

Sanierung Westkaje Kaiserhafen III 2. Bauabschnitt

Entwurfsbericht Bau

Entwurfsstatik Teil 3 - Anschlussstatik

Auftraggeber:

Die Senatorin für Wissenschaft und Häfen

Stand:

24.05.2022

Sanierung Westkaje Kaiserhafen III 2. Bauabschnitt

Entwurfsbericht Bau

Entwurfsstatik Teil 3 - Anschlussstatik

Auftragnehmer:

Bremenports GmbH & Co. KG Am Strom 2 27568 Bremen

Auftraggeber:

Die Senatorin für Wissenschaft und Häfen Katharinenstraße 37 28195 Bremen

Bearbeitung:

Bastian Borchers

Version: 00

Stand: 24.05.2022

Projektnummer / Dok-ID:

Revisionsseite

Revision	Datum	Von	Bis	Inde*	Bearbeiter	Grund
		Seite	Seite			
00	24.05.2022	1	24		Borchers	Ersterstellung

Aufgestellt,	Bremerhaven, 24.05.2022			
		Bastian Borch	ers (SC 111-11)
E-Mail:	bastian.borchers@bremenports	.de	Telefon:	0471 / 30901 - 229
Geprüft,	Bremerhaven, 24.05.2022			
		Christian Pabs	st (SC 11)	
E-Mail:	christian.pabst@bremenports.de	Э	Telefon:	0471 / 30901 - 215

Revisionsseite Seite III

Inhaltsverzeichnis

Rev	isionss	eite	3
Inha	altsverz	eichnis	4
Abb	ildungs	sverzeichnis	6
Unt	erlagen	verzeichnis	7
1	Allge	meines	9
	1.1	Höhenangaben	9
	1.2	Anschlussübersicht	10
2	Zusa	mmenstellen der Ankerkräfte	11
	2.1	Station 596 - 780	11
	2.2	Station 780 - 816	11
	2.3	Station 816 - 843	11
3	Ansc	hlusstyp 45 (1.BA)	12
	3.1	Vorbemerkungen	12
	3.2	Maßgebende Anschlusskraft 1.BA	13
	3.3	Zusammenstellen der Anschlusskräfte	14
	3.4	Nachweise	14
4	Ansc	hlusstyp 56	15
	4.1	Vorbemerkungen	15
	4.2	Zusammenstellen der Anschlusskräfte	15
	4.3	Nachweise	16
5	Ansc	hlusstyp 7_1	18
	5.1	Vorbemerkungen	18
	5.2	Nachweis Rundstahlanker	18
	5.3	Lasteinleitung Rundstahlanker - Betongurt (T-Anschluss)	19
6	Ansc	hlusstyp 7_2 Ankerwand	20
	6.1	Vorbemerkungen	20
	6.2	Unterlegscheibe mit Kugelmutter	20
	6.3	Gurtung	21
	6.4	Konsolen	22

7	Anso	:hlusstyp 0_1	23
	7.1	Vorbemerkungen	23
	7.2	Lasteinleitung Rundstahlanker - Betongurt (T-Anschluss)	23
8	Anso	:hlusstyp 0_2	24
	8.1	Vorbemerkungen	24
	8.2	Lasteinleitung Rundstahlanker - Betongurt (Platte)	24

Inhaltsverzeichnis Seite V

Abbildungsverzeichnis

Abbildung 1 Anordnung der Anschlüsse		1	0
Abbildung 2 Maßgebende Anschlusskraft 1. BA	[U8]1	3

Unterlagenverzeichnis

[U1] bremenports,

Sanierung Westkaje Kaiserhafen III 2. Bauabschnitt,

Entwurfsunterlage Bau (EW-Bau),

Erläuterungsbericht

Stand: 05.05.2022

[U2] bremenports,

Sanierung Westkaje Kaiserhafen III 2. Bauabschnitt,

Entwurfsunterlage Bau (EW-Bau),

Entwurfszeichnungen

Stand: 05.05.2022

[U3] bremenports,

Sanierung Westkaje Kaiserhafen III 2. Bauabschnitt,

Entwurfsunterlage Bau (EW-Bau),

Entwurfsstatik Teil 1 - Lastenheft

Stand: 17.05.2022

[U4] bremenports,

Sanierung Westkaje Kaiserhafen III 2. Bauabschnitt,

Entwurfsunterlage Bau (EW-Bau),

Entwurfsstatik Teil 2 - Spundwandstatik

Stand: 17.05.2022

[U5] bremenports,

Sanierung Westkaje Kaiserhafen III 2. Bauabschnitt,

Entwurfsunterlage Bau (EW-Bau),

Entwurfsstatik Teil 4 - Wasserseitiger Kranbahnbalken

Stand: 17.05.2022

[U6] bremenports,

Sanierung Westkaje Kaiserhafen III 2. Bauabschnitt,

Entwurfsunterlage Bau (EW-Bau),

Entwurfsstatik Teil 5 - Landseitiger Kranbahnbalken

Stand: 17.05.2022

[U7] bremenports,

Sanierung Westkaje Kaiserhafen III 2. Bauabschnitt,

Entwurfsunterlage Bau (EW-Bau),

Entwurfsstatik Teil 6 - Sturmpoller

Stand: 17.05.2022

[U8] F+Z Baugesellschaft

Sanierung Westkaje Kaiserhafen III

Ausführungsstatik Landseitiger Kranbahnbalken

01-STA-002 Rev. 00

[U9] Anker Schroeder ASDO GmbH ANCHORS FOR MARINE STRUCTURES M64 – M170 in accordance with EN1993-5 Stand Juli 2020

