

Gutachterliche Stellungnahme zur

Standorteignung nach DIBt 2012 für den

Windpark Hugoldsdorf

Deutschland

Bericht Nr.: I17-SE-2019-263

Gutachterliche Stellungnahme zur Standorteignung nach DIBt 2012 für den Windpark Hugoldsdorf

Bericht-Nr.:

I17-SE-2019-263

Auftraggeber:

Recknitz-Trebeltal Energie Verwaltungsgesellschaft mbH

Krakower Str. 2

D- 18465 Hugoldsdorf

Auftragsnehmer:

I17-Wind GmbH & Co. KG

Am Westersielzug 11

25840 Friedrichstadt

Tel.: 04881 - 936 498 - 0 Fax.: 04881 - 936 498 - 19

E-Mail: mail@i17-wind.de Internet: www.i17-wind.de

Bearbeitet:

Heiko Pauls (B. Eng.)

Geprüft:

Dipl.-Ing. (FH) Christian Kebbel,

Datum:

13. November 2019

Haftungsausschluss und Urheberrecht

Die vorliegende Gutachterliche Stellungnahme wurde unabhängig, unparteiisch und nach bestem Wissen und Gewissen nach derzeitigem Stand der Technik ausgeführt. Für die Daten, die nicht von der I17-Wind GmbH & Co. KG gemessen, erhoben und verarbeitet wurden, kann keine Garantie übernommen werden.

Urheber der vorliegenden Gutachterlichen Stellungnahme zur Standorteignung nach DIBt 2012 ist die I17-Wind GmbH & Co. KG. Der Auftraggeber erhält nach § 31 Urheberrechtsgesetz das einfache Nutzungsrecht, welches nur durch Zustimmung des Urhebers übertragen werden kann. Eine Bereitstellung zum uneingeschränkten Download in elektronischen Medien ist ohne gesonderte Zustimmung des Urhebers nicht gestattet.

Die I17-Wind GmbH & Co. KG ist Mitglied im Sachverständigenbeirat des Bundesverbandes WindEnergie (BWE) e.V. und erfüllt damit die Voraussetzung zur Anerkennung der gutachterlichen Stellungnahme eines Sachverständigen gemäß Anlage 2.7/12 Fußnote 2 der Musterliste der Technischen Baubestimmungen über die örtlich auftretende Turbulenzbelastung und über die Zulässigkeit von vorgesehenen Abständen zu benachbarten Windenergieanlagen in Bezug auf die Standsicherheit der geplanten und bestehenden Anlagen.

Zusatz bezüglich der Typenprüfung

Zum Zeitpunkt der Berichtserstellung lagen die Typenprüfungen für die geplanten Anlagen vom Typ ENERCON E-126 EP3 / 4.000 kW mit einer Nabenhöhe von 135 m und vom Typ ENERCON E-115 EP3 E3 / 4.200 kW mit einer Nabenhöhe von 149 m noch nicht vor. Bis zur Fertigstellung der Typenprüfungen gilt die vorliegende Stellungnahme zur Standorteignung der Windenergieanlagen ENERCON E-126 EP3 / 4.000 kW mit einer Nabenhöhe von 135 m und der Anlage ENERCON E-115 EP3 E3 / 4.200 kW mit einer Nabenhöhe von 149 m als vorläufig und behält ihre Gültigkeit nur im Falle der Typenprüfungen, welche die der vorliegenden Stellungnahme zu Grunde gelegten Auslegungsparameter abdeckt.

Revisionsnummer	Revisionsdatum	Änderung	Bearbeitet
0	13.11.2019	Erstellung Bericht I17-SE-2019-263	Pauls

Bearbeitet

B. Eng. Heiko Pauls,

Sachverständiger

Friedrichstadt, 13.11.2019

Geprüft

Dipl.-Ing. (FH) Christian Kebbel,

Sachverständiger

Friedrichstadt, 13.11.2019

The Tamb

Inhaltsverzeichnis

1		Vorb	eme	rkung	6
	1.	1	Allge	meines	6
	1.	2	Gefü	hrte Nachweise	6
		1.2.1	l	Prüfung der Standorteignung an nicht topografisch komplexen Standorten	7
		1.2.2	2	Prüfung der Standorteignung an topografisch komplexen Standorten	., 7
		1.2.3	3	Verfahren bei Überschreitungen	8
	1.	3	Abw	eichungen von den Richtlinien	8
2		Aufg	aben	stellung	9
	2.	1	Umf	ang der Stellungnahme	9
	2.	2	Stan	dortbeschreibung	9
3		Verg	leich	der Windverhältnisse	11
	3.	1	Grur	ndlagen	11
	3.	2	Ausl	egungswerte der geplanten WEA	11
		3.2.1	L	Auslegungswerte der ENERCON E-126 EP3 / 4.000 kW auf 135 m Nabenhöhe	11
		3.2.2	2	Auslegungswerte der E-115 EP3 E3 / 4.200 kW auf 149 m Nabenhöhe	11
	3.	3	Vorh	nerrschende Windverhältnisse am Standort	12
		3.3.2	1	Mittlere Windgeschwindigkeit auf Nabenhöhe	12
		3.3.2	2	50-Jahres-Windgeschwindigkeit	13
4		Verg	gleich	der effektiven Turbulenzintensitäten I _{eff}	14
	4.	1	Grur	ndlagen	14
	4.	2	Bedi	ngungen am Standort	15
		4.2.2	1	Windparkkonfiguration	15
	4.	3	Ermi	ittlung der Umgebungsturbulenzintensität	16
		4.3.3	1	Datengrundlage	16
		4.3.2	2	Vorgehensweise	16
		4.3.3	3	Untersuchung der topografischen Komplexität der Anlagenstandorte	17
		4.3.4	4	Ermittlung des Turbulenzstrukturparameters	17
		4.3.	5	Repräsentative Turbulenzintensität	18
		4.3.0	6	Modellunsicherheiten	. 18
	4.	4	Erm	ittlung der effektiven Turbulenzintensität l _{eff}	. 19
		4.4.	1	Grundlagen	. 19
		4.4.2	2	Ergebnis	. 21
		4.4.	3	Sektorielle Betriebseinschränkung bis zur Vorlage der Lastenrechnung	. 22
5		Zusa	amme	enfassung	. 23
	5.	.1	Neu	geplante Anlagen Fehler! Textmarke nicht definie	ert
6		Stan		oesuch	
	6.	.1	Dur	chführung und Ergebnis	. 24

Abkürzungs- und Symbolverzeichnis
Literaturverzeichnis
Abbildungsverzeichnis
Abbildung 2.1: Zu untersuchende Windparkkonfiguration am Standort, Kartenmaterial [23] 10
Tabellenverzeichnis
Tabelle 2.1: Zu untersuchende Windparkkonfiguration
Tabelle 3.1: Auslegungswindbedingungen E-126 EP3 / 4.000 kW auf 135 m Nabenhöhe [21.1] 11
Tabelle 3.2: Auslegungswindbedingungen E-115 EP3 E3 / $4.200 \mathrm{kW}$ auf 149 m Nabenhöhe [21.2] 11
Tabelle 3.3: Windverhältnisse am Standort auf einer Höhe 135 m ü. Grund [20]
Tabelle 3.4: Mittlere Windgeschwindigkeiten auf Nabenhöhe der geplanten Anlagen 12
Tabelle 3.5: Windzonenvergleich zwischen Standort und Typenprüfung bezogen auf DIBt 2012 13
Tabelle 4.1: Beschreibung der hinsichtlich l _{eff} auszuweisenden Anlagen
Tabelle 4.2: Komplexitätskriterien nach DIN EN 61400-1:2011-08 [5]
Tabelle 4.3: Anzusetzende Turbulenzstrukturparameter nach [5]
Tabelle 4.4: Ermittelte Turbulenzstrukturparameter für alle in Betracht zu ziehenden Anlagen 18
Tabelle 4.5: Repräsentative Turbulenzintensität für einen Standort
Tabelle 4.6: Der Turbulenzermittlung zu Grunde gelegte Richtlinien
Tabelle 4.7: Ermittelte effektive Turbulenzintensitäten l _{eff}
Tabelle 4.8: Geforderte Betriebsweise zum Schutz von W7
Tabelle 5.1: Zusammenfassung der Ergehnisse Neuanlagen

1 Vorbemerkung

1.1 Allgemeines

Das Deutsche Institut für Bautechnik DIBt hat Anfang des Jahres 2013 die Fassung Oktober 2012 der "Richtlinie für Windenergieanlagen – Einwirkungen und Standsicherheitsnachweise für Turm und Gründung" [1.1] veröffentlicht und im März 2015 eine korrigierte Fassung herausgegeben [1], auf deren Grundlage die vorliegende Gutachterliche Stellungnahme erarbeitet wurde.

