Wassertechnische Untersuchung Erläuterungen und Berechnungen

Anlage 4
Beckenbemessung

Anlage 4.1 Bemessung RRB I (Kurzebach) nach RAS Ew und DWA A 117

Bemessungswerte Entwässerungsabschnitt

Bezeichnung	Kürzel	Menge	Einheit
Einzugsgebietsfläche gesamt	$A_{E,G}$	5,22	2 ha
Außengebietsfläche	A _{AG}	0,00) ha
Einzugsgebiet ohne Außengebiet	$A_{E,k}$	5,22	2 ha
Einzugsgebietsfläche reduziert nach RAS EW	$A_{red} = A_u$	2,68	ha .
Zufluss (n=1)	Q _{zu, n=1,0, 15 min}	297,35	i l/s
Zufluss (n=1)	Q _{zu, n=1,0, 15 min}	0,297	m ³ /s
Werte aus Abflussmengenermittlung nach RAS Ew			

Ergebnis Bewertungsverfahren M 153

Bezeichnung	Тур	
Anlagen mit Dauerstau und max. qa = 18 m³/(m²h) Oberfl. Besch. z. B. Absetzanlagen vor Versickerbecken	D25	0,35
oder Regenwasserrückhalteanlagen		

Bemessungswerte Rückhaltebecken

Auszug aus dem DWA Merkblatt M 153

Tabelle 3: Zulliseige Regenabflussspenden von undurchillesigen Plächen

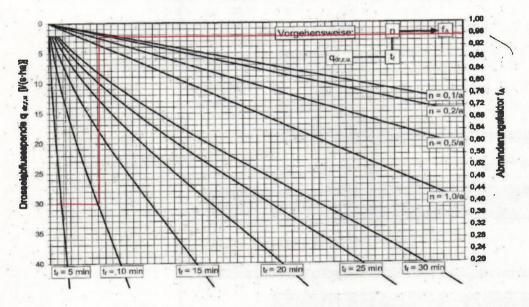
Typ des Vorflutgewässers	Regenabflussspende q _R in I/(s · ha)	
kleiner Flachlandbach	b _{Sp} < 1 m, v < 0,3 m/s	15
kleiner Hügel- und Berglandbach	$b_{Sp} < 1 \text{ m}, v \ge 0.3 \text{ m/s}$	30
großer Flachlandbach	b _{Sp} = 1 - 5 m, v < 0,5 m/s	120
großer Hügel- und Berglandbach	$b_{Sp} = 1 - 5 \text{ m}, v \ge 0.5 \text{ m/s}$	240
Flüsse	b _{Sp} > 5 m	nicht begrenzt
kleine Teiche	Oberfläche < 20 % von A _u	Einzelfallbetrachtung
Teiche und Seen	Oberfläche ≥ 20 % von A.	nicht begrenzt

Bezeichnung	Kürzel	Menge	Einheit	
Drosselabflussspende	qdr,k max	30,	00 l/s*ha	
* gemäß Abstimmung vom 23.07.2014 mit Herm R	etzer Lahn Dill Kreis Abte	ailung Umwelt Na	atur und Was:	ser
G:\STRASSEN\G377014_Eingang\TöB\140725-La				
kanalisiertes Einzugsgebiet A red nach RAS Ew	$A_{E,k}$	2,0	68 ha	
Drosselabfluss berechnet	Qdr Berechnung	80,4	40 l/s	
Drosselabfluss gewählt	Qdr gewählt	83,0	00 l/s	
Drosselabflussspende	qdr,r,u	30,9	97 l/s*ha	
Abminderungsfaktor	fA	0,9	92	Bild 3 DWA A 117
Zuschlagsfaktor	f _z	1,1	10	Tabelle 2 DWA A 117

Ermittlung des erforderlichen Speichervolumens

$$Vs,u = (r_{D,n} - q_{dr,r,u}) * D * f_z * f_A * 0.06$$

s. DWA A 117


V = Vs,u * Au

Regenspende 5 jähriges Ereignis Kostra Spatte 22 Zeile 60 (Ehringshausen)

