

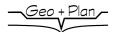
Geo + Plan Geotechnik GmbH

Max-Planck-Str. 13 86825 Bad Wörishofen Tel.: 08247/ 998 737-0 Fax: 08247/ 998 737-9 info@geo-planung.de www.geo-planung.de

Standort/ Vorhaben

Erweiterung der DKI- Boden- und Bauschuttdeponie Steinegaden

Gutachten/ Bericht


Fachanlagenteil 10.4.2: Standsicherheitsnachweis Rekultivierung

Auftraggeber:	ZAK Energie Gmb	H Dieselstraße 9, 8	37437 Kempten	
Projekt-Stand- ort:	Erweiterung der D	KI- Boden- und Ba	uschuttdeponie Steir	negaden
Auftrag:	Fachanlagenteil 10).4.2: Standsicherh	eitsnachweis der Re	kultivierung
Auftrag-Nr.:	2022-02-001	Bericht-Nr.:	2022-02-001/4.2	
Umfang:	17 Seiten 6 Tabellen 1 Abbildungen 8 Anlagen	Erstellt A. Veigel 07.05.2024	Geprüft A. Veigel 07.05.2024	Freigegeben A. Veigel 07.05.2024

Inhalt und redaktioneller Aufbau dieses Gutachtens unterliegen urheberrechtlicher Bestimmungen. Die Weitergabe dieses Gutachtens sowie die Verwertung (auch auszugsweise bzw. Anlagen) oder Verwendung für werbliche Zwecke ist nur mit schriftlichem Einverständnis der Geo + Plan Geotechnik GmbH gestattet. Dies gilt auch für Veröffentlichungen (Ausdruck, Internet).

Information Ablage: "K:\ ZAK Energie GmbH \Steinegaden\lla_2022_02_001_Geostatik\B_Bearbeitung\04_Berichte\Fachanlagenteil 10_04_02_Rekultivierung.docx"

Inhaltsverzeichnis

1	Vor	haben, Veranlassung	5
	1.1	Vorhaben	.5
	1.2	Veranlassung	.5
2	Ber	echnungsrelevanter Hangbereich, Schichtenaufbau	6
	2.1	Länge des berechnungsrelevanten Hanges, Böschungsneigung	.6
	2.2	Schichtenaufbau des Oberflächenabdichtungssystems	.6
3	Sta	ndsicherheitsnachweis im Grenzzustand GEO-3 (vormals GZ 1C)	7
	3.1	Vorgehen bei der Erstellung des Standsicherheitsnachweises	.7
	3.2	Rekultivierungsböschungen und Böschung zum Schwarzenbachtal	.7
	3.3	Bemessungssituationen (Einwirkungskombinationen, Sicherheitsklassen be Widerständen, Lastfälle)	
	3.4	Teilsicherheitsbeiwerte für Einwirkungen und Widerstände GEO-3	
4	Вос	denkennwerte	9
5	Krit	ische Schichtfuge1	11
6	Krä	fte (Einwirkungen und Widerstände)1	1
	6.1	Einwirkungen	11
	6.2	Widerstände	13
7	Ern	nittlung des Auslastungsgrades1	4
	7.1	Bauzustand	15
	7.2	Endzustand	15
8	Erg	ebnisse der Standsicherheitsnachweise1	6
9	Bev	vertung1	17

Anlagen

1. Lageplan der Rekultivierung

Anlage 1.1 : Lageplan der Rekultivierung mit Darstellung des berechnungsrelevan-

ten Schnitts im Maßstab M 1: 1000

2 Nachweis der Gleitsicherheit der Schichtkomponenten untereinander des Oberflächenabdichtungssystems

Anlage 2.1	Bauzustand Bemessungssituation BS-T

Anlage 2.1.1 : Bauzustand Rekultivierungsschicht Schichtdicke 0,6 m (Bemessungs-

situation BS-T) Gleitfuge Rekultivierungsschicht zu PP-Filtergewebe

Anlage 2.1.2 : Bauzustand Rekultivierungsschicht Schichtdicke 1,2 m (Bemessungs-

situation BS-T) Gleitfuge Entwässerungsschicht zu PP-Schutzvlies

Anlage 2.2 Endzustand Bemessungssituation BS-P

Anlage 2.2.1 Endzustand Gesamtlage – Schichtdicke 1,2 m

Gleitfuge Rekultivierungsschicht zu PP-Schutzvlies

Anlage 2.2.2 Endzustand Gesamtlage – Schichtdicke 2,0 m

Gleitfuge Rekultivierungsschicht zu PP-Schutzvlies

3. Nachweis der Sicherheit gegen Böschungsbruch

Anlage 3.1 : Endzustand Rekultivierungsschicht - Standsicherheitsnachweis nach

Janbu mit vorgegebener Gleitfuge an der Basis der Rekultivierungs-

schicht (Bemessungssituation BS-E) im Maßstab M 1: 500

Anlage 3.2 : Gesamtböschung bis in das Schwarzachtal, Fixpunkt südlich der

Kiesabbau-Verfüllung mit iterierenden Radien und Mittelpunkten (Be-

messungssituation BS-E) im Maßstab M 1: 2.500

Anlage 3.3 : Gesamtböschung bis in das Schwarzachtal, Fixpunkt an der Bö-

schungsoberkante der DKI-Deponie-Erweiterung mit iterierenden Radien und Mittelpunkten (Bemessungssituation BS-E) im Maßstab M 1:

4.000

Tabellenverzeichnis

Tab. 1:	Angaben zu dem für die Berechnung der Standsicherheit	
	relevanten Böschungsabschnitt	. 6
Tab. 2:	Schichtenaufbau des Oberflächenabdichtungssystems	. 6
Tab. 3:	Teilsicherheitsbeiwerte für Einwirkungen nach DIN 1054: 2010-12: Tab A.2.1:	. 9
Tab. 4:	Teilsicherheitsbeiwerte Widerstände nach DIN 1054: 2010-12, Tab. A.2.2:	. 9
Tab. 5:	Angesetzte Bodenkennwerte und Scherparameter	10
Tab. 6:	Ergebnisse des Standsicherheitsberechnungen zur Sicherheit der Rekultivierung	16

Verzeichnis der verwendeten Unterlagen

BBG Bauberatung Geokunststoffe GmbH & Co.KG (2012): Gleitsicherheit von Abdichtungssystemen anhand von Projektbeispielen

DIN 1054: 2010-12: Baugrund – Sicherheitsnachweise im Erd- und Grundbau DIN 1055-2:2010-11: Einwirkungen auf Tragwerke – Teil 2: Bodenkenngrößen

DIN 4149:2005-04: "Bauten in deutschen Erdbebengebieten – Lastannahmen, Bemessung

und Ausführung üblicher Hochbauten"

DEUTSCHE GESELLSCHAFT FÜR GEOTECHNIK E. V.

(1997): Geotechnik der Deponien und Altlasten;

(2008): GDA E 2-7 Nachweis der Gleitsicherheit von Abdichtungssystemen

(2005): GDA E 3-8 Reibungsverhalten von Geokunststoffen

(2010): Empfehlungen für den Entwurf und die Berechnung von Erdkörpern mit

Bewehrungen aus Geokunststoffen – EBGEO

INGENIEURBÜRO HAAS-KAHLENBERG GMBH

(30.04.2024): Lageplan Deponiewanne im Maßstab M 1: 1.000

(30.04.2024): Längsprofile L1, L2, L3, L4 und L5 im Maßstab M 1: 500

(30.04.2024): Querprofile Q1, Q2 und Q3 im Maßstab M 1: 500

WUDKE, R.-B., WERTH, K. WITT, K-J. (2008): Standsicherheitsnachweis für Oberflächenabdichtungssysteme von Deponien; Bautechnik 9/ 2008

1 Vorhaben, Veranlassung

1.1 Vorhaben

Der Zweckverband für Abfallwirtschaft Kempten (ZAK) ist der öffentliche Entsorgungsträger (örE) für die Landkreise Lindau (Bodensee), Oberallgäu und für den Stadtkreis Kempten. Zum öffentlichen Auftrag des ZAK gehört u.a. die Sicherstellung von ausreichendem Deponie-volumen, um nicht verwertbare mineralische Abfälle aus seinem Verbandsgebiet umweltgerecht beseitigen zu können. Die ZAK Energie GmbH, Kempten, ist Genehmigungsinhaberin der Planfeststellung zur Errichtung und Betrieb der DK0-Deponie und der DKI-Deponie Steinegaden. Das verfügbare Volumen der DKI-Deponie Steinegaden wird voraussichtlich im Jahr 2027 erschöpft sein. Zur Absicherung der Entsorgungssicherheit für nicht verwertbaren Boden und Bauschutt sowie asbesthaltigen Abfällen und Mineralfaserabfällen soll die bestehende DKI-Boden- und Bauschuttdeponie Steinegaden nach Süden erweitert und über den Zeitraum 2027 hinaus betrieben werden.

1.2 Veranlassung

Die östliche Böschung der rekultivierten Deponie ist die steilste und längste Rekultivierungsböschung der Deponie (siehe Anlage 1.1). Sie besitzt eine Höhe von maximal 19 m. Für diese maßgebende Böschung ist der Standsicherheitsnachweis des Oberflächenabdichtungssystems gegen Gleiten zu führen.

