

Berechnung der Schattenwurfdauer für die Errichtung und den Betrieb von sechs Windenergieanlagen am Standort Krinitz-Steesow

Bericht Nr.: I17-SCHATTEN-2021-031

Berechnung der Schattenwurfdauer für die Errichtung und den Betrieb von sechs

Windenergieanlagen am Standort Krinitz-Steesow

Bericht-Nr.: I17-SCHATTEN-2021-031

Auftraggeber: SAB Projektentwicklung GmbH & Co. KG

Berliner Platz 1

D-25524 Itzehoe

Auftragnehmer: I17-Wind GmbH & Co. KG

Am Westersielzug 11

25840 Friedrichstadt

Tel.: 04881 – 936 498 – 0 Fax.: 04881 – 936 498 – 19

E-Mail: mail@i17-wind.de Internet: www.i17-wind.de

Datum: 26. April 2021

Haftungsausschluss und Urheberrecht

Das vorliegende Schattenwurfgutachten für die geplanten Windenergieanlagen (WEA) am Standort Krinitz-Steesow wurde von der SAB WindTeam GmbH im April 2021 bei der I17-Wind GmbH & Co. KG in Auftrag gegeben. Das Schattenwurfgutachten wurde nach bestem Wissen und Gewissen unparteisch und nach dem gegenwärtigen Stand von Wissenschaft und Technik erstellt. Für die Daten die nicht von der I17-Wind GmbH & Co. KG ermittelt, erhoben und verarbeitet wurden, kann keine Garantie übernommen werden. Eine auszugsweise Vervielfältigung dieses Berichtes ist nur mit ausdrücklicher Zustimmung der I17-Wind GmbH & Co. KG erlaubt.

Urheber des vorliegenden Schattenwurfimmissionsgutachtens ist die I17-Wind GmbH & Co. KG. Der Auftraggeber erhält nach § 31 Urheberrechtsgesetz das einfache Nutzungsrecht, welches nur durch Zustimmung des Urhebers übertragen werden kann. Eine Bereitstellung zum uneingeschränkten Download in elektronischen Medien ist ohne gesonderte Zustimmung des Urhebers nicht gestattet.

Für die physikalische Einhaltung der prognostizierten Werte an den Immissionsorten können seitens des Gutachters keine Garantien übernommen werden. Die Ergebnisse basieren auf vom Auftraggeber und Anlagenhersteller zur Verfügung gestellten Angaben zum Standort und der Windenergieanlagen.

Revisionsnummer	Revisionsdatum	Änderung	Bearbeiter
0	26.04.2021	Erstellung des Gutachtens	Kramer

Bearbeitet

B. Eng. Dennis Kramer,

Sachverständiger

Friedrichstadt, 26.04.2021

Geprüft

M. Sc. Thore Beeck,

Sachverständiger

Friedrichstadt, 29.04.2021

Freigegeben

B. Eng. Dennis Kramer,

Sachverständiger

Friedrichstadt, 30.04.2021

Dieses Dokument wurde digital signiert und die Integrität des Dokuments wurde überprüft. Das zugehörige Zertifikat kann von der I17-Wind GmbH & Co. KG auf Anfrage gerne zur Verfügung gestellt werden.

Inhaltsverzeichnis

Αl	obi	ldun	gsverzeichnis	6
Τa	be	ellenv	verzeichnis	6
1		Aufg	gabenstellung	7
2		Örtli	che Beschreibung	7
3		Beui	rteilungsgrundlagen	10
	3.	1	Berechnungs- und Beurteilungsverfahren	10
4		Besc	hreibung der geplanten Windenergieanlagen	11
	4.	1	Anlagenbeschreibung	11
	4.	2	Position der geplanten Windenergieanlagen	11
5		Vork	pelastung	12
6		Einw	rirkungsbereich der Windenergieanlagen und Immissionsorte	13
7		Rech	nenergebnisse und Beurteilungen	16
	7.	1	Vorbelastung	17
	7.	2	Zusatzbelastung	18
	7.	3	Gesamtbelastung	19
8		Zusa	mmenfassung	20
9		Abki	ürzungs- und Symbolverzeichnis	21
10)	Liter	aturverzeichnis	22
Αı	h	ang 1	. / Übersichtskarte(n) der Gesamtbelastung mit Iso-Schattenlinien	23
Αı	nha	ang 2	/ Hauptergebnis: Berechnungsergebnisse der Vorbelastung	25
Αı	h	ang 3	/ Hauptergebnis: Berechnungsergebnisse der Zusatzbelastung	28
Αı	h	ang 4	/ Hauptergebnis: Berechnungsergebnisse der Gesamtbelastung	30
Αı	าhล	ang 5	/ Fotodokumentation der Immissionsorte	32

1 Aufgabenstellung

Der Auftraggeber plant am Standort Krinitz-Steesow die Errichtung und den Betrieb von sechs Windenergieanlagen (WEA) des Herstellers Vestas vom Typ V162-5.6/6.0 MW auf einer Nabenhöhe von 169.0 m [6]. Die geplanten WEA Standorte liegen in den Gemeindegebieten von Milow und Steesow im Landkreis Ludwigslust-Parchim in Mecklenburg-Vorpommern. In unmittelbarer Umgebung sowie im erweiterten Umfeld befinden sich weitere WEA in Betrieb und/oder im Genehmigungsverfahren und werden als Vorbelastung berücksichtigt.

Eine WEA mit einer Gesamthöhe von mehr als 50 Metern stellt nach der 4. BImSchV eine genehmigungsbedürftige Anlage dar, welche das Genehmigungsverfahren nach dem Bundes-Immissionsschutzgesetz (BImSchG) [2] zu durchlaufen hat. Für das Genehmigungsverfahren nach dem BImSchG [2] ist der Nachweis der Einhaltung der gesetzlichen Grenzwerte für die Schattenwurfimmissionen zu führen. Die Berechnungen sollen Auskunft darüber geben, ob schädliche Umwelteinwirkungen durch Schattenwurf von den geplanten Anlagen ausgehen können.

2 Örtliche Beschreibung

Das Standortzentrum liegt im westlichen Teil der Gemeinde Steesow im Landkreis Ludwigslust-Parchim in Mecklenburg-Vorpommern.

Im Nordosten bzw. Osten der geplanten WEA Standorte liegen die Ortschaften Deibow und Steesow ca. 2.8 km entfernt. Die Ortschaften Bochin und Zuggelrade liegen südöstlich und südlich der Windparkplanung in Entfernungen von ca. 2.3 km und 1.0 km. Krinitz ist ca. 2.0 km nordwestlich der vorgesehenen Fläche gelegen.

Die geplante Windparkfläche befindet sich auf landwirtschaftlich genutzten Feldern, die von Waldgebieten umgeben und von wenigen Baumreihen durchzogen sind.

Das Gelände um den Windpark ist eben und variiert in der Höhe nur geringfügig zwischen ca. 20 m und 30 m über NN. Die Angaben zu den Geländehöhen wurden dem DGM 25 des Landes Mecklenburg-Vorpommern [5] entnommen.

Für die Koordinatenangaben in diesem Gutachten findet das System UTM ETRS 89 Zone 33 Anwendung. Die Windenergieanlagenpositionen sind in der nachfolgenden Abbildung 2.1 bzw. Abbildung 2.2 dargestellt.

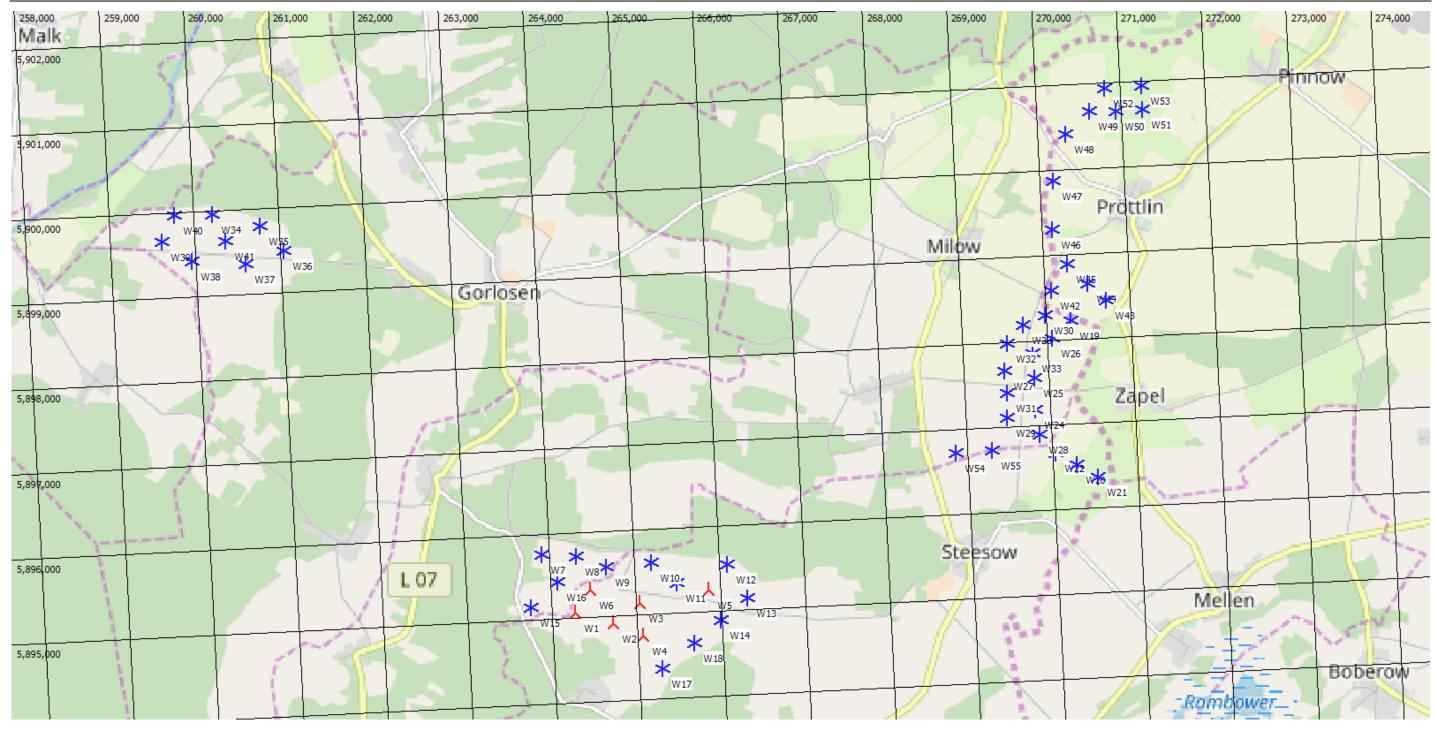


Abbildung 2.1: WEA Standorte (Übersicht), Kartenmaterial [3]

