Eingeschränkte Weitergabe Dokument Nr.: 0016-1661 V19 28.4.2021

Allgemeine Informationen über die Umweltverträglichkeit von Vestas-Windenergieanlagen

V90-2.0 MW, V100-2.0/2.2 MW, V110-2.0/2.2 MW, V116-2.0/2.1 MW, V120-2.0/2.2 MW, V105-3.45/3.6 MW,

V112-3.45/3.6 MW, V117-3.45/3.6/4.2 MW, V126-3.45/3.6 MW, V136-3.45/3.6/4.2 MW, V150-3.3 MW, V150-4.2 MW, EnVentus™ V150-5.6/6.0 MW und V162-5.6/6.0 MW

50 Hz und 60 Hz

Übersetzung der Originalbetriebsanleitung: T05 0016-1661 VER 19

T05 0016-1661 Ver 19 - Approved- Exported from DMS: 2021-08-03 by INVOL

RESTRICTED

Dokument Nr.: 0016-1661 V19 Dokumentenverantwortlicher: Platform

Management

Typ: T05 – Allgemeine Beschreibung

Allgemeine Informationen über die Umweltverträglichkeit von Vestas-Windenergieanlagen Inhaltsverzeichnis Datum: 28.4.2021 Eingeschränkte Weitergabe

Seite 2 von 13

Inhaltsverzeichnis

1	Einführung	3
1.1	Abkürzungen	
2	Von Vestas-Windenergieanlagen ausgehende Emissionen	
2.1	Luftverunreinigungen	3
2.2	Luftverwirbelungen	3
2.3	Glanzgrad	4
2.4	Schattenwurf	4
2.5	Korrosionsschutz	4
2.6	Lärmentwicklung	4
2.6.1	Geräuschreduzierter Betriebsmodus	
2.6.2	Zusätzliche Informationen	5
2.6.3	Geräuschemissionen innerhalb der Windenergieanlage	
2.7	Elektromagnetische Felder	
3	Maßnahmen bei Betriebseinstellung	7
4	Geschätzte Energiebilanz	
5	Geschätzte Einsparungen an CO ₂ -e	
6	Bedarfsdeckung durch Vestas-Windenergieanlagen	

Dokument Nr.: 0016-1661 V19 Dokumentenverantwortlicher: Platform

Management

Typ: T05 - Allgemeine Beschreibung

Allgemeine Informationen über die Umweltverträglichkeit von Vestas-Windenergieanlagen Einführung Datum: 28.4.2021 Eingeschränkte Weitergabe

Seite 3 von 13

1 Einführung

Zu den folgenden Themen sind in diesem Dokument die wichtigsten Informationen zusammengefasst:

- Von Vestas-Windenergieanlagen ausgehende Emissionen
- Maßnahmen bei Betriebseinstellung
- Energetische Amortisationszeit
- CO₂e-Reduktion
- Bedarfsdeckung

1.1 Abkürzungen

Abkürzung	Langform/Erläuterung	
CO ₂ -e	Kohlendioxid-Äquivalente	
DIN	Deutsches Institut für Normung	
EMF	Elektromagnetisches Feld	
EU	Europäische Union	
IEC	International Electrotechnical Commission	
ISO	International Organization for Standardization (Internationale	
	Organisation für Normung)	

Tabelle 1-1: Abkürzungen

2 Von Vestas-Windenergieanlagen ausgehende Emissionen

Im folgenden Kapitel werden die von einer Vestas-Windenergieanlage im Standardbetrieb (d. h. störungsfreien Betrieb) möglicherweise ausgehenden Emissionen beschrieben.

2.1 Luftverunreinigungen

Vestas-Windenergieanlagen sind so konstruiert, dass im Normalbetrieb sowie im Störfall keine Luftverunreinigungen entstehen. Durch einen Brand bedingte Luftverunreinigungen stellen eine Ausnahmesituation dar und sind daher gesondert zu betrachten.

2.2 Luftverwirbelungen

Im Nachlauf einer Vestas-Windenergieanlage bilden sich durch den Betrieb des Rotors Luftturbulenzen. Aus diesem Grund sind die Mindestabstände zwischen den Windenergieanlagen in der allgemeinen Spezifikation zur jeweiligen Anlage aufgeführt. Sind die Abstände kleiner als in der allgemeinen Spezifikation festgelegt, muss die Stabilität der errichteten Windenergieanlage und die der benachbarten Anlagen auf dem Wege eines Vestas Site Check kontrolliert werden.

