Redundante Neuverlegung Riedleitung Süd-Teil (R2S)

Antrag auf Planfeststellung

Teil 3 Wasserrechtliche Anträge

3.3. Erläuterungsbericht zu den Gewässerbenutzungen infolge Inbetriebnahme/Wartung der Leitung oder Havarien

Hessenwasser GmbH & Co. KG

Taunusstraße 100 I 64521 Groß-Gerau

Telefon +49 69 25490-0 I Telefax +49 69 25490-1009

www.hessenwasser.de I info@hessenwasser.de

Auftraggeber Hessenwasser GmbH & Co. KG Taunusstraße 100 64521 Groß-Gerau

Aufgestellt durch: ARGE Ausbau Riedleitung Süd-Teil

In Zusammenarbeit mit:

Inhaltsverzeichnis

				Seite
Inh	altsve	erzeichn	is	2
1.	Allge	emeines	und Veranlassung	5
2.	Kurz	beschre	eibung des Gesamtvorhabens "Die Neue Riedleitung"	5
3.	Geo	technik	und Grundwasserverhältnisse	8
4.	Beso	chreibur	ng der Gewässerbenutzungen	9
	4.1.	Grund f	für die Einleitung von Wasser	9
	4.2.	Arten d	er Einleitung/Gewässerbenutzung	9
5.	Inbe	triebnah	nme/Spülung	9
	5.1.	Anfaller	ndes Spülwasser bei der Inbetriebnahme	9
	5.2.	Qualitä	t des einzuleitenden Wassers	10
	5.3.	Quantit	ät des einzuleitenden Wassers	11
	5.4.	Baulich	e Umsetzung bei Inbetriebnahme/Spülung	11
		5.4.1.	Einleitung in Oberflächengewässer	11
		5.4.2. Grundw	Verrieselung auf landwirtschaftlich genutzte Felder (Versick vasser)	•
		5.4.3.	Einleitung in die öffentliche Kanalisation	12
	5.5.	Einleitu	ngsmengen und -orte	13
	5.6.	Einleits	pende und Dauer der Einleitung	14
6.	Hava	arie/Leit	ungsentleerung	16
	6.1.	Verbleil	b von Trinkwasser aus der Leitung	16
	6.2.	Qualitä	t des einzuleitenden Wassers	16
	6.3.	Quantit	ät des einzuleitenden Wassers	16

6.4.	Baulich	Bauliche Umsetzung bei Havarie/Leitungsentleerung1					
	6.4.1.	Einleitung in Oberflächengewässer	17				
		Verrieselung auf landwirtschaftlich genutzte Felder (Versickerung in da					
	6.4.3.	Einleitung in die öffentliche Kanalisation	18				
6.5.	Einleitu	ngsmenge und -orte	18				
6.6.	Darstell	ung der Gewässereinleitungen bei Havarie	19				
	6.6.1.	Einleitspende und Dauer der Einleitung	19				

Stand: 21.02.2022 Seite 3/21

ABBILDUNGSVERZEICHNIS

Abbildung	Abbildung 1-1: Versorgungsgebiet bestehende Riedleitung5							
Abbildung	Abbildung 2-1: Übersicht Gesamtvorhaben "redundante Riedleitung"							
		TABEL	LENV	ERZEICHNIS				
		Zusammenfassung me/Spülung		•			aus 13	
		Zusammenfassung me/Spülung		•			aus 15	
Tabelle 6-	·1: Zusa	ammenfassung der Einl	eitmen	gen und Einleitorte	e aus Ha	avarie/Wartung	18	
Tabelle 6-	·2: Zusa	ammenfassung der Einl	eitsper	nden und Einleitda	uer aus	Havarie/Wartur	ng 20	

Stand: 21.02.2022 Seite 4/21

1. Allgemeines und Veranlassung

Für eine zuverlässige und sichere Trinkwasserversorgung der Metropolregion Frankfurt/Rhein-Main nimmt die durch die Hessenwasser GmbH & Co. KG (Hessenwasser) betriebene Riedleitung eine zentrale Rolle im Sinne der Daseinsvorsorge ein. Die rund 34 km lange Trinkwasserleitung wurde 1964 in Betrieb genommen und transportiert seither im täglichen Durchschnitt 106.000 m³ Trinkwasser. An Spitzenlasttagen, wie beispielsweise im Sommer 2018, waren es Tag für Tag bis zu 120.000 m³. Jährlich werden 39 Millionen m³ Trinkwasser über die Riedleitung zur Versorgung von rund 2,4 Millionen Einwohnern transportiert. Das Versorgungsgebiet der Riedleitung ist in der nachfolgenden Abbildung dargestellt.

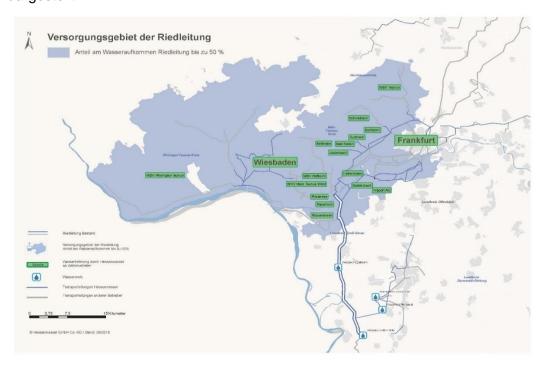


Abbildung 1-1: Versorgungsgebiet bestehende Riedleitung

Die über 55 Jahre alte Riedleitung aus Spannbeton stellt zunehmend eine Gefährdung für eine sichere Trinkwasserversorgung im dargestellten Gebiet dar. Das hohe Ausfallrisiko der Leitung lässt sich im Zusammenhang mit ihrem Alter im Wesentlichen begründen durch eine hohe Bruchanfälligkeit auf Grund des eingesetzten Werkstoffs (Spannbeton) und der fortschreitenden Korrosion des Bewehrungsstahles sowie des Betons. Hinzu kommt eine erschwerte Zugänglichkeit der Leitung im Reparaturfall infolge von teilweise sehr großen Tiefenlagen.

