

Anlage zum wasserbehördlichen Verfahren Bromerhaven, den 12. JUNI 2025

Engineering Performance

Stellungnahme zum Bericht "Untersuchungen zum Sedimenttransport in der geplanten Geestemündung in Bremerhaven"

Auftraggeber:

bremenports GmbH & Co. KG - Abteilung Bau -

Ansprechpartner: Ulrich Kraus

Am Strom 2

27568 Bremerhaven

Bearbeiter:

Dr. Oliver Stoschek

M.Sc. Patrick Storz

DMT-Bearbeitungs-Nr.:

CME3-2019-01331

Tel.-Durchwahl:

030/2060969-37

Fax-Durchwahl:

030/2060969-10

Essen, den 12.06.2024

DMT GmbH & Co. KG

(i.A. Dr. Stoschek)

i. A. Storz)

(i.V. Hentrich)

Sitz der Gesellschaft DMT GmbH & Co. KG Standort Essen

Am TÜV 1 45307 Essen / Deutschland

Tel.: +49 201 172-1432 Fax::+49 201 172-1880 Am TÜV 1 45307 Essen, Deutschland

Amlagericht Essen HRA 9091 Vorsitzender des Aufsichtsrates: Jürgen Himmelsbach Tel +49 201 172-01 Fax +49 201 172-1462 info@dnt-group.com www.dnt-group.com WEEE-Reg.-Nr. DE 25917380

TÜV NORD GROUP

Geschäftsführung: DMT Verwaltungsgesellschaft mbH, Essen Amtsgericht Essen HRB 20420

Vertreten durch die Geschäfteführer: Dr. Maik Tiedemann (Vorsitzender) Jens-Peter Lux

Seite 2 von 3

Stellungnahme zum Feststoffregime innerhalb der Geeste bis zum Tidesperrwerk als Ergänzung zum Bericht "Untersuchungen zum Sedimenttransport in der geplanten Geestemündung in Bremerhaven"

Die Auswirkungen des Neubaus der Hafenmole beschränken sich vornehmlich auf den Nahbereich um die Mole. In Kapitel 8 des Berichtes "Untersuchungen zum Sedimenttransport in der geplanten Geestemündung in Bremerhaven" von DMT GmbH & Co. KG werden die Beeinflussungen der Wasserstände und Fließgeschwindigkeiten durch den Neubau dargestellt und ausgewertet. In dem Bereich der Geeste zwischen Fähranleger und Tidesperrwerk ergeben sich im Modell keine Veränderungen der Fließgeschwindigkeiten und somit auch keine veränderten Transportkapazitäten.

Um das Angebot an verfügbarem Schwebstoffen zu bewerten sind die im Ist- und Planzustand berechneten Schwebstoffkonzentrationen am Fähranleger im Fischereivorhafen und rund 200 m oberstrom in der Geeste ausgewertet worden. Abbildung 1 und Abbildung 2 zeigen die berechneten Schwebstoffkonzentrationen im betrachteten Modellzeitraum. Direkt am Fähranleger zeigt sich noch eine geringe Reduktion der verfügbaren Schwebstoffmengen; der Mittelwert über den betrachteten Zeitraum reduziert sich von 0,100 kg/m³ um 22 % auf 0,078 kg/m³. 200 Meter oberstrom ist kann bereits kein messbarer Einfluss aus der geänderten Planvariante in der Geeste festgestellt werden. Der Mittelwert der berechneten Schwebstoffmengen verändert sich dort um den rechnerischen Wert von weniger als 0,001 kg/m³.

Im Bereich direkt oberstrom des Fähranlegers sind somit noch sehr geringe Änderungen des Fest- und Schwebstofftransportes möglich. Ab 200 m oberstrom ist aufgrund der unveränderten Strömungsverhältnisse und des unveränderten Schwebstoffdargebotes mit keiner Veränderung des Fest- und Schwebstofftransportes zu rechnen.

Für die Untersuchungen zu den Differenzen im Sedimenttransport sollten Tide, Salzgehalt und Trübung Verhältnisse abbilden, die im Jahr überwiegend vorherrschen und keine Sondereffekte aufweisen. Dies ermöglicht eine möglichst allgemeingültige Aussage.

Variierende Schwebstoffgehalte sind in einem Ästuar üblich. Durch das Oberwasser werden die Schwebstofffrachten in der Tideweser verändert. Bei geringen bis mittleren Binnenabflüssen sind die Schwebstoffkonzentrationen in Höhe der Geestemündung besonders hoch. Geringes Oberwasser verlagert die sogenannte "Trübungszone" stromaufwärts. Bei hohen Abflüssen liegt sie in der Außenweser unterhalb von Bremerhaven. Der Dichteeffekt als maßgeblicher Effekt für den Sedimenteintrag in die Geestemündung nimmt ab. Der August 2016 wurde auf dieser Basis als Untersuchungszeitraum ausgewählt.

Seite 3 von 3

SSC am Fähranleger

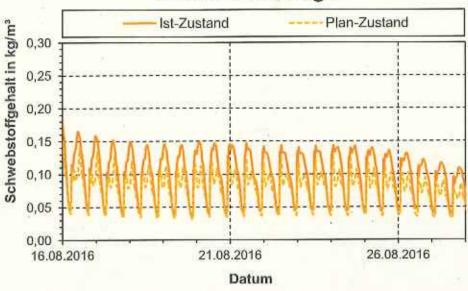


Abbildung 1: Berechnete, tiefengemittelte Schwebstoffgehalte im Ist- und Planzustand auf Höhe des Fähranlegers im Fischereivorhafen

SSC Geeste, 200m oberstrom Fähranleger

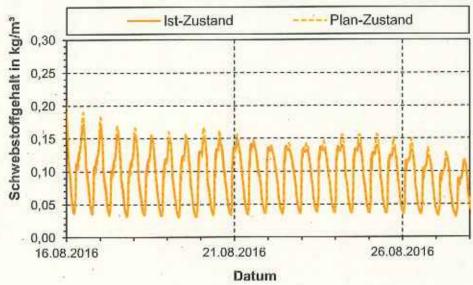


Abbildung 2: Berechnete, tiefengemittelte Schwebstoffgehalte im Ist- und Planzustand in der Geeste, 200 m oberstrom des Fähranlegers

Eine gesonderte Untersuchung über den Eintrag von Fest- und Schwebstoffen aus der Geeste in den Fischereihafen wurde nicht durchgeführt, da sich die Randbedingungen im Bereich zwischen Tidesperrwerk und Fähranleger nicht verändert haben.

Untersuchungen zum Sedimenttransport in der geplanten Geestemündung in Bremerhaven

Auftraggeber: bremenports GmbH & Co. KG - Abteilung Bau -

Ansprechpartner: Ulrich Kraus

Am Strom 2

27568 Bremerhaven

Bestelldatum: 06.02.2023

Bearbeiter: Dr. Oliver Stoschek

M.Sc. Patrick Storz

DMT-Bearbeitungs-Nr.: CME3-2019-01331

Tel.-Durchwahl: 030/2060969-37

Fax-Durchwahl: 030/2060969-10

Essen, den 29.06.2023

DMT GmbH & Co. KG

(Dr. Stoschek)

Dieser Bericht besteht aus 67 Seiten.

i. A. Slavz (Storz)

Kurzfassung

Im Bereich der Einfahrt zur Geeste in Bremerhaven ist das Molenbauwerk auf der Nordseite abgängig und soll ersetzt werden. Der hier vorliegende Bericht untersucht die Auswirkungen eines erweiterten Neubaus der Mole auf den Wasserstand der Weser sowie die Strömungen und die Sedimentation in der Weser und im Vorhafen der Geestemündung. Hierzu wurde ein 3-dimensionales numerisches Modell aufgebaut und der Planzustand für die neue Führung der Nordmole in der Einfahrt zur Geestemündung untersucht. Der Planzustand beinhaltet den Neubau der Nordmole sowie die nördlich der Nordmole angrenzende geplante Lagune.

Die Konzeption und Ausrichtung des Molenbauwerks ist bereits durch vorhergehende Untersuchungen festgelegt worden. Eine Voruntersuchung zum Sedimenteintrag zu den Auswirkungen insbesondere des Sedimenttransportes fand ebenfalls bereits für zwei unterschiedliche Planvarianten statt.

Mit Hilfe eines numerischen Modells sind die Ablagerung von Ton- und Schlufffraktionen im Vorhafen selbst und die Ablagerung von Sandfraktionen vor der Hafeneinfahrt, bzw. im Bereich zwischen den Molenköpfen untersucht worden.

Das Berechnungsmodell ist hydraulisch anhand mehrerer Parameter (Wasserstand, Temperatur und Salzgehalt) validiert worden. Für die Validierung des Feststofftransportes sind einzelne Peilungen im Hafenbereich und weitere Sohlmessungen herangezogen worden sowie ergänzende Informationen aus den Arbeiten von Prof. Nasner. Die Sedimentation wird für einen ohne Extremereignisse verlaufenden Nipp-Spring-Nipp Zyklus im Jahr 2016 bewertet. Die durchgeführten Sensitivitätstests zeigen zudem eine hohe Stabilität hinsichtlich der getesteten Berechnungsparameter.

Die Auswirkungen auf die Weser ist auf den direkten Bereich um die Molen beschränkt. Der Neubau der Mole führt zu keinen Einschränkungen der Flut- und Ebbeströmungen und somit auch nur zu lokalen Änderungen im Sedimenttransport der Weser.

Aufgrund der größeren Hafenflächen muss im Planzustand eine größere Menge von Sedimenten bewirtschaftet werden. Eine Veränderung gegenüber dem Ist-Zustand resultiert hauptsächlich aus der Vergrößerung der Hafenfläche.

Weiterhin führt die zukünftig vorhandene Räumwirkung der Ebbströmung im Planzustand dazu, dass sich kaum Sedimente im Einfahrtskorridor entlang der Nordmole absetzen.

Inhaltsverzeichnis

		Seite
1	Einleitung und Veranlassung	8
2	Beschreibung des Modells und der Randbedingungen	8
2.1	Modellgebiet	8
2.2	Berechnungsmodell	9
2.3	Wahl des Modellzeitraumes	9
2.4	Berechnungsnetz und Bathymetrie	11
2.5	Hydraulische Randbedingungen	13
2.5.1	Rechtenfleth	14
2.5.2	Robbensüdsteert	15
2.5.3	Geeste	15
2.5.4	Land-Randbedingung	15
2.6	Wellen Randbedingung	15
2.7	Sedimentologische Randbedingungen	16
2.7.1	Ton- und Schlufftransport	16
2.7.2	Sandtransport	17
3	Modellvalidierung und Ergebnisse Ist-Zustand	18
3.1	Wasserstände	18
3.2	Strömungsgeschwindigkeiten	18
3.3	Temperatur und Salzgehalt	20
3.4	Sedimenttransport	22
4	Beschreibung der Berechnungsvariante (Planzustand)	27
4.1	Erneuerung der Nordmole	27
4.2	Vergleichbarer Ist-Zustand (-5,4m LAT)	29
5	Ergebnisse der Planvariante	30
5.1	Ergebnisse Ist-Zustand -5,4mLAT	32
6	Bewertung der Planungsvariante	34
6.1	Allgemeine Sensitivitätstests	34
6.2	Ton- und Schlufftransport	34

6.3	Sandtransport	35
6.4	Sensitivitätstests zum Einfluss von Wellen	38
7	Sedimentation außerhalb der Hafenfläche	40
8	Weitere Beeinflussung der Wasserstände und Fließgeschwindigkeiten	42
8.1	Beeinflussung der Weser durch die Baumaßnahme	42
8.2	Beeinflussung der Geestemündung durch eine potentielle Vertiefung der Außenweser	51
9	Fazit und Zusammenfassung	51
Anhang	A: Darstellung der Fließgeschwindigkeiten im Ist-Zustand	53
Anhang	B: Darstellung der Fließgeschwindigkeiten im Planzustand	59
Anhano	C: Darstellung der Modell-Randbedingungen	65

Abbildungsverzeichnis

ž		Seite
Abbildung 1:	Überblick - Untersuchungsgebiet	9
Abbildung 2:	Gemessene Trübung und Salzgehalt am Pegel Bhv Alter Leuchtturm	
SANDAGE PARTE SAND	im Jahr 2016	10
Abbildung 3:	Übersicht über das Berechnungsnetz	12
Abbildung 4:	Bathymetrie des Istzustandes in mNHN	13
Abbildung 5:	Übersicht des Berechnungsnetzes mit Modellgrenzen	14
Abbildung 6:	Körnungslinien von Sohlproben im Untersuchungsgebiet nach /2/	17
Abbildung 7:	Berechneter und gemessener Wasserstand am Pegel Bhv Alter	
	Leuchtturm	18
Abbildung 8:	Flutströmungen in der Weser und im Vorhafen, ADCP Messungen des	
	IWW der Hochschule Bremen vom 26.06.2006 /2/	19
Abbildung 9:	Ebbeströmungen in der Weser und im Vorhafen, ADCP Messungen	
	des IWW der Hochschule Bremen vom 26.06.2006 /2/	20
Abbildung 10:	Berechnete und gemessene Temperatur am Pegel Bhv Alter	
Chance of the Control of the Control	Leuchtturm	21
Abbildung 11:	Berechneter und gemessener Salzgehalt am Pegel Bhv Alter	
=	Leuchtturm	21
Abbildung 12:	Berechneter und gemessener Gesamtschwebstoff am Pegel Bhv Alter	
	Leuchtturm	23
Abbildung 13:	Berechnete Ablagerungen der Ton- und Schlufffraktionen nach 14	
CONTROLLUS PROGRAM - SANCE	Tagen im lst-Zustand	24
Abbildung 14:	Berechnete Ablagerungen der Sandfraktionen nach 14 Tagen im Ist-	
-2.550000-3.403401. 4 01.4.550	Zustand	26
Abbildung 15:	Ablagerungen aus EasyGSH-DB, Bathymetrien 2015 und 2016 (nach	
	/3/)	26
Abbildung 16:	Berechnete Ablagerungen der Ton-, Schluff- und Sandfraktionen nach	
	14 Tagen im Ist-Zustand	27

