Wassertechnische Untersuchung Erläuterungen und Berechnungen

Anlage 4
Beckenbemessung

Anlage 4 Bemessung RRB I (Kreuzbach) nach RAS Ew und DWA A 117

Bemessungswerte Entwässerungsabschnitt

Bezeichnung	Kürzel	Menge Einheit
Einzugsgebietsfläche gesamt	$A_{E,G}$	3,96 ha
Außengebietsfläche	A_{AG}	0,00 ha
Einzugsgebiet ohne Außengebiet	$A_{E,k}$	3,96 ha
Einzugsgebietsfläche reduziert nach RAS EW	$A_{red} = A_u$	3,34 ha
Zufluss (n=1)	$Q_{zu,\;n=1,0,\;15\;min}$	371,00 l/s
Zufluss (n=1)	$Q_{zu, n=1,0, 15 min}$	$0.371 \text{m}^3/\text{s}$
Worte aug Abflucemongenermittlung nach DAS Ew		

Werte aus Abflussmengenermittlung nach RAS Ew

Ergebnis Bewertungsverfahren M 153

Bezeichnung	Тур	
Anlagen mit Dauerstau und max. qa = 9 m/h Oberfl. Besch. z. B. Abscheider für Leichtflüssigkeiten nach RiStWag	D21	0,20

Bemessungswerte Rückhaltebecken

Auszug aus dem DWA Merkblatt M 153

Tabelle 3: Zulässige Regenabflussspenden von undurchlässigen Flächen

Typ des Vorflutgewässers	Regenabflussspende q _R in I/(s • ha)	
kleiner Flachlandbach	$b_{Sp} < 1 \text{ m}, v < 0.3 \text{ m/s}$	15
kleiner Hügel- und Berglandbach	$b_{\rm Sp} < 1 \text{m}, v \ge 0.3 \text{m/s}$	30
großer Flachlandbach	$b_{\rm Sp} = 1 - 5 \text{m}, v < 0.5 \text{m/s}$	120
großer Hügel- und Berglandbach	$b_{\rm Sp} = 1 - 5 \mathrm{m}, v \ge 0.5 \mathrm{m/s}$	240
Flüsse	<i>b</i> _{Sp} > 5 m	nicht begrenzt
kleine Teiche	Oberfläche < 20 % von A _u	Einzelfallbetrachtung
Teiche und Seen	Oberfläche > 20 % von A _u	nicht begrenzt

Bezeichnung	Kürzel	Menge Einheit
Drosselabflussspende	qdr,k max	30,00 l/s*ha
Diosselabiliasssperide	qui,k illax	30,00 l/s ria
kanalisiertes Einzugsgebiet A red nach RAS Ew	$A_{E,k}$	3,34 ha
Drosselabfluss berechnet	Qdr Berechnung	100,20 l/s
Drosselabfluss gewählt	Qdr gewählt	100,00 l/s
Drosselabflussspende	qdr,r,u	29,94 l/s*ha
Abminderungsfaktor	f_A	0,94
Zuschlagsfaktor	f_z	1,15

Ermittlung des erforderlichen Speichervolumens

$$Vs,u = (r_{D,n} - q_{dr,r,u}) * D * f_z * f_A * 0,06$$

s. DWA A 117

V = Vs,u * Au

Regenspende 5 jähriges Ereignis Kostra Spalte 22 Zeile 60 (Ehringshausen)

Ermittlung des	s Zuschlagfaktors	fz	gemäß Tabelle	2 Ras Ew
Risikomaß				fz
gering				1,20
mittel				1,15
groß				1,10

Ermittlung der Fließzeit im Oberflächenwasserableitungssystem									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
m	m	%	mm	m/s	m/s	s	min		