Aufgrund bereits eingetretener Rohrbrüche in der Vergangenheit wurden technische Vorkehrungen im Betrieb der Leitung getroffen. Insbesondere wurde der Betriebsdruck gesenkt, um die auf die Leitung wirkenden statischen und

Stand: 21.02.2022 Seite 5/21

dynamischen Kräfte zu reduzieren und zu begrenzen. Diese Druckbegrenzung ist gleichbedeutend mit einer Limitierung der maximalen Fördermenge, wodurch an Spitzenlasttagen wie in den Sommermonaten der Jahre 2018 und 2019 die Leistungsfähigkeit der Riedleitung trotz ausreichendem Wasserdargebot aus der Wassergewinnung an ihre Grenzen kam. Mit den zunehmenden Auswirkungen des Klimawandels ist zu erwarten, dass sich zukünftig solche Konstellationen häufen werden.

Transportleitungen anderer Wasserversorgungsunternehmen in Deutschland, die mit der Riedleitung vergleichbar sind, sind im Regelfall redundant, mitunter sogar mit mehrfacher Redundanz ausgelegt. Die Riedleitung ist in ihrer aktuellen technischen Form ohne Redundanz ein Einzelfall. Die Notwendigkeit, den Mangel einer fehlenden Leitungsredundanz zu beheben, wurde in der Vergangenheit in mehreren Studien und Analysen, sowie mit der dritten Änderung des Landesentwicklungsplans Hessen 2000 festgestellt.

Die bauliche Realisierung der "neuen Riedleitung" ist eine technische Maßnahme, um langfristig eine zuverlässige, sichere und nachhaltige Trinkwasserversorgung im Sinne der Daseinsvorsorge zu gewährleisten.

2. Kurzbeschreibung des Gesamtvorhabens "Die Neue Riedleitung"

Um den Anforderungen einer sicheren Trinkwasserversorgung gerecht zu werden, beabsichtigt die Hessenwasser den Bau der "redundanten Riedleitung Süd-Teil" in vier größeren Teilabschnitten zu realisieren. Die nachfolgend genannten Teilabschnitte sind dabei räumlich gegeneinander abgegrenzt und hinsichtlich ihres Realisierungszeitraumes differenziert:

- "Neue Riedleitung Bauabschnitt Nord (R2N)" (Länge ca. 4,0 km):
 Teilabschnitt von der Druckerhöhungsanlage Haßloch nach Raunheim.
 Dieser Teilabschnitt wurde bereits baulich umgesetzt.
- "Neue Riedleitung Bauabschnitt Süd (R2S)" (Länge ca. 18,4 km):
 Teilabschnitt vom Wasserwerk Allmendfeld bis zum neu zu errichtenden Kupplungsbauwerk bei Wolfskehlen, einschließlich Integration des Wasserwerks Eschollbrücken in das Verbundsystem über eine Stichleitung. Dieser Teilabschnitt ist Gegenstand des vorliegenden Planfeststellungsantrags.
- "Neue Riedleitung Bauabschnitt Mitte (R2M) " (Länge ca. 18,0 km):
 Teilabschnitt vom Kupplungsbauwerk bei Wolfskehlen bis zur Druckerhöhungsanlage Haßloch. Dieser Teilabschnitt wird in einem späteren Genehmigungsverfahren beantragt.

Stand: 21.02.2022 Seite 6/21

 "Neue Riedleitung Bauabschnitt Düker (R2D) " (Länge ca. 1,0 km): Teilabschnitt des Maindükers nördlich von Raunheim. Dieser Teilabschnitt wird in einem späteren Genehmigungsverfahren beantragt.

Die grundsätzliche Einteilung der Bauabschnitte für die Gesamtstrecke der redundanten Riedleitung ist der nachfolgenden Abbildung zu entnehmen.

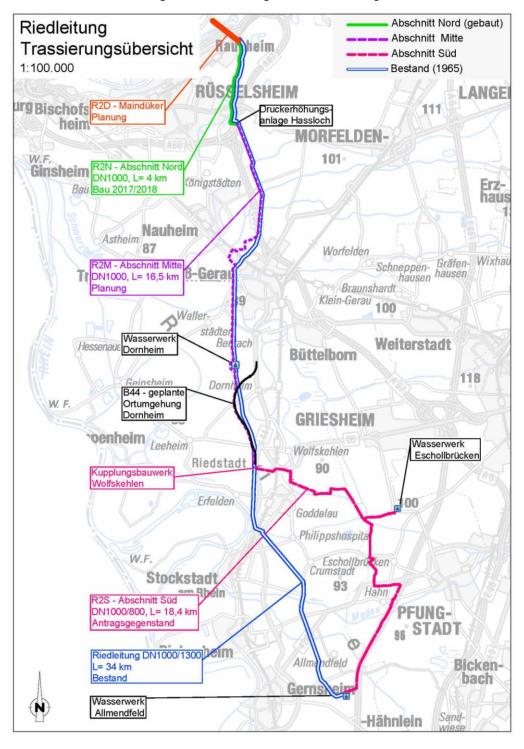


Abbildung 2-1: Übersicht Gesamtvorhaben "redundante Riedleitung"