Abbildung 17:	Bathymetrie im Planzustand in mNHN bei Plan-Sohlhorizont auf -5,4m LAT	28
Abbildung 18:	Bathymetrie im Planzustand mit Lagune in mNHN bei Plan-	
Abbildung 19:	Sohlhorizont auf -5,4m LAT Bathymetrie im Istzustand in mNHN bei Plan-Sohlhorizont	29
	auf -5,4m LAT	30
Abbildung 20:	Berechnete Ablagerungen der Ton- und Schlufffraktionen im	123
Abbildung 21	Planzustand bei Sohlhorizont auf -5,4m LAT	31
Abbildung 21:	Berechnete Ablagerungen der Sandfraktionen im Planzustand 2 bei Sohlhorizont auf -5,4m LAT	32
Abbildung 22:	Berechnete Ablagerungen der Ton-, Schluff- und Sandfraktionen im	32
	Planzustand 2 bei Sohlhorizont auf -5,4m LAT	32
Abbildung 23:	Berechnete Ablagerungen der Ton- und Schlufffraktionen im	
tar a receivar to order made and	modifizierten Ist-Zustand bei Sohlhorizont auf -5,4m LAT	33
Abbildung 24:	Berechnete Ablagerungen der Sandfraktionen im modifizierten Ist-	02:0
Abbildung 25:	Zustand bei Sohlhorizont auf -5,4m LAT	34
Abbildung 25:	Berechnete Ablagerungen der Ton-, Schluff- und Sandfraktionen im modifizierten Ist-Zustand bei Sohlhorizont auf -5,4m LAT	34
Abbildung 26:	Ausgewertete Hafenflächen a) Ist-Zustand und b) Planzustand	35
Abbildung 27:	Berechnete Fließgeschwindigkeiten bei voll ausgebildeter Flutströmung	33
	im Planzustand (-5,4m LAT)	37
Abbildung 28:	Berechnete Fließgeschwindigkeiten bei voll ausgebildeter	0.203
	Ebbströmung im Planzustand (-5,4m LAT)	37
Abbildung 29:	Berechnete Sohlschubspannungen bei voll ausgebildeter Flutströmung	
	im Planzustand (-5,4m LAT)	38
Abbildung 30:	Berechnete Sohlschubspannungen bei voll ausgebildeter Ebbströmung	22
Abbildung 31:	im Planzustand (-5,4m LAT)	38
Applicating 31.	Berechneter (mit und ohne Wellen) und gemessener Gesamtschwebstoff am Pegel Bhv Alter Leuchtturm	39
Abbildung 32:	Differenz der Sohlhöhenänderungen zwischen Planzustand und Ist-	39
ribblidding oz.	Zustand (rot-orange= verminderte Sedimentation, grün-blau = erhöhte	
	Sedimentation)	41
Abbildung 33:	Wasserstandsdifferenzen zwischen Planzustand und Ist-Zustand	
	während der maximalen Flutströmung (rot-orange= verminderter	
241220200000000	Wasserstand, grün-blau = erhöhter Wasserstand)	42
Abbildung 34:	Wasserstandsdifferenzen zwischen Planzustand und Ist-Zustand	
	während der maximalen Ebbströmung (rot-orange= verminderter	
Abbildung 35:	Wasserstand, grün-blau = erhöhter Wasserstand) Geschwindigkeitsdifferenzen zwischen Planzustand und Ist-Zustand	43
Abbildung 55.	während der maximalen Flutströmung (rot-orange= verminderte	
	Geschwindigkeiten, grün-blau = erhöhte Geschwindigkeiten)	43
Abbildung 36:	Geschwindigkeitsdifferenzen zwischen Planzustand und Ist-Zustand	10
	während der maximalen Ebbströmung (rot-orange= verminderte	
	Geschwindigkeiten, grün-blau = erhöhte Geschwindigkeiten)	44
Abbildung 37:	Lage der Auswertungspunkte zum Vergleich des Ist- und Planzustands	45
Abbildung 38:	Vergleich der tiefengemittelten Geschwindigkeiten zwischen Ist-	
^ k k !! -! 20.	Zustand und Planzustand 2 an den Auswertungspunkten t1 bis t4	46
Abbildung 39:	Vergleich des Salzgehaltes zwischen Ist-Zustand und Planzustand 2	40
Abbildung 40:	an den Auswertungspunkten Vergleich des Gesamtschwebstoffs zwischen Ist-Zustand und	48
abblidding 40.	Planzustand an den Auswertungspunkten	50
Abbildung 41:	Längsschnitt der Ausbautiefen (Quelle: www.weseranpassung.wsv.de)	51
Abbildung 42:	Berechnete Fließgeschwindigkeiten bei Einsetzen der Flutströmung im	5.1
	Ist-Zustand an der Wasseroherfläche	53

Seite 6 von 67

Abbildung 43:	Berechnete Fließgeschwindigkeiten bei Einsetzen der Flutströmung im Ist-Zustand an der Gewässersohle	53
Abbildung 44:	[17] [17] [17] [17] [17] [17] [17] [17]	54
Abbildung 45:		54
Abbildung 46:	Berechnete Fließgeschwindigkeiten bei abklingender Flutströmung im Ist-Zustand an der Wasseroberfläche	55
Abbildung 47:	Berechnete Fließgeschwindigkeiten bei abklingender Flutströmung im Ist-Zustand an der Gewässersohle	55
Abbildung 48:	Berechnete Fließgeschwindigkeiten bei einsetzender Ebbströmung im Ist-Zustand an der Wasseroberfläche	56
Abbildung 49:	Berechnete Fließgeschwindigkeiten bei einsetzender Ebbströmung im Ist-Zustand an der Gewässersohle	56
Abbildung 50:	Berechnete Fließgeschwindigkeiten bei voller Ebbströmung im Ist- Zustand an der Wasseroberfläche	57
Abbildung 51:	Berechnete Fließgeschwindigkeiten bei voller Ebbströmung im Ist- Zustand an der Gewässersohle	57
Abbildung 52:	Berechnete Fließgeschwindigkeiten bei abklingender Ebbströmung im Ist-Zustand an der Wasseroberfläche	58
Abbildung 53:	Berechnete Fließgeschwindigkeiten bei abklingender Ebbströmung im Ist-Zustand an der Gewässersohle	58
Abbildung 54:	Berechnete Fließgeschwindigkeiten bei Einsetzen der Flutströmung im Planzustand (-5,4m LAT) an der Wasseroberfläche	59
Abbildung 55:	Berechnete Fließgeschwindigkeiten bei Einsetzen der Flutströmung im Planzustand (-5,4m LAT) an der Gewässersohle	59
Abbildung 56:	Berechnete Fließgeschwindigkeiten bei voller Flutströmung im Planzustand (-5,4m LAT) an der Wasseroberfläche	60
Abbildung 57:	Berechnete Fließgeschwindigkeiten bei voller Flutströmung im Planzustand (-5,4m LAT) an der Gewässersohle	60
Abbildung 58:	Berechnete Fließgeschwindigkeiten bei abklingender Flutströmung im Planzustand (-5,4m LAT) an der Wasseroberfläche	61
Abbildung 59:	Berechnete Fließgeschwindigkeiten bei abklingender Flutströmung im Planzustand (-5,4m LAT) an der Gewässersohle	61
Abbildung 60:	Berechnete Fließgeschwindigkeiten bei einsetzender Ebbströmung im Planzustand (-5,4m LAT) an der Wasseroberfläche	62
Abbildung 61:	Planzustand (-5,4m LAT) an der Gewässersohle	62
Abbildung 62:	Planzustand (-5,4m LAT) an der Wasseroberfläche	63
Abbildung 63:	Planzustand (-5,4m LAT) an der Gewässersohle	63
Abbildung 64:	Planzustand (-5,4m LAT) an der Wasseroberfläche	64
Abbildung 65:	Berechnete Fließgeschwindigkeiten bei abklingender Ebbströmung im Planzustand (-5,4m LAT) an der Gewässersohle	64
Abbildung 66:	Wasserstand im Untersuchungszeitraum an den Modellrändern	65
Abbildung 67:	Temperatur im Untersuchungszeitraum an den Modellrändern	65
Abbildung 68:	Salzgehalt im Untersuchungszeitraum an den Modellrändern	66
Abbildung 69:	Windgeschwindigkeit im Untersuchungszeitraum an der DWD Station Bremerhaven	66
Abbildung 70:	- 15 M M M M M M M M M M M M M M M M M M	67

A

Tabellenverzeichnis

		Seite
Tabelle 1:	Vergleich der über die Hafenfläche gemittelten Sohlhöhenänderungen durch Ton- und Schlufffraktionen zwischen modifiziertem Ist-Zustand und dem Planzustand	35
Tabelle 2:	Vergleich der über die Hafenfläche gemittelten Sohlhöhenänderungen durch Ton- und Schlufffraktionen zwischen modifiziertem Ist-Zustand und den Varianten in Planzustand 2 bei erhöhter Schwebstoffkonzentration	40

Verwendete Unterlagen

Für die Erstellung des vorliegenden Berichtes sind die nachfolgend aufgeführten Unterlagen genutzt worden:

- /1/ Nasner, Horst et al.: Sedimentation in Brackwasserh\u00e4fen. In: Mitteilungen des Instituts f\u00fcr Wasserbau und Wasserwirtschaft der Technischen Universit\u00e4t Darmstadt, Heft 150, 2015.
- Nasner, Horst: Bremerhaven Geestevorhafen. Nordmole. Sedimentationsstudie, 2015.
- /3/ EasyGSH-DB Erstellung anwendungsorientierter synoptischer Referenzdaten zur Geomorphologie, Sedimentologie und Hydrodynamik in der Deutschen Bucht, www.mdi-de.baw.de/easygsh: Geomorphologische Datensätze (Abruf: 05.08.2020)
- Wasserstraßen- und Schifffahrtsverwaltung des Bundes, www.kuestendaten.de: Digitales Geländemodell des Wasserlaufes – Multifunktionsmodell (Abruf: 29.01.2020)
- /5/ Stoschek, Oliver: Sedimentation und Gegenmaßnahmen in tide- und brackwasserbeeinflussten Häfen. In: Mitteilungen des Franzius-Institutes, Heft 90, Universität Hannover, 2003
- /6/ IWA-Bremen: Hydrodynamische und morphologische Vorgänge in brackwasserbeeinflussten Vorhäfen. KFKI Abschlussbericht 2004
- DMT GmbH & Co. KG: Untersuchungen zum Sedimenttransport in der geplanten Geestemündung in Bremerhaven. Variantenuntersuchung, 2022

Seite 8 von 67

Einleitung und Veranlassung

Die Nordmole der Geesteeinfahrt am Übergang zur Weser ist abgängig und soll ersetzt werden. Die Konzeption und Ausrichtung des Molenbauwerks ist bereits durch vorhergehende Untersuchungen festgelegt worden und die Auswirkungen auf den Sedimenteintrag untersucht worden.

Die aktuelle Planung der Nordmole besitzt eine leicht geänderte Geometrie im Vergleich zu den bislang durchgeführten Untersuchungen zum Sedimenteintrag. Die Planungen zur Lagune im nördlichen Bereich der Nordmole sind ebenfalls bislang nicht berücksichtigt worden.

Für das folgende Genehmigungsverfahren sind Strömungen und insbesondere der Sedimenteintrag in die Geestemündung und den Vorhafen zur Fischereihafenschleuse unter Berücksichtigung der geplanten Lagune und der aktuell geplanten Geometrie der Hierzu ist ein numerisches Strömungs- und Nordmole ermittelt worden. Sedimenttransportmodell der Wesermündung angepasst und mit Messdaten validiert worden. Auf dieser Grundlage ist im Folgenden der finale Ausbauzustand untersucht worden, um die Auswirkungen auf die Strömungen und den Sedimenttransport beurteilen zu können.

Von besonderer Bedeutung für die Untersuchung ist zum einen die Ablagerung von Tonund Schlufffraktionen im Vorhafen selbst; zum anderen die Ablagerung von Sandfraktionen vor der Hafeneinfahrt, bzw. im Bereich zwischen den Molenköpfen.

Beschreibung des Modells und der Randbedingungen

2.1 Modellgebiet

Um die komplexen Strömungsverhältnisse nachzubilden und um einen fehlerhaften Einfluss der Randbedingungen zu minimieren, umfasst das Modell den Weserabschnitt von Rechtenfleth (Weser-km 46,46) bis Robbensüdsteert (Weser-km 79,94). Die Hafeneinfahrt befindet sich bei Weser-km 65,7. Der Fischereihafen und die Geeste (vom Tidesperrwerk in Bremerhaven bis zur Mündung im Vorhafen) sind ebenfalls Teil des Modellgebiets. Abbildung 1 zeigt eine Übersicht über das gesamte Modellgebiet.

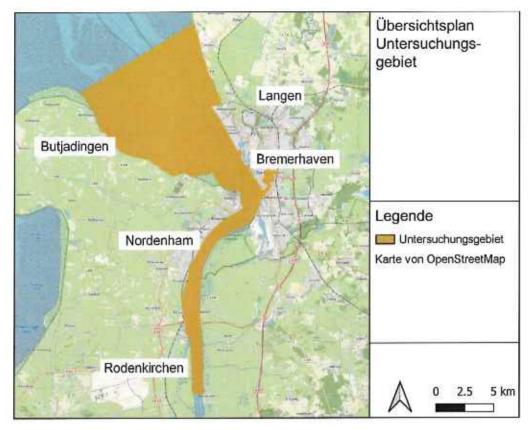


Abbildung 1: Überblick - Untersuchungsgebiet

2.2 Berechnungsmodell

Das Berechnungsmodell ist mit dem Modellsystem MIKE3 von DHI erstellt worden. Das Modell nutzt ein zellenzentriertes Finite-Volumen-Verfahren zur Diskretisierung der Strömungs- und Transportgleichungen und ermöglicht so die dreidimensionale Berechnung von Durchflüssen und Fließgeschwindigkeiten.

Zur Bestimmung des Sedimenttransportes sind die Zusatzmodule "mud transport" und "sand transport" von DHI genutzt worden. Das "mud transport" Modul ermöglicht die Berechnung der Transportprozesse von bindigen Kornfraktionen wie Ton und Schluff. Zusätzlich kann auch der Transport von nicht-bindigem Feinsand berücksichtigt werden. Mit dem "sand transport" Modul können weitere Sandfraktionen von Feinsand bis Grobsand berücksichtigt werden.

2.3 Wahl des Modellzeitraumes

Zur Beurteilung der Sedimentationsprozesse wird ein gesamter Nipp-Spring-Nipp-Zyklus betrachtet. Der Untersuchungszeitraum sollte zeitlich möglichst nah an der Aufnahme der im Modell verwendeten Bathymetrie liegen (vgl. Kapitel 2.4).

Zudem führt ein geringes Oberwasser der Weser zu einer Verschiebung der Brackwasserzone vor die Einfahrt des Vorhafens zur Geestmündung. Ein hohes Oberwasser verschiebt die Brackwasserzone über Weser km 75 hinaus Richtung Nordsee. Die Dichteströmungen sind im Fall der Geestemündung aufgrund der Dichteeffekte im Hafen maßgebend für die Sedimentationsmengen. Somit wird hier ein Zeitraum mit einem geringeren Oberwasser betrachtet.

Die Tide, Salzgehalt und Trübung sollten mittlere Verhältnisse abbilden und keine Sondereffekte wie z.B. ausgelöst durch Hochwasserereignisse oder Sturmfluten aufweisen, um eine möglichst allgemeingültige Aussage zu erhalten.

Auf der Basis der Auswertung der Trübungen und Salzgehalte in Abbildung 2 wurde der Zeitraum für die folgenden Untersuchungen vom 12.08.2016 07:10 bis 28.08.2016 09:55 gewählt. In dem Zeitraum liegen keine Extremereignisse, wodurch der Effekt des Sedimenttransportes bei normalen Verhältnissen untersucht werden kann. Das Oberwasser in diesem Zeitraum beträgt im Mittel rd. 115 m³/s.

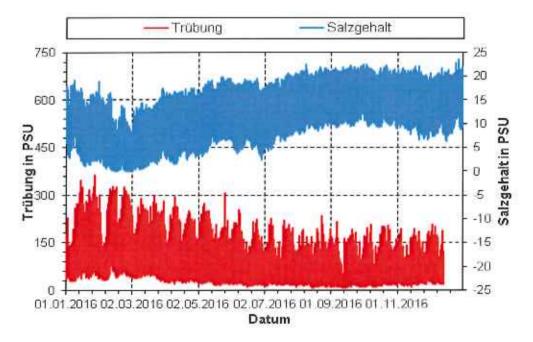


Abbildung 2: Gemessene Trübung und Salzgehalt am Pegel Bhv Alter Leuchtturm im Jahr 2016

In diesem Zeitraum liegen zudem für alle Modellränder vollständige Messwerte vor, sodass alle benötigten Randbedingungen mit Werten belegt werden können. Weiterhin stehen genügend Daten im Modellgebiet zur Verfügung, um die Berechnungsergebnisse anhand von weiteren Messdaten zu validieren.

Seite 11 von 67

2.4 Berechnungsnetz und Bathymetrie

Die Diskretisierung des Berechnungsgitters des Modellgebiets erfolgt semi-automatisch. Abhängig von den Strömungsverhältnissen sind Bereiche mit Dreiecksgittern und Bereiche mit Vierecksgittern erzeugt worden.

Die Elementgrößen unterscheiden sich innerhalb des Netzes stark. An den Randbereichen ist (aufgrund der großen Entfernung zur Geestemündung) eine grobe Auflösung ausreichend (A_{max} bis zu 16.000 m²). Die Netzauflösung nimmt in Richtung des im Fokus des Berichts liegenden Gebietes der Geestemündung sukzessive zu. Im Bereich der Geestemündung liegt die Größe der einzelnen Netzelemente im Bereich von maximal 200 m² (Abbildung 3). Der Bereich der Lagune ist ebenfalls mit feinen Netzelementen von maximal 200 m² aufgelöst.