Die rekultivierte Böschung des Oberflächenabdichtungssystems besitzt eine Neigung von maximal 1: 3. Für das abfallrechtliche Genehmigungsverfahren wurden mit den vorliegenden Unterlagen die notwendigen erdstatischen Nachweise für die Erweiterungsfläche der DK I-Boden- und Bauschuttdeponie Steinegaden erstellt. Dem Gutachten liegen die folgenden Fachanlagenteile zugrunde:

Nr. 4.1: Lageplan Deponiewanne

Nr. 5.1-3: Vorhaben in Profilen

Nr. 6: Regeldetails

Nr. 7.1: Rekultivierungsplan

Nr. 12.1: Fachbeitrag Geologie und Hydrogeologie

2 Berechnungsrelevanter Hangbereich, Schichtenaufbau

2.1 Länge des berechnungsrelevanten Hanges, Böschungsneigung

Entsprechend der vorliegenden Planung gliedert sich die Böschung der Oberflächenabdichtung in einen unteren, steileren und damit berechnungsrelevanten Böschungsbereich mit einer Böschungsneigungen von 18,4° (1: 3) und einen oberen, flacheren Böschungsbereich mit einer Böschungsneigungen von flacher als 11° (siehe Anlage 1.1). Für den berechnungsrelevanten Bereich des Hanges ergeben sich die folgenden Werte (siehe Anlage 1.1):

Tab. 1: Angaben zu dem für die Berechnung der Standsicherheit relevanten Böschungsabschnitt

Böschungs-	Höhe	(GOK)	Höhen-		Bösc	hung	
abschnitte	von	bis	differenz	ĺ	_	Einfallen	Neigung
	[m NHN]	[m NHN]	[m]	horizontal [m]	Einfallen [m]	[°]	
Unterer Böschungs- bereich	701	720	19	57	60	18,4	1: 3,0
Linie Übergangs- bereich	720	721	1	3,7	3,8	14,7	1: 3,8
Oberer Böschungs- bereich	721	724	3	15,8	16	10,7	1:5,3

2.2 Schichtenaufbau des Oberflächenabdichtungssystems

Der Schichtenaufbau des Oberflächenabdichtungssystems ist nachfolgend dargestellt:

Tab. 2: Schichtenaufbau des Oberflächenabdichtungssystems

Benennung der Schicht	Bodenbeschreibung	Schichtdicke
Rekultivie- rungsschicht	Sandig-kiesige Schluffe bis schluffig-kiesige Sande mit Anforderungen entsprechend BQS 7-1 (Boden- gruppe nach DIN 18196 UL, SU*, GU*)	≥ 1,2 m im Bereich der Gehölz- pflanzungen ≥ 2,0 m
Synthetische Dränmatte	z.B Secudrain	≥ 10 mm
Kunststoffdich- tungsbahn	beidseitig strukturierte Kunststoffdichtungsbahn mit BAM-Zulassung	2,5 mm
Schutzschicht	Mineralisches Bodenmaterial mit Anforderungen ent- sprechend BQS 4-1 (Bodengruppe nach DIN 18196 GU, GW)	≥ 0,2 m
Trag- und Aus- gleichsschicht	Kies, sandig bis schwach sandig, schwach schluffig (Bodengruppe nach DIN 18196 GW, GU, GU*)	≥ 0,5 m
Müllplanum	DKI-Müllkörper	

3 Standsicherheitsnachweis im Grenzzustand GEO-3 (vormals GZ 1C)

3.1 Vorgehen bei der Erstellung des Standsicherheitsnachweises

Eine ausreichende Sicherheit gegen Versagen wird nach DIN 4084:2009-01 eingehalten, wenn die Bedingung für den Grenzzustand der Tragfähigkeit erfüllt ist. Der Ausnutzungsgrad µ ergibt sich dabei aus dem Verhältnis der Summe der Einwirkungen und der Summe der Widerstände:

$$\mu\!=\!\frac{E}{R}\!<\!1$$

Ein Auslastungsgrad von weniger als 1 ist nachzuweisen.

3.1.1 Gleitsicherheit des Oberflächenabdichtungssystems

Die Berechnung der Gleitsicherheit der Schichtkomponenten untereinander erfolgte durch Gegenüberstellung der hangabtreibenden Kräfte und der haltenden Kräfte (DEUTSCHE GESELLSCHAFT FÜR GEOTECHNIK E. V. (2008: GDA E-2-7)) in Anlehnung an DEUTSCHE GESELLSCHAFT FÜR GEOTECHNIK E. V. (2010). Der Nachweis erfolgt in Anlehnung an die Gesamtstandsicherheit im Grenzzustand GEO-3. Beim Nachweis der Gleitsicherheit der Schichtkomponenten in potentiellen Gleitflächen sind die hangabwärts gerichteten Kräfte (Einwirkungen E) den Reibungskräften in der Schichtfuge (Widerstände R) gegenüber zu stellen. Das Abdichtungssystem wird als ganzheitliches Bauwerk interpretiert und nicht als Bauteil. Somit ist der Nachweis entsprechen GEO-3 zu führen. Eine ausreichende Sicherheit gegen Versagen wird nach DIN 4084:2009-01, Abschnitt 9.1 eingehalten, wenn die Bedingung für den Grenzzustand der Tragfähigkeit erfüllt ist.

3.2 Rekultivierungsböschungen und Böschung zum Schwarzenbachtal

Für die Berechnungen der Sicherheit gegen Geländebruch wurde das Programm DC-Böschung/Win Version 8.42 verwendet. Die Berechnungen erfolgten nach DIN 4084: 2009-1 nach Eurocode 7 mit Teilsicherheitsbeiwerten nach DIN EN 1997-1, DIN 1054: 2010-12. Der Nachweis erfolgte für den Grenzzustand nach GEO-3 (Gesamtstandsicherheit) mit Teilsicherheitsbeiwerten für Einwirkungen und Beanspruchungen (DIN 1054: 2010-12: Tabelle A.2.1: GEO-3: Grenzzustand des Versagens durch Verlust der Gesamtstandsicherheit) und Teilsicherheitsbeiwerten für

geotechnische Kenngrößen (DIN 1054: 2010-12: Tabelle A.2.2: GEO-3: Grenzzustand des Versagens durch Verlust der Gesamtstandsicherheit). Die Böschungen treten lediglich während der Bauzeit auf. Nach DIN 1054:2010-12 ist daher die Bemessungssituation BS-T (vorübergehende Bemessungssituation (Bauzustände bei der Herstellung des Bauwerks) anzusetzen. Die Standsicherheit für den Endzustand wurden für die Bemessungssituation BS-P bzw. BS-E berechnet. Die Berechnung der Standsicherheit wurde mit Gleitkreisen nach BISHOP als Iterationsverfahren mit variierenden Kreismittelpunkten und Radien durchgeführt.

3.3 Bemessungssituationen (Einwirkungskombinationen, Sicherheitsklassen bei Widerständen, Lastfälle)

Im Rahmen des vorliegenden Nachweises wird von folgenden Bemessungssituationen ausgegangen (DIN 1054: 2010-12, Seite 19):

Bemessungssituation BS-P:

- > Ständige Situationen (Persistent situations), die den üblichen Nutzungsbedingungen entsprechen
- Ständige und während der Funktionszeit der Oberflächenabdichtung regelmäßig auftretende veränderliche Einwirkungen

Bemessungssituation BS-T:

- vorübergehende Situationen (Transient situations), die sich auf zeitlich begrenzte Zustände beziehen wie z.B.:
 - Bauzustände bei der Herstellung der Oberflächenabdichtung

Bemessungssituation BS-E:

- Ständige Situationen die den üblichen Nutzungsbedingungen entsprechen unter Berücksichtigung von Erdbeben
- Ständige und während der Funktionszeit des Bauwerks regelmäßig auftretende veränderliche Einwirkungen

3.4 Teilsicherheitsbeiwerte für Einwirkungen und Widerstände GEO-3

Nach DIN 1054: 2010-12, Tab A.2.1 sind bezogen auf die Bemessungssituationen die folgenden Teilsicherheitsbeiwerte anzusetzen:

Tab. 3: Teilsicherheitsbeiwerte für Einwirkungen nach DIN 1054: 2010-12: Tab A.2.1:

Einwirkungen bzw. Beanspru- chungen		BS-P	BS-T
Ständige Einwirkungen	γG	1,00	1,00
Ungünstige veränderliche Einwirkungen	γα	1,30	1,20

Die Teilsicherheitsbeiwerte für Widerstände sind DIN 1054: 2010-12, Tab. A.2.2 zu entnehmen.

Tab. 4: Teilsicherheitsbeiwerte Widerstände nach DIN 1054: 2010-12, Tab. A.2.2:

Einwirkungen bzw. Beanspru- chungen		BS-P	BS-T
Reibungsbeiwert tan ϕ' des dränierten Bodens γ_{ϕ}	γ_{ϕ}		
Reibungsbeiwert tan δ' in Kontaktfuge zu Geokunststoffen	γδ	1,25	1,15
Kohäsion c´ des Bodens	γс		
Adhäsion a´ in Kontaktfuge zu Geokunststoff	γa		

4 Bodenkennwerte

Auf der Grundlage des Berichtes der geotechnischen Fremdprüfung Nr. 2009-05-03/300-1 zum Bauabschnitt 2 der bestehenden DKI-Deponie vom 10.08.2023 wurden die in der folgenden Tabelle aufgelisteten Bodenkennwerte und Scherparameter zusammengestellt. Die Materialauswahl erfolgt im Rahmen der Ausführungsplanung. Die für die Berechnungen angesetzten charakteristischen inneren Reibungswinkel δ_k wurden dabei entsprechend GDA 2-7 Seite 5 aus den Reibungswinkeln δ_0 wie folgt hergeleitet.

$$\tan \delta_k = \frac{\tan \delta_0}{1,1}$$

Die Vorgaben der GDA 2-7 hinsichtlich der Ermittlung der Scherparameter für die Ausführungsplanung sind im Rahmen des QMP zu berücksichtigen.