Stand: 21.02.2022 Seite 7/21

Die Lage bzw. Gradiente der redundanten Riedleitung im Längsschnitt ergibt sich in der Planung unter Berücksichtigung der Topografie und einer stetig fallende bzw. steigende Gradiente. Weiterhin haben örtliche Zwangspunkte auf die Lage im Längsschnitt Einfluss. Dazu zählen grundsätzlich die Kreuzungen aller Verkehrsanlagen, wie klassifizierte Straßen und Gleisanlagen, die gewidmeten Gewässer und ggf. Leitungen Dritter. Mindestens in diesen Kreuzungspunkten ergeben sich planungsbedingt Leitungs-Tiefpunkte, in denen eine Entleerungsmöglichkeit gegeben ist. An sämtlichen Entleerungspunkten mit Schachtbauwerken kann eine Absperrung der Trinkwasserleitung erfolgen, so dass im Bedarfsfall eine abschnittsweise Entleerung ermöglicht wird. Soweit an Leitungstiefpunkten keine Schachtbauwerke vorgesehen werden, müssen im Bedarfsfall über Stutzen o. ä. Entleerungsmöglichkeiten geschaffen werden.

Für die Inbetriebnahme der Leitung (Desinfektion, Spülung) wird das Spülwasser bzw. in Wartungs- oder Havariefällen das abzuleitende Trinkwasser mittels Pumpen aus den Entleerungsschächten bzw. Tiefpunkten abgefördert und in die beiden vorhandenen Gewässer II. Ordnung (Modau und Sandbach) eingeleitet. Da bedingt durch die Länge der Fernleitung nur Teilabschnitte den Gewässern zugeleitet werden können, ist für die übrigen Teilabschnitte eine ortsnahe Verrieselung auf landwirtschaftlicher Fläche oder – soweit möglich – eine Einleitung in die öffentliche Kanalisation geplant.

Die Hessenwasser GmbH & Co. KG, gleichzeitig Bauherr und Antragsteller der geplanten Maßnahme, beauftragte Die ARGE Dahlem/Schmidt-Bregas mit der Aufstellung der Antragsunterlagen für die Gewässerbenutzungen nach §§ 8,10 WHG, die hiermit vorgelegt werden.

3. Geotechnik und Grundwasserverhältnisse

Vom Baugrundinstitut Franke-Meißner wurde ein Baugrundgutachten als Vorgutachten mit geotechnischer Beratung und einer orientierenden umwelttechnischen Untersuchung sowie ein Gutachten zur Grundwasserhaltung aufgestellt.

Gemäß den Bodenaufschlüssen stehen unter den überwiegend anstehenden Oberboden (Ackerboden) oftmals Auffüllungen aus sandigen, kiesigen Schluffen oder stark schluffigen, kiesigen Sanden an, die auch Fremdbestandteile (Ziegelbruch, Wurzelreste etc.) enthalten können. Die Auffüllungen bzw. oftmals bereits die Ackerböden werden durch quartäre Böden unterlagert. Dabei wird die Deckschicht überwiegend aus sandigen, tonigen und kiesigen Schluffen gebildet. Teilweise besteht die Schicht auch aus Tonen und Sanden. Die Deckschicht kann als gering wasserdurchlässig eingestuft werden.

Stand: 21.02.2022 Seite 8/21

Unterhalb der quartären Schluffe stehen dann die grundwasserführenden, schwach schluffigen, schwach kiesigen Sande an. Es handelt sich überwiegend um Fein- und Mittelsande, die homogen vorliegen und jeweils bis zur Endteufe der Erkundung angetroffen wurden. Es ist aus der Geologie des Gebietes bekannt, dass diese Böden bis zu 100 m tief reichen können.

Für weitere geotechnische Beschreibungen wird auf das Baugrundgutachten und auf das Gutachten zur Grundwasserhaltung sowie dessen Anlagen verwiesen.

4. Beschreibung der Gewässerbenutzungen

4.1. Grund für die Einleitung von Wasser

Mit den vorliegenden Antragsunterlagen auf Erlaubnis wird eine temporäre Ableitung von Wasser über eine fliegende Leitung wasserrechtlich beantragt. Dabei werden folgende Szenarien als Grund für die Ableitung unterschieden:

- (Erst-)Inbetriebnahme Fernleitung (Desinfektion, Spülung), dadurch mehrfache Entleerungen
- Havarien/Wartungen (Entleerung der gefüllten Leitung)

4.2. Arten der Einleitung/Gewässerbenutzung

Ferner sind folgende drei Arten der Ableitung bzw. zwei Arten der Gewässerbenutzung bei den Antragsunterlagen zur wasserrechtlichen Erlaubnis zu unterscheiden:

- 1. Einleitung in Oberflächengewässer erlaubnispflichtig
- 2. Verrieselung/Versickerung in das Grundwasser erlaubnispflichtig
- 3. Einleitung in die öffentliche Kanalisation privatrechtlich zu regeln

5. Inbetriebnahme/Spülung

5.1. Anfallendes Spülwasser bei der Inbetriebnahme

Vor der eigentlichen Inbetriebnahme müssen Spülungen und Desinfektionen der Fernleitung durchgeführt werden. Dieses erfolgt in mehreren Teilabschnitten. Maßgeblich zu beachten ist DVGW W 291. Gemäß DVGW W 291 und den Vorgaben der Hessenwasser erfolgt die Leitungsdesinfektion üblicherweise mit Wasserstoffperoxid (H_2O_2). So ist es auch für die hier betrachtete Riedleitung-Südteil R2S vorgesehen.