Ermittlung des Zuschlagfaktors fz gemäß	Tabelle 2 Ras Ew
Risikomaß	fz
gering	1,2
mittel	1,1
groß	1,1

Ermittlung der Fließzeit im Oberflächenwasserableitungssystem									
Länge mittel	dh	Gefälle mittel	DN mittel	V voll	V mittel	Fließzeit	Fließzeit		
m	m	%	mm	m/s	m/s	S	min		

Dauerstufe	D	rD(n=0,2)	qdr,r,u	Differenz r - qdr,r,u	fz	f _A	Vs,u
	min	I/(s*ha)	I/(s*ha)	I/(s*ha)			m³/ha
5 min	5	348,60	30,97	317,63	1,1	0,95	99,58
10 min	10	246,30	30,97	215,33	1,1	0,95	135,01
15 min	15	196,50	30,97	165,53	1,1	0,95	155,68
20 min	20	165,40	30,97	134,43	1,1	0,95	168,58
30 min	30	127,20	30,97	96,23	1,1	0,95	181,01
45 min	45	95,80	30,97	64,83	1,1	0,95	182,92
60 min	60	77,50	30,97	46,53	1,1	0,95	175,05
90 min	90	54,70	30,97	23,73	1,1	0,95	133,91
2h	120	42,80	30,97	11,83	1,1	0,95	89,01
3h	180	30,30	30,97	-0,67	1,1	0,95	-7,56
4h	240	23,70	30,97	-7,27	1,1	0,95	-109,40
6h	360	16,80	30,97	-14,17	1,1	0,95	-319,85
9h	540	11,90	30,97	-19,07	1,1	0,95	-645,67
12h	720	9,40	30,97	-21,57	1,1	0,95	-973,76
18h	1080	6,70	30,97	-24,27	1,1	0,95	-1.643,47
24h	1440	5,20	30,97	-25,77	1,1	0,95	-2.326,72
48h	2880	3,30	30,97	-27,67	1,1	0,95	-4.996,54
72h	4320	2,50	30,97	-28,47	1,1	0,95	-7.711,50

Vs,u,max = 182,92 m³/ ha Au = Ared 2,68 ha V= 490,22 m³

Vgew.=

552,26 m³

Vergleichswert DWD 2000

Ermittlung der Beckenabmessungen Rückhaltebereich (Grobabmessungen)

V = (Fläche u. + Fläche o.)/2 * Tiefe

Länge u	Breite u	Böschung	Tiefe	Fläche u.	Fläche o.	V gew.
m	m	1:m	m	m²	m²	m ³
20,00	15,00	2,00	1,35	300.00	518.16	552.20

Ermittlung der Beckenabmessungen Rückhaltebereich unter Berücksichtigung des Freibordes

Länge u	Breite u	Böschung	Tiefe	Länge o	Breite o
m	m	1: m	m	m	m
20.00	15.00	2.00	1.85	27 40	22.4

Freibord: 0,50 m -> Tiefe neu 1,35 m + 0,50 m = 1,85 m

Nachweis der Oberflächenbeschickung des Abscheideraumes

qA max Oberflächenbeschickung 9 m/h = 0,0025 m/s s. RAS - Ew Abschn. 1.4.7.1 (u. Rist Wag) $O_{\rm eff} = Qb / vs$

Abmessungen aus der Detailzeichung RRB 1

Qb m³/s	VS m/s	O erf.	Breite m	Länge m	O gew. m ²		O erf.
0,297	0,0025	118,80	8,00	17,00	136,00	>	129,20

Nachweis der vertikalen Fließgeschwindigkeit an der Tauchwandunterkante

nach RAS Ew Abschnitt 1.4.7.2

Qb	Breite u	Breite o	Höhe	A v	V _{v vorh}		V _{v zul}
m³/s	m	m	m	m ²	m/s		m/s
0,297	7,00	7,00	1,25	8,75	0,0339	<	0,0

Nachweis der horizontalen Fließgeschwindigkeit an der Tauchwandunterkante

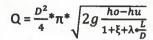
nach RAS Ew Abschnitt 1.4.7.2

Qb m³/s	Breite m	Abstand m	A h m²	V _{h vorh} m/s		V _{h zul} m/s
0,297	7,00	1,20	8,40	0,0354	<	0,0