 \downarrow = neu geplante WEA, \star = bestehende WEA

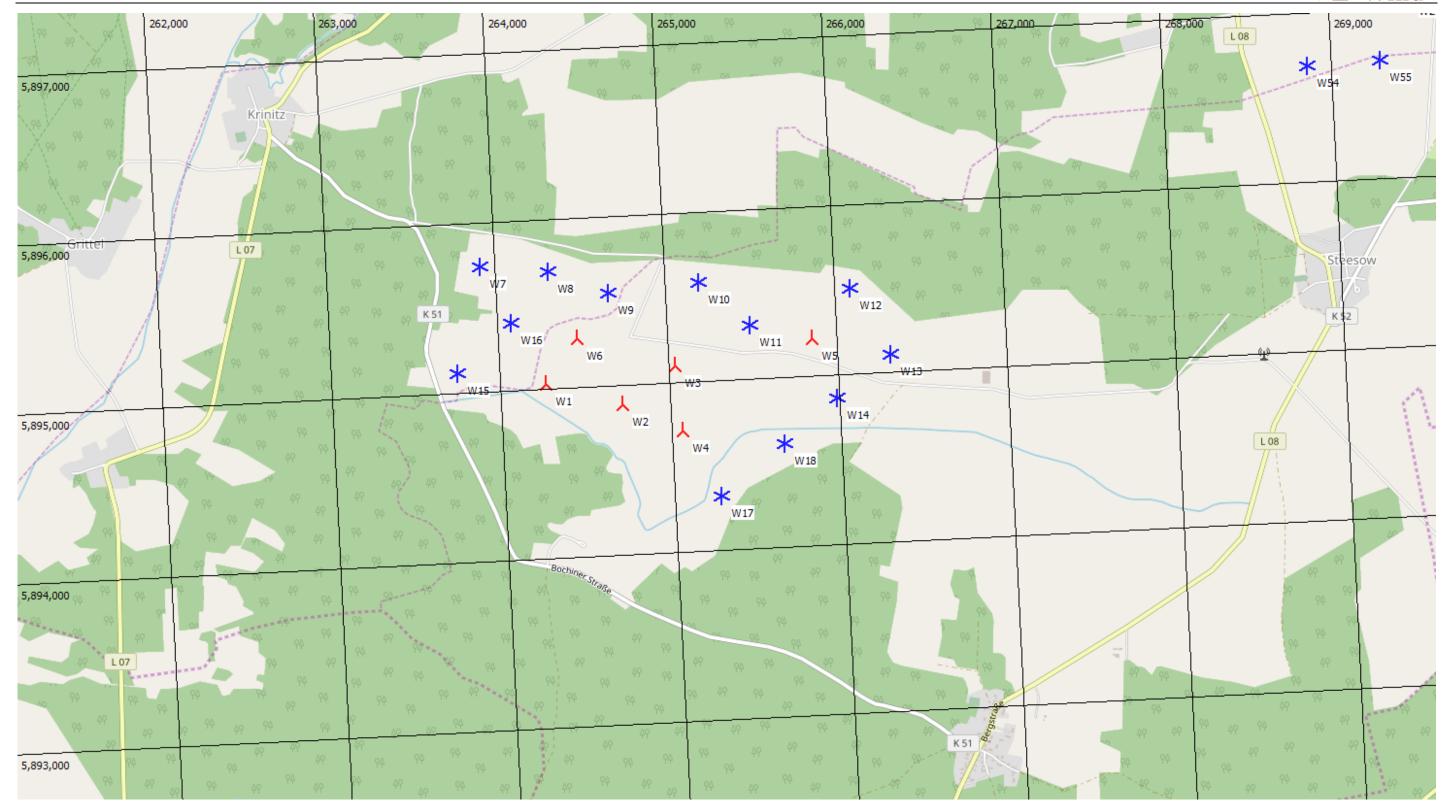


Abbildung 2.2: WEA Standorte (Zoom), Kartenmaterial [3]

3 Beurteilungsgrundlagen

3.1 Berechnungs- und Beurteilungsverfahren

Die hier zu untersuchenden Immissionen durch direkten Schattenwurf des Rotors können bei drehendem Rotor störend wirken. Aus der Anzahl der Rotorblätter und der Drehzahl des Rotors ergibt sich die jeweilige Frequenz mit der wechselnde Lichtverhältnisse im Schattenbereich auftreten können. Bei den gegenwärtigen Anlagengrößen handelt es sich um niedrige Frequenzen im Bereich von ca. 0.5 bis 3 Hz. Die Bund-Länder-Arbeitsgemeinschaft für Immissionsschutz (LAI) [1] hat die federführend vom staatlichen Umweltamt Schleswig unter Mitarbeit von Fachleuten, Gutachtern, Gewerbeaufsichtsämtern und Weiteren erarbeiteten Hinweise zur Ermittlung und Beurteilung der optischen Immissionen von Windkraftanlagen, Aktualisierung 2019 (WKA-Schattenwurfhinweise) [1] im Jahr 2020 als Standard anerkannt. Die WEA-Schattenwurf-Hinweise enthalten folgende Grenzwerte:

- Die astronomisch maximal mögliche Beschattungsdauer darf maximal 30 Stunden im Jahr und maximal 30 Minuten am Tag betragen.
- Ein Schattenwurf bei Sonnenständen unter 3 ° ist nicht zu berücksichtigen.
- Wenn am Immissionsort aufgrund der Entfernung zur WEA die Sonne zu weniger als 20 % durch das Rotorblatt verdeckt wird, können die dadurch entstehenden Helligkeitsschwankungen (Schatten) vernachlässigt werden.
- Um die Vergleichbarkeit der Ergebnisse zu ermöglichen, wird die Berechnung für einen punktförmigen Rezeptor von 0.1 m x 0.1 m in ca. 2 m Höhe durchgeführt.

Die Beschattungsdauer an der umgebenden Bebauung kann für eine oder mehrere WEA in Abhängigkeit von Nabenhöhe und Rotordurchmesser ermittelt werden. Der Berechnung der astronomisch möglichen Beschattungsdauer - dem worst case - liegen folgende Annahmen zu Grunde:

- Es herrscht durchgehender Sonnenschein von Sonnenaufgang bis Sonnenuntergang.
- Die Sonnenstrahlung steht senkrecht zur Rotorkreisfläche.
- Die WEA befindet sich permanent in Betrieb.
- Der Immissionsort empfängt Schatten aus allen Richtungen ("Gewächshaus"-Modus)

Zyklische Lichtblitze / Discoeffekte sowie periodischer Schattenwurf sind Immissionen im Sinne des Bundes-Immissionsschutzgesetzes [2]. Durch Verwendung mittelreflektierender Farben (z.B. RAL 7035-HR) und matten Glanzgraden gemäß DIN EN ISO 2813:2015-02 kann Lichtblitzen vorgebeugt werden.

4 Beschreibung der geplanten Windenergieanlagen

4.1 Anlagenbeschreibung

Der Auftraggeber plant am Standort Krinitz-Steesow die Errichtung und den Betrieb von sechs Windenergieanlagen des Herstellers Vestas Wind Systems A/S. Nachfolgend werden die Eckdaten der geplanten Windenergieanlagen zusammengefasst:

Hersteller: Vestas Wind Systems A/S

Anlagentyp: V162-5.6/6.0 MW

Nabenhöhe: 169 m

Rotordurchmesser: 162 m

Nennleistung: 6.000 kW

Drehzahlbereich: 5.3 – 9.3 U/min

Maximale Blatttiefe [8]: 4.32 m Blatttiefe bei 90% Radius [8]: 1.69 m

4.2 Position der geplanten Windenergieanlagen

Die Angaben zu den Koordinaten wurden vom Auftraggeber übermittelt [6]. Der nachfolgenden Tabelle 4.1 sind die Position und der Anlagentyp mit Nabenhöhe der geplanten Windenergieanlagen zu entnehmen.

Tabelle 4.1: Position der geplanten WEA [6]

W-	Bezeichnung		Naben-	Rotordurch-	UTM ETRS8	9 Zone 33	Höhe über
Nr.	Auftraggeber	Тур	höhe [m]	messer [m]	X [m]	Y [m]	NN [m]
W1	WEA B01	V162-5.6/6.0 MW	169.0	162.0	264269	5895018	21
W2	WEA B02	V162-5.6/6.0 MW	169.0	162.0	264716	5894872	22
W3	WEA B03	V162-5.6/6.0 MW	169.0	162.0	265036	5895090	22
W4	WEA B04	V162-5.6/6.0 MW	169.0	162.0	265064	5894705	22
W5	WEA B05	V162-5.6/6.0 MW	169.0	162.0	265853	5895207	23
W6	WEA B06	V162-5.6/6.0 MW	169.0	162.0	264464	5895277	21

5 Vorbelastung

In unmittelbarer Umgebung sowie im erweiterten Umfeld der geplanten Anlagen sind weitere WEA in Betrieb und/oder im Genehmigungsverfahren, die es zu berücksichtigen gilt [6, 6.1, 6.2].

Anmerkung:

Die bestehenden WEA W9 bis W11, W13, W19 bis W53 und W55 verursachen keinen Beitrag zum Schattenwurf, siehe Anhang 2 (Gesamtmenge der max. mögl. Beschattung an Rezeptoren pro WEA). Daher kann auf eine Berücksichtigung dieser WEA im Rahmen der Berechnung der Gesamtbelastung verzichtet werden.

