           |                            | 0 0                                                | 0                                                                                           | Last aus Tor am Hubzylinder                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | LK3                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | 0                                                                                                                                 | 0                                                                                           |                            | 0 0                                                | 0                                                                                           | Last aus Tor an Querarretierung (sym)                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | LK4<br>LK5                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                            | 0                                                                                                                                 | 0                                                                                           |                            | 0 0 0                                              | 0                                                                                           | Last aus Tor an Querarretierung (asym)                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | LK6                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | 0                                                                                                                                 | 0                                                                                           |                            | 0 0                                                | 0                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 22  | LF1                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | 0                                                                                                                                 | 0                                                                                           |                            | 0 0                                                | 0                                                                                           | Eigengewicht                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | LF2                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | -13                                                                                                                               | 0                                                                                           |                            | 0 0                                                | 0                                                                                           | Wind senkrecht zum Tor                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | LF3<br>LF4                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                            | 0                                                                                                                                 | 0                                                                                           |                            | 0 0                                                | 0                                                                                           | Eigengewicht Tor an Hubzylinder Eigengewicht Tor an Queraretierung                                                                                                                                                                                                                                                                                                                                                                        |
|     | LF5                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | ŏ                                                                                                                                 | ő                                                                                           |                            | 0 0                                                | 0                                                                                           | Eigengewicht Tor an Queraretierung schief                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | LK1                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | -11                                                                                                                               | 0                                                                                           |                            | 0 0                                                | 0                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | LK2<br>LK3                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                            | -16                                                                                                                               | 0                                                                                           |                            | 0 0                                                | 0                                                                                           | Last aus Tor am Hubzylinder                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | LK4                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | -18<br>-18                                                                                                                        | 0                                                                                           |                            | 0 0                                                | 0                                                                                           | Last aus Tor an Querarretierung (sym) Last aus Tor an Querarretierung (asym)                                                                                                                                                                                                                                                                                                                                                              |
|     | LK5                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | -12                                                                                                                               | ő                                                                                           |                            | 0 0                                                | 0                                                                                           | Last add 101 am quoramotionang (abyin)                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | LK6                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | -12                                                                                                                               | 0                                                                                           |                            | 0 0                                                | 0                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | LF1<br>LF2                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                            | 0<br>64                                                                                                                           | 0                                                                                           |                            | 0 0 0                                              | 0                                                                                           | Eigengewicht<br>Wind senkrecht zum Tor                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | LF3                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | 04                                                                                                                                | 0                                                                                           |                            | 0 0                                                | 0                                                                                           | Eigengewicht Tor an Hubzylinder                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | LF4                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | 0                                                                                                                                 | 0                                                                                           | (                          | 0 0                                                | 0                                                                                           | Eigengewicht Tor an Queraretierung                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | LF5                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | 0                                                                                                                                 | 0                                                                                           |                            | 0 0                                                | 0                                                                                           | Eigengewicht Tor an Queraretierung schief                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | LK1<br>LK2                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                            | 63<br>96                                                                                                                          | 0                                                                                           |                            | 0 0 0                                              | 0                                                                                           | Last aus Tor am Hubzylinder                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | LK3                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | 98                                                                                                                                | 0                                                                                           |                            | 0 0                                                | 0                                                                                           | Last aus Tor an Querarretierung (sym)                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | LK4                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | 98                                                                                                                                | 0                                                                                           | (                          | 0 0                                                | 0                                                                                           | Last aus Tor an Querarretierung (asym)                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | LK5                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | 65                                                                                                                                | 0                                                                                           |                            | 0 0                                                | 0                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | LK6<br>LF1                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                            | 65                                                                                                                                | 0                                                                                           |                            | 0 0                                                | 0                                                                                           | Eigengewicht                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | LF2                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | 0                                                                                                                                 | 0                                                                                           | (                          | 0 0                                                | 0                                                                                           | Wind senkrecht zum Tor                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | LF3                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | 0                                                                                                                                 | 0                                                                                           | (                          | 0   0                                              | 0                                                                                           | Eigengewicht Tor an Hubzylinder                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | LF4                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | 0                                                                                                                                 | 0                                                                                           |                            | 0 0                                                | 0                                                                                           | Eigengewicht Tor an Queraretierung                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | LF5<br>LK1                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                            | 0 0                                                                                                                               | 0                                                                                           |                            | 0 0                                                | 0                                                                                           | Eigengewicht Tor an Queraretierung schief                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | LK2                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | 0                                                                                                                                 | 0                                                                                           |                            | 0 0                                                | 0                                                                                           | Last aus Tor am Hubzylinder                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | LK3                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | 0                                                                                                                                 | 0                                                                                           | (                          | 0 0                                                | 0                                                                                           | Last aus Tor an Querarretierung (sym)                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | LK4<br>LK5                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                            | 0                                                                                                                                 | 0                                                                                           |                            | 0 0                                                | 0                                                                                           | Last aus Tor an Querarretierung (asym)                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | LK5<br>LK6                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                            | 0                                                                                                                                 | 0                                                                                           |                            | 0 0                                                | 0                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 26  | LF1                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | 0                                                                                                                                 | 0                                                                                           | (                          | 0 0                                                | 0                                                                                           | Eigengewicht                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | LF2                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | 58                                                                                                                                | 0                                                                                           | (                          | 0 0                                                | 0                                                                                           | Wind senkrecht zum Tor                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | LF3<br>LF4                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                            | 0 0                                                                                                                               | 0                                                                                           |                            | 0 0 0                                              | 0                                                                                           | Eigengewicht Tor an Hubzylinder                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | LF4<br>LF5                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                            | 0                                                                                                                                 | 0                                                                                           |                            | 0 0                                                | 0                                                                                           | Eigengewicht Tor an Queraretierung Eigengewicht Tor an Queraretierung schief                                                                                                                                                                                                                                                                                                                                                              |
|     | LK1                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | 56                                                                                                                                | 0                                                                                           | (                          | 0 0                                                | 0                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | LK2                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | 84                                                                                                                                | 0                                                                                           | (                          | 0 0                                                | 0                                                                                           | Last aus Tor am Hubzylinder                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | LK3                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | 86                                                                                                                                | 0                                                                                           |                            | 0 0                                                | 0                                                                                           | Last aus Tor an Querarretierung (sym)                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | LK4<br>LK5                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                            | 86<br>58                                                                                                                          | 0                                                                                           |                            | 0 0 0                                              | 0                                                                                           | Last aus Tor an Querarretierung (asym)                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | LK6                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | 58                                                                                                                                | 0                                                                                           |                            | 0 0                                                | 0                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 27  | LF1                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | 0                                                                                                                                 | 0                                                                                           | (                          | 0 0                                                | 0                                                                                           | Eigengewicht                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | LF2                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | 0                                                                                                                                 | 0                                                                                           |                            | 0 0                                                | 0                                                                                           | Wind senkrecht zum Tor                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | LF3<br>LF4                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                            | 0                                                                                                                                 | 0                                                                                           |                            | 0 0                                                | 0                                                                                           | Eigengewicht Tor an Hubzylinder<br>Eigengewicht Tor an Queraretierung                                                                                                                                                                                                                                                                                                                                                                     |
|     | LF5                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                            | 0                                                                                                                                 | 0                                                                                           |                            | 0 0                                                |                                                                                             | Eigengewicht Tor an Queraretierung schief                                                                                                                                                                                                                                                                                                                                                                                                 |

www.dlubal.com

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





#### ■ 4.1 KNOTEN - LAGERKRÄFTE

| Knoten   |       |          | Lagerkräfte [kN] |                  | L        | agermomente [kNn | n]       |                                        |
|----------|-------|----------|------------------|------------------|----------|------------------|----------|----------------------------------------|
| Nr.      | LF/LK | $P_{X'}$ | P <sub>Y</sub>   | $P_{Z'}$         | $M_{X'}$ | M <sub>Y'</sub>  | $M_{Z'}$ |                                        |
| 27       | LK1   | 0        | 0                | 0                | 0        | 0                | 0        |                                        |
|          | LK2   | 0        | 0                | 0                | 0        | 0                | 0        | Last aus Tor am Hubzylinder            |
|          | LK3   | 0        | 0                | 0                | 0        | 0                | 0        | Last aus Tor an Querarretierung (sym)  |
|          | LK4   | 0        | 0                | 0                | 0        | 0                | 0        | Last aus Tor an Querarretierung (asym) |
|          | LK5   | 0        | 0                | 0                | 0        | 0                | 0        | J. , ,                                 |
|          | LK6   | 0        | 0                | 0                | 0        | 0                | 0        |                                        |
| Σ Lager  | LF1   | 0        | 0                | <b>-</b> 76      |          |                  |          |                                        |
| Σ Lasten | LF1   | 0        | 0                | <del>-</del> 76  |          |                  |          |                                        |
| Σ Lager  | LF2   | 0        | 98               | 0                |          |                  |          |                                        |
| Σ Lasten | LF2   | 0        | 98               | 0                |          |                  |          |                                        |
| Σ Lager  | LF3   | 0        | 0                | <b>-</b> 167     |          |                  |          |                                        |
| Σ Lasten | LF3   | 0        | 0                | -167             |          |                  |          |                                        |
| Σ Lager  | LF4   | 0        | o l              | -167             |          |                  |          |                                        |
| Σ Lasten | LF4   | 0        | 0                | -167             |          |                  |          |                                        |
| Σ Lager  | LF5   | 0        | 0                | <b>-</b> 167     |          |                  |          |                                        |
| Σ Lasten | LF5   | 0        | 0                | -167             |          |                  |          |                                        |
| Σ Lager  | LK1   | 0        | 98               | -243             |          |                  |          |                                        |
| Σ Lager  | LK1   | 0        | 98               | -243             |          |                  |          |                                        |
| Σ Lager  | LK2   | 0        | 147              | -327             |          |                  |          |                                        |
| Σ Lager  | LK2   | 0        | 147              | <del>-</del> 327 |          |                  |          |                                        |
| Σ Lager  | LK3   | 0        | 147              | -327             |          |                  |          |                                        |
| Σ Lager  | LK3   | 0        | 147              | <del>-</del> 327 |          |                  |          |                                        |
| Σ Lager  | LK4   | 0        | 147              | -327             |          |                  |          |                                        |
| Σ Lager  | LK4   | 0        | 147              | <del>-</del> 327 |          |                  |          |                                        |
| Σ Lager  | LK5   | 0        | 98               | -243             |          |                  |          |                                        |
| Σ Lager  | LK5   | 0        | 98               | <del>-</del> 243 |          |                  |          |                                        |
| Σ Lager  | LK6   | 0        | 98               | -243             |          |                  |          |                                        |
| Σ Lager  | LK6   | 0        | 98               | <del>-</del> 243 |          |                  |          |                                        |

#### ■ 4.12 QUERSCHNITTE - SCHNITTGRÖSSEN

| Stab |       | Knoten          | Stelle         |                | Kräfte [kN] |              |                |                                 |                |   |
|------|-------|-----------------|----------------|----------------|-------------|--------------|----------------|---------------------------------|----------------|---|
| Nr.  | LF/LK | Nr.             | x [m]          | N ,            | Vy          | Vz           | M <sub>T</sub> | Momente [kNm]<br>M <sub>v</sub> | M <sub>z</sub> |   |
|      |       | hnitt-Nr. 2: HE |                |                | · y         | *2           |                | ···y                            | 12             |   |
| 16   | LF1   | 32              | 0.000          | -3             | 0           | 3            | -0             | -0                              | I -0           | 1 |
| 10   |       | 19              | 0.507          | -3             | ŏ           | 3<br>2<br>-0 | <del>-</del> 0 | 1                               | -0             |   |
|      | LF2   | 32              | 0.000          | 0              | -0          | -0           | 0              | 0                               | 0              |   |
|      |       | 19              | 0.507          | 0              | -0          | -0           | 0              | 0                               | 0              |   |
|      | LF3   | 32              | 0.000          | -43            | -0          | 84           | -0             | -0                              | 0              |   |
|      |       | 19              | 0.507          | -43            | -0          | 84           | <del>-</del> 0 | 42                              | 0              |   |
|      | LF4   | 32              | 0.000          | <del>-</del> 7 | 0           | -0           | -0             | -0                              | -0             |   |
|      | . ==  | 19              | 0.507          | -7             | 0           | -0           | -0             | -0                              | -0             |   |
|      | LF5   | 32              | 0.000          | -7             | 0           | -0<br>-0     | -0             | -0<br>-0                        | -0             |   |
|      | LK1   | 19<br>32        | 0.507<br>0.000 | -7<br>-45      | -0          | -0<br>86     | -0<br>0        | -0<br>-0                        | -0<br>0        |   |
|      | LNI   | 19              | 0.507          | -45<br>-45     | -0          | 86           | 0              | 43                              | 0              |   |
|      | LK2   | 32              | 0.000          | -61            | 0           | 116          | -0             | -0                              | -0             |   |
|      | LIVE  | 19              | 0.507          | -61            | ŏ           | 116          | -0             | 59                              | -0             |   |
|      | LK3   | 32              | 0.000          | -12            | 0           | 4            | -0             | -0                              | -0             |   |
|      |       | 19              | 0.507<br>0.000 | -12            | 0           | 3 4          | -0             | 2<br>-0                         | -0             |   |
|      | LK4   | 32              | 0.000          | -12            | 1           | 4            | <b>-</b> 0     | -0                              | -0             |   |
|      |       | 19              | 0.507          | -12            | 1           | 3            | -0             | 2                               | -1             |   |
|      | LK5   | 32              | 0.000          | -9             | -0          | 3            | 0              | -0                              | 0              |   |
|      | 1100  | 19              | 0.507          | -9             | -0          | 2            | 0              | 1                               | 0              |   |
|      | LK6   | 32              | 0.000          | -9             | 0           | 3<br>2<br>-2 | -0             | -0                              | -0<br>-0       |   |
| 17   | LF1   | 19              | 0.507<br>0.000 | -9<br>-3       | 0           | 2            | -0<br>-0       | 1                               | -0<br>-0       |   |
| 17   | LFI   | 19<br>33        | 0.507          | -3             | 0           | -2<br>-3     | -0<br>-0       | -0                              | -0             |   |
|      | LF2   | 19              | 0.000          | -0             | -0          | -0           | 0              | 0                               | -0             |   |
|      | 112   | 33              | 0.507          | -0             | -0          | -0           | 0              | -0                              | -0             |   |
|      | LF3   | 19              | 0.000          | -43            | -ŏ          | -84          | Ö              | 42                              | Ö              |   |
|      |       | 33              | 0.507          | -43            | -0          | -84          | 0              | -0                              | Ō              |   |
|      | LF4   | 19              | 0.000          | -7             | 0           | 0            | <b>-</b> 0     | -0                              | 0              |   |
|      |       | 33              | 0.507          | -7             | 0           | 0            | <b>-</b> 0     | -0                              | -0             |   |
|      | LF5   | 19              | 0.000          | -7             | 0           | 0            | <del>-</del> 0 | -0                              | -0             |   |
|      |       | 33              | 0.507          | -7             | 0           | 0            | <b>-</b> 0     | -0                              | -0             |   |
|      | LK1   | 19              | 0.000          | -45            | -0          | -86          | 0              | 43                              | -0             |   |
|      | LK2   | 33              | 0.507          | -45            | -0          | -86          | 0              | -0                              | -0             |   |
|      | LK2   | 19<br>33        | 0.000<br>0.507 | -61<br>-61     | 0           | -116<br>-116 | -0<br>-0       | 59<br>-0                        | 0<br>-0        |   |
|      | LK3   | 19              | 0.000          | -01<br>-12     | 0           | -116         | -0<br>-0       | -0<br>2                         | 0              |   |
|      | LIKS  | 33              | 0.507          | -12            | 0           | -3<br>-4     | -0             | -0                              | 0              |   |
|      | LK4   | 19              | 0.000          | -12            | ĭ           | -3           | -0             | 2                               | -0             |   |
|      |       | 33              | 0.507          | -12            | i           | -4           | -0             | <u>-</u> 0                      | -0             |   |
|      | LK5   | 19              | 0.000          | -9             | -0          | -2           | 0              | 1                               | -0             |   |
|      |       | 33              | 0.507          | <b>-</b> 9     | -0          | -3           | 0              | -0                              | -0             |   |
|      | LK6   | 19              | 0.000          | <del>-</del> 9 | 0           | -2           | -0             | 1                               | -0             |   |
|      |       | 33              | 0.507          | -9             | 0           | -3<br>4      | -0             | -0                              | -0             |   |
| 34   | LF1   | 37              | 0.000          | -9             | 0           | 4            | -0             | -3                              | -0             |   |
|      |       |                 | 0.773<br>0.773 | -9<br>-9       | 0           | 3 0          | -0<br>-0       | 0                               | -0<br>-0       |   |
|      |       |                 | 1.546          | -9<br>-9       | 0           | -0           | -0<br>-0       | 0                               | -0<br>-0       |   |
|      |       |                 | 1.546          | <u>-9</u>      | 0           | -3           | -0             | 0                               | -0             |   |
|      |       | 36              | 2.342          | -9<br>-9       | 0           | -5<br>-4     | -0             | -3                              | -0             |   |
|      | LF2   | 37              | 0.000          | 0              | 0           | 0            | 0              | -0                              | 0              |   |
|      |       | 36              | 2.342          | ő              | ŏ           | ŏ            | Ö              | ő                               | -0             |   |
|      | LF3   | 37              | 0.000          | -3             | -0          | -0           | 0              | 1                               | -0             |   |
|      |       | 36              | 2.342          | -3             | -0          | -0           | 0              | 1                               | -0             |   |
|      | LF4   | 37              | 0.000          | -20            | 0           | 42           | <b>-</b> 0     | <del>-</del> 12                 | 0              |   |
|      |       |                 | 0.773          | -20            | 0           | 42           | <del>-</del> 0 | 20                              | 0              |   |
|      |       |                 | 0.773          | -20            | 0           | 42<br>0<br>0 | -0             | 20                              | 0              |   |
|      | I     |                 | 1.546          | -20            | 0           | 0            | -0             | 21                              | 0              |   |
|      |       | 1               |                |                |             |              |                |                                 |                |   |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





#### ■ 4.12 QUERSCHNITTE - SCHNITTGRÖSSEN

|      | QUERS  |          |                                  | ITTGRÖSS        |                |                |                |                  |                |  |
|------|--------|----------|----------------------------------|-----------------|----------------|----------------|----------------|------------------|----------------|--|
| Stab | 1.5017 | Knoten   | Ste <b>ll</b> e                  |                 | Kräfte [kN]    | .,             |                | Momente [kNm]    |                |  |
| Nr.  | LF/LK  | Nr.      | x [m]                            | N 20            | V <sub>y</sub> | V <sub>z</sub> | M <sub>T</sub> | M <sub>y</sub>   | M <sub>z</sub> |  |
| 34   | LF4    | 36       | 1.546<br>2.342                   | -20<br>-20      | 0              | -42<br>-42     | -0<br>-0       | 21<br>-12        | 0              |  |
|      | LF5    | 36<br>37 | 2.342<br>0.000                   | -25             | 0              | 50<br>50       | -0             | -14<br>25        | 0              |  |
|      |        |          | 0.773<br>0.773                   | -25<br>-25      | 0 0            | 0              | -0<br>-0       | 25               | 0              |  |
|      |        |          | 1.546                            | -25             | 0              | 0              | -0             | 25               | 0              |  |
|      |        | 36       | 1.546<br>2.342                   | -25<br>-25      | 0              | -50<br>-50     | -0<br>-0       | 25<br>-15        | 0              |  |
|      | LK1    | 37       | 0.000                            | -12             | -0             | 4              | 0              | -2               | -0<br>-0       |  |
|      |        |          | 0.773<br>0.773                   | -12<br>-12      | -0<br>-0       | 3 0            | 0              | 1                | -0             |  |
|      |        |          | 1.546                            | -12<br>-12      | 0              | -0<br>-3       | 0              | 1                | -0<br>-0       |  |
|      |        | 36       | 1.546<br>2.342                   | -12             | 0              | -4             | 0              | -2               | -0             |  |
|      | LK2    | 37       | 0.000<br>0.773                   | -16<br>-16      | -0<br>-0       | 6<br>5         | -0<br>-0       | -2<br>2          | -0<br>-0       |  |
|      |        |          | 0.773                            | -16             | -0             | 1              | -0             | 2                | -0             |  |
|      |        |          | 1.546<br>1.546                   | -16<br>-16      | 0              | -1<br>-5       | -0<br>-0       | 2 2              | -0<br>-0       |  |
|      |        | 36       | 2.342                            | -16             | 0              | -6             | -0             | <del>-</del> 2   | -0             |  |
|      | LK3    | 37       | 0.000<br>0.773                   | -39<br>-39      | -0<br>-0       | 63<br>61       | -0<br>-0       | -20<br>28        | 0              |  |
|      |        |          | 0.773                            | -39             | -0             | 1              | -0             | 28               | 0              |  |
|      |        |          | 1.546<br>1.546                   | -39<br>-39      | 0 0            | -0<br>-61      | -0<br>-0       | 28<br>28         | 0              |  |
|      |        | 36       | 2 342                            | -39             | 0              | -62            | -0             | -20              | 0              |  |
|      | LK4    | 37       | 0.000<br>0.773                   | -45<br>-45      | 0              | 74<br>73       | -0<br>-0       | -20<br>-23<br>34 | 0              |  |
|      |        |          | 0.773                            | <del>-</del> 45 | 0              | 1              | -0             | 34               | 0              |  |
|      |        |          | 1.546<br>1.546                   | -45<br>-45      | 0 0            | -0<br>-72      | -0<br>-0       | 34<br>34         | 0              |  |
|      | 1175   | 36       | 1.546<br>2.342                   | -45             | -0             | -73            | -0             | -24              | 0              |  |
|      | LK5    | 37       | 0.000<br>0.773                   | -29<br>-29      | -0<br>0        | 46<br>45       | 0<br>0         | -15<br>21        | 0              |  |
|      |        |          | 0.773<br>0.773<br>1.546          | -29             | 0              | 1<br>-0        | 0              | 21               | 0              |  |
|      |        |          | 1.546                            | -29<br>-29      | 0 0            | -0<br>-45      | 0              | 21<br>21         | 0              |  |
|      | LK6    | 36<br>37 | 2.342<br>0.000                   | -29             | 0              | -46            | 0              | -15              | 0              |  |
|      | LNO    | 31       | 0.773                            | -33<br>-33      | 0              | 55<br>54       | 0<br>-0        | -17<br>25        | 0              |  |
|      |        |          | 0.773                            | -33<br>-33      | 0              | 1<br>-0        | -0<br>-0       | 25               | 0              |  |
|      |        |          | 1.546<br>1.546                   | -33             | 0              | -53            | -0             | 25<br>25         | 0              |  |
| 35   | LF1    | 36<br>34 | 2.342<br>0.000                   | -33<br>-8       | 0              | -54<br>3       | -0<br>-0       | -18<br>-2        | 0              |  |
| 33   |        | 34       | 0.773                            | <del>-</del> 8  | 0              | 2              | -0             | -0               | 0              |  |
|      |        |          | 0.773<br>1.545                   | -8<br>-8        | 0              | 0<br>-0        | -0<br>-0       | -0<br>-0         | 0              |  |
|      |        |          | 1.545                            | -8              | 0              | -2             | -0             | -0               | 0              |  |
|      | LF2    | 35<br>34 | 2.341<br>0.000                   | -8<br>0         | 0              | -3<br>-0       | -0<br>0        | -2<br>0          | 0              |  |
|      |        | 35       | 2.341                            | 0               | 0              | -0             | 0              | -0               | -0             |  |
|      | LF3    | 34<br>35 | 0.000<br>2.341                   | -3<br>-3        | 0              | -0<br>-0       | 0              | 1                | 0              |  |
|      | LF4    | 34       | 0.000                            | -20             | -0             | 42             | -0             | -12              | -0             |  |
|      |        |          | 0.773<br>0.773                   | -20<br>-20      | -0<br>-0       | 42<br>0        | -0<br>-0       | 20<br>20         | -0<br>-0       |  |
|      |        |          | 0.773<br>1.545<br>1.545<br>2.341 | <del>-</del> 20 | -0             | 0              | -0             | 21               | -0             |  |
|      |        | 35       | 1.545  <br>2.341                 | -20<br>-20      | -0<br>-0       | -42<br>-42     | -0<br>-0       | 21<br>-12        | -0<br>-0       |  |
|      | LF5    | 34       | 0.000                            | -16             | 0              | 34             | -0             | -10              | -0             |  |
|      |        |          | 0.773<br>0.773                   | -16<br>-16      | 0              | 34<br>0        | -0<br>-0       | 16<br>16         | -0<br>-0       |  |
|      |        |          | 1.545<br>1.545                   | -16<br>-16      | 0 0            | 0<br>-33       | -0<br>-0       | 16<br>16         | -0<br>-0       |  |
|      |        | 35<br>34 | 2.341                            | -16             | 0              | -33            | -0             | -10              | -0<br>0        |  |
|      | LK1    | 34       | 0.000<br>0.773                   | -11<br>-11      | 0              | 3 2            | 0              | -2<br>1          | 0              |  |
|      |        |          | 0.773                            | -11             | 0              | 0              | 0              | 1                | 0              |  |
|      |        |          | 1.545<br>1.545                   | -11<br>-11      | -0<br>-0       | -0<br>-2       | 0              | 1                | 0              |  |
|      |        | 35       | 2.341                            | -11             | -0             | -3             | 0              | -2               | 0              |  |
|      | LK2    | 34       | 0.000<br>0.773                   | -15<br>-15      | 0              | 5<br>3         | -0<br>-0       | -2               | 0              |  |
|      |        |          | 0.773                            | -15             | 0              | 1              | -0             | 1                | 0              |  |
|      |        |          | 1.545<br>1.545                   | -15<br>-15      | -0<br>-0       | -1<br>-3       | -0<br>-0       | 1 1              | 0              |  |
|      | 1100   | 35       | 2.341                            | -15             | -0             | -5             | -0             | -2               | 0              |  |
|      | LK3    | 34       | 0.000<br>0.773                   | -39<br>-39      | 0 -0           | 61<br>60       | -0<br>-0       | -19<br>27        | -0<br>-0       |  |
|      |        |          | 0.773                            | -39             | -0             | 1              | -0             | 27               | -0             |  |
|      |        |          | 1.545<br>1.545                   | -39<br>-39      | -0<br>-0       | -0<br>-59      | -0<br>-0       | 28<br>28         | -0<br>-0       |  |
|      | LIKA   | 35       | 2.341                            | -39             | -0             | -61            | -0             | -20              | -0             |  |
|      | LK4    | 34       | 0.000<br>0.773                   | -33<br>-33      | 0              | 50<br>49       | -0<br>-0       | -16<br>22        | -0<br>-0       |  |
|      |        |          | 0.773<br>1.545                   | -33             | 0              | 1 -0           | -0<br>-0       | 22<br>22         | -0             |  |
|      |        |          | 1.545                            | -33<br>-33      | -0             | -48            | -0             | 22               | -0<br>-0       |  |
|      | LK5    | 35<br>34 | 2.341<br>0.000                   | -33<br>-29      | -0<br>0        | -49<br>45      | -0<br>0        | -17<br>-14       | -0<br>-0       |  |
|      |        |          | 0.773                            | -29             | 0              | 44             | 0              | 20               | -0             |  |
|      |        |          | 0.773<br>1.545                   | -29<br>-29      | 0<br>-0        | 1<br>-0        | 0              | 20<br>21         | -0<br>-0       |  |
|      |        | ·        |                                  | 20              | 0              | 0              |                |                  | ,              |  |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





