Freistaat Bayern, Staatliches Bauamt Schweinfurt B286_540_1,973 - B286_560_0,279

B 286, Schweinfurt – Gerolzhofen – Enzlar (B8) Anbau Überholfahrstreifen, Abschnitt 2 nördl. Unterspiesheim

D	P	\cap	П	IS-	N	r	
_	П.	\ <i>J</i> .			ıv		-

FESTSTELLUNGSENTWURF

Unterlage 18.1: Wassertechnische Untersuchungen

Erläuterungen mit Berechnungen

aufgestellt:	
Staatliches Bauamt Schweinfurt	
D 5 1 1/1 D 5 1/1	
Dr. Fuchs, Ltd. Baudirektor	
Schweinfurt, den 14.12.2020	

Inhaltsverzeichnis

1 \	Vorhaben	5
2 (Grundlagen	5
	Vorhandene Situation	
3.1	Gelände	
3.2	Vorfluter	
3.3	Wasserschutzgebiete	7
3.4	Überschwemmungsgebiete	
3.5	Wassersensible Bereiche	
3.6	Baugrund	7
3.7	Grundwasser	8
4 (Geplante Maßnahmen	9
4.1	Festlegung der Entwässerungsabschnitte	
4.1.1		
4.1.2	Entwässerungsabschnitt 2	11
4.1.3	B Entwässerungsabschnitt 3	11
4.1.4	Entwässerungsabschnitt 4	12
4.1.5	5 Entwässerungsabschnitt 5	12
4.1.6	Entwässerungsabschnitt 6	13
4.1.7	7 Entwässerungsabschnitt 7	13
4.1.8	B Entwässerungsabschnitt 8	14
4.1.9	Entwässerungsabschnitt 9	14
4.1.1	10 Entwässerungsabschnitt 10	14
4.1.1	11 Entwässerungsabschnitt 11	15
4.1.1	12 Entwässerungsabschnitt 12	15
4.1.1	13 Entwässerungsabschnitt 13	16
4.1.1	14 Entwässerungsabschnitt 14	16
4.1.1	15 Entwässerungsabschnitt 15	17
4.1.1	16 Entwässerungsabschnitt 16	17
4.1.1	17 Entwässerungsabschnitt 17	18
4.1.1	18 Entwässerungsabschnitt 18	18
4.1.1	19 Entwässerungsabschnitt 19	19

	nittlung des Regenabflusses mit wasserwirtschaftlichen chweisen	20
5.1	Bemessungsregenspende und Regenhäufigkeit	20
5.2	Abflussbeiwerte	20
5.3	Abflussmengen und wasserwirtschaftliche Nachweise	21
5.3.1	Entwässerungsabschnitt 1	21
5.3.2	Entwässerungsabschnitt 2	23
5.3.3	Entwässerungsabschnitt 3	25
5.3.3.1	Wassermengenermittlung	25
5.3.3.2	Bagatellgrenzenüberprüfung "Qualitativ"	25
5.3.3.3	Bagatellgrenzenüberprüfung "Quantitativ"	25
5.3.3.4	Qualitative Gewässerbelastung	26
5.3.4	Entwässerungsabschnitt 4	28
5.3.4.1	Wassermengenermittlung	28
5.3.4.2	Bagatellgrenzenüberprüfung "Qualitativ"	28
5.3.4.3	Bagatellgrenzenüberprüfung "Quantitativ"	28
5.3.4.4	Qualitative Gewässerbelastung	29
5.3.5	Entwässerungsabschnitt 5	30
5.3.6	Entwässerungsabschnitt 6	31
5.3.7	Entwässerungsabschnitt 7	32
5.3.8	Entwässerungsabschnitt 8	34
5.3.9	Entwässerungsabschnitt 9	36
5.3.10	Entwässerungsabschnitt 10	
5.3.11	Entwässerungsabschnitt 11	39
5.3.12	Entwässerungsabschnitt 12	41
5.3.13	Entwässerungsabschnitt 13	43
5.3.14	Entwässerungsabschnitt 14	44
5.3.15	Entwässerungsabschnitt 15	46
5.3.15.1	Wassermengenermittlung	46
5.3.15.2	3 3 1 3 "	
5.3.15.3	Bagatellgrenzenüberprüfung "Quantitativ"	47
5.3.15.4	3	
5.3.16	Entwässerungsabschnitt 16	
5.3.17	Entwässerungsabschnitt 17	
5.3.18	Entwässerungsabschnitt 18	
5.3.19	Entwässerungsabschnitt 19	53