1.2 Geführte Nachweise

Die Richtlinie DIBt 2012 [1] schreibt ein alternatives, vereinfachtes Verfahren zur Prüfung der Standorteignung vor, dass jedoch nur angewendet werden darf, wenn der Standort nach DIN EN 61400-1:2011-08 [5] als nicht topografisch komplex eingestuft wird. Ist dieser als topografisch komplex einzustufen, wird der vereinfachte Nachweis der Standorteignung um die Kriterien nach DIN EN 61400-1:2011-08 [5] Abschnitt 11.9 erweitert. Die folgenden Abschnitte stellen beide Verfahrensweisen dar. Die Vergleiche der Auslegungswerte nach Typen- bzw. Einzelprüfung für die zu untersuchenden Größen mit den im Rahmen dieses Gutachtens ermittelten Werten sind nach der DIBt Richtlinie Fassung Oktober 2012 nur für neu geplante Anlagen zu führen [1]. Für bestehende Anlagen, die nach der DIBt 1993 [3] oder DIBt 2004 [2] typen-/ bzw. einzelgeprüft wurden, darf im Falle einer Parkänderung / -erweiterung der Nachweis der Standorteignung auch weiterhin nach dem Verfahren der DIBt 2004 erbracht werden [1].

Die Richtlinie DIBt 2012 [1] lässt folgende Möglichkeiten, bzw. mögliche auftretende Konfigurationen, in Bezug auf die Typenprüfung und die darin zu Grunde gelegte Richtlinie, unberücksichtigt:

- i. Der geplanten Anlage liegt eine Typenprüfung nach der Richtlinie DIBt 2004 [2] zu Grunde.
- ii. Einer oder mehrerer zu berücksichtigender Bestandsanlagen liegt eine Typenprüfung nach der DIBt 2012 [1] Richtlinie zu Grunde.

Im Januar 2015 wurde seitens des DKE ein Vorschlag erarbeitet, der dem DIBt übersandt wurde [1.2]. Eine Einarbeitung bzw. Kommentierung in die Richtlinie DIBt 2012 [1] dieses Vorschlages steht noch aus. Bis zur Kommentierung bzw. Einarbeitung des erarbeiteten Vorschlags in die Richtlinie werden für die zwei beschriebenen Fälle, die nicht durch die DIBt 2012 [1] abgedeckt werden, folgende Verfahrensweisen gemäß [1.2] als Quasistandard angewandt:

- Liegt einer neu geplanten Anlage eine Typenprüfung gemäß DIBt 2004 [2] zu Grunde, wird der Nachweis der Standorteignung basierend auf dem vereinfachten Verfahren nach DIBt 2012 [1], beschrieben in Abschnitt 1.2.1, geführt. Dieser Nachweis entspricht den Mindestanforderungen der zum Nachweis der Standorteignung der Typenprüfung nach DIBt 2004 [2] zu Grunde gelegten Richtlinie DIN EN 61400-1:2004 [6], bzw. IEC 61400-1 ed.2 [8].
- ii. Da davon auszugehen ist, dass für bereits genehmigte, bzw. bestehende Anlagen mit einer Typenprüfung nach DIBt 2012 [1] die Standorteignung bezüglich der Windbedingungen in deren Genehmigungsverfahren nachgewiesen wurde, werden nur durch hinzukommende Anlagen beeinflusste Parameter geprüft und mit den Auslegungswerten verglichen. Dies entspricht lediglich der effektiven Turbulenzintensität leff, welche durch einen Zubau erhöht werden kann.

Die dargestellte Verfahrensweise wurde in Abstimmung mit den Anlagenherstellern erarbeitet und findet solange Anwendung bis eine eindeutige Regelung durch das DIBt erfolgt ist [1].

1.2.1 Prüfung der Standorteignung an nicht topografisch komplexen Standorten

Die nach der DIBt Richtlinie Fassung 2012 [1] vereinfachte Prüfung zur Standorteignung verlangt folgende, zu erbringende Nachweise:

- i. Vergleich der mittleren Windgeschwindigkeit
 - 1) Die mittlere Windgeschwindigkeit am Standort ist um mindestens 5% kleiner als gemäß Typen-/Einzelprüfung oder
 - 2) die mittlere Windgeschwindigkeit ist kleiner als gemäß Typen-/Einzelprüfung und für den Formparameter k der Weibull-Funktion gilt: k ≥ 2.
- ii. Vergleich der effektiven Turbulenzintensität nach DIN EN 61400-1:2011-08 [5] zwischen 0.2 v_{50} (h) und 0.4 v_{50} (h) mit der Auslegungsturbulenz nach NTM.
- iii. Vergleich der 50-Jahreswindgeschwindigkeit
 - 1) Die Windzone gemäß Typen-/Einzelprüfung deckt die Windzone des betrachteten Standortes entsprechend der Windzonenkarte ab (die detaillierten Regelungen gemäß DIN EN 1991-1-4, Absatz 4.3.3 einschließlich NA [7] für nicht ebene Geländelagen sind ggf. zu beachten) oder
 - 2) die 50-Jahreswindgeschwindigkeit v_{50} (h) gemäß Typen-/Einzelprüfung deckt die 50-Jahreswindgeschwindigkeit am Standort ab (z.B. Nachweis durch ein Extremwindgutachten).

1.2.2 Prüfung der Standorteignung an topografisch komplexen Standorten

Handelt es sich nach Abschnitt 11.2 der DIN EN 61400-1:2011-08 [5] um einen topografisch komplexen Standort und liegt der zu untersuchenden WEA eine Typen-/Einzelprüfung nach DIBt 2012 [1] zu Grunde, wird die vereinfachte Standorteignungsprüfung nach Abschnitt 1.2.1 um folgende Berechnungen, bzw. Nachweise, basierend auf DIN EN 61400-1:2011-08 [5], erweitert:

- iv. Die sektorielle Schräganströmung auf Nabenhöhe muss ermittelt und der Nachweis erbracht werden, dass die Schräganströmung auf Nabenhöhe den vorgegebenen Wert von +/- 8°, bzw. den in der Typen-/Einzelprüfung angegebenen Wert, nicht überschreitet.
- v. Der Standortmittelwert des Höhenexponenten α muss ermittelt und der Nachweis erbracht werden, dass dieser für jeden Sektor unter dem Maximal-, bzw. über dem Minimalwert liegt, der in der Norm [5] ($0 \le \alpha \le 0.2$) oder der Typen-/Einzelprüfung angegeben ist.
- vi. Der Standortmittelwert der Luftdichte darf bei allen Windgeschwindigkeiten größer gleich der Nennwindgeschwindigkeit den in der Norm [5] ($\rho \le 1.225 \text{ kg/m}^3$) oder der Typen-/Einzelprüfung angegebenen Wert nicht überschreiten.
- vii. Die standortspezifische extreme Turbulenz muss ermittelt und der Nachweis erbracht werden, dass die Auslegungswerte des ETM im Sektor mit der höchsten mittleren Windgeschwindigkeit nicht überschritten werden.

1.2.3 Verfahren bei Überschreitungen

Wenn eine der Bedingungen aus Abschnitt 1.2 nicht eingehalten wird, kann die Standorteignung auf Basis eines Lastvergleiches der standortspezifischen Betriebsfestigkeits- und/oder Extremlasten mit den Lastannahmen der Typen-/Einzelprüfung, entsprechend den Lastfällen im Produktionsbetrieb DLC 1.1 – 1.5, nachgewiesen werden [5]. Hierzu werden die der Typen-/Einzelprüfung zu Grunde gelegten Auslegungslasten mit den standortspezifischen Lasten, die auf Basis der Ergebnisse aus der vorliegenden Gutachterlichen Stellungnahme ermittelt werden, verglichen. Wenn sich zeigt, dass die standortspezifischen Lasten die Auslegungslasten nicht überschreiten, ist eine Standorteignung gegeben. Lässt sich nicht nachweisen, dass die standortspezifischen Lasten eingehalten werden, muss die Anlage gegebenenfalls mit einer sektoriellen Betriebseinschränkung betrieben werden, um die Lasten soweit zu reduzieren, dass sie unterhalb der Auslegungslasten liegen oder die Standorteignung kann nicht nachgewiesen werden. Der Nachweis wird durch den/die Hersteller der betroffenen Anlagen geführt und der I17-Wind GmbH & Co. KG im Rahmen einer Geheimhaltungsvereinbarung vorgelegt.