Stand: 21.02.2022 Seite 9/21

Die Art der Einleitung und damit die Einleitorte richten sich nach der in der Nähe des jeweiligen Entleerungspunkts verfügbaren Ableitmöglichkeiten. Sofern die Spülwasserzusammensetzung und die Lage es zulässt, wird in eins der beiden Gewässer II. Ordnung (Modau oder Sandbach) abgeleitet. Ist dies nicht sinnvoll möglich, soll das Spülwasser auf landwirtschaftlicher Fläche großflächige verrieselt/versickert werden oder im Einzelfall auch der öffentlichen Kanalisation zugeführt werden.

5.2. Qualität des einzuleitenden Wassers

Das als Desinfektionsmittel eingesetzte Wasserstoffperoxid ist maximal der Wassergefährdungsklasse 1 (schwach wassergefährdend) zugeordnet. Die bei Hessenwasser in der Regel benutzte 1,5-prozentige Wasserstoffperoxid-Lösung dagegen wird aufgrund seiner geringen Dosierung keine Wassergefährdungsklasse eingestuft. Somit ist, ggf. nach einer Neutralisation (mit Natriumthiosulfat) eine Einleitung in die im Planungsbereich bestehenden Gewässer II. Ordnung möglich. Für die Einleitung in offene Gewässer gilt es gemäß DVGW W 291, Wasserstoffperoxid-Konzentrationen bis max. 10 mg/l einzuhalten. Auch seitens des RP Darmstadt wurde bereits mitgeteilt, dass bei der Nutzung der Oberflächengewässer Grenzwerte für die Einleitung einzuhalten sind, sodass es zu keiner nachteiligen Veränderung der Gewässereigenschaften kommt. Dabei handelt es sich um quantitative und qualitative Grenzwerte.

Es ist zu beachten, dass bei einer Überschreitung von Grenzwerten seitens des RP Darmstadt die Einleitung in Oberflächengewässer kritisch gesehen wird. In diesen Fällen kann die Infiltration des entnommenen Wassers in den Untergrund über Verrieselung präferiert werden. Dabei durchsickert das verrieselte Wasser die belebte Bodenzone mit positiven Auswirkungen auf Stoffrückhalt bzw. - umwandlung.

Lässt der Standort des Entleerungspunktes (Tiefpunkt) es zu, ist eine Ableitung in die öffentliche Kanalisation denkbar. Gemäß DVGW W 291 ist davon auszugehen, dass wegen der raschen Zersetzung des Wasserstoffperoxids eine Einleitung in die öffentliche Kanalisation in Bezug auf die Wasserqualität unproblematisch ist. Andererseits erhöht sich dadurch das Fremdwasseraufkommen im Zulauf zu den Kläranlagen, so dass Einleitungen sicherlich nur bei Trockenwetterbedingungen möglich sind. Infolge des Verdünnungseffektes sind keine negativen Auswirkungen auf die Überwachungswerte der Kläranlagenabläufe zu besorgen.

Stand: 21.02.2022 Seite 10/21

5.3. Quantität des einzuleitenden Wassers

Als Spülwassermenge sollte zur Desinfektion gemäß DVGW W 291 je nach Leitungsquerschnitt der drei- bis fünf-fache Rohrinhalt angesetzt werden. Bei der Berechnung der Einleitmenge bei Inbetriebnahme der Leitung (siehe Tabelle 5-1 und Tabelle 5-2) wurde im vorliegenden Fall der fünf-fache Rohrinhalt zu Grunde gelegt.

Die Spülwassermenge ergibt sich also aus dem Rohrquerschnitt und der jeweiligen Länge der Rohrleitungsabschnitte, die in den jeweiligen Entleerungsschacht entwässern.

Die Einleitspende wiederum resultiert aus der Vorgabe der DVGW W 291 einer ausreichenden Fließgeschwindigkeit (2 bis 3 m/s) einerseits und andererseits der Kapazität der das Spülwasser zur Verfügung stellenden Wasserwerke. Erfahrungen aus vorherigen Projekten (R2N) von Hessenwasser zeigten, dass ein Spülwasserdurchfluss bis 1.000 m³/h praktikabel ist. Durch den Einsatz entsprechender mobiler Pumpen an den jeweiligen Entleerungspunkten erreicht man einen Abfluss in den zugeordneten Einleitort in der benötigten Größenordnung (1.000 m³/h).

5.4. Bauliche Umsetzung bei Inbetriebnahme/Spülung

Für die Ableitung des Spülwassers von den Entleerungsschächten bzw. Tiefpunkten zu den jeweiligen Einleitorten werden fliegende Leitungen (z.B. Schnellkupplungsrohre) verlegt. Die Leitung folgt dabei üblicherweise dem Verlauf der landwirtschaftlichen Wege und wird in deren Seitenstreifen verlegt.

5.4.1. Einleitung in Oberflächengewässer

Im Falle der Einleitung in eines der genannten Gewässer ist der Einleitbereich so herzurichten, dass es zu keiner nachteiligen Veränderung des Gewässerbetts und der Uferbereiche kommen kann. Mittels Auslegens von Stahlplatten während der Einleitung kann die Gewässerböschung und -sohle gegen Ausspülung/Erosion geschützt werden. Alternativ kann der Böschungs- und Sohlbereich an der Einleitstelle auch mit einer Teichfolie in einer Stärke von 1 - 2 mm auf einer Länge von jeweils ca. 3 m ober- und unterhalb der Einleitung gesichert werden. Die Teichfolie ist an der Böschungsoberkante in einem Einbindegraben befestigt und im Sohlbereich liegen Auflasten aus Baggermatratzen auf der Teichfolie. Das Schlauchende der fliegenden Leitung ist sicher zu fixieren.

