

ANLAGE 5.3-4

Bemessung der Lastverteilungsschicht

Bemessung der Geogitter nach EBGEO - Bemessung für Rechteckraster

1. Bauzustand: Einbau der Lastverteilungsschicht, geschätzte Zeit 1 Monat

1. Eingangsdaten

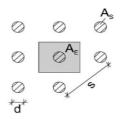
<u>Pfähle</u>	s _x [m]	s _y [m]
Achsabstand der Pfähle	1,6	1,6
	d [m]	d _{ers} [m]
Pfahldurchmesser, rund	0,4	0,4
	b _{ers} [m]	
rechteckig	0,354	

	_	<u>Erddamm</u>	<u>Oberbau</u>
Wichte [kN/m³]	$\gamma_k =$	19	0
Reibungswinkel [°]	ρ' _k =	32,5	
Höhe des Dammes [m]	h =	1,4	0
	z =	0,15	
Erddruckbeiwert [-]	$k_{agh} =$	0,301	nach DIN 4085

Geokunststoffbewehrung

Dehnsteifigkeit

inf. G [kN/m]	$J_{x}[kN/m] = 11200,0$	$J_y[kN/m] = 15200,0$
inf. G+Q [kN/m]	$J_x[kN/m] = 11200,0$	$J_{y}[kN/m] = 15200,0$


Kurzzeitzugfestigkeit längs: $F_{k0,x}[kN/m] = 1400$ quer: $F_{k0,y}[kN/m] = 1900$

Einwirkung auf GOK

Eigengewicht (zusätzlich zum Dammmaterial) [kN/m²]	p _{G,k} =	0
Verkehrslast (Lastausbreitung über Tiefe berücksichtigt) [kN/m²]	p _{Q,k} =	33

2. Verteilung der vertikalen Spannungen

Grafik 9.8, S. 168 abgelesen: 0,7

s = 2,26 h/s = 0,62 d/s = 0,18 A_E = 2,56 A_S = 0,13

2.1 Vertikale Spannungen auf den Untergrund (σ₂₀ [kN/m²])

 $\begin{array}{ll} \text{Spannungen inf. G} & \sigma_{z0,G,k} \!=\! 18,\!62 \\ \text{Spannungen inf. G+Q} & \sigma_{z0,G+Q,k} \!=\! 41,\!72 \end{array}$

2.2 Vertikale Spannungen auf den Säulen (σ_{zs} [kN/m²])

Spannungen inf. G $\sigma_{zs,G,k}$ = 181,19 Gl. 9.11/9.12 S. 171/172

Spannungen inf. G+Q $\sigma_{zs,G+Q,k} = 405,97$

VKE 7052, Abschnitt Entwässerungsfeld Moorburg-Ost Bemessung der Lastverteilungsschicht, Station 1+950 - 2+300

3. Ermittlung der Membranzugkräfte

3.1 Resultierende Einwirkung F k

 $L_{wx}[m] = 1,2$ $L_{wy}[m] = 1,2$

 A_{Lx} [m] = 1,2 A_{Ly} [m] = 1,2 Gl. 9.18/9.19 S. 173 $F_{x,G,k}$ [kN] = 22,66 $F_{y,G,k}$ [kN] = 22,66 Gl. 9.20-9.23, S173/174

 $F_{x,G+Q,k}[kN] = 50,78$ $F_{y,G+Q,k}[kN] = 50,78$

3.2 Dehnung

zu Diagramm S. 174 HINWEIS: ohne Bettung

 $(F_k/b_{ers})/J_k = x \epsilon [\%]$ abgelesen $y \epsilon [\%]$ abgelesen

inf. G 0,006 1,45 0,004 1,25 inf. G+Q 0,013 2,20 0,009 1,75

3.3 Belastungsgrad der Kurzzeitzugfestigkeit

abgelesen aus Isochronen des Produktes für das jeweilig ε

Bereich x [%] Bereich y [%]
Belastungsgrad inf. G 12,0 8,0
Belastungsgrad inf. G 17,5 14,2

3.4 Maximaler Durchhang des Geogitters

Lichte Weite zwischen den Stützen I_w [m] = 1,246

maximaler Durchhang inf. G $\max f_x[m] = 0,09$ $\max f_y[m] = 0,09$ maximaler Durchhang inf. G+Q $\max f_x[m] = 0,11$ $\max f_y[m] = 0,10$

3.5 Membrankräfte

Zugkraft inf. G $E_{G,k,x}$ [kN/m] = 162,40 $E_{G,k,y}$ [kN/m] = 190,00 Zugkraft inf. G+Q $E_{G+Q,k,x}$ [kN/m] = 246,40 $E_{G+Q,k,y}$ [kN/m] = 266,00

3.6 Passiver Erddruck aus Einbindung

HINWEIS: Beachte Kriterien für den Ansatz auf S. 178 (EBGEO)

Wichte der Einbindungsschicht γ [kN/m³] = 19 Höhe der Einbindungsschicht h [m] = 1,5 Erddruckbeiwert k_{pgh} = 12,33 Passiver Erddruck $E_{ph,k}$ = 263,55

3.7 Spreizkräfte im Böschungsbereich ohne Abminderung

3.8 Spreizkräfte im Böschungsbereich mit Abminderung

HINWEIS: Bedingungen zur Abminderung beachten (S.178)

3.9 nötige Gesamtzugkraft des Geogitters

 $\begin{array}{lll} \mbox{Gesamtzugkraft inf.G} & \mbox{E}_{G,k,x} \left[kN/m \right] = 162,\!40 & \mbox{E}_{G,k,y} \left[kN/m \right] = 190,\!00 \\ \mbox{Gesamtzugkraft inf.G+Q} & \mbox{E}_{G+Q,k,x} \left[kN/m \right] = 246,\!40 & \mbox{E}_{G+Q,k,y} \left[kN/m \right] = 266,\!00 \\ \end{array}$

VKE 7052, Abschnitt Entwässerungsfeld Moorburg-Ost Bemessung der Lastverteilungsschicht, Station 1+950 - 2+300

4. Nachweisführung $E_d < R_d$

Bemessung nach DIN EN 1997-1 und DIN 1054:2010-2012 sowie EBGEO (2010)

Einwirkungen

Teilsicherheitsbeiwerte Einwirkungen (DIN 1054:2010-2012)					
GEO2 BS-P BS-T BS-A bzw. BS-E					
ständige γ _G	1,35	1,20	1,10		
veränderliche γ_Q 1,50 1,30 1,10					

4.1 Bemessungswerte der Beanspruchung in der Geokunststoffbewehrung

Ständige Lasten:

BS-P	$E_{x,d}[kN/m] = 219,24$	$E_{y,d}[kN/m] = 256,50$
BS-T	$E_{x,d}[kN/m] = 194,88$	$E_{y,d}[kN/m] = 228,00$
BS-A bzw. BS-E	$E_{r,d}[kN/m] = 178.64$	$E_{v,d}[kN/m] = 209.00$

Ständige und veränderliche Lasten:

BS-P	$E_{x,d}[kN/m] = 345,24$	$E_{y,d}[kN/m] = 370,50$
BS-T	$E_{x,d}[kN/m] = 304,08$	$E_{y,d}[kN/m] = 326,80$
BS-A bzw. BS-E	$E_{x,d}[kN/m] = 271,04$	$E_{v,d}[kN/m] = 292,60$

Widerstände

· · · · · · · · · · · · · · · · · · ·			
Teilsicherheitsbeiwerte Widerstände (DIN 1054:2010-2012)			
GEO 2 BS-P BS-T BS-A bzw. BS-E			
Material γ _M	1,40	1,30	1,20
Anpassungsfaktor nach EBGEO (2010)			
Anspassungsfaktor 1,10			

Abminderungsfaktoren für Geokunststoffe			F	
	x-Richtung y-Richtung			١
A1	1,37	1,37	Kriechen	r
A2	1,02	1,02	Einbaubeschädigung	(
A3	1,00	1,00	Überlappung	Ī
A4	1,03	1,03	Chemische Beständigkeit	1
A5	1,00	1,00	Dynamische Einwirkungen	1

Produktspezifische Werte variieren mit jeweiligem Geokunststoff

4.2 Bemessungswerte der Widerstände

BS-P	$R_{x,B,d}[kN/m] = 764,25$	$R_{y,B,d}[kN/m] = 1037,19$
BS-T	$R_{x,B,d}[kN/m] = 823,04$	$R_{y,B,d}[kN/m] = 1116,98$
BS-A bzw. BS-E	$R_{x,g,d}[kN/m] = 891.62$	$R_{y,R,d}[kN/m] = 1210.06$

4.3 Nachweis für ständige und veränderliche Lasten mit Auslastungsgraden

 $\mu_{x} = E_{d}/R_{d} < 1 \qquad \qquad \mu_{y} = E_{d}/R_{d} < 1$

 BS-P
 0,452 erfüllt
 0,357 erfüllt

 BS-T
 0,369 erfüllt
 0,293 erfüllt

 BS-A bzw. BS-E
 0,304 erfüllt
 0,242 erfüllt

Säulenkräfte in Kopfebene

Einflussfläche $A_E [m^2] = 2,56$ Stützfläche $A_S [m^2] = 0,13$ Lastumlagerungsfaktor $E_{L=} 0,33$ Das bed

Das bedeutet, 33 % des Dammgewichtes werden

direkt in die Pfähle eingeleitet

$$E_L = \frac{\sigma_{zs,G,k} * A_S}{\gamma_k * h * A_E}$$

ohne Bodenbettung mit Bodenbettung

Bemessung der Geogitter nach EBGEO - Bemessung für Rechteckraster 3. Endzustand, geschätzte Zeit 120 Jahre

1. Eingangsdaten

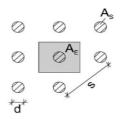
<u>Pfähle</u>	s _x [m]	s _y [m]
Achsabstand der Pfähle	1,6	1,6
	d [m]	d _{ers} [m]
Pfahldurchmesser, rund	0,4	0,4
	b _{ers} [m]	
rechteckig	0,354	

	-	<u>Erddamm</u>	<u>Oberbau</u>
Wichte [kN/m³]	$\gamma_k =$	19	23
Reibungswinkel [°]	ρ' _k =	32,5	
Höhe des Dammes [m]	h =	7,8	0,7
	z =	0,15	
Erddruckbeiwert [-]	k _{agh} =	0,301	nach DIN 4085

Geokunststoffbewehrung

Dehnsteifigkeit

inf. G [kN/m]	$J_{x}[kN/m] = 9520,0$	$J_y[kN/m] = 12920,0$
inf. G+Q [kN/m]	$J_{x}[kN/m] = 9520,0$	$J_{y}[kN/m] = 12920,0$


Kurzzeitzugfestigkeit längs: $F_{k0,x}[kN/m] = 1400$ quer: $F_{k0,y}[kN/m] = 1900$

Einwirkung auf GOK

Eigengewicht (zusätzlich zum Dammmaterial) [kN/m²]	p _{G,k} =	0
Verkehrslast (Lastausbreitung über Tiefe berücksichtigt) [kN/m²]	p _{Q,k} =	26

2. Verteilung der vertikalen Spannungen

Grafik 9.8, S. 168 abgelesen: 0,53

s = 2,26 h/s = 3,76 d/s = 0,18 A_E = 2,56 A_S = 0,13

2.1 Vertikale Spannungen auf den Untergrund (σ₂₀ [kN/m²])

 $\begin{array}{ll} \text{Spannungen inf. G} & \sigma_{z0,G,k} = 78,55 \\ \text{Spannungen inf. G+Q} & \sigma_{z0,G+Q,k} = 92,33 \end{array}$

2.2 Vertikale Spannungen auf den Säulen (σ_{zs} [kN/m²])

Spannungen inf. G $\sigma_{zs,G,k}$ = 1497,53 Gl. 9.11/9.12 S. 171/172

Spannungen inf. G+Q $\sigma_{zs,G+Q,k} = 1760,25$

VKE 7052, Abschnitt Entwässerungsfeld Moorburg-Ost Bemessung der Lastverteilungsschicht, Station 1+950 - 2+300

3. Ermittlung der Membranzugkräfte

3.1 Resultierende Einwirkung F k

 $L_{wx}[m] = 1,2$ $L_{wy}[m] = 1,2$

 A_{Lx} [m] = 1,2 A_{Ly} [m] = 1,2 Gl. 9.18/9.19 S. 173 $F_{x,G,k}$ [kN] = 95,60 $F_{y,G,k}$ [kN] = 95,60 Gl. 9.20-9.23, S173/174

 $F_{x,G+Q,k}[kN] = 112,38$ $F_{y,G+Q,k}[kN] = 112,38$

3.2 Dehnung

zu Diagramm S. 174 HINWEIS: ohne Bettung

 $(F_k/b_{ers})/J_k = x \epsilon [\%]$ abgelesen $y \epsilon [\%]$ abgelesen

inf. G 0,028 3,80 0,021 3,15 inf. G+Q 0,033 4,40 0,025 3,55

3.3 Belastungsgrad der Kurzzeitzugfestigkeit

abgelesen aus Isochronen des Produktes für das jeweilig ε

Bereich x [%] Bereich y [%]
Belastungsgrad inf. G 27,0 21,5
Belastungsgrad inf. G 31,5 24,5

3.4 Maximaler Durchhang des Geogitters

Lichte Weite zwischen den Stützen I_w [m] = 1,246

maximaler Durchhang inf. G $\max f_x[m] = 0.15$ $\max f_y[m] = 0.14$ maximaler Durchhang inf. G+Q $\max f_x[m] = 0.16$ $\max f_y[m] = 0.14$

3.5 Membrankräfte

Zugkraft inf. G $E_{G,k,x}$ [kN/m] = 361,76 $E_{G,k,y}$ [kN/m] = 406,98 Zugkraft inf. G+Q $E_{G+Q,k,x}$ [kN/m] = 418,88 $E_{G+Q,k,y}$ [kN/m] = 458,66

3.6 Passiver Erddruck aus Einbindung

HINWEIS: Beachte Kriterien für den Ansatz auf S. 178 (EBGEO)

Wichte der Einbindungsschicht γ [kN/m³] = 19 Höhe der Einbindungsschicht h [m] = 1,5 Erddruckbeiwert k_{pgh} = 12,33 Passiver Erddruck $E_{ph,k}$ = 263,55

3.7 Spreizkräfte im Böschungsbereich ohne Abminderung

 $\begin{array}{lll} \mbox{Spreizkraft inf. G} & \Delta E_{G,k,x}[kN/m] = 0,00 & \Delta E_{G,k,y}[kN/m] = 206,60 & \mbox{GI.9.28 S.178} \\ \mbox{Spreizkraft inf. G+Q} & \Delta E_{G+Q,k,x}[kN/m] = 0,00 & \Delta E_{G+Q,k,y}[kN/m] = 339,64 & \mbox{GI.9.29 S.178} \\ \end{array}$

3.8 Spreizkräfte im Böschungsbereich mit Abminderung

HINWEIS: Bedingungen zur Abminderung beachten (S.178)

3.9 nötige Gesamtzugkraft des Geogitters

VKE 7052, Abschnitt Entwässerungsfeld Moorburg-Ost Bemessung der Lastverteilungsschicht, Station 1+950 - 2+300

4. Nachweisführung $E_d < R_d$

Bemessung nach DIN EN 1997-1 und DIN 1054:2010-2012 sowie EBGEO (2010)

Einwirkungen

Teilsicherheitsbeiwerte Einwirkungen (DIN 1054:2010-2012)				
GEO2	GEO2 BS-P BS-T BS-A bzw. BS-E			
ständige γ _G	1,35	1,20	1,10	
veränderliche γ_{Q}	1,50	1,30	1,10	

4.1 Bemessungswerte der Beanspruchung in der Geokunststoffbewehrung

Ständige Lasten:

BS-P	$E_{x,d}[kN/m] = 488,38$	$E_{y,d}[kN/m] = 650,43$
BS-T	$E_{x,d}[kN/m] = 434,11$	$E_{y,d}[kN/m] = 578,16$
BS-A bzw. BS-E	$E_{x,d}[kN/m] = 397.94$	$E_{v,d}[kN/m] = 529.98$

Ständige und veränderliche Lasten:

BS-P	$E_{x,d}[kN/m] = 574,06$	$E_{y,d}[kN/m] = 927,52$
BS-T	$E_{x,d}[kN/m] = 508,37$	$E_{y,d}[kN/m] = 818,30$
BS-A bzw. BS-E	$E_{x,d}[kN/m] = 460,77$	$E_{y,d}[kN/m] = 733,18$

Widerstände

Widerstande			
Teilsicherheitsbeiwerte Widerstände (DIN 1054:2010-2012)			
GEO 2 BS-P BS-T BS-A bzw. BS-E			BS-A bzw. BS-E
Material γ_{M}	1,40	1,30	1,20
Anpassungsfaktor nach EBGEO (2010)			
Anspassungsfaktor 1,10			

Abminderungsfaktoren für Geokunststoffe		Р		
	x-Richtung	y-Richtung		٧
A1	1,52	1,52	Kriechen	m
A2	1,02	1,02	Einbaubeschädigung	G
A3	1,00	1,00	Überlappung	
A4	1,03	1,03	Chemische Beständigkeit	
A5	1,00	1,00	Dynamische Einwirkungen	

Produktspezifische Werte variieren mit jeweiligem Geokunststoff

4.2 Bemessungswerte der Widerstände

4.3 Nachweis für ständige und veränderliche Lasten mit Auslastungsgraden

 $\mu_x = E_d/R_d < 1 \qquad \qquad \mu_y = E_d/R_d < 1$

 BS-P
 0,833 erfüllt
 0,992 erfüllt

 BS-T
 0,685 erfüllt
 0,813 erfüllt

 BS-A bzw. BS-E
 0,573 erfüllt
 0,672 erfüllt

Säulenkräfte in Kopfebene

Einflussfläche $A_E [m^2] = 2,56$ Stützfläche $A_S [m^2] = 0,13$ Lastumlagerungsfaktor $E_{L=} 0,43$

Das bedeutet, 43 % des Dammgewichtes werden

direkt in die Pfähle eingeleitet

$$E_L = \frac{\sigma_{zs,G,k} * A_S}{\gamma_k * h * A_E}$$

ohne Bodenbettung mit Bodenbettung

Bemessung der Lastverteilungsschicht, Station 1+950 - 2+300

Bemessung der Verankerungslänge nach EBGEO

Geogitter, Kurzzugfestigkeit 1.400 kN/m, Verlegung längs zur Dammachse Dammhöhe max. 8,5 m, Raster 1,6 m x 1,6 m