Dokument Nr.: 0016-1661 V19
Dokumentenverantwortlicher: Platform
Management

Typ: T05 - Allgemeine Beschreibung

Allgemeine Informationen über die Umweltverträglichkeit von Vestas-Windenergieanlagen Von Vestas-Windenergieanlagen ausgehende Emissionen Datum: 28.4.2021 Eingeschränkte Weitergabe

Seite 4 von 13

2.3 Glanzgrad

Zur Vermeidung negativer visueller Wirkungen werden Vestas-Windenergieanlagen standardmäßig in Farbgebung RAL 7035 (lichtgrau) produziert. Zur Dämpfung von Lichtreflexionen an den Rotorblattflächen gelangen verringerte Glanzgrade zum Einsatz, die den Anforderungen nach DIN 67530/ISO 2813-1978 ≤ entsprechend Maximum 30 % betragen (für weitere Informationen siehe Dokument "Allgemeine Spezifikation" zur jeweiligen Windenergieanlage). Auf Anfrage können die Blätter auch in RAL 9010 (weiß) oder mit Gefahrenfeuer in RAL 3000/RAL 3020 (rot) oder RAL 2009 (orange) zur Verfügung gestellt werden.

2.4 Schattenwurf

Der von den Rotorblättern ausgehende Schattenwurf verursacht eine periodisch wiederkehrende Abschattung der Sonne.

Vestas bietet auf Anfrage eine Schattenwurfmoduloption, um Schattenwurf auf benachbarte Häuser zu vermeiden.

2.5 Korrosionsschutz

Der Korrosionsschutz der Vestas-Türme besteht aus einem Zinkauftrag auf gereinigtem Stahl und richtet sich nach ISO 12944-2. Über diesen Korrosionsschutz werden eine Grundlackierung und ein Deckanstrich aufgetragen. Sowohl die Grundlackierung als auch der Deckanstrich sind zinkfrei, sodass eine Zinkauswaschung ausgeschlossen ist.

2.6 Lärmentwicklung

Windenergieanlagen emittieren in der Regel Lärm. Das Geräuschspektrum einer Vestas-Windenergieanlage wird oft als breitbandiges Rauschen beschrieben. Es gibt neben dem bekannten Rauschen der Blätter keine pulsierenden Schwankungen oder störenden Töne im Geräuschpegel.

Der Geräuschpegel der Windenergieanlage ist abhängig vom Windenergieanlagentyp und dem Betriebsmodus, in dem die Windenergieanlage betrieben wird. Der Geräuschmodus der Windenergieanlage wird entsprechend den projektspezifischen Anforderungen gewählt und eingestellt. Weitere Informationen zum geräuschreduzierten Betriebsmodus siehe 2.6.1 Geräuschreduzierter Betriebsmodus, S. 4 und 2.6.2 Zusätzliche Informationen, S. 5.

2.6.1 Geräuschreduzierter Betriebsmodus

Oftmals kommt ein geräuschreduzierter Betriebsmodus zu bestimmten Zeiten zum Einsatz (z. B. nachts zwischen 22 und 6 Uhr), um die vorgegebenen nationalen Lärmgrenzwerte für anliegende Wohnbebauungen einzuhalten. Eine Senkung der Geräuschemission führt gegenüber dem leistungsoptimierten Standardbetrieb zu einer Reduzierung der Energieerzeugung.

Das integrierte System für das Geräuschminderungsmanagement (NRMS) umfasst eine Windrichtungs-, Windgeschwindigkeits- und Zeitsteuerung, die jeweils den Betrieb in einem ausgewählten Geräuschmodus unter festgelegten

Dokument Nr.: 0016-1661 V19 Dokumentenverantwortlicher: Platform Management

Typ: T05 - Allgemeine Beschreibung

Allgemeine Informationen über die Umweltverträglichkeit von Vestas-Windenergieanlagen Von Vestas-Windenergieanlagen ausgehende Emissionen

Datum: 28.4.2021

Eingeschränkte Weitergabe

Seite 5 von 13

Bedingungen sicherstellen und somit eine optimale Anpassung an alle gesetzlichen Anforderungen ermöglichen.

OptiTip®-System

Alle Windenergieanlagen sind mit der Pitchregelung OptiTip® von Vestas ausgestattet. Bei OptiTip® wird der Pitchwinkel der Rotorblätter ständig so angepasst, dass der für die aktuellen Windbedingungen optimale Winkel eingestellt ist. Durch die Regelung des Pitchwinkels der Rotorblätter werden die Energieerzeugung optimiert und der Geräuschpegel reduziert.