[U10]

1 Allgemeines

1.1 Höhenangaben

Für die Bearbeitung werden folgende Koordinatenreferenz- bzw. Bezugssysteme verwendet:

<u>Lageangaben:</u> Lagestatus 100; Gauß-Krüger-Koordinaten

Höhenangaben: Höhenstatus 170; System: DHHN2016;

Angaben in "NN +... m" (≙ Normalhöhen-Null (NHN) im DHHN2016 +m)

Hinweis: Sowohl Höhenangaben im DHHN2016 als auch Höhenangaben im DHHN92 sind

Angaben bezogen auf Normalhöhen-Null (NHN + x,xx m). Um spätere Widersprüche zu vermeiden (in Bremerhaven ist DHHN2016 ≠ DHHN92), werden die Höhenangaben im folgenden Dokument in Anlehnung an das DHHN85 als Höhe über Normalnull (NN +x,xx m) gekennzeichnet. Dieser Ansatz ist in sich

konsistent, da für Bremerhaven gilt:

DHHN2016 ≈ *DHHN85*

1.2 Anschlussübersicht

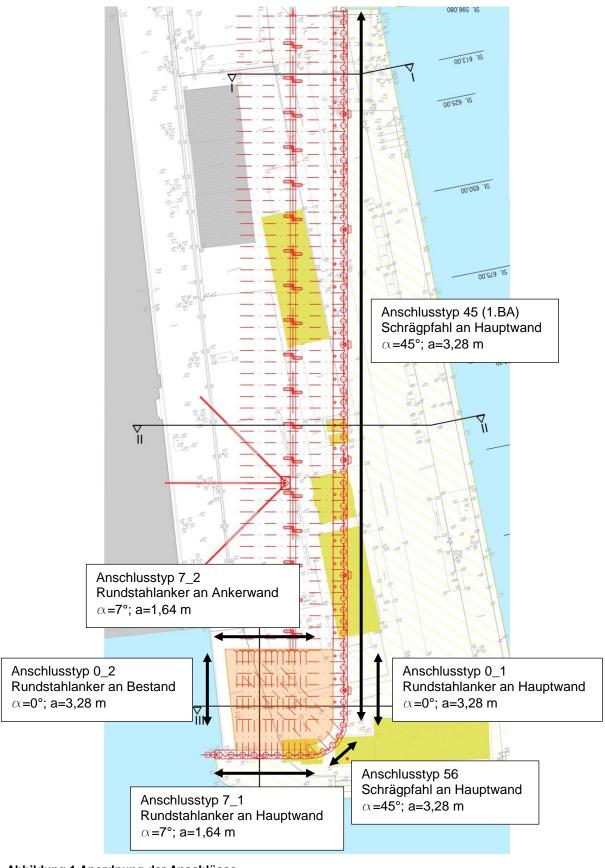


Abbildung 1 Anordnung der Anschlüsse

2 Zusammenstellen der Ankerkräfte

2.1 Station 596 - 780

Anschluss ohne Bodentausch

Die maximalen Ankerkräfte ergeben sich gemäß Statik Teil 1 - Spundwand und Verankerung wie folgt:

Bereich	Verankerung	Ankerneigung	Ankerraster	n _{Ed}	N _{Ed}
BPV	BA1 Schrägpfahl	45,0 °	3,28 m	881 kN/m	2.890 kN
BPIX	Schrägpfahl	45,0 °	3,28 m	720 kN/m	2.362 kN
BPX	Schrägpfahl	45,0 °	3,28 m	678 kN/m	2.224 kN
BPXI	Schrägpfahl	45,0 °	3,28 m	670 kN/m	2.198 kN
BPXII	Schrägpfahl	45,0 °	3,28 m	646 kN/m	2.119 kN
BPXIII	Schrägpfahl	45,0 °	3,28 m	651 kN/m	2.135 kN
BPXIV	Schrägpfahl	45,0 °	3,28 m	652 kN/m	2.139 kN
					0 kN
Maximale Ankerkraft	Schrägpfahl (BS-P)	45 °		720 kN/m	2.362 kN

2.2 Station 780 - 816

Anschluss mit Bodentausch

Die maximalen Ankerkräfte ergeben sich gemäß Statik Teil 1 - Spundwand und Verankerung wie folgt:

Ber	eich	Verankerung	Ankerneigung	Ankerraster	n _{Ed}	N _{Ed}
BPXV	(BS-P)	Schrägpfahl	45,0 °	3,28 m	786 kN/m	2.578 kN
BPXVI	(BS-P)	Schrägpfahl	45,0 °	3,28 m	796 kN/m	2.611 kN
BPXVII	(BS-P)	Schrägpfahl	45,0 °	3,28 m	753 kN/m	2.470 kN
BPXVII	(BS-P)	Schrägpfahl	56,0 °	3,28 m	950 kN/m	3.116 kN
			۰	m	kN/m	0 kN
BPXV	(BS-T)	Schrägpfahl	45,0 °	3,28 m	786 kN/m	2.578 kN
BPXVI	(BS-T)	Schrägpfahl	45,0 °	3,28 m	889 kN/m	2.916 kN
BPXVII	(BS-T)	Schrägpfahl	45,0 °	3,28 m	851 kN/m	2.791 kN
BPXVII	(BS-T)	Schrägpfahl	56,0 °	3,28 m	1.072 kN/m	3.516 kN
						0 kN
Maximale Ank	kerkraft	Schrägpfahl (BS-P)	45	,	796 kN/m	2.611 kN
		Schrägpfahl (BS-P)	56	•	950 kN/m	3.116 kN
		Schrägpfahl (BS-T)	45	,	889 kN/m	2.916 kN
		Schrägpfahl (BS-T)	56	•	1.072 kN/m	3.516 kN

2.3 Station 816 - 843

 $n_{Ed} = 632 \text{ kN/m} \rightarrow N_{Ed} = 1,64 * 632 = 1036,48 \text{ kN}$

3 Anschlusstyp 45 (1.BA)

3.1 Vorbemerkungen

Der Schrägpfahlanschluss Anschlusstyp 45 (1.BA) wird baugleich mit dem einheitlich ausgeführten Schrägpfahlanschluss des 1. Bauabschnitts hergestellt. Bei kleineren Ankerkräften wird im Rahmen der Entwurfsstatik auf eine detaillierte Bemessung verzichtet und der Nachweis über einen Vergleich der Schnittgrößen geführt.

3.2 Maßgebende Anschlusskraft 1.BA

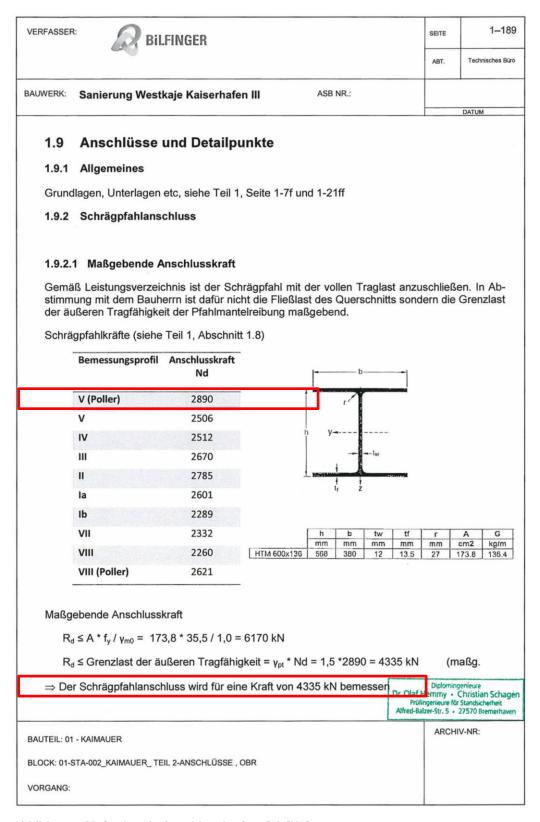


Abbildung 2 Maßgebende Anschlusskraft 1. BA [U8]