6 Be	messung der Behandlungs- und Regenrückhalteanlagen	54
6.1	Allgemeines	54
6.2	Regenrückhalteanlage 1, Bau km 0+100 links	55
6.2.1	Wahl und Bemessung der Behandlungsanlage	55
6.2.2	Bemessung des erforderlichen Rückhaltevolumens	56
6.3	Regenrückhalteanlage 2, Bau km 2+715 links	57
6.3.1	Wahl und Bemessung der Behandlungsanlage	57
6.3.2	Bemessung des erforderlichen Rückhaltevolumens	58
6.4	Regenrückhalteanlage 3, Bau km 2+940 links	59
6.4.1	Wahl und Bemessung der Behandlungsanlagen	59
6.4.1.1	Behandlungsanlage Nord	59
6.4.1.2	Behandlungsanlage Süd	60
6.4.2	Bemessung des erforderlichen Rückhaltevolumens	61
7 Z u	sammenstellung der Einleitungen	62
	wässerquerungen	63
9 Vo	rübergehende Absenkung des Grundwassers	63

1 Vorhaben

Auf Grund fehlender Überholmöglichkeiten bilden sich hinter langsam fahrenden Lkws auf der B 286 regelmäßig lange Kolonnen. Die Anforderungen an eine für diesen Straßenzug angemessene Reisegeschwindigkeit für Pkws kann die B 286 nicht erfüllen. Das führt dazu, dass von Verkehrsteilnehmern oftmals riskante Überholmanöver in Kauf genommen werden, um an Lkws vorbeizukommen.

Das Staatliche Bauamt Schweinfurt beabsichtigt den Überholdruck auf der B 286 durch abschnittsweise Bereitstellung von Überholfahrstreifen zu mindern. Der vorhandene Straßenquerschnitt weist keine ausreichende Breite auf, sodass zur Einrichtung der Überholfahrstreifen ein Anbau durchgeführt werden muss.

Der Abschnitt 2 beginnt am südlichen Ortsrand der Gemeinde Schwebheim und verläuft 3,28 km in Richtung Süden. Es wird der gesamte Oberbau ersetzt. Der Anbau an die vorhandene Fahrbahn erfolgt auf der Ostseite.

Die vorhandene Entwässerung im Abschnitt 2 entspricht nicht dem aktuellen Stand der Technik. Das verschmutzte Oberflächenwasser wird breitflächig über die Bankette in die bestehenden Seitengräben abgeleitet. Von dort fließt es ohne besondere Behandlung direkt in die Vorflutgräben.

Im Ausbaubereich ist es vorgesehen, die Straßenentwässerung entsprechend den heutigen Anforderungen herzustellen. In diesem Zusammenhang ist eine Behandlung und Rückhaltung vor der Einleitung in die Vorfluter vorgesehen.

2 Grundlagen

- Richtlinien für die Anlage von Straßen Teil: Entwässerung (RAS-Ew), Ausgabe 2005
- Arbeitsblatt DWA-A 117 Bemessung von Regenrückhalteräumen, Ausgabe 2014
- Arbeitsblatt DWA-A 118 Hydraulische Bemessung und Nachweis von Entwässerungssystemen, Ausgabe 2011
- Merkblatt DWA-M 153 Handlungsempfehlungen zum Umgang mit Regenwasser, Ausgabe 2012
- Regenreihen des Deutschen Wetterdienstes, KOSTRA-DWD 2010R
- PC-Programm des Bayerischen Landesamtes für Umwelt zum Merkblatt DWA-M 153 Handlungsempfehlungen zum Umgang mit Regenwasser
- Rigoplan Version 6.42 Software zur Bemessung unterirdischer Sedimentationsanlagen der Fränkische Rohrwerke GmbH & Co. KG

3 Vorhandene Situation

3.1 Gelände

Die B 286 verläuft im Planungsabschnitt im Wesentlichen oberhalb des Ursprungsgeländes in leichten Dammlagen mit geringem Längsgefälle.

Seitlich des Straßenkörpers sind längs verlaufende Mulden und Gräben angeordnet. Diese transportieren das anfallende Oberflächenwasser zu den bestehenden Vorflutern, falls es nicht vorher in den begrünten Seitenbereichen und Böschungen versickert.

