Unterlage 10.2

Messstelle nach § 26 BlmSchG für Geräusche und Erschütterungen

Vorhaben: Erschütterungstechnische Prognosen

Stadtwerke München GmbH

Neubaustrecke Tram Westtangente

Auftraggeber: Stadtwerke München GmbH

Ressort Mobilität

Fahrweg - Planung

Emmy-Noether-Straße 2

80992 München

Bearbeitungsstand: 07/2019

Projekt-Nr.: 2019 851-E

Auftrag vom: 19.08.2015

Anzahl Seiten: 31

Anzahl Anlagen: 5, s. Anlagenverzeichnis

fachlich verantwortlich: Dipl.-Ing. (FH) Manfred Ertl

Durchwahl: 0821 / 455 179 10

E-Mail: ertl@em-plan.com

Mitarbeiter: Andreas Schartner

Dokument: 851_SWM_TWT_Erschütterungen_2019-07-08

Das vorliegende Gutachten ist geistiges Eigentum von em plan. Das Gutachten ist ausschließlich zur Durchführung des behandelten Vorhabens zu verwenden. Die Weitergabe des Gutachtens oder dessen Vervielfältigung außerhalb des gegenständlichen Vorhabens, auch auszugsweise, ist nur mit unserer ausdrücklichen und schriftlichen Gestattung zulässig.

Inhaltsverzeichnis

1.	Gegenstand der Untersuchung4						
2.	Örtlichkeiten						
3.	Bebauungspläne						
4.	Baumaßnahmen10						
5.	Prognoseverfahren – VDI 3837						
6.	Beurt	eilungsgrundlagen	14				
	6.1	Erschütterungen - DIN 4150-2	14				
	6.2	Sekundärer Luftschall	16				
7.	Mess	durchführung und Messgeräte	17				
	7.1	Messorte und Messdatum	17				
	7.2	Messgeräte	18				
8.	Ausw	ertung und Messergebnisse	19				
	8.1	Eingangsspektren	19				
	8.2	Übertragungsfunktionen nach VDI 3837	20				
	8.3	KB _{Fmax} - Werte nach DIN 4150-2	20				
	8.4	Sekundärer Luftschall	21				
9.	Zugza	ahlen	22				
10.	Progr	nose und Ergebnisbewertung	23				
	10.1	Prognoseergebnisse	23				
	10.2	Summarische Bewertung	24				
	10.3	Erschütterungsmindernde Maßnahmen	26				
11.	Zusammenfassung						
A)	häufig	g verwendete Abkürzungen	30				
B)	Grundlagenverzeichnis						
C)	Regelwerke						
D)	Anlagenverzeichnis						
E)	Tabellen3						

1.

1. Gegenstand der Untersuchung

Die Stadtwerke München planen die Umsetzung der Tram Westtangente (TWT).

Konkret sieht die Planung den zweigleisigen Neubau der Tram Westtangente und den Umbau der ÖV-Anlage in der Aidenbachstraße, in welcher zusätzlich der Tram-Verkehr abgewickelt wird, vor. Auf der Strecke der TWT sollen die Buslinien 51 und 151 durch diese ersetzt werden.

Die Neubaustrecke beginnt in der o. g. ÖV-Anlage, führt nach Norden bis zum Knoten Ratzingerplatz, verschwenkt über die Boschetsrieder Straße in Richtung Westen und über den Knoten Drygalski-Allee in Richtung Nordwesten. Nach der Unterführung der Autobahn A 95 verläuft die TWT in Richtung Norden über die Fürstenrieder Straße, kreuzt die Gleisanlage der Deutschen Bahn AG auf der Höhe des S-Bahnhofs Laim und führt über die Wotanstraße bis zum Romanplatz. Im Bereich des Waldfriedhofs in der Fürstenrieder Straße ist eine Wendeschleife östlich der TWT geplant.

Die bestehenden Straßenbahnlinien 18 und 19/N19 in der Ammerseestraße bzw. Agnes-Bernauer-Straße werden durch Gleisbögen mit der TWT verbunden.

Im Zug der Maßnahme ergeben sich bauliche Anpassungsmaßnahmen der Verkehrsführung im öffentlichen Straßenraum.

Die Strecke ist über die gesamte Länge beiderseits gesäumt von Wohn- und Geschäftsnutzungen.

Im Vorfeld der Umsetzung der Tram Westtangente wurden die Schwingungseigenschaften von 18 repräsentativen Gebäuden, entlang der Baumaßnahme durch Ersatzanregung ermittelt.

Für die Gebäude ist anhand der ermittelten Übertragungsfunktionen und geeigneten Emissionsspektren aus vergleichbaren gemessenen Situationen eine Erschütterungsprognose für den künftigen Straßenbahnbetrieb nach der VDI 3837, Erschütterungen in der Umgebung von oberirdischen Schienenverkehrswegen – Spektrales Prognoseverfahren, zu erstellen und anhand der dafür einschlägigen Norm, der DIN 4150-2, Erschütterungen im Bauwesen – Einwirkungen auf Menschen in Gebäuden, zu beurteilen.

Zudem ist der durch Erschütterungen verursachte Schall – der sekundäre Luftschall – in den Gebäuden zu ermitteln und auf der Grundlage der 24. BlmSchV zu beurteilen.

Die Randbedingungen und Ergebnisse der Untersuchung werden im vorliegenden Bericht dokumentiert.

2. Örtlichkeiten

Die Baumaßnahme beginnt an der ÖV-Anlage in der Aidenbachstraße, führt über die Boschetsrieder Straße, die Fürstenrieder Straße und die Wotanstraße zum Romanplatz.

Abbildung 1: Übersichtsskizze Verlauf der Tram Westtangente, Luftbild Quelle: Google Earth

Der Bauanfang, die ÖV-Anlage, befindet sich in der Aidenbachstraße im Ortsteil München-Obersendling, führt nach Norden bis zum Knoten Ratzingerplatz, verschwenkt über die Boschetsrieder Straße in Richtung Westen und über den Knoten Drygalski-Allee in Richtung Nordwesten. Nach der Unterführung der Autobahn A 95 verläuft die TWT in Richtung Norden über die Fürstenrieder Straße, kreuzt die Gleisanlage der Deutsche Bahn AG auf der Höhe des S-Bahnhofs Laim und führt über die Wotanstraße bis zum Romanplatz.

Im Umfeld der ÖV-Anlage befinden sich vorwiegend gewerbliche Nutzungen und Mischgebietsnutzungen. Jeweils nördlich und südlich befindet sich eine fortschreitende Planung eines Schulgeländes inkl. Sportanlagen.

Südlich der Boschetsrieder Straße befinden sich bis ca. Bau-km 1+300 gewerbliche Nutzungen. Alle weiteren Nutzungen entlang der Boschetsrieder Straße sind, mit Ausnahme einer Schule an der Drygalsky-Allee 2, Nutzungen in Wohngebieten.

Ab dem Kreuzungspunkt der Autobahn A95 mit der Baumaßnahme schließt etwa bei Bau-km 2+200 die Fürstenrieder Straße an die Boschetsrieder Straße an. Zwischen Bau-km 2+250 und 3+300 befindet sich westlich der Fürstenrieder Straße ein Friedhof. Auf der Ostseite liegt zwischen der Autobahn A95 und Bau-km 2+700 ein Wohngebiet. Von Bau-km 2+700 bis 2+775 ist eine Wendeschleife geplant. Nördlich davon befinden sich Mischgebietsnutzungen. Im weiteren

Verlauf der Fürstenrieder Straße liegen beiderseits überwiegend Wohngebiete. Ausnahmen sind jeweils ein Schulgelände in der Fürstenrieder Straße 30 und 159 und eine Fläche für Gemeinbedarf in der Fürstenrieder Straße 78.

Etwa bei Bau-km 6+950 befinden sich umfangreiche Gleisanlagen der Deutsche Bahn AG, diese verlaufen in Ost-West-Richtung. Südlich und nördlich grenzen dort Mischgebiets- und Gewerbegebietsnutzungen an.