#### ■ 4.12 QUERSCHNITTE - SCHNITTGRÖSSEN

|      | QUERS         |                      |                 | NTTGRÖSS       |                |                      |                |                |                |  |
|------|---------------|----------------------|-----------------|----------------|----------------|----------------------|----------------|----------------|----------------|--|
| Stab |               | Knoten               | Ste <b>ll</b> e |                | Kräfte [kN]    |                      |                | Momente [kNm]  |                |  |
| Nr.  | LF/LK         | Nr.                  | x [m]           | N              | V <sub>y</sub> | V <sub>z</sub>       | M <sub>T</sub> | M <sub>y</sub> | M <sub>z</sub> |  |
| 35   | LK5           | 35                   | 1.545<br>2.341  | -29<br>-29     | -0<br>-0       | -44<br>-45           | 0              | 21<br>-15      | -0<br>-0       |  |
|      | LK6           | 34                   | 0.000           | -24            | 0              | 37                   | -0             | -12            | -0             |  |
|      |               |                      | 0.773<br>0.773  | -24<br>-24     | 0 0            | 36<br>1              | -0<br>-0       | 16<br>16       | -0<br>-0       |  |
|      |               |                      | 1.545           | -24            | 0              | -0                   | -0             | 16             | -0             |  |
|      |               | 35                   | 1.545<br>2.341  | -24<br>-24     | 0<br>-0        | -36<br>-37           | -0<br>0        | 16<br>-12      | -0<br>-0       |  |
| 1    | Querso<br>LF1 | hnitt Nr. 5: H<br>31 | EB 400<br>0.000 |                | -0             | <b>-</b> 0           | -0             | 0              | -0             |  |
| '    |               | 37                   | 1.150           | -5<br>-6       | -1             | -0                   | <b>-</b> 0     | 0              | 1              |  |
|      | LF2           | 31<br>37             | 0.000<br>1.150  | -0<br>-0       | 0              | 0                    | 0              | -0<br>-0       | 0              |  |
|      | LF3           | 31                   | 0.000           | -49            | -2             | -1                   | -0             | 8              | -2             |  |
|      | LF4           | 37<br>31             | 1.150<br>0.000  | -49<br>-6      | -2<br>8        | -1<br>-0             | -0<br>0        | 7 0            | 1 -1           |  |
|      |               | 37                   | 1.150           | -6             | 8 9            | -0                   | 0              | 0              | -10            |  |
|      | LF5           | 31<br>37             | 0.000<br>1.150  | -7<br>-7       | 9              | -0<br>-0             | 0              | 0              | -1<br>-12      |  |
|      | LK1           | 31<br>37             | 0.000<br>1.150  | -54<br>-56     | -3<br>-4       | -1<br>-1             | -0<br>-0       | 9 7            | -2<br>2        |  |
|      | LK2           | 31                   | 0.000           | -73            | -4             | -2                   | -0             | 12             | -3             |  |
|      | LK3           | 37<br>31             | 1.150<br>0.000  | -75<br>-14     | -5<br>10       | -2<br>-0             | -0<br>0        | 10             | 2              |  |
|      |               | 31<br>37             | 1.150<br>0.000  | -16            | 9 12           | -0                   | 0              | 1              | -12            |  |
|      | LK4           | 31<br>37             | 1.150           | -15<br>-17     | 12  <br>11     | -0<br>-0             | 0              | 1              | -2<br>-15      |  |
|      | LK5           | 31                   | 0.000           | -10            | 8              | -0                   | 0              | 0              | -1             |  |
|      | LK6           | 37<br>31             | 1.150<br>0.000  | -12<br>-11     | 7<br>9         | -0<br>-0             | 0              | 0              | -9<br>-1       |  |
| 2    | LF1           | 37                   | 1.150<br>0.000  | -13            | 8<br>-1        | -0<br>0              | 0              | 0<br>-0        | -11<br>-0      |  |
| 2    |               | 30<br>34<br>30       | 1.150           | -5<br>-6<br>0  | -1<br>-2<br>-0 | 0                    | 0              | -0             | 1              |  |
|      | LF2           | 30<br>34             | 0.000<br>1.150  | 0              | -0<br>-0       | 0 0                  | 0              | -0<br>-0       | -0<br>0        |  |
|      | LF3           | 30                   | 0.000           | -49            | -2             | 1                    | 0              | -8             | <del>-</del> 2 |  |
|      | LF4           | 34<br>30             | 1.150<br>0.000  | -49<br>-6      | -2<br>8        | 1 0                  | 0<br>-0        | -7<br>-0       | 1 -1           |  |
|      | LF5           | 34<br>30             | 1.150<br>0.000  | -6<br>-5       | 8 7            | 0                    | -0<br>-0       | -0<br>-0       | -10<br>-1      |  |
|      |               | 34                   | 1.150           | -5             | 7              | 0                    | -0<br>-0<br>0  | -0             | -8             |  |
|      | LK1           | 30<br>34             | 0.000<br>1.150  | -54<br>-56     | -3<br>-4       | 1                    | 0              | -9<br>-7       | -2<br>2        |  |
|      | LK2           | 30                   | 0.000           | -73            | -4<br>-4       | 2                    | 0              | -12            | -3             |  |
|      | LK3           | 34<br>30             | 1.150<br>0.000  | -75<br>-14     | -5<br>10       | 2 0                  | 0<br>-0        | -10<br>-1      | 3 -1           |  |
|      |               | 34<br>30             | 1.150           | -16            | 9              | 0                    | -0             | -1             | -12            |  |
|      | LK4           | 34<br>30             | 0.000<br>1.150  | -13<br>-15     | 8 7            | 0                    | -0<br>-0       | -1<br>-0       | -1<br>-9       |  |
|      | LK5           | 30<br>34             | 0.000<br>1.150  | -10<br>-12     | 7<br>6         | 0 0                  | -0<br>-0       | -1<br>-0       | -1<br>-9       |  |
|      | LK6           | 30                   | 0.000           | -9             | 6              | 0                    | -0             | -0             | -1             |  |
| 3    | LF1           | 34<br>29             | 1.150<br>0.000  | -11<br>-5      | 5<br>-0        | 0                    | -0<br>0        | -0<br>-0       | -7<br>-0       |  |
|      |               | 36                   | 1 150           | -6             | -1             | 0                    | 0              | -0             | 1              |  |
|      | LF2           | 29<br>36             | 0.000<br>1.150  | 0              | -0<br>-0       | 0                    | 0              | -0<br>-0       | -0<br>0        |  |
|      | LF3           | 36<br>29             | 1.150<br>0.000  | -49<br>-49     | <del>-</del> 2 | 1                    | 0              | -8<br>-7       | -2<br>1        |  |
|      | LF4           | 36<br>29             | 1.150<br>0.000  | -6             | -2<br>8        | 0                    | -0             | -0             | -1             |  |
|      | LF5           | 36<br>29             | 1.150<br>0.000  | -6<br>-7       | 8              | 0                    | -0<br>-0       | -0<br>-0       | -10<br>-1      |  |
|      |               | 36                   | 1.150<br>0.000  | <del>-</del> 7 | 9              | 0                    | -0             | -0             | -12            |  |
|      | LK1           | 29<br>36             | 1.150           | -54<br>-56     | -3<br>-4       | 1                    | 0              | -9<br>-7       | -2<br>2        |  |
|      | LK2           | 36<br>29<br>36       | 0.000<br>1.150  | -73<br>-75     | -4<br>-5       | 2 2                  | 0              | -12<br>-10     | -3<br>2        |  |
|      | LK3           | 29                   | 0.000           | -14            | 10             | 0                    | -0             | -1             | -1             |  |
|      | LK4           | 36<br>29             | 1.150<br>0.000  | -16<br>-16     | 9 12           | 0                    | -0<br>-0       | -1<br>-1       | -12<br>-2      |  |
|      | LK5           | 36<br>29             | 1.150<br>0.000  | -18            | 11             | 0                    | -0<br>-0       | -1<br>-1       | -15<br>-1      |  |
|      |               | 36                   | 1.150           | -11<br>-12     | 7 6            | 0                    | -0             | -0             | -9             |  |
|      | LK6           | 29<br>36             | 0.000<br>1.150  | -12<br>-13     | 9 8            | 0                    | -0<br>-0       | -1<br>-0       | -1<br>-11      |  |
| 4    | LF1           | 28                   | 0.000           | -5             | -1             | -0                   | -0             | 0              | -0             |  |
|      | LF2           | 35<br>28             | 1.150<br>0.000  | -6<br>-0       | -2<br>0        | -0<br>0              | -0<br>0        | 0<br>-0        | 1 0            |  |
|      |               | 35                   | 1.150           | -0             | 0              | 0                    | 0              | -0             | -0             |  |
|      | LF3           | 28<br>35             | 0.000<br>1.150  | -49<br>-49     | -2<br>-2       | -1<br>-1             | -0<br>-0       | 8 7            | -2<br>1        |  |
|      | LF4           | 28<br>35             | 0.000<br>1.150  | -6<br>-6       | 8 8            | -0<br>-0             | 0              | 0              | -1<br>-10      |  |
|      | LF5           | 28                   | 0.000           | -5             | 6              | -0                   | 0              | 0              | -0             |  |
|      | LK1           | 35<br>28             | 1.150<br>0.000  | -5<br>-54      | 6<br>-3        | -0<br>-1             | 0<br>-0        | 0              | -8<br>-2       |  |
|      |               | 35                   | 1.150           | -56            | -4             | -1                   | -0             | 7              | 2              |  |
|      | LK2           | 28<br>35<br>28       | 0.000<br>1.150  | -73<br>-75     | -4<br>-5       | -2<br>-2<br>-2<br>-0 | -0<br>-0       | 12<br>10       | -3<br>3        |  |
|      | LK3           | 28                   | 0.000<br>1.150  | -14<br>-16     | 10             | -0<br>-0             | 0              | 1              | -1             |  |
|      | LK4           | 35<br>28             | 0.000           | -13            | 8              | -0                   | 0              | 1              | -12<br>-1      |  |
|      | LK5           | 35<br>28             | 1.150<br>0.000  | -15<br>-11     | 6 7            | -0<br>-0             | 0              | 1 0            | -9<br>-1       |  |
|      |               |                      | 0.000           | .,,            |                |                      |                |                |                |  |
|      |               | $\perp$              |                 |                |                |                      |                |                |                |  |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM



| Ramboll 0<br>Stadtdeich 7, 2009 |                                           | Seite:<br>Blatt: | 21/38<br>1 |  |
|---------------------------------|-------------------------------------------|------------------|------------|--|
|                                 | Tel: 040/302020-185 - Fax: 040/302020-199 |                  |            |  |
| Projekt: M                      | odell: Rahmentragwerk_Hubtore_LP3         | Datum:           | 20.10.2021 |  |

#### 4 12 QUERSCHNITTE - SCHNITTGRÖSSEN

| <b>■</b> 4.12 ( | 4.12 QUERSCHNITTE - SCHNITTGRÖSSEN |                |                  |                |                |               |                |                |                |  |
|-----------------|------------------------------------|----------------|------------------|----------------|----------------|---------------|----------------|----------------|----------------|--|
| Stab            |                                    | Knoten         | Ste <b>ll</b> e  |                | Kräfte [kN]    |               |                | Momente [kNm]  |                |  |
| Nr.             | LF/LK                              | Nr.            | x [m]            | N              | V <sub>y</sub> | Vz            | M <sub>T</sub> | M <sub>y</sub> | M <sub>z</sub> |  |
| 4               | LK5                                | 35             | 1.150            | -12            | 6              | -0            | 0              | 0              | -9             |  |
|                 | LK6                                | 28<br>35       | 0.000<br>1.150   | -9<br>-11      | 6<br>5         | -0<br>-0      | 0              | 0              | -1<br>-7       |  |
| 5               | LF1                                | 28             | 0.000            | -0             | 1              | 3             | 0              | -0<br>2        | 0              |  |
|                 | LF2                                | 32<br>28       | 1.000<br>0.000   | -0<br>0        | 0              | 2 0           | 0<br>-0        | -0             | -1<br>0        |  |
|                 | LF3                                | 32<br>28       | 1.000<br>0.000   | 0              | 0<br>14        | 0<br>45       | -0<br>0        | 0 -8           | 0              |  |
|                 |                                    | 32             | 1.000            | -1             | 14             | 45<br>45<br>2 | 0              | 37             | -13            |  |
|                 | LF4                                | 28<br>32       | 0.000<br>1.000   | -0<br>-0       | -2<br>-2<br>-2 | 2 2           | 0              | -0<br>2        | -0<br>2        |  |
|                 | LF5                                | 28             | 0.000            | -0             | -2             | 2             | 0              | 0              | -0             |  |
|                 | LK1                                | 32<br>28       | 1.000<br>0.000   | -0<br>-1       | -2<br>16       | 2<br>48       | 0              | 2<br>-8        | 2 2            |  |
|                 |                                    | 32             | 1.000            | -1             | 15             | 46            | 0              | 39             | -14            |  |
|                 | LK2                                | 28<br>32       | 0.000<br>1.000   | -2<br>-2<br>-0 | 21             | 64  <br>63    | 0              | -11<br>52      | 2<br>-18       |  |
|                 | LK3                                | 28             | 0.000            | -0             | 20<br>-2       | 63<br>7       | 0              | -1             | 0              |  |
|                 | LK4                                | 32<br>28       | 1.000<br>0.000   | -0<br>-0       | -3<br>-1       | 5<br>7        | 0              | 6              | 2              |  |
|                 | LK5                                | 32<br>28       | 1.000<br>0.000   | -0<br>-0       | -3<br>-1       | 5<br>5        | 0              | 6<br>-1        | 2<br>0         |  |
|                 |                                    | 32             | 1.000            | -0             | -2             | 4             | 0              | 4              | 2              |  |
|                 | LK6                                | 32<br>28<br>32 | 0.000<br>1.000   | -0<br>-0       | -1<br>-2       | 5 4           | 0              | -0<br>4        | 0 2            |  |
| 6               | LF1                                | 32             | 0.000            | -0             | -0             | -2            | -0             | 2              | -1             |  |
|                 | LF2                                | 29<br>32       | 1.000<br>0.000   | -0<br>-0       | -1<br>-0       | -3<br>0       | -0<br>-0       | -0<br>-0       | 0<br>-0        |  |
|                 |                                    | 29             | 1.000            | -0             | -0             | 0             | -0             | 0              | -0             |  |
|                 | LF3                                | 32<br>29       | 0.000<br>1.000   | -1<br>-1       | -14<br>-14     | -45<br>-45    | -0<br>-0       | 37<br>-8       | -13<br>1       |  |
|                 | LF4                                | 32             | 0.000            | -0             |                | -2            | -0             | 2              | 2              |  |
|                 | LF5                                | 29<br>32       | 1.000            | -0<br>0        | 2<br>2<br>2    | -2<br>-2      | -0<br>-0       | -0<br>2        | -0<br>2        |  |
|                 | LK1                                | 29<br>32       | 1.000<br>0.000   | 0<br>-1        | 2<br>-15       | -2<br>-46     | -0<br>-0       | -0<br>39       | -0<br>-14      |  |
|                 |                                    | 29             | 1.000            | -1             | -16            | -48           | -0             | -8             | 2              |  |
|                 | LK2                                | 32<br>29       | 0.000<br>1.000   | -2<br>-2       | -20<br>-21     | -63<br>-64    | -0<br>-0       | 52<br>-11      | -18<br>2       |  |
|                 | LK3                                | 32             | 0.000            | 0              | 3              | -6            | -0             | 6              | 2              |  |
|                 | LK4                                | 29<br>32       | 1.000<br>0.000   | 0              | 3<br>2<br>3    | -7<br>-6      | -0<br>-0       | -1<br>6        | 0 2            |  |
|                 |                                    | 29             | 1.000            | 0              | 2 2            | <b>-</b> 7    | -0             | -1             | 0              |  |
|                 | LK5                                | 32<br>29       | 0.000<br>1.000   | -0<br>-0       | 2              | -4<br>-5      | -0<br>-0       | 4 -0           | 2              |  |
|                 | LK6                                | 32<br>29       | 0.000<br>1.000   | -0<br>-0       | 2              | -4<br>-5      | -0<br>-0       | 4              | 2              |  |
| 8               | LF1                                | 3              | 0.000            | -1             | 1 1            | 0             | -0             | -1<br>-0       | 0              |  |
|                 | LF2                                | 29<br>3        | 0.878<br>0.000   | -2<br>0        | 0              | 0<br>-0       | -0<br>-0       | 0              | -0<br>0        |  |
|                 |                                    | 29             | 0.878            | 0              | 0              | -0            | -0             | -0             | -0             |  |
|                 | LF3                                | 3<br>29        | 0.000<br>0.878   | -3<br>-3       | 4 4            | 0 0           | -0<br>-0       | -0<br>-0       | 2<br>-2        |  |
|                 | LF4                                | 3              | 0.000            | -4             | 5              | 0             | 0              | 0              | 4              |  |
|                 | LF5                                | 29<br>3        | 0.878<br>0.000   | -4<br>-5       | 5<br>6         | 0             | 0              | 0              | -1<br>5        |  |
|                 | LK1                                | 29             | 0.878<br>0.000   | -5             | 6              | 0<br>-0       | 0              | 0              | -1             |  |
|                 |                                    | 3<br>29        | 0.878            | -4<br>-5       | 5<br>5         | -0            | -0<br>-0       | -0             | 2<br>-2        |  |
|                 | LK2                                | 3<br>29        | 0.000  <br>0.878 | -5<br>-7       | 7              | 0             | -0<br>-0       | -0             | 3<br>-3        |  |
|                 | LK3                                | 3              | 0.000            | -6             | 8              | 0             | 0              | 0              | 6              |  |
|                 | LK4                                | 29             | 0.878<br>0.000   | -8<br>-7       | 7<br>10        | 0             | 0              | 0              | -1<br>7        |  |
|                 |                                    | 29             | 0.878            | -9             | 9              | 0             | 0              | 0              | -2             |  |
|                 | LK5                                | 3<br>29        | 0.000<br>0.878   | -4<br>-6       | 6<br>5         | -0<br>-0      | 0              | 0<br>-0        | 4<br>-1        |  |
|                 | LK6                                | 3<br>29        | 0.000<br>0.878   | -5<br>-7       | 7 7            | 0             | 0              | 0              | 5<br>-1        |  |
| 9               | LF1                                | 8              | 0.000            | -1             | 1              | 0             | 0              | 0              | 0              |  |
|                 | LF2                                | 28<br>8        | 0.878<br>0.000   | -2<br>-0       | 0<br>-0        | 0<br>-0       | 0<br>-0        | 0              | -0<br>0        |  |
|                 |                                    | 28             | 0.878            | -0             | -0             | -0            | -0             | -0             | 0              |  |
|                 | LF3                                | 8<br>28        | 0.000<br>0.878   | -3<br>-3       | 4 4            | -0<br>-0      | 0              | 0              | 2<br>-2        |  |
|                 | LF4                                | 8              | 0.000            | -4             | 5              | 0             | -0             | -0             | 4              |  |
|                 | LF5                                | 28<br>8        | 0.878<br>0.000   | -4<br>-3       | 5<br>4         | 0             | -0<br>-0       | -0<br>-0       | -1<br>3        |  |
|                 | LK1                                | 28<br>8        | 0.878            | -3<br>-4       | 4<br>5         | 0<br>-0       | -0<br>0        | 0              | -0<br>2        |  |
|                 |                                    | 28             | 0.000<br>0.878   | -5             | 4              | -0            | 0              | -0             | -2             |  |
|                 | LK2                                | 8<br>28        | 0.000<br>0.878   | -5<br>-6       | 7 6            | 0             | 0              | 0              | -3             |  |
|                 | LK3                                | 8              | 0.000            | -6             | 8              | 0             | -0             | -0             | 5              |  |
|                 | LK4                                | 28<br>8        | 0.878            | -7<br>-5       | 7 6            | 0             | -0<br>-0       | 0 -0           | -1<br>4        |  |
|                 |                                    | 28             | 0.878            | -6             | 5              | 0             | -0             | 0              | -1             |  |
|                 | LK5                                | 8<br>28        | 0.000<br>0.878   | -4<br>-5       | 6 5            | -0<br>-0      | -0<br>-0       | -0<br>-0       | 4<br>-1        |  |
|                 | LK6                                | 8<br>28        | 0.000<br>0.878   | -3<br>-5       | 5 4            | 0             | -0<br>-0       | -0<br>0        | 3              |  |
| 10              | LF1                                | 3              | 0.000            | -1             | 1              | 0             | 0              | 0              | 0              |  |
|                 | LF2                                | 31             | 0.878<br>0.000   | -2<br>-0       | 0<br>-0        | 0<br>-0       | 0<br>-0        | 0              | -0<br>0        |  |
|                 |                                    |                | 3.000            |                | 31             | 0             |                |                |                |  |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM



| Ramboll<br>Stadtdeich 7, 200 |                                           | Seite:<br>Blatt: | 22/38<br>1 |  |
|------------------------------|-------------------------------------------|------------------|------------|--|
|                              | Tel: 040/302020-185 - Fax: 040/302020-199 |                  |            |  |
| Projekt:                     | Modell: Rahmentragwerk_Hubtore_LP3        | Datum:           | 20.10.2021 |  |

