Restricted
Dokument Nr.: 0057-3199.V04
2018-03-14

Umgang Wassergefährdenden Stoffen

V112-3.3/3.45 MW BWC V117-3.3/3.45 MW BWC V126-3.3/3.45 MW BWC V126-3.45/3.6 MW HTq V136-3.45/3.6 MW

Mk3a/b, 50 Hz

RESTRICTED

Dokument Nr.: 0057-3199.V04

Document owner: TSS / CEU Type: T05

Umgang Wassergefährdenden Stoffen Inhaltsverzeichnis

Datum: 2018-03-14 Restricted Seite 2 von 12

Inhaltsverzeichnis

1	Einleitung	. 3
2	Grunddaten zum Gewässerschutz	. 3
2.1	Grunddaten zum Gewässerschutz	
2.2	Maximale Austritts- und Rückhaltemenge	. 4
2.3	Zoneneinteilung und aufnehmbare Volumen	
3	Vorhandene Schutzmaßnahmen	
3.1	Schutzmaßnahmen Hydraulikeinheit	. 5
3.1.1	Maschinenhaus	
3.1.2	Rotornabe	. 6
3.2	Schutzmaßnahmen Getriebeeinheit	. 6
3.2.1	Im Maschinenhaus	. 6
3.2.2	Turm	. 6
3.3	Schutzmaßnahmen Kühlsystem	. 6
3.3.1	Im Maschinenhaus	. 7
3.3.2	Auf dem Maschinenhausdach	. 7
3.4	Kühleinheit	. 7
4	Öl- und Kühlflüssigkeitswechsel	. 9
4.1	Getriebe- und Hydraulikstation	. 9
4.1.1	Vorhandene Schutzmaßnahmen unter Gesichtspunkten des Umweltschutzes	. 9
4.1.2	Schlauchleitung	10
4.1.3	WEA	
4.2	Kühlfüssigkeitswechsel	10
5	Weitere Informationen	10
5.1	Rotornabe	10
5.2	Maschinenhaus	11
6	Länderinformationen - Deutschland	11
7	Abkürzungsverzeichnis	12
8	Referenzen	12

Document owner: TSS / CEU Type: T05

Umgang Wassergefährdenden Stoffen Einleitung

Datum: 2018-03-14 Restricted Seite 3 von 12

1 Einleitung

In der folgenden Anlagendokumentation sind Informationen zusammengefasst, welche Vorkehrungen gegen den Austritt von wassergefährdenden Stoffen an Windenergieanlagen (im Folgenden WEA) von Vestas getroffen werden. Die WEA besitzt nur ein geringes Potential der Boden- und Gewässerverunreinigung, da mit relativ geringen Mengen wassergefährdenden Stoffen umgegangen wird. Zur einheitlichen Bestimmung und Einstufung der wassergefährdenden Stoffe wurde die Deutsche "Verordnung über Anlagen zum Umgang mit wassergefährdenden Stoffen (AwSV)" herangezogen. Die wassergefährdenden Stoffe werden hiernach entsprechend ihrer Gefährlichkeit in eine der folgenden Wassergefährdungsklassen (WGK) eingestuft:

Wassergefährdungsklasse 1: schwach wassergefährdend

Wassergefährdungsklasse 2: deutlich wassergefährdend

Wassergefährdungsklasse 3: stark wassergefährdend

Eine entsprechende Übersicht der Stoffe und dessen Einstufung ist im Dokument "Angaben zu wassergefährdenden Stoffen" einzusehen. In Anlagenteilen mit wassergefährdenden Stoffen ab einem Volumen von 220 Liter werden nur wassergefährdende Stoffe mit der WGK 1 eingesetzt.

Anlagenteile mit wassergefährdenden Stoffen, dessen maximales Volumen unter 220 Liter liegt, werden teilweise unter Kapitel 5 "Weitere Informationen" beschrieben. Diese Anlagenteile der WEA sind so ausgelegt, dass ein Austritt von wassergefährdenden Stoffen in die Umwelt ausgeschlossen werden kann.