Vertikal ist das Berechnungsnetz in zehn Schichten unterteilt. Die Unterteilung ermöglicht die ausreichend genaue Erfassung der Dichteströmungen. Die Dicke der Schichten nimmt zur Sohle hin ab. Das feinere Gitter an der Gewässersohle wird benötigt, um die Dichterströmungen und die daraus resultierenden Transportprozesse insbesondere der Ton- und Schlufffraktionen abzubilden.

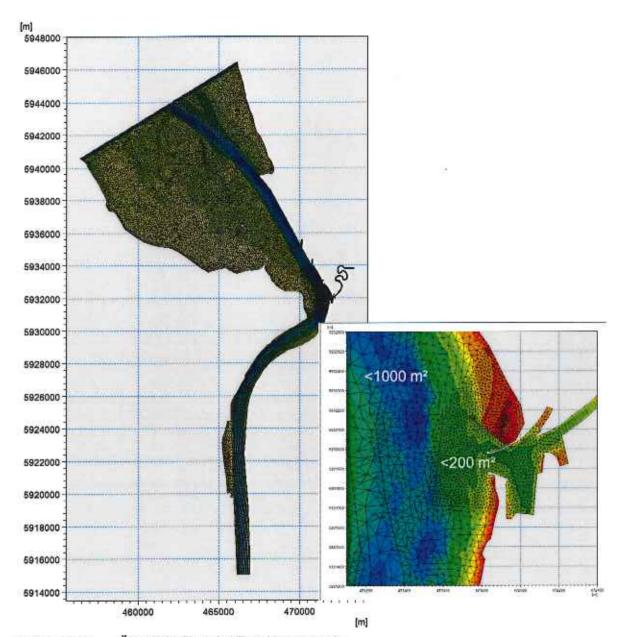


Abbildung 3: Übersicht über das Berechnungsnetz

Die genutzte Bathymetrie basiert auf einem 5 m auf 5 m Rasterdatensatz mit Wassertiefen (DGM-W 2015-2016) der Wasserstraßen- und Schifffahrtsverwaltung des Bundes (vgl. /1/) und stammt aus den Jahren 2015 und 2016. Abbildung 4 zeigt die verwendete Bathymetrie im Bereich des Vorhafens zur Fischereihafenschleuse.

Seite 13 von 67

Abbildung 4: Bathymetrie des Istzustandes in mNHN

2.5 Hydraulische Randbedingungen

An den Modellrändern müssen für die Berechnung Randbedingungen vorgegeben werden. Abbildung 5 zeigt die im Modell definierten Modellgrenzen. Neben den Landgrenzen ist das Modell oberstrom vom Modellrand Rechtenfleth und unterstrom vom Modellrand Robbensüdsteert begrenzt. An der ober- und unterstromigen Modellgrenze befindet sich je ein Pegel. Die Messwerte der Pegel können somit als Randbedingung für das Modell verwendet werden.

Der Zufluss der Geeste wird über die Randbedingung oberhalb des Geeste Tidesperrwerkes in Bremerhaven eingesteuert.

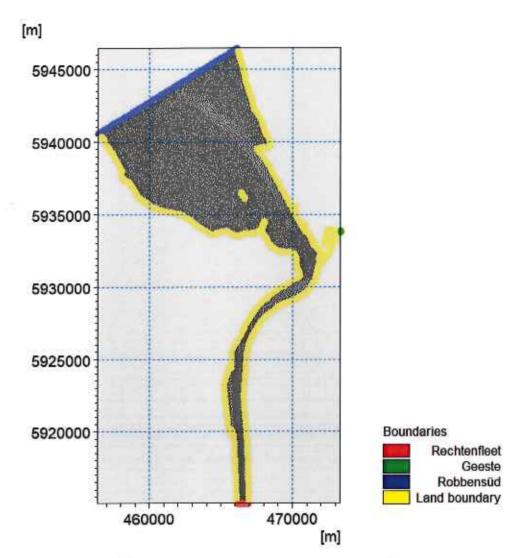


Abbildung 5: Übersicht des Berechnungsnetzes mit Modellgrenzen

2.5.1 Rechtenfleth

Am Pegel Rechtenfleth werden unter anderem der Wasserstand und die elektrische Leitfähigkeit (Salzgehalt) von der WSV erfasst. Die Messwerte können direkt als Randbedingungen im Modell übernommen werden (vgl. Anhang C: Darstellung der Modell-Randbedingungen). Der Eintrag von Schwebstoffen und Sediment am oberen Modellrand wird nicht direkt gemessen. Hier wird über eine Regression zwischen Trübstoffmessung und Feststoffanteil der Eintrag von Sedimenten im Modell abgeschätzt. Die Informationen zur Umrechnung wurden aus dem Vorhaben zur Untersuchung hydrodynamischer und morphologischer Vorgänge in brackwasserbeeinflussten Häfen aus den durchgeführten Messungen in der Weser gewonnen (/5/, /6/).

2.5.2 Robbensüdsteert

Am Pegel Robbensüdsteert werden ebenfalls unter anderem der Wasserstand und die elektrische Leitfähigkeit (Salzgehalt) von der WSV erfasst. Die Messwerte können somit auch direkt am unteren Modellrand als Randbedingungen im Modell übernommen werden (vgl. Anhang C: Darstellung der Modell-Randbedingungen). Der Eintrag von Schwebstoffen und Sediment am unteren Modellrand wird nicht direkt gemessen. An dieser Stelle wird wie am oberstromigen Modellrand über eine Regression zwischen Trübstoffmessung und Feststoffanteil der Eintrag von Sedimenten im Modell abgeschätzt.

2.5.3 Geeste

Am Tidesperrwerk Bremerhaven ist im Modell der oberstromige Rand der Geeste als Zufluss-Randbedingung definiert. Der Zufluss aus dem Einzugsgebiet der Geeste ist nicht bekannt. Auf Grundlage der Messwerte am Geeste-Pegel Köhlener Brücke der sich ca. 28,5 km oberhalb des Tidesperrwerks befindet ist der Zufluss der Geeste abgeschätzt worden. Im Modell ist ein konstanter Zufluss von 1,5 m³/s gewählt.

Die Steuerung des Abflusses durch das Tidesperrwerk und die zeitliche Varianz des Geesteabflusses werden somit im Modell nicht berücksichtigt. Sie sind aufgrund des deutlich größeren Einflusses des Gezeitenstroms jedoch für die Untersuchung der Sedimentation im Hafenbereich vernachlässigbar.

2.5.4 Land-Randbedingung

Für die Land-Randbedingungen kann in MIKE 3 entweder die Geschwindigkeit normal zur Uferlinie oder die Geschwindigkeit insgesamt gleich null gesetzt werden. Aufgrund der langen Hafenkante an der Weser nördlich der Geestemündung und der gröberen Modellauflösung an dieser Stelle scheint die Annahme von absoluten Geschwindigkeiten gleich null an den Land-Grenzen im Untersuchungsgebiet im Modell unplausibel. Das gleiche gilt für die Geschwindigkeiten entlang der neu geplanten Hafenmolen. Aus diesem Grund gilt die Annahme, dass nur die Geschwindigkeit normal zur Uferlinie an den Land-Grenzen im gesamten Gebiet null sind.

2.6 Wellen Randbedingung

Im Aussagegebiet im Hafen werden nur geringe Wellenhöhen erwartet. Diese werden in einem separaten Bericht behandelt.

Die Wellen in der Weser führen jedoch zu einem erhöhen Sedimenttransport. Höherer Seegang über dem Wattgebiet führt zu erhöhten Schwebstoffkonzentrationen in der Weser und somit zu erhöhten Ablagerungen in der Geestemündung. Dieser Effekt ist

regelmäßig zu beobachten und beeinflusst die Quantität, aber nicht die qualitative Aussage der Planung im Vergleich mit der aktuellen Hafenmündung.

Im Rahmen der weiteren Untersuchungen wurde auf den Effekt der Wellen für den Sedimenttransport verzichtet, da hier nur statistische Größen verwendet werden könnten.

Zur Beurteilung des Einflusses der Wellen auf den Sedimenttransport und die Schwebstoffkonzentrationen sind jedoch Sensitivitätstests durchgeführt worden. Diese werden in Kapitel 6.4 näher erläutert.

2.7 Sedimentologische Randbedingungen

2.7.1 Ton- und Schlufftransport

Für die Ablagerungen im Hafenbereich sind vor allem bindige Ton- und Schlufffraktionen des Sohlmaterials verantwortlich. Die entsprechenden Transportprozesse werden mit dem "mud transport" Modul nachgebildet. Im Modell sind drei Kornfraktionen mit unterschiedlichen Sinkgeschwindigkeiten definiert.

Für den initialen Zustand der Sohle zum Berechnungsbeginn sind die Messungen aus /2/ genutzt worden (vgl. Abbildung 6). Entsprechend der Messungen im Vorhafen sind im Modell rund 50% als sehr feines und mittleres Schlämmkorn definiert, 40% als grobes Schlämmkorn und 10% als Feinsand definiert worden.

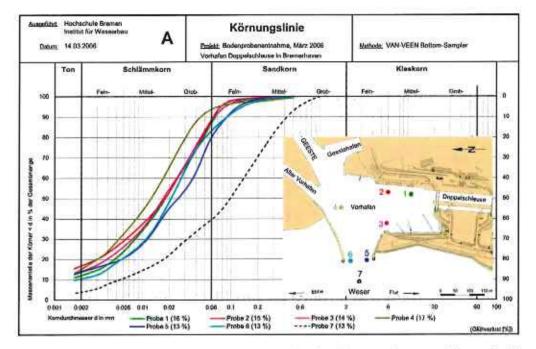


Abbildung 6: Körnungslinien von Sohlproben Im Untersuchungsgebiet nach /2/

2.7.2 Sandtransport

Zur Beurteilung der Transportprozesse außerhalb des Hafenbereichs und insbesondere direkt vor der Hafeneinfahrt sind zusätzlich zu den Ton- und Schlufffraktionen weitere Fein- und Mittelsandfraktionen berücksichtigt worden. Aufgrund der größeren Strömungsgeschwindigkeiten sind dort die Fein- bis Mittelsandfraktionen maßgebend für die bettbildenden Mechanismen des Stofftransportes.

Die Transportprozesse der Sandfraktionen können mit dem MIKE sand transport Modul nachgebildet werden. Hierzu sind drei Sandfraktionen (mit Korndurchmessern von 0,25 mm, 0,5 mm, 1,0 mm) im Modell definiert worden. Der initiale Zustand der Sohle ist für das gesamte Untersuchungsgebiet einheitlich definiert. Entsprechend der Sohlproben aus /2/ im Bereich außerhalb des Vorhafens (vgl. Abbildung 6) ist die Verteilung der einzelnen Kornfraktionen mit 50% Sohlmaterial von 0,25 mm, 45% Sohlmaterial von 0,5 mm und 5% Sohlmaterial von 1,0 mm gewählt worden.

3 Modellvalidierung und Ergebnisse lst-Zustand

3.1 Wasserstände

Zur Validierung der Strömungsverhältnisse werden die Messwerte des Pegels Bremerhaven Alter Leuchtturm herangezogen. Der Pegel befindet sich ca. 1 km stromabwärts der Geestemündung und somit in unmittelbarer Nähe zum Untersuchungsgebiet.

Abbildung 7 zeigt die berechneten und gemessenen Werte des Wasserstands am Pegel Bhv Alter Leuchtturm im Untersuchungszeitraum. Im Mittel liegt die Differenz zwischen berechneten und gemessenen Werten bei -0,004 m (berechnet – gemessen) mit minimalen und maximalen Abweichungen von -0,13 m bzw. 0,13 m. Die gemessene Wasserstandsganglinie wird vom Modell somit sehr gut nachgebildet.

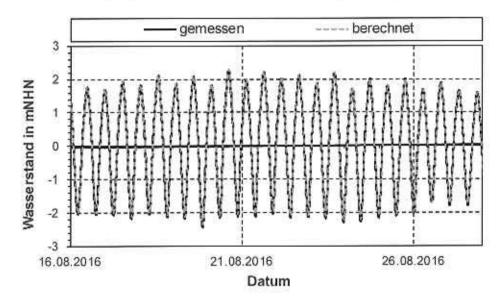


Abbildung 7: Berechneter und gemessener Wasserstand am Pegel Bhv Alter Leuchtturm

3.2 Strömungsgeschwindigkeiten

Die berechneten Fließgeschwindigkeiten im Ist-Zustand sind für sechs Zeitschritte im Verlauf der Flut- und Ebbströmung in Anhang A: Darstellung der Fließgeschwindigkeiten im Ist-Zustand) an der Wasseroberfläche und Modellsohle abgebildet.

Im Bereich der Hafeneinfahrt stehen im Kalibrierungszeitraum keine Vergleichsmessungen zu Strömungsgeschwindigkeiten zur Verfügung. Es zeigt sich aber ein plausibles Strömungsbild mit tidebeeinflussten Dichteströmungen und einer Walzenbildung im Bereich der Hafeneinfahrt aufgrund der Dichteunterschiede zwischen dem Wasser aus der Weser und aus der Geeste (vgl. Abbildung 8 und Abbildung 46).

ADCP-Messungen am 26.06.2006

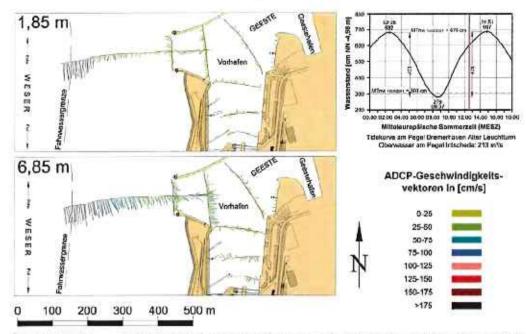


Abbildung 8: Flutströmungen in der Weser und im Vorhafen, ADCP Messungen des IWW der Hochschule Bremen vom 26.06.2006 /2/

Die Abbildung 8 zeigt mittlere Flutstromgeschwindigkeiten. Die stärksten Flutstromgeschwindigkeiten werden ca. 2 Stunden nach Ebbstromkenterung erreicht (vgl. Abbildung 44 und Abbildung 45).

Vor der Geestemündung dominieren aufgrund ihrer Lage an der Oberfläche zeitlich vorrangig die Ebbeströmungen. Das mit der Ebbe abfließende spezifisch leichtere Süßwasser legt sich über das schwerere Nordseewasser und verstärkt den Oberflächenabfluss am Prallhang der Weser vor der Geestemündung (Abbildung 9). Die Ebbestromgeschwindigkeiten sind zwischen dem Fahrwasser und der Geestemündung in einem kurzen Zeitraum größer als die Flutströmungen (vgl. Abbildung 50 und Abbildung 51).

Während der zweiten Ebbestromphase sind im Vorhafen insbesondere sohlnah nur geringe Wasserbewegungen auszumachen. Die aus der Geeste entlang der Nordmole abfließenden Ebbewassermengen dominieren in der Einfahrt und verhindern die Ausbildung einer in der oberen Wasserschicht drehenden Ebbestromwalze (Abbildung 9, Abbildung 52 und Abbildung 53).

ADCP-Messungen am 05.07.2006

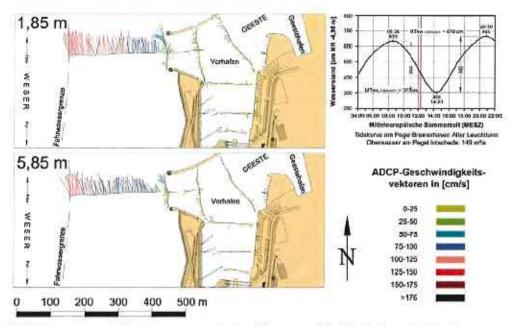


Abbildung 9: Ebbeströmungen in der Weser und im Vorhafen, ADCP Messungen des IWW der Hochschule Bremen vom 26.06.2006 /2/

3.3 Temperatur und Salzgehalt

Die berechneten und gemessenen Werte der Parameter Temperatur und Salzgehalt am Pegel Bhv Alter Leuchtturm sind in Abbildung 10 und Abbildung 11 dargestellt.