Tabelle 5.1: Position der Bestandsanlagen am Standort [6.1, 6.2]

W-	_	Nabenhöhe	Rotordurch-	UTM ETRS	89 Zone 33	Höhe
Nr.	Тур	[m]	messer [m]	X [m]	Y [m]	über NN [m]
W7	V162-5.6 MW	169.0	162.0	263911	5895728	21
W8	V150-5.6 MW	169.0	150.0	264314	5895683	22
W9	V162-5.6 MW	169.0	162.0	264661	5895538	22
W10	V162-5.6 MW	169.0	162.0	265199	5895571	22
W11	V162-5.6 MW	169.0	162.0	265488	5895308	23
W12	V162-5.6 MW	169.0	162.0	266093	5895497	23
W13	V162-5.6 MW	169.0	162.0	266269	5895120	24
W14	V162-5.6 MW	169.0	162.0	265987	5894850	23
W15	V162-5.6 MW	169.0	162.0	263749	5895104	20
W16	V162-5.6 MW	169.0	162.0	264081	5895388	21
W17	GE 5.5-158	161.0	158.0	265272	5894310	22
W18	GE 5.5-158	161.0	158.0	265660	5894597	23
W19	e.n.o. 114 - 4.0	142.0	114.9	270287	5898179	42
W20	e.n.o. 114 - 4.0	142.0	114.9	270282	5896472	35
W21	e.n.o. 114 - 4.0	142.0	114.9	270524	5896317	34
W22	e.n.o. 114 - 4.0	142.0	114.9	270040	5896627	37
W23	e.n.o. 126 - 4.0	137.0	126.0	269724	5898152	48
W24	V126-3.6 MW	137.0	126.0	269821	5897145	39
W25	V126-3.6 MW	137.0	126.0	269825	5897519	44
W26	e.n.o. 126 - 4.0	137.0	126.0	270054	5897984	42
W27	V126-3.6 MW	137.0	126.0	269478	5897620	45
W28	e.n.o. 126 - 4.0	137.0	126.0	269859	5896854	41
W29	e.n.o. 126 - 4.8	137.0	126.0	269479	5897070	41
W30	e.n.o. 126 - 4.0	137.0	126.0	269988	5898255	46
W31	E-70 E4 / 2.300 kW	98.2	71.0	269501	5897359	43
W32	N117/3600	91.0	116.8	269519	5897945	46
W33	e.n.o. 114 - 4.0	142.0	114.9	269821	5897808	46
W34	SWT-DD-142	165.0	142.0	260217	5899926	21
W35	SWT-DD-142	165.0	142.0	260771	5899761	21
W36	SWT-DD-142	165.0	142.0	261039	5899457	22
W37	SWT-DD-142	165.0	142.0	260588	5899315	20
W38	SWT-DD-142	165.0	142.0	259952	5899385	21

W-		Nabenhöhe	Rotordurch-	UTM ETRS	89 Zone 33	Höhe
Nr.	Тур	[m]	messer [m]	X [m]	Y [m]	über NN [m]
W39	SWT-DD-142	165.0	142.0	259608	5899626	21
W40	SWT-DD-142	165.0	142.0	259771	5899934	22
W41	SWT-DD-142	165.0	142.0	260352	5899601	20
W42	MM82	100.0	82.0	270078	5898537	44
W43	MM82	100.0	82.0	270720	5898390	45
W44	MM82	100.0	82.0	270504	5898600	40
W45	MM82	100.0	82.0	270273	5898845	41
W46	MM82	100.0	82.0	270117	5899253	43
W47	MM92	100.0	92.5	270153	5899826	38
W48	MM82	100.0	82.0	270328	5900371	33
W49	MM82	100.0	82.0	270630	5900632	36
W50	MM92	100.0	92.5	270940	5900617	32
W51	MM82	100.0	82.0	271251	5900621	30
W52	MM82	100.0	82.0	270812	5900887	31
W53	MM82	100.0	82.0	271258	5900907	30
W54	eno160-6.0MW	165.0	160.0	268854	5896676	40
W55	eno160-6.0MW	165.0	160.0	269288	5896689	43

6 Einwirkungsbereich der Windenergieanlagen und Immissionsorte

Als repräsentative, kritische Immissionsorte wurden die nächstgelegenen Bebauungen gewählt. Laut den WEA-Schattenwurf-Hinweisen des Länderausschusses für Immissionsschutz (LAI) [1] sind maßgebliche Immissionsorte u.a.:

- Wohnräume
- Schlafräume, einschließlich Übernachtungsräume in Beherbergungsstätten und Bettenräume in Krankenhäusern und Sanatorien
- Unterrichtsräume in Schulen, Hochschulen und ähnlichen Einrichtungen
- Büroräume, Praxisräume, Arbeitsräume, Schulungs- und ähnliche Arbeitsräume

Die nächstgelegenen Bebauungen, welche diese Kriterien erfüllen, sind der nachfolgenden Abbildung 6.1 sowie der Tabelle 5.1 zu entnehmen. Es wurden insgesamt <u>11</u> Immissionsorte untersucht und berücksichtigt.

Die Auswahl der Immissionsorte wurde anhand von Kartenmaterial, einer Standortbesichtigung eines Mitarbeiters der I17-Wind GmbH & Co. KG, sowie der vorliegenden Dokumentation vorgenommen. Bei der Standortbesichtigung wurde die bestehende Wohnbebauung mit Angaben aus dem Kartenmaterial abgeglichen und Abweichungen wurden dokumentiert und korrigiert.

Abbildung 6.1: Einwirkungsbereich der neu geplanten WEA und Lage der Schattenrezeptoren, Kartenmaterial [3]

人 = neu geplante WEA, ○ = Schattenimmissionsort

Die Lage und Bezeichnung der Immissionsorte sind in Tabelle 6.1 zusammengefasst.

Tabelle 6.1: Immissionsorte

		UTM ETRS89	Höhe	
Nr.	Immissionsort	X [m]	Y [m]	über NN [m]
101	Deibower Dorfst. 42, 19300 Milow OT Hof Deibow	267526	5896736	29
102	Waldstr. 4, 19300 Steesow OT Zuggelrade	264246	5894060	22
103	Waldstr. 5, 19300 Steesow OT Zuggelrade	264258	5894070	22
104	Waldstr. 6, 19300 Steesow OT Zuggelrade	264284	5894164	22
105	Waldstr. 13, 19300 Steesow OT Zuggelrade	264346	5894104	24
106	Waldstr. 7, 19300 Steesow OT Zuggelrade	264375	5894137	23
107	Kastanienallee 1, 19294 Milow OT Görnitz	261814	5894734	20
108	Lenzener Str. 11, 19294 Milow OT Krinitz	262695	5896544	20
109	Lenzener Str. 10, 19294 Milow OT Krinitz	262700	5896576	20
IO10	Lenzener Str. 9, 19294 Milow OT Krinitz	262732	5896593	20
IO11	Lenzener Str. 4, 19294 Milow OT Krinitz	262830	5896672	21

7 Rechenergebnisse und Beurteilungen

In den nachfolgenden Tabellen sind die Ergebnisse der Analysen für die Vor-, Zusatz- und Gesamtbelastung der im Einwirkungsbereich befindlichen Immissionsorte dargestellt. Überschreitungen der Grenzwerte von 30 Stunden pro Jahr, bzw. 30 Minuten pro Tag, sowie die Überschreitungen der meteorlogisch wahrscheinlichen Beschattungsdauer von 8 Stunden pro Jahr, sind <u>fett</u> gekennzeichnet. Im Anhang befinden sich die Ausdrucke der Berechnung der Vor-, Zusatz- und Gesamtbelastung. Die Angabe zu der meteorologisch wahrscheinlichen Beschattungsdauer ist für die Genehmigung eines Vorhabens nicht relevant, kann jedoch Betreibern, Betroffenen und Behörden einen Eindruck über die zu erwartende tatsächliche Schattenwurfbelastung an den Immissionsorten geben. Hierzu wurden die Sonnenscheinwahrscheinlichkeit der Wetterstation Heiligendamm [4] und eine repräsentative Windverteilung vom Standort [7] herangezogen.

7.1 Vorbelastung

Tabelle 7.1: Analyseergebnisse Vorbelastung

	Vorbelastung										
Nr.		Astron. m	Met. wahr- scheinliche Beschat- tungsdauer								
	Immissionsort	Gesamt- dauer in Std/ Jahr	Schatten- tage in Tage/ Jahr	Max. Schatten- dauer, in Std/ Tag	Max. Schat- tendauer in Std. / Jahr						
101	Deibower Dorfst. 42, 19300 Milow OT Hof Deibow	24:46	82	0:28	4:49						
102	Waldstr. 4, 19300 Steesow OT Zuggelrade	<u>56:39</u>	86	<u>1:06</u>	<u>18:22</u>						
103	Waldstr. 5, 19300 Steesow OT Zuggelrade	<u>57:31</u>	87	<u>1:07</u>	<u>18:38</u>						
104	Waldstr. 6, 19300 Steesow OT Zuggelrade	<u>54:25</u>	86	1:03	<u>17:29</u>						
105	Waldstr. 13, 19300 Steesow OT Zuggelrade	<u>69:39</u>	97	<u>1:13</u>	22:28						
106	Waldstr. 7, 19300 Steesow OT Zuggelrade	<u>71:17</u>	97	<u>1:15</u>	22:57						
107	Kastanienallee 1, 19294 Milow OT Görnitz	6:38	29	0:19	1:59						
108	Lenzener Str. 11, 19294 Milow OT Krinitz	47:37	127	0:42	5:57						
109	Lenzener Str. 10, 19294 Milow OT Krinitz	46:13	124	0:41	5:44						
IO10	Lenzener Str. 9, 19294 Milow OT Krinitz	<u>45:23</u>	120	0:42	5:37						
IO11	Lenzener Str. 4, 19294 Milow OT Krinitz	39:52	110	0:41	4:49						