Nach Abschluss der Bauarbeiten wird die Leitung fachgerecht abgebaut und der ordnungsgemäße Zustand des Gewässers (Böschung, Bewuchs, Sohle)

Stand: 21.02.2022 Seite 11/21

wiederhergestellt.

Einleitstelle Modau

Die Einleitstelle in die Modau auf Höhe des Tiefpunktschachts D_TL RIE2_Y S 0720 72.1 TP bei Km 4,043 weist eine Sohlhöhe von etwa 92,1 müNN auf.

Der mittlere Abfluss (MQ) in der Modau beträgt ca. 917 l/s bzw. ca. 3.301 m³/h. Der Wert für ein 1-jährliches Hochwasser (HQ1) beträgt rund 10,66 m³/s bzw. 38.380 m³/h.

Einleitstelle Sandbach

Wie bei der Einleitung in die Modau gilt es auch bei der Einleitung in den Sandbach das Gewässerbett und den Uferbereich vorübergehend zu sichern. Unterschied ist hierbei jedoch, dass der Sandbach eingedeicht ist und dieser Deich als Hochwasserschutzanlage an einem Fließgewässer nach DIN 19712 betrachtet werden muss. Alle Leitungen sind über die Deichkrone zu führen und im gesamten Deichbereich gegen Lageänderung zu sichern.

Die Einleitstelle in den Sandbach auf Höhe des Tiefpunktschacht D_TL RIE2_Y S 0840 84.1 TP bei Km 9,708 weist eine Sohlhöhe von 90,7 müNN auf.

Der mittlere Abfluss (MQ) im Sandbach beträgt ca. 83,9 l/s bzw. ca. 302 m³/h. Der Wert für ein 1-jährliches Hochwasser (HQ1) beträgt 1,237 m³/s bzw. rund 4.453 m³/h.

5.4.2. Verrieselung auf landwirtschaftlich genutzte Felder (Versickerung in das Grundwasser)

Im Falle einer Verrieselung wird das Spülwasser durch Versprühen auf nah gelegene Flächen großflächig in den Untergrund versickert. Das Spülwasser wird z.B. über große Land-Beregnungsanlage flächenhaft auf freiem Gelände bzw. landwirtschaftlicher Fläche verbracht. Dadurch kommt es zu einer Teilverdunstung des ausgebrachten Wassers, die verbleibende Menge kann die belebte Bodenzone sowie die quartäre Deckschicht durchsickern, bevor es das Grundwasser erreicht. Voraussetzung für die Verrieselung ist die Zustimmung der Eigentümer/Pächter der üblicherweise landwirtschaftlich genutzten Flächen.

5.4.3. Einleitung in die öffentliche Kanalisation

Im Falle der Einleitung in die Kanalisation erfolgt die Überleitung über eine fliegende Leitung in einen Kanalschacht oder alternativ auch in einen Straßenablauf. Das Schlauchende der fliegenden Leitung ist auch hier zu fixieren. Die Einleitstelle zusätzlich unter Beachtung der Verkehrssicherungspflicht

Stand: 21.02.2022 Seite 12/21

abzusperren, z.B. durch eine Bauzaunanlage. Das Rücksaugen von Schmutzwasser oder Fremdstoffen in die Trinkwasserleitung muss durch ausreichenden Abstand zwischen Auslauf der fliegenden Leitung und dem Abwasserlauf verhindert werden.

Voraussetzung für die Einleitung in die öffentliche Kanalisation ist die Zustimmung des jeweiligen Kanalnetzbetreibers.

5.5. Einleitungsmengen und -orte

Als Spülwassermenge bei der Inbetriebnahme wird in Anlehnung an das DVGW W 291 der fünffacher Rohrinhalt eingeplant. Die Einleitorte wurden je nach verfügbarer Einleitart in der Nähe des Entleerungspunkts (Schachtbauwerk) bzw. Tiefpunktes gewählt. Bei der Einleitung in Gewässer II. Ordnung wurde davon ausgegangen, dass eine Überleitung mittels z.B. fliegender Leitung bei Entfernungen bis etwa 2 km möglich ist.

Tabelle 5-1: Zusammenfassung der Einleitmengen und Einleitorte aus Inbetriebnahme/Spülung

Station	Bauwerk bzw. Tiefpunkt	Einleitart/-ort	Einleitmenge
Km 0,00 (Km 0,25)	Anschlussschacht auf WW-Gelände (Schachtbauwerk MIDD_TL RIE2_Y U 0610)	Verrieselung WW Allmendfeld	1.885 m³
Km 1,035	Tiefpunktschacht D_TL RIE2_Y S 0640 64 TP	Verrieselung	4.552 m³
Km 1,579	Tiefpunktschacht D_TL RIE2_Y S 0670 67.1 TP	Verrieselung	3.800 m³
Km 2,536	Tiefpunktschacht D_TL RIE2_Y S 0690 69.1 TP	Verrieselung	296 m³
Km 2,877	Tiefpunkt D_TL RIE2_Y S 0710 71.1 TP	Modau als Vorfluter	5.758 m³
Km 4,043	Tiefpunktschacht D_TL RIE2_Y S 0720 72.1 TP	Modau als Vorfluter	371 m³
Km 4,863	Tiefpunkt D_TL RIE2_Y S 0740 74 TP	Verrieselung o. Einleitung Kanal	4.430 m³
Km 6,134	Tiefpunktschacht D_TL RIE2_Y S 0770 77 TP	Verrieselung	3.774 m³
Km 6,845	Tiefpunktschacht D_TL RIE2_Y U 0790 79 TP	Verrieselung	2.907 m ³
Km 7,377	Tiefpunkt D_TL RIE2_Y S 0810 81 TP	Verrieselung o. Einleitung Kanal	5.210 m³
Km 8,347	Tiefpunktschacht D_TL RIE2_Y S 0831 83.1 TP	Sandbach als Vorfluter	6.169 m³