3.3 Zusammenstellen der Anschlusskräfte

Eingangswerte						
Bemessungsprofil:	BPXVI					
Lastfallkombination:	BS-T					
			_			
Ankernormalkraft	n _{Ed} =	889,00 kN/m				
Ankerneigung	$\alpha =$	45 °	}	\Rightarrow	N _{Ed} =	2.915,92 kN
Ankerraster	b _{sys} =	3,28 m	J			
Ankervertikallast	$a_{v,d}=$	628,62 kN/m		\Rightarrow	A _{v,d} =	2.061,87 kN
Ankerhorizontallast	a _{h,d} =	628,62 kN/m		\Rightarrow	A _{h,d} =	2.061,87 kN
Schrägpfahl	Profil:	HTM 600/136			A=	173 cm ²
	f _{yk} =	355 N/mm²			U=	251 cm
	$I_y =$	99.094 cm ⁴			$W_y =$	3.489 cm ³
	i _y =	23,93 cm				
Bemessungsrelevan	te Lastfälle	<u>e</u>				
Lastfall 01 "Anschluss	kraft Spund	wandberechnung"	N _{Ed,01} =	1,15 * 2.91	5,92 =	3.353,31 kN*)
Lastfall 02 ""			N _{Ed,02} =			kN
Lastfall 10 "Grenzbetra	achtung Mai	ntelreibung"	N _{Ed,10} =	1,50 * 2.91	5,92 =	4.373,88 kN
Lastfall 11 "Grenzbetra	achtung Sta	hlquerschnitt HTM 600/136	N _{Ed,11} =	173 * 355	10 =	6.141,50 kN
Lastfall 12 "Grenzbetra	achtung 70%	% Stahlquerschnitt "HTM 600/136	N _{Ed,12} =	0,70 * 6.14	2 =	4.299,05 kN
*) Erhöhung der Regelank	kerkräfte um	15% zur Berücksichtigung unterschie	edlicher Steifi	igkeiten (EA	U Abschnitt 8.4).
Lastfall 01 "Anschluss	kraft Spund	wandberechnung"	n _{Ed,01} =	3.353,31 /	3,28 =	1.022,35 kN/m
Lastfall 02 ""			n _{Ed,02} =	0,00 / 3,28	=	0,00 kN/m
Lastfall 10 "Grenzbetra	achtung Mai	ntelreibung"	n _{Ed,10} =	4.373,88 /	3,28 =	1.333,50 kN/m

3.4 Nachweise

Die Nachweisführung erfolgt über einen Vergleich der Schnittgrößen. Maßgebend im 2. Bauabschnitt ist die Anschlusskraft am Bemessungsprofil BP XVI. Der Nachweis ergibt sich somit wie folgt:

 $n_{Ed,11} = 6.141,50 / 3,28 =$

4.299,05 / 3,28 =

$$N_{Ed,BPXVI,10} = 4.374 \text{ kN} \approx R_{d,1.BA} = 4.335 \text{ kN}$$

Lastfall 11 "Grenzbetrachtung Stahlquerschnitt HTM 600/136

Lastfall 12 "Grenzbetrachtung 70% Stahlquerschnitt "HTM 600/136 n_{Ed,12} =

Keine weiteren Nachweise erforderlich.

1.872,41 kN/m 1.310,69 kN/m

4 Anschlusstyp 56

4.1 Vorbemerkungen

Der Schrägpfahlanschluss Anschlusstyp 56 wird analog zum ausgeführten Schrägpfahlanschluss des 1. Bauabschnitts hergestellt. Aufgrund der größeren Ankerneigung und den daraus resultierenden größeren Ankerkräften müssen abweichenden Kopfbolzen eingebaut werden.

4.2 Zusammenstellen der Anschlusskräfte

Eingangswerte						
Bemessungsprofil:	BPXVII					
Lastfallkombination:						
Ankernormalkraft	n _{Ed} =	1.072,00 kN/m	7			
Ankerneigung	$\alpha =$	56 °	}	\Rightarrow	N _{Ed} =	3.516,16 kN
Ankerraster	b _{sys} =	3,28 m	J			
Ankervertikallast	a _{v,d} =	888,73 kN/m		\Rightarrow	A _{v,d} =	2.915,03 kN
Ankerhorizontallast	a _{h,d} =	599,45 kN/m		\Rightarrow	A _{h,d} =	1.966,21 kN
Schrägpfahl	Profil:	HTM 600/136			A=	173 cm ²
	f _{yk} =	355 N/mm²			U=	251 cm
	l _y =	99.094 cm ⁴			W _y =	3.489 cm ³
	i _y =	23,93 cm				
Bemessungsrelevar	nte Lastfäll	<u>e</u>				
Lastfall 01 "Anschluss	kraft Spund	lwandberechnung"	N _{Ed,01} =	1,15 * 3.5	16,16 =	4.043,58 kN*)
Lastfall 02 ""			N _{Ed,02} =			kN
Lastfall 10 "Grenzbetr	achtung Ma	ntelreibung"	N _{Ed,10} =	1,50 * 3.5	16,16 =	5.274,24 kN
Lastfall 11 "Grenzbetr	achtung Sta	ahlquerschnitt HTM 600/136	N _{Ed,11} =	173 * 355	/ 10 =	6.141,50 kN
Lastfall 12 "Grenzbetr	achtung 70°	% Stahlquerschnitt "HTM 600/136	N _{Ed,12} =	0,70 * 6.1	42 =	4.299,05 kN
*) Erhöhung der Regelan	kerkräfte um	15% zur Berücksichtigung unterschi	edlicher Steil	figkeiten (EA	AU Abschnitt 8.4	1).
Lastfall 01 "Anschluss	kraft Spund	lwandberechnung"	n _{Ed,01} =	4.043,58 /	3,28 =	1.232,80 kN/m
Lastfall 02 ""			n _{Ed,02} =	0,00 / 3,28	3 =	0,00 kN/m
Lastfall 10 "Grenzbetr	achtung Ma	ntelreibung"	n _{Ed,10} =	5.274,24 /	3,28 =	1.608,00 kN/m
Lastfall 11 "Grenzbetr	achtung Sta	ahlquerschnitt HTM 600/136	n _{Ed,11} =	6.141,50 /	3,28 =	1.872,41 kN/m
Lastfall 12 "Grenzbetr	achtung 70°	% Stahlquerschnitt "HTM 600/136	n _{Ed,12} =	4.299,05/	3,28 =	1.310,69 kN/m