Vorbemerkung:

Nachfolgende Bemessung der Verankerungslänge in Ergänzung zur Bemessung der Geokunststoffe

1. Eingangswerte

- Wichte des Dammmaterials im Bereich der Lastverteilungsschicht:	$\gamma_k = 19 \text{ kN/m}^3$
- Reibungswinkel	$\rho'_{k} = 32,5$ °
- Produktspezifischer Verbundbeiwert	$\mu = 0.9$
- Teilsicherheitsbeiwert für Reibung	$\gamma_{\delta} = 1.4$

2. Nachweis am Regelquerschnitt

2.1 Spezifische Eingangswerte

- Höhe des Erdkörpers	h =	8,5	m
- Bemessungswert des Widerstandes R _{x,B,d}	$R_{x,B,d} =$	688,83	kN/m
- Reibungswinkel Geogitter/Boden δ = atan(μ * tan ρ ')		29,83	•

2.2 Überprüfung der gewählten Verankerungslänge

- Gewählte Verankerungslänge	L _g = 5
-Böschungsneigung	N 1:2
-maximale Überdeckung auf Höhe des Rü	ckumschlags

$d_{Lastverteilungsschicht} =$	1,4 n	1
d _{Feinplanum} =	0,45 n	n
d _{Schüttdicke} =	0,95 n	n
$h_{uq,max} = h - (d_{Feinplanum} + d_{Schuttdicke})$	7,1 n	n

- tatsächlich größte Überdeckungshöhe (in Abhängigkeit der gewählten Verankerungslänge):

$$h_{\ddot{u}q} = Lg/1,5 - (d_{Feinplanum} + d_{Sch\ddot{u}ttdicke})$$
 1,93 m

2.3 Abminderung der Ankerkraft durch Umlenkung nach Euler

- Umlenkwinkel
$$\alpha = 180 = 3,1416$$
 - $E_{x,erf,q} = R_{x,B,d} * e^{-tan(\delta)*\alpha}$ 113,72 kN/m

Mit der gewählten Verankerungslänge ergibt sich eine Verankerungskraft von:

$$E_x = (L_g * h_{\ddot{u}q} * \gamma) * tan(\delta)/\gamma_\delta * 2$$
 150,44 kN/m $E_x \ge E_{x,erf,q}$ erfüllt

Erbrachter Nachweis einer ausreichenden Verankerung bei einem gewählten Rückumschlaglänge von

Unterlage 20

Bemessung der Verankerungslänge nach EBGEO

Geogitter, Kurzzugfestigkeit 1.900 kN/m, Verlegung quer zur Dammachse Dammhöhe max. 8,5 m, Raster 1,6 m x 1,6 m

Vorbemerkung:

Nachfolgende Bemessung der Verankerungslänge in Ergänzung zur Bemessung der Geokunststoffe

1. Eingangswerte

- Wichte des Dammmaterials im Bereich der Lastverteilungsschicht: $\gamma_k = 19$ kN/m³

 $\rho'_{k} = 32,5$ ° - Reibungswinkel - Produktspezifischer Verbundbeiwert $\mu = 0.9$

- Teilsicherheitsbeiwert für Reibung $\gamma_{\delta} = 1.4$

2. Nachweis am Regelguerschnitt

2.1 Spezifische Eingangswerte

- Höhe des Erdkörpers h = 8,5- Bemessungswert des Widerstandes R_{x,B,d} kN/m

 $R_{v,B,d} = 934,84$ 29,83

- Reibungswinkel Geogitter/Boden δ = atan(μ * tan ρ ')

2.2 Überprüfung der gewählten Verankerungslänge

- Gewählte Verankerungslänge $L_g = 11$

-Böschungsneigung N 1:2

-maximale Überdeckung auf Höhe des Rückumschlags

d_{Lastverteilungsschicht} = 1,4 m d_{Feinplanum} = 0,45 m 0,95 m d_{Schüttdicke} = $h_{uq,max} = h - (d_{Feinplanum} + d_{Schuttdicke})$ 7,1 m

- tatsächlich größte Überdeckungshöhe (in Abhängigkeit der gewählten Verankerungslänge):

 $h_{\ddot{u}q} = Lg/1,5 - (d_{Feinplanum} + d_{Sch\"{u}ttdicke})$ 5,93 m

Mit der gewählten Verankerungslänge ergibt sich eine Verankerungskraft von:

 $E_y = (L_g * h_{\ddot{u}q} * \gamma) * tan(\delta)/\gamma_{\delta} * 2$ 1015,73 kN/m $E_v \ge R_{v,B,d}$ erfüllt

Erbrachter Nachweis einer ausreichenden Verankerung bei einem gewählten Rückumschlaglänge von

 $L_g =$ 11 m

2.3 Abminderung der Ankerkraft durch Umlenkung nach Euler

- Umlenkwinkel $\alpha = 180 = 3,1416$ - $E_{y,erf,q} = R_{y,B,d} * e^{-tan(\delta)*\alpha}$ 154,33 kN/m - Gewählte Verankerungslänge $L_g = 5.5$ $h_{\ddot{u}q} = Lg/1,5 - (d_{Feinplanum} + d_{Sch\ddot{u}ttdicke})$ 2,27 m

Mit der gewählten Verankerungslänge ergibt sich eine Verankerungskraft von:

194,02 kN/m $E_y \ge E_{y,erf,q}$ $E_v = (L_g * h_{\ddot{u}\alpha} * \gamma) * tan(\delta)/\gamma_\delta * 2$ erfüllt

Erbrachter Nachweis einer ausreichenden Verankerung bei einem gewählten Rückumschlaglänge von

 $L_g =$ 5,5 m

ungefährer Abstand zwischen Lasteinwirkungsgrenze bis zum Dammfuß 10,6 m

Maßgebender Rückumschlag 11 m

Bemessung der Geogitter nach EBGEO - Bemessung für Rechteckraster

1. Bauzustand: Einbau der Lastverteilungsschicht, geschätzte Zeit 1 Monat

1. Eingangsdaten

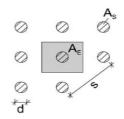
<u>Pfähle</u>	s _x [m]	s _y [m]
Achsabstand der Pfähle	1,7	1,7
	d [m]	d _{ers} [m]
Pfahldurchmesser, rund	0,4	0,4
	b _{ers} [m]	
rechteckig	0,354	

	_	<u>Erddamm</u>	<u>Oberbau</u>
Wichte [kN/m³]	$\gamma_k =$	19	0
Reibungswinkel [°]	ρ' _k =	32,5	
Höhe des Dammes [m]	h =	1,4	0
	z =	0,15	
Erddruckbeiwert [-]	$k_{agh} =$	0,301	nach DIN 4085

Geokunststoffbewehrung

Dehnsteifigkeit

inf. G [kN/m]	$J_{x}[kN/m] = 12800,0$	$J_{y}[kN/m] = 16000,0$
inf. G+Q [kN/m]	$J_x[kN/m] = 12800,0$	$J_y[kN/m] = 16000,0$


Kurzzeitzugfestigkeit längs: $F_{k0,x}[kN/m] = 1600$ quer: $F_{k0,y}[kN/m] = 2000$

Einwirkung auf GOK

Eigengewicht (zusätzlich zum Dammmaterial) [kN/m²]	$p_{G,k} = 0$
Verkehrslast (Lastausbreitung über Tiefe berücksichtigt) [kN/m²]	p _{Q,k} = 33

2. Verteilung der vertikalen Spannungen

Grafik 9.8, S. 168 abgelesen: 0,74

s = 2,40 h/s = 0,58 d/s = 0,17 A_E = 2,89 A_S = 0,13

2.1 Vertikale Spannungen auf den Untergrund (σ₂₀ [kN/m²])

 $\begin{array}{ll} \text{Spannungen inf. G} & \sigma_{z0,G,k}\text{= 19,68} \\ \text{Spannungen inf. G+Q} & \sigma_{z0,G+Q,k}\text{= 44,10} \end{array}$

2.2 Vertikale Spannungen auf den Säulen (σ_{zs} [kN/m²])

Spannungen inf. G $\sigma_{zs,G,k}$ = 178,74 Gl. 9.11/9.12 S. 171/172

Spannungen inf. G+Q $\sigma_{zs,G+Q,k} = 400,48$

VKE 7052, Abschnitt Entwässerungsfeld Moorburg-Ost Bemessung der Lastverteilungsschicht, Station 2+300 - 2+500

3. Ermittlung der Membranzugkräfte

3.1 Resultierende Einwirkung F k

 $L_{wx}[m] = 1,3$ $L_{wy}[m] = 1,3$

 A_{Lx} [m] = 1,4 A_{Ly} [m] = 1,4 Gl. 9.18/9.19 S. 173 $F_{x,G,k}$ [kN] = 27,21 $F_{y,G,k}$ [kN] = 27,21 Gl. 9.20-9.23, S173/174

 $F_{x,G+Q,k}[kN] = 60,96$ $F_{y,G+Q,k}[kN] = 60,96$

3.2 Dehnung

zu Diagramm S. 174 HINWEIS: ohne Bettung

 $(F_k/b_{ers})/J_k = x \epsilon [\%]$ abgelesen y $\epsilon [\%]$ abgelesen

inf. G 0,006 1,45 0,005 1,30 inf. G+Q 0,013 2,20 0,011 2,05

3.3 Belastungsgrad der Kurzzeitzugfestigkeit

abgelesen aus Isochronen des Produktes für das jeweilig ε

Bereich x [%] Bereich y [%]
Belastungsgrad inf. G 12 11,0
Belastungsgrad inf. G 17,5 16,5

3.4 Maximaler Durchhang des Geogitters

Lichte Weite zwischen den Stützen I_w [m] = 1,346

maximaler Durchhang inf. G $\max f_x[m] = 0,10$ $\max f_y[m] = 0,09$ maximaler Durchhang inf. G+Q $\max f_x[m] = 0,12$ $\max f_y[m] = 0,12$

3.5 Membrankräfte

Zugkraft inf. G $E_{G,k,x}$ [kN/m] = 185,60 $E_{G,k,y}$ [kN/m] = 208,00 Zugkraft inf. G+Q $E_{G+Q,k,x}$ [kN/m] = 281,60 $E_{G+Q,k,y}$ [kN/m] = 328,00

3.6 Passiver Erddruck aus Einbindung

HINWEIS: Beachte Kriterien für den Ansatz auf S. 178 (EBGEO)

Wichte der Einbindungsschicht $\gamma [kN/m^3] = 19$ Höhe der Einbindungsschicht h [m] = 1,5Erddruckbeiwert $k_{pgh} = 12,33$ Passiver Erddruck $E_{ph,k} = 263,55$

3.7 Spreizkräfte im Böschungsbereich ohne Abminderung

3.8 Spreizkräfte im Böschungsbereich mit Abminderung

HINWEIS: Bedingungen zur Abminderung beachten (S.178)

3.9 nötige Gesamtzugkraft des Geogitters

VKE 7052, Abschnitt Entwässerungsfeld Moorburg-Ost Bemessung der Lastverteilungsschicht, Station 2+300 - 2+500

4. Nachweisführung $E_d < R_d$

Bemessung nach DIN EN 1997-1 und DIN 1054:2010-2012 sowie EBGEO (2010)

Einwirkungen

Teilsicherheitsbeiwerte Einwirkungen (DIN 1054:2010-2012)					
GEO2 BS-P BS-T BS-A bzw. BS-E					
ständige γ _G	1,35	1,20	1,10		
veränderliche γ_Q 1,50 1,30 1,10					

4.1 Bemessungswerte der Beanspruchung in der Geokunststoffbewehrung

Ständige Lasten:

BS-P	$E_{x,d}[kN/m] = 250,56$	$E_{y,d}[kN/m] = 280,80$
BS-T	$E_{x,d}[kN/m] = 222,72$	$E_{y,d}[kN/m] = 249,60$
BS-A bzw. BS-F	$E_{vd}[kN/m] = 204.16$	$E_{v,d}[kN/m] = 228.80$

Ständige und veränderliche Lasten:

BS-P	$E_{x,d}[kN/m] = 394,56$	$E_{y,d}[kN/m] = 460,80$
BS-T	$E_{x,d}[kN/m] = 347,52$	$E_{y,d}[kN/m] = 405,60$
BS-A bzw. BS-E	$E_{x,d}[kN/m] = 309,76$	$E_{v.d}[kN/m] = 360,80$

Widerstände

Teilsicherheitsbeiwerte Widerstände (DIN 1054:2010-2012)			
GEO 2 BS-P BS-T BS-A bzw. BS-E			
Material γ _M	1,40	1,30	1,20
Anpassungsfaktor nach EBGEO (2010)			
Anspassungsfaktor 1,10			

Abminderungsfaktoren für Geokunststoffe			eokunststoffe	1
	x-Richtung	y-Richtung		٦
A1	1,37	1,37	Kriechen	1
A2	1,02	1,02	Einbaubeschädigung	7
A3	1,00	1,00	Überlappung	1
A4	1,03	1,03	Chemische Beständigkeit	1
A5	1,00	1,00	Dynamische Einwirkungen	1

Produktspezifische Werte variieren mit jeweiligem Geokunststoff

4.2 Bemessungswerte der Widerstände

BS-P	$R_{x,B,d}[kN/m] = 873,43$	$R_{y,B,d}[kN/m] = 1091,78$
BS-T	$R_{x,B,d}[kN/m] = 940,61$	$R_{y,B,d}[kN/m] = 1175,77$
BS-A bzw. BS-E	$R_{x,B,d}[kN/m] = 1019.00$	$R_{vBd}[kN/m] = 1273.75$

4.3 Nachweis für ständige und veränderliche Lasten mit Auslastungsgraden

 $\mu_{x} = E_{d}/R_{d} < 1$ $\mu_{y} = E_{d}/R_{d} < 1$

 BS-P
 0,452 erfüllt
 0,422 erfüllt

 BS-T
 0,369 erfüllt
 0,345 erfüllt

 BS-A bzw. BS-E
 0,304 erfüllt
 0,283 erfüllt

Säulenkräfte in Kopfebene

Einflussfläche $A_E [m^2] = 2,89$ Stützfläche $A_S [m^2] = 0,13$ Lastumlagerungsfaktor $E_{L=} 0,29$ Das bedeutet, 29 % des Dammgewichtes werden direkt in die Pfähle eingeleitet

 $E_L = \frac{\sigma_{zs,G,k} * A_S}{\gamma_k * h * A_E}$

ohne Bodenbettung mit Bodenbettung

 $\begin{array}{ccc} & & & & & & & & & \\ & & & & & & & & \\ F_{s,G,k}\left[kN\right] = 76,87 & & & & & & \\ F_{s,G,k}\left[kN\right] = 22,46 & & & & \\ F_{s,G+Q,k}\left[kN\right] = 172,24 & & & & & \\ F_{s,G+Q,k}\left[kN\right] = 50,33 & & & \\ \end{array}$

Bemessung der Geogitter nach EBGEO - Bemessung für Rechteckraster 3. Endzustand, geschätzte Zeit 120 Jahre

1. Eingangsdaten

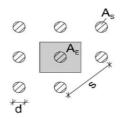
<u>Pfähle</u>	s _x [m]	s _y [m]
Achsabstand der Pfähle	1,7	1,7
	d [m]	d _{ers} [m]
Pfahldurchmesser, rund	0,4	0,4
	b _{ers} [m]	
rechteckig	0,354	

		<u>Erddamm</u>	<u>Oberbau</u>
Wichte [kN/m³]	$\gamma_k =$	19	23
Reibungswinkel [°]	ρ' _k =	32,5	
Höhe des Dammes [m]	h =	7,1	0,7
	z =	0,15	
Erddruckbeiwert [-]	$k_{agh} =$	0,301	nach DIN 4085

Geokunststoffbewehrung

Dehnsteifigkeit

inf. G [kN/m]	$J_x[kN/m] = 10880,0$	$J_y[kN/m] = 13600,0$
inf. G+Q [kN/m]	$J_x[kN/m] = 10880,0$	$J_{y}[kN/m] = 13600,0$


Kurzzeitzugfestigkeit längs: $F_{k0,x}[kN/m] = 1600$ quer: $F_{k0,y}[kN/m] = 2000$

Einwirkung auf GOK

Eigengewicht (zusätzlich zum Dammmaterial) [kN/m²]	$p_{G,k} = 0$
Verkehrslast (Lastausbreitung über Tiefe berücksichtigt) [kN/m²]	$p_{Q,k} = 28$

2. Verteilung der vertikalen Spannungen

Grafik 9.8, S. 168 abgelesen: 0,58

s = 2,40 h/s = 3,24 d/s = 0,17 A_E = 2,89 A_S = 0,13

2.1 Vertikale Spannungen auf den Untergrund (σ₂₀ [kN/m²])

 $\begin{array}{ll} \text{Spannungen inf. G} & \sigma_{z0,G,k} \text{= } 78,\!24 \\ \text{Spannungen inf. G+Q} & \sigma_{z0,G+Q,k} \text{= } 94,\!48 \end{array}$

2.2 Vertikale Spannungen auf den Säulen (σ_{zs} [kN/m²])

Spannungen inf. G $\sigma_{zs,G,k}$ = 1381,26 Gl. 9.11/9.12 S. 171/172

Spannungen inf. G+Q $\sigma_{zs,G+Q,k} = 1667,95$

VKE 7052, Abschnitt Entwässerungsfeld Moorburg-Ost Bemessung der Lastverteilungsschicht, Station 2+300 - 2+500

3. Ermittlung der Membranzugkräfte

3.1 Resultierende Einwirkung F k

 $L_{wx}[m] = 1,3$ $L_{wy}[m] = 1,3$

 A_{Lx} [m] = 1,4 A_{Ly} [m] = 1,4 Gl. 9.18/9.19 S. 173 $F_{x,G,k}$ [kN] = 108,14 $F_{y,G,k}$ [kN] = 108,14 Gl. 9.20-9.23, S173/174

 $F_{x,G+Q,k}[kN] = 130,59$ $F_{y,G+Q,k}[kN] = 130,59$

3.2 Dehnung

zu Diagramm S. 174 HINWEIS: ohne Bettung

 $(F_k/b_{ers})/J_k = x \epsilon [\%] abgelesen$ y $\epsilon [\%] abgelesen$

inf. G 0,028 3,80 0,022 3,20 inf. G+Q 0,034 4,45 0,027 3,75

3.3 Belastungsgrad der Kurzzeitzugfestigkeit

abgelesen aus Isochronen des Produktes für das jeweilig ε

Bereich x [%] Bereich y [%]
Belastungsgrad inf. G 27,0 22,0
Belastungsgrad inf. G 32,0 26,3