Ab dem höhenfreien Kreuzungspunkt der geplanten TWT mit den Gleisanlagen der DB AG verläuft die Baumaßnahme in der Wotanstraße, diese ist beiderseits mit Wohngebietsnutzungen gesäumt.

Die vorhandenen Nutzungen sind dem Grunde nach dem nachstehenden Auszug aus dem zuletzt veröffentlichen Flächennutzungsplan zu entnehmen. Maßgeblich für die Einstufung der Schutzbedürftigkeiten sind die bestehenden rechtsverbindlichen bzw. planerisch hinreichend konkretisierten Bebauungspläne. Liegen keine solchen Festsetzungen vor, ist die tatsächlich ausgeübte Nutzung maßgeblich.

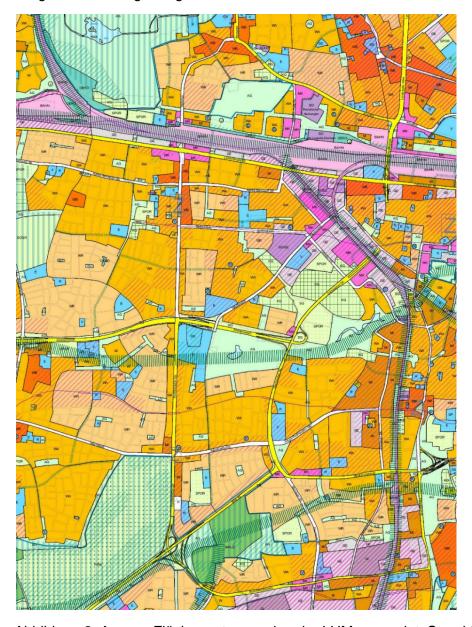


Abbildung 2: Auszug Flächennutzungsplan der LHM, genordet, Stand 2018

Landeshauptstadt München

Referat für Stadtplanung und Bauordnung

Flächennutzungsplan mit integrierter Landschaftsplanung

(verkleinerter Übersichtsplan*)

W	Wohnbauflächen
WS	Kleinsiedlungsgebiete
WR	Reine Wohngebiete
WA	Allgemeine Wohngebiete
WB	Besondere Wohngebiete
M	Gemischte Bauflächen
MD	Dorfgebiete
MI	Mischgebiete
MK	Kerngebiete
G	Gewerbliche Bauflächen
GE	Gewerbegebiete
GI	Industriegebiete

soge SO Gewerblicher Gemeinbedarf SO Industrieller Gemeinbedarf SOEZ SO Einzelhandel SOGH SO Großhandel SOM SO Messe SOH SO Hochschule SOK SO Kultur SOLV SO Landesverteidigung SOBV SO Brauereiverlagerung oder nach Beschriftung im Plan GB Gemeinbedarfsflächen GB Erziehung GB Fürsorge gs GB Gesundheit GB Kultur GB Religion GB Verwaltung wiss GB Wissenschaft

Abbildung 3: Auszug Legende zum Flächennutzungsplan der LHM

3. Bebauungspläne

Entlang der Strecke sind folgende Bebauungspläne existent:

Tab. 3-1: rechtsverbindliche Bebauungspläne

Nr.	Bezeichnung	Nutzung	Rechtsverbindlichkeit
72g	Kärntner Platz	WA, öffentl. Grünanlage	25.03.1971
83	Wotanstraße	MI	26.04.1965
136a	Kreuzhofstraße (nördlich)	WA, L	03.04.1970
245a	Aidenbachstraße (östlich); Zwischen Zielstatt- und Boschetsrieder Straße (Feuerwache II)	Gemeinbedarfsfläche (Feuerwehr)	05.04.1968
245b	Boschetsrieder Straße (südlich), Hof- mannstraße (östlich)	MK	04.07.1971
343	Olympia-, Fürstenrieder- und Boschets- rieder Straße im Bereich Kreuzhof	WA, MI, Verkehrsführung, Parkplatz, AG	23.08.1972
386	Gotthardstraße (südlich) zwischen Joerg- und Fürstenriederstraße	MK	08.09.1967
391	Boschetsrieder Straße zwischen Höglwörther und Ramsauer Straße	WA	07.11.1969
410	Boschetsrieder Straße zwischen Höglwörther und Aidenbachstraße	Verkehrsführung, AG	29.05.1968
425a	Fürstenrieder Straße 21	MK	17.07.1968
425b	Landsberger Straße, Ecke Fürstenrieder Straße Flurstücke Nr. 292 und 292/13	MK	13.10.1971
675	Würmtal- und Kriegerheimstraße	Verkehrsführung	06.05.1971
707	Gräfelfinger Straße zwischen Kornwegstraße und Fürstenrieder Straße	Verkehrsführung	28.08.1971
818	Wotanstraße, Flurstücke Nr. 117, 123, 123/23, 123/40, 123/41, 123/42	WA, Verkehrsführung	21.10.1971
988	Fürstenrieder Straße, Friedrich-List- Straße und Gilmstraße (Änderung d. Beb. Pl. Nrn. 527a und b)	WA, Gemeinbedarfsfläche (Schule und Sportplatz)	10.06.1974
1070	Boschetsrieder, Geisenhausener-, Kistlerhof-, Schertlin- und Machtlfinger Straße	GE, MI, Gemeinbedarfs- fläche (Kirche)	02.10.1978
1179	Fürstenrieder Straße (Ostseite) zwischen Ehrwalder- und Graswanger Straße	WA, Verkehrsführung, Straßenbegrenzungslinien	24.10.1977
1237	Agnes-Bernauer-Straße zwischen Fürstenrieder Straße und Ehem. Interimskirche (Ortskern Laim)	WA, Gemeinbedarfsfläche (kulturelle Einrichtungen)	06.09.1998

Nr.	Bezeichnung	Nutzung	Rechtsverbindlichkeit
1300	Boschetsrieder Straße westlich der Höglwörther Straße (Teiländerung des Beb. Pl. Nr. 343)	WA, L	12.09.1980
1488	Drygalski-Allee/Ecke Boschetsrieder Straße - Thomas-Mann-Gymnasium - (Änderung des Beb. Pl. Nr. 71e und Teil- änderung des Beb. Pl. Nr. 343)	Gemeinbedarfsfläche (Schule)	27.09.1985
1627	Wotanstraße zwischen Richildenstraße und Hirschgarten	Verkehrsführung, Stra- ßenbegrenzungslinien	28.03.1988
1894a	Landsberger Straße nördlich, Wotanstraße beiderseits, Fürstenrieder Straße nördlich (Laimer Knoten) (Teiländerung des Beb. Pl. Nr. 245b)	MK, GE, SO, Verkehrs- führung, Straßenbegren- zungslinien	23.11.2005
1925	Nymphenburg Süd, Bahnlinie (nördlich), Nymphenburger Schlosspark, Hertha- straße, Wotanstraße (westlich) und Winf- riedstraße (südlich) - ehemaliger Ran- gierbahnhof und ESV-Gelände - (Ände- rung des Beb. Pl. Nr. 768)	SO, WA, MK, AG, Ge- meinbedarfsfläche (Schu- le)	10.10.2005
1963	Fürstenrieder Straße 21 (Teiländerung des Beb. Pl. Nr. 425a)	MK	10.07.2007
2072a	Boschetsrieder Straße (südlich), Drygalski-Allee (östlich), Kistlerhofstraße (nördlich), Machtlfinger Straße (westlich) (Teiländerung des Beb. Pl. Nr. 918b)	WA, MK	08.12.2016

4. Baumaßnahmen

Die Baumaßnahme besteht im Wesentlichen aus dem Neubau der zweigleisigen Tram Westtangente beginnend ab der baulich anzupassenden ÖV-Anlage in der Aidenbachstraße. In der Aidenbachstraße führt die TWT nach Norden bis zum Knoten Ratzingerplatz, verschwenkt über die Boschetsrieder Straße in Richtung Westen und über den Knoten Drygalski-Allee in Richtung Nordwesten. Nach der Unterführung der Autobahn A 95 verläuft die TWT in Richtung Norden über die Fürstenrieder Straße, kreuzt die Gleisanlage der Deutsche Bahn AG auf der Höhe des S-Bahnhofs Laim und führt über die Wotanstraße bis zum Romanplatz.