# ■ 4.12 QUERSCHNITTE - SCHNITTGRÖSSEN

| Stab<br>Nr. | LF/LK | Knoten         | Stelle                  |                      | Kräfte [kN]                  |                 |                   | Momente [kNm]     |                |  |
|-------------|-------|----------------|-------------------------|----------------------|------------------------------|-----------------|-------------------|-------------------|----------------|--|
| Nr.         |       |                |                         |                      |                              |                 | ١                 |                   |                |  |
| 10          | LF2   | Nr.<br>31      | x [m]<br>0.878          | N<br>-0              | -0                           | V <sub>z</sub>  | M <sub>T</sub> -0 | M <sub>y</sub> -0 | M <sub>z</sub> |  |
| 10          | LF3   | 3              | 0.000                   | -3                   | 4                            | 0               | 0                 | 0                 | 2              |  |
|             | LF4   | 31<br>3        | 0.878<br>0.000          | -3<br>-4             | 4<br>5                       | 0               | 0<br>-0           | 0 -0              | -2<br>4        |  |
|             |       | 31             | 0.878                   | -4                   | 5                            | 0               | -0                | -0                | -1             |  |
|             | LF5   | 3              | 0.000                   | -5<br>-5             | 7                            | 0               | -0<br>-0          | -0                | 5              |  |
|             | LK1   | 31<br>3        | 0.878<br>0.000          | -5<br>-4             | 7<br>5                       | 0<br>-0         | 0                 | 0                 | -1<br>2        |  |
|             | LK2   | 31             | 0.878                   | -4<br>-5<br>-5<br>-7 | 5<br>5<br>7                  | -0              | 0                 | -0                | -2             |  |
|             |       | 3<br>31        | 0.000<br>0.878          | -5<br>-7             | 6                            | 0               | 0                 | 0                 | 3<br>-3        |  |
|             | LK3   | 3              | 0.000                   | -6                   | 8                            | 0               | -0                | -0<br>0           | 6              |  |
|             | LK4   | 31<br>3        | 0.878<br>0.000          | -7<br>-7             | 7<br>10                      | 0               | -0<br>-0          | 0<br>  -0         | -1<br>7        |  |
|             |       | 31             | 0.878                   | -9                   |                              | 0               | -0                | 0                 | -2             |  |
|             | LK5   | 3<br>31        | 0.000<br>0.878          | -4<br>-5<br>-5       | 9<br>6<br>5<br>8             | -0<br>-0        | -0<br>-0          | -0<br>-0          | 4<br>-1        |  |
|             | LK6   | 3              | 0.000                   | -5                   | 8                            | 0               | -0                | -0                | 5              |  |
| 11          | LF1   | 31<br>30       | 0.878<br>0.000          | -6<br>-0             | 7                            | 0               | -0<br>-0          | -0                | -1<br>-0       |  |
|             |       | 33             | 1.000                   | -0                   | -0                           | 2               | -0                | 2                 | 1              |  |
|             | LF2   | 30<br>33       | 0.000<br>1.000          | -0<br>-0             | 0                            | -0<br>-0        | -0<br>-0          | 0                 | 0              |  |
|             | LF3   | 30<br>33       | 0.000<br>1.000<br>0.000 | -1                   | -14                          | 45              | -0                | l _8              | -1             |  |
|             | LF4   | 33             | 0.000                   | -1<br>-0             | -14  <br>2                   | 45              | -0<br>-0          | 37<br>-0          | 13<br>0        |  |
|             |       | 33             | 1.000                   | -0                   | 2                            | 2 2             | -0<br>-0          | 2                 | -2             |  |
|             | LF5   | 30<br>33       | 0.000<br>1.000          | 0                    | -14<br>2<br>2<br>2<br>2<br>2 | 2 2             | -0<br>-0          | -0<br>2           | 0<br>-2        |  |
|             | LK1   | 30             | 0.000                   | -1                   | -16                          | 48              | -0                | l -8              | -2             |  |
|             | LK2   | 33<br>30       | 1.000<br>0.000          | -1<br>-2             | -15<br>-21                   | 46<br>64        | -0<br>-0          | 39<br>-11         | 14<br>-2       |  |
|             |       | 30<br>33<br>30 | 1.000                   | -2<br>-2<br>0        | -21<br>-20                   | 63              | -0                | 52                | 18             |  |
|             | LK3   | 30<br>33       | 0.000<br>1.000          | 0                    | 2   3                        | 7               | -0<br>-0          | -1<br>6           | -0<br>-2       |  |
|             | LK4   | 30             | 0.000                   | 0                    | 1                            | 7               | -0                | -1                | -0             |  |
|             | LK5   | 33<br>30       | 1.000<br>0.000          | 0<br>-0              | 3 1                          | 6<br>5          | -0<br>-0          | 6 -0              | -2<br>-0       |  |
|             |       | 33             | 1.000                   | -0                   | 2                            | 4               | -0                | 4                 | <b>-</b> 2     |  |
|             | LK6   | 30<br>33       | 0.000<br>1.000          | -0                   | 1 2                          | 5<br>4          | -0<br>-0          | -1<br>4           | -0<br>-2       |  |
| 12          | LF1   | 33             | 0.000                   | -0<br>-0             | 0                            | <del>-</del> 2  | -0<br>0           | 2                 | 1              |  |
|             | LF2   | 31<br>33       | 1.000<br>0.000          | -0<br>0              | 1 -0                         | -3<br>-0        | 0<br>-0           | -0<br>0           | -0<br>-0       |  |
|             |       | 31             | 1.000                   | 0                    | -0                           | -0              | -0                | -0                | -0             |  |
|             | LF3   | 33<br>31       | 0.000<br>1.000          | -1<br>-1             | 14<br>14                     | -45<br>-45      | 0                 | 37<br>-8          | 13<br>-1       |  |
|             | LF4   | 33<br>31       | 0.000                   | -0                   | -2                           | -45<br>-2       | 0                 | 2                 | -2             |  |
|             | LF5   | 31<br>33       | 1.000<br>0.000          | -0<br>-0             | -2<br>-2<br>-2               | -2<br>-2<br>-2  | 0                 | -0<br>2           | 0<br>-2        |  |
|             |       | 31             | 1.000                   | -0                   | <del>-</del> 2               | <del>-</del> 2  | 0                 | -0                | 0              |  |
|             | LK1   | 33<br>31       | 0.000<br>1.000          | -1<br>-1             | 15  <br>16                   | -46<br>-48      | 0                 | 39                | 14<br>-2       |  |
|             | LK2   | 33             | 0.000                   | -2                   | 20                           | <del>-</del> 63 | 0                 | 52                | 18             |  |
|             | LK3   | 31<br>33       | 1 000                   | -2<br>-0<br>-0<br>-0 | 21                           | -64             | 0                 | -11               | -2<br>-2       |  |
|             |       | 31             | 0.000<br>1.000          | -0                   | -3<br>-2<br>-3               | -6<br>-7<br>-6  | 0                 | 6 -1              | -0             |  |
|             | LK4   | 33             | 0.000<br>1.000          | -0                   | -3                           | -6<br>-7        | 0                 | 6                 | -3<br>-0       |  |
|             | LK5   | 31<br>33       | 0.000                   | -0<br>-0             | -2<br>-2                     | -4              | 0                 | -1<br>4           | -2             |  |
|             | LK6   | 31<br>33       | 1.000<br>0.000          | -0<br>-0             | -1<br>-2                     | -5<br>-4        | 0                 | -1                | -0<br>-2       |  |
|             |       | 31             | 1.000                   | -0                   | -1                           | <b>-</b> 5      | 0                 | 4<br>-0           | -0             |  |
| 13          | LF1   | 8<br>30        | 0.000<br>0.878          | -1                   | 1 0                          | 0               | -0<br>-0          | -0<br>0           | 0<br>-0        |  |
|             | LF2   | 8              | 0.000                   | -2<br>0              | 0                            | -0              | -0                | 0                 | 0              |  |
|             | LF3   | 30<br>8        | 0.878<br>0.000          | 0<br>-3              | 0 4                          | -0<br>-0        | -0<br>-0          | -0<br>-0          | -0<br>2        |  |
|             |       | 30             | 0.878                   | -3                   | 4                            | -0              | -0                | -0                | <b>-</b> 2     |  |
|             | LF4   | 8<br>30        | 0.000<br>0.878          | -4<br>-4             | 5<br>5                       | 0               | 0                 | 0                 | -1             |  |
|             | LF5   | 8              | 0.000                   | -3                   | 4                            | 0               | 0                 | 0                 | 3              |  |
|             | LK1   | 30<br>8        | 0.878<br>0.000          | -3<br>-4             | 4<br>5                       | 0<br>-0         | 0<br>-0           | 0<br>-0           | -1<br>2        |  |
|             |       | 30             | 0.878                   | -5                   | 4                            | -0              | -0                | -0                | -2             |  |
|             | LK2   | 8              | 0.000                   | <b>-</b> 5           | 7                            | 0               | -0                | -0                | 3              |  |
|             | LK3   | 30<br>8        | 0.878<br>0.000          | -6<br>-6             | 6 8                          | 0               | -0<br>0           | 0                 | -3<br>5        |  |
|             |       | 30             | 0.878                   | -7                   | 7                            | 0               | 0                 | 0                 | -1             |  |
|             | LK4   | 8<br>30        | 0.000<br>0.878          | -4<br>-6             | 6 5                          | 0               | 0                 | 0                 | 4<br>-1        |  |
|             | LK5   | 8              | 0.000                   | -4                   | 6                            | <b>-</b> 0      | 0                 | 0                 | 4              |  |
|             | LK6   | 30<br>8        | 0.878<br>0.000          | -5<br>-3             | 5 5                          | -0<br>0         | 0                 | -0<br>0           | -1<br>3        |  |
|             |       | 30             | 0.878                   | -4                   | 4                            | 0               | 0                 | 0                 | -1             |  |
| 30          | LF1   | 34<br>5        | 0.000<br>5.766          | -14<br>-21           | 3                            | 0               | 0                 | -0<br>0           | 3 0            |  |
|             | LF2   | 34<br>5        | 0.000                   | 0                    | -0                           | 0               | 0                 | -0                | <b>-</b> 0     |  |
|             | LF3   | 5<br>34        | 5.766<br>0.000          | 0<br>-51             | -0<br>0                      | 0               | 0                 | 0<br>-7           | 0              |  |
|             |       | 5              | 5.766                   | -51                  | 0                            | 1               | 0                 | -0                | 0              |  |
|             | LF4   | 34<br>5        | 0.000<br>5.766          | -52<br>-52           | 0                            | 0               | 0                 | -0<br>-0          | 2              |  |
|             | LF5   | 34             | 0.000                   | -41                  | ŏ                            | 0               | 0                 | -0                | 2              |  |
|             |       |                |                         |                      |                              |                 |                   |                   |                |  |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





#### ■ 4 12 QUERSCHNİTTE - SCHNITTGRÖSSEN

| <u>4.12</u> | QUERS | <u>CH</u> NITT  | <u>E - S</u> CHN | ITTGRÖSS        | SEN_                     |                |                 |                  |                |  |
|-------------|-------|-----------------|------------------|-----------------|--------------------------|----------------|-----------------|------------------|----------------|--|
| Stab        |       | Knoten          | Ste <b>ll</b> e  |                 | Kräfte [kN]              |                |                 | Momente [kNm]    |                |  |
| Nr.         | LF/LK | Nr.             | x [m]            | N               | V <sub>y</sub>           | $V_z$          | M <sub>T</sub>  | I M <sub>y</sub> | M <sub>z</sub> |  |
| 30          | LF5   | 5               | 5.766            | -41             | 0                        | 0              | 0               | -0               | 0              |  |
|             | LK1   | 34<br>5         | 0.000<br>5.766   | -65<br>-72      | 3 -2                     | 1              | -0<br>0         | -7<br>0          | 4 0            |  |
|             | LK2   | 34              | 0.000            | -88             | 4                        | 2              | -0              | -10              | 5              |  |
|             | LK3   | 5<br>34         | 5.766<br>0.000   | -98<br>-88      | -3<br>5                  | 2<br>0         | 0               | 0 -0             | 0 7            |  |
|             |       | 5               | 5.766            | -98             | -2                       | 0              | 0               | 0                | 0              |  |
|             | LK4   | 34<br>5         | 0.000            | -74<br>-84      | -2<br>5<br>-2            | 0              | -0              | -0<br>0          | 7 0            |  |
|             | LK5   | 34              | 5.766<br>0.000   | -65             | 4                        | 0              | 0               | -0               | 5              |  |
|             |       | 5               | 5.766            | -73             | -2<br>3                  | 0              | 0               | 0                | 0              |  |
|             | LK6   | 34<br>5         | 0.000<br>5.766   | -55<br>-62      | -2                       | 0              | <b>-</b> 0<br>0 | -0<br>0          | 5 0            |  |
| 31          | LF1   | 35              | 0.000            | -14             | 3                        | -0             | 0               | 0                | 3              |  |
|             | LF2   | 35              | 5.766<br>0.000   | -21<br>-0       | -2<br>0                  | -0<br>0        | 0               | 0 -0             | 0              |  |
|             |       | 1               | 5.766            | -0              | 0                        | 0              | 0               | 0                | 0              |  |
|             | LF3   | 35<br>1         | 0.000<br>5.766   | -51<br>-51      | 0                        | -1<br>-1       | 0               | 7 0              | 0              |  |
|             | LF4   | 35              | 0.000            | -51             | 0                        | <b>-</b> 0     | 0               | 0                | 3              |  |
|             | LF5   | 1<br>35         | 5.766<br>0.000   | -51<br>-41      | 0                        | -0<br>-0       | 0               | 0                | 0 2            |  |
|             |       | 1               | 5.766            | -41             | 0                        | -0             | 0               | 0                | 0              |  |
|             | LK1   | 35<br>1         | 0.000<br>5.766   | -65<br>-72      | 3<br>-2                  | -1<br>-1       | 0               | 7 0              | 4 -0           |  |
|             | LK2   | 35              | 0.000            | -88             | 4                        | <del>-</del> 2 | 0               | 10               | 5              |  |
|             | 1100  | 1               | 5.766            | -98             | -3                       | -2             | 0               | 0                | 0              |  |
|             | LK3   | 35<br>1         | 0.000<br>5.766   | -88<br>-98      | 5<br>-2                  | -0<br>-0       | <b>-</b> 0<br>0 | 1 0              | 8              |  |
|             | LK4   | 35              | 0.000            | -74             | 5                        | -0             | 0               | 1                | 8              |  |
|             | LK5   | 35              | 5.766<br>0.000   | -84<br>-65      | -2<br>4<br>-2            | -0<br>-0       | 0<br>-0         | 0                | 0              |  |
|             |       | 1               | 5.766            | -72             |                          | -0             | 0               | 0                | 0              |  |
|             | LK6   | 35<br>1         | 0.000<br>5.766   | -55<br>-62      | 4<br>-2<br>3<br>-2<br>-0 | -0<br>-0       | 0               | 0                | 6              |  |
| 32          | LF1   | 36              | 0.000            | <b>-</b> 15     | 3                        | 0              | 0               | -0               | 4              |  |
|             | LF2   | 36              | 5.766<br>0.000   | -22<br>0        | -2                       | 0              | 0               | 0 -0             | 0 -0           |  |
|             |       | 2               | 5.766            | 0               | -0                       | 0              | 0               | 0                | 0              |  |
|             | LF3   | 36<br>2         | 0.000<br>5.766   | -51<br>-51      | 0                        | 1              | 0               | -7<br>-0         | 0              |  |
|             | LF4   | 36              | 0.000            | -51             | 0                        | 0              | 0               | -0               | 3              |  |
|             | LF5   | 2               | 5.766<br>0.000   | -51<br>-62      | 0                        | 0              | 0               | -0<br>-0         | 0 3            |  |
|             | LFS   | 36              | 5.766            | -62<br>-62      | 1                        | 0              | 0               | -0               | 0              |  |
|             | LK1   | 36              | 0.000            | <del>-</del> 66 | 3                        | 1              | -0              | -7               | 4              |  |
|             | LK2   | 2<br>36         | 5.766<br>0.000   | -73<br>-89      | -2<br>4                  | 1 2            | 0<br>-0         | 0<br>-10         | 0<br>5         |  |
|             |       | 2               | 5.766            | -99             | 4<br>-3<br>5             | 2              | 0               | 0                | 0              |  |
|             | LK3   | 36              | 0.000<br>5.766   | -90<br>-100     | 5<br>-2                  | 0              | 0               | -0<br>0          | 8 0            |  |
|             | LK4   | 36              | 0.000            | -104            | 5                        | 0              | 0               | -0               | 9              |  |
|             | LK5   | 2<br>36         | 5.766<br>0.000   | -113<br>-66     | -2<br>4                  | 0              | 0               | 0<br>-0          | 0              |  |
|             |       | 2               | 5.766            | -74             | -2                       | 0              | 0               | 0                | 0              |  |
|             | LK6   | 36<br>2         | 0.000<br>5.766   | -77<br>-84      | 4                        | 0              | 0               | -0<br>0          | 7 0            |  |
| 33          | LF1   | 37              | 0.000            | -15             | 3                        | <b>-</b> 0     | 0               | 0                | 4              |  |
|             | LF2   | 6<br>37         | 5.766<br>0.000   | -22<br>-0       | -2<br>0                  | -0<br>0        | 0               | 0                | 0              |  |
|             | LFZ   | 6               | 5.766            | -0              | 0                        | 0              | 0               | 0                | 0              |  |
|             | LF3   | 37              | 0.000            | -51             | 0                        | -1             | 0               | 7                | 0              |  |
|             | LF4   | 6               | 5.766<br>0.000   | -51<br>-52      | 0                        | -1<br>-0       | 0               | 0                | 0 2            |  |
|             |       | 6               | 5.766            | -52             | 0                        | -0             | 0               | 0                | 0              |  |
|             | LF5   | 37<br>6         | 0.000<br>5.766   | -62<br>-62      | 0                        | -0<br>-0       | 0               | 0                | 2 0            |  |
|             | LK1   | 37              | 0.000            | <del>-</del> 66 | 3                        | -1             | 0               | 7                | 4              |  |
|             | LK2   | 6<br>37         | 5.766<br>0.000   | -74<br>-89      | -2<br>4                  | -1<br>-2       | 0               | 0 10             | -0<br>5        |  |
|             |       | 6               | 5.766            | -99             | -3                       | -2             | 0               | 0                | 0              |  |
|             | LK3   | 37<br>6         | 0.000<br>5.766   | -90<br>-100     | 5 -2                     | -0<br>-0       | <b>-</b> 0<br>0 | 1 0              | 7 0            |  |
|             | LK4   | 37              | 0.000            | -104            | 5                        | <b>-</b> 0     | -0              | 1                | 8              |  |
|             | LK5   | 6<br>37         | 5.766<br>0.000   | -114<br>-67     | -2<br>4                  | -0<br>-0       | 0<br>-0         | 0                | 0              |  |
|             |       | 6               | 5.766            | -74             | -2                       | -0             | 0               | 0                | 0              |  |
|             | LK6   | 37<br>6         | 0.000<br>5.766   | -77<br>-84      | 4                        | -0<br>-0       | <b>-</b> 0<br>0 | 0                | 6 0            |  |
|             |       | chnitt-Nr. 6: R | D 140            |                 |                          |                |                 |                  |                |  |
| 15          | LF1   | 19<br>21        | 0.000<br>0.837   | 4 3             | 0   0                    | -0<br>-0       | -0<br>-0        | 0                | 0              |  |
|             | LF2   | 19              | 0.000            | 0               | 0                        | -0             | 0               | 0                | 0              |  |
|             | LF3   | 21<br>19        | 0.837<br>0.000   | 0<br>167        | 0                        | <b>-</b> 0 0   | 0               | -0<br>0          | 0              |  |
|             |       | 21              | 0.837            | 167             | 0                        | 0              | 0               | 0                | 0              |  |
|             | LF4   | 19              | 0.000            | 0               | 0                        | -0<br>-0       | -0              | 0                | 0              |  |
|             | LF5   | 21<br>19        | 0.837<br>0.000   | 0               | 0                        | -0<br>-0       | -0<br>-0        | -0<br>0          | 0              |  |
|             |       | 21              | 0.837            | 0               | 0                        | -0             | -0              | -0               | 0              |  |
|             | LK1   | 19<br>21        | 0.000<br>0.837   | 171<br>170      | 0                        | -0<br>-0       | 0               | 0<br>-0          | 0              |  |
|             | LK2   | 19              | 0.000            | 231             | 0                        | -0             | -0              | 0                | 0              |  |
|             |       | 21              | 0.837            | 230             | 0                        | -0             | -0              | -0               | 0              |  |
|             |       | $\perp$         |                  |                 |                          |                |                 |                  |                |  |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM

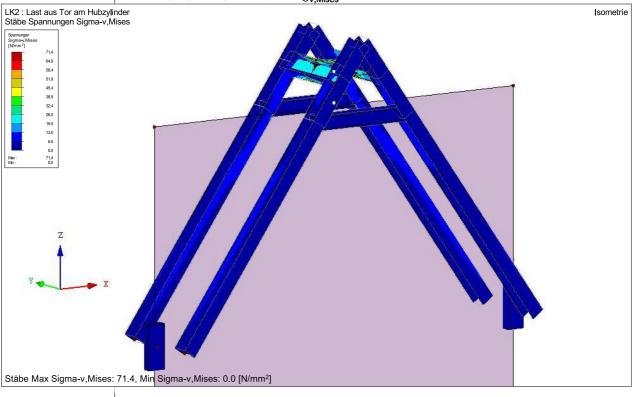




#### ■ 4.12 QUERSCHNITTE - SCHNITTGRÖSSEN

| ■ 4.12 ( | ■4.12 QUERSCHNITTE - SCHNITTGRÖSSEN |                      |                            |                        |                |                |                 |                  |                  |  |
|----------|-------------------------------------|----------------------|----------------------------|------------------------|----------------|----------------|-----------------|------------------|------------------|--|
| Stab     |                                     | Knoten               | Stelle                     |                        | Kräfte [kN]    |                |                 | Momente [kNm]    |                  |  |
| Nr.      | LF/LK                               | Nr.                  | x [m]                      | N ,                    | V <sub>y</sub> | V <sub>z</sub> | M <sub>T</sub>  | , M <sub>y</sub> | , M <sub>z</sub> |  |
| 15       | LK3                                 | 19                   | 0.000                      | 6                      | 0              | -0             | -1              | 0                | 0                |  |
|          |                                     | 21                   | 0.837                      | 4                      | 0              | -0             | -1              | -0               | 0                |  |
|          | LK4                                 | 19                   | 0.000                      | 6                      | 0              | -0             | -1              | 0                | 0                |  |
|          | LK5                                 | 21<br>19             | 0.837<br>0.000             | 4 4                    | 0              | -0<br>-0       | -1<br>0         | -0<br>0          | 0                |  |
|          |                                     | 21                   | 0.837                      | 3                      | 0              | -0             | 0               | -0               | 0                |  |
|          | LK6                                 | 19                   | 0.000                      | 4                      | 0              | -0             | 0               | 0                | 0                |  |
|          | Querso                              | 21<br>hnitt-Nr 10: F | 0.837  <br>Rechteck 400/10 | 3                      | 0              | -0             | 0               | _0               | 0                |  |
| 18       | LF1                                 |                      |                            | Ausfa <b>ll</b>        | 0              | 1              | 0               | -0               | 0                |  |
|          | LF2                                 |                      |                            | Ausfa <b>ll</b>        | 0              | -0             | 0               | 0                | 0                |  |
|          | LF3<br>LF4                          |                      |                            | Ausfall<br>Ausfall     | 0              | 0              | 0               | 0                | 0                |  |
|          | LF5                                 |                      |                            | Ausfall                | 0              | 0              | 0               | 0                | 0                |  |
|          | LK1                                 |                      |                            | Ausfall                | 0              | 1              | 0               | -0               | 0                |  |
|          | LK2<br>LK3                          |                      |                            | Ausfall                | 0              | 1              | 0               | -0<br>-0         | 0                |  |
|          | LK4                                 |                      |                            | Ausfall<br>Ausfall     | 0              | 1              | 0               | -0               | 0                |  |
|          | LK5                                 |                      |                            | Ausfall                | 0              | 1              | 0               | -0               | 0                |  |
|          | LK6                                 |                      |                            | Ausfall                | 0              | 1              | 0               | -0               | 0                |  |
| 19       | LF1<br>LF2                          |                      |                            | Ausfall<br>Ausfall     | -0<br>-0       | 1<br>-0        | 0               | -0<br>0          | -0<br>-0         |  |
|          | LF3                                 |                      |                            | Ausfall                | 0              | 0              | 0               | ő                | 0                |  |
|          | LF4                                 |                      |                            | Ausfall                | -0             | 0              | 0               | 0                | -0               |  |
|          | LF5                                 |                      |                            | Ausfall                | -0             | 0              | 0               | 0                | -0               |  |
|          | LK1<br>LK2                          |                      |                            | Ausfall<br>Ausfall     | -0<br>-0       | 1              | 0               | -0<br>-0         | -0<br>-0         |  |
|          | LK3                                 |                      |                            | Ausfall                | -0             | 1              | 0               | -0               | -0               |  |
|          | LK4                                 |                      |                            | Ausfall                | -0             | 1              | 0               | -0               | -0               |  |
|          | LK5<br>LK6                          |                      |                            | Ausfall<br>Ausfall     | -0<br>-0       | 1              | 0               | -0<br>-0         | -0<br>-0         |  |
| 20       | LF1                                 |                      |                            | Ausfall                | 0              | 0              | 0               | -0               | 0                |  |
|          | LF2                                 | 7                    | 0.000                      | -12                    | 0              | 0              | 0               | -0               | 0                |  |
|          | LF3                                 | 15                   | 0.100                      | -12<br>Ausfa <b>ll</b> | 0              | 0              | 0               | 0                | 0                |  |
|          | LF4                                 |                      |                            | Ausfall                | 0              | 0              | 0               | 0                | 0                |  |
|          | LF5                                 | _                    | 0.000                      | Ausfa <b>ll</b>        | 0              | 0              | 0               | 0                | 0                |  |
|          | LK1                                 | 7<br>15              | 0.000<br>0.100             | -10<br>-10             | 0              | 0 -0           | -0<br>0         | 0                | 0                |  |
|          | LK2                                 | 7                    | 0.000                      | -17                    | -0             | ő              | 0               | -ŏ               | -0               |  |
|          |                                     | 15                   | 0.100                      | -17                    | -0             | -0             | 0               | 0                | 0                |  |
|          | LK3                                 | 7<br>15              | 0.000<br>0.100             | -19<br>-19             | -0<br>-0       | 0<br>-0        | 0               | 0                | -0<br>0          |  |
|          | LK4                                 | 7                    | 0.000                      | -19                    | -0             | 0              | Ö               | l ő              | -0               |  |
|          |                                     | 15                   | 0.100                      | -19                    | -0             | -0             | 0               | 0                | 0                |  |
|          | LK5                                 | 7<br>15              | 0.000<br>0.100             | -12<br>-12             | 0              | 0<br>-0        | <b>-</b> 0<br>0 | 0                | 0                |  |
|          | LK6                                 | 7                    | 0.000                      | -12                    | 0              | 0              | <del>-</del> 0  | 0                | 0                |  |
|          |                                     | 15                   | 0.100                      | -12                    | 0              | -0             | 0               | 0                | 0                |  |
| 21       | LF1<br>LF2                          | 4                    | 0.000                      | Ausfall<br>-13         | 0              | 0 0            | 0               | -0<br>-0         | 0                |  |
|          | LFZ                                 | 22                   | 0.100                      | -13                    | 0              | 0              | 0               | 0                | 0                |  |
|          | LF3                                 |                      |                            | Ausfall                | 0              | 0              | 0               | 0                | 0                |  |
|          | LF4<br>LF5                          |                      |                            | Ausfall<br>Ausfall     | 0              | 0              | 0               | 0                | 0                |  |
|          | LK1                                 | 4                    | 0.000                      | -11                    | 0              | 0              | -0              | 0                | 0                |  |
|          |                                     | 22                   | 0.100                      | -11                    | 0              | -0             | 0               | 0                | 0                |  |
|          | LK2<br>LK3                          | 4                    | 0.000                      | Ausfall -18            | 0<br>-0        | 0              | 0               | -0<br>-0         | 0<br>-0          |  |
|          | LNO                                 | 22                   | 0.100                      | -18                    | -0             | -0             | 0               | 0                | 0                |  |
|          | LK4                                 | 4                    | 0.000                      | -18                    | -0             | 0              | 0               | -0               | -0               |  |
|          | LK5                                 | 22<br>4              | 0.100<br>0.000             | -18<br>-12             | -0<br>0        | -0<br>0        | 0<br>-0         | 0                | 0                |  |
|          | LRO                                 | 22                   | 0.100                      | -12                    | 0              | -0             | 0               | 0                | 0                |  |
|          | LK6                                 | 4                    | 0.000                      | -12                    | 0              | 0              | -0              | 0                | 0                |  |
| 22       | LF1                                 | 22                   | 0.100                      | -12<br>Ausfa <b>ll</b> | 0              | -0<br>0        | 0               | 0                | 0                |  |
|          | LF2                                 | 23                   | 0.000                      | <del>-</del> 64        | 0              | 0              | 0               | -0               | 0                |  |
|          |                                     | 24                   | 0.100                      | -64                    | 0              | 0              | 0               | 0                | 0                |  |
|          | LF3<br>LF4                          |                      |                            | Ausfall<br>Ausfall     | 0              | 0              | 0               | 0                | 0                |  |
|          | LF5                                 |                      |                            | Ausfall                | 0              | 0 2            | 0               | 0                | 0                |  |
|          | LK1                                 | 23                   | 0.000                      | -63                    | 0              | 2              | -0              | -0               | 0                |  |
|          | LK2                                 | 24<br>23             | 0.100<br>0.000             | -63<br>-96             | 0<br>-0        | 1 2            | 0               | 0                | 0<br>-0          |  |
|          |                                     | 24                   | 0.100                      | -96                    | -0             | 1              | 0               | 0                | 0                |  |
|          | LK3                                 | 23                   | 0.000                      | -98                    | -0             | 2              | 0               | -0               | -0               |  |
|          | LK4                                 | 24<br>23             | 0.100<br>0.000             | -98<br>-98             | -0<br>-0       | 1 2            | 0               | 0<br>-0          | 0<br>-0          |  |
|          |                                     | 24                   | 0.100                      | -98                    | -0             | 1              | 0               | 0                | 0                |  |
|          | LK5                                 | 23                   | 0.000                      | -65                    | 0              | 2              | -0              | -0               | 0                |  |
|          | LK6                                 | 24<br>23             | 0.100<br>0.000             | -65<br>-65             | 0              | 1 2            | 0<br>-0         | 0                | 0                |  |
|          |                                     | 24                   | 0.100                      | -65                    | 0              | 1              | 0               | 0                | 0                |  |
| 23       | LF1                                 |                      |                            | Ausfall                | 0              | 0              | 0               | -0               | 0                |  |
|          | LF2                                 | 20<br>26             | 0.000  <br>0.100           | -58<br>-58             | 0              | 0              | 0               | -0<br>0          | 0                |  |
|          | LF3                                 | 20                   | 0.100                      | Ausfall                | 0              | 0              | 0               | 0                | 0                |  |
|          | LF4                                 |                      |                            | Ausfall                | 0              | 0              |                 | 0                | 0                |  |
|          | LF5<br>LK1                          | 20                   | 0.000                      | Ausfall<br>-56         | 0              | 0              | 0<br>-0         | 0<br>-0          | 0                |  |
|          |                                     | 26                   | 0.100                      | -56                    | 0              | 1              | 0               | 0                | 0                |  |
|          | LK2                                 | 20                   | 0.000                      | -84                    | -0             | 2              | 0               | -0               | -0               |  |
|          |                                     | 26                   | 0.100                      | -84                    | -0             | 1              | 0               | 0                | 0                |  |
|          |                                     | $\perp$              |                            |                        |                |                |                 |                  | -                |  |

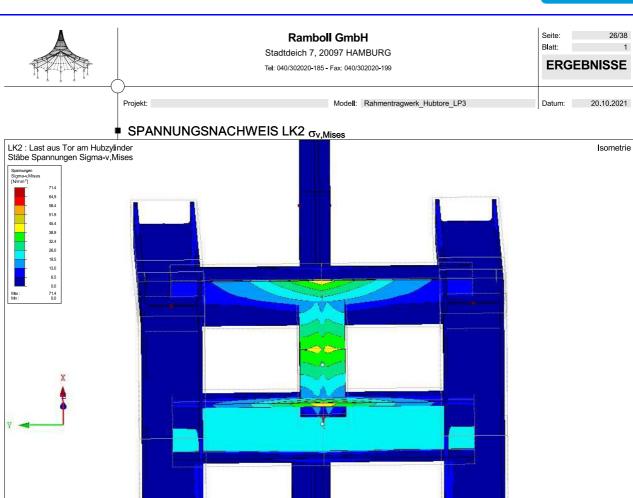
RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM

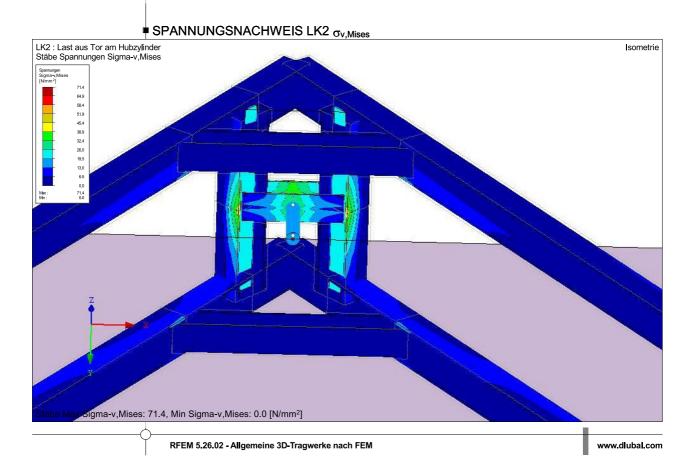





#### ■ 4.12 QUERSCHNITTE - SCHNITTGRÖSSEN

| Stab |       | Knoten | Stelle | VII I GRUSS     | Kräfte [kN] Momente [kNm] |    |         |            |                |  |
|------|-------|--------|--------|-----------------|---------------------------|----|---------|------------|----------------|--|
| Nr.  | LF/LK | Nr.    | x [m]  | N I             | $V_y$                     | Vz | $M_{T}$ | $M_{y}$    | M <sub>z</sub> |  |
| 23   | LK3   | 20     | 0.000  | -86             | -0                        | 2  | 0       | -0         | -0             |  |
|      |       | 26     | 0.100  | -86             | -0                        | 1  | 0       | 0          | 0              |  |
|      | LK4   | 20     | 0.000  | -86             | -0                        | 2  | 0       | -0         | -0             |  |
|      |       | 26     | 0.100  | -86             | -0                        | 1  | 0       | 0          | 0              |  |
|      | LK5   | 20     | 0.000  | -58             | 0                         | 2  | -0      | -0         | 0              |  |
|      |       | 26     | 0.100  | -58             | 0                         | 1  | 0       | 0          | 0              |  |
|      | LK6   | 20     | 0.000  | -58             | 0                         | 2  | -0      | -0         | 0              |  |
|      |       | 26     | 0.100  | -58             | 0                         | 1  | 0       | 0          | 0              |  |
| 24   | LF1   |        |        | Ausfall         | 0                         | 0  | 0       | -0         | 0              |  |
|      | LF2   |        |        | Ausfall         | 0                         | -0 | 0       | 0          | 0              |  |
|      | LF3   |        |        | Ausfall         | 0                         | 0  | 0       | 0          | 0              |  |
|      | LF4   |        |        | Ausfall         | 0                         | 0  | 0       | 0          | 0              |  |
|      | LF5   |        |        | Ausfall         | 0                         | 0  | 0       | 0          | 0              |  |
|      | LK1   |        |        | Ausfall         | 0                         | 0  | 0       | <b>-</b> 0 | 0              |  |
|      | LK2   |        |        | Ausfa <b>ll</b> | 0                         | 0  | 0       | <b>-</b> 0 | 0              |  |
|      | LK3   |        |        | Ausfall         | 0                         | 0  | 0       | -0         | 0              |  |
|      | LK4   |        |        | Ausfa <b>ll</b> | 0                         | 0  | 0       | <b>-</b> 0 | 0              |  |
|      | LK5   |        |        | Ausfall         | 0                         | 0  | 0       | <b>-</b> 0 | 0              |  |
|      | LK6   |        |        | Ausfa <b>ll</b> | 0                         | 0  | 0       | -0         | 0              |  |
| 25   | LF1   |        |        | Ausfall         | 0                         | 0  | 0       | <b>-</b> 0 | 0              |  |
|      | LF2   |        |        | Ausfa <b>ll</b> | 0                         | -0 | 0       | 0          | 0              |  |
|      | LF3   |        |        | Ausfall         | 0                         | 0  | 0       | 0          | 0              |  |
|      | LF4   |        |        | Ausfa <b>ll</b> | 0                         | 0  | 0       | 0          | 0              |  |
|      | LF5   |        |        | Ausfall         | 0                         | 0  | 0       | 0          | 0              |  |
|      | LK1   |        |        | Ausfa <b>ll</b> | 0                         | 0  | 0       | -0         | 0              |  |
|      | LK2   |        |        | Ausfall         | 0                         | 0  | 0       | -0         | 0              |  |
|      | LK3   |        |        | Ausfall         | 0                         | 0  | 0       | -0         | 0              |  |
|      | LK4   |        |        | Ausfall         | 0                         | 0  | 0       | -0         | 0              |  |
|      | LK5   |        |        | Ausfall         | 0                         | 0  | 0       | -0         | 0              |  |
|      | LK6   |        |        | Ausfall         | 0                         | 0  | 0       | -0         | 0              |  |

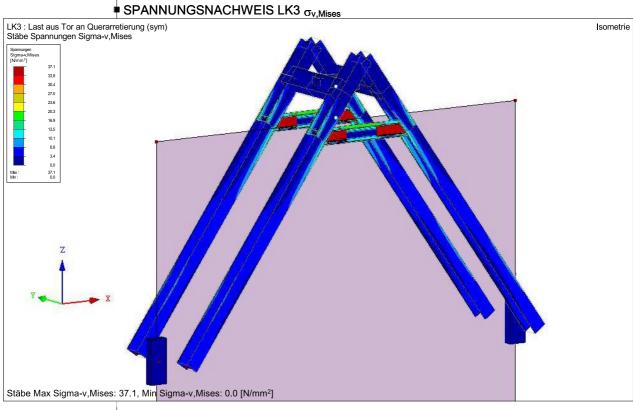

# SPANNUNGSNACHWEIS LK2 σ<sub>ν,Mises</sub>

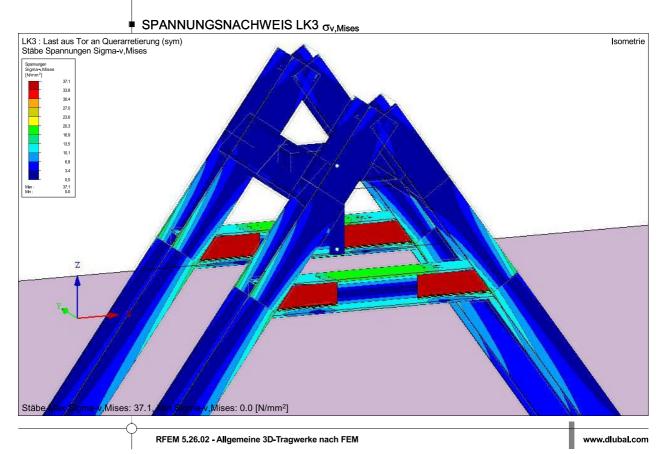



RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM

Stäbe Max Sigma-v, Mises: 71.4,

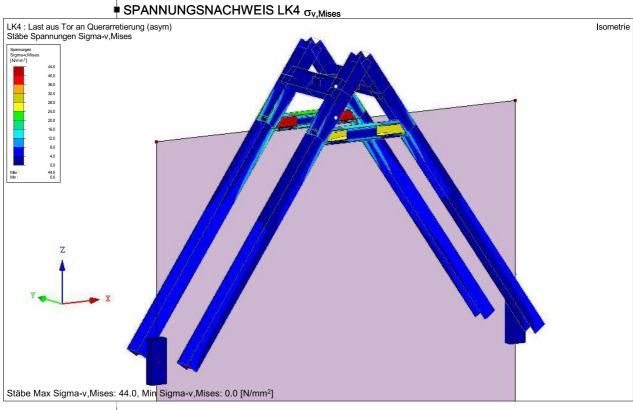




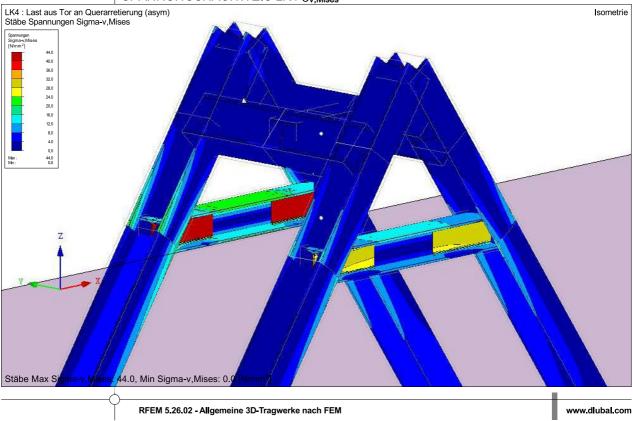




<mark>/lin Sigma-v,M</mark>ises: 0.0 [N/mm²]






















Stadtdeich 7, 20097 HAMBURG

Tel: 040/302020-185 - Fax: 040/302020-199

Seite: 29/38 Blatt:

RF-STAHL Stäbe

Datum: 20.10.2021

RF-STAHL Stäbe

FA1 Allgemeine Spannungsanalyse von Stäben

**■** 1.1.1 BASISANGABEN

Projekt:

Alle Zu bemessende Stäbe

Last aus Tor am Hubzylinder Last aus Tor an Querarretierung (sym) Last aus Tor an Querarretierung (asym) Zu bemessende Lastkombinationen: LK2 LK3 LK4

#### 

| Matl. | Material-      | TeilsichFaktor | Streckgrenze                          | nze Grenzspannungen [kN/cm²] |                      |              |                  |  |  |  |
|-------|----------------|----------------|---------------------------------------|------------------------------|----------------------|--------------|------------------|--|--|--|
| Nr.   | Bezeichnung    | γм [-]         | f <sub>yk</sub> [kN/cm <sup>2</sup> ] | Manuell                      | grenz σ <sub>x</sub> | grenz $\tau$ | grenz $\sigma_v$ |  |  |  |
| 1     | Baustahl S 355 | 1.00           | 35.50                                 |                              | 35.50                | 20.50        | 35.50            |  |  |  |

Modell: Rahmentragwerk\_Hubtore\_LP3

#### **♦** 1.3.1 QUERSCHNITTE

|       | ~~-                                                                                               |                   |                                   |                      |                                   |           |  |  |  |
|-------|---------------------------------------------------------------------------------------------------|-------------------|-----------------------------------|----------------------|-----------------------------------|-----------|--|--|--|
| Quer. | Matl.                                                                                             | Querschnitt       | I <sub>t</sub> [cm <sup>4</sup> ] | I <sub>y</sub> [cm⁴] | I <sub>z</sub> [cm <sup>4</sup> ] |           |  |  |  |
| Nr.   | Nr.                                                                                               | Bezeichnung       | A [cm <sup>2</sup> ]              | α <sub>pl,y</sub>    | $\alpha_{\text{pl,z}}$            | Kommentar |  |  |  |
| 2     | 1                                                                                                 | HEB 300           | 185.00                            | 25170.00             | 8563.00                           |           |  |  |  |
|       |                                                                                                   |                   | 149.10                            | 1.11                 | 1.52                              |           |  |  |  |
| 5     | 1                                                                                                 | HEB 400           | 355.70                            | 57680.00             | 10820.00                          |           |  |  |  |
|       |                                                                                                   |                   | 197.80                            | 1.12                 | 1.53                              |           |  |  |  |
| 6     | 1                                                                                                 | RD 140            | 3771.48                           | 1885.74              | 1885.74                           |           |  |  |  |
|       |                                                                                                   |                   | 154.00                            | 1.70                 | 1.70                              |           |  |  |  |
| 10    | 4                                                                                                 | Rechteck 400/1000 | 1.597E+06                         | 3.333E+06            | 533333.00                         |           |  |  |  |
|       |                                                                                                   |                   | 4000.00                           | 1.50                 | 1.50                              |           |  |  |  |
|       | Der Querschnitt wird nicht bemessen, da seine charakteristischen Spannungen nicht definiert sind. |                   |                                   |                      |                                   |           |  |  |  |

#### 2.1 SPANNUNGEN QUERSCHNITTSWEISE

| 2.10  | 2.1 OF ANNONCEN QUEROCHINIT TOWERDE |                         |               |                   |                                       |                        |                         |                      |  |  |
|-------|-------------------------------------|-------------------------|---------------|-------------------|---------------------------------------|------------------------|-------------------------|----------------------|--|--|
| Quer. | Stab                                | Stelle                  | S-Punkt       | Last-             |                                       | Spannung [             | [kN/cm <sup>2</sup> ]   | Aus-                 |  |  |
| Nr.   | Nr.                                 | x [m]                   | Nr.           | fall              | Spannungsart                          | Vorhanden ,            | Limit                   | nutzung              |  |  |
| 2     | HEB 300                             |                         |               |                   |                                       |                        |                         |                      |  |  |
|       | 16<br>16<br>17                      | 0.507<br>0.000<br>0.000 | 1<br>13<br>11 | LK2<br>LK2<br>LK2 | Sigma gesamt<br>Tau gesamt<br>Sigma-v | -3.92<br>3.93<br>6.93  | 35.50<br>20.50<br>35.50 | 0.11<br>0.19<br>0.20 |  |  |
| 5     | HEB 400                             |                         |               |                   |                                       |                        |                         |                      |  |  |
|       | 5<br>6<br>5                         | 1.000<br>1.000<br>1.000 | 1<br>13<br>1  | LK2<br>LK2<br>LK2 | Sigma gesamt<br>Tau gesamt<br>Sigma-v | -4.35<br>-1.36<br>4.35 | 35.50<br>20.50<br>35.50 | 0.12<br>0.07<br>0.12 |  |  |
| 6     | RD 140                              |                         |               |                   |                                       |                        |                         |                      |  |  |
|       | 15<br>15<br>15                      | 0.000<br>0.000<br>0.000 | 1<br>37<br>1  | LK2<br>LK3<br>LK2 | Sigma gesamt<br>Tau gesamt<br>Sigma-v | 1.50<br>0.11<br>1.50   | 29.50<br>17.03<br>29.50 | 0.05<br>0.01<br>0.05 |  |  |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





#### **■ 1.2 MATERIALIEN**

| Material- | Material                                | E-Modul                 | Schubmodul | Querdehnzahl | Streckgrenze                          | Max. Bauteildicke |
|-----------|-----------------------------------------|-------------------------|------------|--------------|---------------------------------------|-------------------|
| Nr.       | Bezeichnung                             | E [kN/cm <sup>2</sup> ] | G [kN/cm²] | v [-]        | f <sub>yk</sub> [kN/cm <sup>2</sup> ] | t [mm]            |
| 1         | Baustahl S 355   EN<br>1993-1-1:2005-05 | 21000.00                | 8076.92    | 0.300        | 35.50                                 | 40.0              |
|           |                                         |                         |            |              | 33.50                                 | 80.0              |
|           |                                         |                         |            |              | 31.50                                 | 100.0             |
|           |                                         |                         |            |              | 29.50                                 | 150.0             |
|           |                                         |                         |            |              | 28.50                                 | 200.0             |
|           |                                         |                         |            |              | 27.50                                 | 250.0             |
| 4         | Baustahl S 235   EN<br>10025-2:2004-11  | 21000.00                | 8076.92    | 0.300        | 23.50                                 | 16.0              |
|           |                                         |                         |            |              | 22.50                                 | 40.0              |
|           |                                         |                         |            |              | 21.50                                 | 100.0             |
|           |                                         |                         |            |              | 19.50                                 | 150.0             |
|           |                                         |                         |            |              | 18.50                                 | 200.0             |
|           |                                         |                         |            |              | 17.50                                 | 250.0             |
|           |                                         |                         |            |              | 16.50                                 | 400.0             |

# HEB 300 HEB 400

#### **■** 1.3 QUERSCHNITTE

|   | Quer. | Material- | Querschnitt       | Querschnitts-    | Maximale    |           |
|---|-------|-----------|-------------------|------------------|-------------|-----------|
|   | Nr.   | Nr.       | Bezeichnung       | typ              | Ausnutzung  | Kommentar |
| Ī | 2     | 1         | HEB 300           | I-Profil gewalzt | 0.12        |           |
|   | 5     | 1         | HEB 400           | I-Profil gewalzt | Unbemessbar |           |
| 1 | 6     | 1         | RD 140            | Kreisstabstahl   | 0.05        |           |
|   | 10    | 4         | Rechteck 400/1000 | Flachstahl       | 0.00        |           |



unbemessbar da Program mit geometrischen Gegebenheiten inkompatibel - aufgrund geringer QS Ausnutzung unbedenklich