7.2 Zusatzbelastung

Tabelle 7.2: Analyseergebnisse Zusatzbelastung

	Zusatzbelas	tung			
Nr		Astron. m	Met. wahr- scheinliche Beschat- tungsdauer		
Nr.	Immissionsort	Gesamt- dauer in Std/ Jahr	Schatten- tage in Tage/ Jahr	Max. Schatten- dauer, in Std/ Tag	Max. Schat- tendauer in Std. / Jahr
101	Deibower Dorfst. 42, 19300 Milow OT Hof Deibow	0:00	0	0:00	0:00
102	Waldstr. 4, 19300 Steesow OT Zuggelrade	0:00	0	0:00	0:00
103	Waldstr. 5, 19300 Steesow OT Zuggelrade	0:00	0	0:00	0:00
104	Waldstr. 6, 19300 Steesow OT Zuggelrade	4:21	28	0:12	1:19
105	Waldstr. 13, 19300 Steesow OT Zuggelrade	0:00	0	0:00	0:00
106	Waldstr. 7, 19300 Steesow OT Zuggelrade	0:00	0	0:00	0:00
107	Kastanienallee 1, 19294 Milow OT Görnitz	0:00	0	0:00	0:00
108	Lenzener Str. 11, 19294 Milow OT Krinitz	0:00	0	0:00	0:00
109	Lenzener Str. 10, 19294 Milow OT Krinitz	0:00	0	0:00	0:00
IO10	Lenzener Str. 9, 19294 Milow OT Krinitz	0:00	0	0:00	0:00
IO11	Lenzener Str. 4, 19294 Milow OT Krinitz	0:00	0	0:00	0:00

7.3 Gesamtbelastung

Tabelle 7.3: Analyseergebnisse Gesamtbelastung

	Gesamtbelastung										
		Astron. m	chattungs-	Met. wahr- scheinliche Beschat- tungsdauer							
Nr.	Immissionsort	Gesamt- dauer in Std/ Jahr	Schatten- tage in Tage/ Jahr	Max. Schatten- dauer, in Std/ Tag	Max. Schat- tendauer in Std. / Jahr						
101	Deibower Dorfst. 42, 19300 Milow OT Hof Deibow	24:46	82	0:28	4:55						
102	Waldstr. 4, 19300 Steesow OT Zuggelrade	<u>56:39</u>	86	<u>1:06</u>	<u>18:47</u>						
103	Waldstr. 5, 19300 Steesow OT Zuggelrade	<u>57:31</u>	87	<u>1:07</u>	<u>19:04</u>						
104	Waldstr. 6, 19300 Steesow OT Zuggelrade	<u>58:46</u>	114	1:03	<u>19:12</u>						
105	Waldstr. 13, 19300 Steesow OT Zuggelrade	<u>69:39</u>	97	<u>1:13</u>	<u>22:59</u>						
106	Waldstr. 7, 19300 Steesow OT Zuggelrade	71:17	97	1:15	23:29						
107	Kastanienallee 1, 19294 Milow OT Görnitz	6:38	29	0:19	2:02						
108	Lenzener Str. 11, 19294 Milow OT Krinitz	47:37	127	0:42	6:06						
109	Lenzener Str. 10, 19294 Milow OT Krinitz	46:13	124	0:41	5:52						
IO10	Lenzener Str. 9, 19294 Milow OT Krinitz	<u>45:23</u>	120	0:42	5:45						
IO11	Lenzener Str. 4, 19294 Milow OT Krinitz	39:52	110	<u>0:41</u>	4:56						

Der Grenzwert für die astronomisch maximal mögliche Schattenwurfdauer von 30 Stunden pro Jahr und/oder 30 Minuten pro Tag wird an den Immissionsorten IO2 bis IO6 und IO8 bis IO11 überschritten.

Die meteorologisch wahrscheinliche Beschattungsdauer in Stunden / Jahr wird an **5** Immissionsorten überschritten.

8 Zusammenfassung

Für das Genehmigungsverfahren nach dem BImSchG [2] ist der Nachweis der Einhaltung der gesetzlichen Grenzwerte für die Schattenwurfimmissionen zu führen. Gemäß den Hinweisen zur Ermittlung und Beurteilung der optischen Immissionen von Windenergieanlagen des Länderausschusses für Immissionsschutz [1] darf eine Belastung von 30 Stunden im Jahr oder 30 Minuten pro Tag nicht überschritten werden.

Die durchgeführten Berechnungen kommen zu dem Ergebnis, dass der Grenzwert für die astronomisch maximal mögliche Schattenwurfdauer von 30 Stunden pro Jahr und/oder 30 Minuten pro Tag an den Immissionsorten IO2 bis IO6 und IO8 bis IO11 überschritten wird.

Auf Grund der bereits durch die Vorbelastung ausgeschöpften Grenzwerte an den Immissionsorten **IO2 bis IO6 und IO8 bis IO11** dürfen die geplanten Anlagen an diesen Immissionsorten keinen weiteren Schattenwurf verursachen.

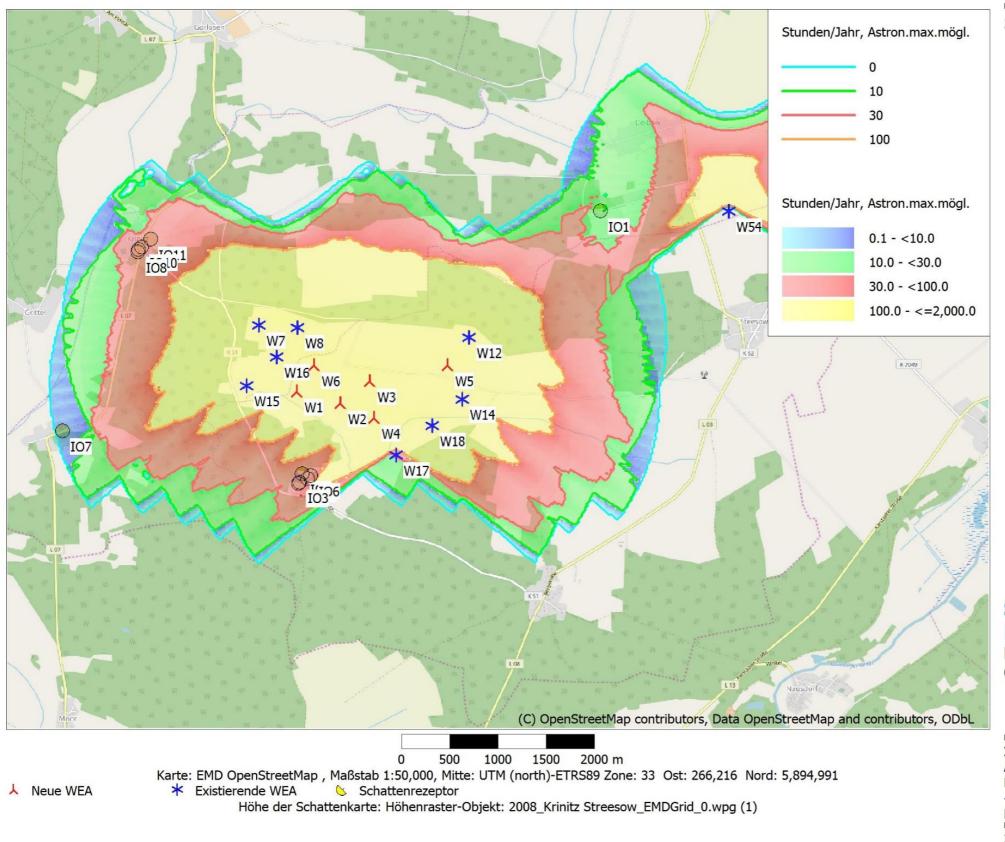
Der Immissionsort **IO4** befinden sich als einziger Immissionsorte im Einwirkungsbereich der neu geplanten Anlage.

Am o.g. Immissionsort <u>IO4</u> muss die Rotorschattenwurfdauer durch den Einsatz eines Schattenwurfabschaltmoduls entsprechend der vorgenannten Empfehlungen begrenzt werden. Dieses Modul schaltet die WEA ab, wenn an den relevanten Immissionsorten die vorgegebenen Grenzwerte erreicht sind. Da der Grenzwert von 30 Stunden pro Kalenderjahr auf Grundlage der astronomisch möglichen Beschattung entwickelt wurde, ist für die Schattenwurfabschaltautomatik der Wert für die tatsächliche, meteorologische Schattendauer von 8 Stunden pro Kalenderjahr zu berücksichtigen. Ferner ist der Tatsache Rechnung zu tragen, dass sich die Zeitpunkte für den Schattenwurf jedes Jahr leicht verschieben. Hier muss die Abschaltung auf dem realen Sonnenstand basieren.

Die Genehmigung sollte mit der Auflage des Einsatzes eines Schattenwurfabschaltmoduls erteilt werden.

