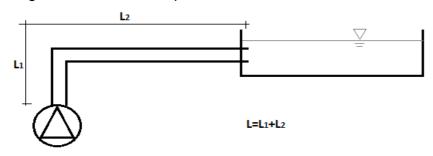
Behandlungsanlage für Hafenaushub bzw. Baggergut aus Hamburger Gewässern Moorburg/Ellerholz Unterlagen zur Änderungsgenehmigung nach §16 BlmSchG Umbau der Entwässerungsfelder Moorburg-Ost für die A26-Ost Anlagen

20.09.2018

ANLAGE 5.5:

Hydraulische Bemessung – Pumpwerk PW 06neu und Druckleitung DN450



Hydraulische Bemessung Entwässerungsfeld Moorburg-Ost

Pumpwerk PW 06neu und Druckrohrleitung nach Moorburg-Mitte

1. Bemessungsgrößen / Randbedigungen:

Begrifflichkeiten / Prinzipskizze:

vorh. Fördervolumen pro Pumpe	$Q_{\text{vorh},1} =$	350 m³/h
vorh. Fördervolumen Parallelbetrieb / 2-Pumpen-Betrieb	$Q_{\text{vorh,2}} =$	700 m³/h
	$Q_{\text{vorh,2}} =$	194 l/s
Länge (Abschnitt 1 - Anlage MbO)	L ₁ =	1120 m
Länge (Abschnitt 2 - Spülrohrverfahren)	L ₂ =	660 m
Gesamtlänge der Rohrleitung	L=	1780 m
Innendurchmesser Rohrleitung	d=	450 mm
absolute Rauheit (alte PE-Leitung)	k =	0,10 mm
relative Rauheit	k/d =	2,2E-04 -
vorh. Fließgeschwindigkeit bei 2-Pumpen-Betrieb (v=2Q/A)	$v_{vorh} =$	1,22 m/s
Pumpe/Modell	z.B. 3202	2 MT 3~ 641 -
vorhandene Pumphöhe bei Q _{vorh,2}	h _{Pumpe,2} =ca.	12,7 m

2. Bemessung Pumpwerk gemäß ATV-Arb. Bl. DWA-A 110:

2.1. Ermittlung der statischen Druckhöhe:

Einlaufhöhe (Abschnitt 1)	h _{1E} =	3,6 mNN	Pumpe aus
Auslauf- (Abschnitt 1)/ Einlaufhöhe (Abschnitt 2)	$h_{1A} = h_{2E} =$	6,4 mNN	Damm ca.+7,8mNN; 0,8m Frost
Auslaufhöhe (Abschnitt 2, Speicher MbM)	$h_{2A} = ca$.	7,0 mNN	Annahme (max.WSp. MbM =+6,6mNN)
Statische Druckhöhe	h _{So} =	3,40 m	

2.2. Ermittlung der Verlusthöhe aus Wandrauheit (2-Pumpen-Betrieb):

Reynoldszahl (Re = $v*d/(1,3*10^-6)$)

Überprüfung der Rauheit

Re = $Re^*k/d =$ 4E+05 >2300 (turbulente Strömung / hyd. rau) 94 <1300 (Übergangsbereich)

mit:

$$\frac{1}{\sqrt{\lambda}} = -2 \cdot \lg \left[\frac{2,51}{\text{Re} \cdot \sqrt{\lambda}} + \frac{1}{3,71} \cdot \frac{k}{4r_{\text{hy}}} \right]$$

gemäß DWA-A 110 für Widerstandsbeiwert im Übergangsbereich nach Colebrook

Startwert gemäß MOODY-Diagramm (Bild E.1) 0,016 -Widerstandsbeiwert nach Colebrook (iterativ) $\lambda_1 =$ 0,016 -0,016 -0,016 -

Verlusthöhe ($h_{vr} = \lambda^* L/d^* v^2/2g$) 4,78 m

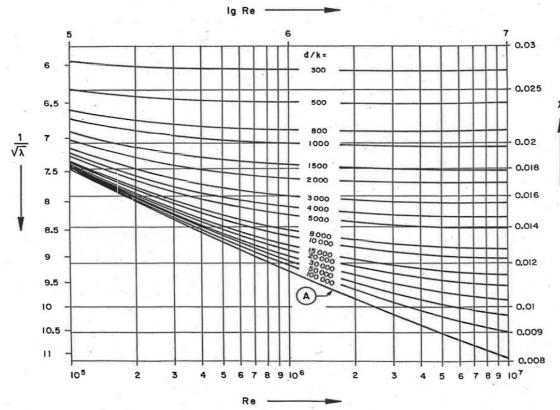


Bild E.1: Moody-Diagramm (vergrößerter Ausschnitt)

2.3. Ermittlung der Verlusthöhe für Krümmer/Rohrbögen (2-Pumpen-Betrieb):

Froude Zahl (Fr = v / $v(g^*d^*\pi/4)$ Fr = 0,66 < 1 (Strömender Abfluss)

mit: $\zeta_{\mathsf{U}} = \frac{2}{3} \cdot \frac{d}{r} \cdot \sin \varphi$ mittlerer Umlenkradius

11

Umlenkwinkel

gemäß DWA-A 110 für Verluste durch Umlenkungen bei strömenden Abfluss

0,30 0,30 d/r[-] =0,30 $\zeta_{u,i}$ [-] = 0,04 0,07 0,10 Verlustbeiwert angesetzte Anzahl Krümmer 20

 ϕ_i [°] =

Summe der Verlustbeiwerte $\zeta_u = \sum (\zeta_{u,i} * n_i) =$ Verlusthöhe Krümmer ($h_{v,U} = \zeta_u^* v^2/2g$)