Tab. 5: Angesetzte Bodenkennwerte und Scherparameter

Funktionale	Material	Boden-		Wichte		Reibungs		Kohä-
Schicht / Schichtüber- gänge		gruppe	erd- feucht	wasser- gesät- tigt	unt. Auf- trieb	Kontaktro winkel	eibungs-	sion
		DIN 18196	γ	γr	γ´	φο, δο	δk	c´
			[kN/m ³]	[kN/m ³]	[kN/m ³]	[Grad]	[Grad]	[kN/m²]
Rekultivierungs- schicht	Sandig-kiesige Schluffe bis schluffig-kiesige Sande mit An- forderungen ent- sprechend BQS 7-1	UL, SU*, GU*	17,0	19,5	9,5	> 27,9	> 25,7	3
Schichtfuge Reku- schicht zu Synthe- tische Drainage- matte						29	26,5 ¹⁾	03)
Synthetische Dränmatte	z.B Secudrain							
Schichtfuge Syn- thetische Drai- nageatte zu KDB						33,4	30,9	
Schichtfuge KDB zu Schutzschicht						> 30,5	> 28,1	
Schutzschicht	Mineralisches Bodenmate-rial mit Anfor-derun- gen entspre- chend BQS 4-1	GU/ GU* SE	>17,0	> 19,5	> 9,5	> 30,0	> 27,7	1
Schichtfuge De- ponie zu Aus- gleichsschicht						32,5		
DKI Müllkörper mit techn. Schichten		GW, GU, TA, TM	15,0	16,5	7,0		27,5	1
Müllkörper DK0 De- ponie		UL/UM/G U/GU*	18,5	19,5	9,5		27,5	1
Auffüllungen ehema- liger Kiesabbau		UL/UM/G U/GU*	17,5	19,0	9,0		24,0	1
Geschiebemergel		UL/UM/ GU/GU*	19,5	20,5	12,0		27,5 24,0 ²⁾	8 3 ²⁾
Spätglaziale Kiese	_	GW	18,5	21,0	11,0		35,0	1
Spätglaziale Sande		SU, SU*	19,0	21,0	11,0		32,5	3

¹⁾ Für die rechnerischen Nachweise der Schichtfuge Rekultivierungsschicht zu synthetische Dränmatte wird wegen des geringeren Reibungswinkels der Rekultivierungsschicht gegenüber dem Reibungswinkel in der Schichtfuge der Reibungswinkel der Rekultivierungsschicht angesetzt.

Die Scherparameter des Geschiebemergels werden bei der Berechnung der Hangsituation zum Schwarzachtal zur Erhöhung der Sicherheit reduziert.

³⁾ Nach GDA-Empfehlung 2-7, Abschnitt 2, Seite 5 und 6 darf zum Nachweis der Gleitsicherheit in Schichtflächen zwischen Geotextilien und Rekultivierungsschichten keine Adhäsion angesetzt werden.

5 Kritische Schichtfuge

Unter Berücksichtigung der in Tab. 5 aufgelisteten Kontaktreibungswinkel ergibt sich als kritische Schichtfuge zur Berechnung der Sicherheit gegen Gleiten die kritische Schichtfuge zwischen Rekultivierungsschicht zu synthetischer Drainagematte.

6 Kräfte (Einwirkungen und Widerstände)

6.1 Einwirkungen

6.1.1 Schubkraft des Bodens durch Eigenlast

Die Schubkraft des Bodens pro laufenden Meter durch Eigenlast errechnet sich aus der Wichte des Bodens γ , der Schichtdicke des Bodens d, dem Teilsicherheitsbeiwert für ständige Einwirkungen γ_G und der Böschungsneigung zu:

$$t_{B,d} = \gamma \cdot d \cdot \gamma_G \cdot \sin \beta$$

6.1.2 Schubkraft durch Schneelast

Die Deponie Steinegaden liegt nach DIN EN 1991-1-3/NA:2010-12 in der Schneelastzone 3. Die Geländehöhe der rekultivierten Deponie liegt zwischen rund 702 m NHN bis 724 m NHN. Dementsprechend ergibt sich der charakteristische Wert der Schneelast s_k auf dem Boden nach Bild NA.2 (durchschnittliche Geländehöhe ~ 711 m NHN) zu 3,82 kN/m². Die Schubkraft der Schneelast errechnet sich pro laufenden Meter aus der Schneelast s_k , dem Teilsicherheitsbeiwert für veränderliche Einwirkungen γ_Q und der Böschungsneigung β zu:

$$t_{S,d} = s_k \cdot \gamma_O \cdot \sin \beta$$

6.1.3 Strömungskraft

Aufgrund von Aufstau in der Dränschicht tritt als zusätzliche hangab treibende Kraft die Strömungskraft $s_{w,d}$ auf. Pro Meter Böschungslänge errechnet sich die Strömungskraft aus der Wichte des Wassers γ_w , der angesetzten Aufstauhöhe h_w von 5 cm, dem Teilsicherheitsbeiwert für veränderliche Einwirkungen γ_Q und der Böschungsneigung β zu:

$$s_{w,d} = \gamma_w \cdot h_w \cdot \gamma_Q \cdot \sin \beta$$

Der Standsicherheitsnachweis geht von einer hydraulisch entsprechend den örtlichen Gegebenheiten ausreichend bemessenen Dränmatte aus, so dass ein Rückstau nicht stattfindet.

6.1.4 Zusätzliche Schubkräfte durch Befahrung

Infolge der Befahrung beim Einbau ergeben sich zusätzliche Schubkräfte. Diese setzen sich aus der statischen Belastung durch die Raupe und die dynamische Belastung durch die Raupe infolge einer Vollbremsung zusammen.

Als Verkehrslast wird eine Kettenraupe mit folgenden Kennwerten angenommen:

- ➤ Kettenlänge L_R:......3,0 m

- > Lastausbreitungswinkel δ:......30 °

Die Aufstandsfläche A errechnet sich aus Kettenbreite L_B , Kettenlänge L_R , Schichtdicke des Bodens d und Lastausbreitungswinkel δ zu:

$$A = (2 \cdot L_R \cdot B_R) + (4 \cdot d \cdot \tan 30^{\circ} \cdot (L_R + B_R))$$

Die Bremsverzögerung a_v berechnet aus sich aus der Geschwindigkeit der Raupe v und der Zeit bis zum Stillstand bei Vollbremsung t zu:

$$a_v = \frac{v}{t}$$

Die Schubkraft aus der statischen Belastung errechnet sich aus dem Eigengewicht der Raupe G_R , der Aufstandsfläche A, dem Teilsicherheitsbeiwert für veränderliche Einwirkungen γ_Q und der Böschungsneigung zu:

$$t_{Rd.s} = (G_R/A) \cdot \gamma_Q \cdot \sin \beta$$

Die Schubkraft aus der dynamischen Belastung (Vollbremsung) errechnet sich aus dem Eigengewicht der Raupe G_R , der Erdbeschleunigung g, der Bremsverzögerung a_v , der Aufstandsfläche A und dem Teilsicherheitsbeiwert für veränderliche Einwirkungen γ_Q zu:

$$t_{Rd,d} = \frac{\left(\left(G_R/g \right) \cdot a_v \right) \cdot \gamma_Q}{A}$$

6.1.5 Erdbeben

Nach DIN 4149:2005-04 liegt der Standort innerhalb der Erdbebenzone 1. Bemessungserdbeben mit Spitzenwerten der Horizontalbeschleunigung treten mit einer Häufigkeit von 475 Jahren auf. Bei der Baumaßnahme der zu beurteilenden Böschungen der Oberflächendichtung handelt es sich um einen temporären, kurzfristig existierenden Bauzustand. Aus diesem Grund wird bei der Berechnung der Böschungssicherheit des Bauzustandes die Erdbeben-Horizontalbeschleunigung nicht angesetzt. Die Berechnungen der Gleitsicherheit wurde dementsprechend ohne Erdbeben-Horizontalbeschleunigung durchgeführt (Anlagen 2.1.1-3: BS-T und Anlagen 2.2.1-2 BS-P).

Zusätzlich wurde für die Oberflächenabdichtung der DKI-Deponie eine Berechnung mit Berücksichtigung der Horizontalbeschleunigung durchgeführt (Bemessungssituation BS-E). Entsprechend DIN EN 1998-1/NA:2021-07 liegt die spektrale Antwortbeschleunigung für Fels im Plateaubereich $S_{aP,R}$ bei 1,0902 m/s². Der Referenz-Spitzenwert der Bodenbeschleunigung a_{gR} für Baugrundklasse A (Fels) beträgt 0,436 m/s². Der Bodenparameter S in Abhängigkeit der geologischen Untergrundklasse S (Gebiete flacher Sedimentbecken) und der Baugrundklasse C (gemischt- bis feinkörnige Lockergesteine) beträgt 0,75 für C-S und 1,0 < $S_{aP,R}$ < 2,0 nach DIN 4149. Für die Bemessung wird eine Bodenbeschleunigung von 0,58 m/s² angesetzt.