2 Grunddaten zum Gewässerschutz

Aufgrund der Konstruktion von Turm, Maschinenhaus und Rotornabe werden die wasserrechtlichen Anforderungen erfüllt. Weiterhin sind die örtlichen Vorschriften von spezifischen Schutz- und Überschwemmungsgebieten zu beachten. Die WEA besitzt mehrere Funktionseinheiten. Wassergefährdende Stoffe einer Funktionseinheit sind komplett von anderen Funktionseinheiten getrennt. Diese Funktionseinheiten werden nachstehend als Anlagen bezeichnet. Alle Anlagenteile inkl. Rückhaltesysteme sind Standsicher ausgelegt.

2.1 Grunddaten zum Gewässerschutz

Tabelle 1 zeiget eine Auflistung der vorhandenen Anlagen mit einem Volumen mit über jeweils 220 Liter wassergefährdenden Stoffen:

Nr.	Anlage	Gesamtvolumen [Liter]
1.	Hydraulikeinheit	250
2.	Getriebeeinheit	1015
3а.	Kühleinheit Getriebe & Hydraulik	215
3b.	Kühleinheit Generator & Umrichter	282

Tabelle 1: Gesamtvolumen je Anlage V112/V117/V126 BWC sowie V126HTq/V136

VECTAC DECEDIETA DV NOTICE

T05 0057-3199 Ver 04 - Approved - Exported from DMS: 2018-03-19 by INVOL

Type: T05

Umgang Wassergefährdenden Stoffen Grunddaten zum Gewässerschutz

Datum: 2018-03-14 Restricted Seite 4 von 12

2.2 Maximale Austritts- und Rückhaltemenge

Die in der Tabelle 2 aufgeführten Mengen sind in Literangaben zur max. Austrittsmenge in den und zur max. Rückhaltemenge angegeben.

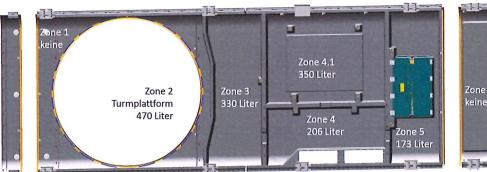

Anlage	Rotornabe		Maschinenhaus			Maschinenhausdach	
source leggl egical beau	Austritt	Rückhalt	Austritt	Max. Rückhalt Maschinenhaus	Rückhalt obere Turmplat tform	Austritt	Rückhalt
1.	100	100	250	1059	470	-	-
2.	-	-	965	1059	470	-	-
3.	-	-	282	1059	470	144	0

Tabelle 2: Max. Austritt/Rückhaltevolumen je Anlage V112/V117/V126 BWC sowie V126HTq/V136

2.3 Zoneneinteilung und aufnehmbare Volumen

Im Zusammenhang mit der durchgeführten Gefährdungsbeurteilung wurde das Maschinenhaus der Windenergieanlage in Zonen eingeteilt und das aufnehmbare Volumen je Zone ermittelt.

Das aufnehmbare Volumen Va ist definiert als das Gesamtvolumen der Auffangvorrichtung wobei die letzten 2 cm bis zum Rand der Auffangvorrichtung nicht berücksichtigt wird.

Vestas.

V_a (Zone 3, 4, 4.1 & 5):

1059 Liter

Die Auffangvorrichtungen der Zonen 3, 4, 4.1 und 5 sind via definierte Überlaufbereiche mit einander verbunden.

Neben der Auffangvorrichtung im Maschinenhausboden ist die oberste Turmplattform (Zone 2) so ausgelegt und abgedichtet das diese ebenfalls als Auffangvorrichtung dienen kann.

