Hydrologische Daten

1. Ableitung der Durchflusswerte von vorhandenen Pegeldaten

(Quelle: StALU MS, DS Neubrandenburg)

	Kittendorfer Peene/ Kittendorf		Röcknitzbach Oberlauf vor Einleitung Graben L130 (Abschnitt 3)		Einleitung Graben L160		Röcknitzbach mit Graben L160 am Beginn Projektgebiet (Abschnitt 1-2)	
Einzugsgebiets- größe [km²]	51,92	laut FIS WRRL	41,37	laut FIS WRRL	9,7	laut FIS WRRL	53,7	laut FIS WRRL
y	Durchfluss	Abfluss-	Durchfluss	Abfluss-	Durchfluss	Abfluss-	Durchfluss	Abfluss-
	[m³/s]	spende [l/s*km²]	[m³/s]	spende [l/s*km²]	[m³/s]	spende [l/s*km²]	[m³/s]	spende [l/s*km²]
Gewässerhauptzahlen ^{x1}								
NQ	0,004	0,1	0,002	0,1	0,001	0,1	0,003	0,1
MNQ	0,027	0,5	0,022	0,5	0,007	0,7	0,030	0,6
SoMNQ	0,028	0,5	0,023	0,5	0,007	0,7	0,031	0,6
SoMQ	0,094	1,8	0,061	1,5	0,015	1,6	0,081	1,5
MQ	0,181	3,5	0,119	2,9	0,030	3,1	0,156	2,9
WiMQ	0,271	5,2	0,178	4,3	0,045	4,6	0,234	4,4
SoMHQ	0,512	9,9	0,337	8,1	0,085	8,7	0,443	8,2
MHQ	1,26	24,2	0,826	20,0	0,208	21,4	1,087	20,3
HQ	2,70	52,1	1,78	43,0	0,45	46,1	2,34	43,6
			Но	chwasser-Extremy	verte ^{x2}			
HQ_2	1,16	22,3	1,34	32,4	0,42	42,7	1,74	32,4
HQ_5	1,76	33,9	1,84	44,5	0,62	63,8	2,39	44,5
HQ ₁₀	2,12	40,8	2,21	53,4	0,79	81,0	2,87	53,4
HQ ₂₀	2,44	47,0	2,63	63,6	1,00	102,6	3,41	63,6
HQ ₂₅	2,54	48,9	2,76	66,7	1,06	109,1	3,58	66,7
HQ ₅₀	2,82	54,3	3,18	76,9	1,27	130,7	4,12	76,9
HQ ₁₀₀	3,09	59,5	3,59	86,8	1,50	154,3	4,66	86,8

: Beobachtungsreihe Pegel Kittendorfer Peene/Kittendorf 1974-2012

mittlere Abflüsse und mittlere Niedrigwasserabflüsse für Röcknitzbach Oberlauf und Graben L160 aus der Karte der

mittleren Durchflüsse für MV2012 (vom StALU MS übergeben)

Kursive und grau hinterlegte Werte wurden über Verhältnis berechnet

mittlere Abflüsse und mittlere Niedrigwasserabflüsse für Röcknitzbach am Beginn Projektgebiet aus Spende der Summe der Abflüsse aus

Röcknitzbach Oberlauf und Graben L160 berechnet

Beobachtungsreihe Pegel Kittendorfer Peene/Kittendorf 1974-2012

 $HQ(T)\ R\"{o}cknitzbach\ f\"{u}r\ R\"{o}cknitzbach\ Oberlauf\ und\ Graben\ L160\ aus\ Projekt\ Regionalisierung\ Hochwasserscheitelabflüsse\ MV2016$

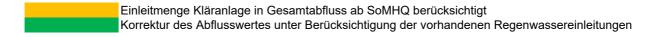
(vom StALU MS übergeben)

HQ(T) für Röcknitzbach am Beginn Projektgebiet aus Spende für Röcknitzbach Oberlauf

Anlage_2_Abflüsse_Röcknitzbach.xlsx

Anlage 2

Hydrologische Daten


2. Ableitung der Durchflusswerte für die Abschitte am Röcknitzbach

		tzbach/ biet AB1-2	Röcknitzbach/ Projektgebiet AB3					
Einzugsgebiets- größe [km²]	53,66	laut FIS WRRL	41,4	laut FIS WRRL				
	Durchfluss	Abfluss-	Durchfluss	Abfluss-				
	[m³/s]	spende [l/s*km²]	[m³/s]	spende [l/s*km²]				
Gewässerhauptzahlen ^{x1}								
NQ	0,003	0,1	0,002	0,1				
MNQ	0,030	0,6	0,022	0,5				
SoMNQ	0,031	0,6	0,023	0,5				
27.04.2020	0,070	1,3	0,031	0,7				
04.08.2020	0,054	1,0	0,024	0,6				
SoMQ	0,081	1,5	0,061	1,5				
MQ	0,156	2,9	0,119	2,9				
WiMQ	0,234	4,4	0,178	4,3				
11.03.2020	0,275	5,1	0,179	4,3				
SoMHQ	0,52	8,2	0,34	8,1				
MHQ	1,16	20,3	0,83	20,0				
HQ	2,43	43,6	1,78	43,0				
Hochwasser-Extremwerte ^{x2}								
HQ ₂	1,82	32,4	1,34	32,4				
HQ ₅	2,48	44,5	1,84	44,5				
HQ ₁₀	2,98	53,4	2,21	53,4				
HQ ₂₀	3,53	63,6	2,63	63,6				
HQ ₂₅	3,70	66,7	2,76	66,7				
HQ ₅₀	4,24	76,9	3,18	76,9				
HQ ₁₀₀	4,77	86,8	3,59	86,8				

Die kursiv gesetzten Werte wurden an den jeweiligen Messtagen im Projektgebiet ermittelt.

Berücksichtigung vorhandener Regenwassereinleitungen (Stadt Dargun) bei HQ

Einleitung		Abschnitt	Qmax [m³/s]	Berücksichtigung
Q1	Einleitmenge Kläranlage in Graben L 160	A1-2	0,039	100 % der Menge ab SoMHQ
Q2	Einleitmenge Regenwasser Altbauhof	A1-2	0,015	50-100 % der Menge je nach HWn
Q3	Einleitmenge Regenwasser Parkplatz Poggenkrug/Klosterdamm	A1-2	0,010	50-100 % der Menge je nach HWn
Q4	Einleitmenge Regenwasser Forsthof/Forstsiedlung	A1-2	0,051	50-100 % der Menge je nach HWn