Nachweis des Auffangraumes für Leichtflüssigkeiten

nach Rist Wag Abschnitt 8.4.3

Breite m	Länge m	O gew. m ²	Tiefe m	V gew.		V erf.
8,00	17,00	136,00	0,30	40,80	>	30,00

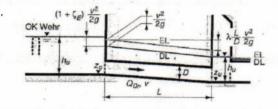

Nachweis des Schlammstapelraumes

nach Rist Wag Abschnitt 8.4.3

Breite m	Länge m	O gew. m ²	Tiefe m	V gew.		V erf. m ³
8,00	17,00	136,00	0,30	40,80	>	10,00

Ermittlung der max. Zulaufmenge zum RRB

gesucht Abflussleistung der kritischen Kanalhaltung bei Einstau bis GOK gewählt: Kanalhaltung unmittelbar vor dem Beckenzulauf Rechenansatz: Bernoulligleichung nach Q umgestellt (s. DWA A 111)


 λ = Widerstandsbeiwert

 $\xi = 0.45$ (Einlaufverlust)

ho + hu Absoluthöhen

ho: GOK Schacht EA 1 S 13: 261,72 m ü. NN

hu: max. Einstauhöhe im Absetzbecken: 260,54 m ü. NN

DN	ho	hu	λ	ξ	L	Q
[m]	[m]	[m]	[-]	[-]	[m]	[m³/s]

1. Rechengang mit λ (Schätzwert) = 0,02

0,50 261,72

260,54

0,020

0,45

12,00

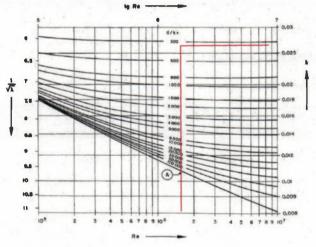
12,00

0,680

2. Rechenging mit \(\text{(Realwert)} \)

0,50 261,72

260,54

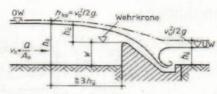

0.026

0,45

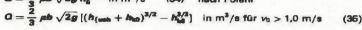
0,656

Kontrolle λ Wert (rot)

Re = v * 4rhy / $v (\lambda aus dem Moody Diagramm)$ k Wert gewählt 1,50 mm Berücksichtigung von Einzelverluste in den Schachtbauwerken


Q	A	v	v	4 rhy	Re	k	d/k	Realwert
[m³/s]	[m²]	[m/s]	[m ² /s]	[m]	[-]	[mm]	[-]	λ [-]
0,68	0,20	3,46	1,31E-06	6,28	1,66E+07	1,50	333,33	0,026

Bemessung der Überlaufschwellen Absetzbecken / Notüberlauf


3.3.5 Wehre - Überfellwehr

3.3.5.1 Vollkommener Überfall

orkern. Durchfluß mit Fileßwechseil, d. h. der UW-Stand beeinflüßt den OW-Stand nicht. Das ist immer der Fall, wenn das Unterwasser te-fer als die Wehrkrone steht (s. a. Abschn. 3.5.2).

Bei rechteckigen Durchflußquerschnitten gijt Gl. (34) für $v_0 \le 1,0$ m/s bzw. Gl. (35). $Q = \frac{2}{3} \mu b \sqrt{2g} h_0^{3/2} \ln m^3 / s$ (34) nech Poleni $Q = \frac{2}{3} \mu b \sqrt{2g} \left[(h_{(sub)} + h_{b0})^{3/2} - h_{b0}^{3/2} \right] \text{ in m}^3 / s \text{ für } v_0 > 1.0 \text{ m/s}$

breit waagerecht, Kanten abgerundet μ =0,50 bis 0,55

Qü =
$$2/3 * \mu * lü * (2 * g)^{0.5} * hü^{1.5}$$

Qü μ (2 * g) ^{0,5}	hü (m)	hü ^{1,5}	lü (m)
-----------------------------	-----------	-------------------	-----------

Schwelle Absetzbecken (gewählt Betonschwelle abgerundet)