9 Abkürzungs- und Symbolverzeichnis

Abkürzung	Bedeutung
Abb.	Abbildung
Astron.	Astronomisch
Bez.	Bezeichnung
GK	Gauß – Krüger
GPS	Global Positioning System
Hz	Hertz
10	Immissionsort
Max.	Maximal
Met.	Meteorologisch
NN	Normalnull
Nr.	Nummer
ОТ	Ortsteil
Std.	Stunden
UTM	Universal Transverse Mercator
WEA	Windenergieanlage



10 Literaturverzeichnis

- [1] LAI, Länderausschuss für Immissionsschutz, Hinweise zur Ermittlung und Beurteilung der optischen Immissionen von Windkraftanlagen, Aktualisierung 2019 (WKA-Schattenwurfhinweise), Stand 23.01.2020
- [2] BImSchG, Bundes-Immissionsschutzgesetz
- [3] OpenStreetMap, © OpenStreetMap-Mitwirkende, www.openstreetmap.org/copyright
- [4] Sonnenwahrscheinlichkeit Wetterstation Heiligendamm, WindPRO-Datenbank WRDC http://wrd-cmgo.nrel.gov/html/get_data-ap.html
- [5] © GeoBasis-DE/M-V 2017 Geodaten der Vermessungs- und Geoinformationsbehörden in Mecklenburg-Vorpommern, Digitales Geländemodell DGM25 übermittelt durch den Fachbereich Geodatenbereitstellung, Landesamt für innere Verwaltung Mecklenburg-Vorpommern, 03.02.2021
- [6] SAB WindTeam GmbH; E-Mail mit dem Betreff: "AW: WP Krinitz-Steesow II | Angebotsanfrage" vom 16.04.2021; Daten zur Verfügung gestellt in WakeGuard® Layout-ID: 1408982
- [6.1] SAB WindTeam GmbH, Vorbelastungsanfrage SAB.xlsx, übermittelt per E-Mail mit dem Betreff: "S³-Gut-achtenpaket | WP Krinitz-Steesow und WP Moraas | Infos zu Bestandsanlagen etc.", am 06.08.2020, weitere Bestandsanlagen, Telefonnotiz, Telefonat mit dem LfU Brandenburg T21 zu den Bestandsanlagen in Brandenburg am 16.09.2020
- [6.2] SAB WindTeam GmbH, übermittelt per E-Mail mit dem Betreff: "AW: WP Krinitz-Steesow II | Angebots-anfrage" am 16.04.2021
- [7] anemos-jacob GmbH; Einschätzung der Windverhältnisse zur Bewertung der Standsicherheit von geplanten Windkraftanlagen an einem Standort bei Krinitz-Steesow, Revision 0.1; 21.08.2020
- [8] Vestas Wind Systems A/S, Rotorblatttiefen an Vestas Windenergieanlagen, Dokument Nr.: 0030-2627 V11 vom 04.03.2021

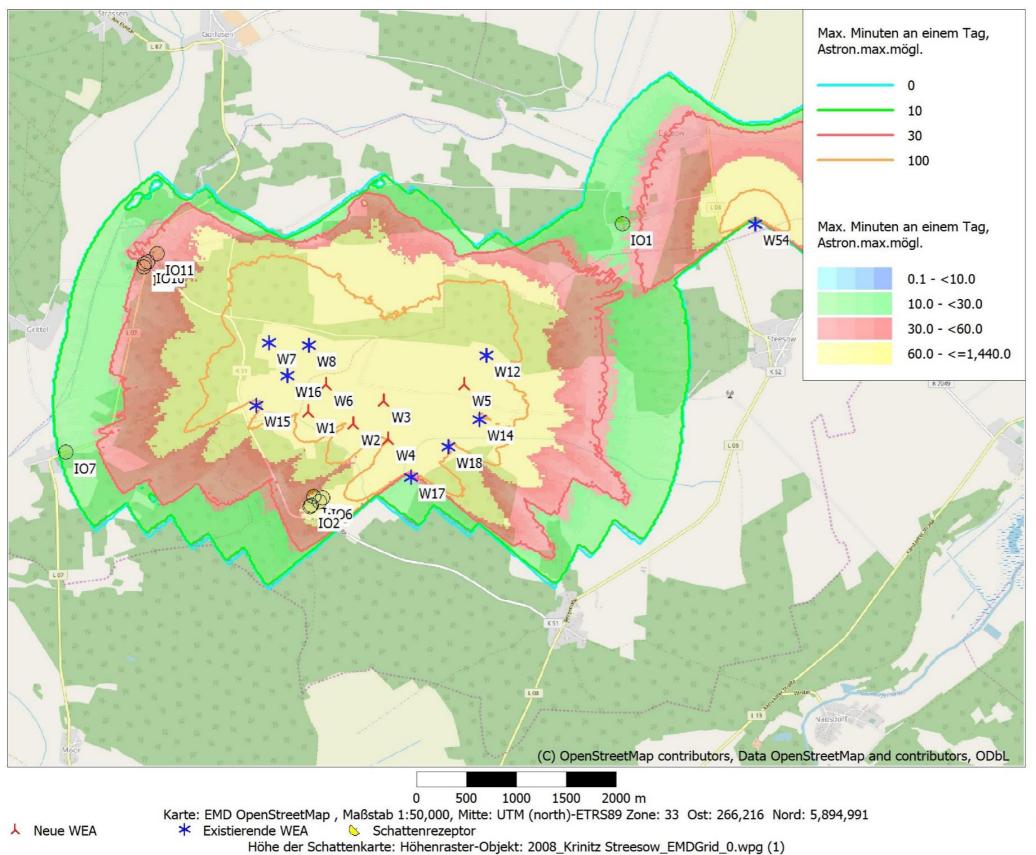
Anhang 1 / Übersichtskarte(n) der Gesamtbelastung mit Iso-Schattenlinien

Projekt:

2104_Krinitz Steesow II

SHADOW -Karte Berechnung: GB

enzierter Anwender:


I17-Wind GmbH & Co. KG Am Westersielzug 11 DE-25840 Friedrichstadt

Dennis Kramer / dennis.kramer@i17-wind.de
Berechnet:
30.04.2021 08:28/3.4.415

30.04.2021 08:30 / 3

Projekt

2104_Krinitz Steesow II

SHADOW -Karte Berechnung: GB

enzierter Anwender:

I17-Wind GmbH & Co. KG

Am Westersielzug 11 DE-25840 Friedrichstadt

Dennis Kramer / dennis.kramer@i17-wind.de 30.04.2021 08:28/3.4.415

30.04.2021 08:31 / 1

Anhang 2 / Hauptergebnis: Berechnungsergebnisse der Vorbelastung

2104_Krinitz Steesow II

I17-Wind GmbH & Co. KG

Am Westersielzug 11 DE-25840 Friedrichstadt

Dennis Kramer / dennis.kramer@i17-wind.de 30.04.2021 08:13/3.4.415

SHADOW - Hauptergebnis

Berechnung: VB

Voraussetzungen für Berechnung des Schattenwurfs

Beschattungsbereich der WEA

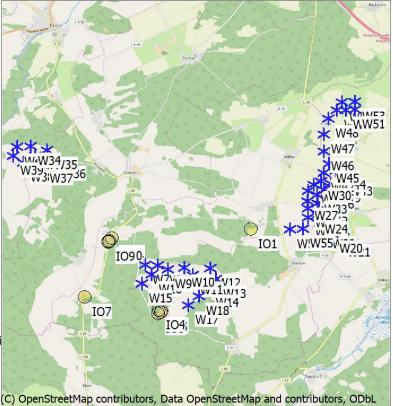
Schatten nur relevant, wo Rotorblatt mind. 20% der Sonne verdeckt Siehe WEA-Tabelle

Minimale relevante Sonnenhöhe über Horizont Tage zwischen Berechnungen 1 Tag(e) Berechnungszeitsprung 1 Minuten

Sonnenscheinwahrscheinlichkeit S (Mittlere tägliche Sonnenstunden) [HEILIGENDAMM] Jan Feb Mär Apr Mai Jun Jul Aug Sep Okt Nov Dez $1.39 \ \ 2.32 \ \ 3.70 \ \ 5.75 \ \ 8.12 \ \ 7.70 \ \ 7.33 \ \ 7.20 \ \ 5.12 \ \ 3.48 \ \ 1.79 \ \ 1.03$

Betriebsstunden ermittelt aus WEA in Berechnung und Windverteilung: Terraindaten: WAsP (15)

Betriebsdauer je Sektor


N NNO ONO O OSO SSO S SSW WSW W WNW NNW Summe 389 346 478 595 680 699 487 742 1,228 1,210 946 521 8,320 Startwindgeschwindigkeit: Startwindgeschw. aus Leistungskennlinie

Eine WEA wird nicht berücksichtigt, wenn sie von keinem Teil der Rezeptorfläche aus sichtbar ist. Die Sichtbarkeitsberechnung basiert auf den folgenden Annahmen:

Verwendete Höhenlinien: Höhenraster-Objekt: 2008 Krinitz Streesow EMDGri Hindernisse in Berechnung verwendet