Die Anpassung des Pitchwinkels der Rotorblätter dient als geräuschreduzierender Betriebsmodus. Daher sind für die Windenergieanlagen nachts und tagsüber verschiedene Betriebsmodi möglich. Vestas-Windenergieanlagen können so mit unterschiedlichen Leistungskurven und/oder Schallleistungspegeln betrieben werden. Dadurch kann der Betrieb der Vestas-Windenergieanlage kundenspezifisch angepasst werden, um den besonderen Standortanforderungen gerecht zu werden.

2.6.2 Zusätzliche Informationen

Eine Manipulation der einstellbaren Parameter von Vestas Windenergieanlagen durch Dritte ist auszuschließen. Sämtliche Eingriffe in die Maschinenparameter, u. a. auch zur Änderung der Leistungskurve und damit auch der Geräuschemission der Vestas-Windenergieanlage, können und dürfen nur vom technischen Personal von Vestas vorgenommen werden. Um Änderungen der Geräuschemission vorzunehmen, ist ein spezieller Sicherheitscode notwendig, der ausschließlich autorisierten Mitarbeitern von Vestas zugänglich ist.

2.6.3 Geräuschemissionen innerhalb der Windenergieanlage

Tabelle 2-1auf Seite 6 gibt den Geräuschpegel nach der Maschinenrichtlinie (2006/42/EG) bezogen auf die Lärmexposition von Personen an, welche die Windenergieanlage im Normalbetrieb und zu normalen Wartungsmaßnahmen betreten. Der Geräuschpegel entspricht der 4-MW-Windenergieanlagen-Plattform mit Indikation der Sicherheitsanforderungen gemäß Richtlinie 2003/10/EG.¹

Position	Betrieb	Geräuschpegel		Gebotene Maßnahme
		L _{Aeq} [dB (A)]	L _{CPeak} [dB (C)]	
Eingang zur Windenergieanl age	Betrieb und Standby	< 60 (56)	< 105 (100)	Keine
Turmunterseite	Betrieb und Standby	< 70 (65)	< 100 (95)	keine

¹Die Richtlinie 2003/10/EG über die Mindestvorschriften zum Schutz von Sicherheit und Gesundheit der Arbeitnehmer vor der Gefährdung durch physikalische Einwirkungen (Lärm).

Dokument Nr.: 0016-1661 V19
Dokumentenverantwortlicher: Platform
Management

Typ: T05 - Allgemeine Beschreibung

Allgemeine Informationen über die Umweltverträglichkeit von Vestas-Windenergieanlagen ausgebe

Von Vestas-Windenergieanlagen ausgehende Emissionen Datum: 28.4.2021 Eingeschränkte Weitergabe

Seite 6 von 13

Position	Betrieb	Geräus	chpegel	Gebotene Maßnahme
Aufzug	Standby	< 85 81	< 110 (106)	Den Arbeitern muss Gehörschutz zur Verfügung stehen
Plattform unter dem Maschinenhaus	Standby	< 80 (72)	< 100 (94)	Keine
Plattform unter dem Maschinenhaus	Betrieb	< 94 (91)	< 125 (118)	Gehörschutz verwenden
Im Innern des Maschinenhaus es	Standby mit maximalem Betrieb der Gebläse	< 85 (82)	< 108 (103)	Den Arbeitern muss Gehörschutz zur Verfügung stehen
Im Innern des Maschinenhaus es	Standby ohne Gebläse	< 80 (76)	< 105 (96)	Keine
Im Innern des Maschinenhaus es	Betrieb	< 100 (96)	< 120 (114)	Gehörschutz verwenden

Tabelle 2-1: Erklärung gemäß der Maschinenrichtlinie 2006/42/EG. In der Tabelle stehen die Zahlen in Klammern für das direkte Messergebnis und ohne Klammern für den Geräuschpegel einschließlich Messunsicherheit

2.7 Elektromagnetische Felder

Die 4-MW- und 2-MW-Windenergieanlagenplattform hält die Grenzwerte der Maschinenrichtlinie (2006/42/EG) und der EMF-Richtlinie (2013/35/EU) zum Schutz von Sicherheit und Gesundheit der Arbeitnehmer, die die Windenergieanlage im Normalbetrieb oder zu Zwecken der normalen Wartung betreten, vor Gefährdung durch abgestrahlte elektromagnetische Felder ein:

- Das Personal wird keinen magnetischen Feldern oberhalb der Auslöseschwelle im Frequenzbereich zwischen 5 Hz und 400 kHz ausgesetzt.
- 2. Das Personal wird keinen elektrischen Feldern oberhalb der Auslöseschwelle im Frequenzbereich zwischen 5 Hz und 32 kHz ausgesetzt.