## **■** 1.5 KNICKLÄNGEN - STÄBE

|      | O MINORE MINORE  |                  |                   |                       |                  |                   |                       |                  |                |                |                    |                    |
|------|------------------|------------------|-------------------|-----------------------|------------------|-------------------|-----------------------|------------------|----------------|----------------|--------------------|--------------------|
| Stab | Knicken          | Knie             | cken um Ach       | nse y                 | Knic             | ken um Ach        | se z                  |                  | Е              | Biegedri       | knicken            |                    |
| Nr.  | mög <b>l</b> ich | mög <b>l</b> ich | k <sub>cr,y</sub> | L <sub>cr,y</sub> [m] | mög <b>l</b> ich | k <sub>cr,z</sub> | L <sub>cr,z</sub> [m] | mög <b>l</b> ich | k <sub>z</sub> | k <sub>w</sub> | L <sub>w</sub> [m] | L <sub>⊤</sub> [m] |
| 1    | $\boxtimes$      | $\boxtimes$      | 1.00              | 1.150                 | $\boxtimes$      | 1.00              | 1.150                 | $\boxtimes$      | 1.0            | 1.0            | 1.150              | 1.150              |
| 2    |                  |                  | 1.00              | 1.150                 | $\boxtimes$      | 1.00              | 1.150                 | $\boxtimes$      | 1.0            | 1.0            | 1.150              | 1.150              |
| 3    | $\boxtimes$      | $\boxtimes$      | 1.00              | 1.150                 | $\boxtimes$      | 1.00              | 1.150                 | $\boxtimes$      | 1.0            | 1.0            | 1.150              | 1.150              |
| 4    | $\boxtimes$      |                  | 1.00              | 1.150                 | ⊠                | 1.00              | 1.150                 | $\boxtimes$      | 1.0            | 1.0            | 1.150              | 1.150              |
| 5    | $\boxtimes$      | $\boxtimes$      | 1.00              | 1.000                 | $\boxtimes$      | 1.00              | 1.000                 | $\boxtimes$      | 1.0            | 1.0            | 1.000              | 1.000              |
| 6    |                  |                  | 1.00              | 1.000                 | ⊠                | 1.00              | 1.000                 | $\boxtimes$      | 1.0            | 1.0            | 1.000              | 1.000              |
| 8    | $\boxtimes$      | $\boxtimes$      | 1.00              | 0.878                 | $\boxtimes$      | 1.00              | 0.878                 | $\boxtimes$      | 1.0            | 1.0            | 0.878              | 0.878              |
| 9    |                  |                  | 1.00              | 0.878                 | ⊠                | 1.00              | 0.878                 | $\boxtimes$      | 1.0            | 1.0            | 0.878              | 0.878              |
| 10   | $\boxtimes$      |                  | 1.00              | 0.878                 | $\boxtimes$      | 1.00              | 0.878                 | $\boxtimes$      | 1.0            | 1.0            | 0.878              | 0.878              |
| 11   |                  | ⊠                | 1.00              | 1.000                 | $\boxtimes$      | 1.00              | 1.000                 | ⊠                | 1.0            | 1.0            | 1.000              | 1.000              |
| 12   | $\boxtimes$      | $\boxtimes$      | 1.00              | 1.000                 | ⋈                | 1.00              | 1.000                 | $\boxtimes$      | 1.0            | 1.0            | 1.000              | 1.000              |
| 13   |                  | ⊠                | 1.00              | 0.878                 | $\boxtimes$      | 1.00              | 0.878                 |                  | 1.0            | 1.0            | 0.878              | 0.878              |
| 15   | $\boxtimes$      | ⊠                | 1.00              | 0.837                 | $\boxtimes$      | 1.00              | 0.837                 | $\boxtimes$      | 1.0            | 1.0            | 0.837              | 0.837              |
| 16   |                  | ⊠                | 1.00              | 0.507                 | $\boxtimes$      | 1.00              | 0.507                 | $\boxtimes$      | 1.0            | 1.0            | 0.507              | 0.507              |
| 17   | $\boxtimes$      | $\boxtimes$      | 1.00              | 0.507                 | ⋈                | 1.00              | 0.507                 | $\boxtimes$      | 1.0            | 1.0            | 0.507              | 0.507              |
| 18   |                  |                  | 1.00              | 0.150                 | $\boxtimes$      | 1.00              | 0.150                 | ⊠                | 1.0            | 1.0            | 0.150              | 0.150              |
| 19   | $\boxtimes$      | $\boxtimes$      | 1.00              | 0.150                 | $\boxtimes$      | 1.00              | 0.150                 | $\boxtimes$      | 1.0            | 1.0            | 0.150              | 0.150              |
| 20   |                  |                  | 1.00              | 0.100                 | $\boxtimes$      | 1.00              | 0.100                 | ⊠                | 1.0            | 1.0            | 0.100              | 0.100              |
| 21   | ⊠                | ⊠                | 1.00              | 0.100                 | $\boxtimes$      | 1.00              | 0.100                 | $\boxtimes$      | 1.0            | 1.0            | 0.100              | 0.100              |
| 22   |                  |                  | 1.00              | 0.100                 | ⊠                | 1.00              | 0.100                 | ⊠                | 1.0            | 1.0            | 0.100              | 0.100              |
| 23   | $\boxtimes$      | $\boxtimes$      | 1.00              | 0.100                 | ⋈                | 1.00              | 0.100                 | ⊠                | 1.0            | 1.0            | 0.100              | 0.100              |
| 24   |                  |                  | 1.00              | 0.100                 | $\boxtimes$      | 1.00              | 0.100                 | ⊠                | 1.0            | 1.0            | 0.100              | 0.100              |
| 25   | $\boxtimes$      | ⊠                | 1.00              | 0.100                 | $\boxtimes$      | 1.00              | 0.100                 | $\boxtimes$      | 1.0            | 1.0            | 0.100              | 0.100              |
| 30   |                  |                  | 1.00              | 5.766                 | $\boxtimes$      | 1.00              | 5.766                 | ⊠                | 1.0            | 1.0            | 5.766              | 5.766              |
| 31   | $\boxtimes$      | $\boxtimes$      | 1.00              | 5.766                 | ⋈                | 1.00              | 5.766                 | ⊠                | 1.0            | 1.0            | 5.766              | 5.766              |
| 32   |                  |                  | 1.00              | 5.766                 | ⊠                | 1.00              | 5.766                 | ⊠                | 1.0            | 1.0            | 5.766              | 5.766              |
| 33   | $\boxtimes$      | ⊠                | 1.00              | 5.766                 | ⊠                | 1.00              | 5.766                 | ⊠                | 1.0            | 1.0            | 5.766              | 5.766              |
| 34   |                  |                  | 1.00              | 2.342                 | ⊠                | 1.00              | 2.342                 | ⊠                | 1.0            | 1.0            | 2.342              | 2.342              |
| 35   |                  | ⊠                | 1.00              | 2.341                 | $\boxtimes$      | 1.00              | 2.341                 | $\boxtimes$      | 1.0            | 1.0            | 2.341              | 2.341              |

#### **■** 1.7 KNOTENLAGER

|     | Knoten     | Lagerung         | Seitliche Stützung | Einspan     | nung                         | Wölbeinsp. | Exzen                | trizität             |           |
|-----|------------|------------------|--------------------|-------------|------------------------------|------------|----------------------|----------------------|-----------|
| Nr. | Nr.        | Drehung β [°]    | $u_{Y}$            | фх'         | <sub>I</sub> φz <sup>,</sup> | ω          | e <sub>X'</sub> [mm] | e <sub>Z'</sub> [mm] | Kommentar |
|     | Stabsatz N | r. 1 - Träger 1  |                    |             |                              |            |                      |                      |           |
| 1   | 3          | 0.00             | $\boxtimes$        | $\boxtimes$ |                              |            | 0.0                  | 0.0                  |           |
| 2   | 6          | 0.00             | ⊠                  | $\boxtimes$ |                              |            | 0.0                  | 0.0                  |           |
|     | Stabsatz N | r. 2 Quer_y_oben |                    |             |                              |            |                      |                      |           |
| 1   | 30         | 0.00             | $\boxtimes$        | $\boxtimes$ |                              |            | 0.0                  | 0.0                  |           |
| 2   | 31         | 0.00             | $\boxtimes$        | $\boxtimes$ |                              |            | 0.0                  | 0.0                  |           |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





#### **■** 1.7 KNOTENLAGER

|     | Knoten     | Lagerung            | Seitliche Stützung | Einspa      | nnung            | Wölbeinsp. | Exzen                | trizität             |           |
|-----|------------|---------------------|--------------------|-------------|------------------|------------|----------------------|----------------------|-----------|
| Nr. | Nr.        | Drehung β [°]       | $u_{Y'}$           | φх          | <sub>I</sub> φz' | ω          | e <sub>X'</sub> [mm] | e <sub>Z'</sub> [mm] | Kommentar |
|     | Stabsatz N | r. 3 - Schräg x1 y1 |                    |             |                  | •          | •                    |                      |           |
| 1   | 1          | 0.00                | ⊠<br>⊠             | ×           |                  |            | 0.0                  | 0.0                  |           |
| 2   | 8          | 0.00                |                    | $\boxtimes$ |                  |            | 0.0                  | 0.0                  |           |
|     | Stabsatz N | r. 4 - Schräg_x2_y1 |                    |             |                  |            |                      |                      |           |
| 1   | 5          | 0.00                | $\boxtimes$        | $\boxtimes$ |                  |            | 0.0                  | 0.0                  |           |
| 2   | 8          | 0.00                | $\boxtimes$        | ⋈           |                  |            | 0.0                  | 0.0                  |           |
|     | Stabsatz N | r. 5 - Schräg_x1_y2 |                    |             |                  |            |                      |                      |           |
| 1   | 2          | 0.00                | ⊠<br>⊠             | ⊠           |                  |            | 0.0                  | 0.0                  |           |
| 2   | 3          | 0.00                |                    |             |                  |            | 0.0                  | 0.0                  |           |
|     | Stabsatz N | r. 6 - Schräg_x2_y2 |                    |             |                  |            |                      |                      |           |
| 1   | 3          | 0.00                | $\boxtimes$        | ⊠           |                  |            | 0.0                  | 0.0                  |           |
| 2   | 6          | 0.00                | $\boxtimes$        | ⊠           |                  |            | 0.0                  | 0.0                  |           |
|     |            | r. 7 - Quer_x_y1    |                    |             |                  | 1          |                      |                      |           |
| 1   | 34         | 0.00                | ⊠<br>⊠             |             |                  |            | 0.0                  | 0.0                  |           |
| 2   | 35         | 0.00                | M                  | ⊠           |                  |            | 0.0                  | 0.0                  |           |
|     |            | r. 8 - Quer_x_y2    |                    | _           |                  |            | 1                    |                      | 1         |
| 1   | 36         | 0.00                | ⊠<br>⊠             | ×<br>×      |                  |            | 0.0                  | 0.0                  |           |
| 2   | 37         | 0.00                | ×                  |             |                  |            | 0.0                  | 0.0                  |           |
|     |            | r. 9 - Quer_y_x1    |                    | _           |                  |            |                      |                      | 1         |
| 1   | 28         | 0.00                | $\boxtimes$        | ⊠           |                  |            | 0.0                  | 0.0                  |           |
| 2   | 29         | 0.00                | ⊠                  | ⊠           |                  |            | 0.0                  | 0.0                  |           |
|     |            | r 10 Quer_x_ober    | ו                  | _           |                  | . –        |                      |                      |           |
| 1   | 33         | 0.00                | ⊠ ⊠                | ⊠           |                  |            | 0.0                  | 0.0                  |           |
| 2   | 32         | 0.00                | ⊠                  | $\boxtimes$ |                  |            | 0.0                  | 0.0                  |           |

#### **♦** 1.12 PARAMETER - STÄBE

| ab<br>Ir. | Bezeichnung                        | Parameter     |
|-----------|------------------------------------|---------------|
| 1         | Querschnitt                        | 5 - HEB 400   |
|           | Schubfeld                          | 3-11EB 400    |
|           |                                    |               |
|           | Drehbettung                        |               |
|           | Querschnittsfläche für Zugnachweis |               |
| 2         | Querschnitt                        | 5 - HEB 400   |
|           | Schubfeld                          |               |
|           | Drehbettung                        |               |
|           | Querschnittsfläche für Zugnachweis |               |
|           | Quersonnushache iur zugnachweis    |               |
| 3         | Querschnitt                        | 5 - HEB 400   |
|           | Schubfeld                          |               |
|           | Drehbettung                        |               |
|           | Querschnittsfläche für Zugnachweis |               |
|           | · ·                                |               |
| 4         | Querschnitt                        | 5 - HEB 400   |
|           | Schubfeld                          |               |
|           | Drehbettung                        |               |
|           | Querschnittsfläche für Zugnachweis |               |
| 5         | Querschnitt                        | 5 - HEB 400   |
| J         | Schubfeld                          |               |
|           | Drehbettung                        |               |
|           |                                    |               |
|           | Querschnittsfläche für Zugnachweis |               |
| 6         | Querschnitt                        | 5 - HEB 400   |
|           | Schubfeld                          |               |
|           | Drehbettung                        |               |
|           | Querschnittsfläche für Zugnachweis |               |
|           | Quel sommandone fur Zugridonweis   |               |
| 8         | Querschnitt                        | 5 - HEB 400   |
|           | Schubfeld                          |               |
|           | Drehbettung                        |               |
|           | Querschnittsfläche für Zugnachweis |               |
| 9         | Querschnitt                        | 5 - HEB 400   |
| J         | Schubfeld                          | 5 - NEB 400   |
|           |                                    |               |
|           | Drehbettung                        |               |
|           | Querschnittsfläche für Zugnachweis |               |
| 10        | Querschnitt                        | 5 - HEB 400   |
|           | Schubfeld                          |               |
|           | Drehbettung                        | 7             |
|           | Querschnittsfläche für Zugnachweis |               |
|           |                                    |               |
| 11        | Querschnitt                        | _ 5 - HEB 400 |
|           | Schubfeld                          |               |
|           | Drehbettung                        |               |
|           | Querschnittsfläche für Zugnachweis |               |
| 12        | Querschnitt                        | 5 - HEB 400   |
| 12        |                                    |               |
|           | Schubfeld                          |               |
|           | Drehbettung                        |               |
|           | Querschnittsfläche für Zugnachweis |               |
| 13        | Querschnitt                        | 5 - HEB 400   |
|           | Schubfeld                          |               |
|           | Drehbettung                        |               |
|           | Querschnittsfläche für Zugnachweis |               |
|           |                                    |               |
| 15        | Querschnitt                        | _ 6 - RD 140  |
|           | Schubfeld                          |               |
|           | Drehbettung                        |               |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





| • 1.12 I    | PARAMETER - STABE                                 |                          |
|-------------|---------------------------------------------------|--------------------------|
| Stab<br>Nr. | Bezeichnung                                       | Parameter                |
|             | Querschnittsfläche für Zugnachweis                |                          |
| 16          | Querschnitt                                       | 2 - HEB 300              |
|             | Schubfeld                                         |                          |
|             | Drehbettung Querschnittsfläche für Zugnachweis    |                          |
| 47          | <u>-</u>                                          |                          |
| 17          | Querschnitt<br>Schubfeld                          | 2 - HEB 300              |
|             | Drehbettung                                       |                          |
|             | Querschnittsfläche für Zugnachweis                |                          |
| 18          | Querschnitt                                       | 10 - Rechteck 400/1000   |
|             | Schubfeld<br>Drehbettung                          |                          |
|             | Querschnittsfläche für Zugnachweis                |                          |
| 19          | Querschnitt                                       | 10 - Rechteck 400/1000   |
|             | Schubfeld                                         |                          |
|             | Drehbettung Querschnittsfläche für Zugnachweis    |                          |
| 00          |                                                   | 40. Darktari 400/4000    |
| 20          | Querschnitt<br>Schubfeld                          | 10 - Rechteck 400/1000   |
|             | Drehbettung                                       |                          |
|             | Querschnittsfläche für Zugnachweis                |                          |
| 21          | Querschnitt                                       | 10 - Rechteck 400/1000 □ |
|             | Schubfeld<br>Drehbettung                          |                          |
|             | Querschnittsfläche für Zugnachweis                |                          |
| 22          | Querschnitt                                       | 10 - Rechteck 400/1000   |
|             | Schubfeld                                         |                          |
|             | Drehbettung Querschnittsfläche für Zugnachweis    |                          |
| 23          |                                                   | 10 - Rechteck 400/1000   |
| 23          | Querschnitt<br>Schubfeld                          |                          |
|             | Drehbettung Querschnittsfläche für Zugnachweis    |                          |
|             |                                                   |                          |
| 24          | Querschnitt<br>Schubfeld                          | 10 - Rechteck 400/1000   |
|             | Drehbettung                                       |                          |
|             | Querschnittsfläche für Zugnachweis                |                          |
| 25          | Querschnitt                                       | 10 - Rechteck 400/1000   |
|             | Schubfeld<br>Drehbettung                          |                          |
|             | Querschnittsfläche für Zugnachweis                |                          |
| 30          | Querschnitt                                       | 5 - HEB 400              |
|             | Schubfeld<br>Drehbettung                          |                          |
|             | Querschnittsfläche für Zugnachweis                |                          |
| 31          | Querschnitt                                       | 5 - HEB 400              |
|             | Schubfeld                                         |                          |
|             | Drehbettung Querschnittsfläche für Zugnachweis    |                          |
| 20          |                                                   | 5 LIED 400               |
| 32          | Querschnitt<br>Schubfeld                          | 5 - HEB 400              |
|             | Drehbettung                                       |                          |
|             | Querschnittsfläche für Zugnachweis                |                          |
| 33          | Querschnitt                                       | 5 - HEB 400              |
|             | Schubfeld Drehbettung                             |                          |
|             | Querschnittsfläche für Zugnachweis                |                          |
| 34          | Querschnitt                                       | _ 2 - HEB 300            |
|             | Schubfeld<br>Drehbettung                          |                          |
|             | Querschnittsfläche für Zugnachweis                |                          |
| 35          | Querschnitt                                       | 2 - HEB 300              |
|             | Schubfeld                                         |                          |
|             | Drehbettung<br>Querschnittsfläche für Zugnachweis |                          |
|             |                                                   |                          |

#### **♦** 1.13 PARAMETER - STABSÄTZE

| Stabsatz |             |             |
|----------|-------------|-------------|
| Nr.      | Bezeichnung | Parameter   |
| 1        | Stabsatz    | Träger 1    |
|          | Querschnitt | 5 - HEB 400 |
|          | Schubfeld   |             |
|          | Drehbettung |             |
|          | -           |             |
| 2        | Stabsatz    | Quer y oben |
|          |             | ·           |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





Stadtdeich 7, 20097 HAMBURG
Tel: 040/302020-185 - Fax: 040/302020-199

 Seite:
 33/38

 Blatt:
 1

 RF-STAHL EC3

Projekt:

Modell: Rahmentragwerk\_Hubtore\_LP3

Datum: 20.10.2021

#### **♦** 1.13 PARAMETER - STABSÄTZE

| Stabsatz Nr.  Querschnitt Schubfeld Drehbettung  3 Stabsatz Querschnitt Schubfeld Drehbettung  4 Stabsatz Querschnitt Schubfeld Drehbettung  4 Stabsatz Querschnitt Schubfeld Drehbettung  5 Schräg_x2_y1 Querschnitt 5 - HEB 400 Schräg_x2_y1 Querschnitt 5 - HEB 400 Schräg_x2_y1 Querschnitt Schubfeld Drehbettung  5 Stabsatz Querschnitt Schubfeld Drehbettung  5 Stabsatz Querschnitt Schubfeld Drehbettung  5 HEB 400 Schräg_x1_y2 Querschnitt Schubfeld Drehbettung |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Querschnitt                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Schubfeld                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Drehbettung                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Querschnitt   5 - HEB 400                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Querschnitt   5 - HEB 400                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Drehbettung                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 4 Stabsatz Schräg_x2_y1 Querschnitt 5 - HEB 400 Schubfeld □ Drehbettung □  5 Stabsatz Schräg_x1_y2 Querschnitt 5 - HEB 400 Schubfeld □                                                                                                                                                                                                                                                                                                                                      |  |
| Querschnitt         5 - HEB 400           Schubfeld         □           Drehbettung         □           5         Stabsatz         Schräg_x1_y2           Querschnitt         5 - HEB 400           Schubfeld         □                                                                                                                                                                                                                                                     |  |
| Querschnitt         5 - HEB 400           Schubfeld         □           Drehbettung         □           5         Stabsatz         Schräg_x1_y2           Querschnitt         5 - HEB 400           Schubfeld         □                                                                                                                                                                                                                                                     |  |
| Schubfeld                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Drehbettung  5 Stabsatz Schräg_x1_y2 Querschnitt 5- HEB 400                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 5 Stabsatz Schräg_x1_y2 Querschnitt 5- HEB 400 Schubfeld □                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Querschnitt 5 - HEB 400 Schubfeld □                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Querschnitt 5 - HEB 400 Schubfeld □                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Drehbettung                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 6 Stabsatz Schräg x2 y2                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Querschnitt 5 - HEB 400                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Schubfeld                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Drehbettung                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 7 Stabsatz Quer_x_y1                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Querschnitt 2 - HEB 300                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Schubfeld                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Drehbettung                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 8 Stabsatz Quer x y2                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Querschnitt 2 - HEB 300                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Schubfeld                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Drehbettung □                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Out and                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 9 Stabsatz Quer_ <u>y_x</u> 1 Querschnitt 5 - HEB 400                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Guerschnitt 5 - HEB 400                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Scriubreta Drehbettung                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Deliberaring                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 10 Stabsatz Quer x oben                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Querschnitt 2 - HEB 300                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Schubfeld                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| □ Drehbettung □                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |

#### **■** 2.3 NACHWEISE STABSATZWEISE

| Stab     | Stelle                                             | LF/LK/                                                                                                                                                                                                                            | Nachweis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gleichung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bezeichnung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nr.      | x [m]                                              | EK                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Träger 1 | Stab Nr. 10,1,33                                   |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 33       | 5.766                                              | LK4                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ≤ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CS102)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Querschnittsnachweis - Druck nach 6.2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10       | 0.000                                              | LK4                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ≤ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CS116)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Querschnittsnachweis - Biegung um z-Achse nach 6.2.5 - Klasse 1 oder 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1        | 0.000                                              | I KA                                                                                                                                                                                                                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | z 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CS123)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Querschnittsnachweis - Querkraft in Achse y nach 6.2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                                    |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Querschnittsnachweis - Guernalt in Achse y nach 0.2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| "        | 0.000                                              | Litti                                                                                                                                                                                                                             | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 001017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Querkraft nach 6.2.5 und 6.2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1        | 0.575                                              | LK2                                                                                                                                                                                                                               | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ≤ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CS181)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Querschnittsnachweis - Biegung, Quer- und Normalkraft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ,        | 1 150                                              | 11/4                                                                                                                                                                                                                              | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CC204)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nach 6.2.9.1  Querschnittsnachweis - Biegung um z-Achse, Quer- und                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1        | 1.150                                              | LK4                                                                                                                                                                                                                               | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ≤ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (5201)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Querschnittshachweis - Biegung um z-Achse, Quer- und   Normalkraft nach 6.2.9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 33       | 0.000                                              | LK2                                                                                                                                                                                                                               | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ≤ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CS221)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Querschnittsnachweis - Doppelbiegung, Quer- und                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |                                                    |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Normalkraft nach 6.2.10 und 6.2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 33       | 5.766                                              | LK4                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ≤ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ST301)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stabilitätsnachweis - Biegeknicken um y-Achse nach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          |                                                    |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.3.1.1 und 6.3.1.2(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 33       | 5.766                                              | LK4                                                                                                                                                                                                                               | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ≤ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ST311)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stabilitätsnachweis - Biegeknicken um z-Achse nach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 22       | F 700                                              | 11/24                                                                                                                                                                                                                             | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CT204)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.3.1.1 und 6.3.1.2(4)<br>Stabilitätsnachweis - Drillknicken nach 6.3.1.4 und                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 33       | 5.766                                              | LN4                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ≤ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 51321)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.3.1.2(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 33       | 5 189                                              | I KA                                                                                                                                                                                                                              | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ST364)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stabilitätsnachweis - Biegung und Druck nach 6.3.3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 33       | 0.103                                              | LICH                                                                                                                                                                                                                              | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01304)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Verfahren 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 10       | 0.000                                              | LK2                                                                                                                                                                                                                               | Unbemessbar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | > 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ER051)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Moment um Achse z am nichtsymmetrischen Querschnitt,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                    |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Voutenstab oder Stabsatz -> Stabilitätsnachweis nach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                    |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.3.4 nicht möglich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | ham (Ctab No. 1                                    | 1.40\                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |                                                    |                                                                                                                                                                                                                                   | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C9121)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Querschnittsnachweis - Querkraft in Achse z nach 6.2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                                    |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Querschnittsnachweis - Querkraft in Achse y nach 6.2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                                    |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Querschnittsnachweis - Schubbeulen nach 6.2.6(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          |                                                    |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Querschnittsnachweis - Doppelbiegung und Querkraft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| l '''    | 1.000                                              | LIVE                                                                                                                                                                                                                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ٠.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 001017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nach 6.2.6, 6.2.7 und 6.2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 12       | 1.000                                              | LK2                                                                                                                                                                                                                               | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ST363)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stabilitätsnachweis - Doppelbiegung nach 6.3.3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |                                                    |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Verfahren 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 11       | 0.000                                              | LK2                                                                                                                                                                                                                               | Unbemessbar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | > 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ER051)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Moment um Achse z am nichtsymmetrischen Querschnitt,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                    |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Voutenstab oder Stabsatz -> Stabilitätsnachweis nach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                    |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.3.4 nicht möglich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Schräg v | 1 y1 (Stab Nr. 3                                   | 1 4 9)                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |                                                    | LK3                                                                                                                                                                                                                               | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ≤ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CS102)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Querschnittsnachweis - Druck nach 6.2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | 5 766 1                                            |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 31<br>9  | 5.766<br>0.000                                     |                                                                                                                                                                                                                                   | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CS116)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Querschnittsnachweis - Biegung um z-Achse nach 6 2 5 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 31       | 5.766<br>0.000                                     | LK3                                                                                                                                                                                                                               | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ≤ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CS116)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Querschnittsnachweis - Biegung um z-Achse nach 6.2.5 - Klasse 1 oder 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | Nr.  Träger 1 1 33 10 1 10 1 1 1 1 1 1 1 1 1 1 1 1 | Nr. x [m]  Träger 1 (Stab Nr. 10,1,33 33 5.766 10 0.000 1 0.000 1 0.575 1 1.150 33 0.000 33 5.766 33 5.766 33 5.766 33 5.766 33 5.766 33 5.789 10 0.000  Quer y oben (Stab Nr. 1' 11 0.000 11 0.000 11 1.0000 11 1.0000 12 1.0000 | Nr.         x [m]         EK           Träger 1 (Stab Nr. 10,1,33)         33         5.766         LK4           10         0.000         LK4           1         0.000         LK4           1         0.575         LK2           1         1.150         LK4           33         0.000         LK2           33         5.766         LK4           33         5.766         LK4           33         5.766         LK4           33         5.789         LK4           10         0.000         LK2           Cuer y oben (Stab Nr. 11,12)         LK2           11         0.000         LK2           12         1.000         LK2 | Nr.         x [m]         EK           Träger 1 (Stab Nr. 10,1,33)         33         5.766         LK4         0.02           1         0.000         LK4         0.02           1         0.000         LK4         0.02           1         0.575         LK2         0.01           1         1.150         LK4         0.04           33         0.000         LK2         0.01           33         5.766         LK4         0.02           33         5.766         LK4         0.02           33         5.766         LK4         0.02           33         5.189         LK4         0.04           10         0.000         LK2         Unbemessbar           Quer y oben (Stab Nr. 11,12)           11         0.000         LK2         0.01           11         0.000         LK2         0.01           11         0.000         LK2         0.05           11         1.000         LK2         0.05           12         1.000         LK2         0.06 | Nr.         x [m]         EK           Träger 1 (Stab Nr. 10,1,33)         33         5.766         LK4         0.02         ≤ 1           1         0.000         LK4         0.02         ≤ 1           1         0.000         LK4         0.02         ≤ 1           1         0.575         LK2         0.01         ≤ 1           1         1.150         LK4         0.04         ≤ 1           33         0.000         LK2         0.01         ≤ 1           33         5.766         LK4         0.02         ≤ 1           33         5.766         LK4         0.03         ≤ 1           33         5.766         LK4         0.02         ≤ 1           33         5.766         LK4         0.02         ≤ 1           33         5.766         LK4         0.02         ≤ 1           10         0.000         LK2         Unbemessbar         > 1           Quer y oben (Stab Nr. 11,12)           11         0.000         LK2         0.01         ≤ 1           11         0.000         LK2         0.01         ≤ 1           11         0.000         LK2 <td>Nr.         x [m]         EK         Nr.           Träger 1 (Stab Nr. 10,1,33)         33         5.766         LK4         0.02         ≤ 1         CS102)           10         0.000         LK4         0.02         ≤ 1         CS116)           1         0.000         LK4         0.02         ≤ 1         CS123)           10         0.000         LK4         0.02         ≤ 1         CS151)           1         0.575         LK2         0.01         ≤ 1         CS211           33         0.000         LK4         0.04         ≤ 1         CS221)           33         5.766         LK4         0.02         ≤ 1         ST301)           33         5.766         LK4         0.02         ≤ 1         ST321)           33         5.766         LK4         0.02         ≤ 1         ST321)           33         5.766         LK4         0.02         ≤ 1         ST321)           33         5.766         LK4         0.02         ≤ 1         ST364)           10         0.000         LK2         Unbemessbar         &gt; 1         ER051)           Cuer y oben (Stab Nr. 11,12)</td> | Nr.         x [m]         EK         Nr.           Träger 1 (Stab Nr. 10,1,33)         33         5.766         LK4         0.02         ≤ 1         CS102)           10         0.000         LK4         0.02         ≤ 1         CS116)           1         0.000         LK4         0.02         ≤ 1         CS123)           10         0.000         LK4         0.02         ≤ 1         CS151)           1         0.575         LK2         0.01         ≤ 1         CS211           33         0.000         LK4         0.04         ≤ 1         CS221)           33         5.766         LK4         0.02         ≤ 1         ST301)           33         5.766         LK4         0.02         ≤ 1         ST321)           33         5.766         LK4         0.02         ≤ 1         ST321)           33         5.766         LK4         0.02         ≤ 1         ST321)           33         5.766         LK4         0.02         ≤ 1         ST364)           10         0.000         LK2         Unbemessbar         > 1         ER051)           Cuer y oben (Stab Nr. 11,12) |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





Stadtdeich 7, 20097 HAMBURG
Tel: 040/302020-185 - Fax: 040/302020-199

Seite: 34/38 Blatt: 1

RF-STAHL EC3

Projekt:

Modell: Rahmentragwerk\_Hubtore\_LP3

Datum: 20.10.2021

#### **■** 2.3 NACHWEISE STABSATZWEISE

|                 |             |                        |              | ZWEISE       |            |                  |                                                                                                                                     |
|-----------------|-------------|------------------------|--------------|--------------|------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Stabsatz<br>Nr. | Stab<br>Nr. | Stelle<br>x [m]        | LF/LK/<br>EK | Nachweis     |            | Gleichung<br>Nr. | Bezeichnung                                                                                                                         |
|                 | 9           | 0.000                  | LK3          | 0.01         | ≤ 1        | CS151)           | Querschnittsnachweis - Biegung um z-Achse und                                                                                       |
|                 | 4           | 0.575                  | LK2          | 0.01         | ≤ 1        | CS181)           | Querkraft nach 6.2.5 und 6.2.8<br>Querschnittsnachweis - Biegung, Quer- und Normalkraft                                             |
|                 | 4           | 1.150                  | LK3          | 0.03         | ≤ 1        | CS201)           | nach 6.2.9.1  Querschnittsnachweis - Biegung um z-Achse, Quer- und                                                                  |
|                 | 31          | 0.000                  | LK2          | 0.01         | ≤ 1        | CS221)           | Normalkraft nach 6.2.9.1  Querschnittsnachweis - Doppelbiegung, Quer- und                                                           |
|                 | 31          | 5.766                  | LK3          | 0.01         | ≤ 1        | ST301)           | Normalkraft nach 6.2.10 und 6.2.9 Stabilitätsnachweis - Biegeknicken um y-Achse nach                                                |
|                 | 31          | 5.766                  | LK3          | 0.02         | ≤ 1        | ST311)           | 6.3.1.1 und 6.3.1.2(4)<br>Stabilitätsnachweis - Biegeknicken um z-Achse nach                                                        |
|                 | 31          | 5.766                  | LK3          | 0.02         | ≟ ·<br>≤ 1 | ST321)           | 6.3.1.1 und 6.3.1.2(4)<br>Stabilitätsnachweis - Drillknicken nach 6.3.1.4 und                                                       |
|                 | 31          | 5.190                  |              | 0.02         | ≤ 1        | ST364)           | 6.3.1.2(4) Stabilitätsnachweis - Bigung und Druck nach 6.3.3,                                                                       |
|                 |             |                        | LK3          |              |            | · ·              | Verfahren 2                                                                                                                         |
|                 | 31          | 0.000                  | LK2          | Unbemessbar  | > 1        | ER051)           | Moment um Achse z am nichtsymmetrischen Querschnitt,<br>Voutenstab oder Stabsatz -> Stabilitätsnachweis nach<br>6.3.4 nicht mödlich |
| 4               | Schräg v    | l<br>:2_y1 (Stab Nr. : | 30 2 13)     |              | ļ          | I                | 6.5.4 mont mognen                                                                                                                   |
| -               | 30          | 5.766                  | LK3          | 0.01         | ≤ 1        | CS102)           | Querschnittsnachweis - Druck nach 6.2.4                                                                                             |
|                 | 13          | 0.000                  | LK3          | 0.01         | ≤ 1        | CS116)           | Querschnittsnachweis - Biegung um z-Achse nach 6.2.5 -<br>Klasse 1 oder 2                                                           |
|                 | 2<br>13     | 0.000<br>0.000         | LK3<br>LK3   | 0.00<br>0.01 | ≤ 1<br>≤ 1 | CS123)<br>CS151) | Querschnittsnachweis - Querkraft in Achse y nach 6,2.6<br>Querschnittsnachweis - Biegung um z-Achse und                             |
|                 | 2           | 0.575                  | LK2          | 0.01         | ≤ 1        | CS181)           | Querkraft nach 6.2.5 und 6.2.8<br>Querschnittsnachweis - Biegung, Quer- und Normalkraft                                             |
|                 | 2           | 1.150                  | LK3          | 0.03         | ≤ 1        | CS201)           | nach 6.2.9.1  Querschnittsnachweis - Biegung um z-Achse, Quer- und                                                                  |
|                 |             |                        |              |              |            |                  | Normalkraft nach 6.2.9.1                                                                                                            |
|                 | 30          | 0.000                  | LK2          | 0.01         | ≤ 1        | CS221)           | Querschnittsnachweis - Doppelbiegung, Quer- und<br>Normalkraft nach 6.2.10 und 6.2.9                                                |
|                 | 30          | 5.766                  | LK3          | 0.01         | ≤ 1        | ST301)           | Stabilitätsnachweis - Biegeknicken um y-Achse nach 6.3.1.1 und 6.3.1.2(4)                                                           |
|                 | 30          | 5.766                  | LK3          | 0.02         | ≤ 1        | ST311)           | Stabilitätsnachweis - Biegeknicken um z-Achse nach 6.3.1.1 und 6.3.1.2(4)                                                           |
|                 | 30          | 5.766                  | LK3          | 0.02         | ≤ 1        | ST321)           | Stabilitätsnachweis - Drillknicken nach 6.3.1.4 und 6.3.1.2(4)                                                                      |
|                 | 30          | 5.190                  | LK3          | 0.03         | ≤ 1        | ST364)           | Stabilitätsnachweis - Biegung und Druck nach 6.3.3,<br>Verfahren 2                                                                  |
|                 | 30          | 0.000                  | LK2          | Unbemessbar  | > 1        | ER051)           | Moment um Achse z am nichtsymmetrischen Querschnitt,<br>Voutenstab oder Stabsatz -> Stabilitätsnachweis nach                        |
|                 |             |                        |              |              |            |                  | 6.3.4 nicht möglich                                                                                                                 |
| 5               |             | 1_y2 (Stab Nr.         |              |              |            |                  |                                                                                                                                     |
|                 | 32<br>8     | 5.766<br>0.000         | LK4<br>LK4   | 0.02<br>0.02 | ≤ 1<br>≤ 1 | CS102)<br>CS116) | Querschnittsnachweis - Druck nach 6.2.4<br>Querschnittsnachweis - Biegung um z-Achse nach 6.2.5 -                                   |
|                 | 3           | 0.000                  | LK4          | 0.00         | ≤ 1        | CS123)           | Klasse 1 oder 2 Querschnittsnachweis - Querkraft in Achse y nach 6.2.6                                                              |
|                 | 8           | 0.000                  | LK4          | 0.02         | ≤ 1        | CS151)           | Querschnittsnachweis - Biegung um z-Achse und Querkraft nach 6.2.5 und 6.2.8                                                        |
|                 | 3           | 0.575                  | LK2          | 0.01         | ≤ 1        | CS181)           | Querschnittsnachweis - Biegung, Quer- und Normalkraft nach 6.2.9.1                                                                  |
|                 | 3           | 1.150                  | LK4          | 0.04         | ≤ 1        | CS201)           | Querschnittsnachweis - Biegung um z-Achse, Quer- und Normalkraft nach 6.2.9.1                                                       |
|                 | 32          | 0.000                  | LK2          | 0.01         | ≤ 1        | CS221)           | Querschnittsnachweis - Doppelbiegung, Quer- und<br>Normalkraft nach 6.2.10 und 6.2.9                                                |
|                 | 32          | 5.766                  | LK4          | 0.02         | ≤ 1        | ST301)           | Stabilitätsnachweis - Biegeknicken um y-Achse nach<br>6.3.1.1 und 6.3.1.2(4)                                                        |
|                 | 32          | 5.766                  | LK4          | 0.03         | ≤ 1        | ST311)           | Stabilitätsnachweis - Biegeknicken um z-Achse nach                                                                                  |
|                 | 32          | 5.766                  | LK4          | 0.02         | ≤ 1        | ST321)           | 6.3.1.1 und 6.3.1.2(4)<br>Stabilitätsnachweis - Drillknicken nach 6.3.1.4 und                                                       |
|                 | 32          | 5.189                  | LK4          | 0.04         | ≤ 1        | ST364)           | 6.3.1.2(4) Stabilitätsnachweis - Biegung und Druck nach 6.3.3,                                                                      |
|                 | 32          | 0.000                  | LK2          | Unbemessbar  | > 1        | ER051)           | Verfahren 2<br>Moment um Achse z am nichtsymmetrischen Querschnitt,                                                                 |
|                 |             |                        |              |              |            |                  | Voutenstab oder Stabsatz -> Stabilitätsnachweis nach 6.3.4 nicht möglich                                                            |
| 6               | Schräg v    | 2 y2 (Stab Nr. :       | 33.1.10)     |              |            |                  |                                                                                                                                     |
|                 | 33<br>10    | 5.766<br>0.000         | LK4<br>LK4   | 0.02<br>0.02 | ≤ 1        | CS102)<br>CS116) | Querschnittsnachweis - Druck nach 6.2.4                                                                                             |
|                 |             |                        |              |              | ≤ 1        | ·                | Querschnittsnachweis - Biegung um z-Achse nach 6.2.5 - Klasse 1 oder 2                                                              |
|                 | 1<br>10     | 0.000<br>0.000         | LK4<br>LK4   | 0.00<br>0.02 | ≤ 1<br>≤ 1 | CS123)<br>CS151) | Querschnittsnachweis - Querkraft in Achse y nach 6.2.6<br>Querschnittsnachweis - Biegung um z-Achse und                             |
|                 | 1           | 0.575                  | LK2          | 0.01         | ≤ 1        | CS181)           | Querkraft nach 6.2.5 und 6.2.8<br>Querschnittsnachweis - Biegung, Quer- und Normalkraft                                             |
|                 | 1           | 1.150                  | LK4          | 0.04         | ≤ 1        | CS201)           | nach 6.2.9.1 Querschnittsnachweis - Biegung um z-Achse, Quer- und                                                                   |
|                 | 33          | 0.000                  | LK2          | 0.01         | ≤ 1        | CS221)           | Normalkraft nach 6.2.9.1  Querschnittsnachweis - Doppelbiegung, Quer- und                                                           |
|                 | 33          | 5.766                  | LK4          | 0.02         | ≤ 1        | ST301)           | Normalkraft nach 6.2.10 und 6.2.9<br>Stabilitätsnachweis - Biegeknicken um y-Achse nach                                             |
|                 | 33          | 5.766                  | LK4          | 0.03         | ≤ 1        | ST311)           | 6.3.1.1 und 6.3.1.2(4) Stabilitätsnachweis - Biegeknicken um z-Achse nach                                                           |
|                 | 33          | 5.766                  | LK4          | 0.02         | ≤1         | ST321)           | 6.3.1.1 und 6.3.1.2(4) Stabilitätsnachweis - Drillknicken nach 6.3.1.4 und                                                          |
|                 |             |                        |              |              |            | l '              | 6.3.1.2(4)                                                                                                                          |
|                 | 33          | 5.189                  | LK4          | 0.04         | ≤ 1        | ST364)           | Stabilitätsnachweis - Biegung und Druck nach 6.3.3, V                                                                               |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM

Projekt:





#### Ramboll GmbH

Stadtdeich 7, 20097 HAMBURG
Tel: 040/302020-185 - Fax: 040/302020-199

Seite: 35/38
Blatt: 1

RF-STAHL EC3

Modell: Rahmentragwerk\_Hubtore\_LP3

Datum: 20.10.2021

#### ■ 2.3 NACHWEISE STABSATZWEISE

| Stabsatz | Stab     | Stelle            | LF/LK/     | Nachweis     |            | Gleichung        | Bezeichnung                                                                                                                         |
|----------|----------|-------------------|------------|--------------|------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Nr.      | Nr.      | x [m]             | EK         |              |            | Nr.              | · ·                                                                                                                                 |
|          |          |                   |            |              |            |                  | Verfahren 2                                                                                                                         |
|          | 33       | 0.000             | LK2        | Unbemessbar  | > 1        | ER051)           | Moment um Achse z am nichtsymmetrischen Querschnitt,<br>Voutenstab oder Stabsatz -> Stabilitätsnachweis nach<br>6.3.4 nicht möglich |
| 7        | Quer_x_y | /1 (Stab Nr. 35)  |            |              |            |                  |                                                                                                                                     |
|          | 35       | 1.171             | LK3        | 0.01         | ≤ 1        | CS102)           | Querschnittsnachweis - Druck nach 6.2.4                                                                                             |
|          | 35       | 0.000             | LK3        | 0.06         | ≤ 1        | CS121)           | Querschnittsnachweis - Querkraft in Achse z nach 6.2.6                                                                              |
|          | 35<br>35 | 0.000<br>1.545    | LK2<br>LK3 | 0.00<br>0.04 | ≤ 1<br>≤ 1 | CS126)<br>CS181) | Querschnittsnachweis - Schubbeulen nach 6.2.6(6) Querschnittsnachweis - Biegung, Quer- und Normalkraft                              |
|          | 33       | 1.545             | LING       | 0.04         | 21         | (3101)           | nach 6.2.9.1                                                                                                                        |
|          | 35       | 1.545             | LK3        | 0.04         | ≤ 1        | ST331)           | Stabilitätsnachweis - Biegedrillknicken nach 6.3.2.1 und 6.3.2.3 - I-Profil                                                         |
|          | 35       | 1.545             | LK3        | 0.05         | ≤ 1        | ST371)           | Stabilitätsnachweis - Biegung und Druck nach 6.3.4, Allgemeines Verfahren                                                           |
| 8        | Quer x v | /2 (Stab Nr. 34)  |            |              |            |                  |                                                                                                                                     |
| , i      | 34       | 1.171             | LK4        | 0.01         | ≤ 1        | CS102)           | Querschnittsnachweis - Druck nach 6.2.4                                                                                             |
|          | 34       | 0.000             | LK4        | 0.08         | ≤ 1        | CS121)           | Querschnittsnachweis - Querkraft in Achse z nach 6.2.6                                                                              |
|          | 34       | 0.000             | LK2        | 0.00         | ≤ 1        | CS126)           | Querschnittsnachweis - Schubbeulen nach 6.2.6(6)                                                                                    |
|          | 34       | 1.546             | LK4        | 0.05         | ≤ 1        | CS181)           | Querschnittsnachweis - Biegung, Quer- und Normalkraft nach 6,2,9,1                                                                  |
|          | 34       | 1.546             | LK4        | 0.05         | ≤ 1        | ST331)           | Stabilitätsnachweis - Biegedrillknicken nach 6.3.2.1 und 6.3.2.3 - I-Profil                                                         |
|          | 34       | 1.546             | LK4        | 0.06         | ≤ 1        | ST371)           | Stabilitätsnachweis - Biegung und Druck nach 6.3.4, Allgemeines Verfahren                                                           |
| 9        | Quer v x | (1 (Stab Nr. 5,6) |            |              |            |                  |                                                                                                                                     |
| -        | 6        | 1.000             | LK2        | 0.04         | ≤ 1        | CS121)           | Querschnittsnachweis - Querkraft in Achse z nach 6.2.6                                                                              |
|          | 5        | 0.000             | LK2        | 0.01         | ≤ 1        | CS123)           | Querschnittsnachweis - Querkraft in Achse y nach 6.2.6                                                                              |
|          | 5        | 0.000             | LK2        | 0.00         | ≤ 1        | CS126)           | Querschnittsnachweis - Schubbeulen nach 6.2.6(6)                                                                                    |
|          | 5        | 1.000             | LK2        | 0.05         | ≤ 1        | CS161)           | Querschnittsnachweis - Doppelbiegung und Querkraft nach 6.2.6, 6.2.7 und 6.2.9                                                      |
|          | 5        | 0.000             | LK2        | 0.06         | ≤ 1        | ST363)           | Stabilitätsnachweis - Doppelbiegung nach 6.3.3,<br>Verfahren 2                                                                      |
|          | 5        | 0.000             | LK2        | Unbemessbar  | > 1        | ER051)           | Moment um Achse z am nichtsymmetrischen Querschnitt,<br>Voutenstab oder Stabsatz -> Stabilitätsnachweis nach<br>6.3.4 nicht möglich |
| 10       | Quer_x_c | ben (Stab Nr. 1   | 6,17)      |              |            |                  |                                                                                                                                     |
|          | 17       | 0.000             | LK2        | 0.01         | ≤ 1        | CS102)           | Querschnittsnachweis - Druck nach 6.2.4                                                                                             |
|          | 16       | 0.000             | LK2        | 0.12         | ≤ 1        | CS121)           | Querschnittsnachweis - Querkraft in Achse z nach 6.2.6                                                                              |
|          | 16<br>16 | 0.000<br>0.507    | LK2<br>LK2 | 0.00<br>0.09 | ≤ 1<br>≤ 1 | CS126)<br>CS181) | Querschnittsnachweis - Schubbeulen nach 6.2.6(6) Querschnittsnachweis - Biegung, Quer- und Normalkraft                              |
|          |          |                   |            |              |            |                  | nach 6.2.9.1                                                                                                                        |
|          | 16       | 0.507             | LK4        | 0.00         | ≤ 1        | CS221)           | Querschnittsnachweis - Doppelbiegung, Quer- und Normalkraft nach 6.2.10 und 6.2.9                                                   |
|          | 17       | 0.000             | LK2        | 0.07         | ≤ 1        | ST364)           | Stabilitätsnachweis - Biegung und Druck nach 6.3.3,<br>Verfahren 2                                                                  |
|          | 17       | 0.000             | LK2        | 0.10         | ≤ 1        | ST371)           | Stabilitätsnachweis - Biegung und Druck nach 6.3.4, Allgemeines Verfahren                                                           |

#### **■** 2.4 NACHWEISE STABWEISE

| Stab | Stelle         | LF/LK/        | Nachweis            |            | G <b>l</b> eichung | Bezeichnung                                                                                                                                                                                            |
|------|----------------|---------------|---------------------|------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nr.  | x [m]          | EK            |                     |            | Nr.                |                                                                                                                                                                                                        |
| 1    | Querschnitt N  | r. 5 - HEB 40 | 00                  |            |                    |                                                                                                                                                                                                        |
|      | 1.150<br>0.000 | LK2<br>LK3    | 0.01<br>0.00        | ≤ 1<br>≤ 1 | CS102)<br>CS116)   | Querschnittsnachweis - Druck nach 6.2.4<br>Querschnittsnachweis - Biegung um z-Achse nach 6.2.5 - Klasse 1<br>oder 2                                                                                   |
|      | 0.000<br>0.000 | LK4<br>LK3    | 0.00<br>0.00        | ≤ 1<br>≤ 1 | CS123)<br>CS151)   | Querschnittsnachweis - Querkraft in Achse y nach 6.2.6<br>Querschnittsnachweis - Biegung um z-Achse und Querkraft nach<br>6.2.5 und 6.2.8                                                              |
|      | 0.575          | LK2           | 0.01                | ≤ 1        | CS181)             | Querschnittsnachweis - Biegung, Quer- und Normalkraft nach 6.2.9.1                                                                                                                                     |
|      | 1.150          | LK4           | 0.04                | ≤ 1        | CS201)             | Querschnittsnachweis - Biegung um z-Achse, Quer- und<br>Normalkraft nach 6.2.9.1                                                                                                                       |
|      | 0.000          | LK2           | 0.01                | ≤ 1        | CS221)             | Querschnittsnachweis - Doppelbiegung, Quer- und Normalkraft nach 6.2.10 und 6.2.9                                                                                                                      |
|      | 1.150<br>0.000 | LK2<br>LK2    | 0.02<br>Unbemessbar | ≤ 1<br>> 1 | ST364)<br>ER051)   | Stabilitätsnachweis - Biegung und Druck nach 6.3.3, Verfahren 2<br>Moment um Achse z am nichtsymmetrischen Querschnitt,<br>Voutenstab oder Stabsatz -> Stabilitätsnachweis nach 6.3.4 nicht<br>möglich |
| 2    | Querschnitt N  | . E UED 4     | 20                  |            |                    |                                                                                                                                                                                                        |
| 2    | 1.150          | LK2           | 0.01                | ≤ 1        | CS102)             | Querschnittsnachweis - Druck nach 6.2.4                                                                                                                                                                |
|      | 0.575          | LK4           | 0.01                | ≤1         | CS102)             | Querschnittsnachweis - Biegung um z-Achse nach 6.2.5 - Klasse 1 oder 2                                                                                                                                 |
|      | 0.000<br>0.575 | LK3<br>LK4    | 0.00<br>0.01        | ≤ 1<br>≤ 1 | CS123)<br>CS151)   | Querschnittsnachweis - Querkraft in Achse y nach 6.2.6 Querschnittsnachweis - Biegung um z-Achse und Querkraft nach 6.2.5 und 6.2.8                                                                    |
|      | 0.575          | LK2           | 0.01                | ≤ 1        | CS181)             | Querschnittsnachweis - Biegung, Quer- und Normalkraft nach<br>6.2.9.1                                                                                                                                  |
|      | 1.150          | LK3           | 0.03                | ≤ 1        | CS201)             | Querschnittsnachweis - Biegung um z-Achse, Quer- und Normalkraft nach 6.2.9.1                                                                                                                          |
|      | 1.150          | LK2           | 0.01                | ≤ 1        | CS221)             | Querschnittsnachweis - Doppelbiegung, Quer- und Normalkraft nach 6.2.10 und 6.2.9                                                                                                                      |
|      | 1.150<br>0.000 | LK2<br>LK2    | 0.02<br>Unbemessbar | ≤ 1<br>> 1 | ST364)<br>ER051)   | Stabilitätsnachweis - Biegung und Druck nach 6.3.3, Verfahren 2<br>Moment um Achse z am nichtsymmetrischen Querschnitt,<br>Voutenstab oder Stabsatz -> Stabilitätsnachweis nach 6.3.4 nicht<br>möglich |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