Berechnungshöhe ü.Gr. für Karte: 1.5 m Rasterauflösung: 1.0 m

Alle Koordinatenangaben in: UTM (north)-ETRS89 Zone: 33

Maßstab 1:150,000 * Existierende WEA Schattenrezeptor

WEA

					WEA	-Tvn					Schattend	aten
	Ost	Nord	Z	Beschreibung		Hersteller	Тур	Nenn-	Rotor-	Naben-	Beschatt	U/min
				2000 0	tu-		. 7 F	leistung	durch-	höhe	Bereich	•,
					ell				messer			
			[m]					[kW]	[m]	[m]	[m]	[U/min]
1	263,911	5,895,728	21.4	W7	Ja	VESTAS	V162-5.6MW-5,600	5,600	162.0	169.0	2,041	12.1
2	264,314	5,895,683	21.5	W8	Ja	VESTAS	V150-5.6MW-5,600	5,600	150.0	169.0	1,897	12.6
3	264,661	5,895,538	21.9	W9	Ja	VESTAS	V162-5.6MW-5,600	5,600	162.0	169.0	2,041	12.1
4	265,199	5,895,571	22.2	W10	Ja	VESTAS	V162-5.6MW-5,600	5,600	162.0	169.0	2,041	12.1
5	265,488	5,895,308	22.7	W11	Ja	VESTAS	V162-5.6MW-5,600	5,600	162.0	169.0	2,041	12.1
6	266,093	5,895,497	23.2	W12	Ja	VESTAS	V162-5.6MW-5,600	5,600	162.0	169.0	2,041	12.1
7		5,895,120			Ja	VESTAS	V162-5.6MW-5,600	5,600	162.0	169.0	2,041	12.1
		5,894,850			Ja	VESTAS	V162-5.6MW-5,600	5,600	162.0	169.0	2,041	12.1
	•	5,895,104			Ja	VESTAS	V162-5.6MW-5,600	5,600	162.0	169.0	2,041	12.1
		5,895,388			Ja	VESTAS	V162-5.6MW-5,600	5,600	162.0	169.0	2,041	12.1
11		5,894,310				GE WIND ENERGY	•	5,500	158.0	161.0	1,816	9.7
12	- 3	5,894,597				GE WIND ENERGY	•	5,500	158.0	161.0	1,816	9.7
		5,898,179				e.n.o.	eno 114 4.0-4,000	4,000	114.9	142.0	1,974	11.8
		5,896,472				e.n.o.	eno 114 4.0-4,000	4,000	114.9	142.0	1,974	11.8
		5,896,317				e.n.o.	eno 114 4.0-4,000	4,000	114.9	142.0	1,974	11.8
	CONTROL OF THE SAME CONTROL	5,896,627				e.n.o.	eno 114 4.0-4,000	4,000	114.9	142.0	1,974	11.8
		5,898,152				e.n.o.	eno 126 4.000 kW-4,000	4,000	126.0	137.0	1,910	4.0
	-	5,897,145			Ja	VESTAS	V126-3.45/3.6 MW HTq-3,600	3,600	126.0	137.0	1,718	16.0
	the same of the sa	5,897,519			Ja	VESTAS	V126-3.45/3.6 MW HTq-3,600	3,600	126.0	137.0	1,718	16.0
		5,897,984				e.n.o.	eno 126 4.000 kW-4,000	4,000	126.0	137.0	1,910	4.0
		5,897,620			Ja	VESTAS	V126-3.45/3.6 MW HTq-3,600	3,600	126.0	137.0	1,718	16.0
		5,896,854				e.n.o.	eno 126 4.000 kW-4,000	4,000	126.0	137.0	1,910	4.0
1000000000		5,897,070			Ja	eno	eno 126 4.8-4,800	4,800	126.0	137.0	1,910	11.2
24		5,898,255				e.n.o.	eno 126 4.000 kW-4,000	4,000	126.0	137.0	1,910	4.0
		5,897,359			Ja	ENERCON	E-70 E4 2,3 MW-2,300	2,300	71.0	98.2	1,643	20.0
		5,897,945			Ja	NORDEX	N117/3600-3,600	3,600	116.8	91.0	1,489	12.6
27		5,897,808				e.n.o. Siemens	eno 114 4.0-4,000	4,000	114.9 142.0	142.0 165.0	1,974	11.8 11.2
	The state of the s	5,899,926			Ja Ja		SWT-DD-142-4,100	4,100	142.0	165.0	1,689	11.2
30		5,899,761			Ja	Siemens	SWT-DD-142-4,100	4,100	142.0	165.0	1,689	11.2
31		5,899,457 5,899,315			Ja Ja	Siemens Siemens	SWT-DD-142-4,100 SWT-DD-142-4,100	4,100 4,100	142.0	165.0	1,689 1,689	11.2
	AND ADDRESS OF THE PARTY OF THE	5,899,385			Ja	Siemens	SWT-DD-142-4,100 SWT-DD-142-4,100	4,100	142.0	165.0	1,689	11.2
					Ja	Siemens	SWT-DD-142-4,100		142.0	165.0	1,689	11.2
33	259,000	5,899,626	20.0	VV35	Ja	SICITIONS	3441-00-142-4,100	4,100	172.0	105.0	1,009	11.2

(Fortsetzung nächste Seite)...

2104_Krinitz Steesow II

Lizenzierter Anwender: **117-Wind GmbH & Co. KG** Am Westersielzug 11 DE-25840 Friedrichstadt

Dennis Kramer / dennis.kramer@i17-wind.de 30.04.2021 08:13/3.4.415

SHADOW - Hauptergebnis

Berechnung: VB

(F	ortsetzung	von vorhei	riger s	Seite)								
					WEA	-Тур					Schattend	laten
	Ost	Nord	Z	Beschreibung	Ak-	Hersteller	Тур	Nenn-	Rotor-	Naben-	Beschatt	U/min
					tu-			leistung	durch-	höhe	Bereich	
					ell				messer			
			[m]					[kW]	[m]	[m]	[m]	[U/min]
34	259,771	5,899,934	21.6	W40	Ja	Siemens	SWT-DD-142-4,100	4,100	142.0	165.0	1,689	11.2
35	260,352	5,899,601	19.6	W41	Ja	Siemens	SWT-DD-142-4,100	4,100	142.0	165.0	1,689	11.2
36	270,078	5,898,537	43.5	W42	Ja	REpower	MM 82-2,000	2,000	82.0	100.0	1,444	17.3
37	270,720	5,898,390	44.8	W43	Ja	REpower	MM 82-2,000	2,000	82.0	100.0	1,444	17.3
38	270,504	5,898,600	40.4	W44	Ja	REpower	MM 82-2,000	2,000	82.0	100.0	1,444	17.3
39	270,273	5,898,845	41.2	W45	Ja	REpower	MM 82-2,000	2,000	82.0	100.0	1,444	17.3
40	270,117	5,899,253	42.5	W46	Ja	REpower	MM 82-2,000	2,000	82.0	100.0	1,444	17.3
41	270,153	5,899,826	38.2	W47	Nein	REpower	MM 92-2,000	2,000	92.5	100.0	1,625	15.0
42	270,328	5,900,371	33.2	W48	Ja	REpower	MM 82-2,000	2,000	82.0	100.0	1,444	17.3
43	270,630	5,900,632	36.4	W49	Ja	REpower	MM 82-2,000	2,000	82.0	100.0	1,444	17.3
44	270,940	5,900,617	31.9	W50	Nein	REpower	MM 92-2,000	2,000	92.5	100.0	1,625	15.0
45	271,251	5,900,621	30.1	W51	Ja	REpower	MM 82-2,000	2,000	82.0	100.0	1,444	17.3
46	270,812	5,900,887	30.9	W52	Ja	REpower	MM 82-2,000	2,000	82.0	100.0	1,444	17.3
47	271,258	5,900,907	29.6	W53	Ja	REpower	MM 82-2,000	2,000	82.0	100.0	1,444	17.3
48	268,854	5,896,676	40.0	W54	Nein	e.n.o.	eno 160-6.0MW-6,000	6,000	160.0	165.0	1,743	9.8
49	269,288	5,896,689	43.0	W55	Nein	e.n.o.	eno 160-6.0MW-6,000	6,000	160.0	165.0	1,743	9.8

Schattenrezeptor-Eingabe

Nr. Name	Ost	Nord	Z	Breite	Höhe	Höhe ü.Gr.	Neigung des Fensters	Ausrichtungsmodus	Augenhöhe (ZVI) ü.Gr.
			[m]	[m]	[m]	[m]	[°]		[m]
A IO1	267,526	5,896,736	28.8	0.1	0.1	2.0	0.0	"Gewächshaus-Modus"	2.0
B IO2	264,246	5,894,060	22.2	0.1	0.1	2.0	0.0	"Gewächshaus-Modus"	2.0
C IO3	264,258	5,894,070	22.1	0.1	0.1	2.0	0.0	"Gewächshaus-Modus"	2.0
D IO4	264,284	5,894,164	22.0	0.1	0.1	2.0	0.0	"Gewächshaus-Modus"	2.0
E IO5	264,346	5,894,104	23.5	0.1	0.1	2.0	0.0	"Gewächshaus-Modus"	2.0
F IO6	264,375	5,894,137	23.1	0.1	0.1	2.0	0.0	"Gewächshaus-Modus"	2.0
G I07	261,814	5,894,734	20.3	0.1	0.1	2.0	0.0	"Gewächshaus-Modus"	2.0
H I08	262,695	5,896,544	20.4	0.1	0.1	2.0	0.0	"Gewächshaus-Modus"	2.0
I IO9	262,700	5,896,576	20.2	0.1	0.1	2.0	0.0	"Gewächshaus-Modus"	2.0
J IO10	262,732	5,896,593	19.9	0.1	0.1	2.0	0.0	"Gewächshaus-Modus"	2.0
K IO11	262,830	5,896,672	21.0	0.1	0.1	2.0	0.0	"Gewächshaus-Modus"	2.0

Berechnungsergebnisse

Schatte	nrezeptor			
	astron. max.	mögl. Beschattungs	dauer	met. wahrsch. Beschattungsdauer
Nr. Na	me Stunden/Jahr	Schattentage/Jahr	Max.Schattendauer/Tag	Stunden/Jahr
	[h/a]	[d/a]	[h/d]	[h/a]
A IO	1 24:46	82	0:28	4:49
B IO2	2 56:39	86	1:06	18:22
C IO	3 57:31	87	1:07	18:38
D 104	4 54:25	86	1:03	17:29
E IOS	5 69:39	97	1:13	22:28
F 106	5 71:17	97	1:15	22:57
G IO	6:38	29	0:19	1:59
H IOS	3 47:37	127	0:42	5:57
I IOS	9 46:13	124	0:41	5:44
J IO	10 45:23	120	0:42	5:37
K IO	11 39:52	110	0:41	4:49

Gesamtdauer Beschattung an Rezeptoren pro WEA

Nr.	Name	Maximal	Erwarte
		[h/a]	[h/a]
1	W7	32:03	4:43
2	W8	16:29	2:48
3	W9	0:00	0:00
4	W10	0:00	0:00
5	W11	0:00	0:00
6	W12	11:43	1:20
7	W13	0.00	0.00

(Fortsetzung nächste Seite)...

windPRO 3.4.415 | EMD International A/S, Tel. +45 96 35 44 44, www.emd.dk, windpro@emd.dk

30.04.2021 08:31 / 2 windPRO

2104_Krinitz Steesow II

Lizenzierter Anwender: I17-Wind GmbH & Co. KG Am Westersielzug 11 DE-25840 Friedrichstadt

Dennis Kramer / dennis.kramer@i17-wind.de 30.04.2021 08:13/3.4.415

SHADOW - Hauptergebnis

Berechnung: VB

DCI	bereemining. VD											
(F	ortsetzi		orheriger Seite)									
Nr.	Name	Maximal										
		[h/a]	[h/a]									
	W14	23:01	7:22									
9	W15	35:33	4:23									
	W16	25:59	3:00									
	W17	55:55	17:52									
12	W18	31:14	10:12									
13	W19	0:00	0:00									
14	W20	0:00	0:00									
15	W21	0:00	0:00									
16	W22	0:00	0:00									
17	W23	0:00	0:00									
18	W24	0:00	0:00									
19	W25	0:00	0:00									
20	W26	0:00	0:00									
	W27	0:00	0:00									
22	W28	0:00	0:00									
23	W29	0:00	0:00									
	W30	0:00	0:00									
25	W31	0:00	0:00									
26	W32	0:00	0:00									
	W33	0:00	0:00									
28	W34	0:00	0:00									
29	W35	0:00	0:00									
	W36	0:00	0:00									
	W37	0:00	0:00									
	W38	0:00	0:00									
	W39	0:00	0:00									
	W40	0:00	0:00									
	W41	0:00	0:00									
	W42	0:00	0:00									
	W43	0:00	0:00									
	W44	0:00	0:00									
	W45	0:00	0:00									
	W46	0:00	0:00									
	W47	0:00	0:00									
1000	W48	0:00	0:00									
	W49	0:00	0:00									
	W50	0:00	0:00									
-	W51	0:00	0:00									
	W52	0:00	0:00									
	W53	0:00	0:00									
	W54	13:03	3:32									
49	W55	0:00	0:00									

Summen in Rezeptortabelle und WEA-Tabelle können sich unterscheiden, da eine WEA gleichzeitig an zwei oder mehr Rezeptoren Beschattung verursachen kann und/oder ein Rezeptor gleichzeitig von zwei oder mehr WEA beschattet werden kann.