Am Baubeginn bei Bau-km 0+031 wird ein Graben zum Heidenfelder Mühlbach gequert. Hier existiert im Bestand ein Durchlass DN 800.

Bei Bau-km 1+301 ist ein Durchlass DN 600 vorhanden. Er nimmt Wasser aus den Gräben auf der Westseite auf und leitet es auf die Ostseite der Bundesstraße. Von dort verläuft ein Graben in das Waldgebiet "Gehäu", wo das Wasser weitläufig versickert.

Bei Bau-km 2+748 kreuzt die Bundesstraße den Armutsgraben der von Nordosten nach Westen in den Brückenwasengraben fließt. Als Querungsbauwerk dient ein Rahmendurchlass mit einer lichten Weite von 1,95 m und einer lichten Höhe von 1,10 m.

3.2 Vorfluter

Zur Ableitung des anfallenden Oberflächenwassers im Bereich der Verkehrsanlage dienen derzeit im Ausbauabschnitt:

Bau-km 0+031 Graben (ohne Namen) zum Heidenfelder Mühlbach

Bau-km 1+301 Graben in das Waldgebiet "Gehäu"

Bau-km 2+748 Armutsgraben zum Brückenwasengraben

Bau-km 3+100 Brückenwasengraben (Teile der Anschlussstelle Unterspiesheim)

Bei Bau-km 1+301 wird zukünftig ausschließlich unverschmutztes Oberflächenwasser abgeleitet.

3.3 Wasserschutzgebiete

Wasserschutzgebiete werden nicht berührt.

3.4 Überschwemmungsgebiete

Laut "Informationsdienst Überschwemmungsgefährdete Gebiete (IÜG)" des Bayerischen Landesamtes für Umwelt liegt im Planungsumfeld kein festgesetztes Überschwemmungsgebiet vor.

Da der Dammkörper der Bundesstraße bereits im Bestand vorhanden ist und die Durchlassbauwerke funktionsgleich wieder hergestellt werden, ist davon auszugehen, dass auch zukünftig kein Hochwasserproblem im Planungsraum vorliegt.

3.5 Wassersensible Bereiche

Im Planungsraum befinden sich wassersensible Bereiche entlang des Armuts- und Brückenwasengrabens.

Wassersensible Bereiche sind Gebiete die durch den Einfluss von Wasser geprägt sind und werden anhand der Moore, Auen, Gleye und Kolluvien abgegrenzt. Sie kennzeichnen den natürlichen Einflussbereich des Wassers, in dem es zu Überschwemmungen und Überspülungen kommen kann. Nutzungen können hier beeinträchtigt werden durch: über die Ufer tretende Gräben und Bäche, zeitweise hohen Wasserabfluss in sonst trockenen Tälern oder zeitweise hoch anstehendes Grundwasser. Im Unterschied zu amtlich festgesetzten oder für die Festsetzung vorgesehenen Überschwemmungsgebieten kann bei diesen Flächen nicht angegeben werden, wie wahrscheinlich Überschwemmungen sind. Nach Informationen des Wasserwirtschaftsamtes Bad Kissingen sind in den wassersensiblen Bereichen des Planungsraumes in den letzten 20 bis 30 Jahren keine Überschwemmungen aufgetreten.

3.6 Baugrund

Der erkundete Baugrund ist überwiegend lehmig und besitzt ein sehr begrenztes Sickervermögen. Eine geregelte Versickerung des anfallenden Oberflächenwassers in den Untergrund ist daher nur sehr eingeschränkt oder nicht möglich. In höheren Dammlagen, insbesondere im Bereich der Anschlussstelle, ist eine flächenhafte Versickerung des Straßenoberflächenwassers über die Böschungen möglich.

3.7 Grundwasser

Bei den Baugrunduntersuchungen wurde nur zum Teil Grundwasser angetroffen. Ein zusammenhängender Grundwasserspiegel konnte nur im Bereich der Grabenauen nachgewiesen werden.

Im Bereich des Abschnittes 2 nördlich Unterspiesheim wurden insgesamt drei Grundwassermessstellen eingerichtet. In nachfolgender Tabelle sind die Ergebnisse im Messzeitraum zwischen 05.05.2014 und 20.05.2016 dargelegt.