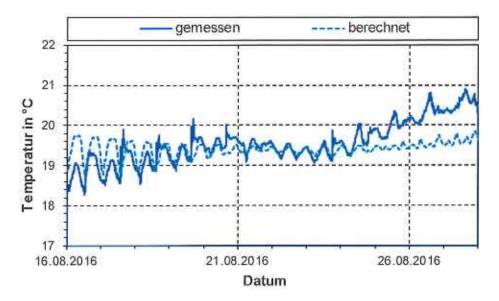


Abbildung 10: Berechnete und gemessene Temperatur am Pegel Bhv Alter Leuchtturm

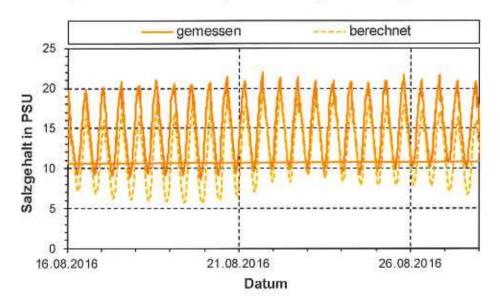


Abbildung 11: Berechneter und gemessener Salzgehalt am Pegel Bhv Alter Leuchtturm

Der Verlauf der gemessenen Temperatur wird mit einer mittleren Abweichung von -0,1°C vom Modell ebenfalls gut nachgebildet. Hier zeigen sich besonders zu Beginn und Ende des Berechnungszeitraums stärkere Abweichungen zwischen berechneter und gemessener Temperatur von bis zu 1,3°C. Die Abweichung zu Beginn können auf die Wahl der Start-Randbedingung zurückgeführt werden. Die Abweichungen zum Ende des Untersuchungszeitraums ergeben sich aus der im Modell nicht berücksichtigten Globalstrahlung.

Der berechnete Salzgehalt liegt im Mittel um rund 2,8 PSU unter den gemessenen Werten. Dies ist voraussichtlich auf die Messungen an den Pegeln in der Nähe der Modellränder zurückzuführen. Die Messungen finden am Fahrwasserrand und nicht an

der tiefsten Stelle mit dem höchsten Salzgehalt statt. Hierdurch wird der Salzgehalt am nördlichen Modellrand systematisch unterschätzt.

Die Schwankungen im Verlauf der Gezeiten werden aber vom Modell gut nachgebildet. Dies ist entscheidend für die Abbildung von dichteinduzierten Sekundarströmungen im Modell, welche für den Feststofftransport in den Geeste Vorhafen eine entscheidende Rolle spielen.

3.4 Sedimenttransport

An der Pegelstation Bremerhaven Alter Leuchtturm werden neben den bereits beschriebenen Parameter auch Trübungsdaten erfasst und können über empirische Umrechnungsfaktoren in Schwebstoffgehalte umgerechnet werden.

Die berechneten und gemessenen Schwebstoffgehalte sind in Abbildung 12 dargestellt. Es zeigt sich, dass der Verlauf der gemessenen Schwebstoffgehalte über die Tidephase nur in der Schwankungsbreite nachgebildet werden kann. Die Spitzen in der Schwebstoffkonzentration ab dem 23.08.2016 werden vom Modell nicht in vollem Maße abgebildet. Es ist davon auszugehen, dass die erhöhten Schwebstoffkonzentrationen durch weitere im Modell nicht berücksichtigte anthropogene Faktoren hervorgerufen werden (beispielsweise Baggerungen in der Nähe der Hafeneinfahrt).

Im Mittel liegen die berechneten Schwebstoffkonzentrationen aber über den gemessenen Werten. Somit ist eine auf der sicheren Seite liegende Berechnung der Ablagerungshöhen sichergestellt.

Im Mittel zeigt sich eine ausreichend genaue Übereinstimmung zwischen den berechneten und gemessenen Werten der Schwebstoffgehalte um qualifizierte Aussagen zum Schwebstofftransport und zu den Ablagerungsmengen zu treffen. Die gemessenen Schwebstoffkonzentrationen liegen im Auswertungszeitraum im Mittel bei 0,095 kg/m³ die berechneten Schwebstoffkonzentrationen bei 0,131 kg/m³.

Die mittlere gemessene Schwebstoffkonzentration am Pegel Bremerhaven Alter Leuchtturm im gesamten Jahr 2016 liegt bei 0,135 kg/m³. Somit ist der Untersuchungszeitraum gut dazu geeignet, um eine Extrapolation der berechneten Sedimentationsmengen und –höhen auf längere Zeiträume durchzuführen.

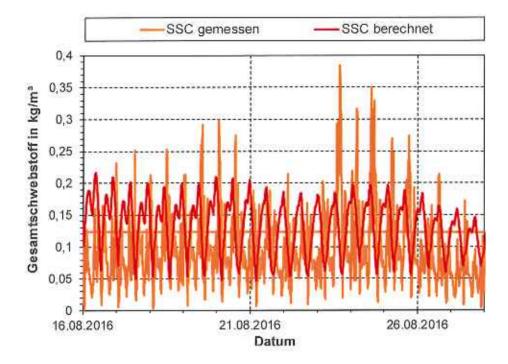


Abbildung 12: Berechneter und gemessener Gesamtschwebstoff am Pegel Bhv Alter Leuchtturm

Die mit dem "mud transport" Modul berechneten Sohländerungen sind in Abbildung 13 dargestellt. Die Abbildung zeigt die Sohlerhöhungen zwischen dem 14.08.2016 05:55 und dem 28.08.2016 05:55 (und nicht über den gesamten Berechnungszeitraum), da die Sohlhöhenänderungen zu Beginn des Berechnungszeitraums noch stark von den Anfangsrandbedingungen beeinflusst sind und deshalb nicht in der Auswertung berücksichtigt werden. Aus diesem Grund ist auch für alle folgenden Auswertungen und Abbildungen der entsprechende Auswertungszeitraum von 14 Tagen gewählt worden.

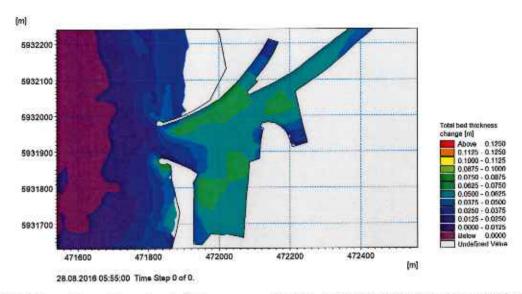


Abbildung 13: Berechnete Ablagerungen der Ton- und Schlufffraktionen nach 14 Tagen im Ist-Zustand

Eine Validierung der berechneten Ablagerungen aus Ton- und Schlufffraktionen ist aus mehreren Gründen schwierig. Zum einen, da im Hafenbereich regelmäßig Wasserinjektionsbaggerungen durchgeführt werden, die im Berechnungsmodell nicht berücksichtigt werden können. Zum anderen aufgrund der im Vorhafen anzutreffenden Fluid Mud Schichten (Flüssigschlick), die zu abweichenden Tiefenangaben bei unterschiedlichen Frequenzbereichen der Messungen führen.

Um trotzdem einen möglichst guten Abgleich der berechneten Ablagerungen aus Ton und Schluff mit Messwerten zu erzielen, sind Messdaten der Abteilung Wassertiefen (bremenports GmbH & Co. KG) aus dem Jahr 2019 genutzt worden.

Die zwei genutzten Messungen vom 16.07.2019 und 27.08.2019 liegen sowohl zeitlich nah genug an dem Zeitpunkt der im Modell genutzten Bathymetrie (2015/2016) und zeichnen sich durch den geringsten Einsatz von Wasserinjektionsbaggerungen zwischen den Messungen aus. Zwischen den Peilungen fand ein Einsatz von Wasserinjektionsbaggerungen nur über einen Zeitraum von 5 Stunden statt. Die aus den Peilungen berechnete Sedimentationsmenge ermittelt sich zu 11.500 m³ im gesamten Hafengebiet. Bezogen auf die 42 Tage zwischen den Peilungen kann die mittlere tägliche Sedimentationsmenge zu 11.500 m³ / 42 d = 274 m³/d bestimmt werden.

Es wird davon ausgegangen, dass die normale Einsatzzeit der Wasserinjektionsbaggerung von 20 Stunden pro Monat ausreicht, um die natürliche Sedimentation im Hafenbereich zu verhindern. Es wird davon ausgegangen, dass durch die normale Einsatzzeit keine Sohlhöhenänderungen im Hafen entstehen.

Der Einsatz von nur 5 Stunden Wasserinjektionsbaggerungen hat zu einer Sedimentationsmenge von rd. 274 m³/d geführt. Durch eine lineare Interpolation der Sedimentationsmengen im Untersuchungszeitraum ergibt sich eine Sedimentationsrate ganz ohne Wasserinjektionsbaggerungen von ca. 365,4 m³/d.

Die im numerischen Modell berechnete Sedimentationsmenge von 303 m³/d liegt somit trotz der großen Unsicherheiten in derselben Größenordnung. Der Transport von Tonund Schlufffraktionen wird somit vom Modell gut nachgebildet.

Abbildung 14 zeigt die mit dem "sand transport" Modul berechneten Ablagerungen der Feinsandfraktionen. Aufgrund der geringeren Strömungsgeschwindigkeiten im Vorhafen werden dort nur sehr geringe Ablagerungen berechnet. In den tieferen Bereichen der Weser sind deutliche Umlagerungen erkennbar. Dort werden durch die größeren Fließgeschwindigkeiten in der Natur größere Sanddünen transportiert. Dies führt im Modell zu lokalen Umlagerungen.

Vor der Hafeneinfahrt und zwischen den beiden Molenköpfen lagert sich Feinsand ab. Die maximale Ablagerung am Ende des Betrachtungszeitraums von 14 Tagen beträgt rund 5 cm. Ebenfalls zu erkennen ist ein rundes Gebiet vor der Hafeneinfahrt, um das sich Sandfraktionen ablagern. Vergleicht man dieses Gebiet mit den Sohlerhöhungen aus den Daten des EasyGSH-Projekts (vgl. Abbildung 15) so zeigt sich eine gute Übereinstimmung der Bereiche.

Die Differenz der Messungen aus den Jahren 2015 und 2016 zeigen eine Sohlerhöhung über den gesamten Bereich vor der Hafeneinfahrt, wohingegen im Berechnungsmodell überwiegend an den Randbereichen eine Sohlerhöhung berechnet wird. Hierbei ist jedoch zu berücksichtigen, dass im Modell keine Wasserinjektionsbaggerungen berücksichtigt werden. Es ist somit davon auszugehen, dass sich das aus dem Vorhafen geschobene Material zu großen Teilen direkt vor der Hafeneinfahrt ablagert.

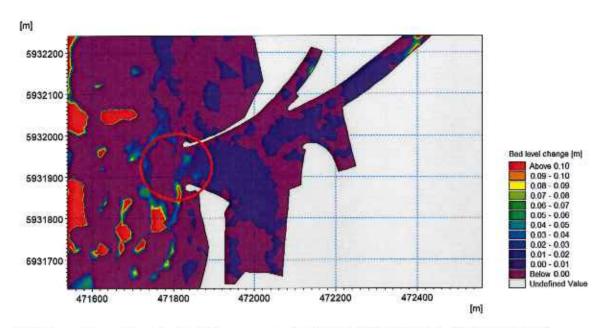


Abbildung 14: Berechnete Ablagerungen der Sandfraktionen nach 14 Tagen im Ist-Zustand

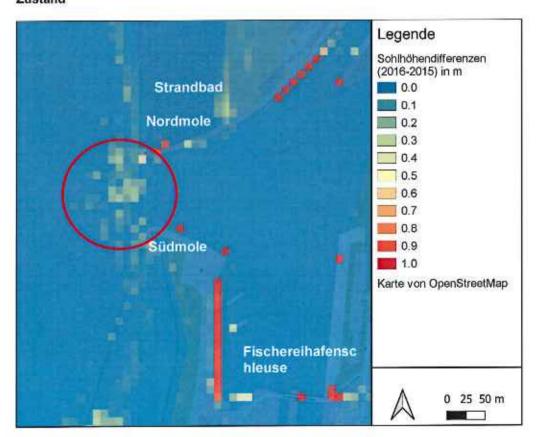


Abbildung 15: Ablagerungen aus EasyGSH-DB, Bathymetrien 2015 und 2016 (nach /3/)

Der Transport der Sandfraktionen wird vom Modell somit ebenfalls in einem guten Maß nachgebildet.

Um alle Transportprozesse gemeinsam bewerten zu können, sind die berechneten Sohlerhöhungen aus allen betrachteten Feststofffraktionen in Abbildung 16 dargestellt.

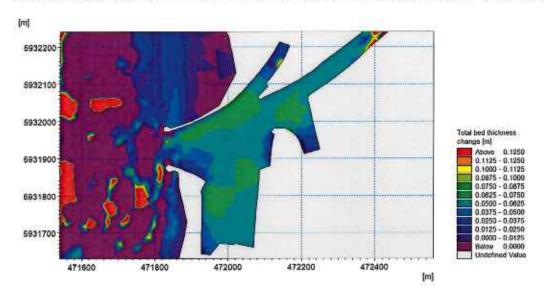


Abbildung 16: Berechnete Ablagerungen der Ton-, Schluff- und Sandfraktionen nach 14 Tagen im Ist-Zustand

4 Beschreibung der Berechnungsvariante (Planzustand)

4.1 Erneuerung der Nordmole

Nach der Untersuchung unterschiedlicher Varianten für die Einfahrt in die Geeste /7/ wird final nur ein Neubau der Nordmole vorgesehen. Der Verlauf der neu geplanten Nordmole ist in Abbildung 17 dargestellt. Die Südmole wird nicht verändert. Die Sohle im Vorhafen und im Bereich der Hafeneinfahrt wird in der Plan-Bathymetrie auf -5,4m LAT abgesenkt (vgl. Abbildung 17). Der im Planzustand vertiefte Bereich der Hafeneinfahrt (Einfahrtskorridor) erstreckt sich entlang der Nordmole. Die Höhenangaben beziehen sich auf den "niedrigsten möglichen Gezeitenwasserstand" ("lowest astronomical tide") LAT.

Zudem wurde eine Anpassung der Bathymetrie im Bereich vor der Hafeneinfahrt vorgenommen worden, um in diesem Bereich die Vergleichbarkeit zwischen Ist- und Planzustand sicherzustellen. Hierbei ist der Einfahrtskorridor aufgrund der breiteren Hafeneinfahrt entsprechend angepasst (verbreitert) worden.

Seite 28 von 67

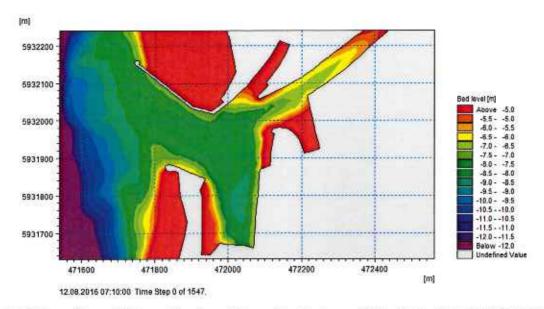


Abbildung 17: Bathymetrie im Planzustand in mNHN bei Plan-Sohlhorizont auf -5,4m LAT

Weiterhin ist die im Norden an die Nordmole angrenzende, geplante Lagune nach Plänen der Firma BioConsult berücksichtigt worden (vgl. Abbildung 19).

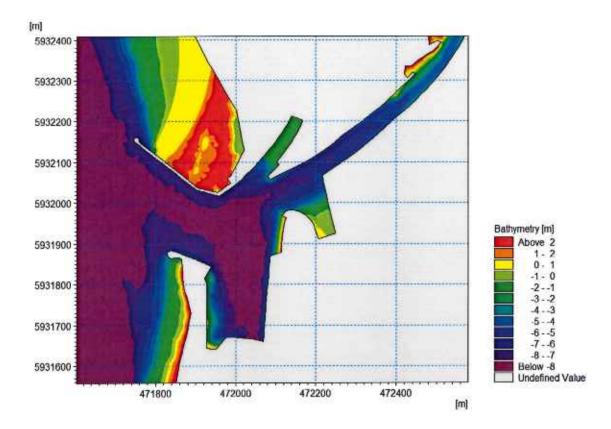


Abbildung 18: Bathymetrie im Planzustand mit Lagune in mNHN bei Plan-Sohlhorizont auf -5,4m LAT

4.2 Vergleichbarer Ist-Zustand (-5,4m LAT)

Im modellierten Planzustand wird als Start-Geometrie jeweils ein entsprechender Plan-Sohlhorizont von -5,4m LAT genutzt. Um die Vergleichbarkeit zwischen Ist- und Planzustand herzustellen ist eine weitere Variante des Ist-Zustands erstellt worden. In der modifizierten Variante des Ist-Zustands ist die Sohlhöhe im Hafenbereich und in der Hafeneinfahrt analog zum Planzustand ebenfalls auf -5,4m LAT abgesenkt worden (vgl. Abbildung 19).