Stadtdeich 7, 20097 HAMBURG

Tel: 040/302020-185 - Fax: 040/302020-199

Seite: 36/38

RF-STAHL EC3

Datum: 20.10.2021

Modell: Rahmentragwerk\_Hubtore\_LP3

**■** 2.4 NACHWEISE STABWEISE

| ab<br>r. | Stelle<br>x [m]         | LF/LK/<br>EK                 | Nachweis            |              | Gleichung<br>Nr. | Bezeichnung                                                                                                                |
|----------|-------------------------|------------------------------|---------------------|--------------|------------------|----------------------------------------------------------------------------------------------------------------------------|
|          |                         |                              | 00                  |              |                  |                                                                                                                            |
| 3        | Querschnitt No<br>1.150 | LK2                          | 0.01                | ≤ 1          | CS102)           | Querschnittsnachweis - Druck nach 6.2.4                                                                                    |
|          | 0.000<br>0.575          | LK4<br>LK2                   | 0.00<br>0.01        | ≤ 1<br>≤ 1   | CS123)<br>CS181) | Querschnittsnachweis - Querkraft in Achse y nach 6.2.6<br>Querschnittsnachweis - Biegung, Quer- und Normalkraft nach       |
|          | 1.150                   | LK4                          | 0.04                | ≤ 1          | CS201)           | 6.2.9.1  Querschnittsnachweis - Biegung um z-Achse, Quer- und                                                              |
|          |                         |                              |                     |              |                  | Normalkraft nach 6.2.9.1                                                                                                   |
|          | 0.000                   | LK2                          | 0.01                | ≤ 1          | CS221)           | Querschnittsnachweis - Doppelbiegung, Quer- und Normalkraft nach 6.2.10 und 6.2.9                                          |
|          | 1.150<br>0.000          | LK2<br>LK2                   | 0.02<br>Unbemessbar | ≤1<br>>1     | ST364)<br>ER051) | Stabilitätsnachweis - Biegung und Druck nach 6.3.3, Verfahren 2<br>Moment um Achse z am nichtsymmetrischen Querschnitt,    |
|          |                         |                              |                     |              | · ·              | Voutenstab oder Stabsatz ->, Stabilitätsnachweis nach 6.3.4 nicht möglich                                                  |
|          | Querschnitt N           | . E UED 4                    | 00                  |              | ı                | mogneti                                                                                                                    |
| 1        | 1.150                   | LK2                          | 0.01                | ≤ 1          | CS102)           | Querschnittsnachweis - Druck nach 6.2.4                                                                                    |
|          | 0.575                   | LK4                          | 0.01                | ≤ 1          | CS116)           | Querschnittsnachweis - Biegung um z-Achse nach 6.2.5 - Klasse 1 oder 2                                                     |
|          | 0.000<br>0.575          | LK3<br>LK4                   | 0.00<br>0.01        | ≤ 1<br>≤ 1   | CS123)<br>CS151) | Querschnittsnachweis - Querkraft in Achse y nach 6.2.6 Querschnittsnachweis - Biegung um z-Achse und Querkraft nach        |
|          | 0.575                   | LK2                          | 0.01                | _<br>  ≤ 1   | CS181)           | 6.2.5 und 6.2.8  Querschnittsnachweis - Biegung, Quer- und Normalkraft nach                                                |
|          |                         |                              |                     |              | ĺ ,              | 6.2.9.1                                                                                                                    |
|          | 1.150                   | LK3                          | 0.03                | ≤ 1          | CS201)           | Querschnittsnachweis - Biegung um z-Achse, Quer- und Normalkraft nach 6.2.9.1                                              |
|          | 1.150                   | LK2                          | 0.01                | ≤ 1          | CS221)           | Querschnittsnachweis - Doppelbiegung, Quer- und Normalkraft nach 6.2.10 und 6.2.9                                          |
|          | 1.150<br>0.000          | LK2                          | 0.02                | ≤ 1          | ST364)           | Stabilitätsnachweis - Biegung und Druck nach 6.3.3, Verfahren 2                                                            |
|          | 0.000                   | LK2                          | Unbemessbar         | > 1          | ER051)           | Moment um Achse z am nichtsymmetrischen Querschnitt,<br>Voutenstab oder Stabsatz -> Stabilitätsnachweis nach 6.3.4 nicht   |
|          |                         |                              |                     | l            | l                | möglich                                                                                                                    |
| 5        | Querschnitt No<br>0.000 | r. <b>5 - HEB 4</b> 0<br>LK2 | 0.04                | ≤ 1          | CS121)           | Querschnittsnachweis - Querkraft in Achse z nach 6.2.6                                                                     |
|          | 0.000                   | LK2<br>LK2                   | 0.01<br>0.00        | ≤ 1<br>≤ 1   | CS123)<br>CS126) | Querschnittsnachweis - Querkraft in Achse y nach 6.2.6<br>Querschnittsnachweis - Schubbeulen nach 6.2.6(6)                 |
|          | 1.000                   | LK2<br>LK2                   | 0.05                | ≤ 1          | CS120)           | Querschnittsnachweis - Doppelbiegung und Querkraft nach 6.2.6,                                                             |
|          | 0.000                   | LK2                          | 0.06                | ≤ 1          | ST363)           | 6.2.7 und 6.2.9 Stabilitätsnachweis - Doppelbiegung nach 6.3.3, Verfahren 2                                                |
|          | 0.000                   | LK2                          | Unbemessbar         | > 1          | ER051)           | Moment um Achse z am nichtsymmetrischen Querschnitt,<br>Voutenstab oder Stabsatz -&qt Stabilitätsnachweis nach 6.3.4 nicht |
|          |                         |                              |                     |              |                  | möglich                                                                                                                    |
| 6        | Querschnitt N           |                              |                     |              |                  |                                                                                                                            |
|          | 1.000                   | LK2<br>LK2                   | 0.04<br>0.01        | ≤ 1<br>  ≤ 1 | CS121)<br>CS123) | Querschnittsnachweis - Querkraft in Achse z nach 6.2.6<br>Querschnittsnachweis - Querkraft in Achse y nach 6.2.6           |
|          | 0.000                   | LK2<br>LK2                   | 0.00<br>0.05        | ≤ 1<br>≤ 1   | CS126)<br>CS161) | Querschnittsnachweis - Schubbeulen nach 6.2.6(6) Querschnittsnachweis - Doppelbiegung und Querkraft nach 6.2.6,            |
|          | 1,000                   | LK2                          | 0.06                | ≤ 1          | ST363)           | 6.2.7 und 6.2.9<br>Stabilitätsnachweis - Doppelbiegung nach 6.3.3, Verfahren 2                                             |
|          | 0.000                   | LK2                          | Unbemessbar         | > 1          | ER051)           | Moment um Achse z am nichtsymmetrischen Querschnitt,                                                                       |
|          |                         |                              |                     |              |                  | Voutenstab oder Stabsatz -> Stabilitätsnachweis nach 6.3.4 nicht möglich                                                   |
| 3        | Querschnitt N           | r. 5 HEB 4                   | 00                  |              |                  |                                                                                                                            |
|          | 0.000                   | LK4                          | 0.02                | ≤ 1          | CS116)           | Querschnittsnachweis - Biegung um z-Achse nach 6.2.5 - Klasse 1 oder 2                                                     |
|          | 0.000                   | LK4<br>LK4                   | 0.00<br>0.02        | ≤ 1<br>≤ 1   | CS123)<br>CS151) | Querschnittsnachweis - Querkraft in Achse y nach 6.2.6<br>Querschnittsnachweis - Biegung um z-Achse und Querkraft nach     |
|          |                         |                              |                     |              |                  | 6.2.5 und 6.2.8                                                                                                            |
|          | 0.000                   | LK2                          | Unbemessbar         | > 1          | ER051)           | Moment um Achse z am nichtsymmetrischen Querschnitt,<br>Voutenstab oder Stabsatz -> Stabilitätsnachweis nach 6.3.4 nicht   |
|          |                         |                              |                     | 1            |                  | möglich                                                                                                                    |
| 9        | Querschnitt No<br>0.000 | r. 5 - HEB 40<br>LK3         | 0.01                | ≤ 1          | CS116)           | Querschnittsnachweis - Biegung um z-Achse nach 6,2,5 - Klasse 1                                                            |
|          | 0.000                   | LK3                          | 0.00                | ≤ 1          | CS123)           | oder 2<br>Querschnittsnachweis - Querkraft in Achse y nach 6.2.6                                                           |
|          | 0.000                   | LK3                          | 0.01                | ≤ 1          | CS151)           | Querschnittsnachweis - Biegung um z-Achse und Querkraft nach 6,2,5 und 6,2,8                                               |
|          | 0.000                   | LK2                          | Unbemessbar         | > 1          | ER051)           | Moment um Achse z am nichtsymmetrischen Querschnitt,                                                                       |
|          |                         |                              |                     |              |                  | Voutenstab oder Stabsatz -> Stabilitätsnachweis nach 6.3.4 nicht möglich                                                   |
| 0        | Querschnitt N           | r. 5 - HEB 4                 | 00                  |              |                  |                                                                                                                            |
|          | 0.000                   | LK4                          | 0.02                | ≤ 1          | CS116)           | Querschnittsnachweis - Biegung um z-Achse nach 6.2.5 - Klasse 1 oder 2                                                     |
|          | 0.000                   | LK4                          | 0.00                | ≤1           | CS123)           | Querschnittsnachweis - Querkraft in Achse y nach 6.2.6                                                                     |
|          | 0.000                   | LK4                          | 0.02                | ≤ 1          | CS151)           | Querschnittsnachweis - Biegung um z-Achse und Querkraft nach 6.2.5 und 6.2.8                                               |
|          | 0.000                   | LK2                          | Unbemessbar         | > 1          | ER051)           | Moment um Achse z am nichtsymmetrischen Querschnitt,<br>Voutenstab oder Stabsatz -> Stabilitätsnachweis nach 6.3.4 nicht   |
|          |                         |                              |                     |              |                  | möglich                                                                                                                    |
| 1        | Querschnitt No.000      | r. <b>5 - HEB 4</b> 0<br>LK2 | 0.04                | ≤ 1          | CS121)           | Querschnittsnachweis - Querkraft in Achse z nach 6.2.6                                                                     |
|          | 0.000                   | LK2                          | 0.01                | ≤ 1          | CS123)           | Querschnittsnachweis - Querkraft in Achse y nach 6.2.6                                                                     |
|          | 0.000<br>1.000          | LK2<br>LK2                   | 0.00<br>0.05        | ≤ 1<br>≤ 1   | CS126)<br>CS161) | Querschnittsnachweis - Schubbeulen nach 6.2.6(6) Querschnittsnachweis - Doppelbiegung und Querkraft nach 6.2.6,            |
|          | 0.000                   | LK2                          | 0.06                | ≤ 1          | ST363)           | 6.2.7 und 6.2.9<br>Stabilitätsnachweis - Doppelbiegung nach 6.3.3, Verfahren 2                                             |
|          | 0.000                   | LK2<br>LK2                   | Unbemessbar         | >1           | ER051)           | Moment um Achse z am nichtsymmetrischen Querschnitt,                                                                       |
|          | 1                       |                              | I                   | I            | I                | Voutenstab oder Stabsatz -> Stabilitätsnachweis nach 6.3.4 nicht m                                                         |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





Stadtdeich 7, 20097 HAMBURG
Tel: 040/302020-185 - Fax: 040/302020-199

 Seite:
 37/38

 Blatt:
 1

RF-STAHL EC3

Projekt:

Modell: Rahmentragwerk\_Hubtore\_LP3

Datum: 20.10.2021

#### ■ 2.4 NACHWEISE STABWEISE

| 0.507<br>0.000<br>0.000                                                                                                                                                 | LK2<br>LK2<br>LK2<br>LK2<br>LK2<br>LK2<br>LK3<br>LK3<br>LK3<br>LK3       | 0.04<br>0.01<br>0.00<br>0.05<br>0.06<br>Unbemessbar                       | ≤1<br>≤1<br>≤1<br>≤1<br>>1                                                                                               | CS121)<br>CS123)<br>CS126)<br>CS161)<br>ST363)<br>ER051)                                                                        | möglich  Querschnittsnachweis - Querkraft in Achse z nach 6.2.6 Querschnittsnachweis - Querkraft in Achse y nach 6.2.6 Querschnittsnachweis - Schubbeulen nach 6.2.6(6) Querschnittsnachweis - Doppelbiegung und Querkraft nach 6.2.6, 6.2.7 und 6.2.9 Stabilitätsnachweis - Doppelbiegung nach 6.3.3, Verfahren 2 Moment um Achse z am nichtsymmetrischen Querschnitt, Voutenstab oder Stabsatz -> Stabilitätsnachweis nach 6.3.4 nicht |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1.000<br>1.000<br>0.000<br>0.000<br>1.000<br>0.000<br>1.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000 | LK2<br>LK2<br>LK2<br>LK2<br>LK2<br>LK2<br>LK3<br>LK3<br>LK3<br>LK3       | 0.04<br>0.01<br>0.00<br>0.05<br>0.06<br>Unbernessbar                      | ≤1<br>≤1<br>≤1<br>≤1<br>>1                                                                                               | CS123)<br>CS126)<br>CS161)<br>ST363)<br>ER051)                                                                                  | Querschnittsnachweis - Querkraft in Achse y nach 6.2.6<br>Querschnittsnachweis - Schubbeulen nach 6.2.6(6)<br>Querschnittsnachweis - Doppelbiegung und Querkraft nach 6.2.6,<br>6.2.7 und 6.2.9<br>Stabilitätsnachweis - Doppelbiegung nach 6.3.3, Verfahren 2<br>Moment um Achse z am nichtsymmetrischen Querschnitt,<br>Voutenstab oder Stabsatz -> Stabilitätsnachweis nach 6.3.4 nicht                                               |  |  |  |  |
| 1.000<br>1.000<br>0.000<br>0.000<br>1.000<br>0.000<br>1.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000 | LK2<br>LK2<br>LK2<br>LK2<br>LK2<br>LK2<br>LK3<br>LK3<br>LK3<br>LK3       | 0.04<br>0.01<br>0.00<br>0.05<br>0.06<br>Unbernessbar                      | ≤1<br>≤1<br>≤1<br>≤1<br>>1                                                                                               | CS123)<br>CS126)<br>CS161)<br>ST363)<br>ER051)                                                                                  | Querschnittsnachweis - Querkraft in Achse y nach 6 2.6 Querschnittsnachweis - Schubbeulen nach 6.2.6(6) Querschnittsnachweis - Doppelbiegung und Querkraft nach 6.2.6, 6.2.7 und 6.2.9 Stabilitätsnachweis - Doppelbiegung nach 6.3.3, Verfahren 2 Moment um Achse z am nichtsymmetrischen Querschnitt, Voutenstab oder Stabsatz -> Stabilitätsnachweis nach 6.3.4 nicht                                                                 |  |  |  |  |
| 0.000<br>0.000<br>1.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                            | LK2<br>LK2<br>LK2<br>LK2<br>LK3<br>LK3<br>LK3<br>LK2                     | 0.00<br>0.05<br>0.06<br>Unbemessbar<br>0.01<br>0.00                       | ≤1<br>≤1<br>≤1<br>>1                                                                                                     | CS126)<br>CS161)<br>ST363)<br>ER051)                                                                                            | Querschnittsnachweis - Schubbeulen nach 6.2.6(6) Querschnittsnachweis - Doppelbiegung und Querkraft nach 6.2.6, 6.2.7 und 6.2.9 Stabilitätsnachweis - Doppelbiegung nach 6.3.3, Verfahren 2 Moment um Achse z am nichtsymmetrischen Querschnitt, Voutenstab oder Stabsatz -> Stabilitätsnachweis nach 6.3.4 nicht                                                                                                                        |  |  |  |  |
| 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000                                                       | LK2 LK2 LK2 . 5 - HEB 40 LK3 LK3 LK3 LK2                                 | 0.05<br>0.06<br>Unbemessbar<br>00<br>0.01<br>0.00<br>0.01                 | ≤1<br>≤1<br>>1                                                                                                           | CS161)<br>ST363)<br>ER051)                                                                                                      | Querschnittsnachweis - Doppelbiegung und Querkraft nach 6.2.6, 6.2.7 und 6.2.9 Stabilitätsnachweis - Doppelbiegung nach 6.3.3, Verfahren 2 Moment um Achse z am nichtsymmetrischen Querschnitt, Voutenstab oder Stabsatz -> Stabilitätsnachweis nach 6.3.4 nicht                                                                                                                                                                         |  |  |  |  |
| 0.000  uerschnitt Nr 0.000 0.000 0.000 0.000 uerschnitt Nr 0.507 0.000 0.000                                                                                            | LK2  . 5 - HEB 40 LK3 LK3 LK3 LK2                                        | Unbemessbar  00  0.01  0.00  0.01                                         | > 1<br>≤ 1                                                                                                               | ER051)                                                                                                                          | Stabilitätsnachweis - Doppelbiegung nach 6.3.3, Verfahren 2<br>Moment um Achse z am nichtsymmetrischen Querschnitt,<br>Voutenstab oder Stabsatz -> Stabilitätsnachweis nach 6.3.4 nicht                                                                                                                                                                                                                                                  |  |  |  |  |
| 0.000  uerschnitt Nr 0.000 0.000 0.000 0.000 uerschnitt Nr 0.507 0.000 0.000                                                                                            | LK2  . 5 - HEB 40 LK3 LK3 LK3 LK2                                        | Unbemessbar  00  0.01  0.00  0.01                                         | > 1<br>≤ 1                                                                                                               | ER051)                                                                                                                          | Moment um Achse z am nichtsymmetrischen Querschnitt,<br>Voutenstab oder Stabsatz -> Stabilitätsnachweis nach 6.3.4 nicht                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 0.000<br>0.000<br>0.000<br>0.000<br>0.000  <br>uerschnitt Nr<br>0.507  <br>0.000<br>0.000                                                                               | LK3 LK3 LK3 LK2                                                          | 0.01<br>0.00<br>0.01                                                      |                                                                                                                          |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 0.000<br>0.000<br>0.000<br>0.000<br>0.000  <br>uerschnitt Nr<br>0.507  <br>0.000<br>0.000                                                                               | LK3 LK3 LK3 LK2                                                          | 0.01<br>0.00<br>0.01                                                      |                                                                                                                          | 1                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 0.000<br>0.000<br>0.000<br>0.000<br>0.000  <br>uerschnitt Nr<br>0.507  <br>0.000<br>0.000                                                                               | LK3 LK3 LK3 LK2                                                          | 0.01<br>0.00<br>0.01                                                      |                                                                                                                          |                                                                                                                                 | möglich                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 0.000<br>0.000<br>0.000<br>0.000<br>0.000  <br>uerschnitt Nr<br>0.507<br>0.507<br>0.000<br>0.000                                                                        | LK3<br>LK3<br>LK2                                                        | 0.00<br>0.01                                                              |                                                                                                                          | CS116)                                                                                                                          | Querschnittsnachweis - Biegung um z-Achse nach 6.2.5 - Klasse 1                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 0.000<br>0.000<br>uerschnitt Nr<br>0.000  <br>uerschnitt Nr<br>0.507<br>0.000<br>0.000                                                                                  | LK3<br>LK2                                                               | 0.01                                                                      | /1                                                                                                                       |                                                                                                                                 | oder 2                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 0.000<br>uerschnitt Nr<br>0.000  <br>uerschnitt Nr<br>0.507  <br>0.000<br>0.000                                                                                         | LK2                                                                      |                                                                           | ≤1                                                                                                                       | CS123)<br>CS151)                                                                                                                | Querschnittsnachweis - Querkraft in Achse y nach 6.2.6 Querschnittsnachweis - Biegung um z-Achse und Querkraft nach                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| uerschnitt Nr<br>0.000  <br>uerschnitt Nr<br>0.507  <br>0.000<br>0.000                                                                                                  | . 6 - RD 140                                                             | Inhemocchar                                                               |                                                                                                                          |                                                                                                                                 | 6.2.5 und 6.2.8                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 0.000  <br>uerschnitt Nr<br>0.507  <br>0.000  <br>0.000                                                                                                                 |                                                                          | Subernesshal                                                              | > 1                                                                                                                      | ER051)                                                                                                                          | Moment um Achse z am nichtsymmetrischen Querschnitt,<br>Voutenstab oder Stabsatz -> Stabilitätsnachweis nach 6.3.4 nicht                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 0.000  <br>uerschnitt Nr<br>0.507  <br>0.000  <br>0.000                                                                                                                 |                                                                          |                                                                           |                                                                                                                          |                                                                                                                                 | möglich                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 0.507<br>0.000<br>0.000                                                                                                                                                 |                                                                          |                                                                           |                                                                                                                          |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 0.507<br>0.000<br>0.000                                                                                                                                                 | 0.000   LK2   0.05   ≤1   CS101)   Querschnittsnachweis - Zug nach 6.2.3 |                                                                           |                                                                                                                          |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 0.000                                                                                                                                                                   | Querschnitt Nr. 2 - HEB 300                                              |                                                                           |                                                                                                                          |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 0.000                                                                                                                                                                   | LK2<br>LK2                                                               | 0.01<br>0.12                                                              | ≤ 1<br>≤ 1                                                                                                               | CS102)<br>CS121)                                                                                                                | Querschnittsnachweis - Druck nach 6.2.4 Querschnittsnachweis - Querkraft in Achse z nach 6.2.6                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                                                                                                                                         | LK2                                                                      | 0.00                                                                      | ≤ 1                                                                                                                      | CS126)                                                                                                                          | Querschnittsnachweis - Schubbeulen nach 6.2.6(6)                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| 0.507                                                                                                                                                                   | LK2                                                                      | 0.09                                                                      | ≤ 1                                                                                                                      | CS181)                                                                                                                          | Querschnittsnachweis - Biegung, Quer- und Normalkraft nach 6.2.9.1                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 0.507                                                                                                                                                                   | LK4                                                                      | 0.00                                                                      | ≤ 1                                                                                                                      | CS221)                                                                                                                          | Querschnittsnachweis - Doppelbiegung, Quer- und Normalkraft nach 6.2.10 und 6.2.9                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 0.507                                                                                                                                                                   | LK2                                                                      | 0.07                                                                      | ≤ 1                                                                                                                      | ST364)                                                                                                                          | Stabilitätsnachweis - Biegung und Druck nach 6.3.3, Verfahren 2                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 0.507                                                                                                                                                                   | LK2                                                                      | 0.10                                                                      | ≤ 1                                                                                                                      | ST371)                                                                                                                          | Stabilitätsnachweis - Biegung und Druck nach 6.3.4, Allgemeines Verfahren                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| iono ob :: 'et 11                                                                                                                                                       | 0 UED 00                                                                 |                                                                           |                                                                                                                          |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| erschnitt Nr<br>  0.000                                                                                                                                                 | LK2                                                                      | 0.01                                                                      | ≤ 1                                                                                                                      | CS102)                                                                                                                          | Querschnittsnachweis - Druck nach 6.2.4                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 0.507                                                                                                                                                                   | LK2                                                                      | 0.12                                                                      | ≤ 1                                                                                                                      | CS121)                                                                                                                          | Querschnittsnachweis - Querkraft in Achse z nach 6.2.6                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 0.000<br>0.000                                                                                                                                                          | LK2<br>LK2                                                               | 0.00<br>0.09                                                              | ≤ 1<br>≤ 1                                                                                                               | CS126)<br>CS181)                                                                                                                | Querschnittsnachweis - Schubbeulen nach 6.2.6(6) Querschnittsnachweis - Biegung, Quer- und Normalkraft nach                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 0.000                                                                                                                                                                   | LK2                                                                      | 0.07                                                                      | ≤ 1                                                                                                                      | ST364)                                                                                                                          | 6.2.9.1<br>Stabilitätsnachweis - Biegung und Druck nach 6.3.3, Verfahren 2                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| 0.000                                                                                                                                                                   | LK2                                                                      | 0.10                                                                      | ≤ 1                                                                                                                      | ST371)                                                                                                                          | Stabilitätsnachweis - Biegung und Druck nach 6.3.4, Allgemeines                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|                                                                                                                                                                         |                                                                          |                                                                           | 1                                                                                                                        | I                                                                                                                               | Verfahren                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| erschnitt Nr<br>  0.000                                                                                                                                                 | . 10 - Recht<br>LK2                                                      | eck 400/1000<br>0.00                                                      | ≤ 1                                                                                                                      | CS100)                                                                                                                          | Keine bzw. sehr kleine Schnittgrößen                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| ·                                                                                                                                                                       |                                                                          |                                                                           | _                                                                                                                        | ,,                                                                                                                              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 0.000                                                                                                                                                                   | LK2                                                                      | eck 400/1000<br>0.00                                                      | ≤ 1                                                                                                                      | CS100)                                                                                                                          | Keine bzw. sehr kleine Schnittgrößen                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| ierschnitt Ni                                                                                                                                                           | 10 Recht                                                                 | eck 400/1000                                                              |                                                                                                                          |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 0.000                                                                                                                                                                   | LK4                                                                      | 0.00                                                                      | ≤ 1                                                                                                                      | CS100)                                                                                                                          | Keine bzw. sehr kleine Schnittgrößen                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| uerschnitt Nr                                                                                                                                                           | 10 - Recht                                                               | eck 400/1000                                                              |                                                                                                                          |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 0.000                                                                                                                                                                   | LK3                                                                      | 0.00                                                                      | ≤ 1                                                                                                                      | CS100)                                                                                                                          | Keine bzw. sehr kleine Schnittgrößen                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| erschnitt Nr                                                                                                                                                            | 10 Recht                                                                 | eck 400/1000                                                              |                                                                                                                          |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 0.100                                                                                                                                                                   | LK3                                                                      | 0.00                                                                      | ≤ 1                                                                                                                      | CS100)                                                                                                                          | Keine bzw. sehr kleine Schnittgrößen                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                                                                                                                                                                         |                                                                          | eck 400/1000                                                              |                                                                                                                          |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 0.100                                                                                                                                                                   | LK4                                                                      | 0.00                                                                      | ≤1                                                                                                                       | CS100)                                                                                                                          | Keine bzw. sehr kleine Schnittgrößen                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                                                                                                                                                                         |                                                                          | eck 400/1000                                                              | -1                                                                                                                       | L C0100)                                                                                                                        | Koina hau aahaldaina Cahaittarä@an                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                                                                                                                                                                         | LK2                                                                      |                                                                           | 51                                                                                                                       | ( 03100)                                                                                                                        | Keine bzw. sehr kleine Schnittgrößen                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| erschnitt Nr<br>  0.000                                                                                                                                                 | . 10 - Recht<br>LK2                                                      | eck 400/1000<br>0.00                                                      | ≤ 1                                                                                                                      | CS100)                                                                                                                          | Keine bzw. sehr kleine Schnittgrößen                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| uerschnitt Nr                                                                                                                                                           |                                                                          |                                                                           |                                                                                                                          |                                                                                                                                 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 5.766                                                                                                                                                                   | LK3                                                                      | 0.01                                                                      | ≤ 1                                                                                                                      | CS102)                                                                                                                          | Querschnittsnachweis - Druck nach 6.2.4                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 1.153                                                                                                                                                                   | LK2                                                                      | 0.01                                                                      | ≤1                                                                                                                       | CS181)                                                                                                                          | Querschnittsnachweis - Biegung, Quer- und Normalkraft nach 6.2.9.1                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 0.000                                                                                                                                                                   | LK3                                                                      | 0.02                                                                      | ≤ 1                                                                                                                      | CS201)                                                                                                                          | Querschnittsnachweis - Biegung um z-Achse, Quer- und                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 0.000                                                                                                                                                                   | LK2                                                                      | 0.01                                                                      | ≤ 1                                                                                                                      | CS221)                                                                                                                          | Normalkraft nach 6.2.9.1  Querschnittsnachweis - Doppelbiegung, Quer- und Normalkraft                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| - 1                                                                                                                                                                     | LK3                                                                      | 0.01                                                                      | ≤ 1                                                                                                                      | ST301)                                                                                                                          | nach 6.2.10 und 6.2.9<br>Stabilitätsnachweis - Biegeknicken um y-Achse nach 6.3.1.1 und                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 5 766                                                                                                                                                                   |                                                                          |                                                                           |                                                                                                                          | · '                                                                                                                             | 6.3.1.2(4)                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| 5.766                                                                                                                                                                   | LK3                                                                      | 0.02                                                                      | ≤1                                                                                                                       | ST311)                                                                                                                          | Stabilitätsnachweis - Biegeknicken um z-Achse nach 6.3.1.1 und 6.3.1.2(4)                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 5.766<br>5.766                                                                                                                                                          | LK3                                                                      | 0.02                                                                      | ≤1                                                                                                                       | ST321)                                                                                                                          | Stabilitätsnachweis - Drillknicken nach 6.3.1.4 und 6.3.1.2(4)                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| 5.766<br>5.766                                                                                                                                                          | LK3<br>LK2                                                               | 0.03<br>Unbemessbar                                                       | ≤1<br> >1                                                                                                                | ST364)<br>ER051)                                                                                                                | Stabilitätsnachweis - Biegung und Druck nach 6.3.3, Verfahren 2<br>Moment um Achse z am nichtsymmetrischen Querschnitt,                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 5.766                                                                                                                                                                   |                                                                          |                                                                           |                                                                                                                          |                                                                                                                                 | Voutenstab oder Stabsatz -> Stabilitätsnachweis nach 6.3.4 nicht möglich                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 5.766<br>5.766<br>5.190                                                                                                                                                 |                                                                          |                                                                           | 1                                                                                                                        | 1                                                                                                                               | mogneti                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 5.766<br>5.766<br>5.190<br>0.000                                                                                                                                        |                                                                          |                                                                           | < 1                                                                                                                      | CS102)                                                                                                                          | Querschnittsnachweis - Druck nach 6.2.4                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 5.766<br>5.766<br>5.190<br>0.000                                                                                                                                        |                                                                          |                                                                           |                                                                                                                          |                                                                                                                                 | Querschnittsnachweis - Biegung, Quer- und Normalkraft nach                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                                                                                                                                                                         | 5.766<br>5.766<br>5.190<br>0.000                                         | 5.766 LK3 5.766 LK3 5.190 LK3 0.000 LK2  schnitt Nr. 5 - HEB 46 5.766 LK3 | 5.766 LK3 0.02<br>5.766 LK3 0.02<br>5.190 LK3 0.03<br>0.000 LK2 Unbemessbar<br>schnitt Nr. 5 - HEB 400<br>5.766 LK3 0.01 | 5.766 LK3 0.02 ≤ 1 5.766 LK3 0.02 ≤ 1 5.190 LK3 0.03 ≤ 1 0.000 LK2 Unbernessbar > 1  schnitt Nr. 5 - HEB 400 5.766 LK3 0.01 ≤ 1 | 5.766 LK3 0.02 ≤1 ST311) 5.766 LK3 0.02 ≤1 ST321) 5.190 LK3 0.03 ≤1 ST321) 0.000 LK2 Unbemessbar >1 ER051)  schnitt Nr. 5 - HEB 400                                                                                                                                                                                                                                                                                                      |  |  |  |  |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM





Stadtdeich 7, 20097 HAMBURG

Tel: 040/302020-185 - Fax: 040/302020-199

Seite: 38/38 Blatt: 1

RF-STAHL EC3

Projekt: Modell: Rahmentragwerk\_Hubtore\_LP3 Datum: 20.10.2021

#### **■ 2.4 NACHWEISE STABWEISE**

| Stab | Stelle                      | LF/LK/               | Nachweis                    |                   | Gleichung                  | Bezeichnung                                                                                                                                                                                                                                                   |  |  |  |  |
|------|-----------------------------|----------------------|-----------------------------|-------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Nr.  | x [m]                       | EK                   |                             |                   | Nr.                        |                                                                                                                                                                                                                                                               |  |  |  |  |
|      | 0.000                       | LK3                  | 0.02                        | ≤ 1               | CS201)                     | Querschnittsnachweis - Biegung um z-Achse, Quer- und                                                                                                                                                                                                          |  |  |  |  |
|      | 0.000                       | LK2                  | 0.01                        | ≤ 1               | CS221)                     | Normalkraft nach 6.2.9.1<br>Querschnittsnachweis - Doppelbiegung, Quer- und Normalkraft<br>nach 6.2.10 und 6.2.9                                                                                                                                              |  |  |  |  |
|      | 5.766                       | LK3                  | 0.01                        | ≤ 1               | ST301)                     | Stabilitätsnachweis - Biegeknicken um y-Achse nach 6.3.1.1 und 6.3.1.2(4)                                                                                                                                                                                     |  |  |  |  |
|      | 5.766                       | LK3                  | 0.02                        | ≤ 1               | ST311)                     | Stabilitàtsnachweis - Biegeknicken um z-Achse nach 6.3.1.1 und 6.3.1.2(4)                                                                                                                                                                                     |  |  |  |  |
|      | 5.766<br>5.190<br>0.000     | LK3<br>LK3<br>LK2    | 0.02<br>0.03<br>Unbemessbar | ≤ 1<br>≤ 1<br>> 1 | ST321)<br>ST364)<br>ER051) | Stabilitätsnachweis - Drillknicken nach 6.3.1.4 und 6.3.1.2(4) Stabilitätsnachweis - Biegung und Druck nach 6.3.3, Verfahren 2 Moment um Achse z am nichtsymmetrischen Querschnitt, Voutenstab oder Stabsatz -> Stabilitätsnachweis nach 6.3.4 nicht möglich  |  |  |  |  |
| 32   | Querschnitt Nr. 5 - HEB 400 |                      |                             |                   |                            |                                                                                                                                                                                                                                                               |  |  |  |  |
| 32   | 5.766<br>1.153              | LK4<br>LK2           | 0.02<br>0.01                | ≤ 1<br>≤ 1        | CS102)<br>CS181)           | Querschnittsnachweis - Druck nach 6.2.4<br>Querschnittsnachweis - Biegung, Quer- und Normalkraft nach                                                                                                                                                         |  |  |  |  |
|      | 0.000                       | LK4                  | 0.02                        | ≤ 1               | CS201)                     | 6.2.9.1<br>Querschnittsnachweis - Biegung um z-Achse, Quer- und<br>Normalkraft nach 6.2.9.1                                                                                                                                                                   |  |  |  |  |
|      | 0.000                       | LK2                  | 0.01                        | ≤ 1               | CS221)                     | Querschnittsnachweis - Doppelbiegung, Quer- und Normalkraft<br>nach 6.2.10 und 6.2.9                                                                                                                                                                          |  |  |  |  |
|      | 5.766                       | LK4                  | 0.02                        | ≤ 1               | ST301)                     | Stabilitätsnachweis - Biegeknicken um y-Achse nach 6.3.1.1 und 6.3.1.2(4)                                                                                                                                                                                     |  |  |  |  |
|      | 5.766<br>5.766              | LK4<br>LK4           | 0.03                        | ≤1                | ST311)<br>ST321)           | Stabilitätsnachweis - Biegeknicken um z-Achse nach 6.3.1.1 und 6.3.1.2(4) Stabilitätsnachweis - Drillknicken nach 6.3.1.4 und 6.3.1.2(4)                                                                                                                      |  |  |  |  |
|      | 5.766<br>5.189<br>0.000     | LK4<br>LK4<br>LK2    | 0.02<br>0.04<br>Unbemessbar | ≤1<br>≤1<br>>1    | ST364)<br>ER051)           | Stabilitätsnachweis - Driimknockt nach 6.3.1, 4 und 6.3.31.2(4) Stabilitätsnachweis - Biegung und Druck nach 6.3.3, Verfahren 2 Moment um Achse z am nichtsymmetrischen Querschnitt, Voutenstab oder Stabsatz -> Stabilitätsnachweis nach 6.3.4 nicht möglich |  |  |  |  |
|      |                             |                      |                             | '                 |                            |                                                                                                                                                                                                                                                               |  |  |  |  |
| 33   | Querschnitt N<br>5,766      | r. 5 - HEB 40<br>LK4 | 0.02                        | ≤ 1               | CS102)                     | Querschnittsnachweis - Druck nach 6.2.4                                                                                                                                                                                                                       |  |  |  |  |
|      | 1.153                       | LK2                  | 0.02                        | ≤ 1               | CS102)                     | Querschnittsnachweis - Biegung, Quer- und Normalkraft nach<br>6.2.9.1                                                                                                                                                                                         |  |  |  |  |
|      | 0.000                       | LK4                  | 0.02                        | ≤ 1               | CS201)                     | Querschnittsnachweis - Biegung um z-Achse, Quer- und Normalkraft nach 6.2.9.1                                                                                                                                                                                 |  |  |  |  |
|      | 0.000                       | LK2<br>LK4           | 0.01                        | ≤1                | CS221)                     | Querschnittsnachweis - Doppelbiegung, Quer- und Normalkraft nach 6.2.10 und 6.2.9                                                                                                                                                                             |  |  |  |  |
|      | 5.766<br>5.766              | LK4                  | 0.02<br>0.03                | ≤ 1<br>≤ 1        | ST301)<br>ST311)           | Stabilitätsnachweis - Biegeknicken um y-Achse nach 6.3.1.1 und 6.3.1.2(4) Stabilitätsnachweis - Biegeknicken um z-Achse nach 6.3.1.1 und                                                                                                                      |  |  |  |  |
|      | 5.766                       | LK4                  | 0.02                        | ≤1                | ST321)                     | 6.3.1.2(4) Stabilitätsnachweis - Drillknicken nach 6.3.1.4 und 6.3.1.2(4)                                                                                                                                                                                     |  |  |  |  |
|      | 5.189<br>0.000              | LK4<br>LK2           | 0.04<br>Unbemessbar         | ≤ 1<br>> 1        | ST364)<br>ER051)           | Stabilitätsnachweis - Biegung und Druck nach 6.3.3, Verfahren 2<br>Moment um Achse z am nichtsymmetrischen Querschnitt,<br>Voutenstab oder Stabsatz -> Stabilitätsnachweis nach 6.3.4 nicht<br>möglich                                                        |  |  |  |  |
| 34   | Querschnitt N               | r. 2 HEB 3           | 00                          |                   |                            |                                                                                                                                                                                                                                                               |  |  |  |  |
|      | 1.171                       | LK4                  | 0.01                        | ≤ 1               | CS102)                     | Querschnittsnachweis - Druck nach 6.2.4                                                                                                                                                                                                                       |  |  |  |  |
|      | 0.000<br>0.000<br>1.546     | LK4<br>LK2<br>LK4    | 0.08<br>0.00<br>0.05        | ≤ 1<br>≤ 1<br>≤ 1 | CS121)<br>CS126)<br>CS181) | Querschnittsnachweis - Querkraft in Achse z nach 6.2.6 Querschnittsnachweis - Schubbeulen nach 6.2.6(6) Querschnittsnachweis - Biegung, Quer- und Normalkraft nach                                                                                            |  |  |  |  |
|      | 1.546                       | LK4                  | 0.05                        | ≤ 1               | ST331)                     | 6.2.9.1<br>Stabilitätsnachweis - Biegedrillknicken nach 6.3.2.1 und 6.3.2.3 -                                                                                                                                                                                 |  |  |  |  |
|      | 1.546                       | LK4                  | 0.06                        | ≤ 1               | ST371)                     | I-Profil<br>Stabilitätsnachweis - Biegung und Druck nach 6.3.4, Allgemeines<br>Verfahren                                                                                                                                                                      |  |  |  |  |
| 35   | Querschnitt N               | r 2.HFR %            | no                          |                   |                            |                                                                                                                                                                                                                                                               |  |  |  |  |
| 00   | 1.171                       | LK3                  | 0.01                        | ≤ 1               | CS102)                     | Querschnittsnachweis - Druck nach 6.2.4                                                                                                                                                                                                                       |  |  |  |  |
|      | 0.000<br>0.000<br>1.545     | LK3<br>LK2<br>LK3    | 0.06<br>0.00<br>0.04        | ≤ 1<br>≤ 1<br>≤ 1 | CS121)<br>CS126)<br>CS181) | Querschnittsnachweis - Querkraft in Achse z nach 6.2.6<br>Querschnittsnachweis - Schubbeulen nach 6.2.6(6)<br>Querschnittsnachweis - Biegung, Quer- und Normalkraft nach                                                                                      |  |  |  |  |
|      | 1.545                       | LK3                  | 0.04                        | ≤1                | ST331)                     | 6.2.9.1<br>Stabilitätsnachweis - Biegedrillknicken nach 6.3.2.1 und 6.3.2.3 -                                                                                                                                                                                 |  |  |  |  |
|      |                             | 1                    | 1                           | I                 | 1                          | I-Profil                                                                                                                                                                                                                                                      |  |  |  |  |

RFEM 5.26.02 - Allgemeine 3D-Tragwerke nach FEM



# 7 Antriebe7.1 Massen

Die Massen der Tore sowie des Rahmentragwerkes mit Querarretierung erfolgt in der Entwurfsphase überschlägig. Basis sind die ausgegebenen Massen aus der FE-Berechnung.

| Massen Hubtor |                              |       |
|---------------|------------------------------|-------|
|               |                              | [kg]  |
| Tor           |                              |       |
|               | Tragstruktur                 | 13300 |
|               | Beschichtung + Verschmutzung | 1330  |
|               | Hüllrohr Zylinder            | 460   |
|               | Evtl. Aussteifungen          | 500   |
|               | Dichtungen                   | 450   |
|               | Vertikaler Hydraulikzylinder | 1620  |
|               |                              | 17660 |
| Rahmen        |                              |       |
|               | Rahmen                       | 5800  |
|               | Tragstruktur Querarretierung | 1000  |
|               | Horizontaler Hubzylinder     | 22    |
|               |                              |       |
|               |                              | 6822  |

# 7.2 Hauptantrieb Vertikal

# 7.2.1 Berechnung der Hubkraft



# **Eigengewicht**

$$G_{Tor} = 13300 \ kg$$

$$\begin{split} G_{Besch} &\coloneqq 0.1 \boldsymbol{\cdot} G_{Tor} \\ G_{Hydraulik} &\coloneqq 1620 \ \textit{kg} \end{split}$$

10% des Torgewichts zur Berücksichtigung von Beschichtungen und Verschmutzung

$$G_{Rohr} = 460 \ kg$$

$$G_{Dichtungen} := 450 \text{ kg}$$

$$G_{Aussteifungen} = 500 \ kg$$

$$Ge \coloneqq G_{Tor} + G_{Besch} + G_{Hydraulik} + G_{Rohr} + G_{Dichtungen} + G_{Aussteifungen}$$
 
$$Ge = 17.66 \ tonne$$

$$F_G = Ge \cdot g$$
  $F_G = 173 \text{ kN}$ 

# Wasserlasten

 $F_{Wy} = 740 \ kN$  aus RFEM Modell: **LF 13**: Resultierende aus Wasserdruck und

Wasserauflast

 $F_{Wz} = 41 \ kN$  positiv: Abtrieb,

negativ: Auftrieb

## Reibungskraft

$$\mu_{RD} := 0.2$$
  $\mu_{RD0} := \mu_{RD} \cdot 1.2$   $\mu_{RD0} = 0.24$ 

Haftreibungskraft  $F_{RD0} \coloneqq \mu_{RD0} \cdot F_{Wy}$   $F_{RD0} = 177.6 \ kN$  Gleitreibungskraft  $F_{RD} \coloneqq \mu_{RD} \cdot F_{Wy}$   $F_{RD} = 148 \ kN$ 

Notwendige Zugkraft des Hubzylinders

$$F_s = F_{RD0} + F_C + F_{Wz} \qquad F_s = 392 \text{ kN}$$

### 7.2.2 Angebot Hubzylinder Vertikal

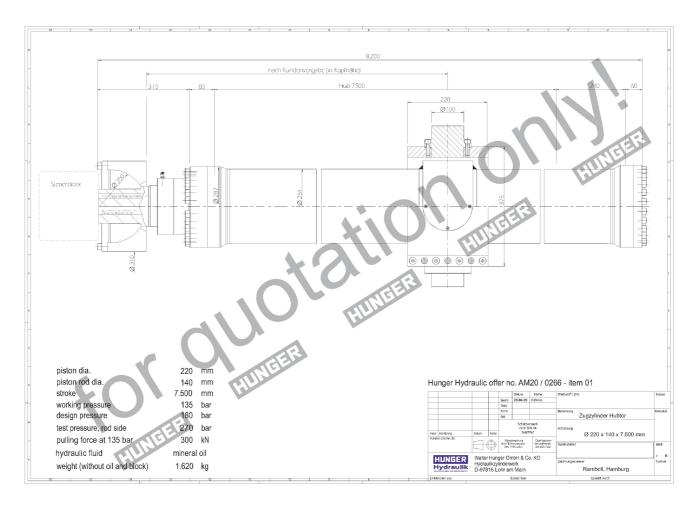
Für die geforderte Hubkraft von  $\sim$  390 kN wird von Hunger Hydraulik der folgende Hubzylinder angeboten. Die technischen Daten sowie die Abmessungen sind unterhalb zusammengefasst.



Hydraulikzylinder für Hubtor in einem Sperrwerk, doppelt wirkend als Zugzylinder mit Öldurchführung durch die Kolbenstange und mit aufgebautem Steuerblock

#### Technische Daten

-----

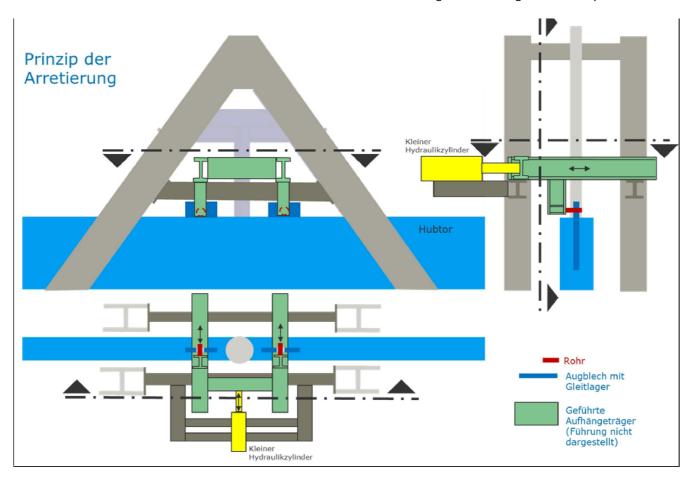

Kolbendurchmesser: 220 mm
Stangendurchmesser: 140 mm
Hub: 7.500 mm
Arbeitsdruck: 172 bar
Nenndruck Stangenraum: 220 bar
Prüfdruck Stangenraum: 330 bar
Zugkraft bei 172 bar: 390 kN

Betriebsmedium: Panolin Synth 15

#### Abmessungen:

-----

Zylinderrohraußendurchmesser: 254 mm
Kopf- / Bodendurchmesser: 287 mm
Abstand Flansch- Kardan (eingefahren): mm
Gesamtlänge (eingefahren): 8.200 mm
Gewicht ca.: 1.620 kg




#### 7.3 Antrieb Querfeststellung

In der hochgezogenen Position werden die Tore im Allgemeinen durch eine Querarretierung gehalten. Diese ist folgend



skizziert. Unterhalb der Skizze finden sich die technischen Daten und Abmessungen der benötigten Feststellzylinder.



Feststellzylinder, K63 S45 H150, zur Arretierung des hochgezogenen Tores. Nach eigener Konstruktion und Entwicklung

#### Technische Daten

Kolbendurchmesser63 mmKolbenstangendurchmesser45 mmHub150 mmNenndruck250 bar

Betriebsdruck 135 bar Prüfdruck 375 bar Hubgeschwindigkeit max. 0,5 m/s

Auslegungstemperatur: -20°C bis +80°C Betriebsmedium: Panolin Synth 15



#### Abmessungen

.....

Zylinderrohraußendurchmesser 80 mm
Zylinderkopfdurchmesser 113 mm
Einbaulage Fuß/Fuß 220 mm
Gesamtlänge, eingefahren 584 mm
Gewicht (ohne Ölfüllung) ca. 22 kg