0,656	0,55	4,43	0,137	0,05	8,00
656 I/s = max. Zu	laufmenge s.	oben			
0,300	0,55	4,43	0,081	0,02	8,00
297 35 l/s = Bem	essungswass	ermenge			

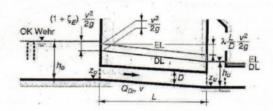
Schwelle Notüberlauf (gewählt Edelstahlschwelle gut abgerundet)

0,573	0,73	4,43	0,138	0,05	5,20
573 l/s = max. Zu	laufmenge 65	66 l/s - Dross	elwassermeng	je 83 l/s	
0,217	0,73	4,43	0,072	0,02	5,20
214 l/s = Bemess	sungswassem	nenge 297 l/s	- Drosselwas	sermenge 83	l/s

Ermittlung der Einstauhöhe im Rückhaltebecken beim maximalen Zulauf - 656 l/s s. oben

Rechenansatz: Bernoulligleichung nach Q umgestellt (s. DWA A 111)

$$Q = \frac{D^2}{4} * \pi * \sqrt{2g \frac{ho - hu}{1 + \xi + \lambda + \frac{L}{D}}}$$


λ (Widerstandsbeiwert)

 $\xi = 0,45$ (Einlaufverlust)

ho + hu Absoluthöhen

ho : max. Einstauhöhe im Regenwasserrückhaltebecken

hu: max. Ablaufhöhe Notüberlauf

DN	ho	hu	λ	Ę	L	Q
[m]	[m]	[m]	[-]	[-]	[m]	[m³/s]

0.020

0.014

1. Rechengang mit λ (Schätzwert) gewählt 0,02

0.80 260.49

260,37 2. Rechengang mit λ (Realwert)

260,37

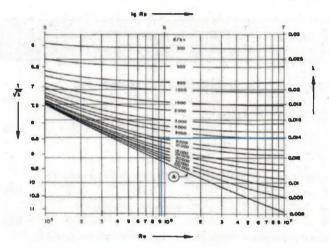
0,45

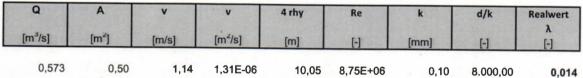
12,00

12,00

0,45

0,573


0,573


0,80 Kontrolle λ Wert (blau)

Re = v * 4rhy /v (λ aus dem Moody Diagramm)

260,48

k Wert gewählt 0,10 mm -> Berücksichtigung von Einzelverluste an den Rohrverbindungen

Anlage 4.2 Bemessung RRB 2 (Kumbach) nach RAS Ew und DWA A 117

Bemessungswerte Entwässerungsabschnitt

Bezeichnung	Kürzel	Menge E	inheit
Einzugsgebietsfläche gesamt	$A_{E,G}$	11,16 h	а
Außengebietsfläche	A _{AG}	2,06 h	а
Einzugsgebiet ohne Außengebiet	$A_{E,k}$	9,10 h	а
kanalisiertes Einzugsgebiet A red nach RAS Ew	$A_{red} = A_u$	6,94 h	а
Zufluss (n=1)	Q _{zu, n=1,0, 15 min}	771,57 1/	S
Zufluss (n=1)	Q _{zu, n=1,0, 15 min}	0,772 n	n³/s
Werte aus Abflussmengenermittlung nach RAS Ew			

Ergebnis Bewertungsverfahren M 153

Bezeichnung	Тур	
Anlagen mit Dauerstau und max. qa = 18 m³/(m²h) Oberfl. Besch.	D25	0,35
z. B. Absetzanlagen vor Versickerbecken		
oder Regenwasserrückhalteanlagen		

Bemessungswerte Rückhaltebecken

Auszug aus dem DWA Merkblatt M 153

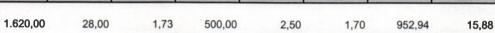
Tabelle 3: Zullissige Regenabflussspenden von undurchlässigen Flächen