Dokument Nr.: 0016-1661 V19
Dokumentenverantwortlicher: Platform
Management

Typ: T05 - Allgemeine Beschreibung

Allgemeine Informationen über die Umweltverträglichkeit von Vestas-Windenergieanlagen Maßnahmen bei Betriebseinstellung Datum: 28.4.2021 Eingeschränkte Weitergabe

Seite 7 von 13

Die Windenergieanlagen erfüllen Kategorie 0 hinsichtlich der Einstufung des Niveaus der Strahlungsemissionen nach der Norm zur Sicherheit von Maschinen (EN 12198-1:2000). Kategorie 0 bedeutet, dass keine Restriktionen und Schutzmaßnahmen erforderlich sind.

Gemäß der EMF-Richtlinie (2013/35/EU) müssen Vorkehrungen getroffen werden, um zu verhindern, dass das Personal statischen Magnetfeldern ausgesetzt wird. An verschiedenen Orten der Windenergieanlage gelangen starke Permanentmagnete für Anbauteile zum Einsatz. Wegen der von diesen Magneten abgestrahlten Felder ist es zu vermeiden, sich den Magneten zu sehr zu nähern. Die Magnetfelder können sich auf Herzschrittmacher auswirken.

Die Plattform EnVentus™ ist so ausgelegt, dass sie dieselben Anforderungen wie alle Vestas-Produkte erfüllt.

3 Maßnahmen bei Betriebseinstellung

Bei einer Betriebseinstellung einer Vestas-Windenergieanlage besteht die Möglichkeit, die Anlage vollständig zu demontieren und zu entsorgen, sodass der landschaftliche Ursprungszustand wiederhergestellt werden kann und damit keine Gefahren bzw. Belästigungen für die Umgebung und die Nachbarschaft bestehen bleiben.

Zunächst erfolgt die Demontage der Hauptkomponenten der Vestas-Windenergieanlage (Rotorblätter mit Nabe, Maschinenhaus, Stahlrohrturm oder Beton-Hybrid-Turm). Dafür werden ein entsprechender Kran sowie fachkundiges Personal eingesetzt. Die Demontagearbeiten einschließlich der Baustellen- und Transportvorbereitung sowie der Fundamententsorgung erstrecken sich je nach Anlagentyp auf einen Zeitraum von drei (3) bis fünf (5) Werktagen.

Bei der Fundamententsorgung wird das Fundament in einzelne Komponenten zerlegt. Diese Materialien werden im Anschluss getrennt und fachgerecht entsorgt. Bei der Installation eventuell in die Erde gerammte Betonpfähle verbleiben nach der Demontage im Boden, da nach Auffüllung und Verdichtung der Grube mit Mutterboden eine landwirtschaftliche Nutzung bzw. Bepflanzung stattfinden kann.

Die Kranstellfläche, Verkabelung und Zuwegung können ebenfalls entfernt werden, um den Bereich wieder in seinen ursprünglichen Zustand zu versetzen.

Die entstandenen Recyclingmaterialien (Stahl-, Alteisen- und Kupferschrott) werden nach grober Zerkleinerung bei einem Fachbetrieb entsorgt, der auf die Entsorgung von Recyclingmaterialien spezialisiert ist.

Das Schaltanlagenmodul enthält normalerweise Schwefelhexafluorid (SF $_6$), ein ausgesprochen stark wirksames Treibhausgas, das nicht in die Atmosphäre gelangen darf. Das SF $_6$ -Gas ist bei einem Austausch während des Betriebs sowie bei der Stilllegung der Windenergieanlage vom technischen Servicepersonal aufzufangen.