Va (Zone 2):

470 Liter

Dokument Nr.: 0057-3199.V04 Document owner: TSS / CEU

Type: T05

Umgang Wassergefährdenden Stoffen Vorhandene Schutzmaßnahmen

Datum: 2018-03-14 Restricted Seite 5 von 12

Auch die Rotornabe kann im Falle einer Leckage Mengen von bis zu 100 Liter Leckage aufnehmen:

V_a (Rotornabe):

100 Liter

3 Vorhandene Schutzmaßnahmen

Schon aus Gründen der Anlagen- und Betriebssicherheit besitzen die WEA eine umfangreiche Anlagenüberwachung. Die Sicherheitskette schaltet die Anlagen oder Baugruppen bei entsprechenden Fehlermeldungen ab. Die drei möglichen Systeme (Hydraulik, Kühlung und Getriebe), die zu Undichtigkeiten führen können, sind mit Niveauschalter ausgestattet. Bei einer Leckage meldet dieser die Fehlermeldungen "Zu niedriger Flüssigkeitsstand an einer Hydraulik-, Getriebeoder Kühleinheit" und ein Not Stopp wird ausgelöst. Unter anderem wird der betroffene Kreislauf durch Abstellen von Pumpen und Spannungsfreischaltung von Magnetventilen gesperrt, um ein Nachlaufen von austretenden Flüssigkeiten zu verhindern. Ein Wieder-Aufstart der WEA wird nicht zugelassen.

Neben den genannten Fehlermöglichkeiten werden eine Vielzahl von Druck- und Temperaturständen überwacht, wodurch selbst geringere Verluste von Betriebsflüssigkeiten schnell erkannt werden können. Weiterhin wird eine Fehlermeldung mittels des Vestas SCADA System (Online Fernüberwachungssystem) an den Betreiber und den Vestas Service abgesetzt.

Voraussetzung für die Funktionstüchtigkeit nachfolgend genannter Maßnahmen ist ein abgeschlossener Wartungsvertrag mit Vestas und ein sachgerechter Betrieb der Windenergieanlage.

Schutzmaßnahmen Hydraulikeinheit 3.1

Das Gesamtsystem enthält 250 Liter Hydrauliköl.

- Alle Schläuche und Rohre sind druck- und medienbeständig ausgelegt.
- Arbeitsanweisungen und Handbücher beschreiben, wie ein Flüssigkeitsverlust beim Umgang und Austausch der Filter, Pumpen, Rohre und Schläuche während Service, Wartung und Reparatur vermieden wird.

3.1.1 Maschinenhaus

- Die hauptsächlichen Hydraulikkomponenten im Maschinenhaus werden oberhalb des Vorratsbehälters montiert. Diese Einheit wird weiterhin Hydraulikstation genannt. Die obere Seite der Hydraulikstation wurde mit einer geschlossenen, 4 cm hohen Aufkantung versehen, so dass Leckagen aufgefangen und in einen Auffangbehälter geleitet werden.
- Die gesamte Leckage-Menge im Maschinenhaus von maximal 250 Liter kann bei einer eventuellen Leckage über das Auffangvorrichtung im Maschinen zurückgehalten werden.
- Entleerungsanschluss an der Hydraulikstation ist gegen unbeabsichtigtes Öffnen gesichert.

T05 0057-3199 Ver 04 - Approved - Exported from DMS: 2018-03-19 by INVOL

Dokument Nr.: 0057-3199.V04

Document owner: TSS / CEU Type: T05

Umgang Wassergefährdenden Stoffen Vorhandene Schutzmaßnahmen

Datum: 2018-03-14 Restricted Seite 6 von 12

3.1.2 Rotornabe

In der Rotornabe befindet sich eine hydraulische Steuereinheit für die Rotorblattverstellung. Diese wird von der Hydraulikstation aus dem Maschinenhaus mit Hydrauliköl versorgt. Für das Hydraulik-System in der Rotornabe wurde eine Lösung entwickelt, mit dem hydraulische Ölverschmutzungen in der Nabe zurückgehalten werden. Die gesamte Leckage-Menge von maximal 100 Liter Hydrauliköl kann bei einer eventuellen Leckage zurückgehalten werden.