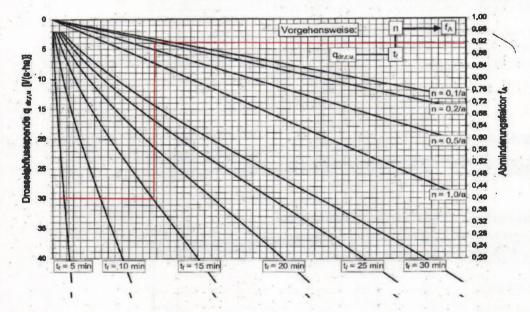
Typ des Vorflutgewässers	Regenabflussspende q _R in I/(s • ha)	
kleiner Flachlandbach	bsp < 1 m, v < 0,3 m/s	15
kleiner Hügel- und Berglandbach	$b_{\rm Sp} < 1 \text{m}, v > 0.3 \text{m/s}$	30
großer Flachlandbach	b _{Sp} = 1 - 5 m, v < 0,5 m/s	120
großer Hügel- und Berglandbach	$b_{\rm Sp} = 1 - 5 \text{m}, v \ge 0.5 \text{m/s}$	240
Flüsse	b _{Sp} > 5 m	nicht begrenzt
kleine Teiche	Oberflache < 20 % von A.	Einzelfallbetrachtung
Teiche und Seen	Oberfläche ≥ 20 % von A.	nicht begrenzt

G:\STRASSEN\G377014_Eingang\TöB\140725-L	Menge	Einheit	
Drosselabflussspende max	qdr,k	30,00	I/s*ha
* gemäß Abstimmung vom 23.07.2014 mit Herm I	Retzer Lahn Dill Kreis Abte	allung Umwelt Natu	r und Wasser
G:\STRASSEN\G377014_Eingang\TöB\140725-I	Lahn-Dillkreis		
kanalisiertes Einzugsgebiet A red nach RAS Ew	$A_{red} = A_u$	6,94	ha
Drosselabfluss berechnet	Qdr Berechnung	208,20	Vs .
Drosselabfluss gewählt	Qdr gewählt	200,00	l/s
Drosselabflussspende	qdr,r,u	28,82	l/s*ha
Abminderungsfaktor	f _A	0,98	Bild 3 DWA A 117
Zuschlagsfaktor	f _z	1,10	Tabelle 2 DWA A 117

Ermittlung des erforderlichen Speichervolumens

$$Vs,u = (r_{D,n} - q_{dr,r,u}) * D * f_z * f_A * 0.06$$


s. ATV A 117


V = Vs,u * Au

Regenspende 5 jähriges Ereignis Kostra Spalte 36 Zeile 55 (Unhausen)

Ermittlung des Zuschlag	faktors fz gemäß Tabell	e 2 Ras Ew	
Risikomaß		fz	
gering		1,2	
mittel		1,1	
groß		1,1	

Ermittlung der Fließzeit im Oberflächenwasserableitungssystem										
Länge mittel	dh	Gefälle mittel	DN mittel	V voll	V mittel	Fließzeit	Fließzeit			
m	m	%	mm	m/s	m/s	s	min			

Dauerstufe	D	rD(n=0,2)	qdr,r,u	Differenz r - qdr,r,u	fz	f _A	Vs,u
	min	I/(s*ha)	l/(s*ha)	I/(s*ha)			m³/ha
5 min	5	348,60	28,82	319,78	1,1	0,90	94,97
10 min	10	246,30	28,82	217,48	1,1	0,90	129,18
15 min	15	196,50	28,82	167,68	1,1	0,90	149,40
20 min	20	165,40	28,82	136,58	1,1	0,90	162,26
30 min	30	127,20	28,82	98,38	1,1	0,90	175,31
45 min	45	95,80	28,82	66,98	1,1	0,90	179,04
60 min	60	77,50	28,82	48,68	1,1	0,90	173,50
90 min	90	54,70	28,82	25,88	1,1	0,90	138,35
2h	120	42,80	28,82	13,98	1,1	0,90	99,65
3h	180	30,30	28,82	1,48	1,1	0,90	15,82
4h	240	23,70	28,82	-5,12	1,1	0,90	-72,99
6h	360	16,80	28,82	-12,02	1,1	0,90	-257,04
9h	540	11,90	28,82	-16,92	1,1	0,90	-542,73
12h	720	9,40	28,82	-19,42	1,1	0,90	-830,55
18h	1080	6,70	28,82	-22,12	1,1	0,90	-1.419,04
24h	1440	5,20	28,82	-23,62	1,1	0,90	-2.020,36
48h	2880	3,30	28,82	-25,52	1,1	0,90	-4.365,76
72h	4320	2,50	28,82	-26,32	1,1	0,90	-6.753,92