Die Original-Vestas-Blätter enthalten keine als gefährlich eingestuften Materialien und müssen daher nicht als Sondermüll entsorgt werden. Zu den Hauptmaterialien gehören Glasfasern, ausgehärtete Harze, Karbonfasern, PUR-Klebstoff, PU-Farben, Polyethylenterephthalat- oder Balsakernmaterialien sowie Stahl/Aluminium in den Wurzeleinsätzen und dem Blitzschutzsystem. Für die

Übersetzung der Originalbetriebsanleitung: T05 0016-1661 VER 19

T05 0016-1661 Ver 19 - Approved- Exported from DMS: 2021-08-03 by INVOL

RESTRICTED

Dokument Nr.: 0016-1661 V19 Dokumentenverantwortlicher: Platform

Management

Typ: T05 - Allgemeine Beschreibung

Allgemeine Informationen über die Umweltverträglichkeit von Vestas-Windenergieanlagen Maßnahmen bei Betriebseinstellung Datum: 28.4.2021 Eingeschränkte Weitergabe

Seite 8 von 13

Demontage und Entsorgung der Blätter sollte geeignete PSA getragen werden, um beispielsweise das Einatmen von Staub zu vermeiden. Nach Möglichkeit sollten immer alle Komponenten recycelt werden.

Dokument Nr.: 0016-1661 V19 Dokumentenverantwortlicher: Platform

Management

Typ: T05 - Allgemeine Beschreibung

Allgemeine Informationen über die Umweltverträglichkeit von Vestas-Windenergieanlagen Geschätzte Energiebilanz Datum: 28.4.2021 Eingeschränkte Weitergabe

Seite 9 von 13

4 Geschätzte Energiebilanz

Die für Herstellung, Transport, Wartung und Rückbau aufgewendete Energie wird von einer Vestas-Windenergieanlage je nach Typ, Nabenhöhe, Energieproduktion sowie Einspeiseverlusten innerhalb der in Tabelle 4-1 auf S. 9

Energieproduktion sowie Einspeiseverlusten innerhalb der in Tabelle 4-1 auf S. s dargestellten Zeiträume kompensiert.

Windenergieanlagentyp	Energiebilanz (Monat)
IEC III (v = 7,5 m/s und k = 2 in Nab	enhöhe)
V90-2.0 MW	11
V100-2.0 MW	10
V110-2.0 MW	7
V110-2.2 MW	7
V116-2.1 MW*	6
V120-2.0 MW*	7
V120-2.2 MW*	8
V126-3.45 MW	8
V136-3.45 MW	8
V136-3.6 MW	7
V150-3.3 MW*	7
V150-4.2 MW	6
V150-5.6 MW*	6**/7
V162-5.6 MW*	7**/ 8
V150-6.0 MW*	7
V162-6.0 MW*	8
IEC II (v = 8,5 m/s und k = 2 in Nabe	enhöhe)
V100-2.2 MW	6
V116-2.0 MW	6
V112-3.45 MW	6
V117-3.45 MW	6
V126-3.45 MW	7
V126-3.6 MW	6
V136-3.45 MW	6
V136-3.60 MW	7
V136-4.2 MW	6
	·
IEC I (v = 10,0 m/s und k = 2 in Nab	enhöhe)
V105-3.45 MW	5
V105-3.6 MW	5
V112-3.45 MW	5
V112-3.6 MW	5
V117-3.45 MW	5
V117-3.6 MW	5
V117-4.2 MW	5

Tabelle 4-1: Geschätzte Energiebilanz

*Betriebsdaten V116-2.1 MW: v=8.0 m/s und k=2.5. Betriebsdaten V120-2.0 MW: v=7.2 m/s und k=2.5. Betriebsdaten V120-2.2 MW: v=7.0 m/s und k=2.5. Betriebsdaten V150-5.6/6.0 MW und V162-5.6/6.0 MW: v=7.5 m/s und k=2.2. Betriebsdaten V150-3.3 MW: v=7.5 m/s und k=2.4.

^{**} Konfiguration mit einem Hybrid-Betonturm (Concrete Hybrid-Tower, CHT) und ausgehend von einem deutschen Windparkstandort.

Dokument Nr.: 0016-1661 V19
Dokumentenverantwortlicher: Platform
Management

Typ: T05 - Allgemeine Beschreibung

Allgemeine Informationen über die Umweltverträglichkeit von Vestas-Windenergieanlagen Geschätzte Einsparungen an CO2-e Datum: 28.4.2021 Eingeschränkte Weitergabe

Seite 10 von 13

5 Geschätzte Einsparungen an CO₂-e

Die Emissionen einer Vestas-Windenergieanlage entstehen nicht primär durch den eigentlichen Betrieb, sondern durch den Energie- und Rohstoffeinsatz bei der Materialproduktion und der Herstellung der Anlage.