Die bestehenden Straßenbahnlinien 18 und 19/N19 in der Ammerseestraße bzw. Agnes-Bernauer-Straße werden durch Gleisbögen mit der TWT verbunden.

Die Gleise der TWT verlaufen vorwiegend in einem besonderen Bahnkörper. Die gewählte Oberbauform ist ein Rasengleis mit hoch liegender Vegetationsebene. Ausnahmen sind Kreuzungspunkte mit dem MIV und die Abschnitte in der Fürstenrieder und Wotanstraße von Bau-km 6+600 bis 7+275 und von Bau-km 7+750 bis 8+250. Dort ist als Oberbauform ein straßenbündiger Bahnkörper mit fester Fahrbahn vorgesehen.

Als Folge der Neubaumaßnahmen wird der Straßenraum überplant und abschnittsweise neu geordnet. Diesbezüglich werden die Straßenränder angepasst und die bestehenden Fahrspuren verlegt bzw. baulich angepasst oder neu markiert. Die Fürstenrieder und die Wotanstraße werden weitgehend um eine Fahrspur reduziert.

Letztere Änderungen sind hinsichtlich der durch den Betrieb der Straßenbahn entstehenden Erschütterungen sowie hinsichtlich ggf. leicht verschobener Fahbahnachsen in erster Näherung nicht relevant.

5. Prognoseverfahren – VDI 3837

In der VDI 3837 werden grundlegende Abhängigkeiten für die Emission, Transmission und Immission von Erschütterungen aufgezeigt und darauf aufbauend ein spektrales Prognoseverfahren für die Erschütterungen im Frequenzbereich von 4 Hz bis 80 Hz beschrieben, die von oberirdisch geführten Schienenbahnen ausgehen. Das Verfahren kann bei bestehenden oder neu zu errichtenden Strecken angewendet werden.

Die nachstehende Abbildung zeigt schematisch die Vorgehensweise einer Prognose nach VDI 3837.

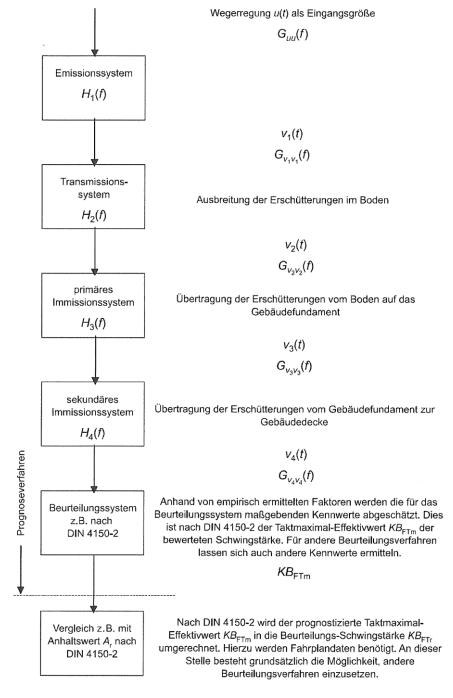


Abbildung 1: Blockschaltbild für das spektrale Prognoseverfahren der VDI 3837

In der vorliegenden Prognose wurde das Emissions- und Transmissionssystem

$$H_1(f) -> H_2(f)$$

durch bereits durchgeführte Messungen in einer vergleichbaren Situation, abgebildet. Der Emission liegt hierbei ein über mehrere Messungen gemitteltes Emissionsspektrum in Terzbandbreite zu Grunde. Dieses wurde auf die im Planungsabschnitt vorgesehenen gefahrenen Geschwindigkeiten linear hochgerechnet.

Das resultierende Emissionsspektrum gibt hierbei die Schwingantwort aus dem Straßenbahnbetrieb in 8 m seitlich zur Trasse wieder.

Über die gegebenen Abstandsverhältnisse der Gebäude zur Gleisachse wurde die jeweilige zu erwartende Dämpfung des Erschütterungssignals auf dem Ausbreitungsweg bestimmt.

Die Ermittlung der Übertragungsfunktionen vom Boden in die Geschoßdecken

$$H_2(f) -> H_4(f)$$

erfolgte durch eine Ersatzanregung mittels Plattenrüttler bei gleichzeitiger Messung der Schwingantwort des o. a. Übertragungssystems.

Die Auswertung ergibt eine spektrale Übertragungsfunktion in Terzen im Frequenzbereich von 4 bis 80 Hz.

Über die spektrale Einleitung der Erschütterungen und die spektralen Übertragungsfunktionen sind in der Folge die zu erwartenden maximalen Schwingschnellen KB_{Fmax} ermittelt worden. Aus diesen errechnen sich über die Zugfrequenz die Beurteilungsschwingschnellen KB_{FTr} und der zu erwartende sekundäre Luftschall.

In der Regel kann die Prognose anhand der gewonnenen Übertragungsfunktionen und der verwendeten Emissionsspektren direkt abgebildet werden. Dies ist die Grundlage zur Bestimmung der Bereiche, in denen Überschreitungen der Anhaltswerte wahrscheinlich und erschütterungsmindernde Maßnahmen als erforderlich anzusehen sind.

In Kreuzungsbereichen von Straßenbahnen lassen sich die sich überlagernden Erschütterungsemissionen im Vergleich zur Freien Strecke in aller Regel nicht exakt bestimmen, da enge Gleisbögen und Störstellen stets das Potential haben, atypische Erschütterungsemissionen zu erzeugen. Es wird daher vorsorglich dazu geraten, in diesen Situationen stets eine elastische Lagerung der Gleise vorzusehen.

Erschütterungsprognosen sind stets mit einer gewissen Unschärfe behaftet. Dies hängt einerseits mit den im Vorfeld nicht final bekannten baulichen Eingriffen in den Untergrund im Straßenraum zusammen, d. h. den lokalen Einleitungsverhältnissen, und andererseits mit der benachbarten Bausubstanz. Nachdem nicht jedes Gebäude im Hinblick auf seine Übertragungsverhältnisse gemessen werden kann besteht also die Möglichkeit, dass etwa zwei benachbarte Gebäude auf dieselbe Anregung unterschiedlich reagieren, sei es etwa durch die Spannweite der Decken oder deren Bauart. So ist die Schwingantwort bei Holzbalkendecken bei niederfrequenter Einleitung von Erschütterungen in aller Regel höher als bei Stahlbetondecken, wobei aber die Schwingantwort wiederum vom Spektrum der eingeleiteten Erschütterungen und der Anteile der tieffrequenten Schwingungsanteile im Terzbandspektrum abhängt.

Es wurde daher zur Sicherung der möglichen Abweichungen eine worst-case-Prognose vorgenommen, um eventuelle unterschiedliche bauliche Gegebenheiten und ungünstige Übertragungsverhältnisse zu berücksichtigen. Dafür wurde ein zusätzlicher Sicherheitsfaktor von 1,3 in der Berechnung hinterlegt und bei der Beurteilung berücksichtigt.

6. Beurteilungsgrundlagen

6.1 Erschütterungen - DIN 4150-2

Für die Beurteilung von Erschütterungsimmissionen auf Menschen ist die DIN 4150-2, Erschütterungen im Bauwesen, Einwirkungen auf Menschen in Gebäuden, einschlägig. Darin werden Verfahren (im Zusammenhang mit anderen Normen) für die Ermittlung und die Beurteilung von Erschütterungsimmissionen vorgestellt.

Die DIN 4150-2 nennt Anhaltswerte zur Beurteilung der gemessenen Erschütterungs-Immissionen.