6.2 Widerstände

6.2.1 Reibungskraft aus der Bodenauflast

Aus der Bodenauflast ($\gamma \cdot d$), der Böschungsneigung β , dem charakteristischen Reibungswinkel der Kontaktfläche δ_k sowie dem Teilsicherheitsbeiwert für den Kontaktreibungswinkel γ_δ ergibt sich die Reibungskraft $t_{f,d}$ pro laufender Meter Böschungslänge zu:

$$t_{\text{f,d}} = \frac{\gamma \cdot \text{d} \cdot \text{cos } \beta \cdot \text{tan } \delta_k}{\gamma_{\delta}}$$

Entsprechend GDA-Empfehlung 2-7 Seite 5 wird in der kritischen Schichtfuge keine Adhäsion angesetzt. Dies gilt ebenso bei den Berechnungen in den Abschnitten 0, 6.2.3.

6.2.2 Reibungskraft aus der Schneeauflast

Die Reibungskraft $t_{s,h,d}$ erhöht die haltenden Kräfte in der Schichtfuge und wird im Endzustand berücksichtigt. Sie errechnet sich aus der Schneelast s_k , der Böschungsneigung β , dem charakteristischen Reibungswinkel der Kontaktfläche δ_k sowie dem Teilsicherheitsbeiwert für den Kontaktreibungswinkel γ_δ zu:

$$t_{s,h,d} = \frac{s_k \cdot \cos\beta \cdot \tan\delta_k}{\gamma_\delta}$$

6.2.3 Zusätzliche Reibungskraft aus dem Eigengewicht des Fahrzeuges

Das Eigengewicht des Kettenbaggers führt zu einer Erhöhung der Reibungskraft in der Schichtfuge. Die haltende Kraft errechnet sich aus dem Eigengewicht des Kettenbaggers G_R , der Aufstandfläche A, der Böschungsneigung β , dem charakteristischen Reibungswinkel der Kontaktfläche δ_k sowie dem Teilsicherheitsbeiwert für den Kontaktreibungswinkel γ_δ :

$$t_{R,h,d} = \frac{(G_R / A) \cdot \cos \beta \cdot \tan \delta_k}{\gamma_{\delta}}$$

7 Ermittlung des Auslastungsgrades

Zur Ermittlung des Auslastungsgrades werden die Einwirkungen E (Abschnitt 6.1) den Widerständen R (Abschnitt 6.2) gegenübergestellt.

$$\mu = \frac{E}{R} < 1$$

Es werden die Bemessungssituationen BS-T für den Bauzustand und BS-P für den Endzustand unterschieden.

7.1 Bauzustand

Es wird der Auslastungsgrad nach Einbau der ersten Teillage sowie nach Einbau der gesamten Bodenschicht unter Berücksichtigung von Befahrung jedoch ohne Berücksichtigung von Schneelast wie folgt berechnet:

:

$$\mu = \frac{E}{R} = \frac{(t_{b,d} + s_{w,d}) \cdot L_r + (t_{Rd,s} + t_{Rd,d}) \cdot L_R}{t_{f,d} \cdot L_r + t_{R,h,d} \cdot L_R} < 1$$

7.2 Endzustand

Es wird der Auslastungsgrad nach Einbau der gesamten Bodenschicht mit Berücksichtigung von Schneelast, ohne Berücksichtigung von Befahrung wie folgt berechnet

$$\mu = \frac{E}{R} = \frac{(t_{b,d} + s_{w,d} + t_{s,d}) \cdot L}{(t_{f,d} + t_{s,b,d}) \cdot L} < 1$$

Einwirkungen E

t_{B,d}: Schubkraft des Bodens durch Eigenlast (Abschnitt 6.1.1)

t_{s,d}: Schubkraft durch Schneelast (Abschnitt 6.1.2)

sw,d: Strömungskraft (Abschnitt 6.1.3)

t_{Rd,s}: Schubkraft aus statischer Belastung der Raupe (Abschnitt 6.1.4) t_{Rd,d}: Schubkraft aus dynamischer Belastung der Raupe (Abschnitt 6.1.4)

Widerstände R

 $t_{f,d}$: Reibungskraft aus der Bodenauflast (Abschnitt 6.2.1) $t_{s,h,d}$: Reibungskraft aus der Schneeauflast (Abschnitt 6.2.2)

t_{R,h,d}: Zusätzliche Reibungskraft aus dem Eigengewicht des Fahrzeuges (Abschnitt 6.2.3)

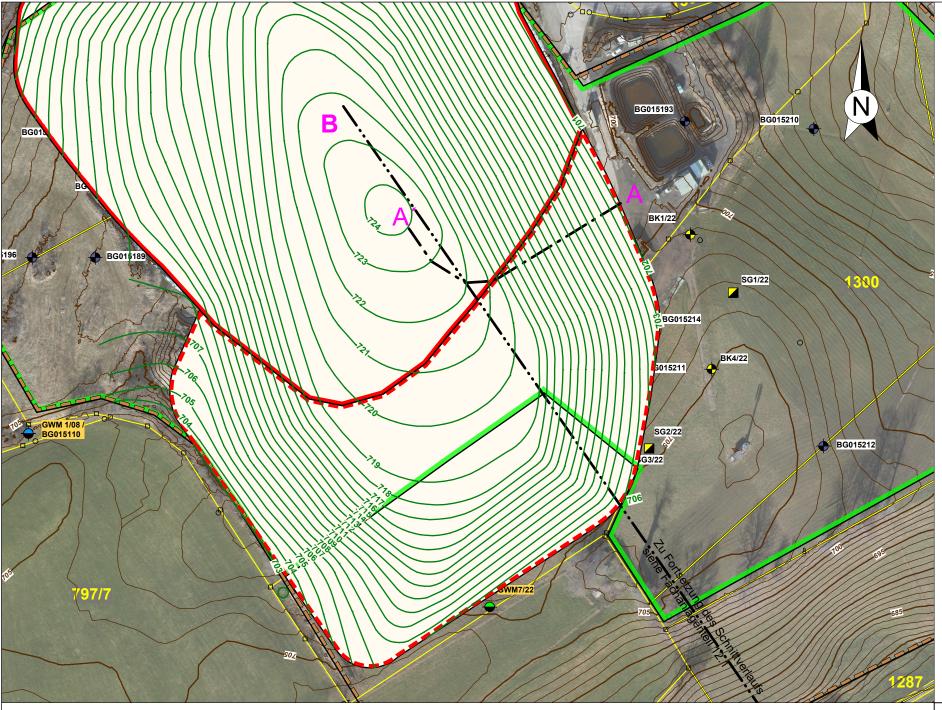
8 Ergebnisse der Standsicherheitsnachweise

Im Folgenden sind die Ergebnisse des Standsicherheitsnachweises zusammengestellt:

Tab. 6: Ergebnisse des Standsicherheitsberechnungen zur Sicherheit der Rekultivierung

Bausituation	Schicht- dicke	Kontaktrei- bungswinkel δ _k	Auslas- tungs- grad µ	Anlage
Bauzustand (Bemessungssituation BS-T)				
Rekultivierungsschicht <u>mit</u> Befahrung	0,6 m	25,7	0,99	Anlage 2.1.1
Rekultivierungsschicht <u>mit</u> Befahrung	1,2 m	25,7	0,92	Anlage 2.1.2
Rekultivierungsschicht mit Befahrung	2,0 m	25,7	0,87	Anlage 2.1.3
Endzustand (Bemessungssituation BS-P)				
Rekultivierungsschicht ohne Befahrung	1,2 m	25,7	0,93	Anlage 2.2.1
Rekultivierungsschicht ohne Befahrung	2,0 m	25,7	0,90	Anlage 2.2.2
Endzustand (Bemessungssituation BS-E)				
Endzustand Rekultivierungsschicht Gleitfuge an der Basis der Rekultivierungsschicht	1,2 m	25,7	0,98	Anlage 3.1
Gesamtböschung bis in das Schwarzachtal, Fixpunkt südlich der Kiesabbau-Verfüllung mit iterierenden Radien und Mittelpunkten			0,93	Anlage 3.2
Gesamtböschung bis in das Schwarzachtal, Fixpunkt an der Böschungsoberkante der DKI- Deponie-Erweiterung mit iterierenden Radien und Mittelpunkten			0,75	Anlage 3.3

Fazit: Der Auslastungsgrad im Böschungsbereich liegt sowohl im Bauzustand als auch im Endzustand unter Ansatz der o.g. Bodenkennwerte und charakteristischer Scherparameter der Bodenmaterialien unter 1. Die Sicherheit gegen Gleiten ist nachgewiesen.