Die CO₂e-Einsparung einer Vestas-Windenergieanlage im Vergleich zu dem in Europa bestehenden Strommix ist in der Tabelle 5-1 auf S. 10 dargestellt. Dabei wird die Einsparung betrachtet, die entsteht, wenn eine Kilowattstunde aus dem durchschnittlichen EU-Strommix durch eine Kilowattstunde Windenergie bei Netzanschluss ersetzt wird.

Windenergieanlagentyp	Einsparungen von CO₂e	Einsparungen von CO₂e		
	(Tonnen an CO₂/Jahr)	(Tonnen an CO₂/20 Jahre)		
IEC III (v = 7,5 m/s und k = 2 in Nabenhöhe)				
V90-2.0 MW	3090	61,700		
V100-2.0 MW	3370	67,300		
V110-2.0 MW	3950	78,900		
V110-2.2 MW	4010	80,200		
V116-2.1 MW*	6130	94,400		
V120-2.0 MW*	4100	81,900		
V120-2.2 MW*	5720	82,000		
V126-3.45 MW	5710	114,200		
V136-3.45 MW	6200	124,000		
V136-3.6 MW	6330	126,600		
V150-3.3 MW*	6800	139,200		
V150-4.2 MW	6880	137,600		
V150-5.6 MW*	8950**/8925	179.000**/178.500		
V162-5.6 MW*	9750**/9700	194.800**/194.100		
\/4EO C O \\\\\\	9150	183,000		
V150-6.0 MW*	3130			
V162-6.0 MW*	10030	200,600		
	10030	· · · · · · · · · · · · · · · · · · ·		
V162-6.0 MW*	10030	· · · · · · · · · · · · · · · · · · ·		
V162-6.0 MW* IEC II (v = 8,5 m/s und k = 2 in N	10030 abenhöhe)	200,600		
V162-6.0 MW* IEC II (v = 8,5 m/s und k = 2 in N V100-2.0 MW	10030 abenhöhe) 4290	200,600 85,800		
V162-6.0 MW* IEC II (v = 8,5 m/s und k = 2 in N V100-2.0 MW V100-2.2 MW	10030 abenhöhe) 4290 4460	200,600 85,800 89,100		
V162-6.0 MW* IEC II (v = 8,5 m/s und k = 2 in N V100-2.0 MW V100-2.2 MW V116-2.0 MW	10030 abenhöhe) 4290 4460 4570	85,800 89,100 91,300		
V162-6.0 MW* IEC II (v = 8,5 m/s und k = 2 in N V100-2.0 MW V100-2.2 MW V116-2.0 MW V112-3.45 MW	10030 abenhöhe) 4290 4460 4570 6240	85,800 89,100 91,300 124,800		
V162-6.0 MW* IEC II (v = 8,5 m/s und k = 2 in N V100-2.0 MW V100-2.2 MW V116-2.0 MW V112-3.45 MW V117-3.45 MW	10030 abenhöhe) 4290 4460 4570 6240 6520	85,800 89,100 91,300 124,800 130,300		
V162-6.0 MW* IEC II (v = 8,5 m/s und k = 2 in N V100-2.0 MW V100-2.2 MW V116-2.0 MW V112-3.45 MW V117-3.45 MW V126-3.45 MW V126-3.6 MW V136-3.45 MW	10030 abenhöhe) 4290 4460 4570 6240 6520 6740	85,800 89,100 91,300 124,800 130,300 134,800		
V162-6.0 MW* IEC II (v = 8,5 m/s und k = 2 in N V100-2.0 MW V100-2.2 MW V116-2.0 MW V112-3.45 MW V117-3.45 MW V126-3.45 MW V126-3.6 MW	10030 abenhöhe) 4290 4460 4570 6240 6520 6740 6930	85,800 89,100 91,300 124,800 130,300 134,800 138,500		
V162-6.0 MW* IEC II (v = 8,5 m/s und k = 2 in N V100-2.0 MW V100-2.2 MW V116-2.0 MW V112-3.45 MW V117-3.45 MW V126-3.45 MW V126-3.6 MW V136-3.45 MW	10030 abenhöhe) 4290 4460 4570 6240 6520 6740 6930 7180	85,800 89,100 91,300 124,800 130,300 134,800 138,500 143,500		
V162-6.0 MW* IEC II (v = 8,5 m/s und k = 2 in N V100-2.0 MW V100-2.2 MW V116-2.0 MW V112-3.45 MW V117-3.45 MW V126-3.45 MW V126-3.6 MW V136-3.60 MW	10030 abenhöhe) 4290 4460 4570 6240 6520 6740 6930 7180 6880 7430	85,800 89,100 91,300 124,800 130,300 134,800 138,500 143,500 137,500		