3.4 Maximaler Durchhang des Geogitters

Lichte Weite zwischen den Stützen $l_w [m] = 1,346$

maximaler Durchhang inf. G $\max f_x[m] = 0,16$ $\max f_y[m] = 0,15$ maximaler Durchhang inf. G+Q $\max f_x[m] = 0,17$ $\max f_y[m] = 0,16$

3.5 Membrankräfte

Zugkraft inf. G $E_{G,k,x}$ [kN/m] = 413,44 $E_{G,k,y}$ [kN/m] = 435,20 Zugkraft inf. G+Q $E_{G+Q,k,x}$ [kN/m] = 484,16 $E_{G+Q,k,y}$ [kN/m] = 510,00

3.6 Passiver Erddruck aus Einbindung

HINWEIS: Beachte Kriterien für den Ansatz auf S. 178 (EBGEO)

Wichte der Einbindungsschicht $\gamma \text{ [kN/m}^3 \text{]} = 19$ Höhe der Einbindungsschicht h [m] = 1,5Erddruckbeiwert $k_{pgh} = 12,33$ Passiver Erddruck $E_{ph,k} = 263,55$

3.7 Spreizkräfte im Böschungsbereich ohne Abminderung

 $\begin{array}{lll} \mbox{Spreizkraft inf. G} & \Delta E_{G,k,x}[kN/m] = 0,00 & \Delta E_{G,k,y}[kN/m] = 173,97 & \mbox{Gl.9.28 S.178} \\ \mbox{Spreizkraft inf. G+Q} & \Delta E_{G+Q,k,x}[kN/m] = 0,00 & \Delta E_{G+Q,k,y}[kN/m] = 296,06 & \mbox{Gl.9.29 S.178} \\ \end{array}$

3.8 Spreizkräfte im Böschungsbereich mit Abminderung

HINWEIS: Bedingungen zur Abminderung beachten (S.178)

 $\begin{array}{lll} \mbox{Spreizkraft inf. G} & \Delta E_{G,k,x} \, [kN/m] = \, 0,00 & \Delta E_{G,k,y} \, [kN/m] = \, 42,20 & \mbox{Gl. 9.30 S.179} \\ \mbox{Spreizkraft inf. G+Q} & \Delta E_{G+Q,k,x} \, [kN/m] = \, 0,00 & \Delta E_{G+Q,k,y} \, [kN/m] = \, 164,28 & \mbox{Gl. 9.31 S.179} \\ \end{array}$

3.9 nötige Gesamtzugkraft des Geogitters

VKE 7052, Abschnitt Entwässerungsfeld Moorburg-Ost Bemessung der Lastverteilungsschicht, Station 2+300 - 2+500

4. Nachweisführung $E_d < R_d$

Bemessung nach DIN EN 1997-1 und DIN 1054:2010-2012 sowie EBGEO (2010)

Einwirkungen

Teilsicherheitsbeiwerte Einwirkungen (DIN 1054:2010-2012)			
GEO2	BS-P BS-T BS-A bzw. BS-E		
ständige γ _G	1,35	1,20	1,10
veränderliche γ_{Q}	1,50	1,30	1,10

4.1 Bemessungswerte der Beanspruchung in der Geokunststoffbewehrung

Ständige Lasten:

BS-P	$E_{x,d}[kN/m] = 558,14$	$E_{y,d}[kN/m] = 644,48$
BS-T	$E_{x,d}[kN/m] = 496,13$	$E_{y,d}[kN/m] = 572,87$
BS-A bzw. BS-E	$E_{x,d}[kN/m] = 454.78$	$E_{v,d}[kN/m] = 525.13$

Ständige und veränderliche Lasten:

BS-P	$E_{x,d}[kN/m] = 664,22$	$E_{y,d}[kN/m] = 939,81$
BS-T	$E_{x,d}[kN/m] = 588,06$	$E_{y,d}[kN/m] = 828,83$
BS-A bzw. BS-E	$E_{x,d}[kN/m] = 532,58$	$E_{v.d}[kN/m] = 741,71$

Widerstände

Teilsicherheitsbeiwerte Widerstände (DIN 1054:2010-2012)			
GEO 2	BS-P BS-T BS-A bzw. BS-E		
Material γ _M	1,40	1,30	1,20
Anpassungsfaktor nach EBGEO (2010)			
Anspassungsfaktor 1,10			

Abminderungsfaktoren für Geokunststoffe		_		
	x-Richtung	y-Richtung		١
A1	1,52	1,52	Kriechen	1
A2	1,02	1,02	Einbaubeschädigung	7
A3	1,00	1,00	Überlappung	
A4	1,03	1,03	Chemische Beständigkeit	
A5	1,00	1,00	Dynamische Einwirkungen	

Produktspezifische Werte variieren mit jeweiligem Geokunststoff

4.2 Bemessungswerte der Widerstände

4.3 Nachweis für ständige und veränderliche Lasten mit Auslastungsgraden

 $\mu_{x} = E_{d}/R_{d} < 1$ $\mu_{y} = E_{d}/R_{d} < 1$

 BS-P
 0,844 erfüllt
 0,955 erfüllt

 BS-T
 0,694 erfüllt
 0,782 erfüllt

 BS-A bzw. BS-E
 0,580 erfüllt
 0,646 erfüllt

Säulenkräfte in Kopfebene

Einflussfläche $A_{E} \ [m^{2}] = 2,89$ Stützfläche $A_{S} \ [m^{2}] = 0,13$ Lastumlagerungsfaktor $E_{L=} \ 0,38$

E_{L=} 0,38 Das bedeutet, 38 % des Dammgewichtes werden

direkt in die Pfähle eingeleitet

$$E_L = \frac{\sigma_{zs,G,k} * A_S}{\gamma_k * h * A_E}$$

ohne Bodenbettung mit Bodenbettung

Bemessung der Lastverteilungsschicht, Station 2+300 - 2+500

Bemessung der Verankerungslänge nach EBGEO

Geogitter, Kurzzugfestigkeit 1.600 kN/m, Verlegung längs zur Dammachse Dammhöhe max. 7,8 m, Raster 1,7 m x 1,7 m

Vorbemerkung:

Nachfolgende Bemessung der Verankerungslänge in Ergänzung zur Bemessung der Geokunststoffe

1. Eingangswerte

- Wichte des Dammmaterials im Bereich der Lastverteilungsschicht:	$\gamma_k = 19 kN/m^3$
- Reibungswinkel	$\rho'_{k} = 32,5$ °
- Produktspezifischer Verbundbeiwert	$\mu = 0.9$
- Teilsicherheitsbeiwert für Reibung	$\gamma_{\delta} = 1.4$

- Teilsicherheitsbeiwert für Reibung

2. Nachweis am Regelquerschnitt

2.1 Spezifische Eingangswerte

- Höhe des Erdkörpers	h =	7,8	m
- Bemessungswert des Widerstandes R _{x,B,d}	$R_{x,B,d} =$	787,23	kN/m
- Reibungswinkel Geogitter/Boden δ = atan(μ * tan ρ ')		29,83	•

2.2 Überprüfung der gewählten Verankerungslänge

- Gewählte Verankerungslänge	L _g = 5	
-Böschungsneigung	N 1:	2
maximala Überdeekung auf Höhe des Bück	ımcchlage	

-maximale Überdeckung auf Höhe des Rückumschlags

d _{Lastverteilungsschicht} =	1,4 m
d _{Feinplanum} =	0,45 m
d _{Schüttdicke} =	0,95 m
$h_{uq,max} = h - (d_{Feinplanum} + d_{Schuttdicke})$	6,4 m

- tatsächlich größte Überdeckungshöhe (in Abhängigkeit der gewählten Verankerungslänge):

$$h_{\ddot{u}q} = Lg/1,5 - (d_{Feinplanum} + d_{Sch\ddot{u}ttdicke})$$
 1,93 m

2.3 Abminderung der Ankerkraft durch Umlenkung nach Euler

- Umlenkwinkel
$$\alpha = 180 = 3,1416$$
 - $E_{x,erf,q} = R_{x,B,d} * e^{-tan(\delta)*\alpha}$ 129,96 kN/m

Mit der gewählten Verankerungslänge ergibt sich eine Verankerungskraft von:

$$E_x = (L_g * h_{\ddot{u}q} * \gamma) * tan(\delta)/\gamma_\delta * 2$$
 150,44 kN/m $E_x \ge E_{x,erf,q}$ erfüllt

Erbrachter Nachweis einer ausreichenden Verankerung bei einem gewählten Rückumschlaglänge von

Bemessung der Lastverteilungsschicht, Station 2+300 - 2+500

Bemessung der Verankerungslänge nach EBGEO

Geogitter, Kurzzugfestigkeit 2.000 kN/m, Verlegung quer zur Dammachse Dammhöhe max. 7,8 m, Raster 1,7 m x 1,7 m

Vorbemerkung:

Nachfolgende Bemessung der Verankerungslänge in Ergänzung zur Bemessung der Geokunststoffe

1. Eingangswerte

- Wichte des Dammmaterials im Bereich der Lastverteilungsschicht: $\gamma_k = 19$ kN/m³

- Reibungswinkel $\rho'_{k} = 32,5$ ° - Produktspezifischer Verbundbeiwert $\mu = 0.9$

- Teilsicherheitsbeiwert für Reibung $\gamma_{\delta} = 1.4$

2. Nachweis am Regelguerschnitt

2.1 Spezifische Eingangswerte

- Höhe des Erdkörpers h = 7.8m

- Bemessungswert des Widerstandes R_{x,B,d} $R_{v,B,d} = 984,04 \text{ kN/m}$ 29,83

- Reibungswinkel Geogitter/Boden δ = atan(μ * tan ρ ')

2.2 Überprüfung der gewählten Verankerungslänge

- Gewählte Verankerungslänge $L_g = 11$

-Böschungsneigung N 1:2

-maximale Überdeckung auf Höhe des Rückumschlags

d_{Lastverteilungsschicht} = 1,4 m d_{Feinplanum} = 0,45 m 0,95 m d_{Schüttdicke} = $h_{uq,max} = h - (d_{Feinplanum} + d_{Schuttdicke})$ 6,4 m

- tatsächlich größte Überdeckungshöhe (in Abhängigkeit der gewählten Verankerungslänge):

 $h_{\ddot{u}q} = Lg/1,5 - (d_{Feinplanum} + d_{Sch\"{u}ttdicke})$ 5,93 m

Mit der gewählten Verankerungslänge ergibt sich eine Verankerungskraft von:

 $E_y = (L_g * h_{\ddot{u}q} * \gamma) * tan(\delta)/\gamma_{\delta} * 2$ 1015,73 kN/m $E_v \ge R_{v,B,d}$ erfüllt

Erbrachter Nachweis einer ausreichenden Verankerung bei einem gewählten Rückumschlaglänge von

 $L_g =$ 11 m

2.3 Abminderung der Ankerkraft durch Umlenkung nach Euler

- Umlenkwinkel $\alpha = 180 = 3,1416$ - $E_{y,erf,q} = R_{y,B,d} * e^{-tan(\delta)*\alpha}$ 162,45 kN/m - Gewählte Verankerungslänge $L_g = 5.5$ $h_{\ddot{u}q} = Lg/1,5 - (d_{Feinplanum} + d_{Sch\ddot{u}ttdicke})$ 2,27 m

Mit der gewählten Verankerungslänge ergibt sich eine Verankerungskraft von:

194,02 kN/m $E_y \ge E_{y,erf,q}$ $E_v = (L_g * h_{\ddot{u}\alpha} * \gamma) * tan(\delta)/\gamma_\delta * 2$ erfüllt

Erbrachter Nachweis einer ausreichenden Verankerung bei einem gewählten Rückumschlaglänge von

 $L_g =$ 5,5 m

ungefährer Abstand zwischen Lasteinwirkungsgrenze bis zum Dammfuß 8,8 m

Maßgebender Rückumschlag 11 m

Bemessung der Geogitter nach EBGEO - Bemessung für Rechteckraster

1. Bauzustand: Einbau der Lastverteilungsschicht, geschätzte Zeit 1 Monat

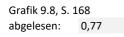
1. Eingangsdaten

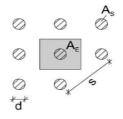
<u>Pfähle</u>	s _x [m]	s _y [m]
Achsabstand der Pfähle	1,8	1,8
	d [m]	d _{ers} [m]
Pfahldurchmesser, rund	0,4	0,4
	b _{ers} [m]	
rechteckig	0,354	

		<u>Erddamm</u>	<u>Oberbau</u>
Wichte [kN/m³]	$\gamma_k =$	19	0
Reibungswinkel [°]	ρ' _k =	32,5	
Höhe des Dammes [m]	h =	1,4	0
	z =	0,15	
Erddruckbeiwert [-]	k _{agh} =	0,301	nach DIN 4085

Geokunststoffbewehrung

Dehnsteifigkeit


inf. G [kN/m]	$J_{x}[kN/m] = 12000,0$	$J_{y}[kN/m] = 13600,0$
inf. G+Q [kN/m]	$J_{x}[kN/m] = 12000,0$	$J_{v}[kN/m] = 13600,0$


Kurzzeitzugfestigkeit längs: $F_{k0,x}[kN/m] = 1500$ quer: $F_{k0,y}[kN/m] = 1700$

Einwirkung auf GOK

Eigengewicht (zusätzlich zum Dammmaterial) [kN/m²]	$p_{G,k} = 0$
Verkehrslast (Lastausbreitung über Tiefe berücksichtigt) [kN/m²]	$p_{0,k} = 33$

2. Verteilung der vertikalen Spannungen

s = 2,55 h/s = 0,55 d/s = 0,16 A_E = 3,24 A_S = 0,13

2.1 Vertikale Spannungen auf den Untergrund (σ₂₀ [kN/m²])

Spannungen inf. G	$\sigma_{z0,G,k} = 20,48$
Spannungen inf. G+Q	$\sigma_{\text{z0,G+O,k}} = 45,89$

2.2 Vertikale Spannungen auf den Säulen (σ_{zs} [kN/m²])

Spannungen inf. G	$\sigma_{zs,G,k} = 178,22$	Gl. 9.11/9.12 S. 171/172
-------------------	----------------------------	--------------------------

Spannungen inf. G+Q $\sigma_{zs,G+Q,k} = 399,33$

VKE 7052, Abschnitt Entwässerungsfeld Moorburg-Ost Bemessung der Lastverteilungsschicht, Station 2+500 - 2+700

3. Ermittlung der Membranzugkräfte

3.1 Resultierende Einwirkung F k

 $L_{wx}[m] = 1,4$ $L_{wy}[m] = 1,4$

 $A_{Lx}[m] = 1,6$ $A_{Ly}[m] = 1,6$ GI. 9.18/9.19 S. 173 $F_{x,G,k}[kN] = 31,89$ $F_{y,G,k}[kN] = 31,89$ GI. 9.20-9.23, S173/174

 $F_{x,G+Q,k}[kN] = 71,46$ $F_{y,G+Q,k}[kN] = 71,46$

3.2 Dehnung

zu Diagramm S. 174 HINWEIS: ohne Bettung

 $(F_k/b_{ers})/J_k = x \epsilon [\%]$ abgelesen y $\epsilon [\%]$ abgelesen

inf. G 0,007 1,50 0,007 1,50 inf. G+Q 0,017 2,70 0,015 2,50

3.3 Belastungsgrad der Kurzzeitzugfestigkeit

abgelesen aus Isochronen des Produktes für das jeweilig ε

Bereich x [%] Bereich y [%]
Belastungsgrad inf. G 12,5
Belastungsgrad inf. G 21,0 20,0

3.4 Maximaler Durchhang des Geogitters

Lichte Weite zwischen den Stützen I_w [m] = 1,446

maximaler Durchhang inf. G $\max f_x[m] = 0,11$ $\max f_y[m] = 0,11$ $\max f_y[m] = 0,11$ $\max f_y[m] = 0,14$

3.5 Membrankräfte

Zugkraft inf. G $E_{G,k,x}$ [kN/m] = 180,00 $E_{G,k,y}$ [kN/m] = 204,00 Zugkraft inf. G+Q $E_{G+Q,k,x}$ [kN/m] = 324,00 $E_{G+Q,k,y}$ [kN/m] = 340,00

3.6 Passiver Erddruck aus Einbindung

HINWEIS: Beachte Kriterien für den Ansatz auf S. 178 (EBGEO)

Wichte der Einbindungsschicht $\gamma \, [kN/m^3] = 19$ Höhe der Einbindungsschicht $h \, [m] = 1,5$ Erddruckbeiwert $k_{pgh} = 12,33$ Passiver Erddruck $E_{ph,k} = 263,55$

3.7 Spreizkräfte im Böschungsbereich ohne Abminderung

3.8 Spreizkräfte im Böschungsbereich mit Abminderung

HINWEIS: Bedingungen zur Abminderung beachten (S.178)

3.9 nötige Gesamtzugkraft des Geogitters

VKE 7052, Abschnitt Entwässerungsfeld Moorburg-Ost Bemessung der Lastverteilungsschicht, Station 2+500 - 2+700

4. Nachweisführung $E_d < R_d$

Bemessung nach DIN EN 1997-1 und DIN 1054:2010-2012 sowie EBGEO (2010)

Einwirkungen

Teilsicherheitsbeiwerte Einwirkungen (DIN 1054:2010-2012)					
GEO2	BS-P BS-T BS-A bzw. BS-E				
ständige γ _G	1,35	1,20	1,10		
veränderliche γ_Q 1,50 1,30 1,10					

4.1 Bemessungswerte der Beanspruchung in der Geokunststoffbewehrung

Ständige Lasten:

BS-P	$E_{x,d}[kN/m] = 243,00$	$E_{y,d}[kN/m] = 282,97$
BS-T	$E_{x,d}[kN/m] = 216,00$	$E_{y,d}[kN/m] = 251,53$
BS-A bzw. BS-E	$E_{x,d}[kN/m] = 198,00$	$E_{v,d}[kN/m] = 230,57$

Ständige und veränderliche Lasten:

BS-P	$E_{x,d}[kN/m] = 459,00$	$E_{y,d}[kN/m] = 507,83$
BS-T	$E_{x,d}[kN/m] = 403,20$	$E_{y,d}[kN/m] = 446,40$
BS-A bzw. BS-E	$E_{x,d}[kN/m] = 356,40$	$E_{v,d}[kN/m] = 395,46$

