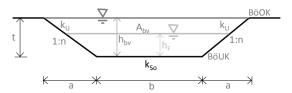
Behandlungsanlage für Hafenaushub bzw. Baggergut aus Hamburger Gewässern Moorburg/Ellerholz Unterlagen zur Änderungsgenehmigung nach §16 BlmSchG Umbau der Entwässerungsfelder Moorburg-Ost für die A26-Ost Anlagen

20.09.2018

ANLAGE 5.8:


Hydraulische Bemessung – Grabensystem

Hydraulische Bemessung Entwässerungsfeld Moorburg-Ost

Bemessung des Entwässerungsgrabens MbO

Prinzipskizze Grabenprofil

Eingabeparameter:

Muldensohlbreite	b =	2,00 m
Mindesttiefe	t =	1,00 m
Muldenrauheit Sohle (nach Manning-Strickler)	k _{so} =	25 m ^{1/3} /s
Muldenrauheit Ufer (nach Manning-Strickler)	k _U =	25 m ^{1/3} /s
Muldenböschungsneigung (1:n)	n =	1 -
maximale Fließtiefe (bordvolle Höhe)	h _{bv} =	1,00 m
maximaler Abfluss durch Pumpenbetrieb	Q _{pumpe,ges.} =	1050 m³/h

Berechnete Werte:

Fließquerschnitt (bordvoll)	A _{bv} =	3,00 m ²
Benetzter Umfang (bordvoll)	I _{U,bv} =	4,83 m
Durchschnittl. Rauheit (nach Manning-Strickler)	k _{St} =	25 m ^{1/3} /s
hydraulischer Radius	r _{hy,bv} =	0,62 m
mittlere Fließgeschwindigkeit ($v_{m,bv} = Q_{Pumpe} / A_{bv}$)	$v_{m,bv} =$	0,10 m/s
Energiegefälle infolge Pumpenbetrieb (nach Manning-Strickler)	I _E =	0,029 ‰
erf. Wasserspiegeldifferenz (Länge Grabensystem ca. 1600 m)	Δh _{erf} =	0,05 m
maximale Schubspannung Sohle (bordvoll)	$ au_{ m 0,So,bv}$ =	0,17 N/m²
maximale Schubspannung Ufer (bordvoll)	$ au_{ ext{0,U,bv}}$ =	0,13 N/m²

Nachweise:

$$\Delta h_{erf} <= \Delta h_{max}$$

mit:

Mindestwasserstand Graben $\begin{array}{cccc} h_{Graben} = & 4,10 & mNN \\ Zulaufhöhe Pumpwerk & h_{Zu} = & 3,70 & mNN \\ Zulässige Spiegeldifferenz & \Delta h_{max} = & 0,4 & m \\ & & Abfrage ~\Delta h_{erf} <= ~\Delta h_{max}~?: & \textbf{erfüllt} \end{array}$

$$au_{0,\mathrm{So,bv}} \mathrel{<=} au_{\mathrm{krit}}$$

mit: Erfahrungswerte der kritischen Sohlschubspannung $au_{
m krit}$ (gemäß DIN 19 661)

Annahme: festgelagerter Sand

 $\tau_{\rm krit} \ {\rm ca.} = {\rm 8 \ N/m^2}$ Abfrage $\tau_{\rm 0,5o,bv} <= \tau_{\rm krit}$?: erfüllt

15.05.2017 Seite 1 von 1