Nr. Grundwasser- messtelle	Bau-km	Höhe Maximalwert [mNN]	Höhe Minimalwert [mNN]	Höhe Mittelwert [mNN]	Straßenhöhe [mNN]	Differenz Straßenhöhe Mittelwert [m]
1	0+443	216,11	214,90	215,40	219,55	4,15
2	2+336	217,61	215,97	216,68	219,10	2,42
3	3+015	216,14	215,03	215,49	217,30	1,81

4 Geplante Maßnahmen

Das anfallende, verschmutzte Straßenoberflächenwasser der B 286 wird breitflächig über das Bankett in neue, seitlich angeordnete Rasenmulden abgeleitet. Über Muldenabläufe und Rohrleitungen wird das Wasser gesammelt und in Richtung folgender geplanter Regenbehandlungs-/Regenrückhalteanlagen abgeführt:

- Regenbehandlungs-/Regenrückhalteanlage 1, Bau-km 0+100 links
- Regenbehandlungs-/Regenrückhalteanlage 2, Bau-km 2+715 links
- Regenbehandlungs-/Regenrückhalteanlage 3, Bau-km 2+940 links

Aufgrund der äußerst flachen Geländetopographie und unter Nutzung der vorhandenen Grundstücke des Baulastträgers sind zur Behandlung (Reinigung) des verschmutzten Straßenoberflächenwassers der Bundesstraße geschlossene, unterirdische Sedimentationsanlagen vorgesehen. Die Bemessung der Anlagen erfolgt gemäß Typ D25 (Anlagen mit Dauerstau und maximal 18 m/h Oberflächenbeschickung bei r_{krit}) nach Tabelle A.4c des Merkblattes DWA-M 153. Die Sedimentationsanlagen befinden sich in direkter Nähe zur Bundesstraße und sind somit so angeordnet, dass der fließende Verkehr auf der Bundesstraße bei Wartungsarbeiten nicht behindert wird.

Die unterirdischen Sedimentationsanlagen bestehen aus einem gegen die Fließrichtung geneigten Rohr DN 600 aus Polypropylen (Sedimentationsstrecke), das zwischen einem Startschacht (mit Schlamm- und Geröllfang / Zulauf aus dem vorgelagerten Entwässerungssystem) und einem Zielschacht (mit Tauchrohr / Ablauf in die nachgelagerte Rückhalteanlage) verläuft. Die Sedimentationsstrecke ist mit einem oberen und unteren Strömungstrenner (Gitter) ausgestattet. Schadstoffe, die durch abfließendes Regenwasser mitgespült werden, sind überwiegend an kleine und kleinste Festpartikel gebunden. Das Sediment lagert sich infolge der Schwerkraft im unteren Teil der Sedimentationsstrecke ab. Der untere Strömungstrenner verhindert die Remobilisierung bereits abgelagerter Sedimente und somit den Austrag in die nachgelagerte Rückhalteanlage. Er bildet einen strömungsberuhigten Raum, in dem das Sediment bei einem Starkregen nicht wieder aufgewirbelt wird. Die im anfallenden Straßenoberflächenwasser enthaltenen Leichtflüssigkeiten sammeln sich im oberen Bereich der Sedimentationsstrecke sowie im Zielschacht. Der obere Strömungstrenner verhindert die Remobilisierung dieser Leichtflüssigkeiten und somit den Austrag in die nachgelagerte Rückhalteanlage.

Durch eine Verlängerung des Tauchrohres im Zielschacht der Sedimentationsanlage (unverminderter Querschnitt bis UK Schachtkonus anschließend Abdeckplatte und verminderter Rohrquerschnitt bis ca. 10 cm unter UK Schmutzfänger) wird der maximal mögliche Rückhalt von Leichtflüssigkeiten sichergestellt. Die oben beschriebene Lösung soll bei allen Sedimentationsanlagen Anwendung finden.

Die nachgelagerten Rückhalteanlagen bestehen aus Kunststoff-Füllkörpern (Material Polypropylen), die einen Hohlraumanteil von rund 95 % aufweisen. Um die Dichtigkeit der Rückhalteanlage sicherzustellen, werden die Außenflächen des Systems mit einer 2,0 mm starken Dichtungsbahn aus Polyethylen abgedichtet. Das zurückgehaltene Wasser wird mit Hilfe einer Wirbeldrossel gedrosselt und anschließend in Richtung des jeweiligen Vorfluters weitergeleitet. Die Rückhalteanlagen werden jeweils mit einem Notüberlauf oberhalb der Dauerstaulinie ausgestattet.