Widerstände

Tride of tarial			
Teilsicherheitsbeiwerte Widerstände (DIN 1054:2010-2012)			
GEO 2 BS-P BS-T BS-A bzw. BS-E			
Material γ _M	1,40	1,30	1,20
Anpassungsfaktor nach EBGEO (2010)			
Anspassungsfaktor 1,10			

Abminderungsfaktoren für Geokunststoffe		F		
	x-Richtung	y-Richtung		١
A1	1,37	1,37	Kriechen	r
A2	1,02	1,02	Einbaubeschädigung	(
A3	1,00	1,00	Überlappung	Ī
A4	1,03	1,03	Chemische Beständigkeit	1
A5	1,00	1,00	Dynamische Einwirkungen	1

Produktspezifische Werte variieren mit jeweiligem Geokunststoff

4.2 Bemessungswerte der Widerstände

BS-P	$R_{x,B,d}[kN/m] = 818,84$	$R_{y,B,d}[kN/m] = 928,02$
BS-T	$R_{x,B,d}[kN/m] = 881,83$	$R_{y,B,d}[kN/m] = 999,40$
BS-A bzw. BS-E	$R_{vRd}[kN/m] = 955.31$	$R_{VRd}[kN/m] = 1082.69$

4.3 Nachweis für ständige und veränderliche Lasten mit Auslastungsgraden

 $\mu_{x} = E_{d}/R_{d} < 1$ $\mu_{y} = E_{d}/R_{d} < 1$

 BS-P
 0,561 erfüllt
 0,547 erfüllt

 BS-T
 0,457 erfüllt
 0,447 erfüllt

 BS-A bzw. BS-E
 0,373 erfüllt
 0,365 erfüllt

Säulenkräfte in Kopfebene

Einflussfläche $A_E [m^2] = 3,24$ Stützfläche $A_S [m^2] = 0,13$ Lastumlagerungsfaktor $E_{L=} 0,26$

Das bedeutet, 26 % des Dammgewichtes werden

direkt in die Pfähle eingeleitet

$$E_L = \frac{\sigma_{zs,G,k} * A_S}{\gamma_k * h * A_E}$$

ohne Bodenbettung mit Bodenbettung

Bemessung der Geogitter nach EBGEO - Bemessung für Rechteckraster 3. Endzustand, geschätzte Zeit 120 Jahre

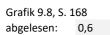
1. Eingangsdaten

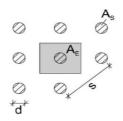
<u>Pfähle</u>	s _x [m]	s _y [m]
Achsabstand der Pfähle	1,8	1,8
	d [m]	d _{ers} [m]
Pfahldurchmesser, rund	0,4	0,4
	b _{ers} [m]	
rechteckig	0,354	

	-	<u>Erddamm</u>	<u>Oberbau</u>
Wichte [kN/m³]	$\gamma_k =$	19	23
Reibungswinkel [°]	ρ' _k =	32,5	
Höhe des Dammes [m]	h =	5,7	0,7
	z =	0,15	
Erddruckbeiwert [-]	k _{agh} =	0,301	nach DIN 4085

Geokunststoffbewehrung

Dehnsteifigkeit


inf. G [kN/m]	$J_{x}[kN/m] = 10200,0$	$J_{y}[kN/m] = 11560,0$
inf. G+Q [kN/m]	$J_{x}[kN/m] = 10200,0$	$J_y[kN/m] = 11560,0$


Kurzzeitzugfestigkeit längs: $F_{k0,x}[kN/m] = 1500$ quer: $F_{k0,y}[kN/m] = 1700$

Einwirkung auf GOK

Eigengewicht (zusätzlich zum Dammmaterial) [kN/m²]	$p_{G,k} = 0$
Verkehrslast (Lastausbreitung über Tiefe berücksichtigt) [kN/m²]	p _{Q,k} = 31

2. Verteilung der vertikalen Spannungen

s = 2,55 h/s = 2,51 d/s = 0,16 $A_E = 3,24$ $A_S = 0,13$

2.1 Vertikale Spannungen auf den Untergrund (σ₂₀ [kN/m²])

 $\begin{array}{ll} \text{Spannungen inf. G} & \sigma_{z0,G,k}\text{= }64,98 \\ \text{Spannungen inf. G+Q} & \sigma_{z0,G+Q,k}\text{= }83,58 \end{array}$

2.2 Vertikale Spannungen auf den Säulen (σ_{zs} [kN/m²])

Spannungen inf. G $\sigma_{zs,G,k}$ = 1181,90 Gl. 9.11/9.12 S. 171/172

Spannungen inf. G+Q $\sigma_{zs,G+Q,k} = 1520,21$

VKE 7052, Abschnitt Entwässerungsfeld Moorburg-Ost Bemessung der Lastverteilungsschicht, Station 2+500 - 2+700

3. Ermittlung der Membranzugkräfte

3.1 Resultierende Einwirkung F k

 $L_{wx}[m] = 1,4$ $L_{wy}[m] = 1,4$

 A_{Lx} [m] = 1,6 A_{Ly} [m] = 1,6 Gl. 9.18/9.19 S. 173 $F_{x,G,k}$ [kN] = 101,18 $F_{y,G,k}$ [kN] = 101,18 Gl. 9.20-9.23, S173/174

 $F_{x,G+Q,k}[kN] = 130,15$ $F_{y,G+Q,k}[kN] = 130,15$

3.2 Dehnung

zu Diagramm S. 174 HINWEIS: ohne Bettung

 $(F_k/b_{ers})/J_k = x \epsilon [\%]$ abgelesen $y \epsilon [\%]$ abgelesen

inf. G 0,028 3,80 0,025 3,55 inf. G+Q 0,036 4,60 0,032 4,20

3.3 Belastungsgrad der Kurzzeitzugfestigkeit

abgelesen aus Isochronen des Produktes für das jeweilig ε

Bereich x [%] Bereich y [%]
Belastungsgrad inf. G 27,0 24,5
Belastungsgrad inf. G 33,5 29,5

3.4 Maximaler Durchhang des Geogitters

Lichte Weite zwischen den Stützen I_w [m] = 1,446

maximaler Durchhang inf. G $\max f_x[m] = 0,17$ $\max f_y[m] = 0,17$ maximaler Durchhang inf. G+Q $\max f_x[m] = 0,19$ $\max f_y[m] = 0,18$

3.5 Membrankräfte

Zugkraft inf. G $E_{G,k,x}$ [kN/m] = 387,60 $E_{G,k,y}$ [kN/m] = 410,38 Zugkraft inf. G+Q $E_{G+Q,k,x}$ [kN/m] = 469,20 $E_{G+Q,k,y}$ [kN/m] = 485,52

3.6 Passiver Erddruck aus Einbindung

HINWEIS: Beachte Kriterien für den Ansatz auf S. 178 (EBGEO)

Wichte der Einbindungsschicht $\gamma [kN/m^3] = 19$ Höhe der Einbindungsschicht h [m] = 1,5Erddruckbeiwert $k_{pgh} = 12,33$ Passiver Erddruck $E_{ph,k} = 263,55$

3.7 Spreizkräfte im Böschungsbereich ohne Abminderung

 $\begin{array}{lll} \mbox{Spreizkraft inf. G} & \Delta E_{G,k,x} [kN/m] = 0,00 & \Delta E_{G,k,y} [kN/m] = 117,13 & Gl.9.28 \, S.178 \\ \mbox{Spreizkraft inf. G+Q} & \Delta E_{G+Q,k,x} [kN/m] = 0,00 & \Delta E_{G+Q,k,y} [kN/m] = 217,30 & Gl.9.29 \, S.178 \\ \end{array}$

3.8 Spreizkräfte im Böschungsbereich mit Abminderung

HINWEIS: Bedingungen zur Abminderung beachten (S.178)

3.9 nötige Gesamtzugkraft des Geogitters

 $\begin{array}{lll} \mbox{Gesamtzugkraft inf.G} & \mbox{E}_{G,k,x} \left[kN/m \right] = 387,\!60 & \mbox{E}_{G,k,y} \left[kN/m \right] = 410,\!38 \\ \mbox{Gesamtzugkraft inf.G+Q} & \mbox{E}_{G+Q,k,x} \left[kN/m \right] = 469,\!20 & \mbox{E}_{G+Q,k,y} \left[kN/m \right] = 571,\!04 \\ \end{array}$

VKE 7052, Abschnitt Entwässerungsfeld Moorburg-Ost Bemessung der Lastverteilungsschicht, Station 2+500 - 2+700

4. Nachweisführung $E_d < R_d$

Bemessung nach DIN EN 1997-1 und DIN 1054:2010-2012 sowie EBGEO (2010)

Einwirkungen

Teilsicherheitsbeiwerte Einwirkungen (DIN 1054:2010-2012)			
GEO2	BS-P	BS-T	BS-A bzw. BS-E
ständige γ _G	1,35	1,20	1,10
veränderliche γ_{Q}	1,50	1,30	1,10

4.1 Bemessungswerte der Beanspruchung in der Geokunststoffbewehrung

Ständige Lasten:

BS-P	$E_{x,d}[kN/m] = 523,26$	$E_{y,d}[kN/m] = 554,01$
BS-T	$E_{x,d}[kN/m] = 465,12$	$E_{y,d}[kN/m] = 492,46$
BS-A bzw. BS-E	$E_{x,d}[kN/m] = 426.36$	$E_{v,d}[kN/m] = 451.42$

Ständige und veränderliche Lasten:

BS-P	$E_{x,d}[kN/m] = 645,66$	$E_{y,d}[kN/m] = 795,00$
BS-T	$E_{x,d}[kN/m] = 571,20$	$E_{y,d}[kN/m] = 701,32$
BS-A bzw. BS-E	$E_{x,d}[kN/m] = 516,12$	$E_{v,d}[kN/m] = 628,15$

Widerstände

Teilsicherheitsbeiwerte Widerstände (DIN 1054:2010-2012)			
GEO 2 BS-P BS-T BS-A bzw. BS-E			
Material γ _M	1,40	1,30	1,20
Anpassungsfaktor nach EBGEO (2010)			
Anspassungsfaktor		1,10	

Abminderungsfaktoren für Geokunststoffe			_	
	x-Richtung	y-Richtung		١
A1	1,52	1,52	Kriechen	1
A2	1,02	1,02	Einbaubeschädigung	7
A3	1,00	1,00	Überlappung	
A4	1,03	1,03	Chemische Beständigkeit	
A5	1,00	1,00	Dynamische Einwirkungen	

Produktspezifische Werte variieren mit jeweiligem Geokunststoff

4.2 Bemessungswerte der Widerstände

BS-P	$R_{x,B,d}[kN/m] = 738,03$	$R_{y,B,d}[kN/m] = 836,44$
BS-T	$R_{x,B,d}[kN/m] = 794,80$	$R_{y,B,d}[kN/m] = 900,78$
BS-A bzw. BS-E	$R_{x,B,d}[kN/m] = 861.04$	$R_{y,B,d}[kN/m] = 975.84$

4.3 Nachweis für ständige und veränderliche Lasten mit Auslastungsgraden

 $\mu_{x} = E_{d}/R_{d} < 1$ $\mu_{y} = E_{d}/R_{d} < 1$

 BS-P
 0,875 erfüllt
 0,950 erfüllt

 BS-T
 0,719 erfüllt
 0,779 erfüllt

 BS-A bzw. BS-E
 0,599 erfüllt
 0,644 erfüllt

Säulenkräfte in Kopfebene

Einflussfläche $A_E [m^2] = 3,24$ Stützfläche $A_S [m^2] = 0,13$ Lastumlagerungsfaktor $E_{L_E} 0,35$ Das bedeutet, 35 % des Dammgewichtes werden

direkt in die Pfähle eingeleitet

 $E_L = \frac{\sigma_{zs,G,k} * A_S}{\gamma_k * h * A_E}$

ohne Bodenbettung mit Bodenbettung

Unterlage 20 Anlage 5 3-4 3

Bemessung der Verankerungslänge nach EBGEO

Geogitter, Kurzzugfestigkeit 1.500 kN/m, Verlegung längs zur Dammachse Dammhöhe max. 6,4 m, Raster 1,8 m x 1,8 m

Vorbemerkung:

Nachfolgende Bemessung der Verankerungslänge in Ergänzung zur Bemessung der Geokunststoffe

1. Eingangswerte

- Wichte des Dammmaterials im Bereich der Lastverteilungsschicht:	$\gamma_k = 19 \text{ kN/m}^3$
- Reibungswinkel	$\rho'_{k} = 32,5$ °
- Produktspezifischer Verbundbeiwert	$\mu = 0.9$
- Teilsicherheitsbeiwert für Reibung	$\gamma_{\delta} = 1.4$

2. Nachweis am Regelquerschnitt

2.1 Spezifische Eingangswerte

- Höhe des Erdkörpers	h =	6,4	m
- Bemessungswert des Widerstandes R _{x,B,d}	$R_{x,B,d} =$	738,03	kN/m
- Reibungswinkel Geogitter/Boden δ = atan(μ * tan ρ ')		29,83	0

2.2 Überprüfung der gewählten Verankerungslänge

- Gewählte Verankerungslänge	$L_g = 5$	
-Böschungsneigung	N 1:2	
-maximale Überdeckung auf Höhe des Rückumschlags		
d _{Lastverteilungsschicht} =	1,4 m	

d _{Lastverteilungsschicht} =	1,4 r	n
d _{Feinplanum} =	0,45 r	n
d _{Schüttdicke} =	0,95 r	n
$h_{uq,max} = h - (d_{Feinplanum} + d_{Schuttdicke})$	5 r	n

- tatsächlich größte Überdeckungshöhe (in Abhängigkeit der gewählten Verankerungslänge):

$$h_{\ddot{u}q} = Lg/1,5 - (d_{Feinplanum} + d_{Sch\ddot{u}ttdicke})$$
 1,93 m

2.3 Abminderung der Ankerkraft durch Umlenkung nach Euler

- Umlenkwinkel	$\alpha = 180 = 3,1416$
- $E_{x,erf,q} = R_{x,B,d} * e^{-tan(\delta)*\alpha}$	121,84 kN/m

Mit der gewählten Verankerungslänge ergibt sich eine Verankerungskraft von:

$$E_x = (L_g * h_{\ddot{u}q} * \gamma) * tan(\delta)/\gamma_\delta * 2$$
 150,44 kN/m $E_x \ge E_{x,erf,q}$ erfüllt

Erbrachter Nachweis einer ausreichenden Verankerung bei einem gewählten Rückumschlaglänge von

Unterlage 20 Anlage 5 3-4 3

Bemessung der Verankerungslänge nach EBGEO

Geogitter, Kurzzugfestigkeit 1.700 kN/m, Verlegung längs zur Dammachse Dammhöhe max. 6,4 m, Raster 1,8 m x 1,8 m

Vorbemerkung:

Nachfolgende Bemessung der Verankerungslänge in Ergänzung zur Bemessung der Geokunststoffe

1. Eingangswerte

- Wichte des Dammmaterials im Bereich der Lastverteilungsschicht: $\gamma_k = 19 \text{ kN/m}^3$

- Reibungswinkel ρ'_{k} = 32,5 ° - Produktspezifischer Verbundbeiwert μ = 0,9

- Teilsicherheitsbeiwert für Reibung γ_{δ} = 1,4

2. Nachweis am Regelquerschnitt

2.1 Spezifische Eingangswerte

- Höhe des Erdkörpers h = 6,4 m - Bemessungswert des Widerstandes $R_{x,B,d}$ $R_{y,B,d} = 836,44$ kN/m

- Reibungswinkel Geogitter/Boden δ = atan(μ * tan ρ ') 29,83

2.2 Überprüfung der gewählten Verankerungslänge

- Gewählte Verankerungslänge L_g = 10,5

-Böschungsneigung N 1:2

-maximale Überdeckung auf Höhe des Rückumschlags

$$\begin{split} d_{Lastverteilungsschicht} &= & 1,4 \text{ m} \\ d_{Feinplanum} &= & 0,45 \text{ m} \\ d_{Schüttdicke} &= & 0,95 \text{ m} \\ h_{\ddot{u}q,max} &= h \cdot (d_{Feinplanum} + d_{Schüttdicke}) & 5 \text{ m} \end{split}$$

- tatsächlich größte Überdeckungshöhe (in Abhängigkeit der gewählten Verankerungslänge):

 $h_{\ddot{u}q} = Lg/1,5 - (d_{Feinplanum} + d_{Sch\ddot{u}ttdicke})$ 5,60 m

Mit der gewählten Verankerungslänge ergibt sich eine Verankerungskraft von:

 $E_y = (L_g * h_{\ddot{u}q} * \gamma) * tan(\delta)/\gamma_{\delta} * 2$ 915,088 kN/m $E_y \ge R_{y,B,d}$ erfüllt

Erbrachter Nachweis einer ausreichenden Verankerung bei einem gewählten Rückumschlaglänge von

L_g = 10,5 m

2.3 Abminderung der Ankerkraft durch Umlenkung nach Euler

 $\begin{array}{lll} \text{- Umlenkwinkel} & \alpha = 180 = 3,1416 \\ \text{- E}_{\text{y,erf,q}} = R_{\text{y,B,d}} * e^{-tan(\delta)^*\alpha} & 138,09 \text{ kN/m} \\ \text{- Gewählte Verankerungslänge} & L_g = 5 \\ h_{\bar{u}q} = Lg/1,5 - (d_{\text{Feinplanum}} + d_{\text{Schüttdicke}}) & 1,93 \text{ m} \\ \end{array}$

Mit der gewählten Verankerungslänge ergibt sich eine Verankerungskraft von:

 $E_v = (L_g * h_{\ddot{u}q} * \gamma) * tan(\delta)/\gamma_{\delta} * 2$ 150,44 kN/m $E_v \ge E_{y,erf,q}$ erfüllt

Erbrachter Nachweis einer ausreichenden Verankerung bei einem gewählten Rückumschlaglänge von

 $L_g = 5 \text{ m}$

ungefährer Abstand zwischen Lasteinwirkungsgrenze bis zum Dammfuß 8,6 m

Maßgebender Rückumschlag 10,5 m

Bemessung der Geogitter nach EBGEO - Bemessung für Rechteckraster

1. Bauzustand: Einbau der Lastverteilungsschicht, geschätzte Zeit 1 Monat

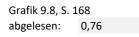
1. Eingangsdaten

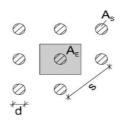
<u>Pfähle</u>	s _x [m]	s _y [m]
Achsabstand der Pfähle	1,7	1,7
	d [m]	d _{ers} [m]
Pfahldurchmesser, rund	0,4	0,4
	b _{ers} [m]	
rechteckig	0,354	