Die Wirkung von Erschütterungen auf Menschen wird anhand der bewerteten Schwingstärke $\mathsf{KB}_\mathsf{F}(t)$ beurteilt.

Nach DIN 45669 ist die bewertete Schwingstärke KB_F(t) der gleitende Effektivwert des frequenzbewerteten Erschütterungssignals mit der Zeitbewertung FAST (0,125 s).

Die Beurteilung erfolgt gemäß DIN 4150-2 anhand von zwei Beurteilungsgrößen. Der maximalen bewerteten Schwingstärke KB_{Fmx} und der Beurteilungsschwingstärke KB_{FTr} .

 $\mathsf{KB}_{\mathsf{Fmax}}$ ist der maximale, während der Messung auftretende, oder in anderer Weise ermittelte Wert der bewerteten Schwingstärke $\mathsf{KB}_\mathsf{F}(t)$.

In der Beurteilungsgröße KB_{FTr} wird die Häufigkeit und Dauer der auftretenden Erschütterungsereignisse berücksichtigt. Sie wird durch das Taktmaximalwertverfahren mit einer Taktzeit von 30 s ermittelt und über Fahrplandaten über den Beurteilungszeitraum (Tag/Nacht) gemittelt.

Die Beurteilungsgrößen sind zu ermitteln und mit den Anhaltswerten der DIN 4150-2 in der nachfolgenden Tabelle 1 zu vergleichen.

- Ist KB_{Fmax} kleiner oder gleich dem (unteren) Anhaltswert A_u, dann ist die Anforderung dieser Norm eingehalten.
- Ist KB_{Fmax} größer als der (obere) Anhaltswert A_o, dann ist die Anforderung dieser Norm nicht eingehalten.
- Für häufige Einwirkungen, bei denen KB_{Fmax} größer als A_u, aber kleiner als A_o ist, ist die Beurteilungsschwingstärke KB_{FTr} mit dem Anhaltswert A_r zu vergleichen. Wird dieser unterschritten, sind die Anforderungen der Norm ebenfalls eingehalten.

Tab. 6-1: Anhaltswerte für Erschütterungs-Immissionen gemäß DIN 4150-2

Zeile	Zeile Einwirkungsort				nachts			
		A _u	Ao	Ar	A _u	Ao	Ar	
1	Einwirkungsorte in deren Umgebung nur gewerbliche Anlagen und gegebenenfalls ausnahmsweise Wohnungen für Inhaber und Leiter der Betriebe sowie für Aufsichts- und Bereitschaftspersonen untergebracht sind (vergleiche Industriegebiete BauNVO, § 9).	0,4 (0,6)	6	0,2 (0,3)	0,3 (0,45)	0,6	0,15 (0,225))	
2	Einwirkungsorte, in deren Umgebung vorwiegend gewerbliche Anlagen untergebracht sind (vergleiche Gewerbegebiete BauNVO, § 8).	0,3 (0,45)	6	0,15 (0,225)	0,2 (0,3)	0,4 (0,6)	0,1 (0,15)	
3	Einwirkungsorte, in deren Umgebung weder vorwiegend gewerbliche Anlagen noch vorwiegend Wohnungen untergebracht sind (vergleiche Kerngebiete BauNVO, § 7, Mischgebiete BauNVO, § 6, Dorfgebiete BauNVO, § 5).	0,2 (0,3)	5	0,1 (0,15)	0,15 (0,225)	0,3 (0,6)	0,07 (0,105)	
4	Einwirkungsorte, in deren Umgebung vorwiegend oder ausschließlich Wohnungen untergebracht sind (vergleiche reine Wohngebiete BauNVO, § 3, allgemeine Wohngebiete BauNVO, § 4, Kleinsiedlungsgebiete BauNVO, § 2).	0,15 (0,225)	3	0,07 (0,105)	0,1 (0,15)	0,2 (0,6)	0,05 (0,075)	
5	Besonders schutzbedürftige Einwirkungsorte, z. B in Kran- kenhäusern, Kurkliniken, soweit sie in dafür ausgewiesenen Sondergebieten liegen.	0,1 (0,15)	3	0,05 (0,075)	0,1 (0,15)	0,15 (0,6)	0,05 (0,075)	

Für oberirdischen Schienenverkehr gilt gemäß DIN 4150-2 eine Sonderregelung. Der obere Anhaltswert A_o ist unabhängig von der Gebietsausweisung nachts mit 0,6 anzusetzen. Des weiteren gilt nach DIN 4150-2 für den ÖPNV in der Verkehrswegeplanung ein um den Faktor 1,5 angehobener Wert für A_u und A_r (vgl. Werte in Klammern in Tab. 7-1).

Generell ist zu berücksichtigen, dass die Anhaltswerte indikatorischen Charakter haben und eine Beurteilung jeweils im Einzelfall - auch unter Berücksichtigung der Messunsicherheit - zu erfolgen hat.

In den Erläuterungen zur Norm werden Zusammenhänge zwischen bewerteten Schwingstärken und subjektiver Wahrnehmung angegeben. Die folgende Tabelle beschreibt diesen Zusammenhang:

Tab. 6-2: Wahrnehmung von Erschütterungen

KB-Werte	Beschreibung der Wahrnehmung
< 0,1	nicht spürbar
0,1	Fühlschwelle
0,1 - 0,4	gerade spürbar
0,4 - 1,6	gut spürbar
1,6 - 6,3	stark spürbar

6.2 Sekundärer Luftschall

Der sekundäre Luftschall wird durch Schwingungen der Umfassungsbauteile von Gebäuden bzw. Räumen verursacht. Dieser wird, sofern nicht durch Tunnel oder Lärmschutzanlagen abgeschirmt, durch den Primärluftschall überlagert und ist im Regelfall nicht direkt messbar. Die Gebäude werden wiederum durch vorbeifahrende Züge zum Schwingen angeregt, die Intensität nimmt vom Gleis aus mit zunehmendem Abstand zum Gebäude ab.

Bezüglich sekundären Luftschalls an Schienenwegen existieren keine expliziten Grenzwerte bzw. normative Regelungen. Im Falle der Planung von Schienenverkehrswegen werden in der Regel Innenraumpegel von

40 dB(A) tags in Wohnräumen bzw.

30 dB(A) nachts in Schlafräumen

als Grenzwerte angewandt. Die o. a. Grenzwerte basieren auf der Grundlage der 24. BImSchV und werden auch seitens der Rechtsprechung als Zumutbarkeitsschwelle herangezogen.

7. Messdurchführung und Messgeräte

7.1 Messorte und Messdatum

Die Örtlichkeiten sind dem Lageplan in der Anlage 1 zu entnehmen. Es wurden an folgenden Gebäuden die Übertragungsfunktionen ermittelt.