Die Bemessung der Regenbehandlungs-/Regenrückhalteanlagen wird ausführlich unter Ziffer 6 beschrieben.

Lediglich für Bereiche in denen das oben beschriebene Vorgehen hinsichtlich Behandlung und Rückhaltung bautechnisch nicht umsetzbar ist, ist das Versickern des Straßenoberflächenwassers in Seitenräumen, Mulden, Dammböschungen etc. geplant.

Eine detaillierte Beschreibung aller vorgesehenen Maßnahmen geht aus Ziffer 4.1 hervor.

Bei Bau-km 1+301 wird zukünftig ausschließlich unverschmutztes Oberflächenwasser abgeleitet.

Auch das vorhandene Mulden- und Grabensystem entlang der B 286 dient nicht mehr zur Ableitung von verschmutzten Straßenoberflächenwasser, auch hier wird zukünftig nahezu ausschließlich nicht verschmutztes Oberflächenwasser aus den Seitenbereichen abgeleitet.

4.1 Festlegung der Entwässerungsabschnitte

Die Einzugsgebiete sind in Unterlage 8 Lagepläne der Entwässerungsmaßnahmen farbig dargestellt.

4.1.1 Entwässerungsabschnitt 1

B 286, Bau-km 0+000 bis 0+025

Bei der Bemessungs-Regenspende r_{15,1} fallen gemäß Ziffer 5.1 ca. 3,1 l/s verschmutztes Straßenoberflächenwasser an, die durch die belebte Oberbodenzone des angrenzenden Geländes versickern können. Eine weiterführende Behandlung des anfallenden Wassers wird somit nicht erforderlich.

4.1.2 Entwässerungsabschnitt 2

B 286, Bau-km 0+010 bis 0+040

Bei der Bemessungs-Regenspende r_{15,1} fallen gemäß Ziffer 5.1 ca. 0,7 l/s verschmutztes Straßenoberflächenwasser an, die durch die belebte Oberbodenzone des angrenzenden Geländes versickern können. Eine weiterführende Behandlung des anfallenden Wassers wird somit nicht erforderlich.

4.1.3 Entwässerungsabschnitt 3

B 286, Bau-km 0+025 bis 1+435

Von Bau-km 0+025 bis 1+435 verläuft die Fahrbahn der B 286 in leichter Dammlage. Das anfallende verschmutzte Straßenoberflächenwasser wird über Muldenabläufe, Sickerleitungen und Transportleitungen der Regenrückhalteanlage bei Bau-km 0+100 zugeführt. Vor Einleitung in den Graben zum Heidenfelder Mühlbach wird das Wasser hier in einer Sedimentationsanlage gereinigt, in einer unterirdischen Füllkörperrigole gesammelt, in einem Auslaufschacht mit Wirbeldrossel gedrosselt und anschließend dem Vorfluter zugeführt (Einleitungsstelle E 1).

In den Entwässerungsabschnitt werden zusätzlich Teile des verschmutzten Straßenoberflächenwassers des Überführungsbauwerks der Staatsstraße St 2271 über die B 286 eingeleitet.

Die geplante Regenbehandlungs-/Regenrückhalteanlage ist in Unterlage 18.3, Blatt 1, "Längsschnitt Regenbehandlungs-/Regenrückhalteanlage 1" dargestellt.

Die Regenrückhaltung muss so angeordnet werden, dass sich bei einer Vollfüllung ein Rückstau in die Transportleitungen der Streckenentwässerung ergibt. Dieser wirkt sich aber nicht negativ auf die Verkehrssicherheit der Straße aus. Ein Einstau in die Sickerleitungen unter dem Planum kann ausgeschlossen werden, da in diesem Fall der Notüberlauf der Rigolenkörper anspringt.

4.1.4 Entwässerungsabschnitt 4

B 286, Bau-km 1+435 bis 2+720

Von Bau-km 1+435 bis 2+720 verläuft die Fahrbahn der B 286 erst in leichter Dammlage und anschließend geländegleich. Das anfallende verschmutzte Straßenoberflächenwasser wird über Muldenabläufe, Sickerleitungen und Transportleitungen der Regenrückhalteanlage bei Bau-km 2+715 zugeführt. Vor Einleitung in den Armutsgraben wird das Wasser hier in einer Sedimentationsanlage gereinigt, in einer unterirdischen Füllkörperrigole gesammelt, in einem Auslaufschacht mit Wirbeldrossel gedrosselt und anschließend dem Vorfluter zugeführt (Einleitungsstelle E 2).