1.3 Abweichungen von den Richtlinien

Folgende, von der DIBt 2012 Richtlinie [1] abweichende, Verfahren wurden für die vorliegende gutachterliche Stellungnahme zur Standorteignung gewählt:

- I. Generell ist die Umgebungsturbulenzintensität nach DIN EN 1991-1-4/NA:2010-12 [7] zu ermitteln, wobei jedoch lokale Rauigkeiten nicht direkt berücksichtigt werden, sondern nur als Geländekategorie Eingang in die Berechnung finden. Die Richtlinie des Deutschen Institutes für Bautechnik DIBt sieht die Ermittlung der Umgebungsturbulenzintensität für die Geländekategorie I und II nach einer vereinfachten Formel vor [1]. Um den tatsächlichen Rauigkeiten am Standort Rechnung zu tragen, wird die Umgebungsturbulenzintensität auf Basis eines invers logarithmischen Profils berechnet, das die Anordnung und den Abstand der Rauigkeitselemente berücksichtigt und die Werte nach [7] mit abdeckt.
- II. Die effektiven Turbulenzintensitäten werden bis zur Abschaltwindgeschwindigkeit der zu betrachtenden Anlage ermittelt und nachgewiesen.
- III. Bezüglich der effektiven Turbulenzintensität werden grundsätzlich alle Anlagen im Umkreis des 10-fachen Rotordurchmessers RD der geplanten Anlage(n) in die Betrachtung einbezogen und nachgewiesen.
- IV. Der Standortmittelwert der Luftdichte wird abdeckend für alle Windgeschwindigkeiten angegeben.
- V. Die standortspezifische extreme Turbulenz wird nicht nur für den Sektor mit der höchsten mittleren Windgeschwindigkeit, sondern für alle Sektoren ermittelt. Der höchste ermittelte Wert wird ausgewiesen und mit der Referenzkurve des ETM verglichen.

Im vorliegenden Nachweis ist mit der mittleren Windgeschwindigkeit v_{ave} immer das Jahresmittel der Windgeschwindigkeit auf Nabenhöhe gemeint.

2 Aufgabenstellung

2.1 Umfang der Stellungnahme

Da im Windpark Hugoldsdorf kein Anlagenstandort einer nach DIBt 2012 typen-/einzelgeprüften Anlage nach DIN EN 61400-1:2011-08 [5] als topografisch komplexer Standort zu bewerten ist und, bzw. oder, einer zu prüfenden Anlage eine Typen-/Einzelprüfung nach DIBt 2004 [2] zu Grunde liegt, findet das vereinfachte Verfahren nach Abschnitt 1.2.1 für alle Anlagen Anwendung.

2.2 Standortbeschreibung

Der Auftraggeber plant die Errichtung von sieben Windenergieanlagen (WEA) des Typs E-126 EP3 / 4.000 kW auf 135 m Nabenhöhe und einer Anlage des Typs ENERCON E-115 EP3 E3 / 4.200 kW auf 149 m Nabenhöhe. In der näheren Umgebung des Standortes sind keine weiteren Anlagen errichtet. Das Standortzentrum liegt nördlich der Gemeinde Hugoldsdorf im Landkreis Vorpommern-Rügen in Mecklenburg-Vorpommern. Die I17-Wind GmbH & Co. KG wurde damit beauftragt, eine gutachterliche Stellungnahme zur Standorteignung nach der "Richtlinie für Windenergieanlagen…" DIBt 2012 [1] für alle zu betrachtenden WEA abzugeben, welche an den in Tabelle 2.1 aufgeführten und in Abbildung 2.1 dargestellten Koordinaten errichtet werden sollen. Im vorliegenden Gutachten beziehen sich alle Bezeichnungen auf die interne, laufende W-Nummer.

Interne	Hersteller WEA	P _{Nenn}	NH	UTM ETRS89 Zone 33				
lfd. Nr.	Bestand	Auttraggeber			[kW]	[m]	X [m]	Y [m]
W1	Neu	WEA 1	ENERCON	E-126 EP3 / 4.000 kW	4000	135.0	353396	6004672
W2	Neu	WEA 2	ENERCON	E-126 EP3 / 4.000 kW	4000	135.0	353554	6004411
W3	Neu	WEA 3	ENERCON	E-126 EP3 / 4.000 kW	4000	135.0	353894	6004445
W4	Neu	WEA 4	ENERCON	E-126 EP3 / 4.000 kW	4000	135.0	353661	6004033
W5	Neu	WEA 5	ENERCON	E-126 EP3 / 4.000 kW	4000	135.0	354090	6004042
W6	Neu	WEA 6	ENERCON	E-126 EP3 / 4.000 kW	4000	135.0	354077	6003710
W7	Neu	WEA 7	ENERCON	E-115 EP3 E3 / 4.200 kW	4200	149.0	354566	6004047
W8	Neu	WEA 8	ENERCON	E-126 EP3 / 4.000 kW	4000	135.0	354799	6004200

Tabelle 2.1: Zu untersuchende Windparkkonfiguration

Im vorgegeben Windparklayout ergibt sich der geringste relative Abstand einer neu geplanten Anlage zu einer anderen Anlage von 2.20 Rotordurchmessern (RD). Dies betrifft die Anlagen W7 und W8.



Abbildung 2.1: Zu untersuchende Windparkkonfiguration am Standort, Kartenmaterial [23] 117-SE-2019-263

A Neuanlagen A Bestandsanlagen A A A Windverteilung

Gutachterliche Stellungnahme zur Standorteignung nach DIBt 2012 im Windnark Hugoldsdorf

3 Vergleich der Windverhältnisse

3.1 Grundlagen

Vom Auftraggeber wurden standortbezogene Windverhältnisse übermittelt [20] und von der I17-Wind GmbH & Co. KG auf Plausibilität geprüft. Der Vergleich der Windverhältnisse am Standort mit den Auslegungsbedingungen ist nach DIBt 2012 [1] nur für Neuanlagen zu führen, siehe Tabelle 2.1.

3.2 Auslegungswerte der geplanten WEA

Es muss der Nachweis erbracht werden, dass die Windbedingungen auf Nabenhöhe die der Typen-/Einzelprüfung zu Grunde gelegten Werte nicht überschreiten. Dieser Nachweis bezieht sich auf die mittlere Windgeschwindigkeit v_{ave} und die 50-Jahreswindgeschwindigkeit v_{50} . Die Auslegungswindbedingungen werden entweder der Typen-/Einzelprüfung entnommen, oder nach den resultierenden Gleichungen bezüglich der Windzone und der Geländekategorie nach DIN EN 1991-1-4/NA:2010-12 mit DIN EN 1991-1-4:2010-12 [7] ermittelt, wenn die zu betrachtende Anlage nach der DIBt Fassung 2012 [1] typen-/einzelgeprüft ist, bzw. eine solche Typen-/Einzelprüfung angestrebt wird. Handelt es sich um eine zu betrachtende Anlage, deren Typen-/Einzelprüfung auf Auslegungswerten nach der DIBt Richtlinie Fassung 2004 [2] basiert und der Typen-/Einzelprüfung keine Auslegungswerte entnommen werden können, werden die Auslegungswindbedingungen entweder nach DIN EN 1991-1-4/NA:2010-12 mit DIN EN 1991-1-4:2010-12 [7] oder entsprechend der Staudruckzonen (Windzonen) und Gleichungen aus Anhang B der DIBt Fassung 2004 [2] berechnet. Entscheidend ist, welche Richtlinie der Typen-/Einzelprüfung zu Grunde liegt.

3.2.1 Auslegungswerte der ENERCON E-126 EP3 / 4.000 kW auf 135 m Nabenhöhe

Die geplante Anlage des Typs ENERCON E-126 EP3 / 4.000 kW auf 135 m Nabenhöhe wird derzeit basierend auf der DIBt Richtlinie von 2012 [1] typengeprüft [21.1]. Die Anlage wird voraussichtlich für die **Windzone 3** und **Geländekategorie I und II** ausgelegt. Die vorläufigen Auslegungsbedingungen werden in Tabelle 3.1 dargestellt.

DIBt 201	2
Referenzgröße auf Nabenhöhe	Auslegungswerte
V _{ave} [m/s]:	7.80
V ₅₀ [m/s]:	43.34
Turbulenzkategorie:	А

Tabelle 3.1: Auslegungswindbedingungen E-126 EP3 / 4.000 kW auf 135 m Nabenhöhe [21.1]

3.2.2 Auslegungswerte der E-115 EP3 E3 / 4.200 kW auf 149 m Nabenhöhe

Die geplante Anlage des Typs ENERCON E-115 EP3 E3 / 4.200 kW auf 149 m Nabenhöhe wird derzeit basierend auf der DIBt Richtlinie von 2012 [1] typengeprüft [21.2]. Die Anlage wird voraussichtlich für die **Windzone S** und **Geländekategorie I und II** ausgelegt. Die vorläufigen Auslegungsbedingungen werden in Tabelle 3.2 dargestellt.