4.3 Nachweise

Die Nachweisführung erfolgt analog zum Anschlusstyp 45 für die maximal aufnehmbare Mantelreibung.

 $N_{\text{Ed,BPXVII,10}} = 5275 \text{ kN}$

Nachweis Telleranker

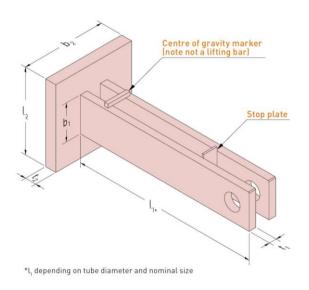
Gewählt:	4 Kopfbolzen	D= 80 mm	1	S355 J2	
	mit Teller	D= 240 mi	m		
Einwirkung					
Anschlusskraft	N _{Ed} =	5.275 kN			
Querschnittswerte					
Bolzen	D _{Anker} =	80 mm			
	A _s =	50,27 cm ²			
Teller	D _{Teller} =	240 mm			
Teller	A _s =	452,39 cm ²			
	A ₅ -	452,59 CIII			
Material	f _{yk} =	335 N/mm²	γ_{M0} =	1,00	
	f _{uk} =	490 N/mm²	$\gamma_{\rm M2}$ =	1,25	
	a _{x,Anker} =	280 mm	< 720 mm		
	a _{y,Anker} =	568 mm	< 720 mm		
Spannungsnachweis Bolzen	,				
	N _{Ed} =			5275 / 4 =	1.319 kN
	$\sigma_{\rm Ed}$ =	N _{Ed} / A _s		1319 * 10 / 50 =	262 N/mm ²
		$min\{f_{yk}/\gamma_{M0}; 0,90*f\}$	uk / 7M2}		335 N/mm²
		f_{yk}/γ_{M0}		= 335 / 1,00 =	335 N/mm ²
		f _{uk} / γ_{M2}		= 0,90 * 490 / 1,25 =	353 N/mm²
Nachweis:	$\sigma_{\sf Ed}$ =	262,36 N/mm²	<	$\sigma_{\rm Rd}$ = 335,00	N/mm²
	Der Nachw	eis wurde erfüllt, die A	usnutzung b	eträgt 78%.	

1		- 4	_ :	Beton
1 25	eini	eiri in	n in	HATON
LUSI				

Nachweis:	N _{Ed} =	1.319 kN	< F _{Rd.}	_u = 1.180 k	:N
		F _{Rd,u} = 3 * 17 / 10 * 4	102 =		2.051 kN
		F _{Rd,u} = 1180 * 17 / 10	* (2051 / 1180)^0,	5 =	1.180 kN
	F _{Rd,u} = MI	N(1180 ; 2051) =			1.180 kN
	A _{C,1} =		3,14 * 57 /	2 * 28 / 2 =	1.199 cm ²
	A _{C.0} =			452 - 50 =	402 cm ²
	N _{Ed} =				1.319 kN
				D ₂ =	57 cm
C30/37	f_{cd} =	17,00 N/mm ²	Ellipse	D ₁ =	28 cm

Der Nachweis wurde nicht erfüllt, die Anker werden versetzt angeordnet.

Lasteinleitung in Beton					
C30/37	f _{cd} =	17,00 N/mm²	Ellipse	D ₁ =	28 cm
				D ₂ =	72 cm
	N _{Ed} =				1.319 kN
	A _{C,0} =			452 - 50 =	402 cm ²
	A _{C,1} =		3,14 * 72	/ 2 * 28 / 2 =	1.533 cm ²
	F _{Rd,u} = MI	N(1335 ; 2051) =			1.335 kN
		F _{Rd,u} = 1335 * 17 / 1	0 * (2051 / 1335)^0	,5 =	1.335 kN
		F _{Rd,u} = 3 * 17 / 10 *	402 =		2.051 kN
Nachweis:	N _{Ed} =	1.319 kN	< F _{Rd}	_u = 1.335 kľ	1
	Der Nachweis	wurde erfüllt, die Aus	nutzung beträgt 99	%.	