Dauerstufe	D	rD(n=0,2)	qdr,r,u	Differenz r - qdr,r,u	fz	f _A	Vs,u
	min	I/(s*ha)	l/(s*ha)	l/(s*ha)			m ³ /ha
		-					-
5 min	5	348,20	29,94	318,26	1,15	0,94	103,21
10 min	10	246,20	29,94	216,26	1,15	0,94	140,27
15 min	15	196,50	29,94	166,56	1,15	0,94	162,05
20 min	20	165,40	29,94	135,46	1,15	0,94	175,72
30 min	30	127,20	29,94	97,26	1,15	0,94	189,25
45 min	45	95,80	29,94	65,86	1,15	0,94	192,23
60 min	60	77,50	29,94	47,56	1,15	0,94	185,08
90 min	90	54,70	29,94	24,76	1,15	0,94	144,53
2h	120	42,70	29,94	12,76	1,15	0,94	99,31
3h	180	30,20	29,94	0,26	1,15	0,94	3,03
4h	240	23,70	29,94	-6,24	1,15	0,94	-97,14
6h	360	16,80	29,94	-13,14	1,15	0,94	-306,82
9h	540	11,90	29,94	-18,04	1,15	0,94	-631,84
12h	720	9,40	29,94	-20,54	1,15	0,94	-959,21
18h	1080	6,70	29,94	-23,24	1,15	0,94	-1.627,94
24h	1440	5,20	29,94	-24,74	1,15	0,94	-2.310,69
48h	2880	3,30	29,94	-26,64	1,15	0,94	-4.976,29
72h	4320	2,50	29,94	-27,44	1,15	0,94	-7.688,59

Vs,u,max = 192,23 m³/ ha Au = Ared 3,34 ha V= 642,03 m³ Vgew.= **650,00** m³

Ermittlung der Beckenabmessungen Rückhaltebereich (Grobabmessungen)

V = (Fläche u. + Fläche o.)/2 * Tiefe

Länge u	Breite u	Böschung	Tiefe	Fläche u.	Fläche o.	V gew.
m	m	1 : m	m	m²	m²	m ³
20.00	10.00	2.00	2.00	200.00	504.00	

Ermittlung der Beckenabmessungen Rückhaltebereich unter Berücksichtigung des Freibordes

Länge u	Breite u	Böschung	Tiefe	Länge o	Breite o
m	m	1 : m	m	m	m
00.00					
20.00	10.00	2.00	2.50	30.00	20.0

Freibord: $0,50 \text{ m} \rightarrow \text{Tiefe neu } 2,00 \text{ m} + 0,50 \text{ m} = 2,50 \text{ m}$

Nachweis der Oberflächenbeschickung des Abscheideraumes

qA max Oberflächenbeschickung 9 m/h = 0,0025 m/s s. RAS - Ew Abschn. 1.4.7.1 (u. Rist Wag) $O_{\rm erf} = Qb / vs$

Abmessungen aus der Detailzeichung RRB 1

Qb	VS	O erf.	Breite	Länge	O gew.
m³/s	m/s	m ²	m	m	m²
0,371	0,0025	148,40	7,00	22,50	

Zum Vergleich O_{vorh} 157,50 m² > 148,40 m² O _{erf.}

Nachweis der horizontale Fließgeschwindigkeit an der Tauchwandunterkante

nach RAS Ew Abschnitt 1.4.7.2

Qb m³/s	Breite u m	Breite o m	Höhe m	A h m ²	V _{h vorh} m/s		V _{h zul} m/s
0,371	7,00	7,00	1,25	8,75	0,0424	<	0,05

Zum Vergleich $V_{h \text{ vorh}}$ 0,0441 m/s < 0,05 m/s = $V_{h \text{ zul.}}$

Nachweis der vertikalen Fließgeschwindigkeit an der Tauchwandunterkante

nach RAS Ew Abschnitt 1.4.7.2

Qb	Breite	Abstand	A v	V _{v vorh}		V _{v zul}
m³/s	m	m	m²	m/s		m/s
0,371	7,00	1,50	10,50	0,0353	<	0,05

Zum Vergleich $V_{v \text{ vorh}}$ 0,0367 m/s < 0,05 m/s = $V_{v \text{ zul.}}$

Nachweis des Auffangraumes für Leichtflüssigkeiten

nach Rist Wag Abschnitt 8.4.3

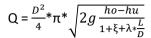
Breite	Länge	O gew.	Tiefe	V gew.
m	m	m ²	m	m ³
7,00	22,50	157,50	0,20	

Zum Vergleich V $_{gew.}$ 31,50 $\mathrm{m^3}$ > 30,00 $\mathrm{m^3}$

Nachweis des Schlammstapelraumes

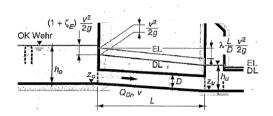
nach RiStWag Abschnitt 8.4.3 / *Arbeitspapier RRB HessenMobil