DIBt 201	2
Referenzgröße auf Nabenhöhe	Auslegungswerte
V _{ave} [m/s]:	7.60
V ₅₀ [m/s]:	43.84
Turbulenzkategorie:	A

Tabelle 3.2: Auslegungswindbedingungen E-115 EP3 E3 / 4.200 kW auf 149 m Nabenhöhe [21.2]

3.3 Vorherrschende Windverhältnisse am Standort

3.3.1 Mittlere Windgeschwindigkeit auf Nabenhöhe

Um die Windverhältnisse auf Nabenhöhe an jedem Anlagenstandort zu ermitteln, werden die Daten der Windverhältnisse [20] auf alle notwendigen Höhen umgerechnet, sofern sie nicht vorliegen. Die Umrechnung erfolgt auf Basis des am jeweiligen Standort ermittelten Höhenexponenten α . Bei der vertikalen Umrechnung wird der Formparameter k als invariant mit der Höhe angenommen und lediglich der Skalenparameter A umgerechnet. Tabelle 3.3 führt die Windbedingungen am Standort auf.

Höhe: 135 m UTM ETRS89 Zone 33 354077 6003710					Bateston -
		A Parameter	k Parameter	Häufigkeit	Mittlere Windgeschwindigkeit
		[m/s]	[-]	[%]	[m/s]
Se	ktor			Y	
	N	5.90	1.94	3.94	5.21
N	INO	6.40	2.08	4.49	5.68
0	NO	7.90	2.69	7.01	7.02
0		7.90	2.86 8.29		7.08
OSO		7.80	2.75	7.26	6.99
S	SO	7.90	2.73	6.85	7.00
	S	7.90	2.73	7.18	7.06
S	SSW 8.90 3.00 10.58		7.96		
W	NSW 9.40		2.99 14.14		8.42
	W 9.10		2.54 13.20		8.11
WNW		8.20	2.26	11.56	7.31
NNW		6.10	1.99	5.47	5.42
Gesamt (alle Sektoren)		8.20	2.49	99.97	7.28

Tabelle 3.3: Windverhältnisse am Standort auf einer Höhe 135 m ü. Grund [20]

Das Ergebnis der Berechnung der mittleren Windgeschwindigkeit vave auf Nabenhöhe jeder zu betrachtenden Anlage ist in Tabelle 3.4 dargestellt. Des Weiteren werden dort die Ergebnisse mit den Auslegungswerten der Anlagen verglichen. Überschreitungen des Auslegungswertes werden *fett kursiv* dargestellt und in der relativen Betrachtung mit einem positiven Vorzeichen versehen. Unterschreitungen werden normal dargestellt und in der relativen Betrachtung mit einem negativen Vorzeichen versehen.

Interne lfd. Nr.	Hersteller	WEA	NH [m]	V _{ave} (Standort) [m/s]	V _{ave} (Auslegung) [m/s]	v _{ave} (Standort) /v _{ave} (TP) [%]	Einhaltung des Auslegungs- wertes
W1	ENERCON	E-126 EP3 / 4.000 kW	135.0	7.28	7.80	-6.7	Ja
W2	ENERCON	E-126 EP3 / 4.000 kW	135.0	7.28	7.80	-6.7	Ja
W3	ENERCON	E-126 EP3 / 4.000 kW	135.0	7.28	7.80	-6.7	Ja
W4	ENERCON	E-126 EP3 / 4.000 kW	135.0	7.28	7.80	-6.7	Ja
W5	ENERCON	E-126 EP3 / 4.000 kW	135.0	7.28	7.80	-6.7	Ja
W6	ENERCON	E-126 EP3 / 4.000 kW	135.0	7.28	7.80	-6.7	Ja
W7	ENERCON	E-115 EP3 E3 / 4.200 kW	149.0	7.44	7.60	-2.1	Ja
W8	ENERCON	E-126 EP3 / 4.000 kW	135.0	7.28	7.80	-6.7	Ja

Tabelle 3.4: Mittlere Windgeschwindigkeiten auf Nabenhöhe der geplanten Anlagen

Die mittlere Windgeschwindigkeit v_{ave} am Standort unterschreitet die Auslegungswerte für die W1 – W6 und W8 um mindestens 5 %, somit ist die Standorteignung in Bezug auf die mittlere Windgeschwindigkeit v_{ave} am Standort nachgewiesen.

Die mittlere Windgeschwindigkeit v_{ave} am Standort unterschreitet die Auslegungswerte auch für die W7. Die alleinige Forderung gemäß Abschnitt 1.2.1 nach Unterschreitung des Auslegungswertes um mindestens 5 % ist jedoch nicht erfüllt. Daher muss nachgewiesen werden, dass der Formparameter k der Weibullverteilung am Standort die Bedingung $-k \ge 2$ – erfüllt.

Gemäß der übermittelten Windverhältnisse in [20] beträgt der Formparameter k der Weibullverteilung k=2.49 und liegt somit über dem geforderten Mindestwert von k=2.00. Die Standorteignung in Bezug auf die mittlere Windgeschwindigkeit vave am Standort ist somit für alle WEA nachgewiesen.

3.3.2 50-Jahres-Windgeschwindigkeit

Der Vergleich der 50-Jahreswindgeschwindigkeit v₅₀ am Standort mit dem Auslegungswert kann auf zwei Wegen erfolgen. Wenn die Anlage in einer Windzone errichtet wird, die niedriger oder gleich der Windzone liegt, die der Typen-/Einzelprüfung zu Grunde gelegt wurde, reicht der Nachweis, dass die Windzone gemäß Typen-/Einzelprüfung die Windzone des betrachteten Standortes abdeckt [1]. Ist dies nicht der Fall, muss nachgewiesen werden, dass die 50-Jahreswindgeschwindigkeit v₅₀ gemäß Typen-/Einzelprüfung die 50-Jahreswindgeschwindigkeit am Standort abdeckt [1]. Hierzu muss die 50-Jahreswindgeschwindigkeit mittels einer geeigneten Methode (z.B. der *Gumbel*-Methode [10]) am Standort ermittelt werden.

Im Abschnitt 3.2 werden die Auslegungsbedingungen bezüglich v₅₀ der zu betrachtenden Anlagen dargestellt und in der folgenden Tabelle 3.5 mit den Bedingungen am Standort verglichen.

Alle zu betrachtenden Standorte liegen in Windzone 3 [11] und Geländekategorie II nach DIBt 2012 [1], bzw. nach DIN EN 1991-1-4/NA:2010-12 mit DIN EN 1991-1-4:2010-12 [7]. Da, nach [1], in Übergangsgebieten der Geländekategorien stets die Werte der niedrigeren Kategorie anzusetzen sind, wird der Vergleich in solchen Fällen auf Basis der Gleichungen für die niedrigere Geländekategorie durchgeführt. Die folgende Tabelle 3.5 stellt den Vergleich zwischen der Auslegungswindbedingung und der dem Standort zugeordneten Windzone dar.

WEA-Тур	NH [m]	Typenprüfung	V ₅₀ Auslegung	v₅₀ Standort	Standortklasse	Einhaltung des Auslegungs- wertes
E-126 EP3 / 4.000 kW	135.0	WZ 3 GK I und II nach DIBt 2012	43.34	41.70	WZ 3 GK II	Ja
E-115 EP3 E3 / 4.200 kW	149.0	WZ S GK I und II nach DIBt 2012	43.84	42.37	WZ 3 GK II	Ja

Tabelle 3.5: Windzonenvergleich zwischen Standort und Typenprüfung bezogen auf DIBt 2012

Die geplanten Anlagen sollen in einer Windzone errichtet werden, die durch die Auslegungswerte hinsichtlich der 50-Jahreswindgeschwindigkeit auf Nabenhöhe abgedeckt ist. Die Standorteignung hinsichtlich der 50-Jahreswindgeschwindigkeit ist somit für alle geplanten Anlagen nachgewiesen.

4 Vergleich der effektiven Turbulenzintensitäten Ieff

4.1 Grundlagen

WEA sind für eine bestimmte mittlere Windgeschwindigkeit auf Nabenhöhe ausgelegt, welche sich durch die der Typen-/Einzelprüfung zu Grunde gelegten Windzone ergibt. Wird durch eine Messung oder ein Gutachten gezeigt, dass die vorherrschenden Windgeschwindigkeiten auf Nabenhöhe innerhalb der Auslegungswerte der Typenprüfung liegen, kann eine Anlage des betrachteten Typs in Erwägung gezogen werden, siehe hierzu Abschnitt 3. Für die Turbulenzintensität auf Nabenhöhe existieren ebenfalls Auslegungswerte, welche in der aktuellen Norm DIN EN 61400-1:2011-8 [5] unter anderem in die drei Klassen A, B und C unterteilt sind. Im Gegensatz zur Windgeschwindigkeit, einer atmosphärisch auferlegten Größe, kann sich die Turbulenzintensität in Windfarmen derart erhöhen, dass die Auslegungswerte bezüglich dieser Größe überschritten werden. Ist dies der Fall, arbeitet eine WEA außerhalb der definierten Grenzwerte, was eine Verkürzung der in der Typen-/Einzelprüfung festgelegten Betriebsdauer zur Folge haben kann.