9 Bewertung

Im Böschungsbereich (Böschungsneigung max. 1: 3) des Oberflächenabdichtungssystem und im Hangbereich zum Schwarzachtal wird der Auslastungsgrad μ von 1 in allen untersuchten Zuständen jeweils unterschritten. Das Oberflächenabdichtungssystem ist sowohl im Bauzustand als auch im Endzustand unter Ansatz der o.g. Bodenkennwerte und charakteristischer Scherparameter entsprechend den vorliegenden Unterlagen als standsicher zu bewerten. Vor Baubeginn des Oberflächenabdichtungssystems sind die Standsicherheitsberechnungen unter Ansatz der Boden- und Materialkennwerte der tatsächlich zum Einsatz kommenden Bodenmaterialien und Geokunststoffen im Rahmen der Ausführungsplanung zu aktualisieren. Hierzu sind die Scherparameter mit Reibungsversuchen nachzuweisen und die anzusetzenden Parameter nach GDA E 2-7 zu bestimmen. Dies ist im QMP zu regeln.


Bad Wörishofen, den 30.04.2024

Dipl.-Geol. Achim Veigel - Geschäftsführer -

Schnittlagen **Aufschlüsse** Grundwassermessstelle, errichtet in den Jahren 1986 und 2008 Berechnungsrelevante Schnitte Grundwassermessstelle, errichtet im Jahr 2022 GWM 7/22 🚤 Bezeichnung / Objekt-ID (Objekt ID aus UmweltAtlas Bayern des LfU) BG015110 Bohrung im Bereich der Verfüllung - abgeteuft im Jahr 2022 Bezeichnung BK Baggerschurf im Bereich der Verfüllung abgeteuft im Jahr 2022 SG → Bezeichnung

Legende Grenze Planfeststellung, geplante Erweiterung 1) Grenze bestehende DKI-Deponie¹⁾ Grenze geplante Erweiterung DKI-Deponie¹⁾ 1) Grenzen entsprechend Lageplan Deponiewanne (Plannummer STe01-1-116_G) vom 22.01.2024 des Ingenieurbüro Haas-Kahlenberg Grenze genehmigter Abbau entsprechend Abbauplan, Stand 28.06.1976 Umgriff ehemaliger Kiesabbau (Oberkante Abbauböschung) mit genehmigter Wiederverfüllung - schematisch

Flurstücksgrenzen gelb

Höhengleichen Reklultivierung Erweiterungsfläche und Bestandsdeponie [m ü. NHN]

Datengrundlage

Gert Wegner freier Gartenarchitekt BDL

- Abbauplan (Stand 28.06.1976) mit Grundstücksgrenzen und Geländezustand

Februar 1974 (übersendet von Fa. Wilhelm Geiger GmbH & Co. KG perE-Mail am 09.02.2022) Ingenieurbüro Haas-Kahlenberg GmbH & Co. KG

Grenzen entsprechend Lageplan Deponiewanne (Plannummer STe01-1-116_G) vom 22.01.2024 des Ingenieurbüro Haas-Kahlenberg

Landesamt für Digitalisierung, Breitband und Vermessung:

Digitale Flurkarte

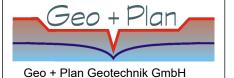
Digitales Orthophoto (Aufnahmedatum 03.07.2022)

Landesamt für Umwelt:

- Lage und Bezeichnung (Objekt-ID) der Bohrungen aus dem UmweltAtlas Bayern

Geiger Hoch- und Tiefbau GmbH & Co. KG

Digitales Orthophoto für den Bereich der Bestandsdeponie, der Erweiterungsfläche sowie dem näheren Umfeld (Drohnenbefliegung vom 29.01.2024)


Anmerkung:

Koordinatensystem: UTM32

- Höhenreferenzsystem: DHHN2016 (Meter über Normalhöhennull 2016): m ü.NHN
- Bohrergebnisse der Aufschlüsse aus dem Bereich und dem engen Umfeld der Deponie siehe auch
- Bohrungen für welche, entsprechend UmweltAtlas Bayern, keine Schichtdaten vorhanden sind, wurden nicht
- Neben den dargestellten Bohr- und Schurfdaten sind weitere Bodenuntersuchungen durchgeführt worden. Für

	weitere Bohr- und Schurfdaten siehe Fachanlagenteil Hydrogeologisches Gutachten	
-DATEN	Erweiterung der DKI-Boden- und Bauschuttdeponie Steinegaden	PROJEKTNUMMER: 2022-02-001
PROJEKT-DATEN	AUFTRAG: Standsicherheitsnachweis Rekultivierung	
AN-INFO	PLANBEZEICHNUNG: Lageplan mit Darstellung der geplanten Rekultivierungshöhen und den berechnungsrelevanten Profilschnitten	MARSTAB: 1:1.500 ANLAGE:

191	PLANBEZEICHNUNG:			MAßSTAB:
PLAN-INFO	Lageplan mit Darstellur	ng der geplanten Rekult	ivierungshöhen und den	1:1.500
¥	berechnungsrelevanter	n Profilschnitten		ANLAGE:
립				1.1
ш	LANDKREIS:	GEMEINDE:	GEMARKUNG:	FLURSTÜCK- NR:
LAGE	Lindau	Röthenbach	Steinegaden	779/9, 1300, 1301
≩	Geo + 1	7 - 1 /	7145	-noveio Crobii
AUFTRAGNEHMER	Geo + Plan Geotech		EAK E GMBH	Energie GmbH

Untersuchung:				
Berechnun	Berechnung der Sicherheit gegen Gleiten: Bauzustand (BS-T)			
Projekt:	Erweiterung der DKI- Boden- und Bauschuttdeponie Steinegaden	—Geo + P	lan —	
Auftrag:	Fachanlagenteil 10.4.2: Standsicherheitsnachweis der Rekultivierung	~		
Nachweis für:	Schichtfuge Rekultivierungsschicht zu synthetische Drainagematte	Geo + Plan Geotechi Max-Planck-Straße 13 86825 I Tel.: 08247/ 998 737 0 Mobiltel.	Bad Wörishofen	
Zustand:	Bauzustand, Rekultivierungsschicht (Schichtdicke 0,6 m) - mit Befahrung			
Auftraggeber:	ZAK Energie GmbH			
Projekt-Nr.:	2022-02-001			

Datengrundlage Böschung				
Böschungsneigung	β =	18,40 [°]		
Böschungslänge	l =	60,0 [m]		
Schichtdicke	d =	0,60 [m]		
Wichte Boden	γ _B =	17,00 [kN/m ³]		
Aufstauhöhe	$h_w =$	0,05 [m]		
Wasserwichte	$\gamma_w =$	10,00 [kN/m ³]		
Reduzierter Kontaktreibungswinkel	δ _k =	25,70 [°]		
Wirksame Kohäsion	c' _k =	0,00 [kN/m²]		

Teilsicherheitsbeiwerte ((BS-T)) nach DIN 1054: 2010-12				
Ständige Einwirkungen $\gamma_G = 1,00$				
Verübergehende Einwirkungen γ _Q = 1,20				
Widerstände (Scherfestigkeit) $\gamma_{\delta c} = 1,15$				

Lastannahme Baufahrzeug				
Eigengewicht des Baufahrzeugs	$G_R =$	200,00 [kN]		
Kettenlänge der Baufahrzeugs	L _R =	3,00 [m]		
Kettenbreite der Baufahrzeugs	B _R =	0,60 [m]		
Maximalgeschwindigkeit	v =	0,70 [m/s] ≈		
		2,5 [km/h]		
Zeit bis zum Stillstand	t =	2,00 [s]		
Lastausbreitungswinkel	δ =	30 [°]		

Einwirkung: Hangab treibende Käfte pro laufender Meter Böschungslänge		
Schubkraft Boden durch Eigenlast $t_{B,d} = \gamma \times \gamma_G \times d \times \sin \beta$	$t_{B,d} =$	3,220 [kN/m ²]
Strömungskraft durch Einstau in Dränschicht $s_{w,d} = \gamma_w \times \gamma_Q \times h_w \times \sin \beta$	S _{w,d} =	0,189 [kN/m ²]

Untersuchung:					
Berechnun	Berechnung der Sicherheit gegen Gleiten: Bauzustand (BS-T)				
Projekt:	Erweiterung der DKI- Boden- und Bauschuttdeponie Steinegaden	<u>Geo + P</u>	lan,—		
Auftrag:	Fachanlagenteil 10.4.2: Standsicherheitsnachweis der Rekultivierung				
Nachweis für:	Schichtfuge Rekultivierungsschicht zu synthetische Drainagematte	Geo + Plan Geotechnik GmbH Max-Planck-Straße 13 86825 Bad Wörishofen Tel.: 08247/ 998 737 0 Mobiltel.: 0171/ 50 10 510			
Zustand:	Bauzustand, Rekultivierungsschicht (Schichtdicke 0,6 m) - mit Befahrung				
Auftraggeber:	ZAK Energie GmbH				
Projekt-Nr.:	2022-02-001				

Einwirkung: Schubkraft durch Befahrung			
Bremsverzögerung	a _v =	0,350 [m/s ²]	
$a_v = v/t$			
Aufstandsfläche	A =	8,588 [m ²]	
A = $(2 \times L_R \times B_R) + (4 \times d \times tan 30^{\circ} \times (L_R + L_R))$	+ B _R))		
Statische Belast. Baufahrzeugs durch			
Eigenlast	$t_{Rd,s} =$	8,821 [kN/m ²]	
t_{Rd} ,s $(G_R/A) \times \gamma_G \times \sin \beta$,		
Dynam. Belast. des Baufahrzeugs bei			
Vollbremsung		0.070 (1.1.) 21	
$t_{Rd,d} = \frac{((G_R/g) \times a_v) \times \gamma_Q}{\Lambda}$	$t_{Rd,d} =$	0,978 [kN/m ²]	
Rd,d— A			

