Bemessung von Rückhalteräumen im Näherungsverfahren nach Arbeitsblatt DWA-A 117

A 44, AK Kassel-West - AD Kassel-Süd

U18.5.6

Auftraggeber:

DEGES-Deutsche Einheit Fernstraßenplanungs- und -bau GmbH

Rückhalteraum:

Rückhaltung zentrale Retentionsbodenfilteranlage (RBFA01) Berechnung für 100-jährige Überschreitungshäufigkeit

Eingabedaten: $V_{s,u} = (r_{D(n)} - q_{dr}) * D * f_Z * f_A * 0.06 mit q_{dr} = (Q_{dr,RRB} + Q_{dr,RÜB} - Q_{t24}) / A_u$

A _E	m^2	75.290
Ψ_{m}	1	0,73
A_{u}	m^2	54.819
$V_{R\ddot{U}B}$	m^3	
$Q_{dr,R\ddot{U}B}$	l/s	
Q _{t24}	l/s	
Q_{dr}	l/s	86,0
q_{dr}	l/(s ha)	15,7
L _s	m	60,0
b _s	m	15,0
Z	m	2,1
1:m	1	3,0
n	1/Jahr	0,01
f _Z	1	1,1
t _f	min	10
f_A	1	1,000
	$\begin{array}{c} \Psi_m \\ A_u \\ V_{R\ddot{U}B} \\ Q_{dr,R\ddot{U}B} \\ Q_{dr} \\ Q_{dr} \\ Q_{dr} \\ L_s \\ b_s \\ z \\ 1:m \\ n \\ f_z \\ t_f \end{array}$	$\begin{array}{c cccc} \Psi_m & 1 & & & \\ A_u & & m^2 & & \\ V_{R\ddot{U}B} & & m^3 & & \\ Q_{dr,R\ddot{U}B} & & I/s & & \\ Q_{t24} & & I/s & & \\ Q_{dr} & & I/s$

Ergebnisse:

El gosilloco.			
maßgebende Dauer des Bemessungsregens	D	min	180
maßgebende Regenspende	r _{D,n}	l/(s*ha)	55,2
erfordl. spezifisches Speichervolumen	$V_{erf,s,u}$	m³/ha	469
erforderliches Speichervolumen	V _{erf}	m ³	2573
vorhandenes Speichervolumen	٧	m ³	2973
Beckenlänge an Böschungsoberkante	L _o	m	72,6
Beckenbreite an Böschungsoberkante	b _o	m	27,6
Entleerungszeit	t _E	h	9,6

Bemerkungen:

Bemessung von Rückhalteräumen im Näherungsverfahren nach Arbeitsblatt DWA-A 117

A 44, AK Kassel-West - AD Kassel-Süd

U18.5.6

Auftraggeber:

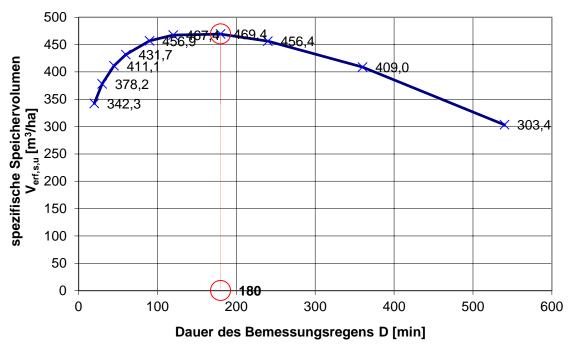
DEGES-Deutsche Einheit Fernstraßenplanungs- und -bau GmbH

Rückhalteraum:

Rückhaltung zentrale Retentionsbodenfilteranlage (RBFA01) Berechnung für 100-jährige Überschreitungshäufigkeit

örtliche Regendaten:

r _{D(n)} [l/(s*ha)]
275,0
206,7
154,1
124,7
92,6
74,7
55,2
44,5
32,9
24,2


Fülldauer RÜB:

D _{RBÜ} [min]	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	

Berechnung:

V _{s,u} [m³/ha]
342,3
378,2
411,1
431,7
456,9
467,4
469,4
456,4
409,0
303,4

Rückhalteraum

ATV-A138.XLS © itwh 02/2007 - Institut für technisch-wissenschaftliche Hydrologie GmbH Engelbosteler Damm 22, 30167 Hannover, Tel.: 0511-97193-0, Fax: 0511-97193-77