Vs,u,max = 179,04 m³/ ha Au = Ared 6,94 ha V= 1.242,52 m³ Vgew.= 1.374,23 m³

Ermittlung der Beckenabmessungen Rückhaltebereich (Grobabmessungen)

V = (Fläche u. + Fläche o.)/2 * Tiefe

Läng	ge u	Breite u	Böschung	Tiefe	Fläche u.	Fläche o.	V gew.
n	n	m	1: m	m	m²	m²	m ³
	32,00	16,00	2,00	1,90	512,00	934,56	1.374,23

Ermittlung der Beckenabmessungen Rückhaltebereich unter Berücksichtigung des Freibordes

Länge u	Breite u	Böschung	Tiefe	Länge o	Breite o
m	m	1: m	m	m	m
32,00	16,00	2,00	2,40	41,60	

Freibord: 0,50 m -> Tiefe neu 1,90 m + 0,50 m = 2,40 m

Nachweis der Oberflächenbeschickung des Abscheideraumes

qA max Oberflächenbeschickung 9 m/h = 0,0025 m/s s. RAS - Ew Abschn. 1.4.7.1 (u. Rist Wag) $O_{\text{erf}} = Qb / vs$

Abmessungen aus der Detailzeichung RRB 1

Qb m³/s	VS m/s	O erf.	Breite m	Länge m	O gew. m²		O erf.
0,771	0,0025	308,40	10,50	31,00	325,50	>	324,0

Nachweis der vertikalen Fließgeschwindigkeit an der Tauchwandunterkante

nach RAS Ew Abschnitt 1.4.7.2

Qb	Breite u	Breite o	Höhe	A v	V _{v vorh}		V _{v zul}
m³/s	m	m	m	m ²	m/s		m/s
0,771	10,50	10,50	1,55	16,28	0,0474	<	0,05

Nachweis der horizontalen Fließgeschwindigkeit an der Tauchwandunterkante

nach RAS Ew Abschnitt 1.4.7.2

Breite: s. oben

Abstand der Tauchwand von der Zwischenberme in Höhe Tauchwandunterkante

Qb m³/s	Breite m	Abstand m	A h m²	V _{h vorh} m/s		V _{h zul} m/s
0,771	10,50	1,55	16,28	0,0474	<	0,05

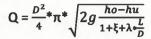
Nachweis des Auffangraumes für Leichtflüssigkeiten

nach Rist Wag Abschnitt 8.4.3

Breite m	Länge m	O gew. m²	Tiefe m	V gew.		V erf.
10,50	31,00	325,50	0,30	97,65	>	30.

Nachweis des Schlammstapelraumes

nach Rist Wag Abschnitt 8.4.3

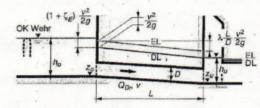

Breite m	Länge m	O gew.	Tiefe m	V gew.		V erf.
10,50	31,00	325,50	0,30	97,65	>	10,0

Ermittlung der max. Zulaufmenge zum RRB

gesucht Abflussleistung der kritischen Kanalhaltung bei Einstau bis GOK gewählt: Kanalhaltung Schacht EA2 RRB 02 - Schacht EA 2 RRB 02.1

= Übergang Einlaufabschnitt - Überleitungsabschnitt

Rechenansatz: Bernoulligleichung nach Q umgestellt (s. DWA A 111)


λ = Widerstandsbeiwert

 $\xi = 0.45$ (Einlaufverlust)

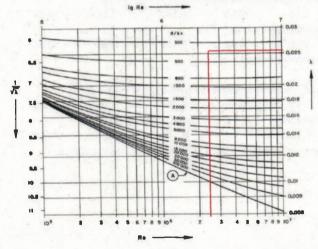
ho und hu als Absolutwerte

ho: GOK Schacht EA 2 RRB 02 222,03 m ü. NN (Anfangsschacht Steilstrecke)

hu: max. Einstauhöhe im Schacht EA 2 RRB 02.1: 220,17 m ü. NN (Vollfüllung)