Tab. 7-1: untersuchte Gebäude

NI-	Nr. Gebäude Mess		Messpunkt							
INT.	Gebaude	Messdatum	1	2	3	4	aufbau			
1	Aidenbachstr. 30	30.10.2018	Gehweg	Sockel	EG Ge- schäft	OG Arzt- praxis	Beton			
2	Boschetsrieder Str. 129	29.08.2018	Gelände	Sockel	EG Lager	OG WZ	Beton			
3	Fürstenrieder Str. 49	26.09.2018	Gehweg	Fundament	EG Ge- schäft	OG WZ	Beton			
4	Fürstenrieder Str. 69	15.11.2018	Gelände		EG OP- Raum	OG WZ	Beton			
5	Fürstenrieder Str. 91	15.11.2018	Gehweg	Fundament	1.OG WZ	OG WZ	Holz			
6	Fürstenrieder Str. 116	29.08.2018	Gehweg	Kellerfens- ter	EG WZ	OG Trep- penpodest	Holz			
7	Fürstenrieder Str. 131	30.10.2018	Gehweg	Fundament	EG Flur	OG Flur	Holz			
8	Fürstenrieder Str. 173	26.09.2018	Gelände	Licht- schacht	EG KiTa Bad	OG WZ	Beton			
9	Fürstenrieder Str. 174	29.08.2018	Gelände	Licht- schacht	EG Küche	OG Küche	Beton			
10	Fürstenrieder Str. 250	15.11.2018	Gelände	Licht- schacht	EG Schu- lungsraum	OG WZ	Beton			
11	Fürstenrieder Str. 307	26.09.2018	Gehweg	Fundament	EG Trep- penpodest	OG Trep- penpodest	Beton			
12	Herthastr. 37	30.10.2018	Gehweg		EG WZ	OG WZ	Beton			
13	Höglwörther Str. 391	29.08.2018	Gelände	Licht- schacht	EG Flur	OG Flur	Beton			
14	Landsberger Str. 290a	30.10.2018	Gehweg	Fundament	EG Foyer	OG Büro	Beton			
15	Mechthildenstr. 39	30.10.2018	Gehweg	Fundament	EG Ge- schäft	OG Trep- penpodest	Holz			
16	Wotanstr. 13	26.09.2018	Gehweg	Fundament	EG SZ/WZ	OG Trep- penpodest	Beton			
17	Wotanstr. 19	29.08.2018	Gehweg	Sockel	EG Flur	OG WZ	Beton			
18	Wotanstr. 78	26.09.2018	Gehweg	Fundament	EG Metz- gerei	DG Spei- cher	Holz			

7.2 Messgeräte

Für die Messung wurden folgende Geräte bzw. Programme verwendet.

Tab. 7-2: eingesetzte Messtechnik

Gerät / Programm	Тур	Hersteller	Seriennummer
4x Beschleunigungsaufnehmer	KS 48C	Metra Mess- u. Frequenztechnik	10109, 10107, 10174, 12044
Messgerät	SoundBook Quadro	Sinus Messtechnik GmbH	6308
SAMURAI	2.8.3	Sinus Messtechnik GmbH	

8. Auswertung und Messergebnisse

8.1 Eingangsspektren

Für die Prognose wurden das Emissions- und Transmissionssystem

$$H_1(f) -> H_2(f)$$

durch bereits durchgeführte Messungen in einer vergleichbaren Situation in der Ismaninger Straße abgebildet.

Die Messungen erfolgten in 8 m und 16 m Entfernung zur Gleisachse. Für die Prognose wird die Dämpfung durch den Gleisabstand zur Bebauung entsprechend der tatsächlichen Situation auf die folgenden mittleren Abstände zu den Gleisachsen umgerechnet.

Tab. 8-1: mittlerer Abstand der Gleisachsen zu den untersuchten Gebäuden

Nr.	Gebäude	Distanz
1	Aidenbachstr. 30	16,3
2	Boschetsrieder Str. 129	27,3
3	Fürstenrieder Str. 49	22,5
4	Fürstenrieder Str. 69	21,2
5	Fürstenrieder Str. 91	18,6
2	Fürstenrieder Str. 116	32,7
7	Fürstenrieder Str. 131	23,6
8	Fürstenrieder Str. 173	22,2
9	Fürstenrieder Str. 174	23,1
10	Fürstenrieder Str. 250	20,0
11	Fürstenrieder Str. 307	22,7
12	Herthastr. 37	16,1
13	Höglwörther Str. 391	24,7
14	Landsberger Str. 290a	15,8
15	Mechthildenstr. 39	13,2
16	Wotanstr. 13	20,2
17	Wotanstr. 19	16,2
18	Wotanstr. 78	14,1

Abbildung 2: Eingangsspektrum

Die o. a. Emissionsspektren wurden bei einer Durchschnittsgeschwindigkeit von etwa 35 km/h gemessen und stellen Mittelungsspektren über eine größere Anzahl von Vorbeifahrten dar. Die Höchstgeschwindigkeit auf der Strecke der TWT liegt bei 60 km/h auf besonderem Bahnkörper und 50 km/h straßenbündigem Bahnkörper. Die Emissionsspektren werden daher linear auf die Höchstgeschwindigkeit der TWT hochgerechnet.

8.2 Übertragungsfunktionen nach VDI 3837

Die Ermittlung der Übertragungsfunktion wurde wie in Punkt 3 beschrieben durchgeführt. Die Auswertung liefert eine spektrale Übertragungsfunktion in Terzen im Frequenzbereich von 4 bis 80 Hz.

Die Übertragungsfunktionen wurden vom Boden in die Geschoßdecken

$$H_2(f) -> H_4(f)$$

ermittelt.

In der Anlage 3 werden die Ergebnisse der Untersuchung für jedes untersuchte Gebäude dargestellt.

8.3 KB_{Fmax} - Werte nach DIN 4150-2

Messtechnisch erfolgt die Bestimmung der Erschütterungs-Immissionen nach DIN 4150-2 durch die Messung der Schwingbeschleunigung mit Hilfe von Beschleunigungssensoren während der Zugvorbeifahrten an den jeweils erforderlichen Messpunkten (vgl. Pkt. 6.1).

Aus der gemessenen Schwingbeschleunigung wird durch Integration das unbewertete Erschütterungssignal (Schnellesignal) nach DIN 45669 im Frequenzbereich von 1 bis 315 Hz ermittelt (siehe auch DIN 4150-2). Aus dem weiter von 4 bis 80 Hz bandpassgefilterten und KB-bewerteten Schnellesignal ist nach der Bildung des gleitenden Effektivwerts mit der Zeitkonstan-

te 0,125 s der Maximalwert in der Taktzeit von 30 s zu ermitteln. Das Ergebnis entspricht dem KB_{Fmax} einer Zugvorbeifahrt.

Vorliegend sind die Messergebnisse zur Bestimmung der Erschütterungsemission und der Ausbreitung außerhalb der Gebäude aus einer ähnlichen Situation bereits vorhanden und wurden in Form von energetisch gemittelten Max-Hold-Spektren in Ansatz gebracht.

8.4 Sekundärer Luftschall

Zunächst liegt für jede Zugvorbeifahrt an jedem Messpunkt ein gemäß DIN 45669-1 Bandpassgefiltertes Zeitsignal der Schwingungen vor. Aus den Zeitsignalen werden Terzschnellespektren nach dem Verfahren "Max-Hold, FAST" ausgewertet. Das bedeutet, dass für jede Zugvorbeifahrt der Maximalwert des "FAST"-bewerteten gleitenden Effektivwertes in jeder Terz berechnet wird. Das so ermittelte Terzschnellespektrum ist die Grundlage für das spektrale Prognoseverfahren für die Erschütterungen und den sekundären Luftschall.

Die entstehenden Schallpegel werden gemäß [6] anhand der an den Decken gemessenen Schwingschnellen im Frequenzband von 25 bis 80 Hz berechnet. Hierbei wird zwischen Betonund Holzbalkendecken unterschieden.