Stand: 21.02.2022 Seite 13/21

Km 9,708	Tiefpunktschacht D_TL RIE2_Y S 0840 84.1 TP	Sandbach als Vorfluter	548 m³
Km 11,298	Tiefpunktschacht D_TL RIE2_Y S 0890 89 TP	Sandbach als Vorfluter	11.145 m³
Km 13,369	Tiefpunktschacht D_TL RIE2_Y S 0910 91 TP	Verrieselung	5.164 m³
Km 14,599	Tiefpunkt D_TL RIE2_Y S 0930 93.1 TP	Verrieselung	3.808 m³
Km 15,463	Tiefpunktschacht D_TL RIE2_Y S 0960 96 TP	Verrieselung o. Einleitung Kanal	2.630 m³
Km 15,601	Tiefpunkt D_TL RIE2_Y S 0962 96.2 TP	Verrieselung o. Einleitung Kanal	741 m³
Km 15,742	Tiefpunkt D_TL RIE2_Y S 0970 97.1 TP	Verrieselung o. Einleitung Kanal	396 m³
Km 16,665	Tiefpunktschacht D_TL RIE2_Y S 0990 99.1 TP	Verrieselung	4.415 m³
		Summe Hauptleitung	67.998 m³
Stichleitung WW Eschollbrücken			
Km 10,231 bzw. Km 0,00 Stich	Anschlussschacht D_TL RIE2_Y U 0860 86	Sandbach als Vorfluter	3.561 m³
Km 1,451 (Stich Eschollbrücken)	Tiefpunktschacht D_TL RIE2_Y E 33c TP	Verrieselung WW Eschollbrücken	170 m³
		Summe Abzweig WW Eschollbrücken	3.731 m³
		Gesamt- summe	71.729 m³

5.6. Einleitspende und Dauer der Einleitung

Legt man den fünffachen Rohrinhalt als Spülwassermenge und einen Pumpenförderstrom von ca. 275 l/s (max. 1000 m³/h) zugrunde, ergibt sich nachfolgende Einleitspende und Einleitdauer je nach "Einzugsbereich" des Entleerungspunktes/-schachtes.

Stand: 21.02.2022 Seite 14/21

Tabelle 5-2: Zusammenfassung der Einleitspenden und Einleitdauer aus Inbetriebnahme/Spülung

Station	Bauwerks- nr.*	Einleitart/-ort	Einleit- menge	Einleit- menge Vorfluter	Einleit- spende	Ein- leit- dauer
Km 0,00 (Km 0,25)	0610	Verrieselung WW Allmendfeld	1.885 m³		1000 m ³ /h	1,9 h
Km 1,035	0640 64	Verrieselung	4.552 m³		1000 m³/h	4,5 h
Km 1,579	0670 67.1	Verrieselung	3.800 m ³		1000 m³/h	3,8 h
Km 2,536	0690 69.1	Verrieselung	296 m³		1000 m³/h	0,3 h
Km 2,877	0710 71.1	Modau	5.758 m³	6.129 m³	1000 m³/h	5,8 h
Km 4,043	0720 72.1	Modau	371 m³	6.129 1119	1000 m³/h	0,4 h
Km 4,863	0740 74	Verrieselung o. Einleitung Kanal	4.430 m³		1000 m³/h	4,4 h
Km 6,134	0770 77	Verrieselung	3.774 m³		1000 m³/h	3,8 h
Km 6,845	0790 79	Verrieselung	2.907 m³		1000 m³/h	2,9 h
Km 7,377	0810 81	Verrieselung o. Einleitung Kanal	5.210 m ³		1000 m ³ /h	5,2 h
Km 8,347	0831 83.1	Sandbach	6.169 m ³		1000 m³/h	6,2 h
Km 9,708	0840 84.1	Sandbach	548 m³		1000 m³/h	0,5 h
Km 11,298	0890 89	Sandbach	11.145 m³	21.423 m ³	1000 m³/h	11,1 h
Km 10,231 bzw. Km 0,0 Stich	0860 86	Sandbach	3.561 m³		1000 m³/h	3,6 h
Km 13,369	0910 91	Verrieselung	5.164 m³		1000 m³/h	5,2 h
Km 14,599	0930 93.1	Verrieselung	3.808 m³		1000 m³/h	3,8 h
Km 15,463	0960 96	Verrieselung o. Einleitung Kanal	2.630 m³		1000 m ³ /h	2,6 h
Km 15,601	0962 96.2	Verrieselung o. Einleitung Kanal	741 m³		1000 m ³ /h	0,7 h
Km 15,742	0970 97.1	Verrieselung o. Einleitung Kanal	396 m³		1000 m³/h	0,4 h
Km 16,665	0990 99.1	Verrieselung	4.415 m³		1000 m³/h	4,4 h
Stichleitung WW Eschollbrüc ken						

Stand: 21.02.2022 Seite 15/21

Km 1,451 Stich	E 33c	Verrieselung WW Eschollbrück en	170 m³	1000 m³/h	0,2 h
		Gesamt- summe	71.729 m³		

6. Havarie/Leitungsentleerung

6.1. Verbleib von Trinkwasser aus der Leitung

Kommt es zu einem ungeplanten Havariefall oder soll die Fernleitung aus betrieblichen Gründen geleert oder gespült werden, sind der oder die betroffenen Leitungsabschnitte zu entleeren.