DN	ho	hu	λ	ξ	L	Q
[m]	[m]	[m]	r1	[-]	[m]	[m³/s]

1. Rechenging mit λ (Schätzwert) = 0,02


0,60 222,03 220,17 0,020 0,45 12,00 1,255

2. Rechengang mit λ (Realwert)

0,60 222,03 220,17 0,025 0,45 12,00 1,223

Kontrolle λ Wert

Re = v * 4rhy /v (λ aus dem Moody Diagramm) k Wert gewählt 1,50 mm Berücksichtigung von Einzelverluste in den Schachtbauwerken

Q	A	V	v	4 rhy	Re	k	d/k	Realwert
[m ³ /s]	[m ²]	[m/s]	[m²/s]	[m]	[-]	[mm]	[-]	[-]
1.26	0.28	4,44	1,31E-06	7,54	2,55E+07	1,50	400,00	0,0

Bemessung der Überlaufschwellen Absetzbecken / Notüberlauf

3.3.5 Wehre - Überfallwehr

3.3.5.1 Vollkommener Überfall

Kriterium. Durchfluß mit Fileßwechsel, d. h. der UW-Stand beeinflußt den OW-Stand nicht. Das iet immer der Fail, wenn das Unterwasser tiefer als die Wehrkrone steht (s. a. Abschn. 3.5.2).

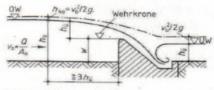


Bild 33 Volikommener Überfall

Bei rechtsckigen Durchflußquerschnitten gilt GI. (34) für $v_0 \leq$ 1,0 m/s bzw. GI. (35).

$$Q = \frac{2}{3} \mu b \sqrt{2g} h_6^{3/2} \ln m^3/s$$
 (34) nach Poleni

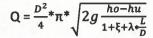
$$Q = \frac{2}{3} \mu b \sqrt{2g} \left[(h_{\text{leah}} + h_{\text{leb}})^{3/2} - h_{\text{led}}^{3/2} \right] \text{ in m}^3/\text{s für } v_0 > 1.0 \text{ m/s}$$
 (35)

sung) $\mu = 0.64$

$$Q\ddot{u} = 2/3 * \mu * l\ddot{u} * (2 * g)^{0.5} * h\ddot{u}^{1.5}$$

Qü (m³/s)	р	(2 * g) ^{0,5}	hü	hü ^{1,5}	Iŭ
(m /s)	EMEDICAL PROPERTY.		(m)		(m)

Schwelle Absetzbecken (gewählt Betonschwelle waagerecht)

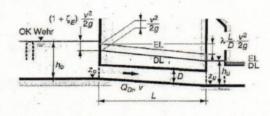

1,223	0,55	4,43	0,173	0,07	10,50
1.223 l/s = max. 2	Zulaufmenge	s. oben			
0,810	0,55	4,43	0,131	0,05	10,50
810 l/s = Bemess	ungswassem	nenge			

Schwelle Notüberlauf (gewählt Edelstahlschwelle gut abgerundet)

1,025	0,73	4,43	0,159	0,06	7,50
1.023 l/s = max.	Zulaufmenge	1.223 l/s - Dr	osselwasserm	enge 200 l/s	
0,614	0,73	4,43	0,113	0,04	7,50
610 l/s = Bemess	ungswasserm	enge 810 l/s	- Drosselwas	sermenge 200	l/s

Ermittlung der Einstauhöhe im Rückhaltebecken beim maximalen Zulauf - 1.223 l/s s. oben

Rechenansatz: Bernoulligleichung nach Q umgestellt (s. DWA A 111)


λ (Widerstandsbeiwert)

 $\xi = 0.45$ (Einlaufverlust)

ho und hu als Absolutwerte

ho: max. Einstauhöhe im Regenwasserrückhaltebecken

hu: max. Ablaufhöhe Notüberlauf

DN	ho	hu	λ	Ę		Q
[m]	[m]	[m]	[-]	[-]	[m]	[m ³ /s]