5 Anschlusstyp 7_1

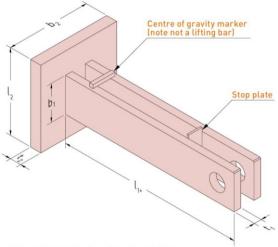
5.1 Vorbemerkungen

Der Anschluss Anschlusstyp 7_1 dient dem Anschluss der Rundstahlanker M90 an die Hauptwand und wird anstelle von Kopfbolzen mittels standardisierter Einbauteile ausgeführt.

 $n_{Ed} = 1,15 * 635 = 730,25 \text{ kN/m}$

5.2 Nachweis Rundstahlanker

Bemessung der Rundstahlanker mit gestau	ıchten End	<u>en</u>					
Ankerraster	a=	1,64 m					
Ankerkneigung	α=	6,5 °					
Ankerkraft	n _{Ed} =	730,25 kN/m	\Rightarrow	A _d =	1.198 kN		
	$n_{\text{Ek}} \approx$	541 kN/m					
	a _{H,k} =	537 kN/m	\Rightarrow	A _{H,k} =	881 kN		
	a _{v,k} =	61 kN/m	=>	A _{H,k} =	398 kN		
Geometrie							
Gewindegröße	M	90	≈ 3,54	**			
Streckgrenze	f _{yk} =	355	$\gamma_{M2} = 1,00$				
Zugfestigkeit	f _{uk} =	510	$\gamma_{\rm M2}$ = 1,25				
Kerbfaktor	$k_t =$	0,6					
Spannungsquerschnitt (Gewinde)	As=	5.591 mm ²					
Schaftquerschnitt	A _G =	3.848 mm ²					
Nachweis							
Grenzzugkraft im Kern	F _{tt,Rd} = 0	,60 * 5591 * 510 /	(1,25 * 1000)		=	1369 kN	
Grenzzugkraft im Schaft	$F_{tg,Rd} = 3$	8848 * 355 / (1,00	* 1000)		=	1366 kN	
Nachweis	A _d =	1197,61 kN	< 1	min (F _{tt,Rd} ;	F _{tg,Rd})=	1366 kN	
	μ =	0,88 -					


5.3 Lasteinleitung Rundstahlanker - Betongurt (T-Anschluss)

Die Lasteinleitung wird für den Bemessungswiderstand der Rundstahlanker nachgewiesen.

Gewählt: M90 ASDO355; Ft,Rd = 1.366 kN; C30/37

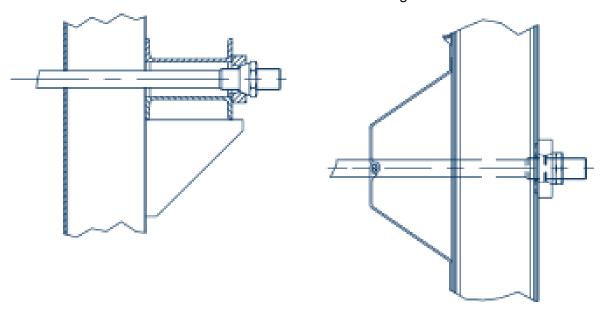
T-Anchors for combi-walls

*l, depending on tube diameter and nominal size

Nominal shaft diameter													
Eye ref		inches	2 1/2	2 3/4	3	3	3 1/4	3 1/2	3 1/2	3 3/4	4	4 1/4	4 1/2
Tension plates width	b ₁	mm	130	145	160	170	170	190	190	195	225	245	270
Tension plates thickness	t ₁	mm	30	30	30	30	35	40	40	40	40	40	40
Bearing plates height & width*	l ₂ x b ₂	mm	230	250	270	290	310	330	340	360	380	400	430
Bearing plates thickness	t ₂	mm	35	40	45	45	50	50	55	55	60	65	70
Pin diameter		mm	50	55	60	60	64	72	72	75	80	85	90

Abmessungen gelten für einen M90 ASDO500; $F_{t,Rd}$ = 1.771 kN und einen C35/45 mit f_{cd} = 19,6 N/mm². Verwendet wird ein M90 ASDO355; $F_{t,Rd}$ = 1.771 kN und einen C30/37 mit f_{cd} = 17,0 N/mm².

$$\mu_{FtRd}$$
= 1.331 / 1.771 = 0,75 < μ_{fcd} = 17,0 /19,8 = 0,86


Die Druckfestigkeit des Betons wird auf 86% abgemindert, die zulässige Zugkraft auf 75%. Die Geometrie kann trotz abweichender Materialeigenschaften verwendet werden.

6 Anschlusstyp 7_2 Ankerwand

6.1 Vorbemerkungen

Der Anschluss Anschlusstyp 7_2 dient dem Anschluss der Rundstahlanker M90 an die Ankerwand und wird mittels standardisierter Einbauteile ausgeführt.

6.2 Unterlegscheibe mit Kugelmutter

Zur Vermeidung von Biegemomenten im Gewinde werden Unterlegscheiben mit Kugelmuttern vorgesehen.