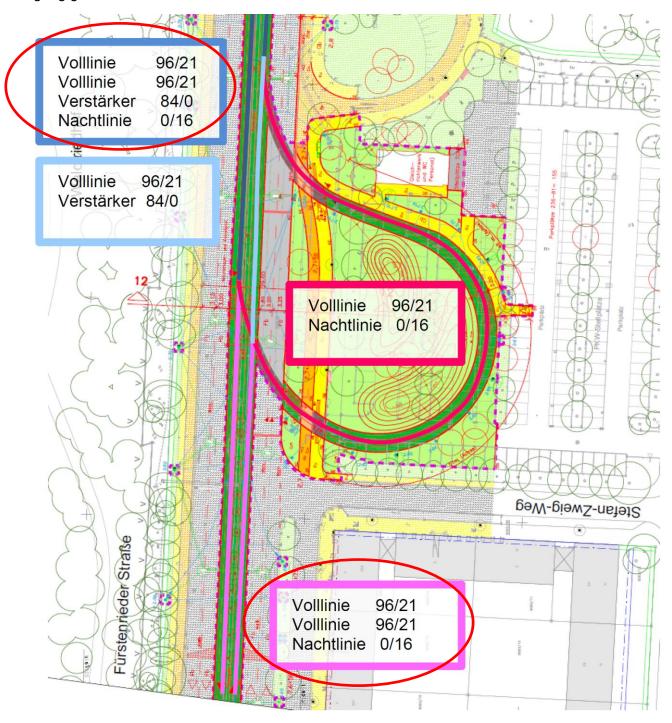
Die Terz-Schnelle-Spektren werden in Dezibel umgerechnet und A-bewertet (L_{vA}). Aus dem energetisch aufsummierten Terzspektrum ist nach folgender Beziehung der resultierende sekundäre Luftschallpegel (L_{sek}) zu berechnen:

Betondecke:

$$L_{sek} = 15.8 \text{ dB(A)} + 0.60 L_{vA}$$

Holzbalkendecke:

$$L_{sek} = 19.9 \text{ dB(A)} + 0.47 L_{vA}$$


Aus der Vorbeifahrtzeit und der Häufigkeit der Vorbeifahrten der jeweiligen Zuggattungen werden getrennt für den Tag- und Nachtzeitraum die Beurteilungspegel in den Räumen gebildet.

Die nach den o. a. Gleichungen ermittelten Sekundärschallpegel sind in den Anlagen zusammengestellt.

9. Zugzahlen

Für die Berechnung der Beurteilungsschwingstärke KB_{FTr} und des sekundären Luftschallpegels L_{sek} im Ausbauzustand wurden vom Auftraggeber folgende Verkehrsmengengerüste zur Verfügung gestellt.

Die jeweils angegeben Zahlen geben die Anzahl der Fahrten je Streckenabschnitt und Fahrtrichtung getrennt nach Tag- und Nachtzeitraum an. Ausgehend von der obigen Abbildung werden bei der Berechnung der Beurteilungsschwingstärken und dem sekundären Luftschall nördlich der Wendeschleife am Waldfriedhof in der Fürstenrieder Straße je Fahrtrichtung 276/58 Fahrten tags/nachts und südlich der Wendeschleife 192/58 Fahrten tags/nachts in Ansatz gebracht.

10. Prognose und Ergebnisbewertung

10.1 Prognoseergebnisse

In der nachstehenden Tabelle sind die Ergebnisse der Erschütterungsprognose und der Prognose des sekundären Luftschalls für alle untersuchten Gebäude zusammengefasst.

Tab. 10-1: Prognose Erschütterungseinwirkungen und sekundärer Luftschall

Nr.	Gebäude/Nutzung	MP	Anhaltswert			te Erschütterungen			Erschütterungseinw.			GW L _{sek}		L _{sek}	
		Au			A _o A _r		KB _{Fmax} KB _{FTr}		3 _{FTr}			dB(A)	(A)		
			Т	N	Т	N	Т	N		Т	N	Т	N	Т	N
1	Aidenbachstr. 30	EG	0,3	0,225	5	0,6	0,15	0,105	0,104	0,046	0,036	40	30	19,7	17,5
	М	OG	0,3	0,225	5	0,6	0,15	0,105	0,222	0,099	0,077	40	30	20,8	18,6
2	Boschetsrieder Str. 129	EG	0,45	0,3	6	0,6	0,225	0,15	0,496	0,222	0,173	40	30	30,8	28,6
	GE	OG						g	estört						
3	Fürstenrieder Str. 49	EG	0,225	0,15	3	0,6	0,105	0,075	0,300	0,161	0,104	40	30	23,5	19,7
	W	OG	0,225	0,15	3	0,6	0,105	0,075	0,100	0,054	0,035	40	30	16,9	13,1
4	Fürstenrieder Str. 69	EG	0,225	0,15	3	0,6	0,105	0,075	0,072	0,039	0,025	40	30	18,4	14,6
	W	OG	0,225	0,15	3	0,6	0,105	0,075	0,148	0,080	0,052	40	30	16,7	13,0
5	Fürstenrieder Str. 91	EG	0,225	0,15	3	0,6	0,105	0,075	0,141	0,076	0,049	40	30	17,9	14,1
	W	OG	0,225	0,15	3	0,6	0,105	0,075	0,245	0,132	0,085	40	30	19,1	15,4
6	Fürstenrieder Str. 116	EG	0,225	0,15	3	0,6	0,105	0,075	0,264	0,142	0,092	40	30	25,2	21,4
	W	OG	0,225	0,15	3	0,6	0,105	0,075	0,761	0,408	0,264	40	30	24,8	21,1
7	Fürstenrieder Str. 131	EG	0,225	0,15	3	0,6	0,105	0,075	0,024	0,013	0,008	40	30	14,2	10,4
	W	OG	0,225	0,15	3	0,6	0,105	0,075	0,272	0,146	0,095	40	30	20,4	16,6
8	Fürstenrieder Str. 173	EG	0,225	0,15	3	0,6	0,105	0,075	0,154	0,083	0,054	40	30	18,6	14,8
	W	OG	0,225	0,15	3	0,6	0,105	0,075	0,230	0,123	0,080	40	30	17,8	14,1
9	Fürstenrieder Str. 174	EG	0,225	0,15	3	0,6	0,105	0,075	0,015	0,008	0,005	40	30	10,5	6,7
	W	OG	0,225	0,15	3	0,6	0,105	0,075	0,009	0,005	0,003	40	30	2,3	-1,4
10	Fürstenrieder Str. 250	EG	0,225	0,15	3	0,6	0,105	0,075	0,153	0,082	0,053	40	30	25,2	21,5
	W	OG	0,225	0,15	3	0,6	0,105	0,075	0,119	0,064	0,042	40	30	20,3	16,6
11	Fürstenrieder Str. 307	EG	0,225	0,15	3	0,6	0,105	0,075	0,030	0,014	0,011	40	30	10,4	8,2
	W	OG	0,225	0,15	3	0,6	0,105	0,075	0,079	0,035	0,028	40	30	12,5	10,3
12	Herthastr. 37	EG	0,225	0,15	3	0,6	0,105	0,075	0,163	0,087	0,057	40	30	18,7	15,0
	W	OG	0,225	0,15	3	0,6	0,105	0,075	0,143	0,077	0,050	40	30	16,5	12,8
13	Höglwörther Str. 391 W	EG	0,225	0,15	3	0,6	0,105	0,075	0,008	0,004	0,003	40	30	6,5	4,4
		OG	0,225	0,15	3	0,6	0,105	0,075	0,021	0,009	0,007	40	30	8,6	6,4
14	Landsberger Str. 290a	EG	0,225	0,15	3	0,6	0,105	0,075	0,017	0,009	0,006	40	30	14,3	10,5
	W	OG	0,225	0,15	3	0,6	0,105	0,075	0,071	0,038	0,025	40	30	20,0	16,2
15	Mechthildenstr. 39	EG	0,225	0,15	3	0,6	0,105	0,075	0,130		0,045	_	30	24,3	20,5
	W	OG	0,225	0,15	3	0,6	0,105	0,075	0,102	0,054	0,035	40	30	18,8	15,1
16	Wotanstr. 13	EG	0,225	0,15	3	0,6	0,105	0,075	0,076	0,041	0,026	40	30	17,6	13,8
	W	OG	0,225	0,15	3	0,6	0,105	0,075	0,061	0,033	0,021	40	30	20,6	16,9
17	Wotanstr. 19	EG	0,225	0,15	3	0,6	0,105	0,075	0,091	0,049	0,032	40	30	23,2	19,5
	W	OG	0,225	0,15	3	0,6	0,105	0,075	0,275	0,148	0,096	40	30	27,5	23,8
18	Wotanstr. 78	EG	0,225	0,15	3	0,6	0,105	0,075	0,247	0,132	0,086	40	30	20,4	16,6
	W	OG	0,225	0,15	3	0,6	0,105	0,075	0,220	0,118	0,076	40	30	18,7	14,9

Es wurde eine Höchstgeschwindigkeit von 60 km/h zugrunde gelegt. Zusätzlich wurde bei den Emissionen ein Sicherheitszuschlag um den Faktor 1,3 in Ansatz gebracht, um Mess- und

Prognoseunsicherheiten im konservativen Sinn zu berücksichtigen. In Rot hinterlegt sind die Immissionsorte gekennzeichnet, in denen ohne weitere Schutzmaßnahmen entlang der freien Strecke Überschreitungen der Anhaltswerte zu erwarten sind.