Breite	Länge	O gew.	Tiefe*	V gew.
m	m	m²	m	m ³
7,00	22,50	157,50	1,00	157,50


Zum Vergleich V $_{gew.}$ 157,50 $m^3 > 10,00 m^3$

Ermittlung der max. Zulaufmenge zum RRB

gesucht Abflussleistung der kritischen Kanalhaltung bei Einstau bis GOK Rechenansatz: Bernoulligleichung nach Q umgestellt (s. DWA A 111)


231,60

231,60

 λ = Widerstandsbeiwert

 ξ = 0,45 (Einlaufverlust)

DN	ho	hu	λ	ξ	Г	Q
[m]	[m]	[m]	[-]	[-]	[m]	[m ³ /s]

1. Rechengang mit λ (Schätzwert) = 0,02

0,40 236,87

0,020

0,45

30,85

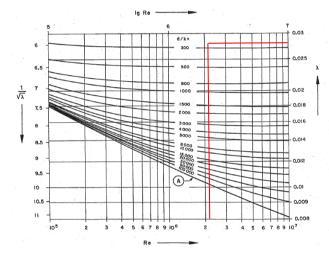
0,738

2. Rechengang mit λ (Realwert)

0,40 236,87

0,028

0,45


30,85 0,676

Kontrolle λ Wert (rot)

Re = v * 4rhy /v (λ aus dem Moody Diagramm) k Wert gewählt 1,50 mm Berücksichtigung von Einzelverluste in den Schachtbauwerken

ho - Einstauhöhe im Zulaufkanal

hu - Einstauhöhe Dauerstau (Absetzbecken)

Q		Α	V	ν	4 rhy	Re	k	d/k	λ
[m ³ /s		[m ²]	[m/s]	[m ² /s]	[m]	[-]	[mm]	[-]	[-]
	74	0.13	5.88	1 31F-06	5.02	2 25F±07	1 50	266 67	0.028

Bemessung der Überlaufschwelle Notüberlauf

3.3.5 Wehre - Überfallwehr

3.3.5.1 Vollkommener Überfall

Kriterium. Durchfluß mit Fließwechsel, d. h. der UW-Stand beeinflußt den OW-Stand nicht. Das ist immer der Fall, wenn das Unterwasser tiefer als die Wehrkrone steht (s. a. Abschn. 3.5.2).

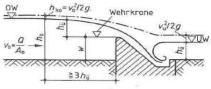


Bild 33 Vollkommener Überfall

Bei rechteckigen Durchflußquerschnitten gilt GI. (34) für $v_0 \le 1,0$ m/s bzw. GI. (35).

$$Q = \frac{2}{3} \mu b \sqrt{2g} h_0^{3/2} \text{ in m}^3/\text{s} \quad (34) \quad \text{nach Poleni}$$

$$Q = \frac{2}{3} \mu b \sqrt{2g} \left[(h_{\text{luch}} + h_{\text{k0}})^{3/2} - h_{\text{k0}}^{3/2} \right] \quad \text{in m}^3/\text{s} \quad \text{für } v_0 > 1.0 \text{ m/s} \quad (35)$$

breit, scharfkantig, waagerecht μ=0,49 bis 0,51

scharfkantig, schräg (s. 3.3.5.4) Überfallmessung) μ =0,64

gut abgerundeter Querschnitt μ = 0,73 bis 0,75

$$Q\ddot{u} = 2/3 * \mu * I\ddot{u} * (2 * g)^{0.5} * h\ddot{u}^{1.5}$$

Qü (m³/s)	μ	(2 * g) ^{0,5}	hü (m)	hü ^{1,5}	lü (m)
--------------	---	------------------------	-----------	-------------------	-----------

Schwelle Notüberlauf (gewählt Edelstahlschwelle gut abgerundet)

0,576

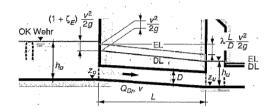
0,55

4,43

0,241

0,12

576 l/s = max. Zulaufmenge 676 l/s - Drosselwassermenge 100 l/s


3

Ermittlung der Einstauhöhe im Rückhaltebecken beim maximalen Zulauf - 676 l/s s. oben