Wenn nachgewiesen werden kann, dass die an den zu betrachtenden Anlagen ermittelten, effektiven Turbulenzintensitäten unterhalb der Auslegungswerte der Typen-/Einzelprüfung der Anlage liegen, bzw. diese nicht überschreiten, kann die betrachtete Windenergieanlage am Standort betrieben werden und die Standorteignung bezüglich der effektiven Turbulenzintensität ist nachgewiesen. Die Ermittlung der effektiven Turbulenzintensität leff erfolgt hierbei nach dem in Abschnitt 4.4 beschriebenen Verfahren. Wenn effektive Turbulenzintensitäten ermittelt werden, die oberhalb der Auslegungswerte der betrachteten Turbulenzklasse liegen, kann die Standorteignung hinsichtlich der effektiven Turbulenzintensität über einen Vergleich mit den Auslegungswerten nicht nachgewiesen werden.

Aufgrund fehlender Kriterien für einen Immissionsgrenzwert für die durch benachbarte Windenergieanlagen verursachten erhöhten Turbulenzbelastungen an einer WEA, können ersatzweise die Kriterien der Standorteignung bezüglich der effektiven Turbulenzintensität für eine Turbulenzimmissionsprognose im Rahmen eines Antrages nach dem Bundes-Immissionsschutz-Gesetz (BImSchG) herangezogen werden. Eine Reduktion der Lebenszeit und der zusätzliche Verschleiß der WEA sind zumutbar, solange die Standorteignung hinsichtlich der Auslegungswerte der Turbulenzintensität oder hinsichtlich der Auslegungslasten gewährleistet bleibt. Somit stellt die vorliegende gutachterliche Stellungnahme zur Turbulenzbelastung zusätzlich eine Turbulenzimmissionsprognose im Sinne des BImSchG dar, und kann als Bestandteil der Antragsstellung nach dem BImSchG verwendet werden.

4.2 Bedingungen am Standort

4.2.1 Windparkkonfiguration

Der Auftraggeber hat die in Tabelle 2.1 und Abbildung 2.1 dargestellte Windparkkonfiguration übermittelt [19]. Aufgeführt sind alle übermittelten Anlagen, siehe hierzu auch Abschnitt 2.2. Die effektive Turbulenzintensität leff ist nur für Anlagen innerhalb eines Radius von 10 RD [5] um die geplanten Anlagen auszuweisen, bei der Ermittlung von leff wird aber das gesamte Windparklayout aus Tabelle 2.1 berücksichtigt. Tabelle 4.1 führt die für die Betrachtung der effektiven Turbulenzintensität relevanten Anlagen auf.

Interne lfd.	Harstallar	Hersteller WEA PNenn RD [m]		NH [m]	UTM ETRS89 Zone 33		
Nr.	neistellei	VVEA	[kW]	KD [III]	MH [m]	X [m]	Y [m]
W1	ENERCON	E-126 EP3 / 4.000 kW	4000	126.7	135.0	353396	6004672
W2	ENERCON	E-126 EP3 / 4.000 kW	4000	126.7	135.0	353554	6004411
W3	ENERCON	E-126 EP3 / 4.000 kW	4000	126.7	135.0	353894	6004445
W4	ENERCON	E-126 EP3 / 4.000 kW	4000	126.7	135.0	353661	6004033
W5	ENERCON	E-126 EP3 / 4.000 kW	4000	126.7	135.0	354090	6004042
W6	ENERCON	E-126 EP3 / 4.000 kW	4000	126.7	135.0	354077	6003710
W7	ENERCON	E-115 EP3 E3 / 4.200 kW	4200	115.7	149.0	354566	6004047
W8	ENERCON	E-126 EP3 / 4.000 kW	4000	126.7	135.0	354799	6004200

Tabelle 4.1: Beschreibung der hinsichtlich I_{eff} auszuweisenden Anlagen

4.3 Ermittlung der Umgebungsturbulenzintensität

4.3.1 Datengrundlage

Im Wesentlichen hängt die Umgebungsturbulenz lamb von den Windverhältnissen, der Orographie und der Geländerauigkeit ab. Die Windverhältnisse aus [20] enthalten keinerlei Informationen zur Umgebungsturbulenzintensität vor Ort, somit wurde diese auf Basis der vorliegenden Informationen zur Bodenbedeckung [13] am Standort auf Nabenhöhe ermittelt.

4.3.2 Vorgehensweise

Die Umgebungsturbulenzintensität I_{amb} beschreibt im Allgemeinen die Schwankung der Windgeschwindigkeit in einem definierten Zeitintervall um ihren Mittelwert. Sie ist nach den geltenden Richtlinien als der Quotient aus der Standardabweichung σ der Windgeschwindigkeit und der zugehörigen mittleren Windgeschwindigkeit v_{ave} in einem 10 Minuten Intervall zu bilden [5]. Liegen Daten einer Windmessung am Standort vor, kann I_{amb} direkt, bzw. I_{char} durch Addition der 1-fachen Standardabweichung σ_{σ} und I_{rep} durch Addition der 1.28-fachen Standardabweichung σ_{σ} der Umgebungsturbulenzintensität zu I_{amb} , ermittelt werden [5]. Durch Ermittlung der Windscherung kann die auf Messhöhe ermittelte charakteristische, bzw. repräsentative Turbulenzintensität auf Nabenhöhe extrapoliert werden. Liegt keine Messung vor, muss die Umgebungsturbulenzintensität rechnerisch, bzw. numerisch ermittelt werden.

Zur Berechnung von I_{amb} werden an jedem zu untersuchenden WEA Standort die flächenmäßigen Informationen zur Bodenbedeckung aus dem CORINE Datensatz [13] mit 20 km Radius um den Standort zu Grunde gelegt. Die in [13] enthaltenen Flächen verschiedener Bodenbedeckung werden nach den Vorgaben des Europäischen Wind Atlas [12] in Flächen mit einer Rauigkeitslänge z_0 konvertiert. Alle innerhalb eines Sektors liegenden Rauigkeitselemente werden abschließend nach Abstand und Größe gewichtet und in einen, für diesen Sektor, repräsentativen Rauigkeitswert umgerechnet. Aus den sektoriell vorliegenden Rauigkeitslängen wird mittels eines von der Rauigkeitslänge z_0 abhängigen invers logarithmischen Profils die Umgebungsturbulenzintensität auf Nabenhöhe der jeweiligen WEA berechnet.

Da in der Richtlinie des Deutschen Instituts für Bautechnik DIBt 2012 [1] für die Ermittlung der Standorteignung bezüglich der effektiven Turbulenzintensitäten Turbulenzwerte für verschiedene Werten wird den ermittelten Windgeschwindigkeiten gefordert sind, Umgebungsturbulenzintensität das NTM nach der geltenden Richtlinie [5] zu Grunde gelegt. Der ermittelten Turbulenzkurve wird in Anlehnung an das vom Risø DTU National Laboratory entwickelte Verfahren im Windfarm Assessment Tool eine windgeschwindigkeitsabhängige Standardabweichung σ_{σ} unterstellt, die ebenfalls dem NTM Verlauf folgt [15]. Die Werte für die Standardabweichung der gewählt, dass die Umgebungsturbulenzintensität σ_{σ} sind SO Referenzturbulenzintensität nach NTM und dem 1-fachen σ₀ die Referenzkurve nach der geltenden Richtlinie [5] ergibt.

Die repräsentative Turbulenzintensität I_{rep} wird nach dem beschriebenen Verfahren für jede zu betrachtende, nach DIBt 2012 [1] typen-/einzelgeprüfte, WEA auf Nabenhöhe ermittelt und den weiteren Berechnungen zu Grunde gelegt. Für Anlagen, deren Typen-/Einzelprüfung auf der Richtlinie DIBt 2004 [2] oder DIBt 1993 [3] basiert, findet die charakteristische Turbulenzintensität I_{char} Anwendung.

4.3.3 Untersuchung der topografischen Komplexität der Anlagenstandorte

Das verwendete Höhenmodell aus dem SRTM Datensatz [14] liegt in einer Auflösung von ca. 30 m vor und wird für die Ermittlung der topografischen Komplexität der Standorte herangezogen.

Die Standorte aller zu betrachtenden Anlagen werden basierend auf den Vorgaben der geltenden Norm DIN EN 61400-1:2011-08 [5] auf topografische Komplexität untersucht. Die topografische Komplexität des Standortes wird dargestellt durch die Neigung des Geländes und die Abweichungen der Topografie des Geländes von einer dem Gelände angenäherten Ebene. Die Beurteilungskriterien sind in Tabelle 4.2 dargestellt.