Die Ergebnisse aus Ist- und Planzustand mit Sohlhorizont auf -5,4m LAT können damit direkt miteinander verglichen werden.

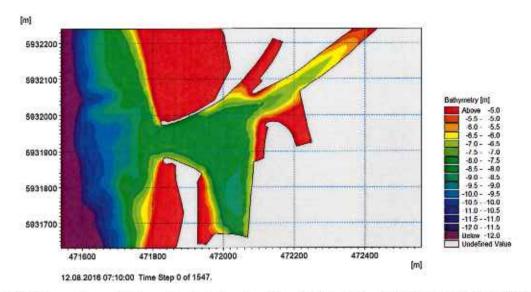


Abbildung 19: Bathymetrie im Istzustand in mNHN bei Plan-Sohlhorizont auf -5,4m LAT

5 Ergebnisse der Planvariante

Die Berechnung des Planzustandes erfolgt mit der in Kapitel 4.1 beschriebenen Bathymetrie. Die Randbedingungen und Programmeinstellungen sind analog zum Ist-Zustand (vgl. Kapitel 2) unverändert genutzt worden, um die Vergleichbarkeit zwischen den Berechnungen des Ist- und Planzustands zu gewährleisten.

Die berechneten Fließgeschwindigkeiten im Plan-Zustand sind für jeweils sechs Zeitschritte im Verlauf der Flut- und Ebbströmung in Anhang B abgebildet. Die Strömungsverteilung im Hafen hat sich im Vergleich zum Ausgangszustand der neuen Geometrie angepasst. Die Strömungsgeschwindigkeiten haben sich im Hafen über alle Tidephasen aufgrund der größeren Öffnungsweite und der größeren Hafenfläche verringert oder sind vergleichbar groß.

In Abbildung 20 ist die berechneten Ablagerungen der Ton- und Schlufffraktionen im Planzustand für den Tiefenhorizont -5,4m LAT im Hafenbereich abgebildet.

In der Berechnung zeigt sich eine geringere Ablagerung von Ton- und Schlufffraktionen im Vorhafen im Vergleich zur Berechnung des Ist-Zustands auf Sohlhorizont -5,4m LAT.

Eine quantitative Auswertung der berechneten Ablagerungen aus Schluff- und Tonfraktionen in der Ist- und Planvariante findet sich in Kapitel 6.

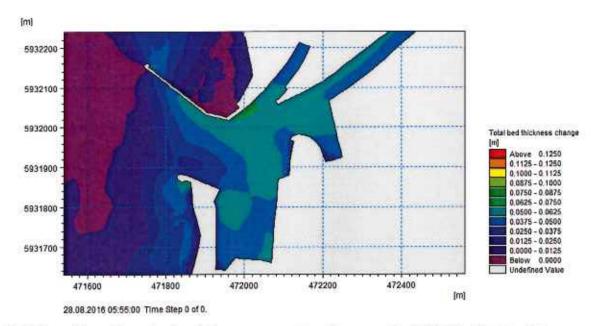


Abbildung 20: Berechnete Ablagerungen der Ton- und Schlufffraktionen im Planzustand bei Sohlhorizont auf -5,4m LAT

Abbildung 21 zeigt die im Planzustand für den Tiefenhorizont -5,4m LAT berechnete Ablagerungen der Sandfraktionen.

Zwischen den Molenköpfen werden in der Modellierung nur geringe Ablagerungen der transportierten Sandfraktionen berechnet. Ursächlich sind herfür die starken Ebbströmungen, die einen Teil der bei Flut abgelagerten Sedimente wieder remobilisieren.

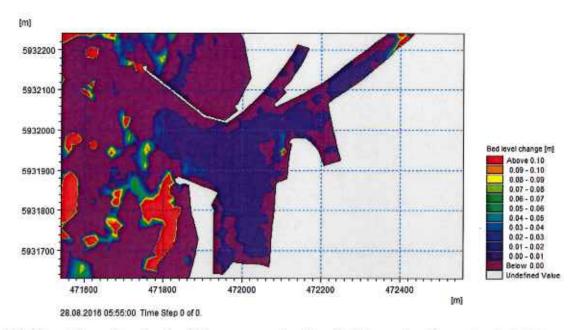


Abbildung 21: Berechnete Ablagerungen der Sandfraktionen im Planzustand 2 bei Sohlhorizont auf -5,4m LAT

Die akkumulierten Ablagerungen aus den betrachteten Sandfraktionen sowie den Tonund Schlufffraktionen sind für den Planzustand in Abbildung 22 dargestellt.

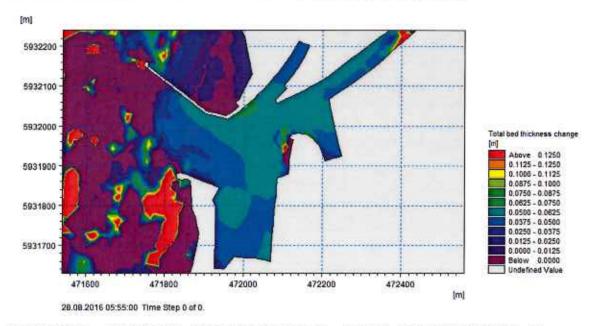


Abbildung 22: Berechnete Ablagerungen der Ton-, Schluff- und Sandfraktionen im Planzustand 2 bei Sohlhorizont auf -5,4m LAT

5.1 Ergebnisse Ist-Zustand -5,4mLAT

Analog zum Planzustand ist für eine bessere Vergleichbarkeit auch für den modifizierten Ist-Zustand, mit auf -5,4m LAT abgesenktem geplanten Sohlhorizont, der Transport für

die Ton- und Schlufffraktionen sowie für die Sandfraktionen berechnet worden. Die Ergebnisse sind in den Abbildung 23 (Ablagerungen aus Ton- und Schlufffraktionen), Abbildung 24 (Ablagerungen aus Sandfraktionen) und Abbildung 25 (gesamte Ablagerungen aus Ton- und Schluff- sowie Sandfraktionen) dargestellt. Im Vergleich zur Abbildung 16 (Ist-Zustand mit gepeilten Wassertiefen) zeigen sich insgesamt geringfügig geringere Ablagerungen im Hafen und geringfügig höhere Ablagerungen im Bereich der Molenköpfe.

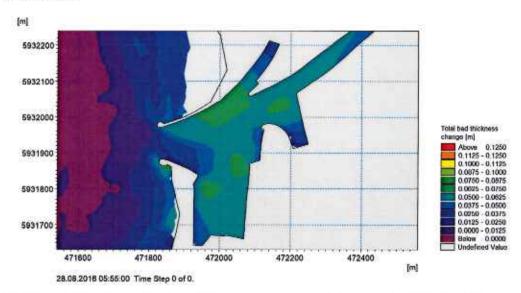


Abbildung 23: Berechnete Ablagerungen der Ton- und Schlufffraktionen im modifizierten Ist-Zustand bei Sohlhorizont auf -5,4m LAT

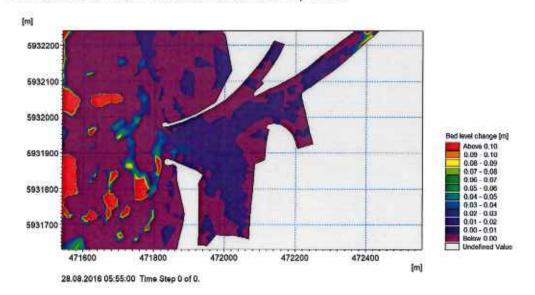


Abbildung 24: Berechnete Ablagerungen der Sandfraktionen im modifizierten Ist-Zustand bei Sohlhorizont auf -5,4m LAT

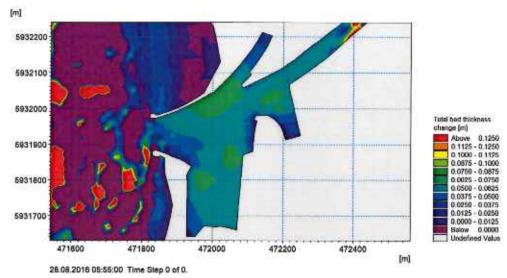


Abbildung 25: Berechnete Ablagerungen der Ton-, Schluff- und Sandfraktionen im modifizierten Ist-Zustand bei Sohlhorizont auf -5.4m LAT

6 Bewertung der Planungsvariante

6.1 Allgemeine Sensitivitätstests

Zur Bewertung und Absicherung der Ergebnisse aus Kapitel 5 sind Sensitivitätstests durchgeführt worden. Durch Veränderungen einzelner Parameter des Berechnungsmodells kann der Einfluss SO dieser Parameter auf das Berechnungsergebnis beurteilt werden.

Als Parameter der Sensitivitätstest sind die initiale Kornverteilung der Sohle, die Transportfunktion, die Auflösung des Berechnungsnetzes und die Bathymetrie (Lage der Vertiefung vor der Hafeneinfahrt) betrachtet worden.

Im validierten Berechnungsmodell sind die Parameter innerhalb sinnvoller Grenzen variiert worden. Als Ergebnis konnte eine geringe Sensitivität aller untersuchten Parameter auf den berechneten Sedimenttransport festgestellt werden. Somit ist bei allen Sensitivitätstest ein vergleichbares Ergebnis hinsichtlich des Feststofftransportes berechnet worden. Dies unterstreicht die Belastbarkeit der Ergebnisse.

6.2 Ton- und Schlufftransport

Zur Bewertung der Ergebnisse der Ablagerungen aus Ton- und Schlufffraktionen im Hafenbereich sind in Tabelle 1 die im Zeitraum vom 14.08.2016 bis 28.08.2016 berechneten Sedimentationshöhen über den gesamten Hafenbereich gemittelt für den

Planzustand sowie für den modifizierten Ist-Zustand (Sohlhorizont auf -5,4mLAT) zusammengestellt.

Tabelle 1: Vergleich der über die Hafenfläche gemittelten Sohlhöhenänderungen durch Ton- und Schlufffraktionen zwischen modifiziertem Ist-Zustand und dem Planzustand

	Mittlere Sedimentationshöhe [m] (Änderung zum Ist-Zustand [%])	Mittlere Sedimentation bezogen auf die jeweil Hafenfläche (Änderung der Fläche Zustand [%])	ligen [m³/d]	Änderung Menge [%]
Ist-Zustand -5,4m LAT	0,054	A _{Hafen_Ist} = 75.405 m ²	293	
Planzustand -5,4m LAT	0,048 (-11%)	A _{Hafen_Plan} = 91.291 m ² (+21%)	313	+6,8

Ebenfalls angegeben ist die mittlere, tägliche Sedimentationsmenge in m³/d sowie die Änderung der Sedimentationsmenge zwischen modifiziertem Ist-Zustand (-5,4m LAT) und dem Planzustand in Prozent. Die Auswertung der prozentualen Mengenänderung erfolgt über die jeweilige Hafenfläche von A_{Hafen_Ist} = 75.405 m² und A_{Hafen_Plan} = 91.291 m² (Abbildung 25).

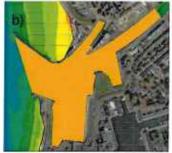


Abbildung 26: Ausgewertete Hafenflächen a) Ist-Zustand und b) Planzustand

Die gegenüber dem Ist-Zustand um 21% vergrößerte Hafenfläche im Planzustand führt, bei ebenfalls leicht geringeren Sedimentationsraten, zu einem Anstieg der mittleren Sedimentationsmenge im Hafenbereich. Die Änderungen liegen für den Planzustand bei -5,4m LAT bei +6,8%.

6.3 Sandtransport

Quantitative Aussagen zur Ablagerung von Sandfraktionen zwischen den Hafenmolen und im Bereich vor der Hafeneinfahrt sind aufgrund der räumlich unterschiedlichen Planungsvarianten und aufgrund der Auswahl des Auswertungsbereiches schwierig. Es können aber auf Grundlage der in Kapitel 5 aufgezeigten Modellierungsergebnisse qualitative Aussagen zum Transportverhalten der Sandfraktionen getroffen werden.

Betrachtet man die tiefengemittelten Fließgeschwindigkeiten und Sohlschubspannungen jeweils bei voll ausgebildeter Flut- und Ebbströmung für den Planzustand 2

(Abbildung 27 bis Abbildung 30), so sind deutliche Unterschiede zum Ist-Zustand zu erkennen. Die Strömung verläuft während der Ebbstromphase im Vorhafenbereich entlang der neu geplanten Nordmole. Hierdurch können während der Ebbstromphase keine Ablagerungen entlang der Nordmole und im Bereich des Nordmolenkopfes entstehen bzw. Ablagerungen werden auch teilweise wieder geräumt.

Es ergeben sich Ablagerungen im Bereich des südlichen Molenkopfes, südlich des Einfahrtskorridors. Die Einfahrt von tiefgehenden Schiffen aus Richtung Bremen könnte damit beeinträchtigt werden. Dies ist aber ein sehr seltenes Szenario, da die überwiegende Mehrheit der tiefgehenden Schiffe aus Norden kommt.

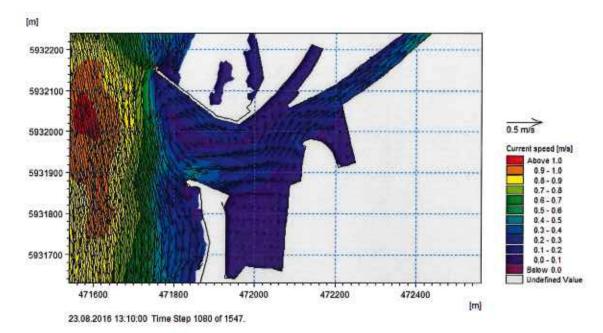


Abbildung 27: Berechnete Fließgeschwindigkeiten bei voll ausgebildeter Flutströmung Im Planzustand (-5,4m LAT)

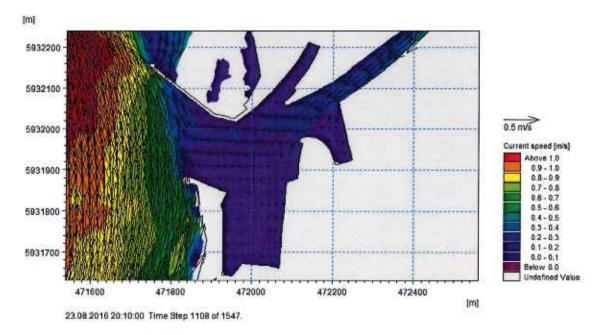


Abbildung 28: Berechnete Fließgeschwindigkeiten bei voll ausgebildeter Ebbströmung im Planzustand (-5,4m LAT)

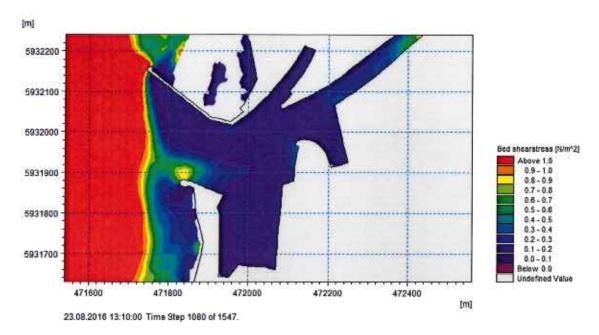


Abbildung 29: Berechnete Sohlschubspannungen bei voll ausgebildeter Flutströmung im Planzustand (-5,4m LAT)

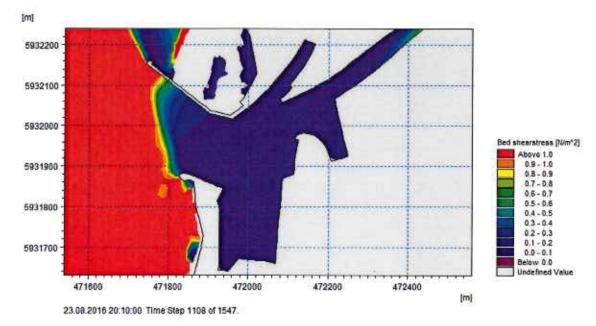


Abbildung 30: Berechnete Sohlschubspannungen bei voll ausgebildeter Ebbströmung im Planzustand (-5,4m LAT)

6.4 Sensitivitätstests zum Einfluss von Wellen

Der Einfluss von Wellen führt zu einem erhöhten Sedimenttransport in der Weser. Im Berechnungsmodell kann dieser Einfluss durch ein Wellenmodell berücksichtigt werden. Für den Berechnungszeitraum im August 2016 sind mit einem bestehenden Wellenmodell der DMT im Untersuchungsgebiet für den Untersuchungszeitraum die Wellenhöhen und -perioden berechnet worden.