Widerstände, pro laufender Meter Böschungslänge		
Reibungskraft des Bodens durch Eigenlast $t_{f,d} = (\gamma \ x \ d \ x \cos \beta \ x \tan \delta_k)/\gamma_\delta + c'_k/\gamma_c$	$t_{f,d} =$	4,050 [kN/m ²]
Reibungskraft durch Eigengewicht des Baufahrzeugs $t_{Rd,h} = ((G_R/A) \ x \ cos \ \beta \ x \ tan \ \delta_k)/\gamma_\delta$	t _{Rd,h} =	9,248 [kN/m ²]

Berechnung des Verhältnisses
$$\kappa$$

$$\kappa = \frac{(t_{B,d} + s_{w,d}) \times L}{(t_{f,d} \times L)} \qquad \qquad \kappa = \quad \textbf{0,842} \qquad \kappa < 1$$

 $\begin{aligned} & \textbf{Berechnung des Auslastungsgrades } \mu \\ & \textbf{Gegenüberstellung hangabwärts gerichtete Kräfte } E_d \ zu \\ & \textbf{Reibungskräften in der Schichtgrenze } R_d; \\ & \textbf{Anforderung Grenzustand } \mu = E_D / \ R_d \le 1 \\ & \mu = \left(t_{B,d} + s_{w,d}\right) \ x \ L_R + \left(t_{Rd,s} + t_{Rd,d}\right) x \\ & t_{f,d} \ x \ LR + t_{Rh,d} \ x \ L_R \end{aligned} \quad \mu = \quad \textbf{0,99} \qquad \mu < 1 \end{aligned}$

Ergebnis

Untersuchung:				
Berechnun	Berechnung der Sicherheit gegen Gleiten: Bauzustand (BS-T)			
Projekt:	Erweiterung der DKI- Boden- und Bauschuttdeponie Steinegaden	Geo + P	lan	
Auftrag:	Fachanlagenteil 10.4.2: Standsicherheitsnachweis der Rekultivierung	Geo + Plan Geotechnik GmbH Max-Planck-Straße 13 86825 Bad Wörishofer Tel.: 08247/ 998 737 0 Mobiltel.: 0171/ 50 10 5		
Nachweis für:	Schichtfuge Rekultivierungsschicht zu synthetische Drainagematte			
Zustand:	Bauzustand Rekultivierungsschicht (Gesamtauflage 1,2 m) - mit Befahrung			
Auftraggeber:	ZAK Energie GmbH			
Projekt-Nr.:	2022-02-001			

Datengrundlage Böschung				
Böschungsneigung	β =	18,40 [°]		
Böschungslänge	l =	60,0 [m]		
Schichtdicke	d =	1,20 [m]		
Wichte Boden (gewichtetes Mittel)	γ _B =	17,00 [kN/m ³]		
Aufstauhöhe	h _w =	0,05 [m]		
Wasserwichte	γ _w =	10,00 [kN/m ³]		
Reduzierter Kontaktreibungswinkel	δ _k =	25,70 [°]		
Wirksame Kohäsion	c′ _k =	0,00 [kN/m²]		

Teilsicherheitsbeiwerte ((BS-T)) nach DIN 1054: 2010-12				
Ständige Einwirkungen $\gamma_G = 1,00$				
Verübergehende Einwirkungen γ _Q = 1,20				
Widerstände (Scherfestigkeit) $\gamma_{\delta c} = 1,15$				

Lastannahme Baufahrzeug				
Eigengewicht des Baufahrzeugs	$G_R =$	200,00 [kN]		
Kettenlänge des Baufahrzeugs	L _R =	3,00 [m]		
Kettenbreite des Baufahrzeugs	B _R =	0,60 [m]		
Maximalgeschwindigkeit	v =	0,70 [m/s] ≈		
		2,5 [km/h]		
Zeit bis zum Stillstand	t =	2,00 [s]		
Lastausbreitungswinkel	δ =	30 [°]		

Einwirkung: Hangab treibende Käfte pro laufender Meter		
Böschungslänge		
Schubkraft Boden durch Eigenlast	t –	6,439 [kN/m ²]
$t_{B,d} = \gamma x \gamma_G x d x \sin \beta$	$t_{B,d} =$	6,439 [KN/M]
Strömungskraft durch Einstau in		
Dränschicht	$s_{w,d} =$	0,189 [kN/m ²]
$s_{w,d} = \gamma_w x \gamma_Q x h_w x \sin \beta$		

Untersuchung:			
Berechnun	Berechnung der Sicherheit gegen Gleiten: Bauzustand (BS-T)		
Projekt:	Erweiterung der DKI- Boden- und Bauschuttdeponie Steinegaden	Geo + P	lan
Auftrag:	Fachanlagenteil 10.4.2: Standsicherheitsnachweis der Rekultivierung	One i Plan Onetale	eile Osselel I
Nachweis für:	Schichtfuge Rekultivierungsschicht zu synthetische Drainagematte	Geo + Plan Geotechnik GmbH Max-Planck-Straße 13 86825 Bad Wörishofen Tel.: 08247/ 998 737 0 Mobiltel.: 0171/ 50 10 51	
Zustand:	Bauzustand Rekultivierungsschicht (Gesamtauflage 1,2 m) - mit Befahrung		
Auftraggeber:	ZAK Energie GmbH		
Projekt-Nr.:	2022-02-001		

Einwirkung: Schubkraft durch Befahrung			
Bremsverzögerung a _v = v/t	a _v =	0,350 [m/s ²]	
Aufstandsfläche	A =	13,577 [m ²]	
A = $(2 \times L_R \times B_R) + (4 \times d \times tan 30^{\circ} \times (L_R + tan 30^{\circ}) + (4 \times d \times tan 30^{\circ}) + (4 \times tan 30^{\circ}) + (4 \times d \times tan 30^{\circ}) + (4 \times d \times tan 30^{\circ}) + (4 \times tan 30$	⊦ B _R))		
Statische Belast. des Baufahrzeugs durc Eigenlast t_{Rd} ,s $(G_R/A) \ x \ \gamma_G \ x \ sin \ \beta$	t _{Rd,s} =	5,580 [kN/m ²]	
Dynam. Belast. des Baufahrzeugs bei Vollbremsung $t_{Rd,d} = \frac{\left(\left(G_R/g\right)x \ a_v\right)x\gamma_Q}{A}$	t _{Rd,d} =	0,619 [kN/m ²]	

Widerstände, pro laufender Meter Böschungslänge		
Reibungskraft des Bodens durch Eigenlast	t _{f.d} =	8,101 [kN/m²]
$t_{f,d} = (\gamma \times d \times \cos \beta \times \tan \delta_k)/\gamma_{\delta} + c'_k/\gamma_c$	1,0	, [,]
Reibungskraft durch Eigengewicht des Baufahrzeugs	t _{Rd,h} =	5,850 [kN/m²]
$t_{Rd,h} = ((G_R/A) \times \cos \beta \times \tan \delta_k)/\gamma_\delta$		

Berechnung des Verhältnisses
$$\kappa$$

$$\kappa = \frac{\left(t_{B,d} + s_{w,d}\right) \times L}{\left(t_{f,d} \times L\right)} \qquad \kappa = 0.818 \qquad \kappa < 1$$

Berechnung des Auslastungsgrades μ Gegenüberstellung hangabwärts gerichtete Kräfte E_d zu Reibungskräften in der Schichtgrenze R_d ; Anforderung Grenzustand μ = E_D / $R_d \le 1$ $\mu = \underbrace{\left(t_{B,d} + s_{w,d}\right) \times L_R + \left(t_{Rd,s} + t_{Rd,d}\right) \times}_{t_{f,d}} \quad \mu = \quad \textbf{0,92} \qquad \mu < 1$

Ergebnis

Untersuchung:				
Berechnun	Berechnung der Sicherheit gegen Gleiten: Bauzustand (BS-T)			
Projekt:	Erweiterung der DKI- Boden- und Bauschuttdeponie Steinegaden	Geo + P	lan	
Auftrag:	Fachanlagenteil 10.4.2: Standsicherheitsnachweis der Rekultivierung	•		
Nachweis für:	Schichtfuge Rekultivierungsschicht zu synthetische Drainagematte	Geo + Plan Geotechi Max-Planck-Straße 13 86825 B Tel.: 08247/ 998 737 0 Mobiltel.	Bad Wörishofen	
Zustand:	Bauzustand Rekultivierungsschicht (Gesamtauflage 2,0 m) - mit Befahrung			
Auftraggeber:	ZAK Energie GmbH			
Projekt-Nr.:	2022-02-001			

Datengrundlage Böschung			
Böschungsneigung	β =	18,40 [°]	
Böschungslänge	l =	60,0 [m]	
Schichtdicke	d =	2,00 [m]	
Wichte Boden (gewichtetes Mittel)	γ _B =	17,00 [kN/m ³]	
Aufstauhöhe	h _w =	0,05 [m]	
Wasserwichte	γ _w =	10,00 [kN/m ³]	
Reduzierter Kontaktreibungswinkel	δ _k =	25,70 [°]	
Wirksame Kohäsion	c′ _k =	0,00 [kN/m²]	