		<u>Erddamm</u>	<u>Oberbau</u>
Wichte [kN/m³]	$\gamma_k =$	19	0
Reibungswinkel [°]	$\rho'_k =$	32,5	
Höhe des Dammes [m]	h =	1,4	0
	z =	0,15	
Erddruckbeiwert [-]	k _{agh} =	0,301	nach DIN 4085

Geokunststoffbewehrung

Dehnsteifigkeit


inf. G [kN/m]	$J_{x}[kN/m] = 11200,0$	$J_{y}[kN/m] = 14400,0$
inf. G+Q [kN/m]	$J_{x}[kN/m] = 11200,0$	$J_{v}[kN/m] = 14400,0$


Kurzzeitzugfestigkeit längs: $F_{k0,x}[kN/m] = 1400$ quer: $F_{k0,y}[kN/m] = 1800$

Einwirkung auf GOK

Eigengewicht (zusätzlich zum Dammmaterial) [kN/m²]	$p_{G,k} = 0$
Verkehrslast (Lastausbreitung über Tiefe berücksichtigt) [kN/m²]	p _{O.k} = 33

2. Verteilung der vertikalen Spannungen

s = 2,40
h/s = 0.58
d/s = 0,17
$A_E = 2,89$
$A_S = 0,13$

2.1 Vertikale Spannungen auf den Untergrund (σ₂₀ [kN/m²])

Spannungen inf. G	$\sigma_{z0,G,k} = 20,22$
Spannungen inf. G+Q	$\sigma_{\text{z0,G+O,k}} = 45,30$

2.2 Vertikale Spannungen auf den Säulen (σ_{zs} [kN/m²])

Spannungen inf. G	$\sigma_{zs,G,k} = 167,03$	Gl. 9.11/9.12 S. 171/172
	- 27426	

Spannungen inf. G+Q $\sigma_{zs,G+Q,k} = 374,26$

VKE 7052, Abschnitt Entwässerungsfeld Moorburg-Ost Bemessung der Lastverteilungsschicht, Station 2+700 - 2+800

3. Ermittlung der Membranzugkräfte

3.1 Resultierende Einwirkung F k

 $L_{wx}[m] = 1,3$ $L_{wy}[m] = 1,3$

 $A_{Lx}[m] = 1,4$ $A_{Ly}[m] = 1,4$ GI. 9.18/9.19 S. 173 $F_{x,G,k}[kN] = 27,94$ $F_{y,G,k}[kN] = 27,94$ GI. 9.20-9.23, S173/174

 $F_{x,G+Q,k}[kN] = 62,61$ $F_{y,G+Q,k}[kN] = 62,61$

3.2 Dehnung

zu Diagramm S. 174 HINWEIS: ohne Bettung

 $(F_k/b_{ers})/J_k = x \epsilon [\%]$ abgelesen y $\epsilon [\%]$ abgelesen

inf. G 0,007 1,50 0,005 1,30 inf. G+Q 0,016 2,65 0,012 2,15

3.3 Belastungsgrad der Kurzzeitzugfestigkeit

abgelesen aus Isochronen des Produktes für das jeweilig ε

Bereich x [%] Bereich y [%]
Belastungsgrad inf. G 12,5 11,0
Belastungsgrad inf. G 20,4 17,2

3.4 Maximaler Durchhang des Geogitters

Lichte Weite zwischen den Stützen I_w [m] = 1,346

maximaler Durchhang inf. G $\max f_x[m] = 0,10$ $\max f_y[m] = 0,09$ maximaler Durchhang inf. G+Q $\max f_x[m] = 0,13$ $\max f_y[m] = 0,12$

3.5 Membrankräfte

Zugkraft inf. G $E_{G,k,x}$ [kN/m] = 168,00 $E_{G,k,y}$ [kN/m] = 187,20 Zugkraft inf. G+Q $E_{G+Q,k,x}$ [kN/m] = 296,80 $E_{G+Q,k,y}$ [kN/m] = 309,60

3.6 Passiver Erddruck aus Einbindung

HINWEIS: Beachte Kriterien für den Ansatz auf S. 178 (EBGEO)

Wichte der Einbindungsschicht $\gamma [kN/m^3] = 19$ Höhe der Einbindungsschicht h [m] = 1,5Erddruckbeiwert $k_{pgh} = 12,33$ Passiver Erddruck $E_{ph,k} = 263,55$

3.7 Spreizkräfte im Böschungsbereich ohne Abminderung

3.8 Spreizkräfte im Böschungsbereich mit Abminderung

HINWEIS: Bedingungen zur Abminderung beachten (S.178)

$$\begin{split} \text{Spreizkraft inf. G} & \Delta E_{\text{G,k,x}} \left[kN/m \right] = 0,00 & \Delta E_{\text{G,k,y}} \left[kN/m \right] = 0,00 & \text{Gl.9.30 S.179} \\ \text{Spreizkraft inf. G+Q} & \Delta E_{\text{G+Q,k,x}} \left[kN/m \right] = 0,00 & \Delta E_{\text{G+Q,k,y}} \left[kN/m \right] = 0,00 & \text{Gl.9.31 S.179} \\ \end{split}$$

3.9 nötige Gesamtzugkraft des Geogitters

 $\begin{array}{lll} \mbox{Gesamtzugkraft inf.G} & \mbox{E}_{G,k,x} \, [kN/m] = 168,\!00 & \mbox{E}_{G,k,y} \, [kN/m] = 192,\!80 \\ \mbox{Gesamtzugkraft inf.G+Q} & \mbox{E}_{G+Q,k,x} \, [kN/m] = 296,\!80 & \mbox{E}_{G+Q,k,y} \, [kN/m] = 329,\!11 \\ \end{array}$

VKE 7052, Abschnitt Entwässerungsfeld Moorburg-Ost Bemessung der Lastverteilungsschicht, Station 2+700 - 2+800

Unterlage 20 Anlage 5.3-4.4

4. Nachweisführung $E_d < R_d$

Bemessung nach DIN EN 1997-1 und DIN 1054:2010-2012 sowie EBGEO (2010)

Einwirkungen

Teilsicherheitsbeiwerte Einwirkungen (DIN 1054:2010-2012)			
GEO2	BS-P	BS-T	BS-A bzw. BS-E
ständige γ _G	1,35	1,20	1,10
veränderliche γ_{Q}	1,50	1,30	1,10

4.1 Bemessungswerte der Beanspruchung in der Geokunststoffbewehrung

Ständige Lasten:

BS-P	$E_{x,d}[kN/m] = 226,80$	$E_{y,d}[kN/m] = 260,29$
BS-T	$E_{x,d}[kN/m] = 201,60$	$E_{y,d}[kN/m] = 231,37$
BS-A bzw. BS-E	$E_{v,d}[kN/m] = 184.80$	$E_{v,d}[kN/m] = 212.09$

Ständige und veränderliche Lasten:

BS-P	$E_{x,d}[kN/m] = 420,00$	$E_{y,d}[kN/m] = 464,75$
BS-T	$E_{x,d}[kN/m] = 369,04$	$E_{y,d}[kN/m] = 408,56$
BS-A bzw. BS-E	$E_{x,d}[kN/m] = 326,48$	$E_{v,d}[kN/m] = 362,02$

Widerstände

Widerstande			
Teilsicherheitsbeiwerte Widerstände (DIN 1054:2010-2012)			10-2012)
GEO 2	BS-P	BS-T	BS-A bzw. BS-E
Material γ_{M}	1,40	1,30	1,20
Anpassungsfaktor nach EBGEO (2010)			
Anspassungsfaktor	1,10		

Abminderungsfaktoren für Geokunststoffe			F	
	x-Richtung	y-Richtung		١
A1	1,37	1,37	Kriechen	r
A2	1,02	1,02	Einbaubeschädigung	(
A3	1,00	1,00	Überlappung	1
A4	1,03	1,03	Chemische Beständigkeit	1
A5	1,00	1,00	Dynamische Einwirkungen	1

Produktspezifische Werte variieren mit jeweiligem Geokunststoff

4.2 Bemessungswerte der Widerstände

BS-P	$R_{x,B,d}[kN/m] = 764,25$	$R_{y,B,d}[kN/m] = 982,61$
BS-T	$R_{x,B,d}[kN/m] = 823,04$	$R_{y,B,d}[kN/m] = 1058,19$
BS-A bzw. BS-F	$R_{v,p,d}[kN/m] = 891.62$	$R_{vpd}[kN/m] = 1146.37$

4.3 Nachweis für ständige und veränderliche Lasten mit Auslastungsgraden

 $\mu_{x} = E_{d}/R_{d} < 1$ $\mu_{y} = E_{d}/R_{d} < 1$

 BS-P
 0,550 erfüllt
 0,473 erfüllt

 BS-T
 0,448 erfüllt
 0,386 erfüllt

 BS-A bzw. BS-E
 0,366 erfüllt
 0,316 erfüllt

Säulenkräfte in Kopfebene

Einflussfläche $A_E [m^2] = 2,89$ Stützfläche $A_S [m^2] = 0,13$ Lastumlagerungsfaktor $E_{L_E} 0,27$

Das bedeutet, 27 % des Dammgewichtes werden direkt in die Pfähle eingeleitet

$$E_L = \frac{\sigma_{zs,G,k} * A_S}{\gamma_k * h * A_E}$$

ohne Bodenbettung mit Bodenbettung

 $\begin{array}{ccc} & & & & & & & & & \\ & & & & & & & & \\ F_{s,G,k}\left[kN\right] = 76,87 & & & & & & \\ F_{s,G,k}\left[kN\right] = 20,99 & & & & \\ F_{s,G+Q,k}\left[kN\right] = 172,24 & & & & & \\ F_{s,G+Q,k}\left[kN\right] = 47,03 & & & \\ \end{array}$

Bemessung der Geogitter nach EBGEO - Bemessung für Rechteckraster 3. Endzustand, geschätzte Zeit 120 Jahre

1. Eingangsdaten

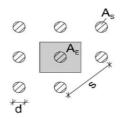
<u>Pfähle</u>	s _x [m]	s _y [m]
Achsabstand der Pfähle	1,7	1,7
	d [m]	d _{ers} [m]
Pfahldurchmesser, rund	0,4	0,4
	b _{ers} [m]	
rechteckig	0,354	

		<u>Erddamm</u>	<u>Oberbau</u>
Wichte [kN/m³]	$\gamma_k =$	19	23
Reibungswinkel [°]	ρ' _k =	32,5	
Höhe des Dammes [m]	h =	6,7	0,7
	z =	0,15	
Erddruckbeiwert [-]	k _{agh} =	0,301	nach DIN 4085

Geokunststoffbewehrung

Dehnsteifigkeit

inf. G [kN/m]	$J_{x}[kN/m] = 9520,0$	$J_y[kN/m] = 12240,0$
inf. G+Q [kN/m]	$J_{x}[kN/m] = 9520,0$	$J_y[kN/m] = 12240,0$


Kurzzeitzugfestigkeit längs: $F_{k0,x}[kN/m] = 1400$ quer: $F_{k0,y}[kN/m] = 1800$

Einwirkung auf GOK

Eigengewicht (zusätzlich zum Dammmaterial) [kN/m²]	p _{G,k} =	0
Verkehrslast (Lastausbreitung über Tiefe berücksichtigt) [kN/m²]	p _{Q,k} =	28

2. Verteilung der vertikalen Spannungen

Grafik 9.8, S. 168 abgelesen: 0,57

s = 2,40 h/s = 3,08 d/s = 0,17 $A_E = 2,89$ $A_S = 0,13$

2.1 Vertikale Spannungen auf den Untergrund (σ₂₀ [kN/m²])

 $\begin{array}{ll} \text{Spannungen inf. G} & \sigma_{z0,G,k} \!=\! 72,\!56 \\ \text{Spannungen inf. G+Q} & \sigma_{z0,G+Q,k} \!=\! 88,\!52 \end{array}$

2.2 Vertikale Spannungen auf den Säulen (σ_{zs} [kN/m²])

Spannungen inf. G $\sigma_{zs,G,k}$ = 1331,44 Gl. 9.11/9.12 S. 171/172

Spannungen inf. G+Q $\sigma_{zs,G+Q,k} = 1624,30$

VKE 7052, Abschnitt Entwässerungsfeld Moorburg-Ost Bemessung der Lastverteilungsschicht, Station 2+700 - 2+800

3. Ermittlung der Membranzugkräfte

3.1 Resultierende Einwirkung F k

 $L_{wx}[m] = 1,3$ $L_{wy}[m] = 1,3$

 A_{Lx} [m] = 1,4 A_{Ly} [m] = 1,4 Gl. 9.18/9.19 S. 173 $F_{x,G,k}$ [kN] = 100,29 $F_{y,G,k}$ [kN] = 100,29 Gl. 9.20-9.23, S173/174

 $F_{x,G+Q,k}[kN] = 122,35$ $F_{y,G+Q,k}[kN] = 122,35$

3.2 Dehnung

zu Diagramm S. 174 HINWEIS: ohne Bettung

 $(F_k/b_{ers})/J_k = x \epsilon [\%] \text{ abgelesen}$ y $\epsilon [\%] \text{ abgelesen}$

inf. G 0,030 4,05 0,023 3,30 inf. G+Q 0,036 4,60 0,028 3,80

3.3 Belastungsgrad der Kurzzeitzugfestigkeit

abgelesen aus Isochronen des Produktes für das jeweilig ε

Bereich x [%] Bereich y [%]
Belastungsgrad inf. G 28,5 22,3
Belastungsgrad inf. G 33,5 27,0

3.4 Maximaler Durchhang des Geogitters

Lichte Weite zwischen den Stützen I_w [m] = 1,346

maximaler Durchhang inf. G max f_x [m] = 0,17 max f_y [m] = 0,15 maximaler Durchhang inf. G+Q max f_x [m] = 0,18 max f_y [m] = 0,16

3.5 Membrankräfte

Zugkraft inf. G $E_{G,k,x}$ [kN/m] = 385,56 $E_{G,k,y}$ [kN/m] = 403,92 Zugkraft inf. G+Q $E_{G+Q,k,x}$ [kN/m] = 437,92 $E_{G+Q,k,y}$ [kN/m] = 465,12

3.6 Passiver Erddruck aus Einbindung

HINWEIS: Beachte Kriterien für den Ansatz auf S. 178 (EBGEO)

Wichte der Einbindungsschicht $\gamma [kN/m^3] = 19$ Höhe der Einbindungsschicht h [m] = 1,5Erddruckbeiwert $k_{pgh} = 12,33$ Passiver Erddruck $E_{ph,k} = 263,55$

3.7 Spreizkräfte im Böschungsbereich ohne Abminderung

 $\begin{array}{lll} \mbox{Spreizkraft inf. G} & \Delta E_{G,k,x}[kN/m] = 0,00 & \Delta E_{G,k,y}[kN/m] = 156,59 & \mbox{Gl.9.28 S.178} \\ \mbox{Spreizkraft inf. G+Q} & \Delta E_{G+Q,k,x}[kN/m] = 0,00 & \Delta E_{G+Q,k,y}[kN/m] = 272,41 & \mbox{Gl.9.29 S.178} \\ \end{array}$

3.8 Spreizkräfte im Böschungsbereich mit Abminderung

HINWEIS: Bedingungen zur Abminderung beachten (S.178)

 $\begin{array}{lll} \mbox{Spreizkraft inf. G} & \Delta E_{G,k,x} \, [kN/m] = \, 0,00 & \Delta E_{G,k,y} \, [kN/m] = \, 24,81 & \mbox{Gl. 9.30 S.179} \\ \mbox{Spreizkraft inf. G+Q} & \Delta E_{G+Q,k,x} \, [kN/m] = \, 0,00 & \Delta E_{G+Q,k,y} \, [kN/m] = \, 140,63 & \mbox{Gl. 9.31 S.179} \\ \end{array}$

3.9 nötige Gesamtzugkraft des Geogitters

VKE 7052, Abschnitt Entwässerungsfeld Moorburg-Ost Bemessung der Lastverteilungsschicht, Station 2+700 - 2+800

4. Nachweisführung $E_d < R_d$

Bemessung nach DIN EN 1997-1 und DIN 1054:2010-2012 sowie EBGEO (2010)

Einwirkungen

Teilsicherheitsbeiwerte Einwirkungen (DIN 1054:2010-2012)			
GEO2 BS-P BS-T BS-A bzw. BS-E			BS-A bzw. BS-E
ständige γ _G	1,35	1,20	1,10
veränderliche γ_{Q}	1,50	1,30	1,10

4.1 Bemessungswerte der Beanspruchung in der Geokunststoffbewehrung

Ständige Lasten:

BS-P	$E_{x,d}[kN/m] = 520,51$	$E_{y,d}[kN/m] = 578,78$
BS-T	$E_{x,d}[kN/m] = 462,67$	$E_{y,d}[kN/m] = 514,48$
BS-A bzw. BS-E	$E_{x,d}[kN/m] = 424.12$	$E_{v,d}[kN/m] = 471.60$

Ständige und veränderliche Lasten:

BS-P	$E_{x,d}[kN/m] = 599,05$	$E_{y,d}[kN/m] = 844,32$
BS-T	$E_{x,d}[kN/m] = 530,74$	$E_{y,d}[kN/m] = 744,61$
BS-A bzw. BS-E	$E_{x,d}[kN/m] = 481,71$	$E_{v,d}[kN/m] = 666,33$

Widerstände

· · · · · · · · · · · · · · · · · · ·					
Teilsicherheitsbeiwerte Widerstände (DIN 1054:2010-2012)					
GEO 2	GEO 2 BS-P BS-T BS-A bzw. BS-E				
Material γ _M	1,40	1,30	1,20		
Anpassungsfaktor nach EBGEO (2010)					
Anspassungsfaktor 1,10					

Abminderungsfaktoren für Geokunststoffe			F	
	x-Richtung	y-Richtung		١
A1	1,52	1,52	Kriechen	r
A2	1,02	1,02	Einbaubeschädigung	(
A3	1,00	1,00	Überlappung	1
A4	1,03	1,03	Chemische Beständigkeit	1
A5	1,00	1,00	Dynamische Einwirkungen	1