Rechenansatz: Bernoulligleichung nach Q umgestellt (s. DWA A 111)

$$Q = \frac{D^2}{4} * \pi * \sqrt{2g \frac{ho - hu}{1 + \xi + \lambda * \frac{L}{D}}}$$

 λ (Widerstandsbeiwert) ξ = 0,45 (Einlaufverlust) ho + hu Absoluthöhen

DN	ho	hu	λ	ξ	Г	Q
[m]	[m]	[m]	[-]	[-]	[m]	[m ³ /s]

1. Rechengang mit λ (Schätzwert) gewählt 0,02

0,80 232,48

232,34 0,020

2. Rechengang mit λ (Realwert)

0,80 232,48

232,34 0,014

0.4

2,50 0,677

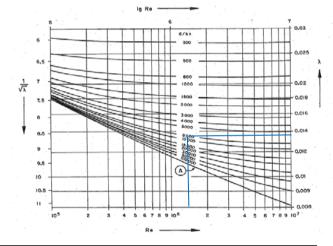
2,50

0,45

0,45

0,669

Kontrolle λ Wert (blau)


Re = v * 4rhy / $v (\lambda aus dem Moody Diagramm)$

k Wert gewählt 0,10 mm -> Berücksichtigung

von Einzelverluste an den Rohrverbindungen

ho - Einstauhöhe im RRB

hu - Einstauhöhe Überfallschwelle (Drosselschacht)

Q	Α	v	ν	4 rhy	Re	k	d/k	λ
[m ³ /s]	[m ²]	[m/s]	[m ² /s]	[m]	[-]	[mm]	[-]	[-]
0,68	0,50	1,35	1,31E-06	10,05	1,03E+07	0,10	8.000,00	0,014

Anlage 4 Bemessung RRB II (Kreuzbach) nach RAS Ew und DWA A 117

Bemessungswerte Entwässerungsabschnitt

Bezeichnung	Kürzel	Menge Einheit
Einzugsgebietsfläche gesamt	$A_{E,G}$	6,45 ha
Außengebietsfläche	A_{AG}	1,30 ha
Einzugsgebiet ohne Außengebiet	$A_{E,k}$	5,15 ha
Einzugsgebietsfläche reduziert nach RAS EW	$A_{red} = A_u$	4,62 ha
Zufluss (n=1)	$Q_{zu,\;n=1,0,\;15\;min}$	520,85 l/s
Zufluss (n=1)	$Q_{zu, n=1,0, 15 min}$	$0,521 \text{ m}^3/\text{s}$
Warta aus Abflussmanganarmittlung nach DAS Ew		

Werte aus Abflussmengenermittlung nach RAS Ew

Ergebnis Bewertungsverfahren M 153

Bezeichnung	Тур	
Anlagen mit Dauerstau und max. qa = 9 m/h Oberfl. Besch. z. B. Abscheider für Leichtflüssigkeiten nach RiStWag	D21	0,20

Bemessungswerte Rückhaltebecken

Auszug aus dem DWA Merkblatt M 153

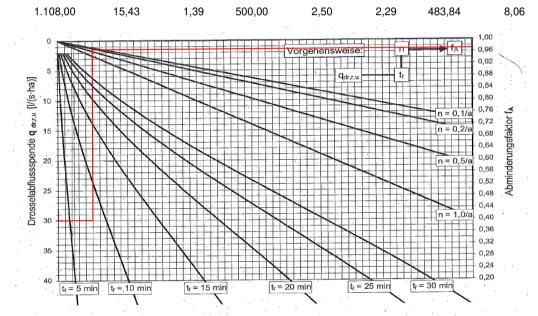
Tabelle 3: Zulässige Regenabflussspenden von undurchlässigen Flächen

Typ des Vorflutgewässers	Regenabflussspende q _R in I/(s • ha)	
kleiner Flachlandbach	$b_{Sp} < 1 \text{ m}, v < 0.3 \text{ m/s}$	15
kleiner Hügel- und Berglandbach	$b_{Sp} < 1 \text{ m}, v \ge 0.3 \text{ m/s}$	30
großer Flachlandbach	b _{Sp} = 1 - 5 m, v < 0,5 m/s	120
großer Hügel- und Berglandbach	$b_{\rm Sp} = 1 - 5 \mathrm{m}, v \ge 0.5 \mathrm{m/s}$	240
Flüsse	<i>b</i> _{Sp} > 5 m	nicht begrenzt
kleine Teiche	Oberfläche < 20 % von A _u	Einzelfallbetrachtung
Teiche und Seen	Oberfläche > 20 % von A _u	nicht begrenzt