Als Eingangsdaten zur Erzeugung der Wellen sind die Messdaten der DWD-Station Bremerhaven für die Parameter Windgeschwindigkeit und –richtung verwendet worden (vgl. Anhang C: Darstellung der Modell-Randbedingungen).

Die berechneten Wellen können als weitere Randbedingung im "mud transport" Modul berücksichtigt werden und führen dort zu erhöhten Schubspannungen.

Die durchgeführten Sensitivitätstests mit den durch Wind erzeugten Wellen im Untersuchungszeitraum zeigen, dass die berechneten Mengen des Gesamtschwebstoffs durch den Einfluss der Wellen weiter erhöht werden. Dies führt auch zu einer erhöhten Ablagerung im Hafenbereich.

Die mit und ohne den Einfluss von Wellen berechneten Gesamtschwebstoffkonzentrationen sind in Abbildung 31 den gemessenen Gesamtschwebstoffkonzentrationen am Pegel Bremerhaven Alter Leuchtturm gegenübergestellt. Die Erhöhung der Gesamtschwebstoffkonzentration mit Wellen liegt gegenüber der Berechnung ohne den Einfluss von Wellen bei 68%.

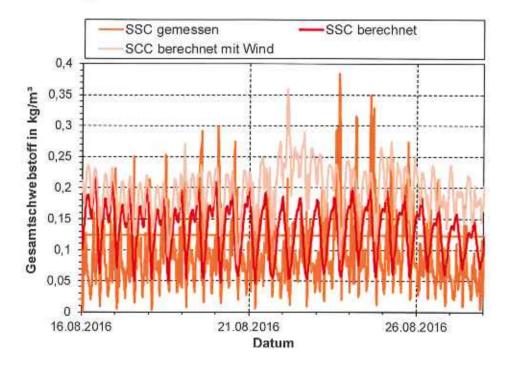


Abbildung 31: Berechneter (mit und ohne Wellen) und gemessener Gesamtschwebstoff am Pegel Bhv Alter Leuchtturm

Wie in Kapitel 3.4 beschrieben liegen die berechneten Schwebstoffkonzentrationen ohne Welleneinfluss bereits über den gemessenen Werten. Somit liegen die ohne den Einfluss von Wellen berechneten Schwebstoffkonzentrationen und Ablagerungshöhen bereits auf der sicheren Seite.

Anhand der Ergebnisse der Berechnungen mit erhöhten Schwebstoffkonzentrationen aufgrund des Welleneinflusses kann der Einfluss von höheren Schwebstoffkonzentrationen bewertet werden. Analog zu den Auswertungen in

Kapitel 6.2 sind die berechneten Ablagerungen im Hafenbereich für den modifizierten Ist-Zustand und den Plan-Zustand 2 ausgewertet worden. Bei einer mittleren Schwebstoffkonzentration, unter Berücksichtigung des Windeinflusses, von 0,220 kg/m³ ergeben sich die in Tabelle 2 angegebenen Ergebnisse.

Im Vergleich zu einem Referenzzeitraum, mit den maximalen in 2016 gemessenen Schwebstoffkonzentrationen bei hohem Oberwasserabfluss und geringeren Dichteströmungen im Vorhafen (16.02.2016 bis 03.03.2016), liegt die mittlere berechnete Schwebstoffkonzentration am Pegel Alter Leuchtturm von 0,220 kg/m³ noch leicht über der mittleren gemessenen Schwebstoffkonzentration im Referenzzeitraum im Februar 2016 von 0,192 kg/m³. Die in Tabelle 2 angegebenen Werte können somit als Obergrenze für die maximale Sedimentationsmenge angesehen werden.

Die Mengenänderung der abgelagerten Sedimente zwischen Ist- und Planzustand nimmt bei höheren Schwebstoffkonzentrationen somit leicht zu.

Tabelle 2: Vergleich der über die Hafenfläche gemittelten Sohlhöhenänderungen durch Ton- und Schlufffraktionen zwischen modifiziertem Ist-Zustand und den Varianten in Planzustand 2 bei erhöhter Schwebstoffkonzentration

	Mittlere Sedimentationshö he [m] (Änderung zum Ist-Zustand [%])	Mittlere Sedimentations bezogen auf die jeweili Hafenfläche (Änderung der Fläche z Zustand [%])	ge [m³/d]	Änderung Menge [%]
Ist-Zustand -5,4m LAT	0,181	A _{Hafen_Jst} = 75.405 m ²	976	
Planzustand -5,4m LAT	0,172 (-5%)	A _{Hafen_Plan2} = 91.291 m ² (+22%)	1.122	15,0%

7 Sedimentation außerhalb der Hafenfläche

Der Neubau der Hafenmolen wird in geringerem Maße auch die Sedimentation und das Fließverhalten in den angrenzenden Uferbereichen nördlich und südlich der Hafeneinfahrt beeinflussen. Die geplante Lagune nördlich der Nordmole verändert das Fließverhalten in diesem Bereich maßgeblich. Es entstehen Flachwasserbereiche, die nur noch bei hohen Wasserständen mit dem Weserwasserstand interagieren. Bei mittleren Wasserständen sind die Wasserstände in der Lagune von der Weser entkoppelt.

Die Berechnungen im Ist-Zustand zeigen, dass sich in diesen Bereichen nur geringe Mengen an gröberen Sandfraktionen ablagern (vgl. Abbildung 14). Der Sandtransport spielt dort im Gegensatz zu den Ablagerungen und Abtragungen aus Ton- und Schlufffraktionen nur eine untergeordnete Rolle.

Abbildung 32 zeigt die Differenzen zwischen den berechneten Sedimentationshöhen im Planzustand und dem Ist-Zustand über den gesamten Berechnungszeitraum.

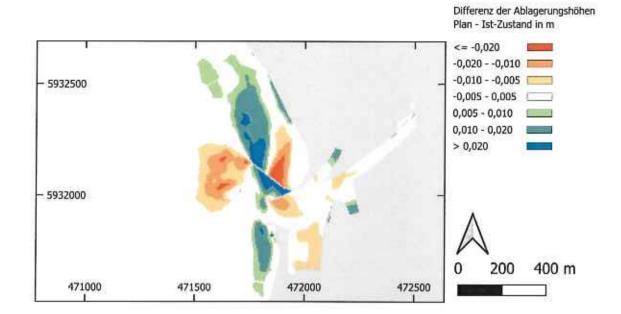


Abbildung 32: Differenz der Sohlhöhenänderungen zwischen Planzustand und Ist-Zustand (rot-orange= verminderte Sedimentation, grün-blau = erhöhte Sedimentation)

Es zeigt sich für den Planzustand eine stärkere Ablagerung von Ton- und Schlufffraktionen ausgehend vom neu geplanten Molenkopf der Nordmole in nördliche Richtung. Weitere Bereiche für die eine stärkere Ablagerung prognostiziert wird erstrecken sich in Planzustand rund 500 m stromabwärts des neu geplanten Molenkopfes der Nordmole.

Aufgrund der unveränderten Südmole in Planzustand 2 sind die Veränderungen des Sedimenttransports gegenüber dem Istzustand gering. Der Einfluss der Nordmole ist jedoch auch in diesem Bereich erkennbar. Bis rund 350 m südlich des Molenkopfs der Südmole werden ebenfalls höhere Ablagerungen von Ton- und Schlufffraktionen berechnet.

Außerhalb des abgebildeten Bereichs ist mit keiner Beeinflussung und Veränderung der Ablagerungen aus Ton- und Schlufffraktionen aufgrund der geplanten Nordmole und Lagune zu rechnen.

8 Weitere Beeinflussung der Wasserstände und Fließgeschwindigkeiten

8.1 Beeinflussung der Weser durch die Baumaßnahme

Um die Beeinflussung der geplanten Hafeneinfahrt auf die Betroffenheit der WSV bewerten zu können sind im Folgenden Differenzendarstellungen von Wasserstand und Strömung zwischen Ist- zu Planzustand erstellt und ausgewertet worden.

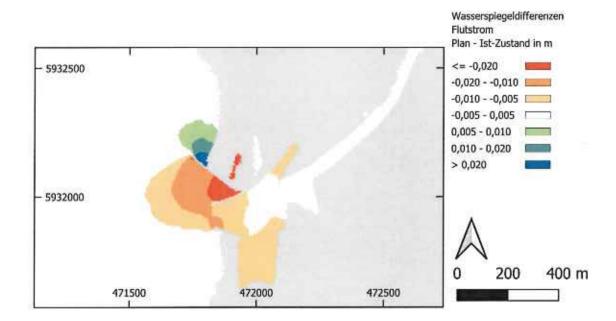


Abbildung 33: Wasserstandsdifferenzen zwischen Planzustand und Ist-Zustand während der maximalen Flutströmung (rot-orange= verminderter Wasserstand, grün-blau = erhöhter Wasserstand)

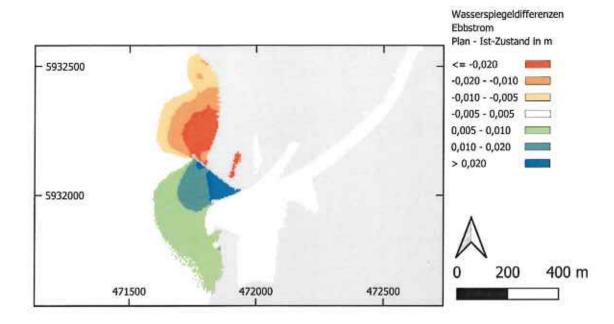


Abbildung 34: Wasserstandsdifferenzen zwischen Planzustand und Ist-Zustand während der maximalen Ebbströmung (rot-orange= verminderter Wasserstand, grün-blau = erhöhter Wasserstand)

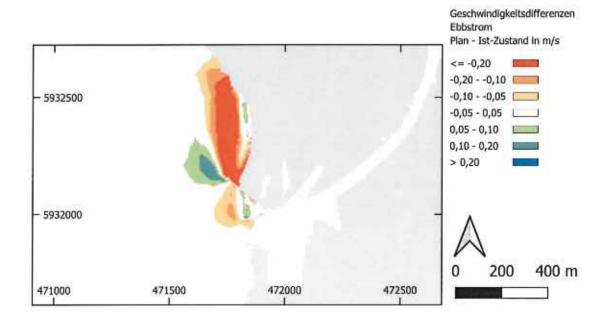


Abbildung 35: Geschwindigkeitsdifferenzen zwischen Planzustand und Ist-Zustand während der maximalen Flutströmung (rot-orange= verminderte Geschwindigkeiten, grünblau = erhöhte Geschwindigkeiten)

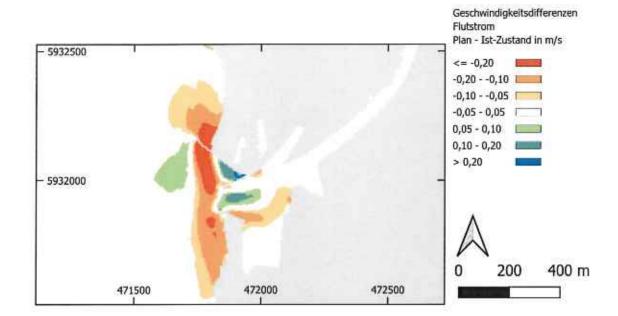


Abbildung 36: Geschwindigkeitsdifferenzen zwischen Planzustand und Ist-Zustand während der maximalen Ebbströmung (rot-orange= verminderte Geschwindigkeiten, grünblau = erhöhte Geschwindigkeiten)

Die Auswirkungen auf die Wasserstände und Fließgeschwindigkeiten beschränken sich damit vornehmlich auf den Nahbereich um das neu zu errichtende Molenbauwerk. Die signifikanten Änderungen (Wasserstandsänderungen >0,005 m, Geschwindigkeitsänderungen > 0,05 m/s) wirken sich bis maximal ca. 250 m vom geplanten Molenkopf in Richtung der Fahrrinne aus.

Weiterhin sind für die Parameter Fließgeschwindigkeit, Salzgehalt und Gesamtschwebstoffkonzentration die berechneten Werte im Planzustand den berechneten Werten des Ist-Zustands gegenübergestellt worden. Die Auswirkungen auf den Wasserstand sind vernachlässigbar gering und sind aus diesem Grund nicht dargestellt.

Die Auswertung erfolgt für den Zeitraum vom 18.08.2016 bis 23.08.2016 an drei Punkten im Nahbereich der geplanten Nordmole sowie an einem weiteren Punkt auf der Hafeneinfahrt gegenüberliegenden Seite der Weserfahrrinne. Die Auswertungspunkte sind in Abbildung 37 dargestellt.

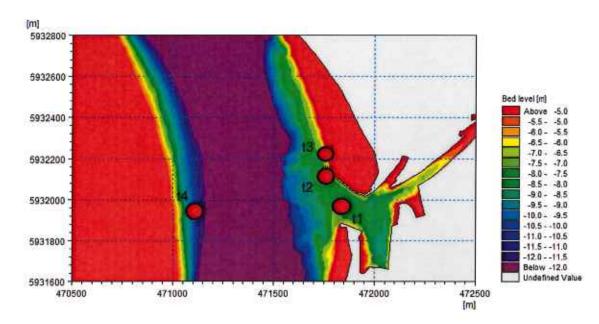


Abbildung 37: Lage der Auswertungspunkte zum Vergleich des Ist- und Planzustands

In Abbildung 38 sind die Fließgeschwindigkeiten an den Punkten t1 bis t4 für den Ist-Zustand und den Planzustand dargestellt.

Am Punkt t1 stellen sich im Planzustand aufgrund der Aufweitung der Hafeneinfahrt geringere Fließgeschwindigkeit als im Ist-Zustand ein. Die Veränderungen betragen maximal -14cm/s.

Der Punkt t2 befindet sich im Planzustand während des Flutstroms im Strömungsschatten der neu geplanten Nordmole. Dies führt zu einer deutlichen Abnahme der Fließgeschwindigkeiten während der Flutströmung. Die Fließgeschwindigkeit während der Ebbströmung ändert sich nur gering.

Die größten Änderungen in der Fließgeschwindigkeit zeigen sich am Punkten t3 nördlich des neu geplanten Molenbauwerks. Dort reduzieren sich sowohl während der Ebbströmung als auch während der Flutströmung die Fließgeschwindigkeiten deutlich.

Am Punkt t4 sind nur noch vernachlässigbar geringe Änderungen der Fließgeschwindigkeit zu erkennen. Der Einfluss des Neubaus der Mole auf die Fließgeschwindigkeiten beschränkt sich somit (wie bereits in Abbildung 35 und Abbildung 36 verdeutlicht) auf den Nahbereich des Molenbauwerks.