Am Prognosepunkt Nr. 9 tritt im Obergeschoss ein negativer Prognosewert auf. Dies ist verifiziert und ergibt sich aus dem Umstand, dass der Aufpunkt im maßgeblichen Frequenzbereich einen Einbruch bei den gemessenen Schwingsschnellen aufweist, der in Verbindung mit der spektralen Frequenzbewertung (A) des Schwingschnellespektrums zu einem negativen Wert führt. Faktisch bedeutet dies lediglich, dass an dem Aufpunkt nicht mit Sekundärschall zu rechnen ist.

Aus der o. a. Tabelle geht hervor, dass an den folgenden Gebäuden mit Überschreitungen zu rechnen ist.

- Boschetsrieder Straße 29
- Fürstenrieder Straße 49, 91, 116, 131 und 173
- Wotanstraße 19 und 78

Eine Überschreitung des Anhaltswerts für den KBF_{max} tritt an den messtechnisch erfassten Gebäuden nur in der Fürstenrieder Straße 116 auf.

In allen übrigen Fällen beschränken sich die festgestellten Überschreitungen auf die Beurteilungsschwingstärke KB_{FTr}. Die festgestellten Überschreitungen sind auch an diesen Gebäuden in der Regel nicht erheblich, und liegen zum Teil im Rahmen der Prognoseunschärfe, zumal ein Sicherheitszuschlag mit Faktor 1,3 vergeben wurde, der in aller Regel die festgestellten Überschreitungen verursacht, bzw. ohne dessen Berücksichtigung nahezu gar keine Überschreitung der Anhaltswerte gegeben wäre.

10.2 Summarische Bewertung

Obgleich sich die Gebäude durchweg in ähnlichem Abstand zur Gleistrasse befinden, konnten nur punktuell Überschreitungen der Anhaltswerte festgestellt werden. Bei drei der sieben festgestellten möglichen Überschreitungen ist der untere Anhaltswert so marginal überschritten, dass dies kein ausreichendes Indiz dafür ist, dass mit Inbetriebnahme der Linie zu faktischen Überschreitungen des Anhaltswerts für den KB_{FTr} kommen wird.

Im Bereich der Fürstenrieder Straße wurden deutliche Überschreitungen der Anhaltswerte festgestellt. Wenn man die übrigen Messpunkte in der Fürstenrieder Straße betrachtet handelt es sich augenscheinlich um singuläre Überschreitungen, die es einerseits vsl. nicht rechtfertigen, über die ganze Länge der Straße erschütterungsmindernde Maßnahmen zu ergreifen. Andererseits liegt der KB_{Fmax} in der Fürstenriederstraße durchweg relativ nah am unteren Anhaltswert. Hier ist somit das Potential gegeben, dass mit Umsetzung der Maßnahme störende Erschütterungen auftreten können, da die festgestellten Unterschreitungen des unteren Anhaltswerts im Rahmen der Prognoseunschärfe liegen.

Es existiert weiterhin eine singuläre und signifikante Überschreitung an der Wotanstraße 19, und an der Wotanstraße 78 eine geringe Überschreitung.

Die festgestellten Überschreitungen, denen mit aktiven Maßnahmen zur Erschütterungsvermeidung vorsorglich begegnet werden sollte, liegen also hauptsächlich im Endergebnis im Bereich der Fürstenrieder Straße und in der Wotanstraße. Zwar gibt es auch andernorts Überschreitungen der Anhaltswerte, aber die Mehrzahl der Prognosepunkte lässt erwarten, dass es zu keinen oder allenfalls geringen Überschreitungen kommen kann, zumal ein Sicherheitszuschlag von Faktor 1,3 in die Beurteilung eingestellt ist.

Schwingschnellen um 0,1 mm/s und darunter liegen im Bereich der Fühlschwelle. Dies ist zumindest bei den meisten gemessenen Gebäuden der Fall, in denen sich die Erschütterungseinwirkungen absehbar bewegen werden. Erst ab etwa 0,3 bis 0,4 mm/s Schwingschnelle ist damit zu rechnen, dass deutlich fühlbare Erschütterungseinwirkungen auftreten. Das ist an nahezu allen Messpunkten nicht der Fall. Es gibt einige wenige "Ausreißer" in den Messwerten, die aber eher im Vergleich mit den übrigen objektbezogenen Messwerten darauf hinweisen, dass die Messungen durch sonstige Einflüsse Störungen erfahren haben.

Maßnahmen zum Erschütterungsschutz wären somit in der Folge primär in der Fürstenrieder Straße, der Wotanstraße und an Wendeanlagen, Gleiskreuzungen und vergleichbaren Einrichtung zu ergreifen, da letztere dazu neigen, in besonderem Maß Erschütterungen zu erzeugen, aber ohne Messungen vor Ort (im Bestand) vergleichsweise hohe Unsicherheiten in der Prognose aufweisen.

10.3 Erschütterungsmindernde Maßnahmen

In folgenden Bereichen werden erschütterungsmindernde Maßnahmen angeraten und sind in der nachstehenden Tabelle ebenfalls enthalten:

- Gleisbogen Aidenbachstr. <-> Boschetsrieder Str.
- Kreuzung Fürstenrieder Str. <-> Ammerseestr. (A96)
- Kreuzung Fürstenrieder Str. <-> Agnes-Bernauer-Str.

Es handelt sich hierbei um enge Gleisradien, die im Lauf der Betriebszeit Störstellen aufweisen können, und die schon aufgrund der Abbiegebeziehungen erhöhte Erschütterungsemissionen aufweisen werden, ganz abgesehen davon, dass sich dort Linien kreuzen und somit ohnehin von erhöhten KB_{FTr}-Werten in erster Näherung um den Faktor 2 auszugehen ist. Dies exakt zu prognostizieren ist kaum möglich, solange die Trasse nicht gebaut ist, außer man träfe sehr konservative Ansätze, etwa durch die Modellierung potentieller ungünstig gelegener Störstellen, was aller Voraussicht nach zu dem Ergebnis führen würde, dass erschütterungsmindernde Maßnahmen vorsorglich eingebaut werden sollten.

Darüber hinaus sind Folgende der untersuchten Bereiche sind voraussichtlich von einer Überschreitung der Anhaltswerte der DIN 4150-2 betroffen und sind als repräsentativ für die aufgezeigten Abschnitte anzusehen. Die angegebenen Abschnitte enthalten die erforderlichen Überstandslängen für eine bestmögliche Wirksamkeit der Maßnahmen. Die Ausdehnung der Bereiche mit erforderlichen erschütterungsmindernden Maßnahmen erfolgte auf der Grundlage eines Vergleichs der benachbarten Bebauung mit den untersuchten Gebäuden und deren Abstand zur Gleisachse.