Bezeichnung	Kürzel	Menge Einheit
Dunnalalativanananda	andle la ma acc	20.00 1/2*5-2
Drosselabflussspende	qdr,k max	30,00 l/s*ha
kanalisiertes Einzugsgebiet A red nach RAS Ew	$A_{E,k}$	4,62 ha
Drosselabfluss berechnet	Qdr Berechnung	138,60 l/s
Drosselabfluss gewählt	Qdr gewählt	140,00 l/s
Drosselabflussspende	qdr,r,u	30,30 l/s*ha
Abminderungsfaktor	f_A	0,97
Zuschlagsfaktor	f_z	1,10

Ermittlung des erforderlichen Speichervolumens

$$Vs,u = (r_{D,n} - q_{dr,r,u}) * D * f_z * f_A * 0,06$$


s. DWA A 117

V = Vs,u * Au

Regenspende 5 jähriges Ereignis Kostra Spalte 22 Zeile 60 (Ehringshausen)

Ermittlung des Zuschlagfaktors fz gemäß Tabelle	2 Ras Ew
Risikomaß	fz
gering	1,20
mittel	1,15
groß	1,10

	Ermittlung der Fließzeit im Oberflächenwasserableitungssystem										
Länge mittel	dh	Gefälle mittel	DN _{mittel}	V _{voll}	V _{mittel}	Fließzeit	Fließzeit				
m	m	%	mm	m/s	m/s	s	min				

Dauerstufe	D	rD(n=0,2)	qdr,r,u	Differenz r - qdr,r,u	fz	f _A	Vs,u
	min	I/(s*ha)	I/(s*ha)	l/(s*ha)			m ³ /ha
-		-	-	-	-		-
5 min	5	348,20	30,30	317,90	1,10	0,97	101,76
10 min	10	246,20	30,30	215,90	1,10	0,97	138,22
15 min	15	196,50	30,30	166,20	1,10	0,97	159,60
20 min	20	165,40	30,30	135,10	1,10	0,97	172,98
30 min	30	127,20	30,30	96,90	1,10	0,97	186,10
45 min	45	95,80	30,30	65,50	1,10	0,97	188,69
60 min	60	77,50	30,30	47,20	1,10	0,97	181,29
90 min	90	54,70	30,30	24,40	1,10	0,97	140,57
2h	120	42,70	30,30	12,40	1,10	0,97	95,24
3h	180	30,20	30,30	-0,10	1,10	0,97	-1,19
4h	240	23,70	30,30	-6,60	1,10	0,97	-101,45
6h	360	16,80	30,30	-13,50	1,10	0,97	-311,21
9h	540	11,90	30,30	-18,40	1,10	0,97	-636,21
12h	720	9,40	30,30	-20,90	1,10	0,97	-963,51
18h	1080	6,70	30,30	-23,60	1,10	0,97	-1.631,95
24h	1440	5,20	30,30	-25,10	1,10	0,97	-2.314,22
48h	2880	3,30	30,30	-27,00	1,10	0,97	-4.978,75
72h	4320	2,50	30,30	-27,80	1,10	0,97	-7.689,38

Vs,u,max = 188,69 m³/ ha Au = Ared 4,62 ha V= 871,75 m³ Vgew.= **900,00** m³

Ermittlung der Beckenabmessungen Rückhaltebereich (Grobabmessungen)

V = (Fläche u. + Fläche o.)/2 * Tiefe

	Länge u	Breite u	Böschung	Tiefe i. M.	Fläche u.	Fläche o.	V gew.
	m	m (i.M.)	1 : m	m	m ²	m ²	m ³
•							

37,00 7,01 1,50 2,10 259,37 576,32 **877,48**

Restvolumen von ca. 23 m³ wird im Absetzbecken vorgehalten

Ermittlung der Beckenabmessungen Rückhaltebereich unter Berücksichtigung des Freibordes