1. Rechengang mit \(\) (Schätzwert) gewählt 0,02

1,00 196,86

6

196,71

0,020

0,45

12,00

12,00

2. Rechenging mit λ (Realwert)

1,00

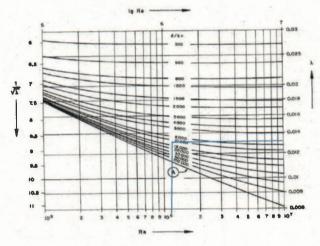
196,85

196,71

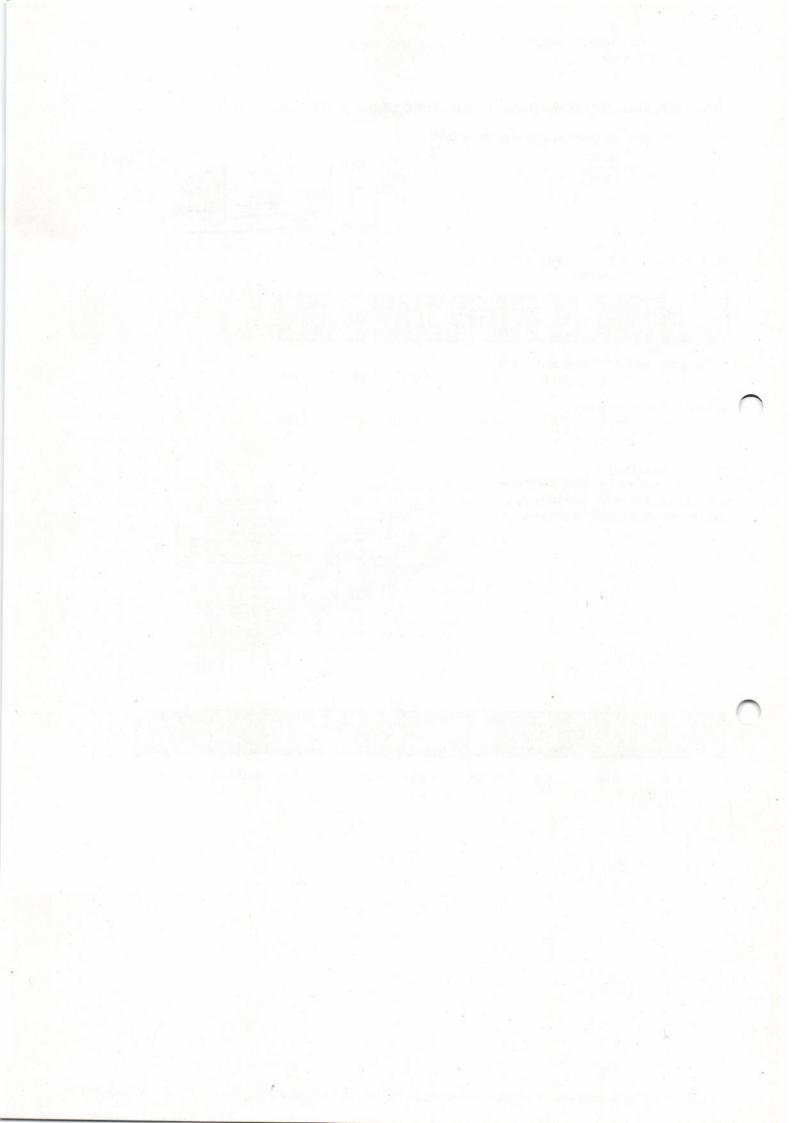
0,013

0.45

1,023


1,022

Kontrolle λ Wert (blau)


Re = v * 4rhy /v (λ aus dem Moody Diagramm)

k Wert gewählt 0,10 mm -> Berücksichtigung

von Einzelverluste an den Rohrverbindungen

Q	A	v	v	4 rhy	Re	k	d/k	Realwert \(\lambda \)
[m³/s]	[m²]	[m/s]	[m²/s]	[m]	[-]	[mm]	[-]	[-]
1,02	0,79	1,30	1,31E-06	12,56	1,25E+07	0,10	10.000,00	0,0