V162-6.0 MW* IEC II (v = 8,5 m/s und k = 2 in N V100-2.0 MW V100-2.2 MW V116-2.0 MW V112-3.45 MW V117-3.45 MW V126-3.45 MW V126-3.6 MW V136-3.60 MW V136-4.2 MW	10030 abenhöhe) 4290 4460 4570 6240 6520 6740 6930 7180 6880 7430	85,800 89,100 91,300 124,800 130,300 134,800 138,500 143,500 137,500 148,600		
V162-6.0 MW* IEC II (v = 8,5 m/s und k = 2 in N V100-2.0 MW V1100-2.2 MW V116-2.0 MW V112-3.45 MW V117-3.45 MW V126-3.45 MW V136-3.45 MW V136-3.45 MW V136-3.45 MW V136-3.50 MW V136-3.60 MW V136-4.2 MW	10030 abenhöhe) 4290 4460 4570 6240 6520 6740 6930 7180 6880 7430 Abenhöhe) 7060	85,800 89,100 91,300 124,800 130,300 134,800 138,500 143,500 143,500 148,600		
V162-6.0 MW* IEC II (v = 8,5 m/s und k = 2 in N V100-2.0 MW V1100-2.2 MW V116-2.0 MW V112-3.45 MW V117-3.45 MW V126-3.45 MW V136-3.60 MW V136-3.60 MW V136-4.2 MW IEC I (v = 10,0 m/s und k = 2 in N V105-3.65 MW	10030 abenhöhe) 4290 4460 4570 6240 6520 6740 6930 7180 6880 7430 labenhöhe) 7060 7240	200,600 85,800 89,100 91,300 124,800 130,300 134,800 138,500 143,500 143,500 148,600		
V162-6.0 MW* IEC II (v = 8,5 m/s und k = 2 in N V100-2.0 MW V1100-2.2 MW V116-2.0 MW V112-3.45 MW V117-3.45 MW V126-3.6 MW V136-3.60 MW V136-3.60 MW V136-4.2 MW IEC I (v = 10,0 m/s und k = 2 in N V105-3.45 MW V105-3.45 MW	10030 abenhöhe) 4290 4460 4570 6240 6520 6740 6930 7180 6880 7430 labenhöhe) 7060 7240 7400	200,600 85,800 89,100 91,300 124,800 130,300 134,800 138,500 143,500 143,500 144,700 144,700 147,900		
V162-6.0 MW* IEC II (v = 8,5 m/s und k = 2 in N V100-2.0 MW V100-2.2 MW V116-2.0 MW V112-3.45 MW V117-3.45 MW V126-3.6 MW V136-3.60 MW V136-3.60 MW V136-3.60 MW V105-3.45 MW V105-3.45 MW	10030 abenhöhe) 4290 4460 4570 6240 6520 6740 6930 7180 6880 7430 Abenhöhe) 7060 7240 7400 7580	200,600 85,800 89,100 91,300 124,800 130,300 134,800 138,500 143,500 137,500 148,600 141,100 144,700 147,900 151,600		
V162-6.0 MW* IEC II (v = 8,5 m/s und k = 2 in N V100-2.0 MW V1100-2.2 MW V116-2.0 MW V112-3.45 MW V117-3.45 MW V126-3.6 MW V136-3.60 MW V136-3.60 MW V136-4.2 MW IEC I (v = 10,0 m/s und k = 2 in N V105-3.45 MW V105-3.45 MW	10030 abenhöhe) 4290 4460 4570 6240 6520 6740 6930 7180 6880 7430 labenhöhe) 7060 7240 7400	200,600 85,800 89,100 91,300 124,800 130,300 134,800 138,500 143,500 143,500 144,700 144,700 147,900		

Dokument Nr.: 0016-1661 V19 Dokumentenverantwortlicher: Platform

Management

Typ: T05 - Allgemeine Beschreibung

Allgemeine Informationen über die Umweltverträglichkeit von Vestas-Windenergieanlagen Geschätzte Einsparungen an CO2-e Datum: 28.4.2021 Eingeschränkte Weitergabe

Seite 11 von 13

Tabelle 5-1: Geschätzte CO₂e-Reduktion, die von Vestas-Windenergieanlagen im Vergleich zum durchschnittlichen EU-Strommix erreicht wird (ausgehend von 475 g CO₂e pro kWh für die EU).