Länge u	Breite u	Böschung	Tiefe	Länge o	Breite o
m	m	1 : m	m	m	m
37,00 7,01		1,50 2,50		44,50	14,51

Freibord: $0,50 \text{ m} \rightarrow \text{Tiefe neu } 2,00 \text{ m} + 0,50 \text{ m} = 2,50 \text{ m}$

Nachweis der Oberflächenbeschickung des Abscheideraumes

qA max Oberflächenbeschickung 9 m/h = 0,0025 m/s s. RAS - Ew Abschn. 1.4.7.1 (u. Rist Wag) $O_{\rm erf} = Qb / vs$

Abmessungen aus der Detailzeichung RRB 1

Qb	VS	O erf.	Breite	Länge	O gew.
m³/s	m/s	m ²	m	m	m ²
0,521	0,0025	208,34	8,00	27,00	216,00

Zum Vergleich O_{vorh} 216,00 m² > 208,34 m² O _{erf.}

Nachweis der horizontale Fließgeschwindigkeit an der Tauchwandunterkante

nach RAS Ew Abschnitt 1.4.7.2

Qb m³/s	Breite u m	Breite o m	Höhe m	A h m²	V _{h vorh} m/s		V _{h zul} m/s
0,521	8,00	8,00	1,35	10,80	0,0482	<	0,05

Zum Vergleich $V_{v \text{ vorh}}$ 0,0495 m/s < 0,05 m/s = $V_{h \text{ zul.}}$

Nachweis der vertikalen Fließgeschwindigkeit an der Tauchwandunterkante

nach RAS Ew Abschnitt 1.4.7.2

	Qb m³/s	Breite m	Abstand m	A h m²	V _{h vorh} m/s		V _{h zul} m/s
_	0,521	8,00	1,50	12,00	0,0434	<	0,05

Zum Vergleich $V_{v \text{ vorh}}$ 0,0446 m/s < 0,05 m/s = $V_{v \text{ zul.}}$

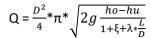
Nachweis des Auffangraumes für Leichtflüssigkeiten

nach Rist Wag Abschnitt 8.4.3

Breite	Länge	O gew.	Tiefe	V gew.
m	m	m²	m	m ³
8,00	27,00	216,00	0,15	

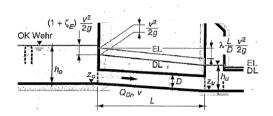
Zum Vergleich V $_{gew.}$ 32,40 m^3 > 30,00 m^3

Nachweis des Schlammstapelraumes


nach Rist Wag Abschnitt 8.4.3 / Arbeitspapier RRB HessenMobil

Breite	Länge	O gew.	Tiefe	V gew.
m	m	m²	m	m ³
8,00	27,00	216,00	1,00	216,00

Zum Vergleich V $_{\text{gew.}}$ 216,00 m^3 > 10,00 m^3


Ermittlung der max. Zulaufmenge zum RRB

gesucht Abflussleistung der kritischen Kanalhaltung bei Einstau bis GOK Rechenansatz: Bernoulligleichung nach Q umgestellt (s. DWA A 111)

 λ = Widerstandsbeiwert

 ξ = 0,45 (Einlaufverlust)

DN	ho	hu	λ	ξ	Г	Q
[m]	[m]	[m]	[-]	[-]	[m]	[m ³ /s]

1. Rechengang mit λ (Schätzwert) = 0,02

0,60 231,30

231,30 229,59

229,59

0,020

0,45

7,41

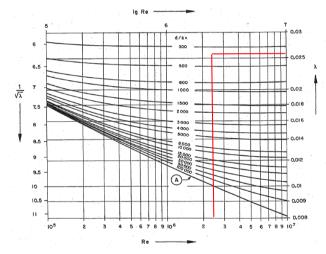
1,257

2. Rechengang mit λ (Realwert)

0,60 231,30

0,026

0,45


7,41 1,232

Kontrolle λ Wert (rot)

Re = v * 4rhy /v (λ aus dem Moody Diagramm) k Wert gewählt 1,50 mm Berücksichtigung von Einzelverluste in den Schachtbauwerken

ho - Einstauhöhe im Zulaufkanal

hu - Einstauhöhe Überfallschwelle (Absetzbecken)

Q	Α	V	V	4 rhy	Re	k	d/k	λ
[m ³ /s]	[m ²]	[m/s]	[m ² /s]	[m]	[-]	[mm]	[-]	[-]
1 26	0.28	4 45	1.31F-06	7.54	2 56F+07	1.50	400 00	0.026

Bemessung der Überlaufschwellen Notüberlauf

3.3.5 Wehre - Überfallwehr

3.3.5.1 Vollkommener Überfall

Kriterium. Durchfluß mit Fließwechsel, d. h. der UW-Stand beeinflußt den OW-Stand nicht. Das ist immer der Fall, wenn das Unterwasser tiefer als die Wehrkrone steht (s. a. Abschn. 3.5.2).