3.2 Schutzmaßnahmen Getriebeeinheit

Das System enthält 1015 Liter für die V112/V117/V126 BWC, sowie für die V126HTq/V136.

- Alle Schläuche und Rohre sind druck- und medienbeständig ausgelegt;
- Die maximale Öl-Leckage beträgt 965 Liter für die V112/V117/V126 BWC und V126HTq/V136, da ca. 50 Liter Öl sich in den Schläuchen und Wärmetauscher etc. der Schmiereinheit, zurückgehalten wird.
- Arbeitsanweisungen und Handbücher beschreiben, wie ein Flüssigkeitsverlust beim Umgang und Austausch der Filter, Pumpen, Rohre und Schläuche während Service, Wartung und Reparatur vermieden wird.

3.2.1 Im Maschinenhaus

- Die hauptsächlichen Komponenten im Maschinenhaus sind Ausgleichtank, Haupttank (inkl. Pumpe u. Filter) und Getriebe;
- Leckagen am Ausgleichtank und Haupttank (inkl. Pumpe u. Filter) können in einer medienbeständigen Auffangwanne bis zu einer Gesamtmenge von 1059 Litern zurückgehalten werden;
- Der Entleerungsanschluss am Getriebe ist gegen unbeabsichtigtes Öffnen gesichert.

3.2.2 Turm

Das Getriebe ist im Maschinenhaus oberhalb des Turmes angeordnet. Leckage-Flüssigkeiten aus dem Maschinenhaus, welches nicht von der Auffangvorrichtung im Maschinenhaus aufgenommen werden, werden von der oberen Turmplattform aufgenommen. Die obere Turmplattform wurde als Auffangwanne mit einem Aufnahmevolumen von 470 Liter konstruiert. Diese soll auch die Verbreitung und den späteren Reinigungsaufwand im Turm einschränken. Die Turmplattform ist Auslaufsicher und kann 470 Liter Flüssigkeiten der WEA aufnehmen.

3.3 Schutzmaßnahmen Kühlsystem

Das System besteht aus zwei voneinander unabhängige Kühlkreisläufen inkl. getrennter Vorratsbehälter, Kühlelemente und Überwachungssysteme. Der Generator/Umrichter Kühlkreislauf enthält 282 Liter, der Getriebe/Hydraulik Kühlkreislauf 215 Liter.

Umgang Wassergefährdenden Stoffen Vorhandene Schutzmaßnahmen

Document owner: TSS / CEU

Type: T05

Datum: 2018-03-14 Restricted Seite 7 von 12

 Die Baugruppe des Systems ist genau in Arbeitsanweisungen beschrieben, um falsche Montage und dadurch die Gefahr einer Leckage zu verhindern.

- Alle Schläuche und Rohre sind druck- und medienbeständig ausgelegt.
- Arbeitsanweisungen und Handbücher beschreiben, wie ein Flüssigkeitsverlust beim Umgang und Austausch der Filter, Pumpen, Rohre und Schläuche während Service, Wartung und Reparatur vermieden wird.

3.3.1 Im Maschinenhaus

Jedes der beiden Kreislaufsysteme beinhalten in ihrem System wiederum verschiedene interne Kreisläufe. Jeder dieser internen Kreisläufe ist mit einem Ablassventil ausgestattet. Die maximale Menge im größten Kühlkreislauf beträgt 282 Liter und kann in der medienbeständigen Auffangvorrichtung im Maschinenhaus komplett zurückgehalten werden. Damit ist sichergestellt, dass die gesamte Flüssigkeitsmenge eines Kühlkreislaufes im Leckage-Fall zurückgehalten werden kann.