6.3 Gurtung

Gewählt:	2x	U-Profil	U40	0	S	355	JO
Belastung							
Der Nachweis wird für den Bemessungsw	iderstand de	r Rundstah	lanker	geführt			
Ankerkraft	N _{Ed} =	1.366	kN	=>	A _{H,k} =	1.357	kN
				\Rightarrow	A _{v.k} =	155	kN
	n _{Ed} =	833	kN	\Rightarrow	a _{H,d} =	828	kN
				\Rightarrow	a _{v,d} =	94	kN
	n _{Ek} =	617	kN	\Rightarrow	a _{H,k} =	613	kN
				\Rightarrow	a _{v,k} =	70	kN
Geometrie							
Profil		U400					
Profilhöhe = Gurtbreite	h=	400	mm				
Streckgrenze	f _{yk} =	355					
Elastisches Widerstandsmoment	W _y =	1020	*	2		=	2040 cm ³
Elastisches Widerstandsmoment	W _z =	102	*	2		=	204 cm ³
Abstand der Konsolen	b=	1,6	m				
Lastzusammenstellung in Vertikalrichtung							
aus Gurtung	g _{k,1} =	1,35	*	0,72 * 2		=	1,94 kN/m
aus Ankerkraft	g _{k,2} =	:					-69,84 kN/m
aus Bodenauflast*	g _{k,3} =	19 * 1 + 11	* 3 =				0 kN/m²
*)bei gleichmäßiger Setzungen -bspw. im Berei	ch von Ankerta	afel- wird die	Boden	auflast nicht ang	esetzt.		
aus Erddruck	e _{agv,k} =	:					0 kN/m
bezogen auf die 1-fache Gurtbreite	$\Sigma g_k =$	0 * 1 * 400	0 / 100	0 + 1,94 + -69,	84 + 0	=	-67,91 kN/m
aus Nutzlast*	$q_k =$:					20,00 kN/m ²
*)bei gleichmäßiger Setzungen -bspw. im Berei	ch von Ankerta	afel- wird die	Nutzla	st nicht angeset.	zt.		
aus Erddruck	e _{apv,k} =	:					0 kN/m
bezogen auf die 1-fache Gurtbreite	$\Sigma q_k =$	20 * 1 * 40	00 / 10	00 + 0		=	8,00 kN/m
	$g_k + q_k =$	-67,91 + 8	3,00			=	-59,91 kN/m
	$g_d + q_d =$	1,35 * -67	,91 + 1	1,50 * 8,00		=	-79,67 kN/m
Schnittgrößenermittlung							
	M _{ed,z} =	1 / 10 * 82	28 * 1,6	64^2		=	222,58 kNm
		1 / 10 * -8					-25,50 kNm
		1/2*828				=	678,61 kN
	V _{Ed,z} =	1/2*-80	* 1,60			=	-63,74 kN
Nachweis							
				$M_{ed,y}/W_z$			
		109,11				=	234,09 N/mm ²
		234,09		12	<		322,73 N/mm ²
	μ =	0,73	-				

Der Nachweis wurde erfüllt. Die maximale Ausnutzung beträgt 73%

6.4 Konsolen

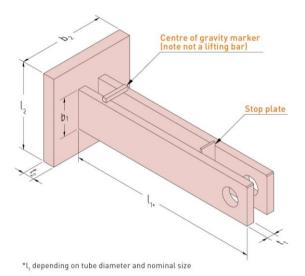
Gewählt: Blech	(b/h/	t)= (470 / 470	10)	S355 J2
ie.	f _{yk} =	355 N/mm²	γ _{м0} =	1,00
	f _{uk} =	490 N/mm²	$\gamma_{\rm M2}$ =	1,25
	$\sigma_{\rm Rd} =$	$\min\{f_{yk}/\gamma_{M0}; 0,90*f_{uk}/\gamma_{M2}\}$	= min{ 355; 353} =	353 N/mm²
		fyk/7MO	= 355 / 1,00 =	355 N/mm²
		0,90 * f _{uk} / γ_{M2}	= 0,90 * 490 / 1,25 =	353 N/mm ²
	$\tau_{\rm Rd} =$	$f_{yk}/(3^{0.5}*\gamma_{M0})$	= 355 / (3^0,5 * 1,00) =	205 N/mm²
Schnittgrößen am A	Anschnitt			
	N _{Ed} =			0 kN
	V _{Ed} =			64 kN
	M _{Ed} =	64 kN * 0,20 m	=	13 kNm
Spannungsnachwe	is am Ansch	<u>nnitt</u>		
	h=	470 mm	A=	47 cm ²
	b=	10 mm	W _v =	368 cm ³
			l _y =	8.652 cm ⁴