Anhang 3 / Hauptergebnis: Berechnungsergebnisse der Zusatzbelastung

2104_Krinitz Steesow II

I17-Wind GmbH & Co. KG

Am Westersielzug 11 DE-25840 Friedrichstadt

Dennis Kramer / dennis.kramer@i17-wind.de 26.04.2021 13:50/3.4.415

SHADOW - Hauptergebnis

Berechnung: ZB

Voraussetzungen für Berechnung des Schattenwurfs

Beschattungsbereich der WEA

Schatten nur relevant, wo Rotorblatt mind. 20% der Sonne verdeckt Siehe WEA-Tabelle

Minimale relevante Sonnenhöhe über Horizont Tage zwischen Berechnungen 1 Tag(e) Berechnungszeitsprung 1 Minuten

Sonnenscheinwahrscheinlichkeit S (Mittlere tägliche Sonnenstunden) [HEILIGENDAMM] Jan Feb Mär Apr Mai Jun Jul Aug Sep Okt Nov Dez 1.39 2.32 3.70 5.75 8.12 7.70 7.33 7.20 5.12 3.48 1.79 1.03

Betriebsstunden ermittelt aus WEA in Berechnung und Windverteilung: Terraindaten: WAsP (15)

Betriebsdauer je Sektor

N NNO ONO O OSO SSO S SSW WSW W WNW NNW Summe 399 355 490 609 699 717 500 766 1,263 1,240 967 534 8,540 Startwindgeschwindigkeit: Startwindgeschw. aus Leistungskennlinie

Eine WEA wird nicht berücksichtigt, wenn sie von keinem Teil der Rezeptorfläche aus sichtbar ist. Die Sichtbarkeitsberechnung basiert auf den folgenden Annahmen:

Verwendete Höhenlinien: Höhenraster-Objekt: 2008_Krinitz Streesow_EMDGri Hindernisse in Berechnung verwendet

Berechnungshöhe ü.Gr. für Karte: 1.5 m Rasterauflösung: 1.0 m

Alle Koordinatenangaben in: UTM (north)-ETRS89 Zone: 33

IO1 108 11 W6 ^ IO7 (C) OpenStreetMap contributors, Data OpenStreetMap and contributors, ODbL

Maßstab 1:75,000 **Schattenrezeptor**

WEA

					WEA-Typ)					Schattenda	aten
	Ost	Nord	Z	Beschreibung	Aktuell	Hersteller	Тур	Nenn-	Rotordurch-	Nabenhöhe	Beschatt	U/min
								leistung	messer		Bereich	
			[m]					[kW]	[m]	[m]	[m]	[U/min]
1	264,269	5,895,018	20.7	' W1	Ja	VESTAS	V162-5.6/6.0MW-6,000	6,000	162.0	169.0	2,041	9.3
2	264,716	5,894,872	21.5	W2	Ja	VESTAS	V162-5.6/6.0MW-6,000	6,000	162.0	169.0	2,041	9.3
3	265,036	5,895,090	22.1	W3	Ja	VESTAS	V162-5.6/6.0MW-6,000	6,000	162.0	169.0	2,041	9.3
4	265,064	5,894,705	22.0	W4	Ja	VESTAS	V162-5.6/6.0MW-6,000	6,000	162.0	169.0	2,041	9.3
5	265,853	5,895,207	23.1	W5	Ja	VESTAS	V162-5.6/6.0MW-6,000	6,000	162.0	169.0	2,041	9.3
6	264,464	5,895,277	21.2	W6	Ja	VESTAS	V162-5.6/6.0MW-6,000	6,000	162.0	169.0	2,041	9.3

Schattenrezeptor-Eingabe

		_							
Nr. Name	Ost	Nord	Z	Breite	Höhe	Höhe	Neigung des	Ausrichtungsmodus	Augenhöhe (ZVI) ü.Gr.
						ü.Gr.	Fensters		
			[m]	[m]	[m]	[m]	[°]		[m]
A IO1	267,526	5,896,736	28.8	0.1	0.1	2.0	0.0	"Gewächshaus-Modus"	2.0
B IO2	264,246	5,894,060	22.2	0.1	0.1	2.0	0.0	"Gewächshaus-Modus"	2.0
C IO3	264,258	5,894,070	22.1	0.1	0.1	2.0	0.0	"Gewächshaus-Modus"	2.0
D 104	264,284	5,894,164	22.0	0.1	0.1	2.0	0.0	"Gewächshaus-Modus"	2.0
E IO5	264,346	5,894,104	23.5	0.1	0.1	2.0	0.0	"Gewächshaus-Modus"	2.0
F 106	264,375	5,894,137	23.1	0.1	0.1	2.0	0.0	"Gewächshaus-Modus"	2.0
G IO7	261,814	5,894,734	20.3	0.1	0.1	2.0	0.0	"Gewächshaus-Modus"	2.0
H 108	262,695	5,896,544	20.4	0.1	0.1	2.0	0.0	"Gewächshaus-Modus"	2.0
I 109	262,700	5,896,576	20.2	0.1	0.1	2.0	0.0	"Gewächshaus-Modus"	2.0
J IO10	262,732	5,896,593	19.9	0.1	0.1	2.0	0.0	"Gewächshaus-Modus"	2.0
K IO11	262,830	5,896,672	21.0	0.1	0.1	2.0	0.0	"Gewächshaus-Modus"	2.0

Berechnungsergebnisse

Sch	Schattenrezeptor												
		astron. max. r	met. wahrsch. Beschattungsdauer										
Nr.	Name	Stunden/Jahr	Schattentage/Jahr	Stunden/Jahr									
		[h/a]	[d/a]	[h/d]	[h/a]								
A	IO1	0:00	0	0:00	0:00								
В	IO2	0:00	0	0:00	0:00								

(Fortsetzung nächste Seite)...

2104_Krinitz Steesow II

Lizenzierter Anwender: **117-Wind GmbH & Co. KG** Am Westersielzug 11 DE-25840 Friedrichstadt

Dennis Kramer / dennis.kramer@i17-wind.de 26.04.2021 13:50/3.4.415

SHADOW - Hauptergebnis

Berechnung: ZB

...(Fortsetzung von vorheriger Seite)

		astron. max. i	met. wahrsch. Beschattungsdaue		
Nr.	Name	Stunden/Jahr	Schattentage/Jahr	Max.Schattendauer/Tag	Stunden/Jahr
		[h/a]	[d/a]	[h/d]	[h/a]
C	IO3	0:00	0	0:00	0:00
D	IO4	4:21	28	0:12	1:19
E	IO5	0:00	0	0:00	0:00
F	106	0:00	0	0:00	0:00
G	IO7	0:00	0	0:00	0:00
Н	IO8	0:00	0	0:00	0:00
I	109	0:00	0	0:00	0:00
J	IO10	0:00	0	0:00	0:00
K	IO11	0:00	0	0:00	0:00

Gesamtdauer Beschattung an Rezeptoren pro WEA Nr. Name Maximal Erwartet

Nr.	Name	Maximal	Erwarte
		[h/a]	[h/a]
1	W1	0:00	0:00
2	W2	0:00	0:00
3	W3	0:00	0:00
4	W4	0:00	0:00
5	W5	4:21	1:19
6	W6	0:00	0:00

Summen in Rezeptortabelle und WEA-Tabelle können sich unterscheiden, da eine WEA gleichzeitig an zwei oder mehr Rezeptoren Beschattung verursachen kann und/oder ein Rezeptor gleichzeitig von zwei oder mehr WEA beschattet werden kann.

26.04.2021 14:03 / 2 windPRO

Anhang 4 / Hauptergebnis: Berechnungsergebnisse der Gesamtbelastung

2104_Krinitz Steesow II

I17-Wind GmbH & Co. KG

Am Westersielzug 11 DE-25840 Friedrichstadt

Dennis Kramer / dennis.kramer@i17-wind.de 30.04.2021 08:28/3.4.415

SHADOW - Hauptergebnis

Berechnung: GB

Voraussetzungen für Berechnung des Schattenwurfs

Beschattungsbereich der WEA

Schatten nur relevant, wo Rotorblatt mind. 20% der Sonne verdeckt Siehe WEA-Tabelle

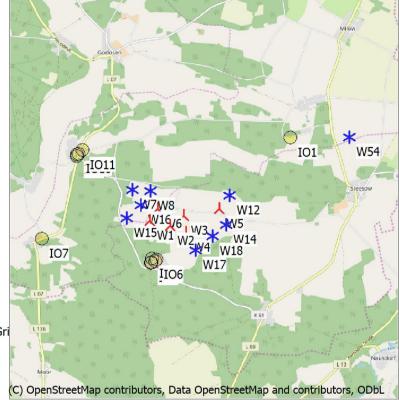
Minimale relevante Sonnenhöhe über Horizont Tage zwischen Berechnungen 1 Tag(e) Berechnungszeitsprung 1 Minuten