 $\zeta_u =$

22

3,75 -

30

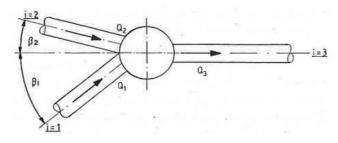
45

0,30

0,14

10

0,30 (Annahme)


0,20

0,29 m

2.4. Ermittlung der Verlusthöhe für Vereinigungsbauwerke (2-Pumpen-Betrieb):

Begrifflichkeiten / Prinzipskizze:

 $\text{mit:} \qquad \zeta_{\text{VB},1_3} = 1 + X \cdot \left(\frac{Q_1 \cdot A_3}{Q_3 \cdot A_1} \right)^2 - Z \qquad \text{und:} \qquad Z = 2 \cdot \left[a_1 \cdot \left(\frac{Q_1}{Q_3} \right)^2 \cdot \frac{A_3}{A_1} + a_2 \cdot \left(\frac{Q_2}{Q_3} \right)^2 \cdot \frac{A_3}{A_2} \right]$ $\zeta_{\text{VB},2_3} = 1 + Y \cdot \left(\frac{Q_2 \cdot A_3}{Q_3 \cdot A_2} \right)^2 - Z$

und: Tabelle 10: Hilfsparameter der Verlustbeiwerte für Vereinigungsbauwerke 14)

ß ₁ [°]	ß ₂ [°]	0	10	20	30	40	50	60	70	80	90
X (B ₁)	Y (B2)	0,95	0,95	0,95	0,94	0,94	0,93	0,90	0,82	0,73	0,63
a ₁ (ß ₁)	a ₂ (ß ₂)	1,00	0,97	0,90	0,80	0,68	0,56	0,45	0,35	0,26	0,19
ß1 [°]	ß ₂ [°]	100	110	120	130	140	150	160	170	180	Milita
X (ß ₁)	Y (B ₂)	0,58	0,55	0,53	0,53	0,52	0,51	0,51	0,50	0,50	
a ₁ (ß ₁)	a ₂ (ß ₂)	0,15	0,12	0,11	0,12	0,16	0,21	0,28	0,37	0,48	

gemäß DWA-A 110

Vereinigungswinkel β₁		β ₁ =	90 -	sichere Seite		
Vereinigungswinkel β_2		$\beta_2 =$	90 -	sichere Seite		
Hilfsparameter gemäß Tabelle 10 (DWA	-A 110)	X =	0,63			
		Y =	0,63			
		a ₁ =	0,19			
		a ₂ =	0,19			
Hilfsparameter gemäß Formel (DWA-A	110)	Z =	0,19			
Verlustbeiwert Vereinigung Strang 1 zu 3	3 ζ _{VB,1_3} =	ζ _{VB,1_3} =	0,97 -			
Verlustbeiwert Vereinigung Strang 2 zu 3	$3 \zeta_{VB,2_3} =$	$\zeta_{VB,2}$ 3 =	0,97 -			
Verlustbeiwert Querschnittsänderung nach Druckstutzen DN200						
gemäß Borda Carnot:	$\zeta_{VB,QS} = 1.2 * (1-A_1/A_2)^2 =$	$\zeta_{VB,QS}$ =	0,37 -			
Verlusthöhe Vereinigung ($h_{v,VB} = \zeta_{VB}^* v_3^2$	² /2g)	$\mathbf{h}_{v,VB}$ =	0,18 m			

2.5. Summation der Verlusthöhen

erf. Gesamtförderhöhe gemäß Pumpenbemessung $h_{erf,P} = 8,6 \text{ m}$

3. Bemessung Druckrohrleitung gemäß ATV-Arb. Bl. DWA-A 110:

3.1. Ermittlung des maximalen Abflusses der Druckrohrleitung (2-Pumpen-Betrieb):

mit:

$$Q = \frac{\pi \cdot d^2}{4} \cdot \left(-2 \cdot \lg \left[\frac{2,51 \cdot v}{d \cdot \sqrt{2g \cdot d \cdot J_E}} + \frac{k}{3,71 \cdot d} \right] \cdot \sqrt{2g \cdot d \cdot J_E} \right)$$

und: $k = k_b$

$$k = 14.84 \cdot r_{\text{hy}} \left(10^{-1/\left(2\sqrt{\lambda}\right)} - \frac{2.51}{\text{Re} \cdot \sqrt{\lambda}} \right)$$

mit: rhy = d/4 (bei Kreisrohren)

und:
$$\lambda = \lambda_b$$
 mit: $\lambda_b = \lambda + \frac{4r_{hy}}{I} \cdot \sum \zeta$

gemäß DWA-A 110

Widerstandsbeiwert infolge betrieblichen Rauheit

erf. Gesamtförderhöhe gemäß Druckrohrbemessung

Energiegefälle $(J_E = h_{erf,D}/L)$

betriebliche Rauheit

0,017 -
11,3 m
6,35 ‰
3,11 mm

=> Abfluss (bei h_{erf,D})

$Q_{vorh} =$	738,00 m³/h

3.2. Nachweis

Erforderlicher Mindestabfluss (2-Pumpen-Betrieb)

Q _{erf} =	700	m³/l
Abfrage Q _{vorb} ≥ Q _{erf} ?:	erfüllt	

4. Nachweis: Maßgebende erforderliche Gesamtförderhöhe

erf. Gesamtförderhöhe für Pumpenbemessung erf. Gesamtförderhöhe für Druckrohrbemessung

Maßgebende erf. Gesamtförderhöhe

 $h_{erf,P} = 8,6 \text{ m}$ $h_{erf,D} = 11,3 \text{ m}$ $h_{erf} = 11,3 \text{ m}$

Abfrage $h_{Pumpe} \ge h_{erf}$?: erfüllt