Z	$\sigma_{\rm Ed}$	$ au_{Ed}$	$\sigma_{\sf vd}$		Spannung	gsverteilung	Rechtec	kquerschnitt	
[mm]	[N/mm²]	[N/mm²]	[N/mm²]						
235	34,77	0,00	34,77	_		300			
212	31,29	3,88	32,00			0,0	00		35
188	27,81	7,35	30,59			7			32
165	24,34	10,42	30,30			200	1		31
141	20,86	13,07	30,79				1		30 31
118	17,38	15,32	31,72					/	31
94	13,91	17,16	32,81			100		\wedge	33
71	10,43	18,59	33,84					1	34
47	6,95	19,61	34,67					1	35
24	3,48	20,22	35,20	-40	-30 -20	-10	10	20 3	35 3540
0	0,00	20,43	35,38					- 1	35
-24	-3,48	20,22	35,20					/	34
-47	-6,95	19,61	34,67		/	-100			32
-71	-10,43	18,59	33,84				,		31
-94	-13,91	17,16	32,81						30 31
-118	-17,38	15,32	31,72			-200 0,0	00		32
-141	-20,86	13,07	30,79	-35		7			35
-165	-24,34	10,42	30,30						
-188	-27,81	7,35	30,59			-300			
-212	-31,29	3,88	32,00	=	Nomalspanni Vergleichsspa			SchubspannungBemessungswide	rstand
-235	-34,77	0,00	34,77		Schwerachse				
ormalspar	nnung:	σ=	35	N/mm²	<	352,80	N/mm²	μ=	0,1
chubspan	nung:	$\tau =$	20	N/mm²	<	204,96	N/mm²	μ=	0,1
oraloichee	pannung:	$\sigma_v =$	25	N/mm²	<	352,80	M/mama2	u=	0,1

7 Anschlusstyp 0_1

7.1 Vorbemerkungen

Der Anschluss Anschlusstyp 0_1 dient dem Anschluss der Rundstahlanker M60 an die Hauptwand und wird anstelle von Kopfbolzen mittels standardisierter Einbauteile ausgeführt.


7.2 Lasteinleitung Rundstahlanker - Betongurt (T-Anschluss)

Die Lasteinleitung wird für den Bemessungswiderstand der Rundstahlanker nachgewiesen.

Gewählt: M60; Ft,Rd = 565 kN

T-Anchors for combi-walls

Nominal shaft diameter													
Eye ref		inches	2 1/2	2 3/4	3	3	3 1/4	3 1/2	3 1/2	3 3/4	4	4 1/4	4 1/
Tension plates width	b ₁	mm	130	145	160	170	170	190	190	195	225	245	270
Tension plates thickness	t,	mm	30	30	30	30	35	40	40	40	40	40	40
Bearing plates height & width*	$l_2 \times b_2$	mm	230	250	270	290	310	330	340	360	380	400	430
Bearing plates thickness	t ₂	mm	35	40	45	45	50	50	55	55	60	65	70
Pin diameter		mm	50	55	60	60	64	72	72	75	80	85	90

Abmessungen gelten für einen M60 ASDO500; $F_{t,Rd}$ = 748 kN und einen C35/45 mit f_{cd} = 19,6 N/mm². Verwendet wird ein M60 ASDO355; $F_{t,Rd}$ = 565 kN und einen C30/37 mit f_{cd} = 17,0 N/mm².

$$\mu_{FtRd}$$
= 565 / 748 = 0,76 < μ_{fcd} = 17,0 /19,8 = 0,86

Die Druckfestigkeit des Betons wird auf 86% abgemindert, die zulässige Zugkraft auf 76%. Die Geometrie kann trotz abweichender Materialeigenschaften verwendet werden.

8 Anschlusstyp 0_2

8.1 Vorbemerkungen

Der Anschluss Anschlusstyp 0_2 dient dem Anschluss der Rundstahlanker an die Bestandswand und wird anstelle von standardisierten Einbauteile über Lasteinleitungsplatten ausgeführt.

8.2 Lasteinleitung Rundstahlanker - Betongurt (Platte)

Lasteinleitung

Gewählt:	Platte	FI 300 x	300 x 35	S355 J2+N	
Lasteinleitung in Beton					
Einwirkung					
	N _{Ed} =	565 kN			
Querschnittswerte					
Platte	b=	300 mm	A _{Brutto} =	900 cm ²	
	h=	300 mm	A _{Netto} =	872 cm ²	
	t=	35 mm			
	$\Delta_{Loch} =$	28,26 cm ²			
Beton	C20/25		f _∞ =	20,00 N/mm²	
Ebene Lasteinleitung	A _{C,0} =				871,74 cm ²
Räumliche Lastausbreitung	A _{C,1} =			9 * 872 =	7.846 cm ²
	F _{Rd,u} =	MIN(5230 ; 5230) =			5.230,44 kN
	110,0	F _{Rd,u} = 872 * 20		872)^0,5 =	5.230,44 kN
		F _{Rd,u} = 3 * 20 /			5.230,44 kN
Nachweis:	N _{Ed} =	565 kN	<	F _{Rd,u} = 5.230	(N
	Der Nach	weis wurde erfüllt, die	Ausnutzung I	peträgt 11%.	