Die Art der Einleitung und damit die Einleitorte richten sich wie bei der Inbetriebnahme nach den in der Nähe des jeweiligen Entleerungspunkts verfügbaren Ableitmöglichkeiten. Sofern es die Lage zulässt, wird in die Gewässer II. Ordnung (Modau oder Sandbach) abgeleitet. Ist dies nicht sinnvoll möglich, ist das abzuleitende Trinkwasser auf landwirtschaftlicher Fläche großflächig zu versickern oder der öffentlichen Kanalisation zuzuführen.

6.2. Qualität des einzuleitenden Wassers

Das einzuleitende Wasser ist unbedenkliches Trinkwasser. Bei einer Spülung evtl. versetzt mit in der Leitung akkumulierten Ablagerungen.

6.3. Quantität des einzuleitenden Wassers

Die maximale Einleitungsmenge pro Entleerungspunkt entspricht dem einfachen Rohrinhalt, resultierend aus dem Rohrquerschnitt und der Länge der jeweiligen Rohrleitungsabschnitte, die zu dem jeweiligen Tiefpunktschacht bzw. Leitungstiefpunkt entwässern. Infolge der in den Tiefpunktschächten angeordneten Schieber kann bei Bedarf auch nur eine der üblicherweise zwei zu einem Entleerungssacht entwässernden Leitungsäste geleert werden. Soweit kein Tiefpunktschacht besteht, müssen alle zum Tiefpunkt (Entleerungspunkt) hin entwässernden Leistungsabschnitte entleert werden.

Die Einleitspende im Falle der einfachen Rohrentleerung (drucklos) resultiert aus dem Ausströmvermögen der gefüllten Rohrleitung in den Tiefpunktschacht. Auch ändert sich der Ausfluss aus der Leitung infolge abnehmende Innendrucks in der

Stand: 21.02.2022 Seite 16/21

Fernleitung über die Entleerungszeit. Realistisch ist ein mittlerer Abfluss von 200 m³/h über die jeweilige Entleerungszeit.

6.4. Bauliche Umsetzung bei Havarie/Leitungsentleerung

Für die Ableitung des überschüssigen Trinkwassers von den Tiefpunktschächten bzw. Entleerungspunkten in die jeweiligen Einleitorte wird eine fliegende Leitung verlegt. Die Ableitung muss aus betrieblichen und ggf. zeitlichen Gründen ortsnah erfolgen.

6.4.1. Einleitung in Oberflächengewässer

Im Falle der Einleitung in ein Gewässer ist der Einleitbereich so herzurichten, dass es zu keiner nachteiligen Veränderung des Gewässerbetts und der Uferbereiche kommen kann. Es wird auf die Ausführungen in Kapitel 5.4.1 verwiesen.

Nach Abschluss der Einleitung wird die Leitung fachgerecht abgebaut und der ordnungsgemäße Zustand des Gewässers (Böschung, Bewuchs, Sohle) wiederhergestellt.

Einleitstelle Modau

Die Einleitstelle in die Modau auf Höhe des Tiefpunktschachts D_TL RIE2_Y S 0720 72.1 TP bei Km 4,043 weist eine Sohlhöhe von etwa 92,1 müNN auf.

Der mittlere Abfluss (MQ) in der Modau beträgt ca. 917 l/s bzw. ca. 3.301 m³/h. Der Wert für ein 1-jährliches Hochwasser (HQ1) beträgt rund 10,66 m³/s bzw. 38.380 m³/h.

Einleitstelle Sandbach

Bzgl. der Deichanlagen wird auf Kapitel 5.4.1 verwiesen.

Die Einleitstelle in den Sandbach auf Höhe des Tiefpunktschacht D_TL RIE2_Y S 0840 84.1 TP bei Km 9,708 weist eine Sohlhöhe von 90,7 müNN auf.

Der mittlere Abfluss (MQ) im Sandbach beträgt ca. 83,9 l/s bzw. ca. 302 m³/h. Der Wert für ein 1-jährliches Hochwasser (HQ1) beträgt 1,237 m³/s bzw. rund 4.453 m³/h.

Stand: 21.02.2022 Seite 17/21

6.4.2. Verrieselung auf landwirtschaftlich genutzte Felder (Versickerung in das Grundwasser)

Im Falle der Verrieselung wird das überschüssige Trinkwasser durch Versprühen auf nah gelegene Flächen großflächig in den Untergrund versickert.

Voraussetzung für die Verrieselung ist die Zustimmung der Eigentümer/Pächter der benutzten Flächen.

6.4.3. Einleitung in die öffentliche Kanalisation

Im Falle der Einleitung in die Kanalisation erfolgt die Überleitung über eine fliegende Leitung in einen Kanalschacht oder Straßenablauf. Auf die Ausführungen im Kapitel 6.4.3 wird hingewiesen.

6.5. Einleitungsmenge und -orte

Als Entleerungsmenge wird der einfache Rohrinhalt ermittelt.

Tabelle 6-1: Zusammenfassung der Einleitmengen und Einleitorte aus Havarie/Wartung

Station	Bauwerk bzw. Tiefpunkt	Einleitart	Einleitmenge
Km 0,00 (Km 0,25)	Anschlussschacht auf WW-Gelände (Schachtbauwerk MID D_TL RIE2_Y U 0610)	Verrieselung WW Allmendfeld	377 m³
Km 1,035	Tiefpunktschacht D_TL RIE2_Y S 0640 64 TP	Verrieselung	910 m³
Km 1,579	Tiefpunktschacht D_TL RIE2_Y S 0670 67.1 TP	Verrieselung	760 m³
Km 2,536	Tiefpunktschacht D_TL RIE2_Y S 0690 69.1 TP	Verrieselung	59 m³
Km 2,877	Tiefpunkt D_TL RIE2_Y S 0710 71.1 TP	Verrieselung	1152 m³
Km 4,043	Tiefpunktschacht D_TL RIE2_Y S 0720 72.1 TP	Modau als Vorfluter	74 m³
Km 4,863	Tiefpunkt D_TL RIE2_Y S 0740 74 TP	Verrieselung o. Einleitung Kanal	886 m³
Km 6,134	Tiefpunktschacht D_TL RIE2_Y S 0770 77 TP	Verrieselung	755 m³
Km 6,845	Tiefpunktschacht D_TL RIE2_Y U 0790 79 TP	Verrieselung	581 m³
Km 7,377	Tiefpunkt	Verrieselung	1042 m³