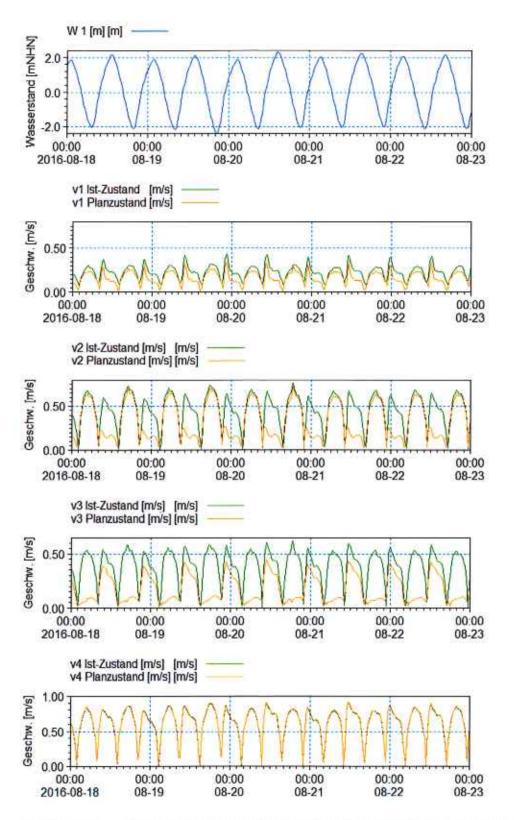


Abbildung 38: Vergleich der tiefengemittelten Geschwindigkeiten zwischen Ist-Zustand und Planzustand 2 an den Auswertungspunkten t1 bis t4

In Abbildung 38 ist der berechnete Salzgehalt an den Punkten t1 bis t4 für den Ist-Zustand und den Planzustand dargestellt.

An den Punkten t1, t2 und t3 lässt sich eine geringe Verschiebung der Ganglinien des Salzgehalts im Planzustand gegenüber dem Ist-Zustand erkennen. Aufgrund der vergrößerten Hafeneinfahrt fällt der Salzgehalt am Punkt t1 beispielsweise während den Ebbströmungen etwas schneller ab. Die Änderungen sind nur rechnerisch nachweisbar und nicht messbar.

Am Punkt t4 an der Hafeneinfahrt gegenüberliegenden Weserufer stellen sich analog zur Fließgeschwindigkeit nur sehr geringe Veränderungen des Salzgehaltes aufgrund der geplanten Baumaßnahme ein.

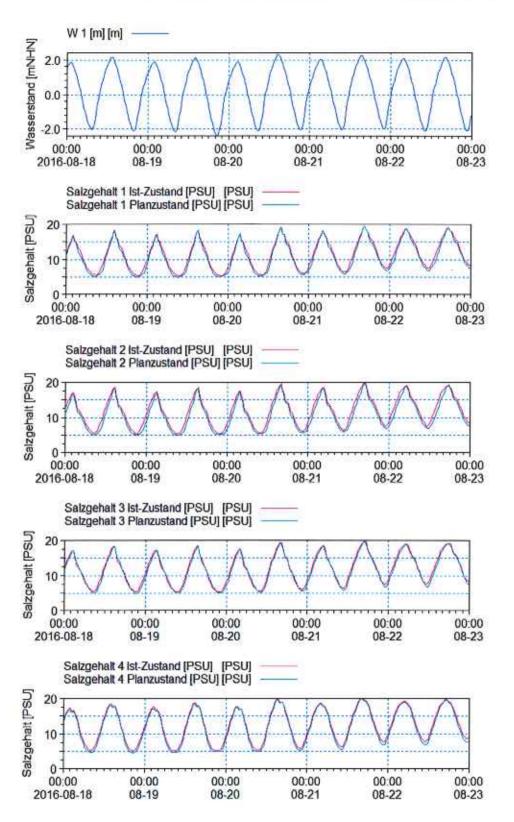


Abbildung 39: Vergleich des Salzgehaltes zwischen Ist-Zustand und Planzustand 2 an den Auswertungspunkten

Abbildung 40 ist die berechnete Gesamtschwebstoffkonzentration an den Punkten t1 bis t4 für den Ist-Zustand und den Planzustand 2 dargestellt.

Am Punkt t1 zeigt sich während des einsetzenden Flutstromes eine höhere Schwebstoffkonzentration im Planzustand gegenüber dem Ist-Zustand. Dies ist auf die höheren Geschwindigkeiten während des Ebbstroms an diesem Punkt zurückzuführen (vgl. Abbildung 38), wodurch mehr Material transportiert werden kann.

Am Punkt t2 zeigt sich eine leichte Reduzierung der berechneten Gesamtschwebstoffkonzentration. Bei t3 ergibt sich im Laufe des Ebbestromes eine deutliche Reduzierung der Schwebstoffgehalte.

Am Punkt t4 ist wie für die Fließgeschwindigkeit und den Salzgehalt keine Veränderungen des Schwebstoffgehalts aufgrund der geplanten Baumaßnahme zu erkennen.

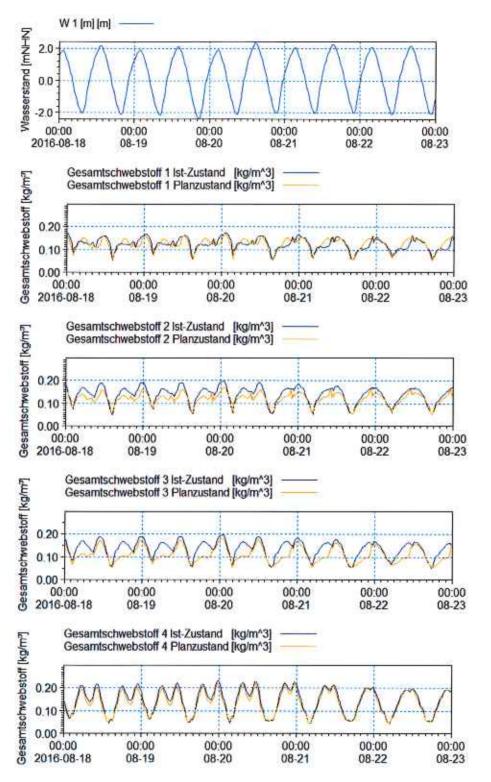


Abbildung 40: Vergleich des Gesamtschwebstoffs zwischen Ist-Zustand und Planzustand an den Auswertungspunkten

8.2 Beeinflussung der Geestemündung durch eine potentielle Vertiefung der Außenweser

Die Planung zur Anpassung der Außen- und Unterweser Nord (Quelle: www.weseranpassung.wsv.de) ist zur Zeit in einem frühen Vorstadium. Aus den zurzeit verfügbaren Informationen sind keine direkten Baumaßnahmen vor der Geestemündung zu erkennen. Die Vertiefungen und Verbreiterungen in der Außenweser werden voraussichtlich einen Einfluss auf den Tidehub und die Dichteströmungen haben. Beide Parameter sind über den Tide- und Dichteeffekt für die Sedimentation in der Geestemündung mit verantwortlich. Somit ist eine voraussichtlich geringfügige Verstärkung der Sedimentationsmengen zu erwarten.

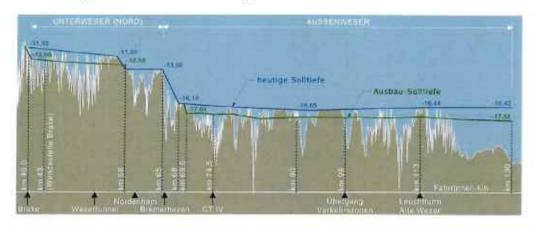


Abbildung 41: Längsschnitt der Ausbautiefen (Quelle: www.weseranpassung.wsv.de)

9 Fazit und Zusammenfassung

Für den Ist-Zustand und die Planungsvariante zur Neugestaltung der Nordmole entlang der Geestemündung ist der Sedimenttransport im Bereich der Geestemündung und im Bereich des Fischereihafens untersucht worden. In der Planung ist ebenfalls die geplante Lagune berücksichtigt worden.

Das Berechnungsmodell ist hydraulisch anhand mehrerer Parameter (Wasserstand, Temperatur und Salzgehalt) validiert worden. Hierzu konnte der im Modellgebiet liegende Pegel Bremerhaven Alter Leuchtturm genutzt werden. Für die Validierung des Feststofftransportes sind einzelne Peilungen im Hafenbereich und weitere Tiefenmessungen herangezogen worden sowie ergänzende Informationen aus den Arbeiten von Prof. Nasner.

Das Modell bildet die Strömungsverhältnisse während eines ohne Extremereignisse verlaufenden Nipp-Spring-Nipp Zyklus im Jahr 2016 gut nach. Der Sedimenttransport kann auf Grundlage einer Bathymetrie basierend auf dem DGM-W der BAW aus den Jahren 2015 und 2016 ebenfalls gut nachgebildet werden.

Die unterschiedlichen Transportprozesse werden im Berechnungsmodell durch zwei verschiedene Module nachgebildet. Die Berechnung der bindigen Ton- und Schlufffraktionen findet getrennt von der Berechnung der Sandfraktionen statt. Hierbei

sind die Ton- und Schlufffraktionen hauptsächlich für die Sedimentation im Hafenbereich verantwortlich, wohingegen die Sandfraktionen vor dem Hafenbereich bzw. zwischen den Molenköpfen sedimentieren.

Aufgrund der größeren Hafenflächen muss im Planzustand eine größere Menge von Sedimenten bewirtschaftet werden. Eine Veränderung gegenüber dem Ist-Zustand resultiert hauptsächlich aus der Vergrößerung der Hafenfläche.

Die Veränderungen hinsichtlich des Sandtransportes sind außerhalb des Hafens aufgrund der sich bewegenden Transportkörper schwer zu quantifizieren.

Im Planzustand führt die zukünftig vorhandene Räumwirkung der Ebbströmung dazu, dass sich kaum Sedimente im Einfahrtskorridor entlang der Nordmole absetzen.

Die durchgeführten Sensitivitätstests zeigen, dass das Berechnungsmodell auch bei Varianz der Berechnungsparameter die Kernaussagen hinsichtlich der untersuchten Transportprozesse weiterhin stützt.

Im Modell wurden die Effekte durch die Umlagerungen von Hafensedimenten durch z.B. Wasserinjektionsbaggerungen nicht berücksichtigt. Dies kann zu abweichenden Ablagerungsorten von Sedimenten im Vergleich der Modellergebnisse mit Naturmessungen führen.

Weiterhin wird im Modell die schiffsinduzierte Strömung nicht berücksichtigt. Es wird davon ausgegangen, dass der Einfluss dieses Phänomens im Vergleich zur restlichen Strömungsdynamik gering ist. Besonders im Hafenbereich können jedoch z.B. propellerstrahlinduzierte Strömungen zu lokalen Änderungen im Sedimenttransport führen.

Die Auswirkungen auf die Weser sind in beiden Planungsvarianten auf den direkten Bereich um die Molen beschränkt. Die Molen führen zu keinen Einschränkungen der Flut- und Ebbeströmungen in der Weser und somit auch nur zu lokalen Änderungen im Sedimenttransport der Weser.

Anhang A: Darstellung der Fließgeschwindigkeiten im Ist-Zustand

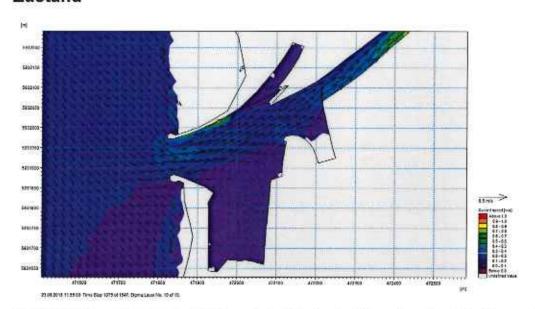


Abbildung 42: Berechnete Fließgeschwindigkeiten bei Einsetzen der Flutströmung im Ist-Zustand an der Wasseroberfläche

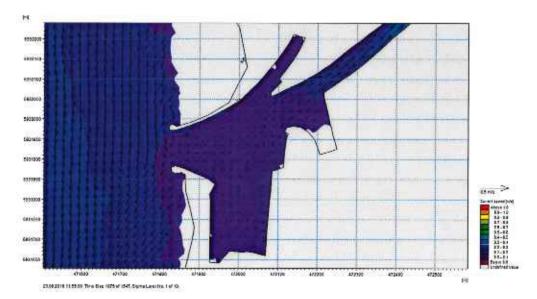


Abbildung 43: Berechnete Fließgeschwindigkeiten bei Einsetzen der Flutströmung im Ist-Zustand an der Gewässersohle

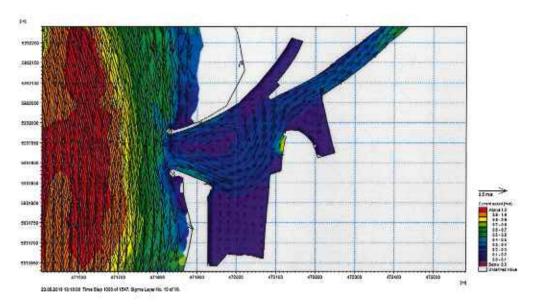


Abbildung 44: Berechnete Fließgeschwindigkeiten bei voller Flutströmung im Ist-Zustand an der Wasseroberfläche

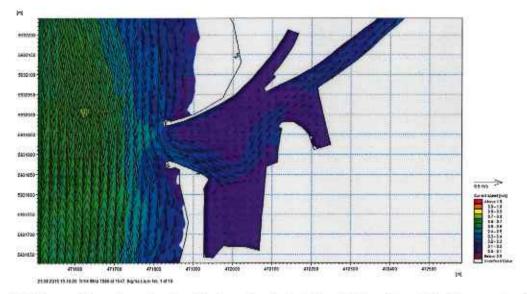


Abbildung 45: Berechnete Fließgeschwindigkeiten bei voller Flutströmung im Ist-Zustand an der Gewässersohle

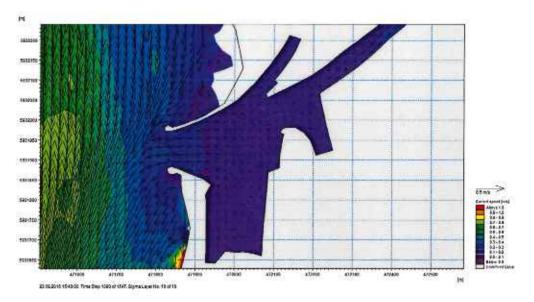


Abbildung 46: Berechnete Fließgeschwindigkeiten bei abklingender Flutströmung im Ist-Zustand an der Wasseroberfläche

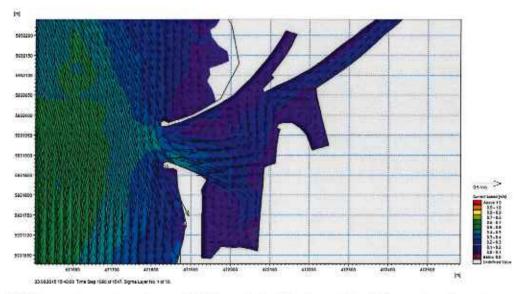


Abbildung 47: Berechnete Fließgeschwindigkeiten bei abklingender Flutströmung im Ist-Zustand an der Gewässersohle

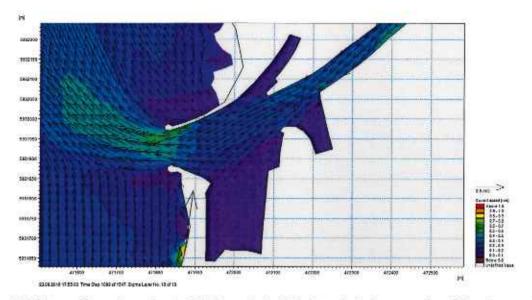


Abbildung 48: Berechnete Fließgeschwindigkeiten bei einsetzender Ebbströmung im Ist-Zustand an der Wasseroberfläche

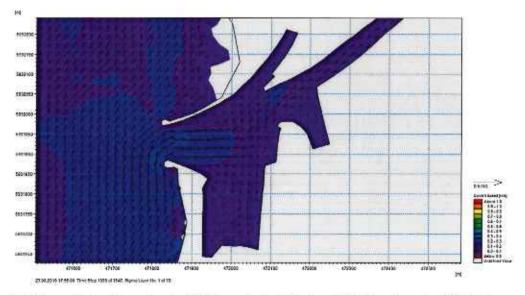


Abbildung 49: Berechnete Fließgeschwindigkeiten bei einsetzender Ebbströmung im Ist-Zustand an der Gewässersohle