Produktspezifische Werte variieren mit jeweiligem Geokunststoff

4.2 Bemessungswerte der Widerstände

BS-P	$R_{x,B,d}[kN/m] = 688,83$	$R_{y,B,d}[kN/m] = 885,64$
BS-T	$R_{x,B,d}[kN/m] = 741,82$	$R_{y,B,d}[kN/m] = 953,76$
BS-A bzw. BS-E	$R_{vRd}[kN/m] = 803.63$	$R_{VRd}[kN/m] = 1033.24$

4.3 Nachweis für ständige und veränderliche Lasten mit Auslastungsgraden

 $\mu_{x} = E_{d}/R_{d} < 1$ $\mu_{y} = E_{d}/R_{d} < 1$

 BS-P
 0,870 erfüllt
 0,953 erfüllt

 BS-T
 0,715 erfüllt
 0,781 erfüllt

 BS-A bzw. BS-E
 0,599 erfüllt
 0,645 erfüllt

Säulenkräfte in Kopfebene

Einflussfläche $A_E [m^2] = 2,89$ Stützfläche $A_S [m^2] = 0,13$ Lastumlagerungsfaktor $E_{L=} 0,38$ Das

Das bedeutet, 38 % des Dammgewichtes werden direkt in die Pfähle eingeleitet

$$E_L = \frac{\sigma_{zs,G,k} * A_S}{\gamma_k * h * A_E}$$

ohne Bodenbettung mit Bodenbettung

Unterlage 20

Bemessung der Verankerungslänge nach EBGEO

Geogitter, Kurzzugfestigkeit 1.400 kN/m, Verlegung längs zur Dammachse Dammhöhe max. 7,4 m, Raster 1,7 m \times 1,7 m

Vorbemerkung:

Nachfolgende Bemessung der Verankerungslänge in Ergänzung zur Bemessung der Geokunststoffe

1. Eingangswerte

2. Nachweis am Regelquerschnitt

2.1 Spezifische Eingangswerte

- Höhe des Erdkörpers h = 7,4 m - Bemessungswert des Widerstandes $R_{x,B,d}$ $R_{x,B,d}$ = 688,83 kN/m - Reibungswinkel Geogitter/Boden δ = atan(μ * tan ρ ') 29,83 °

2.2 Überprüfung der gewählten Verankerungslänge

- Gewählte Verankerungslänge L_g = 5
-Böschungsneigung N 1 : 2

-maximale Überdeckung auf Höhe des Rückumschlags

d _{Lastverteilungsschicht} =	1,4 m
d _{Feinplanum} =	0,45 m
d _{Schüttdicke} =	0,95 m
$h_{iig,max} = h - (d_{Feinplanum} + d_{Schüttdicke})$	6 m

- tatsächlich größte Überdeckungshöhe (in Abhängigkeit der gewählten Verankerungslänge):

 $h_{\ddot{u}q} = Lg/1,5 - (d_{Feinplanum} + d_{Sch\ddot{u}ttdicke})$ 1,93 m

2.3 Abminderung der Ankerkraft durch Umlenkung nach Euler

- Umlenkwinkel $\alpha = 180 = 3,1416$ - $E_{x,erf,q} = R_{x,B,d} * e^{-tan(\delta)*\alpha}$ 113,72 kN/m

Mit der gewählten Verankerungslänge ergibt sich eine Verankerungskraft von:

 $\mathsf{E_x} = (\mathsf{L_g} * \mathsf{h_{\bar{u}q}} * \gamma) * \mathsf{tan}(\delta)/\gamma_\delta * 2 \\ 150,44 \text{ kN/m} \quad \mathsf{E_x} \ge \mathsf{E_{x,erf,q}} \\ \text{erfüllt}$

Erbrachter Nachweis einer ausreichenden Verankerung bei einem gewählten Rückumschlaglänge von

L_g = 5 n

29.83

Bemessung der Lastverteilung

Geogitter, Kurzzugfestigkeit 1.800 kN/m, Verlegung längs zur Dammachse Dammhöhe max. 7,4 m, Raster 1,7 m x 1,7 m

Bemessung der Verankerungslänge nach EBGEO

Vorbemerkung:

Nachfolgende Bemessung der Verankerungslänge in Ergänzung zur Bemessung der Geokunststoffe

1. Eingangswerte

- Wichte des Dammmaterials im Bereich der Lastverteilungsschicht: $\gamma_k = 19 \text{ kN/m}^3$

- Reibungswinkel ρ'_{k} = 32,5 ° - Produktspezifischer Verbundbeiwert μ = 0,9

- Teilsicherheitsbeiwert für Reibung γ_{δ} = 1,4

2. Nachweis am Regelquerschnitt

2.1 Spezifische Eingangswerte

- Höhe des Erdkörpers $h = 7,4 \qquad m \\ - Bemessungswert des Widerstandes <math>R_{x,B,d} \qquad \qquad R_{y,B,d} = 885,64 \quad kN/m$

- Reibungswinkel Geogitter/Boden δ = atan(μ * tan ρ ')

2.2 Überprüfung der gewählten Verankerungslänge

- Gewählte Verankerungslänge L_g = 10,5

-Böschungsneigung N 1:2

-maximale Überdeckung auf Höhe des Rückumschlags

$$\begin{split} d_{Lastverteilungsschicht} &= & 1,4 \text{ m} \\ d_{Feinplanum} &= & 0,45 \text{ m} \\ d_{Schüttdicke} &= & 0,95 \text{ m} \\ h_{\ddot{u}q,max} &= h \cdot (d_{Feinplanum} + d_{Schüttdicke}) & 6 \text{ m} \end{split}$$

- tatsächlich größte Überdeckungshöhe (in Abhängigkeit der gewählten Verankerungslänge):

 $h_{\ddot{u}q} = Lg/1,5 - (d_{Feinplanum} + d_{Sch\"{u}ttdicke})$ 5,60 m

Mit der gewählten Verankerungslänge ergibt sich eine Verankerungskraft von:

 $E_y = (L_g * h_{\ddot{u}q} * \gamma) * tan(\delta)/\gamma_{\delta} * 2$ 915,088 kN/m $E_y \ge R_{y,B,d}$ erfüllt

Erbrachter Nachweis einer ausreichenden Verankerung bei einem gewählten Rückumschlaglänge von

L_g = 10,5 m

2.3 Abminderung der Ankerkraft durch Umlenkung nach Euler

 $\begin{array}{lll} \text{- Umlenkwinkel} & \alpha = 180 = 3,1416 \\ \text{- E}_{\text{y,erf,q}} = \text{R}_{\text{y,B,d}} * \text{ e}^{-\text{tan}(6)^*\alpha} & 146,21 \text{ kN/m} \\ \text{- Gewählte Verankerungslänge} & \text{L}_{\text{g}} = \\ \text{h}_{\bar{\text{u}}_{\text{q}}} = \text{Lg/1,5} \cdot (\text{d}_{\text{Feinplanum}} + \text{d}_{\text{Schüttdicke}}) & 1,93 \text{ m} \end{array}$

Mit der gewählten Verankerungslänge ergibt sich eine Verankerungskraft von:

 $E_v = (L_g * h_{\ddot{u}q} * \gamma) * tan(\delta)/\gamma_{\delta} * 2$ 150,44 kN/m $E_v \ge E_{y,erf,q}$ erfüllt

Erbrachter Nachweis einer ausreichenden Verankerung bei einem gewählten Rückumschlaglänge von

 $L_g = 5 \text{ m}$

ungefährer Abstand zwischen Lasteinwirkungsgrenze bis zum Dammfuß 8,8 m

Maßgebender Rückumschlag 10,5 m

Bemessung der Geogitter nach EBGEO - Bemessung für Rechteckraster

1. Bauzustand: Einbau der Lastverteilungsschicht, geschätzte Zeit 1 Monat

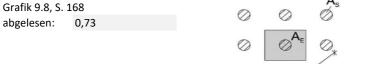
1. Eingangsdaten

<u>Pfähle</u>	s _x [m]	s _y [m]
Achsabstand der Pfähle	1,6	1,6
	d [m]	d _{ers} [m]
Pfahldurchmesser, rund	0,4	0,4
	b _{ers} [m]	
rechteckig	0,354	

		<u>Erddamm</u>	<u>Oberbau</u>
Wichte [kN/m³]	$\gamma_k =$	19	0
Reibungswinkel [°]	$\rho'_k =$	32,5	
Höhe des Dammes [m]	h =	1,4	0
	z =	0,15	
Erddruckbeiwert [-]	k _{agh} =	0,301	nach DIN 4085

Geokunststoffbewehrung

Dehnsteifigkeit


inf. G [kN/m]	$J_{x}[kN/m] = 11200,0$	$J_{y}[kN/m] = 15200,0$
inf. G+Q [kN/m]	$J_{x}[kN/m] = 11200,0$	$J_{v}[kN/m] = 15200,0$

längs: $F_{k0,x}[kN/m] = 1400$ Kurzzeitzugfestigkeit quer: $F_{k0,y}[kN/m] = 1900$

Einwirkung auf GOK

Eigengewicht (zusätzlich zum Dammmaterial) [kN/m²]	$p_{G,k} = 0$
Verkehrslast (Lastausbreitung über Tiefe berücksichtigt) [kN/m²]	p _{Q,k} = 33

2. Verteilung der vertikalen Spannungen

s = 2,26

h/s = 0.62

 $A_E = 2,56$ $A_S = 0,13$

2.1 Vertikale Spannungen auf den Untergrund (σ₂₀ [kN/m²])

Spannungen inf. G	$\sigma_{z0,G,k} = 19,42$
Spannungen inf. G+Q	$\sigma_{\rm 70~G+0~k} = 43.51$

2.2 Vertikale Spannungen auf den Säulen (σ_{zs} [kN/m²])

Spannungen inf. G+Q $\sigma_{zs,G+Q,k} = 371,33$

VKE 7052, Abschnitt Entwässerungsfeld Moorburg-Ost Bemessung der Lastverteilungsschicht, Station 2+800 - 2+850

3. Ermittlung der Membranzugkräfte

3.1 Resultierende Einwirkung F k

 $L_{wx}[m] = 1,2$ $L_{wy}[m] = 1,2$

 $A_{Lx}[m] = 1,2$ $A_{Ly}[m] = 1,2$ GI. 9.18/9.19 S. 173 $F_{x,G,k}[kN] = 23,63$ $F_{y,G,k}[kN] = 23,63$ GI. 9.20-9.23, S173/174

 $F_{x,G+Q,k}[kN] = 52,96$ $F_{y,G+Q,k}[kN] = 52,96$

3.2 Dehnung

zu Diagramm S. 174 HINWEIS: ohne Bettung

 $(F_k/b_{ers})/J_k = x \epsilon [\%]$ abgelesen $y \epsilon [\%]$ abgelesen

inf. G 0,006 1,45 0,004 1,25 inf. G+Q 0,013 2,20 0,010 2,00

3.3 Belastungsgrad der Kurzzeitzugfestigkeit

abgelesen aus Isochronen des Produktes für das jeweilig ε

Bereich x [%] Bereich y [%]
Belastungsgrad inf. G 12,0 8,0
Belastungsgrad inf. G 17,5 16,0

3.4 Maximaler Durchhang des Geogitters

Lichte Weite zwischen den Stützen I_w [m] = 1,246

maximaler Durchhang inf. G $\max f_x[m] = 0,09$ $\max f_y[m] = 0,09$ maximaler Durchhang inf. G+Q $\max f_x[m] = 0,11$ $\max f_y[m] = 0,11$

3.5 Membrankräfte

Zugkraft inf. G $E_{G,k,x}$ [kN/m] = 162,40 $E_{G,k,y}$ [kN/m] = 190,00 Zugkraft inf. G+Q $E_{G+Q,k,x}$ [kN/m] = 246,40 $E_{G+Q,k,y}$ [kN/m] = 304,00

3.6 Passiver Erddruck aus Einbindung

HINWEIS: Beachte Kriterien für den Ansatz auf S. 178 (EBGEO)

Wichte der Einbindungsschicht $\gamma \text{ [kN/m}^3 \text{]} = 19$ Höhe der Einbindungsschicht h [m] = 1,5Erddruckbeiwert $k_{pgh} = 12,33$ Passiver Erddruck $E_{ph,k} = 263,55$

3.7 Spreizkräfte im Böschungsbereich ohne Abminderung

3.8 Spreizkräfte im Böschungsbereich mit Abminderung

HINWEIS: Bedingungen zur Abminderung beachten (S.178)

3.9 nötige Gesamtzugkraft des Geogitters

 $\begin{array}{lll} \mbox{Gesamtzugkraft inf.G} & \mbox{E}_{G,k,x} \, [kN/m] = 162,\!40 & \mbox{E}_{G,k,y} \, [kN/m] = 195,\!60 \\ \mbox{Gesamtzugkraft inf.G+Q} & \mbox{E}_{G+Q,k,x} \, [kN/m] = 246,\!40 & \mbox{E}_{G+Q,k,y} \, [kN/m] = 323,\!51 \\ \end{array}$

VKE 7052, Abschnitt Entwässerungsfeld Moorburg-Ost Bemessung der Lastverteilungsschicht, Station 2+800 - 2+850

4. Nachweisführung $E_d < R_d$

Bemessung nach DIN EN 1997-1 und DIN 1054:2010-2012 sowie EBGEO (2010)

Einwirkungen

Teilsicherheitsbeiwerte Einwirkungen (DIN 1054:2010-2012)			
GEO2	BS-P	BS-T	BS-A bzw. BS-E
ständige γ _G	1,35	1,20	1,10
veränderliche γ_{Q}	1,50	1,30	1,10

4.1 Bemessungswerte der Beanspruchung in der Geokunststoffbewehrung

Ständige Lasten:

BS-P	$E_{x,d}[kN/m] = 219,24$	$E_{y,d}[kN/m] = 264,07$
BS-T	$E_{x,d}[kN/m] = 194,88$	$E_{y,d}[kN/m] = 234,73$
BS-A bzw. BS-F	$E_{x,d}[kN/m] = 178.64$	$E_{v,d}[kN/m] = 215.17$

Ständige und veränderliche Lasten:

BS-P	$E_{x,d}[kN/m] = 345,24$	$E_{y,d}[kN/m] = 455,93$
BS-T	$E_{x,d}[kN/m] = 304,08$	$E_{y,d}[kN/m] = 401,00$
BS-A bzw. BS-E	$E_{x,d}[kN/m] = 271,04$	$E_{v,d}[kN/m] = 355,86$

Widerstände

Widerstande			
Teilsicherh	eitsbeiwerte Widerstä	nde (DIN 1054:20:	10-2012)
GEO 2	BS-P	BS-T	BS-A bzw. BS-E
Material γ_{M}	1,40	1,30	1,20
Anpassungsfaktor nach EBGEO (2010)			
Anspassungsfaktor		1,10	

Abminderungsfaktoren für Geokunststoffe		P		
	x-Richtung	y-Richtung		W
A1	1,37	1,37	Kriechen	m
A2	1,02	1,02	Einbaubeschädigung	G
A3	1,00	1,00	Überlappung	
A4	1,03	1,03	Chemische Beständigkeit	
A5	1,00	1,00	Dynamische Einwirkungen	

Produktspezifische Werte variieren mit jeweiligem Geokunststoff

4.2 Bemessungswerte der Widerstände

BS-P	$R_{x,B,d}[kN/m] = 764,25$	$R_{y,B,d}[kN/m] = 1037,19$
BS-T	$R_{x,B,d}[kN/m] = 823,04$	$R_{y,B,d}[kN/m] = 1116,98$
BS-A bzw. BS-E	$R_{vRd}[kN/m] = 891.62$	$R_{VRd}[kN/m] = 1210.06$

4.3 Nachweis für ständige und veränderliche Lasten mit Auslastungsgraden

 $\mu_{x} = E_{d}/R_{d} < 1$ $\mu_{y} = E_{d}/R_{d} < 1$

 BS-P
 0,452 erfüllt
 0,440 erfüllt

 BS-T
 0,369 erfüllt
 0,359 erfüllt

 BS-A bzw. BS-E
 0,304 erfüllt
 0,294 erfüllt

Säulenkräfte in Kopfebene

Einflussfläche A_E [m²] = 2,56 Stützfläche A_S [m²] = 0,13 Lastumlagerungsfaktor $E_{L=}$ 0,31

E_{L=} 0,31 Das bedeutet, 31 % des Dammgewichtes werden

direkt in die Pfähle eingeleitet

$$E_L = \frac{\sigma_{zs,G,k} * A_S}{\gamma_k * h * A_E}$$

ohne Bodenbettung mit Bodenbettung

Bemessung der Geogitter nach EBGEO - Bemessung für Rechteckraster 3. Endzustand, geschätzte Zeit 120 Jahre

1. Eingangsdaten

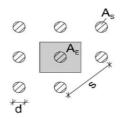
<u>Pfähle</u>	s _x [m]	s _y [m]
Achsabstand der Pfähle	1,6	1,6
	d [m]	d _{ers} [m]
Pfahldurchmesser, rund	0,4	0,4
	b _{ers} [m]	
rechteckig	0,354	

		<u>Erddamm</u>	<u>Oberbau</u>
Wichte [kN/m³]	$\gamma_k =$	19	23
Reibungswinkel [°]	$\rho'_k =$	32,5	
Höhe des Dammes [m]	h =	7,7	0,7
	z =	0,15	
Erddruckbeiwert [-]	$k_{agh} =$	0,301	nach DIN 4085

Geokunststoffbewehrung

Dehnsteifigkeit


inf. G [kN/m]	$J_x[kN/m] = 9520,0$	$J_y[kN/m] = 12920,0$
inf. G+Q [kN/m]	$J_x[kN/m] = 9520,0$	$J_{v}[kN/m] = 12920,0$


Kurzzeitzugfestigkeit längs: $F_{k0,x}[kN/m] = 1400$ quer: $F_{k0,y}[kN/m] = 1900$

Einwirkung auf GOK

Eigengewicht (zusätzlich zum Dammmaterial) [kN/m²]	$p_{G,k} = 0$
Verkehrslast (Lastausbreitung über Tiefe berücksichtigt) [kN/m²]	$p_{Q,k} = 26$

2. Verteilung der vertikalen Spannungen

s = 2,26 h/s = 3,71 d/s = 0,18 $A_E = 2,56$ $A_S = 0,13$

2.1 Vertikale Spannungen auf den Untergrund (σ₂₀ [kN/m²])

 $\begin{array}{ll} \text{Spannungen inf. G} & \sigma_{z0,G,k} \!=\! 80,\!47 \\ \\ \text{Spannungen inf. G+Q} & \sigma_{z0,G+Q,k} \!=\! 94,\!77 \\ \end{array}$