Stand: 21.02.2022 Seite 18/21

	D_TL RIE2_Y S 0810 81 TP		
Km 8,347	Tiefpunktschacht D_TL RIE2_Y S 0831 83.1 TP	Verrieselung	1234 m³
Km 9,708	Tiefpunktschacht D_TL RIE2_Y S 0840 84.1 TP	Sandbach als Vorfluter	110 m³
Km 11,298	Tiefpunktschacht D_TL RIE2_Y S 0890 89 TP	Verrieselung	2229 m³
Km 13,369	Tiefpunktschacht D_TL RIE2_Y S 0910 91 TP	Verrieselung	1033 m³
Km 14,599	Tiefpunkt D_TL RIE2_Y S 0930 93.1 TP	Verrieselung	762 m³
Km 15,463	Tiefpunktschacht D_TL RIE2_Y S 0960 96 TP	Verrieselung o. Einleitung Kanal	526 m³
Km 15,601	Tiefpunkt D_TL RIE2_Y S 0962 96.2 TP	Verrieselung o. Einleitung Kanal	148 m³
Km 15,742	Tiefpunkt D_TL RIE2_Y S 0970 97.1 TP	Verrieselung o. Einleitung Kanal	79 m³
Km 16,665	Tiefpunktschacht D_TL RIE2_Y S 0990 99.1 TP	Verrieselung	883 m³
		Summe Hauptleitung	13.600 m³
Stichleitung WW Eschollbrücken			
Km 10,231 bzw. Km 0,0 Stich	Anschlussschacht D_TL RIE2_Y U 0860 86	Sandbach als Vorfluter	712 m³
Km 1,451 Stich	Tiefpunktschacht D_TL RIE2_Y E 33c TP	Verrieselung WW Eschollbrücken	34 m³
		Summe Abzweig WW Eschollbrücken	746 m³
		Gesamt- summe	14.346 m³

6.6. Darstellung der Gewässereinleitungen bei Havarie

6.6.1. Einleitspende und Dauer der Einleitung

Legt man den einfachen Rohrinhalt als Entleerungsmenge und einen mittleren Abfluss/Pumpenförderstrom von 55,5 l/s (200 m³/h) zugrunde, ergibt sich nachfolgende Einleitdauer je nach Entleerungspunkt/Entleerungsschacht.

Stand: 21.02.2022 Seite 19/21

Tabelle 6-2: Zusammenfassung der Einleitspenden und Einleitdauer aus Havarie/Wartung

Station	Bauwerks- nr.*	Einleitart/-ort	Einleit- menge	Einleit- spende	Einleit- dauer
Km 0,00 (Km 0,25)	0610	Verrieselung WW Allmendfeld	377 m³	200 m ³ /h	1,89 h
Km 1,035	0640 64	Verrieselung	910 m³	200 m³/h	4,56 h
Km 1,579	0670 67.1	Verrieselung	760 m³	200 m ³ /h	3,80 h
Km 2,536	0690 69.1	Verrieselung	59 m³	200 m ³ /h	0,30 h
Km 2,877	0710 71.1	Verrieselung	1152 m³	200 m³/h	5,76 h
Km 4,043	0720 72.1	Modau	74 m³	200 m³/h	0,37 h
Km 4,863	0740 74	Verrieselung o. Einleitung Kanal	886 m³	200 m³/h	4,43 h
Km 6,134	0770 77	Verrieselung	755 m³	200 m³/h	3,78 h
Km 6,845	0790 79	Verrieselung	581 m³	200 m ³ /h	2,91 h
Km 7,377	0810 81	Verrieselung	1042 m³	200 m³/h	5,21 h
Km 8,347	0831 83.1	Verrieselung	1234 m³	200 m³/h	6,18 h
Km 9,708	0840 84.1	Sandbach	110 m³	200 m³/h	0,55 h
Km 10,231 bzw. Km 0,0 Stich	0860 86	Sandbach	712 m³	200 m³/h	3,56 h
Km 11,298	0890 89	Verrieselung	2229 m³	200 m³/h	11,16 h
Km 13,369	0910 91	Verrieselung	1033 m³	200 m ³ /h	5,17 h
Km 14,599	0930 93.1	Verrieselung	762 m³	200 m ³ /h	3,81 h
Km 15,463	0960 96	Verrieselung o. Einleitung Kanal	526 m³	200 m³/h	2,63 h
Km 15,601	0962 96.2	Verrieselung o. Einleitung Kanal	148 m³	200 m³/h	0,74 h
Km 15,742	0970 97.1	Verrieselung o. Einleitung Kanal	79 m³	200 m³/h	0,40 h
Km 16,665	0990 99.1	Verrieselung	883 m³	200 m³/h	4,42 h
Stichleitung WW Eschollbrücken					
Km 1,451 Stich	E 33c	Verrieselung WW Eschollbrücken	34 m³	200 m³/h	0,17 h
		Gesamt- summe	14.346 m³		

Stand: 21.02.2022 Seite 20/21