*Betriebsdaten V116-2.1 MW: v=8.0 m/s und k=2.5. Betriebsdaten V120-2.0 MW: v=7.2 m/s und k=2.5. Betriebsdaten V120-2.2 MW: v=7.0 m/s und k=2.5. Betriebsdaten V150-5.6/6.0 MW und V162-5.6/6.0 MW: v=7.5 m/s und k=2.2. Betriebsdaten V150-3.3 MW: v=7.5 m/s und k=2.4.

^{**} Konfiguration mit einem Hybrid-Betonturm (Concrete Hybrid-Tower, CHT) und ausgehend von einem deutschen Windparkstandort.

Dokument Nr.: 0016-1661 V19 Dokumentenverantwortlicher: Platform Management

Typ: T05 - Allgemeine Beschreibung

Allgemeine Informationen über die Umweltverträglichkeit von Vestas-Windenergieanlagen Bedarfsdeckung durch Vestas-Windenergieanlagen

Datum: 28.4.2021 Eingeschränkte Weitergabe

Seite 12 von 13

Bedarfsdeckung durch Vestas-Windenergieanlagen

Die in Tabelle 6-1auf S. 13 dargestellte Bedarfsdeckung durch Vestas-Windenergieanlagen ergibt sich unter Annahme eines Bedarfs von 4.000 kWh pro Haushalt und Jahr. Je nach Standort, Nabenhöhe und Einspeiseverlusten wird ein anderer Jahresenergieertrag von der Anlage erzielt und somit variieren die Werte.

Windenergieanlagentyp	Zahl der Haushalte
IEC III (v = 7,5 m/s und k = 2 in Nab	penhöhe)
V90-2.0 MW	1700
V100-2.0 MW	1800
V110-2.0 MW	2100
V110-2.2 MW	2100
V116-2.1 MW*	2500
V120-2.0 MW*	2200
V120-2.2 MW*	2200
V126-3.45 MW	3500
V136-3.45 MW	3300
V136-3.6 MW	3600
V150-3.3 MW*	3700
V150-4.2 MW	3700
V150-5.6 MW*	4750
V162-5.6 MW*	5200
V150-6.0 MW*	4900
V162-6.0 MW*	5400
IEC II (v = 8,5 m/s und k = 2 in Nabo V100-2.0 MW	2300
V100-2.0 MW V100-2.2 MW	2300
V116-2.0 MW	2400
V112-3.45 MW	3300
V117-3.45 MW	3500
V126-3.45 MW	3600
V126-3.43 WW	3700
V136-3.45 MW	3800
V136-3.60 MW	3700
V136-4.2 MW	4000
	1 1000
IEC I ($v = 10,0$ m/s und $k = 2$ in Nab	
V105-3.45 MW	3700
V105-3.6 MW	3800
V112-3.45 MW	3900
V112-3.6 MW	4000
V117-3.45 MW	4000
V117-3.6 MW	4000
V117-4.2 MW	4300

Übersetzung der Originalbetriebsanleitung: T05 0016-1661 VER 19

T05 0016-1661 Ver 19 - Approved- Exported from DMS: 2021-08-03 by INVOL

RESTRICTED

Dokument Nr.: 0016-1661 V19 Dokumentenverantwortlicher: Platform Management

Typ: T05 - Allgemeine Beschreibung

Allgemeine Informationen über die Umweltverträglichkeit von Vestas-Windenergieanlagen Bedarfsdeckung durch Vestas-Windenergieanlagen

Datum: 28.4.2021 Eingeschränkte Weitergabe

Seite 13 von 13

Tabelle 6-1: Bedarfsdeckung durch Vestas-Windenergieanlagen

*Betriebsdaten V116-2.1 MW: v=8.0 m/s und k=2.5. Betriebsdaten V120-2.0 MW: v=7.2 m/s und k=2.5. Betriebsdaten V120-2.2 MW: v=7.0 m/s und k=2.5. Betriebsdaten V150-5.6/6.0 MW und V162-5.6/6.0 MW: v=7.5 m/s und k=2.2. Betriebsdaten V150-3.3 MW: v=7.5 m/s und k=2.4.