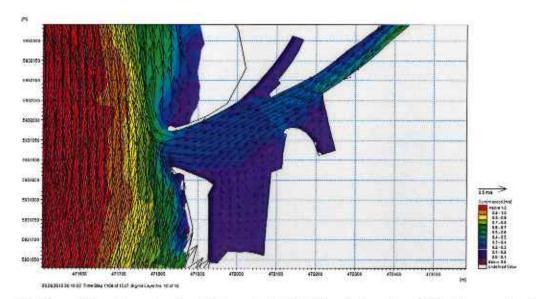


Abbildung 50: Berechnete Fließgeschwindigkeiten bei voller Ebbströmung im Ist-Zustand an der Wasseroberfläche

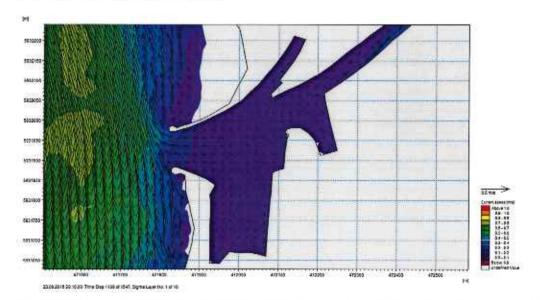


Abbildung 51: Berechnete Fließgeschwindigkeiten bei voller Ebbströmung im Ist-Zustand an der Gewässersohle

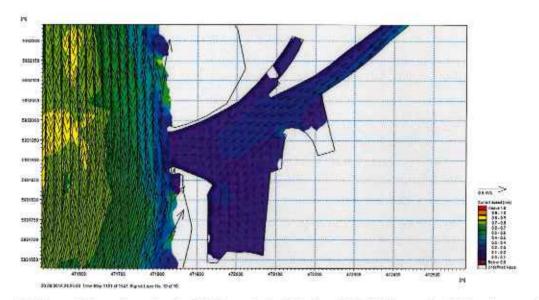


Abbildung 52: Berechnete Fließgeschwindigkeiten bei abklingender Ebbströmung im Ist-Zustand an der Wasseroberfläche

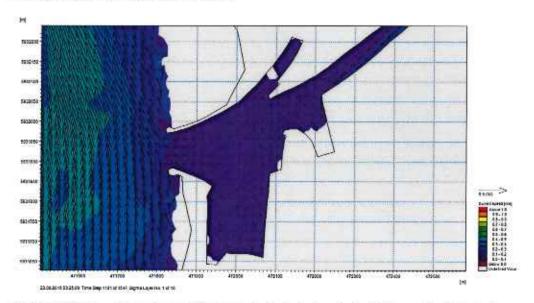


Abbildung 53: Berechnete Fließgeschwindigkeiten bei abklingender Ebbströmung im Ist-Zustand an der Gewässersohle

Anhang B: Darstellung der Fließgeschwindigkeiten im Planzustand

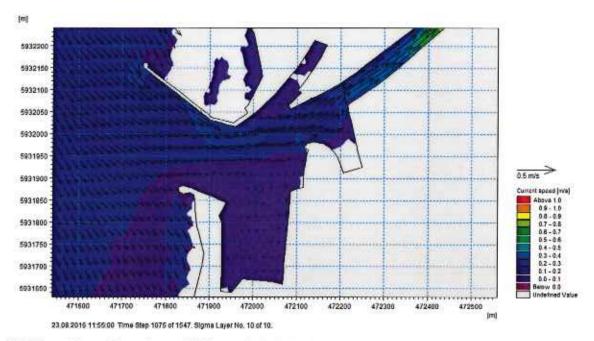


Abbildung 54: Berechnete Fließgeschwindigkeiten bei Einsetzen der Flutströmung im Planzustand (-5,4m LAT) an der Wasseroberfläche

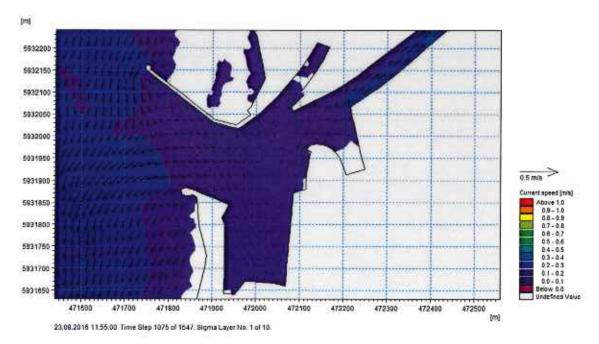


Abbildung 55: Berechnete Fließgeschwindigkeiten bei Einsetzen der Flutströmung im Planzustand (-5,4m LAT) an der Gewässersohle

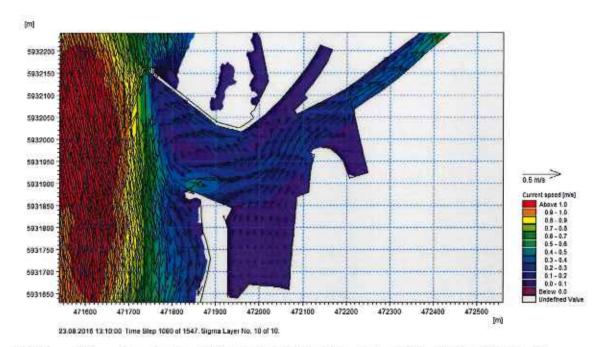


Abbildung 56: Berechnete Fließgeschwindigkeiten bei voller Flutströmung Im Planzustand (-5,4m LAT) an der Wasseroberfläche

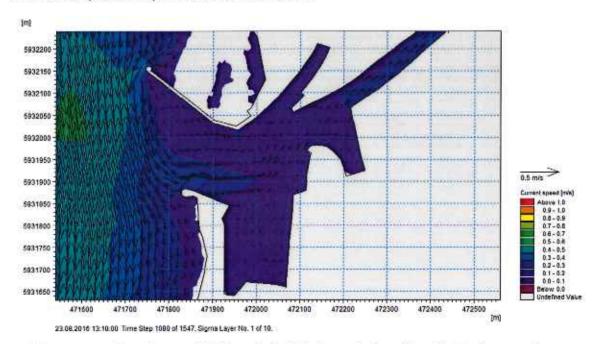


Abbildung 57: Berechnete Fließgeschwindigkeiten bei voller Flutströmung im Planzustand (-5,4m LAT) an der Gewässersohle

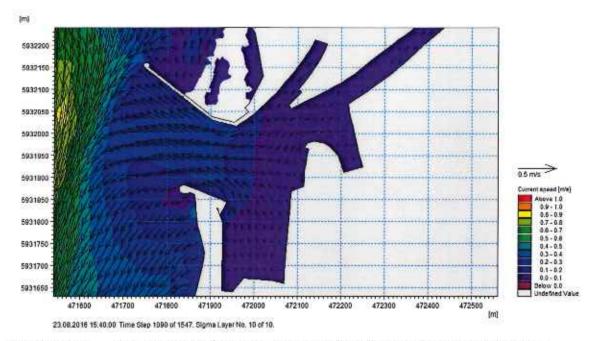


Abbildung 58: Berechnete Fließgeschwindigkeiten bei abklingender Flutströmung im Planzustand (-5,4m LAT) an der Wasseroberfläche

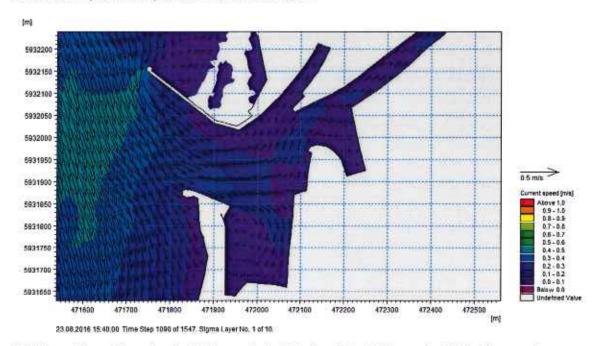


Abbildung 59: Berechnete Fließgeschwindigkeiten bei abklingender Flutströmung im Planzustand (-5,4m LAT) an der Gewässersohle

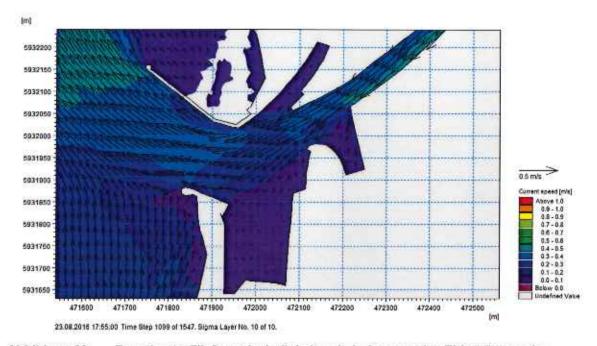


Abbildung 60: Berechnete Fließgeschwindigkeiten bei einsetzender Ebbströmung im Planzustand (-5,4m LAT) an der Wasseroberfläche

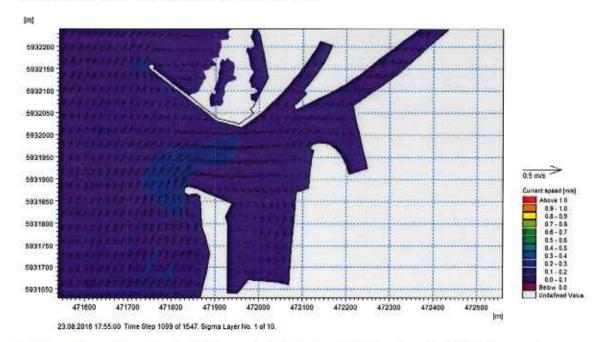


Abbildung 61: Berechnete Fließgeschwindigkeiten bei einsetzender Ebbströmung im Planzustand (-5,4m LAT) an der Gewässersohle

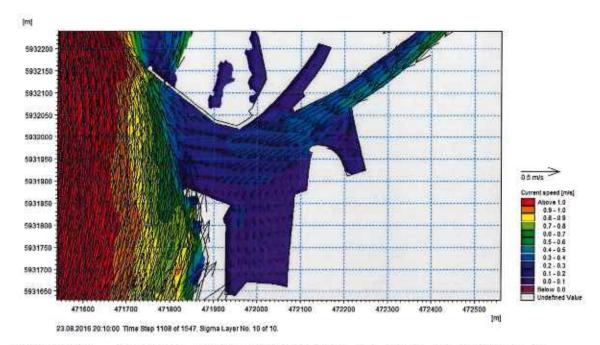


Abbildung 62: Berechnete Fließgeschwindigkeiten bei voller Ebbströmung im Planzustand (-5,4m LAT) an der Wasseroberfläche

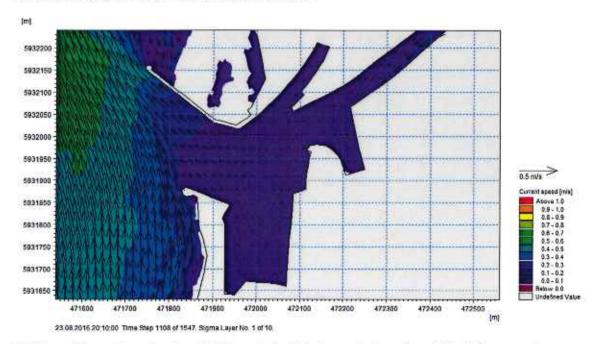


Abbildung 63: Berechnete Fließgeschwindigkeiten bei voller Ebbströmung Im Planzustand (-5,4m LAT) an der Gewässersohle

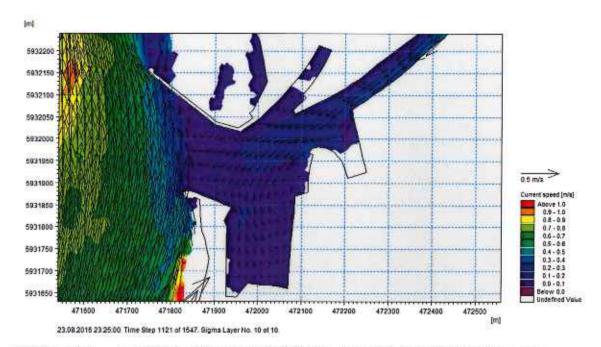


Abbildung 64: Berechnete Fließgeschwindigkeiten bei abklingender Ebbströmung im Planzustand (-5,4m LAT) an der Wasseroberfläche

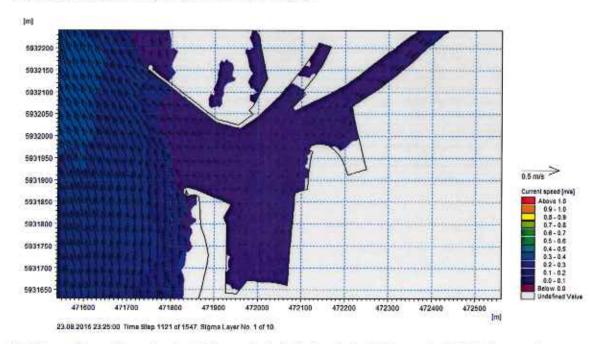


Abbildung 65: Berechnete Fließgeschwindigkeiten bei abklingender Ebbströmung im Planzustand (-5,4m LAT) an der Gewässersohle

Anhang C: Darstellung der Modell-Randbedingungen

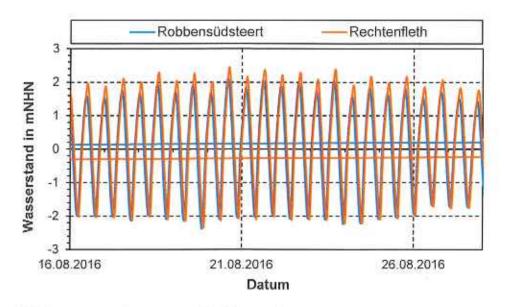


Abbildung 66: Wasserstand im Untersuchungszeitraum an den Modellrändern

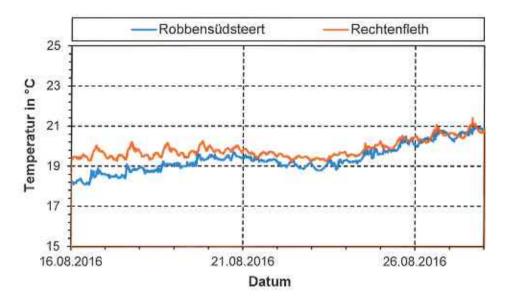


Abbildung 67: Temperatur im Untersuchungszeitraum an den Modellrändern

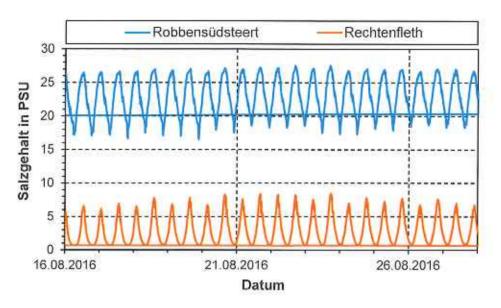


Abbildung 68: Salzgehalt im Untersuchungszeitraum an den Modellrändern

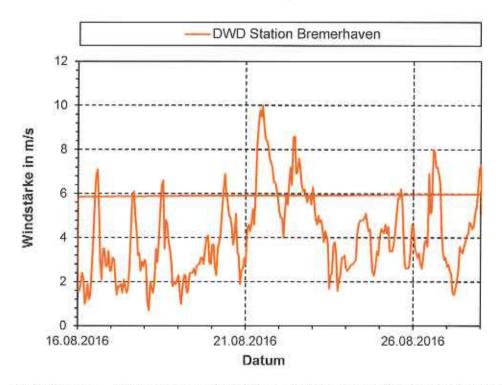


Abbildung 69: Windgeschwindigkeit im Untersuchungszeitraum an der DWD Station Bremerhaven

Abbildung 70: Windrichtung im Untersuchungszeitraum an der DWD Station Bremerhaven