Teilsicherheitsbeiwerte ((BS-T)) nach DIN 1054: 2010-12				
Ständige Einwirkungen $\gamma_G = 1,00$				
Verübergehende Einwirkungen $\gamma_Q = 1,20$				
Widerstände (Scherfestigkeit) $\gamma_{\delta c} = 1,15$				

Lastannahme Baufahrzeug				
Eigengewicht des Baufahrzeugs	$G_R =$	200,00 [kN]		
Kettenlänge des Baufahrzeugs	L _R =	3,00 [m]		
Kettenbreite des Baufahrzeugs	B _R =	0,60 [m]		
Maximalgeschwindigkeit	v =	0,70 [m/s] ≈		
		2,5 [km/h]		
Zeit bis zum Stillstand	t =	1,50 [s]		
Lastausbreitungswinkel	δ =	30 [°]		

Einwirkung: Hangab treibende Käfte pro laufender Meter		
Böschungslänge		
Schubkraft Boden durch Eigenlast	t =	10,732 [kN/m ²]
$t_{B,d} = \gamma x \gamma_G x d x \sin \beta$	¹B,d −	10,732 [KN/III]
Strömungskraft durch Einstau in		
Dränschicht	$s_{w,d} =$	0,189 [kN/m ²]
$s_{w,d} = \gamma_w x \gamma_Q x h_w x \sin \beta$		

Untersuchung:			Anlage
Berechnung der Sicherheit gegen Gleiten: Bauzustand (BS-T)			2.1.3
Projekt:	Erweiterung der DKI- Boden- und Bauschuttdeponie Steinegaden	Geo + P	lan
Auftrag:	Fachanlagenteil 10.4.2: Standsicherheitsnachweis der Rekultivierung	*	
Nachweis für:	Schichtfuge Rekultivierungsschicht zu synthetische Drainagematte	Geo + Plan Geotechi Max-Planck-Straße 13 86825 B Tel.: 08247/ 998 737 0 Mobiltel.	Bad Wörishofen
Zustand:	Bauzustand Rekultivierungsschicht (Gesamtauflage 2,0 m) - mit Befahrung		
Auftraggeber:	ZAK Energie GmbH		
Projekt-Nr ·	2022-02-001	1	

Einwirkung: Schubkraft durch Befahrung				
Bremsverzögerung a _v = v/t	a _v =	0,467 [m/s ²]		
Aufstandsfläche	A =	20,228 [m ²]		
$A = (2 \times L_R \times B_R) + (4 \times d \times tan 30^{\circ} \times (L_R + L_R))$	$B_R))$			
Statische Belast. des Baufahrzeugs durch	Statische Belast. des Baufahrzeugs durch			
Eigenlast	t _{Rd,s} =	3,745 [kN/m ²]		
t_{Rd} ,s $(G_R/A) \times \gamma_G \times \sin \beta$	•			
Dynam. Belast. des Baufahrzeugs bei				
Vollbremsung	+ -	O FF4 (LAL/ 2)		
$t_{Rd,d} = \frac{((G_R/g) \times a_v) \times \gamma_Q}{\Lambda}$	¹Rd,d ¯	0,554 [kN/m ²]		
^{LRd,d} A				

Widerstände, pro laufender Meter Böschungslänge		
Reibungskraft des Bodens durch Eigenlast $t_{f,d} = (\gamma \times d \times \cos \beta \times \tan \delta_k)/\gamma_\delta + c_k'/\gamma_c$	$t_{f,d} =$	13,501 [kN/m ²]
Reibungskraft durch Eigengewicht des Baufahrzeugs $t_{Rd,h} = ((G_R/A) \times \cos \beta \times \tan \delta_k)/\gamma_\delta$	t _{Rd,h} =	3,926 [kN/m ²]

Berechnung des Verhältnisses
$$\kappa$$

$$\kappa = \frac{\left(t_{B,d} + s_{w,d}\right) \times L}{\left(t_{f,d} \times L\right)} \qquad \qquad \kappa = 0,809 \qquad \kappa < 1$$

 $\begin{aligned} & \textbf{Berechnung des Auslastungsgrades } \mu \\ & \textbf{Gegenüberstellung hangabwärts gerichtete Kräfte } E_d \ zu \\ & \textbf{Reibungskräften in der Schichtgrenze } R_d; \\ & \textbf{Anforderung Grenzustand } \mu = E_D / \ R_d \le 1 \\ & \mu = \underbrace{\left(t_{B,d} + s_{w,d}\right) \ x \ L_R + \left(t_{Rd,s} + t_{Rd,d}\right) \ x}_{t_{f,d} \ x \ LR + t_{Rh,d} \ x \ L_R} \qquad \mu = \quad \textbf{0,87} \qquad \mu < 1 \end{aligned}$

Ergebnis

Untersuchung:				
Berechnung der Sicherheit gegen Gleiten: Endzustand (BS-P)			2.2.1	
Projekt:	Erweiterung der DKI- Boden- und Bauschuttdeponie Steinegaden	Geo + P	lan	
Auftrag:	Fachanlagenteil 10.4.2: Standsicherheitsnachweis der Rekultivierung	Geo + Plan Geotechnik GmbH Max-Planck-Straße 13 86825 Bad Wörishofen Tel.: 08247/ 998 737 0 Mobiltel.: 0171/ 50 10 510		
Nachweis für:	Schichtfuge Rekultivierungsschicht zu synthetische Drainagematte			
Zustand:	Endzustand Rekultivierungsschicht (Gesamtauflage 1,2 m)			
Auftraggeber:	ZAK Energie GmbH			
Projekt-Nr.:	2022-02-001			

Datengrundlage Böschung			
Böschungsneigung	β =	18,40 [°]	
Böschungslänge	L =	60,0 [m]	
Schichtdicke	d =	1,20 [m]	
Wichte Boden (gewichtetes Mittel)	γ =	17,60 [kN/m ³]	
Schneelast	s =	3,89 [kN/m ²]	
Aufstauhöhe	h _w =	0,05 [m]	
Wasserwichte	γ _w =	10,00 [kN/m ³]	
Kontaktreibungswinkel	$\delta_k =$	25,70 [°]	

Teilsicherheitsbeiwerte (BS-P) nach DIN 1054: 2010-12				
Ständige Einwirkungen	$\gamma_G =$	1,00		
Vorübergehende Einwirkungen	γ _Q =	1,30		
Widerstände (Scherfestigkeit) $\gamma_{\delta} = 1,25$				

Einwirkung Hangab treibende Käfte jeweils pro				
laufender Meter Böschungslänge				
Schubkraft Boden durch Eigenlast	t _{B.d.} =	6,667 [kN/m ²]		
$t_{B,d} = \gamma \times \gamma_G \times d \times \sin \beta$	ъ,u	o,oo: [KIV/III]		
Schubkraft Schnee	t .=	1,596 [kN/m ²]		
$t_{s,d} = s_k x \gamma_Q x \sin \beta$	∙ s,a	1,550 [KN/III]		
Strömungskraft durch Einstau in				
Dränschicht	$s_w =$	0,205 [kN/m ²]		
$s_{w,d} = \gamma_w x \gamma_Q x h_w x \sin \beta$				

Widerstände			
Reibungskraft des Bodens durch Eigenlast $t_{f,d}$ = (γ x d x cos β x tan δ_k)/ γ_δ	$t_{f,d} =$	7,716 [kN/m ²]	
Reibungskraft Schnee	$t_{S,h,d} =$	1,421 [kN/m ²]	
$t_{S,h,d} = (s_k x \cos \beta x \tan \delta_k)/\gamma_\delta)$			

Berechnung des Auslastungsgrades μ Gegenüberstellung hangabwärts gerichtete Kräfte E_d zu Reibungskräften in der Schichtgrenze R_d ; Anforderung Grenzustand $\mu = E_D/R_d \le 1$

$$\mu = \frac{(t_{B,d} + t_{s,d} + s_{w,d}) \times L}{(t_{f,d} + t_{s,h,d}) \times L} \qquad \mu = 0,93$$

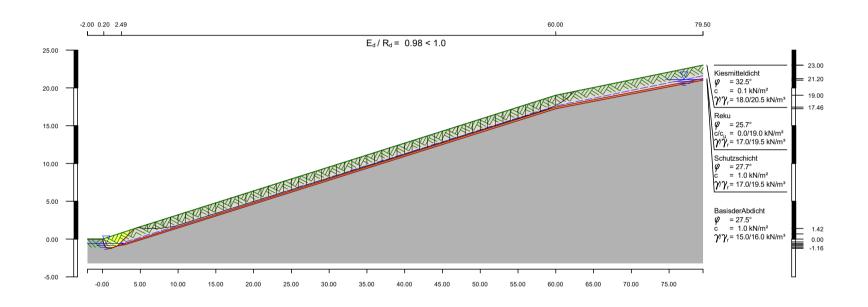
Ergebnis

Untersuchung:			
Berechnun	Berechnung der Sicherheit gegen Gleiten: Endzustand (BS-P)		
Projekt:	Erweiterung der DKI- Boden- und Bauschuttdeponie Steinegaden	—Geo + P	lan
Auftrag:	Fachanlagenteil 10.4.2: Standsicherheitsnachweis der Rekultivierung	V	
Nachweis für:	Schichtfuge Rekultivierungsschicht zu synthetische Drainagematte	Geo + Plan Geotechnik GmbH Max-Planck-Straße 13 86825 Bad Wörishofen Tel.: 08247/ 998 737 0 Mobiltel.: 0171/ 50 10 5	
Zustand:	Endzustand Rekultivierungsschicht (Gesamtauflage 2,0 m)		
Auftraggeber:	ZAK Energie GmbH		
Projekt-Nr.:	2022-02-001		