Tab. 10-2: Bereiche für empfohlene erschütterungsmindernde Maßnahmen

Straße	empfohlener Abschnitt für erschütterungsmindernde Maßnahme					
Straise	von Bau-km	bis Bau-km				
Wendeschleife Aidenbachstra- ße mit Abzweigung Aiden- bachstraße / Boschetsrieder Straße	0+000	0+400				
Wendeschleife am Waldfriedhof	ouf ganzar Länga zw	vischen den Weichen				
Wendegleis	aui ganzei Lange zw	vischen den Weichen				
Streckengleis Fahrtrichtung Süden	2+725	2+750				
Streckengleis Fahrtrichtung Norden	2+725	2+810				
Kreuzung Fürstenrieder / Ammerseestraße inkl. Ab- zweigbögen						
Streckengleise TWT	4+855	4+950				
Streckengleise Ammerseestraße	4+871 (=Kreuzungsmitte)	53m westlich Kreuzungsmitte 50m östlich Kreuzungsmitte *)				
Fürstenrieder Straße	4+950	6+670				
Kreuzung Fürstenrieder / Ag- nes-Bernauer-Straße	Agnes-Bernauer-Straße 0+104	Agnes-Bernauer-Straße 0+215 *)				
Wotanstraße	7+440	7+650				

^{*)} entspricht 25 m Überstandslänge über die Weichenspitzen

An der Wendeschleife Aidenbachstraße sollte generell eine elastische Lagerung des Oberbaus zumindest in den Gleisbögen vorgesehen werden, auch wenn diesbezüglich keine Messergebnisse vorhanden sind. Es ist aus der Empirie zu erwarten, dass ohne erschütterungsmindernde Maßnahmen an den benachbarten schulischen Einrichtungen Erschütterungen oberhalb der Fühlschwelle auftreten können.

Analog ist im westlichen Teil der Wendeschleife am Waldfriedhof davon auszugehen, dass dort erhöhte Erschütterungseinwirkungen entstehen werden. Unter dem Vorsorgegedanken sollte daher hier zumindest auf der Westseite der Wendeschleife eine elastische Lagerung des Gleiskörpers vorgesehen werden.

11. Zusammenfassung

Die Stadtwerke München planen die Umsetzung der Tram Westtangente (TWT).

Konkret sieht die Planung den zweigleisigen Neubau der Tram Westtangente und den Umbau der ÖV-Anlage in der Aidenbachstraße, in welcher zusätzlich der Tram-Verkehr abgewickelt wird, vor. Auf der Strecke der TWT sollen die Buslinien 51 und 151 durch diese ersetzt werden.

Die Neubaustrecke beginnt in der o. g. ÖV-Anlage, führt nach Norden bis zum Knoten Ratzingerplatz, verschwenkt über die Boschetsrieder Straße in Richtung Westen und über den Knoten Drygalski-Allee in Richtung Nordwesten. Nach der Unterführung der Autobahn A 95 verläuft die TWT in Richtung Norden über die Fürstenrieder Straße, kreuzt die Gleisanlage der Deutschen Bahn AG auf der Höhe des S-Bahnhofs Laim und führt über die Wotanstraße bis zum Romanplatz. Im Bereich des Waldfriedhofs in der Fürstenrieder Straße ist eine Wendeschleife östlich der TWT geplant.

Die bestehenden Straßenbahnlinien 18 und 19/N19 in der Ammerseestraße bzw. Agnes-Bernauer-Straße werden durch Gleisbögen mit der TWT verbunden.

Im Zug der Maßnahme ergeben sich bauliche Anpassungsmaßnahmen der Verkehrsführung im öffentlichen Straßenraum.

Die Strecke ist über die gesamte Länge beiderseits gesäumt von Wohn- und Geschäftsnutzungen.

Im Vorfeld der Umsetzung der Tram Westtangente wurden die Schwingungseigenschaften von 18 repräsentativen Gebäuden, entlang der Baumaßnahme durch Ersatzanregung ermittelt.

Zudem war der durch Erschütterungen verursachte Schall – der sekundäre Luftschall – in den Gebäuden zu ermitteln und auf der Grundlage der 24. BlmSchV zu beurteilen.

Die Untersuchung kommt zu folgenden Ergebnissen:

- 1. Bauwerksschäden sind anhand der prognostizierten Schwingschnellen aus dem geplanten Straßenbahnbetrieb nicht zu erwarten.
- 2. Die Erschütterungsprognose lässt jedoch erwarten, dass partiell die Anhaltswerte der heranzuziehenden DIN 4150 -2 bezüglich der Erschütterungseinwirkungen für Menschen in Gebäuden nicht eingehalten werden.
- 3. In Gleiskreuzungsbereichen mit engen Radien und ggfs. auftretenden Störstellen in den Übergangsbereichen sowie in den Wendeschleifen sollten darüber hinaus die Gleise generell elastisch gelagert werden.
- 4. Dies führt zu der Empfehlung, dass nach Tabelle 10-2 dieser Untersuchung eine elastische Lagerung des Gleiskörpers erfolgen sollte. Hierbei ist in der Gesamtschau eine Prognoseunsicherheit mit dem Faktor 1,3 hinterlegt.
- 5. Bei Berücksichtigung der empfohlenen Maßnahmen sind Überschreitungen der Anhaltswerte der DIN 4150-2 nicht mehr zu erwarten.

6. Die Anhaltswerte für sekundären Luftschall werden nach der vorliegenden Prognose mit großer Sicherheit eingehalten.

Neusäß, 08.07.2019

Dipl.-Ing. (FH) M. Ertl

A) häufig verwendete Abkürzungen

G Gebietsnutzung: Gewerbegebiet

L_{sek} Sekundärer Luftschallpegel in dB(A)

M Gebietsnutzung: Mischgebiet

KB_{Fmax} Maximale KB-bewertete Schwingschnelle (30 s Taktmaximalverfahren)

KB_{Ftr} Beurteilungsschwingstärke

W Gebietsnutzung: Wohngebiet

x/y/z Messrichtung, x/y = horizontal, z = vertikal

B) Grundlagenverzeichnis

(1) SWM, Genehmigungsplanung, Februar 2019

- (2) SWM, Trassierung/Gradiente als dwg, Februar 2019
- (3) SWM, Auszug aus der digitalen Flurkarte im Untersuchungsgebiet, 28.03.2018
- (4) SWM, Zugzahlen der TWT und der Linie 18+19, Prognose 2030, 04.05.2018
- (5) Stadt München, Online-Informationssystem für Bebauungspläne
- (6) Stadt München, Online-Informationssystem zum Flächennutzungsplan
- (7) Luftbildauszüge des Untersuchungsraum, Quelle Google Earth

C) Regelwerke

Für die Untersuchung wurden folgende Grundlagen herangezogen:

- [1] DIN 45669, Messung von Schwingungsimmissionen
- [2] DIN 4150-2, Erschütterungen im Bauwesen, Teil 2: Einwirkungen auf Menschen in Gebäuden, Juni 1999
- [3] Sechzehnte Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes 16. BlmSchV, 1974, in der aktuellen Fassung
- [4] Vierundzwanzigste Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes 24. BlmSchV, 04.02.1997
- [5] DB AG, Leitfaden für den Planer, Körperschall und Erschütterungsschutz, August 1996
- [6] Zeitschrift für Lärmbekämpfung, Ermittlung des sekundären Luftschalls aus dem Schienenverkehr, Januar 2006
- [7] VDI 3837, Erschütterungen in der Umgebung von oberirdischen Schienenverkehrswegen Spektrales Prognoseverfahren, März 2006

D) Anlagenverzeichnis

Anlage Nr.	Art	Inhalt
1	Lageplan	Übersichtslageplan, gemessene Gebäude
2	Lagepläne	erschütterungsmindernde Maßnahmen
3	Abbildungen	Fotodokumentation der Messungen
3	Tabellen/Grafiken	Berechnungsergebnisse der Prognose
5	Tabellen	Eingangsdaten der Prognose

E) Tabellen

Tab. 3-1: rechtsverbindliche Bebauungspläne	8
Tab. 6-1: Anhaltswerte für Erschütterungs-Immissionen gemäß DIN 4150-2	15
Tab. 6-2: Wahrnehmung von Erschütterungen	15
Tab. 7-1: untersuchte Gebäude	17
Tab. 7-2: eingesetzte Messtechnik	18
Tab. 8-1: mittlerer Abstand der Gleisachsen zu den untersuchten Gebäuden	19
Tab. 10-1: Prognose Erschütterungseinwirkungen und sekundärer Luftschall	23
Tab. 10-2: Bereiche für empfohlene erschütterungsmindernde Maßnahmen	26