2.2 Vertikale Spannungen auf den Säulen (σ_{zs} [kN/m²])

Spannungen inf. G $\sigma_{zs,G,k}$ = 1421,64 Gl. 9.11/9.12 S. 171/172

Spannungen inf. G+Q $\sigma_{zs,G+Q,k} = 1674,30$

3. Ermittlung der Membranzugkräfte

3.1 Resultierende Einwirkung F k

 $L_{wx}[m] = 1,2$ $L_{wy}[m] = 1,2$

 A_{Lx} [m] = 1,2 A_{Ly} [m] = 1,2 Gl. 9.18/9.19 S. 173 $F_{x,G,k}$ [kN] = 97,94 $F_{y,G,k}$ [kN] = 97,94 Gl. 9.20-9.23, S173/174

 $F_{x,G+Q,k}[kN] = 115,34$ $F_{y,G+Q,k}[kN] = 115,34$

3.2 Dehnung

zu Diagramm S. 174 HINWEIS: ohne Bettung

 $(F_k/b_{ers})/J_k = x \epsilon [\%]$ abgelesen $y \epsilon [\%]$ abgelesen

inf. G 0,029 3,95 0,021 3,15 inf. G+Q 0,034 4,45 0,025 3,55

3.3 Belastungsgrad der Kurzzeitzugfestigkeit

abgelesen aus Isochronen des Produktes für das jeweilig ε

Bereich x [%] Bereich y [%]
Belastungsgrad inf. G 27,8 21,5
Belastungsgrad inf. G 32,0 24,5

3.4 Maximaler Durchhang des Geogitters

Lichte Weite zwischen den Stützen I_w [m] = 1,246

maximaler Durchhang inf. G $\max f_x[m] = 0.15$ $\max f_y[m] = 0.14$ maximaler Durchhang inf. G+Q $\max f_x[m] = 0.16$ $\max f_y[m] = 0.14$

3.5 Membrankräfte

Zugkraft inf. G $E_{G,k,x}$ [kN/m] = 376,04 $E_{G,k,y}$ [kN/m] = 406,98 Zugkraft inf. G+Q $E_{G+Q,k,x}$ [kN/m] = 423,64 $E_{G+Q,k,y}$ [kN/m] = 458,66

3.6 Passiver Erddruck aus Einbindung

HINWEIS: Beachte Kriterien für den Ansatz auf S. 178 (EBGEO)

Wichte der Einbindungsschicht $\gamma [kN/m^3] = 19$ Höhe der Einbindungsschicht h [m] = 1,5Erddruckbeiwert $k_{pgh} = 12,33$ Passiver Erddruck $E_{ph,k} = 263,55$

3.7 Spreizkräfte im Böschungsbereich ohne Abminderung

3.8 Spreizkräfte im Böschungsbereich mit Abminderung

HINWEIS: Bedingungen zur Abminderung beachten (S.178)

 $\begin{array}{lll} \mbox{Spreizkraft inf. G} & \Delta E_{G,k,x} \, [kN/m] = \, 0,00 & \Delta E_{G,k,y} \, [kN/m] = \, 69,99 & \mbox{Gl. 9.30 S.179} \\ \mbox{Spreizkraft inf. G+Q} & \Delta E_{G+Q,k,x} \, [kN/m] = \, 0,00 & \Delta E_{G+Q,k,y} \, [kN/m] = \, 201,47 & \mbox{Gl. 9.31 S.179} \\ \end{array}$

3.9 nötige Gesamtzugkraft des Geogitters

 $\begin{array}{lll} \mbox{Gesamtzugkraft inf.G} & \mbox{E}_{G,k,x} \left[kN/m \right] = 376,04 & \mbox{E}_{G,k,y} \left[kN/m \right] = 476,97 \\ \mbox{Gesamtzugkraft inf.G+Q} & \mbox{E}_{G+Q,k,x} \left[kN/m \right] = 423,64 & \mbox{E}_{G+Q,k,y} \left[kN/m \right] = 660,13 \\ \end{array}$

4. Nachweisführung $E_d < R_d$

Bemessung nach DIN EN 1997-1 und DIN 1054:2010-2012 sowie EBGEO (2010)

Einwirkungen

Teilsicherheitsbeiwerte Einwirkungen (DIN 1054:2010-2012)			
GEO2	BS-P BS-A bzw. BS-E		
ständige γ _G	1,35	1,20	1,10
veränderliche γ_{Q}	1,50	1,30	1,10

4.1 Bemessungswerte der Beanspruchung in der Geokunststoffbewehrung

Ständige Lasten:

BS-P	$E_{x,d}[kN/m] = 507,65$	$E_{y,d}[kN/m] = 643,91$
BS-T	$E_{x,d}[kN/m] = 451,25$	$E_{y,d}[kN/m] = 572,36$
BS-A bzw. BS-F	$E_{x,d}[kN/m] = 413.64$	$E_{v,d}[kN/m] = 524.67$

Ständige und veränderliche Lasten:

BS-P	$E_{x,d}[kN/m] = 579,05$	$E_{y,d}[kN/m] = 918,64$
BS-T	$E_{x,d}[kN/m] = 513,13$	$E_{y,d}[kN/m] = 810,47$
BS-A bzw. BS-E	$E_{x,d}[kN/m] = 466,00$	$E_{v.d}[kN/m] = 726,14$

Widerstände

Teilsicherheitsbeiwerte Widerstände (DIN 1054:2010-2012)			
GEO 2 BS-P BS-T BS-A bzw. BS-E			
Material γ _M	1,40	1,30	1,20
Anpassungsfaktor nach EBGEO (2010)			
Anspassungsfaktor		1,10	

Abminderungsfaktoren für Geokunststoffe		okunststoffe	
	x-Richtung	y-Richtung	
A1	1,52	1,52	Kriechen
A2	1,02	1,02	Einbaubeschädigung
A3	1,00	1,00	Überlappung
A4	1,03	1,03	Chemische Beständigkeit
A5	1,00	1,00	Dynamische Einwirkungen

Produktspezifische Werte variieren mit jeweiligem Geokunststoff

4.2 Bemessungswerte der Widerstände

BS-P	$R_{x,B,d}[kN/m] = 688,83$	$R_{y,B,d}[kN/m] = 934,84$
BS-T	$R_{x,B,d}[kN/m] = 741,82$	$R_{y,B,d}[kN/m] = 1006,75$
BS-A bzw. BS-E	$R_{x,B,d}[kN/m] = 803.63$	$R_{y,B,d}[kN/m] = 1090.65$

4.3 Nachweis für ständige und veränderliche Lasten mit Auslastungsgraden

 $\mu_{x} = E_{d}/R_{d} < 1$ $\mu_{y} = E_{d}/R_{d} < 1$

 BS-P
 0,841 erfüllt
 0,983 erfüllt

 BS-T
 0,692 erfüllt
 0,805 erfüllt

 BS-A bzw. BS-E
 0,580 erfüllt
 0,666 erfüllt

Säulenkräfte in Kopfebene

Einflussfläche $A_E [m^2] = 2,56$ Stützfläche $A_S [m^2] = 0,13$ Lastumlagerungsfaktor $E_{L=} 0,41$

astumlagerungsfaktor $E_{L_{=}}$ 0,41 Das bedeutet, 41 % des Dammgewichtes werden

direkt in die Pfähle eingeleitet

$$E_L = \frac{\sigma_{zs,G,k} * A_S}{\gamma_k * h * A_E}$$

ohne Bodenbettung mit Bodenbettung

Bemessung der Lastverteilungsschicht, Station 2+800 - 2+850

Bemessung der Verankerungslänge nach EBGEO

Geogitter, Kurzzugfestigkeit 1.400 kN/m, Verlegung längs zur Dammachse Dammhöhe max. 8,4 m, Raster 1,6 m x 1,6 m

Vorbemerkung:

Nachfolgende Bemessung der Verankerungslänge in Ergänzung zur Bemessung der Geokunststoffe

1. Eingangswerte

- Wichte des Dammmaterials im Bereich der Lastverteilungsschicht:	$\gamma_k = 19 kN/m^3$
- Reibungswinkel	$\rho'_{k} = 32,5$ °
- Produktspezifischer Verbundbeiwert	$\mu = 0.9$
- Teilsicherheitsbeiwert für Reibung	$\gamma_{\delta} = 1.4$

2. Nachweis am Regelquerschnitt

2.1 Spezifische Eingangswerte

- Höhe des Erdkörpers	h =	8,4	m
- Bemessungswert des Widerstandes $R_{x,B,d}$	$R_{x,B,d} =$	688,83	kN/m
- Reibungswinkel Geogitter/Boden δ = atan(μ * tan ρ ')		29,83	•

2.2 Überprüfung der gewählten Verankerungslänge

- Gewählte Verankerungslänge	L _g = 5
-Böschungsneigung	N 1:2
-maximale Überdeckung auf Höhe des Rück	umschlags

d _{Lastverteilungsschicht} =	1,4	m
d _{Feinplanum} =	0,45	m
d _{Schüttdicke} =	0,95	m
$h_{uq,max} = h - (d_{Feinplanum} + d_{Schuttdicke})$	7	m

- tatsächlich größte Überdeckungshöhe (in Abhängigkeit der gewählten Verankerungslänge):

$$h_{\ddot{u}q} = Lg/1,5 - (d_{Feinplanum} + d_{Sch\ddot{u}ttdicke})$$
 1,93 m

2.3 Abminderung der Ankerkraft durch Umlenkung nach Euler

- Umlenkwinkel
$$\alpha = 180 = 3,1416$$
 - $E_{x,erf,q} = R_{x,B,d} * e^{-tan(\delta)*\alpha}$ 113,72 kN/m

Mit der gewählten Verankerungslänge ergibt sich eine Verankerungskraft von:

$$\mathsf{E_x} = (\mathsf{L_g} * \mathsf{h_{\bar{u}q}} * \gamma) * \mathsf{tan}(\delta)/\gamma_\delta * 2 \\ 150,44 \text{ kN/m} \quad \mathsf{E_x} \ge \mathsf{E_{x,erf,q}} \\ \text{erfüllt}$$

Erbrachter Nachweis einer ausreichenden Verankerung bei einem gewählten Rückumschlaglänge von

Bemessung der Verankerungslänge nach EBGEO

Geogitter, Kurzzugfestigkeit 1.900 kN/m, Verlegung längs zur Dammachse Dammhöhe max. 8,4 m, Raster 1,6 m \times 1,6 m

Vorbemerkung:

Nachfolgende Bemessung der Verankerungslänge in Ergänzung zur Bemessung der Geokunststoffe

1. Eingangswerte

- Wichte des Dammmaterials im Bereich der Lastverteilungsschicht: $\gamma_k = 19 \text{ kN/m}^3$

- Reibungswinkel ρ'_{k} = 32,5 ° - Produktspezifischer Verbundbeiwert μ = 0,9

- Teilsicherheitsbeiwert für Reibung $$\gamma_{\delta}$$ = 1,4

2. Nachweis am Regelquerschnitt

2.1 Spezifische Eingangswerte

- Höhe des Erdkörpers h = 8,4 m - Bemessungswert des Widerstandes $R_{x,B,d}$ $R_{y,B,d} = 934,84$ kN/m

- Reibungswinkel Geogitter/Boden δ = atan(μ * tan ρ ') 29,83 °

2.2 Überprüfung der gewählten Verankerungslänge

- Gewählte Verankerungslänge $L_g = 11$

-Böschungsneigung N 1:2

-maximale Überdeckung auf Höhe des Rückumschlags

$$\begin{split} d_{Lastverteilungsschicht} &= & 1,4 \text{ m} \\ d_{Feinplanum} &= & 0,45 \text{ m} \\ d_{Schüttdicke} &= & 0,95 \text{ m} \\ h_{\ddot{u}q,max} &= h \cdot (d_{Feinplanum} + d_{Schüttdicke}) & 7 \text{ m} \end{split}$$

- tatsächlich größte Überdeckungshöhe (in Abhängigkeit der gewählten Verankerungslänge):

 $h_{\ddot{u}q} = Lg/1,5 - (d_{Feinplanum} + d_{Sch\ddot{u}ttdicke})$ 5,93 m

Mit der gewählten Verankerungslänge ergibt sich eine Verankerungskraft von:

 $E_y = (L_g * h_{\ddot{u}q} * \gamma) * tan(\delta)/\gamma_{\delta} * 2$ 1015,73 kN/m $E_y \ge R_{y,B,d}$ erfüllt

Erbrachter Nachweis einer ausreichenden Verankerung bei einem gewählten Rückumschlaglänge von

L_g = 11 m

2.3 Abminderung der Ankerkraft durch Umlenkung nach Euler

 $\begin{array}{lll} \text{- Umlenkwinkel} & \alpha = 180 = 3,1416 \\ \text{- E}_{\text{y,erf,q}} = \text{R}_{\text{y,B,d}} * \text{ e}^{-\text{tan}(6)^*\alpha} & 154,33 \text{ kN/m} \\ \text{- Gewählte Verankerungslänge} & \text{L}_{\text{g}} = \\ \text{h}_{\bar{\text{u}}\text{q}} = \text{Lg/1,5} \cdot (\text{d}_{\text{Feinplanum}} + \text{d}_{\text{Schüttdicke}}) & 1,93 \text{ m} \end{array}$

Mit der gewählten Verankerungslänge ergibt sich eine Verankerungskraft von:

 $E_v = (L_g * h_{\ddot{u}g} * \gamma) * tan(\delta)/\gamma_\delta * 2$ 150,44 kN/m $E_v \ge E_{v,erf,g}$ nicht erfüllt

Erbrachter Nachweis einer ausreichenden Verankerung bei einem gewählten Rückumschlaglänge von

 $L_g = 5 \text{ m}$

ungefährer Abstand zwischen Lasteinwirkungsgrenze bis zum Dammfuß 9,8 m

Maßgebender Rückumschlag 11 m

Bemessung der Geogitter nach EBGEO - Bemessung für Rechteckraster

1. Bauzustand: Einbau der Lastverteilungsschicht, geschätzte Zeit 1 Monat

1. Eingangsdaten

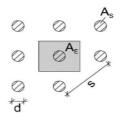
<u>Pfähle</u>	s _x [m]	s _y [m]
Achsabstand der Pfähle	1,5	1,5
	d [m]	d _{ers} [m]
Pfahldurchmesser, rund	0,4	0,4
	b _{ers} [m]	
rechteckig	0,354	

	_	<u>Erddamm</u>	<u>Oberbau</u>
Wichte [kN/m³]	$\gamma_k =$	19	0
Reibungswinkel [°]	ρ' _k =	32,5	
Höhe des Dammes [m]	h =	1,4	0
	z =	0,15	
Erddruckbeiwert [-]	$k_{agh} =$	0,301	nach DIN 4085

Geokunststoffbewehrung

Dehnsteifigkeit

inf. G [kN/m]	$J_{x}[kN/m] = 11200,0$	$J_y[kN/m] = 17600,0$
inf. G+Q [kN/m]	$J_x[kN/m] = 11200,0$	$J_{y}[kN/m] = 17600,0$


Kurzzeitzugfestigkeit längs: $F_{k0,x}[kN/m] = 1400$ quer: $F_{k0,y}[kN/m] = 2200$

Einwirkung auf GOK

Eigengewicht (zusätzlich zum Dammmaterial) [kN/m²]	$p_{G,k} =$	0
Verkehrslast (Lastausbreitung über Tiefe berücksichtigt) [kN/m²]	p _{Q,k} =	33

2. Verteilung der vertikalen Spannungen

Grafik 9.8, S. 168 abgelesen: 0,69

s = 2,12 h/s = 0,66 d/s = 0,19 $A_E = 2,25$ $A_S = 0,13$

2.1 Vertikale Spannungen auf den Untergrund (σ₂₀ [kN/m²])

 $\begin{array}{ll} \text{Spannungen inf. G} & \sigma_{z0,G,k} \!=\! 18,\!35 \\ \text{Spannungen inf. G+Q} & \sigma_{z0,G+Q,k} \!=\! 41,\!12 \end{array}$

2.2 Vertikale Spannungen auf den Säulen (σ_{zs} [kN/m²])

Spannungen inf. G $\sigma_{zs,G,k}$ = 166,00 Gl. 9.11/9.12 S. 171/172

Spannungen inf. G+Q $\sigma_{zs,G+Q,k} = 371,94$

3. Ermittlung der Membranzugkräfte

3.1 Resultierende Einwirkung F k

 $L_{wx}[m] = 1,1$ $L_{wy}[m] = 1,1$

 A_{Lx} [m] = 1,1 A_{Ly} [m] = 1,1 Gl. 9.18/9.19 S. 173 $F_{x,G,k}$ [kN] = 19,50 $F_{y,G,k}$ [kN] = 19,50 Gl. 9.20-9.23, S173/174

 $F_{x,G+Q,k}[kN] = 43,68$ $F_{y,G+Q,k}[kN] = 43,68$

3.2 Dehnung

zu Diagramm S. 174 HINWEIS: ohne Bettung

 $(F_k/b_{ers})/J_k = x \epsilon [\%]$ abgelesen y $\epsilon [\%]$ abgelesen

inf. G 0,005 1,30 0,003 0,90 inf. G+Q 0,011 2,05 0,007 1,50

3.3 Belastungsgrad der Kurzzeitzugfestigkeit

abgelesen aus Isochronen des Produktes für das jeweilig ε

Bereich x [%] Bereich y [%]
Belastungsgrad inf. G 11 7,0
Belastungsgrad inf. G 16,5 12,5

3.4 Maximaler Durchhang des Geogitters

Lichte Weite zwischen den Stützen $I_w [m] = 1,146$

maximaler Durchhang inf. G $\max f_x[m] = 0.08$ $\max f_y[m] = 0.07$ maximaler Durchhang inf. G+Q $\max f_x[m] = 0.10$ $\max f_y[m] = 0.09$

3.5 Membrankräfte

Zugkraft inf. G $E_{G,k,x}$ [kN/m] = 145,60 $E_{G,k,y}$ [kN/m] = 158,40 Zugkraft inf. G+Q $E_{G+Q,k,x}$ [kN/m] = 229,60 $E_{G+Q,k,y}$ [kN/m] = 264,00

3.6 Passiver Erddruck aus Einbindung

HINWEIS: Beachte Kriterien für den Ansatz auf S. 178 (EBGEO)