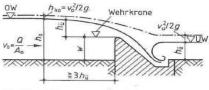


Bild 33 Vollkommener Überfall

Bei rechteckigen Durchflußquerschnitten gilt GI. (34) für $v_0 \le 1,0$ m/s bzw. GI. (35).

$$Q = \frac{2}{3} \mu b \sqrt{2g} h_0^{3/2} \text{ in m}^3/\text{s} \quad (34) \quad \text{nach Poleni}$$

$$Q = \frac{2}{3} \mu b \sqrt{2g} \left[(h_{\text{luch}} + h_{\text{k0}})^{3/2} - h_{\text{k0}}^{3/2} \right] \quad \text{in m}^3/\text{s} \quad \text{für } v_0 > 1.0 \text{ m/s} \quad (35)$$

breit, scharfkantig, waagerecht μ=0,49 bis 0,51

breit waagerecht, Kanten abgerundet μ =0,50 bis 0,55

schafkantig, schräg (s. 3.3.5.4) Uberfallmessung) μ =0.64 gut abgerundeter Querschnitt μ =0,73 bis 0,75

$$Q\ddot{u} = 2/3 * \mu * I\ddot{u} * (2 * g)^{0.5} * h\ddot{u}^{1.5}$$

Qü (m³/s)	μ	(2 * g) ^{0,5}	hü (m)	hü ^{1,5}	lü (m)
--------------	---	------------------------	-----------	-------------------	-----------

Schwelle Notüberlauf (gewählt Edelstahlschwelle gut abgerundet)

1,112 0

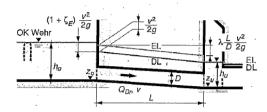
0,73

4,43

0,22

0,10

5


1.097 l/s = max. Zulaufmenge 1.232 l/s - Drosselwassermenge 135 l/s

Ermittlung der Einstauhöhe im Rückhaltebecken beim maximalen Zulauf - 1.232 l/s s. oben

Rechenansatz: Bernoulligleichung nach Q umgestellt (s. DWA A 111)

$$Q = \frac{D^2}{4} * \pi * \sqrt{2g \frac{ho - hu}{1 + \xi + \lambda * \frac{L}{D}}}$$

λ (Widerstandsbeiwert) $\xi = 0.45$ (Einlaufverlust) ho + hu Absoluthöhen

DN	ho	hu	λ	ξ	L	Q
[m]	[m]	[m]	[-]	[-]	[m]	[m ³ /s]

0,013

1. Rechengang mit λ (Schätzwert) gewählt 0,02 0,020

1,00 230,77 230,57

0,45

5,00

1,249

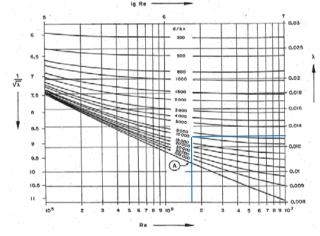
2. Rechengang mit λ (Realwert)

1,00 230,76 230,57

0,45

5,00 1,231

Kontrolle λ Wert (blau)


Re = v * 4rhy / $v (\lambda aus dem Moody Diagramm)$

k Wert gewählt 0,10 mm -> Berücksichtigung

von Einzelverluste an den Rohrverbindungen

ho - Einstauhöhe im RRB

hu - Einstauhöhe Überfallschwelle (Drosselschacht)

Q	Α	v	V	4 rhy	Re	k	d/k	λ
[m ³ /s]	[m ²]	[m/s]	[m ² /s]	[m]	[-]	[mm]	[-]	[-]
1 25	0.70	1 50	1 31F-06	12 56	1 53E : 07	0.10	10 000 00	0.013