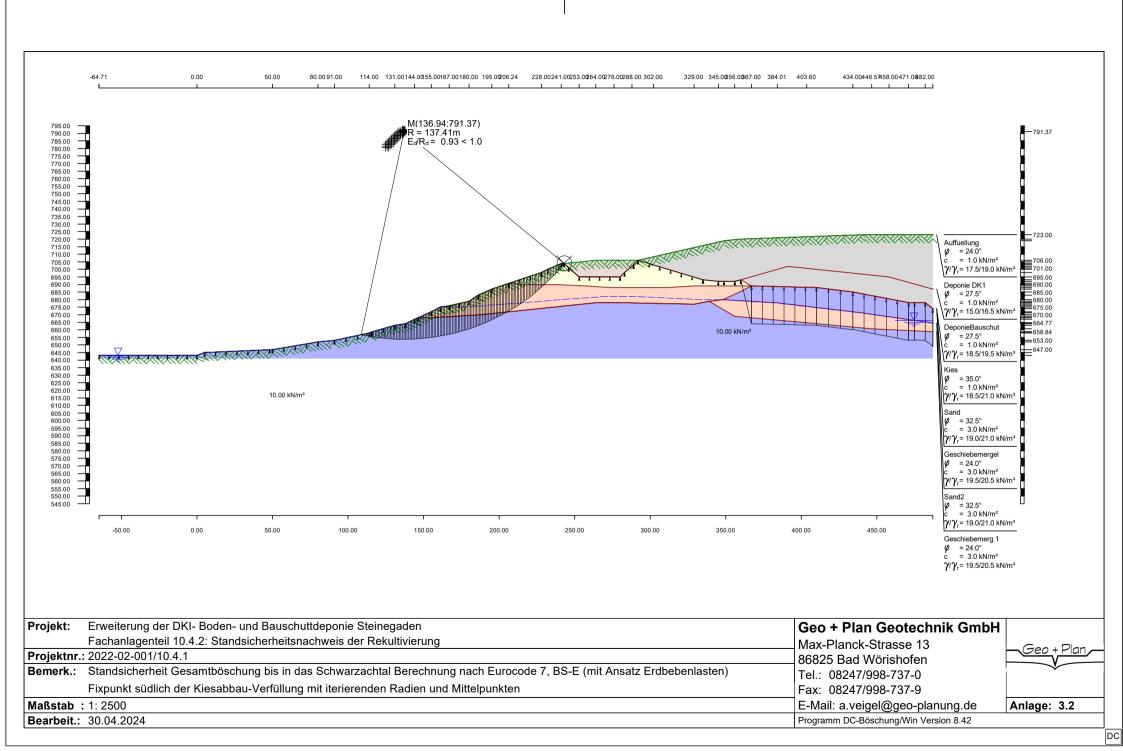
Datengrundlage Böschung				
Böschungsneigung	β =	18,40 [°]		
Böschungslänge	L =	60,0 [m]		
Schichtdicke	d =	2,00 [m]		
Wichte Boden (gewichtetes Mittel)	γ =	17,60 [kN/m ³]		
Schneelast	s =	3,89 [kN/m ²]		
Aufstauhöhe	h _w =	0,05 [m]		
Wasserwichte	$\gamma_w =$	10,00 [kN/m ³]		
Kontaktreibungswinkel	$\delta_k =$	25,70 [°]		

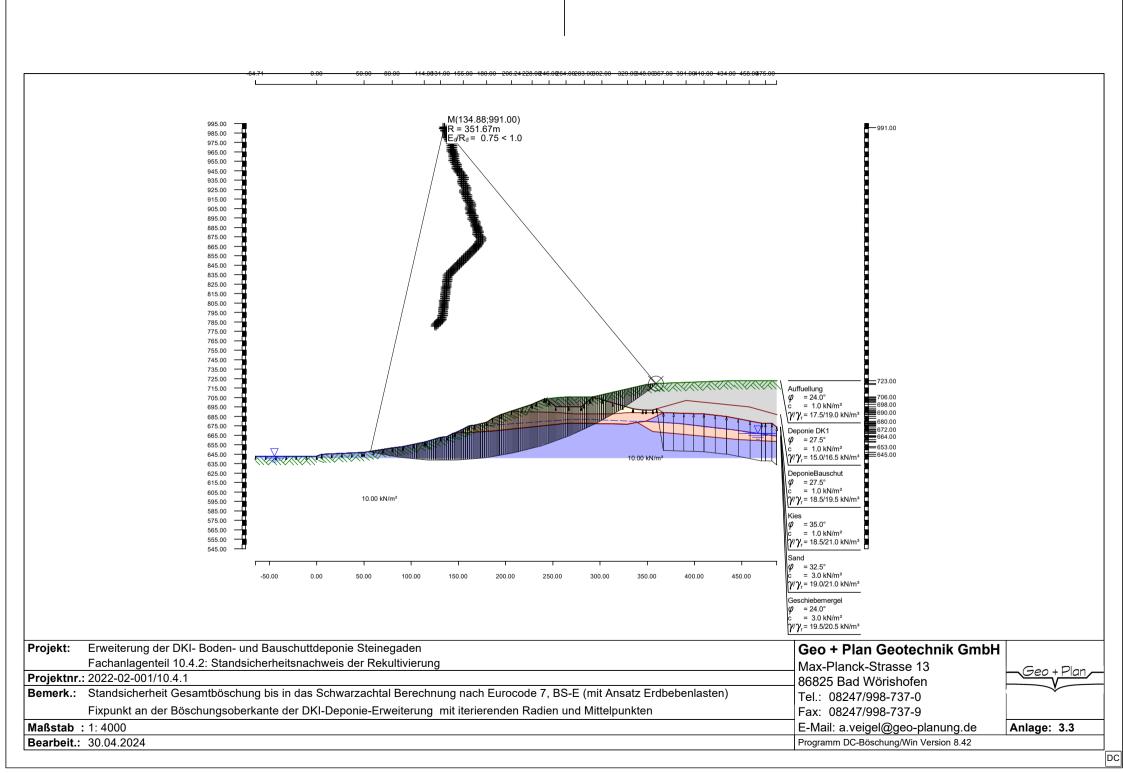
Teilsicherheitsbeiwerte (BS-P) nach DIN 1054: 2010-12			
Ständige Einwirkungen	γ_G =	1,00	
Vorübergehende Einwirkungen	γ _Q =	1,30	
Widerstände (Scherfestigkeit) $\gamma_{\delta} = 1,25$			

Einwirkung Hangab treibende Käfte jeweils pro			
laufender Meter Böschungslänge			
Schubkraft Boden durch Eigenlast	t =	11,111 [kN/m ²]	
$t_{B,d} = \gamma x \gamma_G x d x \sin \beta$	∙B,d [—]	11,111 [KN/III]	
Schubkraft Schnee	+ -	4 FOG (LAN)/21	
$t_{s,d} = s_k x \gamma_Q x \sin \beta$	ι _{s,d} –	1,596 [kN/m ²]	
Strömungskraft durch Einstau in			
Dränschicht	$s_w =$	0,205 [kN/m ²]	
$s_{w,d} = \gamma_w x \gamma_Q x h_w x \sin \beta$			


Widerstände			
Reibungskraft des Bodens durch Eigenlast $t_{f,d}$ = (γ x d x cos β x tan δ_k)/ γ_δ	$t_{f,d} =$	12,860 [kN/m ²]	
Reibungskraft Schnee	$t_{S,h,d} =$	1,421 [kN/m ²]	
$t_{S,h,d} = (s_k x \cos \beta x \tan \delta_k)/\gamma_\delta)$			

Berechnung des Auslastungsgrades µ


Gegenüberstellung hangabwärts gerichtete Kräfte E_d zu Reibungskräften in der Schichtgrenze R_d ; Anforderung Grenzustand $\mu = E_D/R_d \le 1$


$$\mu = \frac{(t_{B,d} + t_{s,d} + s_{w,d}) \times L}{(t_{f,d} + t_{s,h,d}) \times L} \qquad \mu = 0,90$$

Ergebnis

Projekt:	Erweiterung der DKI- Boden- und Bauschuttdeponie Steinegaden	Geo + Plan Geotechnik GmbH	
	Fachanlagenteil 10.4.2: Standsicherheitsnachweis der Rekultivierung	Max-Planck-Strasse 13	Geo + Plan
Projektnr.:	2022-02-001	86825 Bad Wörishofen	Geo + Piari
Bemerk.:	Standsicherheitsnachweis nach Janbu mit vorgegebener Gleitfuge an der Basis der Rekultivierungsschicht	Tel.: 08247/998-737-0	~
	(Bemessungssituation BS-E)	Fax: 08247/998-737-9	
Maßstab :	1: 500	E-Mail: a.veigel@geo-planung.de	Anlage: 3.1
Bearbeit.:	30.04.2024	Programm DC-Böschung/Win Version 8.42	