3.3.2 Auf dem Maschinenhausdach

Auf dem Maschinenhausdach befinden sich die jeweiligen Wasserkühler der Kühlkreisläufe. Im Kühlkreislauf Generator/Umrichter sind 4 Kühlelemente montiert und im Kühlkreislauf Getriebe/Hydraulik sind 3 Kühlelemente auf dem Dach montiert. Die maximale Menge oberhalb des Maschinenhausdaches /Kühlelementen (größter Kühlkreislauf) beträgt 144 Liter. Das Kühlsystem basiert auf ein Niederdrucksystem indem max. 2 bar Betriebsdruck erreicht wird. Im Spannungslosen Betriebszustand der Windkraftanlage sowie im späteren Standby-Modus oder Kaltlauf-Modus der Anlage ist das gesamte Kühlsystem auf dem Maschinenhaus entleert. Die gesamte Kühlflüssigkeit befindet sich dann innerhalb des Maschinenhauses. Nur wenn während des Betriebs der Windenergieanlage eine zusätzliche Kühlung über eines der beiden äußeren Kühlsysteme benötigt wird, werden die außenliegenden Kühlelemente mit einem Glykol / Wasser Gemisch (50:50) durchflutet. Ist die Kühlung aktiviert und es befindet sich Kühlwasser in den Kühlelementen, erfolgt kontinuierlich eine Unterschreiten eines Grenzwertes, Druckmessung, welches bei hervorgerufen durch Leckage-Verluste, eine Warnmeldung generiert.

3.4 Kühleinheit

Um mögliche Leckage-Quellen entgegen zu wirken hat Vestas ein spezielles Konzept für die auf dem Maschinenhausdach installierte Kühleinheit entwickelt. Das Konzept sieht vor, das möglichen Leckage-Quellen auszuschließen sind. Vorgabe hierfür ist unteranderen der Langzeiteinsatz unter härtesten Umwelteinflüssen wie sie zum Beispiel im Offshore - Bereich vorkommen.

- Es wird bewusst ein Niederdrucksystem mit einem Minimum an Verbindungsstellen verwendet.
- Das System der Kühlelemente mit den zugehörigen Verrohrungen und Flanschen wird im Werkvormontiert und dann vor Ort auf der Baustelle auf dem Maschinenhausdach endmontiert.

RESTRICTED

Dokument Nr.: 0057-3199.V04 Document owner: TSS / CEU

Type: T05

Umgang Wassergefährdenden Stoffen Vorhandene Schutzmaßnahmen

Datum: 2018-03-14 Restricted Seite 8 von 12

 Es befinden sich keine elektrischen Komponenten des Kühlsystems außerhalb des Maschinenhauses.

- Alle Komponenten der Kühleinheit auf dem Maschinenhausdach bestehen aus hochwertigen Druck, Medien- und Witterungsbeständigen Materialien.
- Zu. und Rücklaufleitungen zwischen den außenliegenden Kühlelementen und dem Kühlkreislaufsystem im Maschinenhaus sind in einem Stück gefertigt. Das Rohrmaterial ist besteht aus UV- und Ozon-resistenten Leitungen.
- Die wenigen außenliegenden Verbindungen bestehen aus hochwertigen Flanschverschraubungen.
- Flutung der außenliegenden Kühlelemente nur im störungsfreien Betriebsmodus (siehe auch Kapitel 3.3.2)
- Im Rahmen der Substitution wird ein Kühlflüssigkeitsprodukt mit der Zusammensetzung Ethylenglykol (Frostschutzmittel) und dem Additiv 2-Ethylhexansäure (Korrosionsinhibitor) im Gemisch 50:50 mit Wasser eingesetzt, da dieses für Wasserorganismen als nicht schädlich und als biologisch abbaubar angesehen wird. Additive Puffersubstanzen. Lösungsmittel, Geruchsstoffe werden nicht verwendet. Da eine Rückhaltefunktion des gesamten Kühlmittels konstruktionsbedingt technisch nicht realisierbar ist, treten in dem sehr unwahrscheinlichen Fall einer Leckage nur geringe Mengen aus, so dass eine Bodenverunreinigung nicht zu besorgen ist.