Sonnenscheinwahrscheinlichkeit S (Mittlere tägliche Sonnenstunden) [HEILIGENDAMM] Jan Feb Mär Apr Mai Jun Jul Aug Sep Okt Nov Dez $1.39 \ \ 2.32 \ \ 3.70 \ \ 5.75 \ \ 8.12 \ \ 7.70 \ \ 7.33 \ \ 7.20 \ \ 5.12 \ \ 3.48 \ \ 1.79 \ \ 1.03$

Betriebsstunden ermittelt aus WEA in Berechnung und Windverteilung: Terraindaten: WAsP (15)

Betriebsdauer je Sektor

N NNO ONO O OSO SSO S SSW WSW W WNW NNW Summe 398 354 488 608 697 715 499 763 1,258 1,236 965 533 8,514 Startwindgeschwindigkeit: Startwindgeschw. aus Leistungskennlinie


Eine WEA wird nicht berücksichtigt, wenn sie von keinem Teil der Rezeptorfläche aus sichtbar ist. Die Sichtbarkeitsberechnung basiert auf den folgenden Annahmen:

Verwendete Höhenlinien: Höhenraster-Objekt: 2008_Krinitz Streesow_EMDGri Hindernisse in Berechnung verwendet

Berechnungshöhe ü.Gr. für Karte: 1.5 m Rasterauflösung: 1.0 m

Alle Koordinatenangaben in:

UTM (north)-ETRS89 Zone: 33

Maßstab 1:100,000 Neue WEA * Existierende WEA

Schattenrezeptor

WEA

					WEA-Typ	WEA-Typ						
	Ost	Nord	Z	Beschreibung	Aktuell	Hersteller	Тур	Nenn-	Rotor-	Naben-	Beschatt	U/min
								leistung	durch-	höhe	Bereich	
									messer			
			[m]					[kW]	[m]	[m]	[m]	[U/min]
1	264,269	5,895,018	20.7	W1	Ja	VESTAS	V162-5.6/6.0MW-6,000	6,000	162.0	169.0	2,041	9.3
2	264,716	5,894,872	21.5	W2	Ja	VESTAS	V162-5.6/6.0MW-6,000	6,000	162.0	169.0	2,041	9.3
3	265,036	5,895,090	22.1	W3	Ja	VESTAS	V162-5.6/6.0MW-6,000	6,000	162.0	169.0	2,041	9.3
4	265,064	5,894,705	22.0	W4	Ja	VESTAS	V162-5.6/6.0MW-6,000	6,000	162.0	169.0	2,041	9.3
5	265,853	5,895,207	23.1	W5	Ja	VESTAS	V162-5.6/6.0MW-6,000	6,000	162.0	169.0	2,041	9.3
6	264,464	5,895,277	21.2	W6	Ja	VESTAS	V162-5.6/6.0MW-6,000	6,000	162.0	169.0	2,041	9.3
7	263,911	5,895,728	21.4	W7	Ja	VESTAS	V162-5.6MW-5,600	5,600	162.0	169.0	2,041	12.1
8	264,314	5,895,683	21.5	W8	Ja	VESTAS	V150-5.6MW-5,600	5,600	150.0	169.0	1,897	12.6
9	266,093	5,895,497	23.2	W12	Ja	VESTAS	V162-5.6MW-5,600	5,600	162.0	169.0	2,041	12.1
10	265,987	5,894,850	23.4	W14	Ja	VESTAS	V162-5.6MW-5,600	5,600	162.0	169.0	2,041	12.1
11	263,749	5,895,104	20.3	W15	Ja	VESTAS	V162-5.6MW-5,600	5,600	162.0	169.0	2,041	12.1
12	264,081	5,895,388	21.1	W16	Ja	VESTAS	V162-5.6MW-5,600	5,600	162.0	169.0	2,041	12.1
13	265,272	5,894,310	22.4	W17	Nein	GE WIND ENERGY	GE 5.5-158-5,500	5,500	158.0	161.0	1,816	9.7
		5,894,597			Nein	GE WIND ENERGY	GE 5.5-158-5,500	5,500	158.0	161.0	1,816	9.7
15	268,854	5,896,676	40.0	W54	Nein	e.n.o.	eno 160-6.0MW-6,000	6,000	160.0	165.0	1,743	9.8

Schattenrezeptor-Eingabe

Nr. Name	Ost	Nord	Z	Breite	Höhe	Höhe	5 5	Ausrichtungsmodus	Augenhöhe (ZVI) ü.Gr.
						ü.Gr.	Fensters		
			[m]	[m]	[m]	[m]	[°]		[m]
A IO1	267,526	5,896,736	28.8	0.1	0.1	2.0	0.0	"Gewächshaus-Modus"	2.0
B IO2	264,246	5,894,060	22.2	0.1	0.1	2.0	0.0	"Gewächshaus-Modus"	2.0
C IO3	264,258	5,894,070	22.1	0.1	0.1	2.0	0.0	"Gewächshaus-Modus"	2.0
D IO4	264,284	5,894,164	22.0	0.1	0.1	2.0	0.0	"Gewächshaus-Modus"	2.0
E 105	264,346	5,894,104	23.5	0.1	0.1	2.0	0.0	"Gewächshaus-Modus"	2.0
F 106	264,375	5,894,137	23.1	0.1	0.1	2.0	0.0	"Gewächshaus-Modus"	2.0
G 107	261,814	5,894,734	20.3	0.1	0.1	2.0	0.0	"Gewächshaus-Modus"	2.0
H IO8	262,695	5,896,544	20.4	0.1	0.1	2.0	0.0	"Gewächshaus-Modus"	2.0
I 109	262,700	5,896,576	20.2	0.1	0.1	2.0	0.0	"Gewächshaus-Modus"	2.0

(Fortsetzung nächste Seite)...

2104_Krinitz Steesow II

Lizenzierter Anwender: **I17-Wind GmbH & Co. KG** Am Westersielzug 11 DE-25840 Friedrichstadt

Dennis Kramer / dennis.kramer@i17-wind.de 30.04.2021 08:28/3.4.415

SHADOW - Hauptergebnis

Berechnung: GB

	(1016	SCL2U.	ng von ve	illeligel 3	ile)						
١	Nr. Na	ame	Ost	Nord	Z	Breite	Höhe	Höhe ü.Gr.	Neigung des Fensters	Ausrichtungsmodus	Augenhöhe (ZVI) ü.Gr.
					[m]	[m]	[m]	[m]	[°]		[m]
	J IO	010	262,732	5,896,593	19.9	0.1	0.1	2.0	0.0	"Gewächshaus-Modus"	2.0
	K TO	011	262 830	5 896 672	21 0	0.1	0.1	2.0	0.0	"Gewächshaus-Modus"	2.0

Berechnungsergebnisse

	tte			

ii ezeptoi			
astron. max. mögl. Beschattungsdauer			met. wahrsch. Beschattungsdauer
ne Stunden/Jahr	Schattentage/Jahr	Max.Schattendauer/Tag	Stunden/Jahr
[h/a]	[d/a]	[h/d]	[h/a]
24:46	82	0:28	4:55
56:39	86	1:06	18:47
57:31	87	1:07	19:04
58:46	114	1:03	19:12
69:39	97	1:13	22:59
71:17	97	1:15	23:29
6:38	29	0:19	2:02
47:37	127	0:42	6:06
46:13	124	0:41	5:52
0 45:23	120	0:42	5:45
1 39:52	110	0:41	4:56
	astron. max. r Stunden/Jahr [M] 24:46 56:39 57:31 58:46 69:39 71:17 6:38 47:37 46:13 0 45:23	astron. max. mögl. Beschattungs stunden/Jahr [d/a] [d/a	Stunden/Jahr Schattentage/Jahr Stunden/Jahr Schattentage/Jahr Max.Schattendauer/Tag [h/d] [h/d] 24:46 82 0:28 56:39 86 1:06 58:46 114 1:03 69:39 97 1:13 71:17 97 1:15 6:38 29 0:19 47:37 127 0:42 0:41 0:041 0:041 0:041 0:041 0:042 0:42 0:41 0:041 0:041 0:042 0:42 0:42 0:45

Gesamtdauer Beschattung an Rezeptoren pro WEA

Nr.	Name	Maximal	Erwarte
		[h/a]	[h/a]
1	W1	0:00	0:00
2	W2	0:00	0:00
3	W3	0:00	0:00
4	W4	0:00	0:00
5	W5	4:21	1:18
6	W6	0:00	0:00
7	W7	32:03	4:50
8	W8	16:29	2:52
9	W12	11:43	1:22
10	W14	23:01	7:33
11	W15	35:33	4:29
12	W16	25:59	3:04
13	W17	55:55	18:16
14	W18	31:14	10:27
15	W54	13:03	3:37

Summen in Rezeptortabelle und WEA-Tabelle können sich unterscheiden, da eine WEA gleichzeitig an zwei oder mehr Rezeptoren Beschattung verursachen kann und/oder ein Rezeptor gleichzeitig von zwei oder mehr WEA beschattet werden kann.

30.04.2021 08:30 / 2 windPRO

Anhang 5 / Fotodokumentation der Immissionsorte

Nr.	Immissionspunkte	Foto / Bemerkung
101	Deibower Dorfst. 42, 19300 Milow OT Hof Deibow	
102	Waldstr. 4, 19300 Steesow OT Zuggelrade	
103	Waldstr. 5, 19300 Steesow OT Zuggelrade	Nicht bebaut
104	Waldstr. 6, 19300 Steesow OT Zuggelrade	

Nr.	Immissionspunkte	Foto / Bemerkung
105	Waldstr. 13, 19300 Steesow OT Zuggelrade	
106	Waldstr. 7, 19300 Steesow OT Zuggelrade	
107	Kastanienallee 1, 19294 Milow OT Görnitz	

Nr.	Immissionspunkte	Foto / Bemerkung
108	Lenzener Str. 11, 19294 Milow OT Krinitz	Toto / Bellerkung
109	Lenzener Str. 10, 19294 Milow OT Krinitz	Luckygatus Zie-Bland Brown 10:
1010	Lenzener Str. 9, 19294 Milow OT Krinitz	

Nr.	Immissionspunkte	Foto / Bemerkung
1011	Lenzener Str. 4, 19294 Milow OT Krinitz	