Abstand von der betrachteten WEA [m]	Sektoramplitude [°]	Größte Neigung der angenäherten Ebene	Größte Geländeabweichung [m]
< 5*NH	360		< 0.3*NH
< 10*NH	30	< 10	< 0.6*NH
< 20*NH	30		< 1.2*NH

Tabelle 4.2: Komplexitätskriterien nach DIN EN 61400-1:2011-08 [5]

Ein Standort wird als topografisch komplex eingestuft, wenn 15% der Windenergie aus Sektoren kommt, die die Kriterien in Tabelle 4.2 nicht erfüllen [5]. Demnach ist im Windpark Hugoldsdorf kein Anlagenstandort einer nach DIBt 2012 [1] typen-/einzelgeprüften Anlage als topografisch komplex einzustufen und es ist das vereinfachte Verfahren nach Abschnitt 1.2.1 anzuwenden.

4.3.4 Ermittlung des Turbulenzstrukturparameters

Um der Deformation der turbulenten Anströmung durch die Topografie Rechnung zu tragen, erfolgt die Einführung des von der Energieverteilung abhängigen Turbulenzstrukturparameters C_{CT}. Hierfür wird nach DIN EN 61400-1:2011-08 [5] der Komplexitätsindex i_C ermittelt und angesetzt, siehe Tabelle 4.3. Bei der Ermittlung von i_C werden alle Energieanteile aus den Sektoren aufsummiert, welche die Kriterien aus Tabelle 4.2 nicht erfüllen. Der errechnete Turbulenzstrukturparameter C_{CT} kommt dann in jedem dieser Sektoren zum Tragen. Dieser wird auf Basis des verwendeten Höhenmodells [14] und der übermittelten Windverhältnisse [20] berechnet.

Anteil an der Energieverteilung [%]	Komplexitätsindex i _c [-]	Turbulenzstrukturparameter C _{CT} [-]
0 - 5	0	1.000
6	0.1	1.015
7	0.2	1.030
8	0.3	1.045
9	0.4	1.060
10	0.5	1.075
11	0.6	1.090
12	0.7	1.105
13	0.8	1.120
14	0.9	1.135
15	1	1.150
16 - 100	1	1.150

Tabelle 4.3: Anzusetzende Turbulenzstrukturparameter nach [5]

Die folgende Tabelle 4.4 führt auf, in welchen Sektoren der für den Standort ermittelte Turbulenzstrukturparameter C_{CT} zum Tragen kommt und welcher Wert errechnet wurde.

Interne lfd. Nr.	C _{CT} (0)	С _{ст} (30)	С _{СТ} (60)	С _{СТ} (90)	С _{ст} (120)	С _{ст} (150)	С _{СТ} (180)	С _{СТ} (210)	C _{CT} (240)	С _{ст} (270)	С _{ст} (300)	С _{ст} (330)
Alle WEA	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Tabelle 4.4: Ermittelte Turbulenzstrukturparameter für alle in Betracht zu ziehenden Anlagen

4.3.5 Repräsentative Turbulenzintensität

In Tabelle 4.5 werden die sektoriell nach dem in Abschnitt 4.3.2 beschriebenen Verfahren ermittelten, repräsentativen, Turbulenzintensitäten, bezogen auf eine Windgeschwindigkeit von 15 m/s, für eine Anlagenposition aufgeführt.

W5	NH: 135 m		
UTM ETR	S89 Zone 33	I _{rep}	
354090	6004042	[%]	
S	ektor		
	N	12.42	
	NNO	13.15	
	ONO	12.77	
	0	13.01	
	oso	11.90	
	SSO	11.88	
	S	11.86	
	SSW	12.01	
1	NSW	12.09	
	W	12.11	
·	VNW	12.86	
	NNW	13.09	

Tabelle 4.5: Repräsentative Turbulenzintensität für einen Standort

4.3.6 Modellunsicherheiten

Berechnungsmodelle bilden nur annähernd die Realität ab und bei den Berechnungen werden teilweise vereinfachte Annahmen getroffen, die jedoch allesamt als konservativ zu bewerten sind.

4.4 Ermittlung der effektiven Turbulenzintensität Ieff

4.4.1 Grundlagen

Die effektive Turbulenzintensität $I_{\rm eff}$ ist definiert als die mittlere Turbulenzintensität, die über die Lebensdauer einer WEA dieselbe Materialermüdung verursacht, wie die am Standort herrschenden, verschiedenen Turbulenzen. Die Materialkennzahl, die maßgeblich in die Berechnung der effektiven Turbulenzintensität einfließt, ist der Wöhlerkoeffizient m. In der vorliegenden Gutachterlichen Stellungnahme liegt jeder zu betrachtenden WEA der anlagenspezifische Wöhlerkoeffizient zu Grunde, der die strukturschwächste Komponente repräsentiert. Hierbei handelt es sich im Regelfall um die Rotorblätter einer WEA, welche durch Wöhlerkoeffizienten zwischen m=10 für glasfaserverstärkte Verbundwerkstoffe und m=15 für kohlefaserverstärkte Verbundwerkstoffe abgedeckt werden. Dadurch werden alle Komponenten einer WEA in die Betrachtung mit einbezogen.

Grundsätzlich wird die effektive Turbulenzintensität leff an einer WEA aus der quadratischen Addition der Umgebungsturbulenzintensität und der durch den Nachlauf einer anderen WEA induzierten Turbulenzintensität, dem sogenannten "Wake-Effekt", ermittelt. Hierbei sind je nach zu Grunde unterschiedliche Berücksichtigungen Richtlinie der Standardabweichung Umgebungsturbulenzintensität σ_{σ} zu beachten. Die Berechnung der induzierten Turbulenzintensität erfolgte für die vorliegende Gutachterliche Stellungnahme nach den Ausarbeitungen in [10], Kapitel 2.4.4. Die induzierte Turbulenzintensität wird in diesem Turbulenzmodell als eine Funktion beschrieben, die von den Abständen der WEA untereinander, der Umgebungsturbulenzintensität und von anlagenspezifischen Kenngrößen abhängig ist. Diese Kenngrößen sind einerseits der windgeschwindigkeitsabhängige ct-Wert (Schubbeiwert), als auch die windgeschwindigkeitsabhängige Schnelllaufzahl \(\lambda\) der turbulenzinduzierenden WEA. Das Modell bildet sowohl den voll ausgebildeten Nachlauf, als auch den nicht voll ausgebildeten Nachlauf hinter einer WEA ab. Die anlagenspezifischen Werte ct und λ sind vom Anlagenhersteller übermittelt. Wenn für eine zu betrachtende WEA diese Werte nicht vorliegen, werden Sie auf Basis der Anlagenparameter wie Drehzahl und Rotordurchmesser ermittelt, oder durch eine konservativ abdeckende Standardkurve ersetzt. Der Ermittlung von leff werden die am Standort herrschenden geometrischen Verhältnisse, sowie die am Standort herrschenden Windbedingungen zu Grunde gelegt. Da in [10] keine Aussage zum berücksichtigenden Einflussbereich der WEA untereinander getroffen wird, werden sowohl die Bereiche im Volleinfluss (Rotor der WEA steht voll im Nachlauf einer anderen WEA), als auch die Bereiche im Teileinfluss (Rotor der WEA steht nur teilweise im Nachlauf einer anderen WEA) bei der Berechnung von leff berücksichtigt um den worst-case abzubilden.

Die Ermittlung der induzierten Turbulenzintensität muss durchgeführt werden, solange sich eine WEA in einem Abstand kleiner 10 RD von der zu betrachtenden Anlage befindet [5]. Ist der Abstand aller WEA im Umfeld grösser 10 RD gilt $I_{eff} = I_{rep}$, bzw. $I_{eff} = I_{char}$.

Die effektive Turbulenzintensität wird auf Nabenhöhe jeder zu betrachtenden Anlage ausgewiesen. In [10] wird kein relativer Mindestabstand zwischen WEA ausgewiesen, bis zu welchem das Turbulenzmodell seine Gültigkeit behält. In der Zusammenfassung des Vergleichs des Modells mit realen Messungen an Anlagen wird gezeigt, dass mit dem angewandten Modell zwar Abweichungen zu den Messungen festgestellt wurden, diese jedoch nicht systematischer Natur sind. Diesen Abweichungen wird durch den konservativen Ansatz bei der Ermittlung des Einflussbereiches der WEA untereinander Rechnung getragen. Zudem liefert das Turbulenzmodell konservative Ergebnisse, wenn am Standort niedrige Umgebungsturbulenzen herrschen. Diese Vergleiche des Modells mit realen Messungen wurden bis zu relativen Anlagenabständen von 2.0 RD durchgeführt. Die Versuche fanden im Vergleich zu heutigen Anlagengrößen an sehr kleinen Anlagen statt, sodass eine Übertragbarkeit auf heutige Anlagengrößen nicht uneingeschränkt gegeben ist. Aus diesem Grund wird von einer pauschalen Anwendbarkeit bis 2.0 RD abgesehen und eine Einzelfallprüfung durchgeführt.