Alle Anlagen werden permanent hinsichtlich der Flüssigkeitsstände im Vorratsbehälter, in Abhängigkeit des jeweiligen Betriebszustands der WEA abgeglichen und das entsprechende tatsächliche Volumen der Anlage errechnet.

Fatal Szenario:

Eine Bewertung sowie Organisatorische oder Technische Schutzmaßnahmen bezüglich eines Fatal Szenario (z.B. Flugzeugabsturz, Naturkatastrophen) wird gesetzlich nicht gefordert. VESTAS Einschätzungen zu Folge wären genauere Angabe der zu erwartenden Leckage Menge, die bis zum wirksam werden von Schutzmaßnahmen nicht zurückgehalten werden kann, nur schwerlich zu berechnen, da dieses von vielen Faktoren abhängt (Fatal Szenario, Leckage-Quelle, Medientemperatur, etc.).

Geht man rein theoretisch davon aus, dass bei einem Fatal Szenario z.B. die gesamte Menge der Flüssigkeit des Top Kühlsystems (144 Liter) austritt und entsprechend den Windverhältnissen verteilt und je nach Bodenbeschaffenheit (Regen, Schnee) über eine größere Fläche ins Freie getragen wird, würde ein Teil der Flüssigkeit verdunsten bevor sie den Erdboden erreicht und ein weiterer Teil an der Bodenoberfläche verdunsten. Restliche Flüssigkeitsrückstände würden von den Bodenorganismen in den oberen Bodenschichten abgebaut und eine langfristige Bodenverunreinigung ist nicht zu besorgen. Auch eine Grundwasserverunreinigung ist nicht zu besorgen, da die Inhaltsstoffe der Kühlflüssigkeit (Ethylenglykol und 2-Ethylhexansäure) als leicht biologisch

Umgang Wassergefährdenden Stoffen Öl- und Kühlflüssigkeitswechsel

Type: T05

Datum: 2018-03-14 Restricted Seite 9 von 12

abbaubar angesehen werden. Für diese Einschätzung wurde unter anderem der Bericht /2/ "Risikominimierung beim Einsatz von Additiven in Wärmeträgerflüssigkeit" erstellt von der Universität Tübingen vom Zentrum für Angewandte Geowissenschaften (ZAG) im Auftrag des Landes Baden-Württemberg zu Hilfe genommen.

4 Öl- und Kühlflüssigkeitswechsel

4.1 Getriebe- und Hydraulikstation

Der Ölwechsel an Getriebe- und Hydraulikeinheit erfolgt abhängig von Ölanalysen oder in Serviceintervallen. Sofern ein Wartungsvertrag vorliegt, übernimmt Vestas Central Europe den Ölwechsel. Der Ölwechsel wird durch Spezialunternehmen im Auftrag von Vestas Central Europe ausgeführt. Diese Spezialunternehmen sind unter anderem nach DIN EN ISO 14001 (Umwelt) zertifiziert und fahren mit einem Spezialtankfahrzeug (im Folgenden LKW) die WEA an. Die Vorratsbehälter für die Frisch- und Gebrauchtöle, sowie die Pumpen und Schlauchrollen befinden sich in dem Kofferaufbau des LKW. Der Hydraulik- und Getriebeölwechsel erfolgt über eine Schlauchverbindung zwischen einem Tank auf einem LKW und dem Maschinenhaus. Schlauchleitungen werden in einem Stück vom LKW in das Maschinenhaus gezogen. Zuerst wird das Gebraucht-Öl in die hierfür vorgesehenen Gebrauchtölbehälter des LKW abgepumpt, und danach wird das vorgewärmte Frisch-Öl vom LKW in das Getriebe bzw. in das Hydrauliksystem der WEA gepumpt. Für jede Ölsorte wird aus Qualitätsgründen ein eigener Schlauch verwendet.