Wichte der Einbindungsschicht $\gamma [kN/m^3] = 19$ Höhe der Einbindungsschicht h [m] = 1,5Erddruckbeiwert $k_{pgh} = 12,33$ Passiver Erddruck $E_{ph,k} = 263,55$

3.7 Spreizkräfte im Böschungsbereich ohne Abminderung

3.8 Spreizkräfte im Böschungsbereich mit Abminderung

HINWEIS: Bedingungen zur Abminderung beachten (S.178)

3.9 nötige Gesamtzugkraft des Geogitters

4. Nachweisführung $E_d < R_d$

Bemessung nach DIN EN 1997-1 und DIN 1054:2010-2012 sowie EBGEO (2010)

Einwirkungen

Teilsicherheitsbeiwerte Einwirkungen (DIN 1054:2010-2012)				
GEO2 BS-P BS-T BS-A bzw. BS-E				
ständige γ _G	1,35	1,20	1,10	
veränderliche γ_Q 1,50 1,30 1,10				

4.1 Bemessungswerte der Beanspruchung in der Geokunststoffbewehrung

Ständige Lasten:

BS-P	$E_{x,d}[kN/m] = 196,56$	$E_{y,d}[kN/m] = 213,84$
BS-T	$E_{x,d}[kN/m] = 174,72$	$E_{y,d}[kN/m] = 190,08$
BS-A bzw. BS-F	$E_{v,d}[kN/m] = 160.16$	$E_{v,d}[kN/m] = 174.24$

Ständige und veränderliche Lasten:

BS-P	$E_{x,d}[kN/m] = 322,56$	$E_{y,d}[kN/m] = 372,24$
BS-T	$E_{x,d}[kN/m] = 283,92$	$E_{y,d}[kN/m] = 327,36$
BS-A bzw. BS-E	$E_{x,d}[kN/m] = 252,56$	$E_{v,d}[kN/m] = 290,40$

Widerstände

Teilsicherheitsbeiwerte Widerstände (DIN 1054:2010-2012)			
GEO 2 BS-P BS-T BS-A bzw. BS-E			
Material γ _M	1,40	1,30	1,20
Anpassungsfaktor nach EBGEO (2010)			
Anspassungsfaktor 1,10			

Abminderungsfaktoren für Geokunststoffe			1	
	x-Richtung	y-Richtung		٦
A1	1,37	1,37	Kriechen	1
A2	1,02	1,02	Einbaubeschädigung	7
A3	1,00	1,00	Überlappung	1
A4	1,03	1,03	Chemische Beständigkeit	1
A5	1,00	1,00	Dynamische Einwirkungen	1

Produktspezifische Werte variieren mit jeweiligem Geokunststoff

4.2 Bemessungswerte der Widerstände

BS-P	$R_{x,B,d}[kN/m] = 764,25$	$R_{y,B,d}[kN/m] = 1200,96$
BS-T	$R_{x,B,d}[kN/m] = 823,04$	$R_{y,B,d}[kN/m] = 1293,34$
BS-A bzw. BS-E	$R_{x,R,d}[kN/m] = 891.62$	$R_{VRd}[kN/m] = 1401.12$

4.3 Nachweis für ständige und veränderliche Lasten mit Auslastungsgraden

 $\mu_{x} = E_{d}/R_{d} < 1$ $\mu_{y} = E_{d}/R_{d} < 1$

 BS-P
 0,422 erfüllt
 0,310 erfüllt

 BS-T
 0,345 erfüllt
 0,253 erfüllt

 BS-A bzw. BS-E
 0,283 erfüllt
 0,207 erfüllt

Säulenkräfte in Kopfebene

Einflussfläche A_{E} [m²] = 2,25 Stützfläche A_{S} [m²] = 0,13 Lastumlagerungsfaktor $E_{L=}$ 0,35

Das bedeutet, 35 % des Dammgewichtes werden direkt in die Pfähle eingeleitet

$$E_L = \frac{\sigma_{zs,G,k} * A_S}{\gamma_k * h * A_E}$$

ohne Bodenbettung mit Bodenbettung

Bemessung der Geogitter nach EBGEO - Bemessung für Rechteckraster 3. Endzustand, geschätzte Zeit 120 Jahre

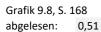
1. Eingangsdaten

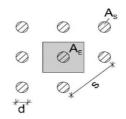
<u>Pfähle</u>	s _x [m]	s _y [m]
Achsabstand der Pfähle	1,5	1,5
	d [m]	d _{ers} [m]
Pfahldurchmesser, rund	0,4	0,4
	b _{ers} [m]	
rechteckig	0,354	

	-	<u>Erddamm</u>	<u>Oberbau</u>
Wichte [kN/m³]	$\gamma_k =$	19	23
Reibungswinkel [°]	ρ' _k =	32,5	
Höhe des Dammes [m]	h =	9,3	0,7
	z =	0,15	
Erddruckbeiwert [-]	k _{agh} =	0,301	nach DIN 4085

Geokunststoffbewehrung

Dehnsteifigkeit


inf. G [kN/m]	$J_{x}[kN/m] = 9520,0$	$J_y[kN/m] = 14960,0$
inf. G+Q [kN/m]	$J_{x}[kN/m] = 9520,0$	$J_{y}[kN/m] = 14960,0$


Kurzzeitzugfestigkeit längs: $F_{k0,x}[kN/m] = 1400$ quer: $F_{k0,y}[kN/m] = 2200$

Einwirkung auf GOK

Eigengewicht (zusätzlich zum Dammmaterial) [kN/m²]	$p_{G,k} = 0$
Verkehrslast (Lastausbreitung über Tiefe berücksichtigt) [kN/m²]	p _{Q,k} = 23

2. Verteilung der vertikalen Spannungen

s = 2.12
h/s = 4.71
d/s = 0.19
$A_{\rm F} = 2,25$
$A_{S} = 0.13$
As - 0,13

2.1 Vertikale Spannungen auf den Untergrund (σ_{20} [kN/m²])

 $\begin{array}{ll} \text{Spannungen inf. G} & \sigma_{z0,G,k} = 90,12 \\ \\ \text{Spannungen inf. G+Q} & \sigma_{z0,G+Q,k} = 101,85 \end{array}$

2.2 Vertikale Spannungen auf den Säulen (σ_{zs} [kN/m²])

Spannungen inf. G $\sigma_{zs,G,k}$ = 1640,38 Gl. 9.11/9.12 S. 171/172

Spannungen inf. G+Q $\sigma_{zs,G+Q,k} = 1853,90$

3. Ermittlung der Membranzugkräfte

3.1 Resultierende Einwirkung F k

 $L_{wx}[m] = 1,1$ $L_{wy}[m] = 1,1$

 A_{Lx} [m] = 1,1 A_{Ly} [m] = 1,1 Gl. 9.18/9.19 S. 173 $F_{x,G,k}$ [kN] = 95,72 $F_{y,G,k}$ [kN] = 95,72 Gl. 9.20-9.23, S173/174

 $F_{x,G+Q,k}[kN] = 108,18$ $F_{y,G+Q,k}[kN] = 108,18$

3.2 Dehnung

zu Diagramm S. 174 HINWEIS: ohne Bettung

 $(F_k/b_{ers})/J_k = x \epsilon [\%] \text{ abgelesen}$ y $\epsilon [\%] \text{ abgelesen}$

inf. G 0,028 3,80 0,018 2,75 inf. G+Q 0,032 4,20 0,020 3,10

3.3 Belastungsgrad der Kurzzeitzugfestigkeit

abgelesen aus Isochronen des Produktes für das jeweilig ε

Bereich x [%] Bereich y [%]
Belastungsgrad inf. G 27,0 19,0
Belastungsgrad inf. G 29,5 21,0

3.4 Maximaler Durchhang des Geogitters

Lichte Weite zwischen den Stützen $I_w[m] = 1,146$

maximaler Durchhang inf. G $\max f_x[m] = 0.14$ $\max f_y[m] = 0.12$ maximaler Durchhang inf. G+Q $\max f_x[m] = 0.14$ $\max f_y[m] = 0.12$

3.5 Membrankräfte

Zugkraft inf. G $E_{G,k,x}$ [kN/m] = 361,76 $E_{G,k,y}$ [kN/m] = 411,40 Zugkraft inf. G+Q $E_{G+Q,k,x}$ [kN/m] = 399,84 $E_{G+Q,k,y}$ [kN/m] = 463,76

3.6 Passiver Erddruck aus Einbindung

HINWEIS: Beachte Kriterien für den Ansatz auf S. 178 (EBGEO)

Wichte der Einbindungsschicht γ [kN/m³] = 19 Höhe der Einbindungsschicht h [m] = 1,5 Erddruckbeiwert k_{pgh} = 12,33 Passiver Erddruck $E_{ph,k}$ = 263,55

3.7 Spreizkräfte im Böschungsbereich ohne Abminderung

3.8 Spreizkräfte im Böschungsbereich mit Abminderung

HINWEIS: Bedingungen zur Abminderung beachten (S.178)

3.9 nötige Gesamtzugkraft des Geogitters

 $\begin{array}{lll} \mbox{Gesamtzugkraft inf.G} & \mbox{E}_{G,k,x} \left[kN/m \right] = 361,76 & \mbox{E}_{G,k,y} \left[kN/m \right] = 565,57 \\ \mbox{Gesamtzugkraft inf.G+Q} & \mbox{E}_{G+Q,k,x} \left[kN/m \right] = 399,84 & \mbox{E}_{G+Q,k,y} \left[kN/m \right] = 774,45 \\ \end{array}$

4. Nachweisführung $E_d < R_d$

Bemessung nach DIN EN 1997-1 und DIN 1054:2010-2012 sowie EBGEO (2010)

Einwirkungen

Teilsicherheitsbeiwerte Einwirkungen (DIN 1054:2010-2012)			
GEO2	S-P BS-A bzw. BS-E		
ständige γ _G	1,35	1,20	1,10
veränderliche γ_{Q}	1,50	1,30	1,10

4.1 Bemessungswerte der Beanspruchung in der Geokunststoffbewehrung

Ständige Lasten:

BS-P	$E_{x,d}[kN/m] = 488,38$	$E_{y,d}[kN/m] = 763,52$
BS-T	$E_{x,d}[kN/m] = 434,11$	$E_{y,d}[kN/m] = 678,69$
BS-A bzw. BS-F	$E_{v,d}[kN/m] = 397.94$	$E_{v,d}[kN/m] = 622.13$

Ständige und veränderliche Lasten:

BS-P	$E_{x,d}[kN/m] = 545,50$	$E_{y,d}[kN/m] = 1076,84$
BS-T	$E_{x,d}[kN/m] = 483,62$	$E_{y,d}[kN/m] = 950,23$
BS-A bzw. BS-E	$E_{x,d}[kN/m] = 439,82$	$E_{y,d}[kN/m] = 851,90$

Widerstände

Teilsicherheitsbeiwerte Widerstände (DIN 1054:2010-2012)			
GEO 2	BS-P BS-T BS-A bzw. BS-E		
Material γ _M	1,40	1,30	1,20
Anpassungsfaktor nach EBGEO (2010)			
Anspassungsfaktor		1,10	

Abminderungsfaktoren für Geokunststoffe		P		
	x-Richtung	y-Richtung		٧
A1	1,52	1,52	Kriechen	m
A2	1,02	1,02	Einbaubeschädigung	G
A3	1,00	1,00	Überlappung	
A4	1,03	1,03	Chemische Beständigkeit	
A5	1,00	1,00	Dynamische Einwirkungen	

Produktspezifische Werte variieren mit jeweiligem Geokunststoff

4.2 Bemessungswerte der Widerstände

4.3 Nachweis für ständige und veränderliche Lasten mit Auslastungsgraden

 $\mu_x = E_d/R_d < 1 \qquad \qquad \mu_y = E_d/R_d < 1$

 BS-P
 0,792 erfüllt
 0,995 erfüllt

 BS-T
 0,652 erfüllt
 0,815 erfüllt

 BS-A bzw. BS-E
 0,547 erfüllt
 0,675 erfüllt

Säulenkräfte in Kopfebene

Einflussfläche $A_{E} \ [m^{2}] = 2,25$ Stützfläche $A_{S} \ [m^{2}] = 0,13$ Lastumlagerungsfaktor $E_{L=} \ 0,46$

Das bedeutet, 46 % des Dammgewichtes werden

direkt in die Pfähle eingeleitet

$$E_L = \frac{\sigma_{zs,G,k} * A_S}{\gamma_k * h * A_E}$$

ohne Bodenbettung mit Bodenbettung

Unterlage 20 Anlage 5.3-4.6

Bemessung der Verankerungslänge nach EBGEO

Geogitter, Kurzzugfestigkeit 1.400 kN/m, Verlegung längs zur Dammachse Dammhöhe max. 10,0 m, Raster 1,5 m x 1,5 m

Vorbemerkung:

Nachfolgende Bemessung der Verankerungslänge in Ergänzung zur Bemessung der Geokunststoffe

1. Eingangswerte

- Wichte des Dammmaterials im Bereich der Lastverteilungsschicht:	$\gamma_k = 19 \text{ kN/m}^3$
- Reibungswinkel	$\rho'_{k} = 32.5$ °
- Produktspezifischer Verbundbeiwert	$\mu = 0.9$
- Teilsicherheitsbeiwert für Reibung	$\gamma_{\delta} = 1.4$

2. Nachweis am Regelquerschnitt

2.1 Spezifische Eingangswerte

- Höhe des Erdkörpers	h =	10	m
- Bemessungswert des Widerstandes R _{x,B,d}	$R_{x,B,d} =$	688,83	kN/m
- Reibungswinkel Geogitter/Boden δ = atan(μ * tan ρ ')		29,83	•

2.2 Überprüfung der gewählten Verankerungslänge

- Gewählte Verankerungslänge	$L_g = 5$	
-Böschungsneigung	N 1:2	
-maximale Überdeckung auf Höhe des Rückumschlags		

$d_{Lastverteilungsschicht} =$	1,4	m
d _{Feinplanum} =	0,45	m
d _{Schüttdicke} =	0,95	m
$h_{iig,max} = h - (d_{Feinplanum} + d_{Schüttdicke})$	8.6	m

- tatsächlich größte Überdeckungshöhe (in Abhängigkeit der gewählten Verankerungslänge):

$$h_{\ddot{u}q} = Lg/1,5 - (d_{Feinplanum} + d_{Sch\ddot{u}ttdicke})$$
 1,93 m

2.3 Abminderung der Ankerkraft durch Umlenkung nach Euler

- Umlenkwinkel	$\alpha = 180 = 3,1416$
- $E_{x,erf,q} = R_{x,B,d} * e^{-tan(\delta)*\alpha}$	113,72 kN/m

Mit der gewählten Verankerungslänge ergibt sich eine Verankerungskraft von:

$$\mathsf{E_x} = (\mathsf{L_g} * \mathsf{h_{uq}} * \gamma) * \mathsf{tan}(\delta) / \gamma_\delta * 2 \\ 150,44 \text{ kN/m} \quad \mathsf{E_x} \geq \mathsf{E_{x,erf,q}} \\ \text{erfüllt}$$

Erbrachter Nachweis einer ausreichenden Verankerung bei einem gewählten Rückumschlaglänge von

$$L_g = 5 n$$

Bemessung der Verankerungslänge nach EBGEO

Geogitter, Kurzzugfestigkeit 2.200 kN/m, Verlegung quer zur Dammachse Dammhöhe max. 10,0 m, Raster 1,5 m x 1,5 m

Vorbemerkung:

Nachfolgende Bemessung der Verankerungslänge in Ergänzung zur Bemessung der Geokunststoffe

1. Eingangswerte

- Wichte des Dammmaterials im Bereich der Lastverteilungsschicht: $\gamma_k = 19$ kN/m³

 $\rho'_{k} = 32,5$ ° - Reibungswinkel - Produktspezifischer Verbundbeiwert $\mu = 0.9$

- Teilsicherheitsbeiwert für Reibung $\gamma_{\delta} = 1.4$

2. Nachweis am Regelguerschnitt

2.1 Spezifische Eingangswerte

- Höhe des Erdkörpers h = 10 - Bemessungswert des Widerstandes R_{x,B,d} $R_{v,B,d} = 1082,45 \text{ kN/m}$ - Reibungswinkel Geogitter/Boden δ = atan(μ * tan ρ ') 29.83

2.2 Überprüfung der gewählten Verankerungslänge

- Gewählte Verankerungslänge $L_g = 11,5$

-Böschungsneigung N 1:2

-maximale Überdeckung auf Höhe des Rückumschlags

d_{Lastverteilungsschicht} = 1,4 m d_{Feinplanum} = 0,45 m 0,95 m d_{Schüttdicke} = $h_{uq,max} = h - (d_{Feinplanum} + d_{Schuttdicke})$ 8,6 m

- tatsächlich größte Überdeckungshöhe (in Abhängigkeit der gewählten Verankerungslänge):

 $h_{\ddot{u}q} = Lg/1,5 - (d_{Feinplanum} + d_{Sch\"{u}ttdicke})$ 6,27 m

Mit der gewählten Verankerungslänge ergibt sich eine Verankerungskraft von:

 $E_y = (L_g * h_{\ddot{u}q} * \gamma) * tan(\delta)/\gamma_{\delta} * 2$ 1121,55 kN/m $E_v \ge R_{v,B,d}$ erfüllt

Erbrachter Nachweis einer ausreichenden Verankerung bei einem gewählten Rückumschlaglänge von 11,5 m $L_g =$

2.3 Abminderung der Ankerkraft durch Umlenkung nach Euler

- Umlenkwinkel $\alpha = 180 = 3,1416$ - $E_{y,erf,q} = R_{y,B,d} * e^{-tan(\delta)*\alpha}$ 178,70 kN/m - Gewählte Verankerungslänge $L_g = 5.5$ $h_{\ddot{u}q} = Lg/1,5 - (d_{Feinplanum} + d_{Sch\ddot{u}ttdicke})$ 2,27 m

Mit der gewählten Verankerungslänge ergibt sich eine Verankerungskraft von:

194,02 kN/m $E_y \ge E_{y,erf,q}$ $E_v = (L_g * h_{\ddot{u}\alpha} * \gamma) * tan(\delta)/\gamma_\delta * 2$ erfüllt

Erbrachter Nachweis einer ausreichenden Verankerung bei einem gewählten Rückumschlaglänge von

 $L_g =$ 5,5 m

ungefährer Abstand zwischen Lasteinwirkungsgrenze bis zum Dammfuß 11,4 m

Maßgebender Rückumschlag 11,5 m