Die Ergebnisse der ermittelten, effektiven Turbulenzintensitäten bei Anlagenabständen von mindestens 2.3 RD können uneingeschränkt für eine standortspezifische Lastenrechnung (siehe Abschnitt 1.2.3) herangezogen werden. Bei relativen Anlagenabständen zwischen 2.0 RD und 2.3 RD wird nach einschlägigen Kriterien im Einzelfall entschieden, ob die Ergebnisse für eine Lastenrechnung verwendet werden können, oder nicht. In der Einzelfallprüfung werden folgende Größen im Bereich der zu untersuchenden Nachlaufsituation bewertet:

- Der Formfaktor der Weibullverteilung k
- Der Energieanteil
- Die Kriterien nach Tabelle 4.2

Ergibt die Einzelfallprüfung, dass die Ergebnisse nicht für eine Lastenrechnung herangezogen werden können, werden sektorielle Abschaltungen oder Betriebsweisen eingearbeitet, um die Standorteignung hinsichtlich der effektiven Turbulenzintensität nachzuweisen.

In den zu Grunde gelegten Richtlinien DIBt 2012 [1] und DIBt 2004 [2] dient eine windgeschwindigkeitsabhängige effektive Turbulenzintensität $I_{\rm eff}$ als Grundlage zur Bewertung der Standorteignung hinsichtlich der effektiven Turbulenzintensität, in der DIBt 1993 Richtlinie [3] eine konstante, mittlere effektive Turbulenzintensität $I_{\rm eff}$ = 20 %.

Die ermittelten Werte für leff werden den Auslegungswerten, die der Typen-/Einzelprüfung der betrachteten Anlage zu Grunde liegen, gegenübergestellt. Liegen die ermittelten Werte unterhalb der Auslegungswerte gilt eine Standorteignung hinsichtlich der effektiven Turbulenzintensität nach der jeweiligen Richtlinie als nachgewiesen. Liegen die Werte über den Auslegungswerten, kann eine Standorteignung hinsichtlich der effektiven Turbulenzintensität nach der zu Grunde gelegten Richtlinie nicht nachgewiesen werden, was jedoch durch eine standortspezifische Lastenberechnung seitens des Anlagenherstellers oder eines Zertifizierers ermöglicht werden kann.

Die vorliegenden Ergebnisse für die effektive Turbulenzintensität werden nach den Vorgaben der "Richtlinie für Windenergieanlagen – Einwirkungen und Standsicherheitsnachweise für Turm und Gründung" Fassung 2012 des Deutschen Institutes für Bautechnik [1] ermittelt. Alle Forderungen und Vorgaben decken ebenfalls die Forderungen der "Richtlinie für Windenergieanlagen – Einwirkungen und Standsicherheitsnachweise für Turm und Gründung" Fassung 2004 [2], sowie die der Fassung von 1993, 2. Überarbeitete Auflage 1995 des Deutschen Institutes für Bautechnik [3], ab.

4.4.2 Ergebnis

Die folgende Tabelle 4.6 führt die den zu betrachtenden Anlagen zu Grunde gelegten, bzw. unterstellten Richtlinien in Bezug auf deren Typenprüfung auf.

Anlage	Nabenhöhe [m]	Zu Grunde gelegte Richtlinie	Turbulenzkategorie
E-126 EP3 / 4.000 kW	135.0	DIBt 2012	А
E-115 EP3 E3 / 4.200 kW	149.0	DIBt 2012	А

Tabelle 4.6: Der Turbulenzermittlung zu Grunde gelegte Richtlinien

Die folgende Tabelle 4.7 stellt die ermittelten effektiven Turbulenzintensitäten der geplanten Anlagen in Abhängigkeit von der Windgeschwindigkeit dar. Die nach der jeweils zu Grunde gelegten Richtlinie ermittelten effektiven Turbulenzintensitäten werden der Referenzkurve nach DIBt 2012 [1] gegenübergestellt. Überschreitungen sind *fett kursiv* dargestellt.

V _{hub}	W1[A]	W2[A]	W3[A]	W4[A]	W5[A]	W6[A]	W7[A]	W8[A]	Referenz Klasse A
3	0.410	0.470	0.410	0.402	0.413	0.420	0.461	0.449	0.419
4	0.384	0.433	0.378	0.360	0.376	0.378	0.431	0.367	0.344
5	0.316	0.352	0.314	0.296	0.312	0.305	0.352	0.321	0.299
6	0.285	0.314	0.284	0.263	0.281	0.269	0.316	0.297	0.269
7	0.261	0.286	0.261	0.239	0.258	0.242	0.289	0.280	0.248
8	0.237	0.259	0.240	0.217	0.236	0.218	0.261	0.262	0.232
9	0.216	0.235	0.222	0.198	0.217	0.197	0.237	0.244	0.220
10	0.197	0.215	0.206	0.182	0.201	0.180	0.217	0.234	0.210
11	0.177	0.194	0.189	0.166	0.183	0.164	0.194	0.219	0.201
12	0.158	0.173	0.172	0.151	0.167	0.150	0.172	0.202	0.195
13	0.144	0.158	0.160	0.140	0.154	0.141	0.156	0.183	0.189
14	0.135	0.146	0.150	0.133	0.144	0.134	0.144	0.168	0.184
15	0.129	0.138	0.143	0.127	0.137	0.129	0.136	0.156	0.180
16	0.124	0.132	0.138	0.123	0.132	0.125	0.131	0.146	0.176
17	0.121	0.128	0.133	0.120	0.128	0.122	0.126	0.138	0.173
18	0.119	0.125	0.129	0.118	0.124	0.119	0.123	0.132	0.170
19	0.118	0.122	0.126	0.116	0.122	0.117	0.121	0.127	0.167
20	0.116	0.120	0.123	0.114	0.119	0.116	0.118	0.124	0.165
21	0.115	0.118	0.121	0.113	0.117	0.114	0.117	0.121	0.163
22	0.114	0.116	0.119	0.111	0.116	0.113	0.115	0.118	0.161
23	0.113	0.115	0.117	0.110	0.114	0.111	0.114	0.117	0.159
24	0.112	0.114	0.115	0.109	0.113	0.110	0.112	0.115	0.157
25	0.111	0.112	0.113	0.109	0.111	0.109	0.111	0.114	0.156

Tabelle 4.7: Ermittelte effektive Turbulenzintensitäten leff

4.4.3 Sektorielle Betriebseinschränkung bis zur Vorlage der Lastenrechnung

Aufgrund von Überschreitungen hinsichtlich der effektiven Turbulenzintensität an der neu geplanten WEA W7 wird eine standortspezifische Lastenrechnung seitens des Anlagenherstellers ENERCON für diese WEA durchgeführt. Bis zur Vorlage der standortspezifischen Lastenrechnung ist die folgende sektorielle Betriebseinschränkung notwendig, um die Überschreitungen der effektiven Turbulenzintensität zu verhindern.

Anlage	Intervall [°]	Geforderter Betriebsmodus	Windgeschwindigkeitsbereich v _{hub} [m/s]
W7	28 – 86	Abschaltung	v _{in} – 10.5

Tabelle 4.8: Geforderte Betriebsweise zum Schutz von W7

5 Zusammenfassung

Am Standort Hugoldsdorf wurden die Standortbedingungen nach Abschnitt 1.2.1 für die neu geplanten WEA ermittelt und mit den Auslegungswerten verglichen. Dieser Vergleich hat gezeigt, dass

- i. W1 W8 keine Überschreitungen der mittleren Windgeschwindigkeit im Vergleich zur Auslegungswindgeschwindigkeit aufweisen (siehe Abschnitt 3.3.1),
- ii. W1 W8 in einer Windzone errichtet werden sollen, die den Auslegungswert der 50-Jahreswindgeschwindigkeit nicht überschreitet (siehe Abschnitt 3.3.2) und
- iii. W1 W8 Überschreitungen der effektiven Turbulenzintensität gegenüber den Auslegungswerten aufweisen (siehe Abschnitt 4.4.2).

Für die geplanten Anlagen W1 – W6 und W8 hat eine seitens des Herstellers ENERCON durchgeführte Überprüfung der standortspezifischen Lasten der WEA, in der geplanten Konfiguration nach Tabelle 2.1, anhand der dem Hersteller zur Verfügung gestellten Ergebnisse aus den Abschnitten 3 bis 4 ergeben, dass die Auslegungslasten der Windenergieanlagen nach Tabelle 2.1 nicht überschritten werden [22]. Die Ergebnisse in [22] wurden von der I17-Wind GmbH & Co. KG auf Plausibilität geprüft. Somit ist die Standorteignung gemäß der Richtlinie DIBt 2012 [1] für die geplanten Anlagen W1 – W6 und W8 nachgewiesen.