4.1.1 Vorhandene Schutzmaßnahmen unter Gesichtspunkten des Umweltschutzes

a) Fahrzeugaufbau

Das Fahrzeug ist ausgestattet mit einer großen ADR-Ausrüstung nach Gefahrgutrecht Straße 8.1.5.1. Alle Frisch- und Gebrauchtöle werden innerhalb des Fahrzeugaufbaus gelagert.

b) Ölauffang-Sicherheitssysteme

Der Fahrzeugaufbau dient als Auffangwanne und wurde dafür konzipiert. Es gibt keine Schnittstellen außerhalb des Fahrzeuges. Die Schnittstellen innerhalb des Fahrzeuges sind ausschließlich mit Rückschlagventilen versehen.

c) Überwachung

Die Fahrzeugschnittstelle beim Ent- bzw. Befüllungsvorgang wird ständig von qualifizierten Servicetechnikern begleitet.

d) Notfallkits

Das Fahrzeug ist zusätzlich mit einem Oil Rescue Kit als auch mit 50 kg Ölbindemittel ausgestattet.

Document owner: TSS / CEU Type: T05

Umgang Wassergefährdenden Stoffen Weitere Informationen

Datum: 2018-03-14 Restricted Seite 10 von 12

e) Umschlagplatz

Das Fahrzeug parkt auf der befestigten Kranstellfläche. Sollte trotz aller Vorsichtmaßnahmen dennoch Öl austreten, kann das Öl sofort aufgenommen werden, ohne nachhaltige Umweltschäden zu hinterlassen.

4.1.2 Schlauchleitung

Die Öle werden durch sortenreine spezialisierte Hydraulikschläuche in die WEA gepumpt. Die Hydraulikschläuche sind für einen Arbeitsdruck bis 300 bar zugelassen und haben einen Berstdruck von 1000 bar. Der operativ tätige Druck beim durchschnittlichen Getriebeölwechsel liegt bei 130 bar. Bei einer Maschinenhaushöhe von 100 m beträgt der Inhalt im gesamten Schlauch max. 30 l Öl.

4.1.3 WEA

a) Ölauffang-Sicherheitssysteme

Die Schnittstellen innerhalb des Maschinenhauses sind mit Absperrventilen und Rückschlagventilen versehen. Die Schläuche werden zusätzlich gegen einen ungewollten Abriss mit speziellen Schrumpfhalterungen gesichert. Sollte es dennoch zu einer Leckage kommen, kann die gesamte Menge im Maschinenhaus bzw. in der oberen Turmsektion aufgefangen werden.

b) Überwachung

Die Schnittstellen im Maschinenhaus beim Ent- bzw. Befüllungsvorgang werden ständig von qualifizierten Servicetechnikern begleitet. Es besteht eine permanente Funkverbindung zwischen Boden und Maschinenhaus.

4.2 Kühlfüssigkeitswechsel

Der Wechsel der Kühlflüssigkeit wird nach Serviceintervallen durchgeführt. Sofern ein Wartungsvertrag vorliegt, übernehmen Monteure von Vestas Central Europe den Wechsel. Das alte Kühlmittel wird in 20 Liter-Gebinden in dafür geeigneten Transportbehältern mit dem Maschinenhauskran abgelassen und der fachgerechten Entsorgung zugeführt. Die neue Kühlflüssigkeit wird mit dem Maschinenhauskran in Originalbehältern (ca. 20 Liter) mit geeigneten Transportbehältern ins Maschinenhaus gezogen und die Kühleinheit im Maschinenhaus wieder aufgefüllt.