Unter Berücksichtigung der in Abschnitt 4.4.3 aufgeführten sektoriellen Betriebsbeschränkung ist die Standorteignung gemäß DIBt 2012 [1] für die geplante WEA W7 durch den Vergleich mit den Auslegungswerten nachgewiesen.

Die folgende Tabelle 5.1 stellt die Ergebnisse zusammenfassend dar.

Interne	Hersteller	Anlanantum	P _{Nenn}	NH	UTM ETRS	89 Zone 33	Standorteignung gemäß DIBt 2012 nachgewiesen	
lfd. Nr.	nersteller	Anlagentyp	[kW]	[m]	X [m]	Y [m]		
W1	ENERCON	E-126 EP3 / 4.000 kW	4000	135.0	353396	6004672	Ja	
W2	ENERCON	E-126 EP3 / 4.000 kW	4000	135.0	353554	6004411	Ja	
W3	ENERCON	E-126 EP3 / 4.000 kW	4000	135.0	353894	6004445	Ja	
W4	ENERCON	E-126 EP3 / 4.000 kW	4000	135.0	353661	6004033	Ja	
W5	ENERCON	E-126 EP3 / 4.000 kW	4000	135.0	354090	6004042	Ja	
W6	ENERCON	E-126 EP3 / 4.000 kW	4000	135.0	354077	6003710	Ja	
W7	ENERCON	E-115 EP3 E3 / 4.200 kW	4200	149.0	354566	6004047	Ja, siehe Tabelle 4.8	
W8	ENERCON	E-126 EP3 / 4.000 kW	4000	135.0	354799	6004200	Ja	

Tabelle 5.1: Zusammenfassung der Ergebnisse Neuanlagen

6 Standortbesuch

6.1 Durchführung und Ergebnis

Entsprechend der Forderung in der Richtlinie DIBt Fassung Oktober 2012 [1] nach einer Standortbesichtigung wurde diese im September 2019 durch die I17- Wind GmbH & Co. KG durchgeführt.

Die Standortbesichtigung dient zur Ermittlung, bzw. zum Abgleich von Geländebeschaffenheit mit vorhandenen Satellitendaten zur Rauigkeit [13] und ggf. zu den Höhenlinien [14]. Mögliche turbulenzrelevante Einzelstrukturen wurden untersucht und dokumentiert. Die Standortdokumentation bestätigt die zu Grunde gelegten Rauigkeiten und die Ergebnisse zur Komplexität.

Abkürzungs- und Symbolverzeichnis

A Skalen-Parameter der Weibullverteilung

α Höhenexponent / Windscherung

β Schräganströmung bezogen auf die horizontale Ebene auf Nabenhöhe

BImSchG Bundes Immissions-Schutz Gesetz

Ccт Turbulenzstrukturparameter

Ct Schubbeiwert

D Dimensionsloser Abstand bezogen auf den größeren Rotordurchmesser

DIN Deutsches Institut für Normung

DIBt Deutsches Institut für Bautechnik

ETM Extremturbulenzmodell

ETRS 89 Europäisches Terrestrisches Referenzsystem von 1989

GK Gauss-Krüger oder Geländekategorie

hbot Höhe der Blattspitze über Grund, wenn Blatt in tiefster Stellung

H_{min} Geringste Höhe, bei der die zu Grunde gelegten Gleichungen gültig sind.

Höhe der Blattspitze über Grund, wenn Blatt in höchster Stellung

l_{amb} Umgebungsturbulenzintensität

l_{char} Charakteristische Turbulenzintensität nach [2]

I_{rep} Repräsentative Turbulenzintensität nach [3]

l_{eff} Effektive Turbulenzintensität l_{ext} Extreme Turbulenzintensität

k Formfaktor der Weibullverteilung

NA Nationaler Anhang

NH Nabenhöhe

NTM Normalturbulenzmodell

P_{Nenn} Nennleistung

RD Rotordurchmesser

p Luftdichte

TP Typenprüfung

UTM Universal Transverse Mercator coordinate system

Vave Jahresmittel der Windgeschwindigkeit auf Nabenhöhe

Vhorizontal Horizontale Komponente der Windgeschwindigkeit

Vin EinschaltwindgeschwindigkeitVout Abschaltwindgeschwindigkeit

Nennwindgeschwindigkeit

v_{ref} Referenzwindgeschwindigkeit

en n-Jahres-Bö

Vvertikal Vertikale Komponente der Windgeschwindigkeit

v₅₀ 50-Jahreswindgeschwindigkeit (10-Minuten-Mittelwert)

v₅₀ (h) 50-Jahreswindgeschwindigkeit (10-Minuten-Mittelwert) auf Nabenhöhe der WEA

WEA Windenergieanlage

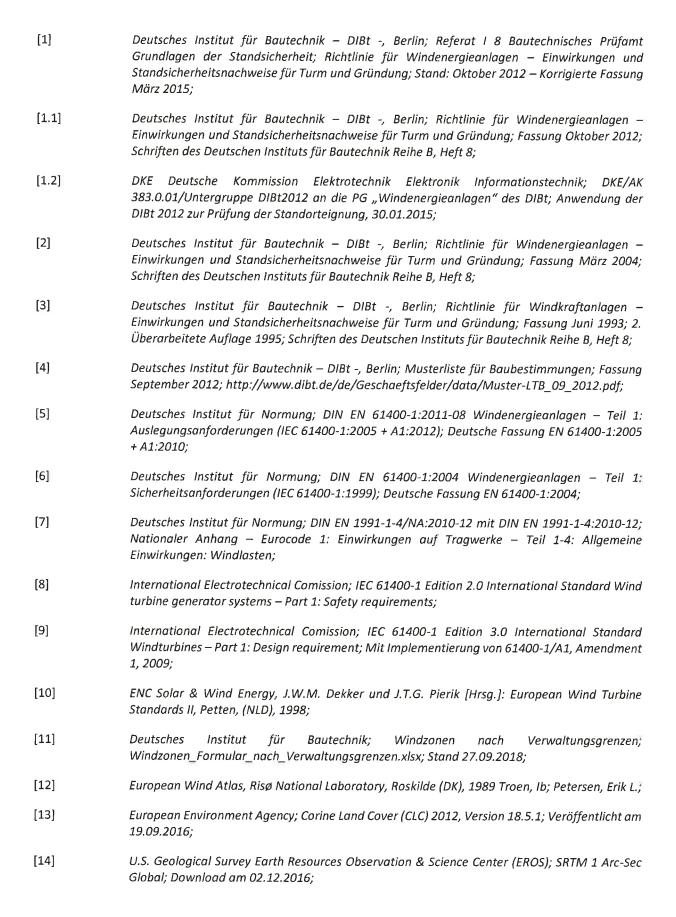
WGS 84 World Geodetic System (letzte Revision in 2004)

WP Windpark

WSM Windsektormanagement (sektorielle Abschaltung)

WZ Windzone / Staudruckzone

ρ Luftdichte


σ Standardabweichung der Windgeschwindigkeit

σ_σ Standardabweichung der Turbulenzintensität

z₀ Rauigkeitslänge

Literaturverzeichnis

[15]	Risø DTU National Laboratory for Sustainable Energy, Windfarm Assessment Tool Version 3.3.0.128;
[16]	Frandsen, Sten T. (2007): Turbulence and turbulence-generated structural loading in wind turbine clusters. Roskilde (DK);
[17]	EMD International A/S; WindPRO / ENERGY; Modelling of the variation of air density with altitude through pressure, humidity and temperature; 12.05.2014;
[18]	EMD online Katalog oder Anlagendokumentation der Hersteller;
[19]	EEN GmbH; E-Mail mit dem Betreff: "WG: Hugoldsdorf" vom 03.09.2019 Datei: 2019-05-08_Hungoldsdorf BA1_KoordinatenmE.xlsx;
[20]	anemos Gesellschaft für Umweltmeteorologie mbH; Bestimmung des Windpotentials und des Energieertrags von Windenergieanlagen am Standort Hugoldsdorf; Bericht-Nr.: 16-113-7016373-Rev.00-GW-MF; 26.10.2016;
[21.1]	ENERCON GmbH, Datenblatt ENERCON Windenergieanlage E-126 EP3 / 4000 kW General Design Conditions; D0645134-3; 01.03.2019;
[21.2]	ENERCON GmbH, übermittelt per E-Mail mit dem Betreff: "RE: Freigabe E-115 EP3 E3 / 4.200 kW" vom 9.10.2019
[22]	ENERCON GmbH; Ergebnisbericht Standortspezifischer Lastvergleich Standorteignung Windpark Hugoldsdorf Version 3; Dokument-ID: D0887306-0; 25.10.2019;
[23]	© OpenStreetMap-Mitwirkende; http://creativecommons.org ;