5 Weitere Informationen

5.1 Rotornabe

Ein Austreten des Schmierfettes an den Rotorblattlagern wird durch jeweils zwei Profildichtungen an den inneren und äußeren Lagerringen der Rotorblattlager vermieden. Darüber hinaus wird jedes Rotorblattlager mit einem zusätzlichen, oberhalb der Rotorblattöffnung der Rotorschutzhaube angebrachten Schutzring abgeschirmt.

Document owner: TSS / CEU Type: T05

Umgang Wassergefährdenden Stoffen Länderinformationen - Deutschland

Datum: 2018-03-14 Restricted Seite 11 von 12

5.2 Maschinenhaus

Bei dem im Maschinenhaus integrierten Transformator handelt es sich um einen Trockentransformator.

6 Länderinformationen - Deutschland

Die nachfolgende Bewertung wurde nach den wesentlichen wasserrechtlichen Anforderungen des WHG im Abgleich mit der AwSV und den Technischen Regeln (TRWS) durchgeführt. Die WEA fällt unter der Deutschen Wasserschutzgesetzgebung unter die HBV-Anlagen (Anlage zur Herstellung, Behandlung, Verwendung von wassergefährdenden Stoffe)

• Die WEA besitzt gewässerrechtlich mehrere Anlagen (selbständige und ortsfeste oder ortsfeste benutzte Funktionseinheiten) in denen wassergefährdende Stoffe verwendet werden.

Die vier Anlagen (Hydraulik,- Getriebe, und Kühleinheiten) werden nach der AwSV jeweils wie folgt eingestuft:

Gefährdungspotenzial:

Hydraulik- und Kühleinheiten:

Gefährdungsstufe A: Volumen = >0,22 m³ oder 0,2 t ≤ 1

Getriebeeinheit:

Gefährdungsstufe A: Volumen (m³)= > 1 ≤ 10

Anforderung:

Löschwasserrückhaltung:

Gesamtvolumen als WGK 1 =1,76m³
Gesamtmasse Äquivalent gemäß LÖRüRL = 1,71 t
Mengenschwelle der LÖRüRL Nr.2.1 ist nicht überschritten.
Löschwasserrückhaltung nicht erforderlich.

Rückhaltevermögen für austretende wassergefährdende Flüssigkeiten:

Die Anlagen erfüllen die besonderen Anforderungen an die Rückhaltung bei bestimmten Anlagen gemäß § 34 AwSV

Document owner: TSS / CEU Type: T05

Umgang Wassergefährdenden Stoffen Abkürzungsverzeichnis

Datum: 2018-03-14 Restricted Seite 12 von 12

Abkürzungsverzeichnis 7

Begriff/ Abkürzung	Erklärung			
ADR-Ausrüstung	Recht / Regelwerk über die internationale Beförderung gefährlicher Güter auf der Straße / Notfall Ausrüstungssatz auf dem Fahrzeug			
Arbeitsdruck	Vom Hersteller zugelassener max. Druck mit dem das Produkt betrieben werden darf.			
AwsV	DE / Recht / Verordnung über Anlagen zum Umgang mit wassergefährdenden Stoffen			
Berstdruck	Berstdruck ist der Druck bei dem das Produkt an seinen schwächsten Punkt undicht wird.			
DIN EN ISO 14001	Internationale und die Europäische Norm ISO 14001			
TRWS	DE / Recht / Technische Regel wassergefährdender Stoffe			
WEA	Windenergieanlage(n)			
WGK	Wassergefährdungsklasse			
WHG	DE / Recht / Wasserhaushaltsgesetz			

8 Referenzen

/1/ "Angaben zu wassergefährdenden Stoffen" 0057-4804.V04

/2/ "Risikominimierung beim Einsatz von Additiven in Wärmeträgerflüssigkeit" der Universität Tübingen vom Zentrum für Angewandte Geowissenschaften (ZAG) im Auftrag des Landes Baden-Württemberg