In den Entwässerungsabschnitt werden zusätzlich Teile des verschmutzten Straßenoberflächenwassers des Überführungsbauwerks der GVS Unterspiesheim – Grettstadt über die B 286 eingeleitet.

Die geplante Regenbehandlungs-/Regenrückhalteanlage ist in Unterlage 18.3, Blatt 2, "Längsschnitt Regenbehandlungs-/Regenrückhalteanlage 2" dargestellt.

4.1.5 Entwässerungsabschnitt 5

<u>Teilabschnitt der Anschlussstelle / Fahrbeziehung Kolitzheim – Schweinfurt,</u> Bau-km 0+640 bis Bau-km 0+750

Der Teilabschnitt der Anschlussstelle weist eine Verkehrsbelastung von rund 2.890 Kfz/24h auf. Es liegt somit eine mittlere Flächenverschmutzung nach Tabelle A.3 des DWA-Merkblattes M 153 vor.

Das Entwässerungskonzept wird unverändert beibehalten.

Das anfallende, verschmutzte Straßenoberflächenwasser (rund 800 m² Fahrbahnfläche) wird breitflächig über das Bankett in die angrenzende Dammböschung abgeleitet, wo es durch die belebte Oberbodenzone versickern kann. Zusätzlich erfolgt die Versickerung von verschmutztem Straßenoberflächenwasser im anschließenden Dammfußgraben.

Wasser, das nicht versickert, wird über o. g. Dammfußgraben dem Armutsgraben zugeführt (Einleitungsstelle E 3).

Eine signifikante Erhöhung der Abflussmengen liegt nicht vor, da keine Vergrößerung der Fahrbahnflächen geplant ist.

4.1.6 Entwässerungsabschnitt 6

<u>Teilabschnitt der Anschlussstelle / Fahrbeziehung Gerolzhofen – Kolitzheim,</u>
<u>Bau-km 0+050 bis Bau-km 0+150</u>

Der Teilabschnitt der Anschlussstelle weist lediglich eine Verkehrsbelastung von rund 170 Kfz/24h auf. Es liegt somit eine geringe Flächenverschmutzung nach Tabelle A.3 des DWA-Merkblattes M 153 vor.

Das Entwässerungskonzept wird unverändert beibehalten.

Das anfallende, verschmutzte Straßenoberflächenwasser (rund 730 m² Fahrbahnfläche) wird breitflächig über das Bankett in die angrenzende Rasenmulde abgeleitet, wo es durch die belebte Oberbodenzone versickern kann. Ein Anschluss an die Behandlungs-/ Rückhalteanlage 3 bei Bau-km 2+940 ist aufgrund der Höhenverhältnisse nicht möglich.

Wasser, das nicht versickert, wird über Muldenabläufe, Mehrzweckrohrleitungen sowie einen Querdurchlass bei Bau-km 2+838 dem Armutsgraben zugeführt (Einleitungsstelle E 4).

Eine signifikante Erhöhung der Abflussmengen liegt nicht vor, da keine Vergrößerung der Fahrbahnflächen geplant ist. Die bisherige Einleitungsstelle (Bau-km 0+175 der Fahrbeziehung Schweinfurt – Kolitzheim) wird aufgelassen.

4.1.7 Entwässerungsabschnitt 7

<u>Teilabschnitt der Anschlussstelle / gemeinsame Führung der Fahrbeziehungen, Überführungsbauwerk bis Bau-km 0+610</u>

Der Teilabschnitt der Anschlussstelle weist eine Verkehrsbelastung von rund 3.040 Kfz/24h auf. Es liegt somit eine mittlere Flächenverschmutzung nach Tabelle A.3 des DWA-Merkblattes M 153 vor.

Das Entwässerungskonzept wird unverändert beibehalten.

Das anfallende, verschmutzte Straßenoberflächenwasser wird breitflächig über das Bankett in das anschließende Gelände geleitet, wo es durch die belebte Oberbodenzone versickern kann. Eine weiterführende Behandlung des anfallenden Wassers wird somit nicht erforderlich.

4.1.8 Entwässerungsabschnitt 8

B 286, Bau-km 2+740 bis 2+845

Das anfallende, verschmutzte Straßenoberflächenwasser dieses Teilabschnittes der B 286 wird breitflächig über das Bankett in das anschließende Gelände geleitet, wo es durch die belebte Oberbodenzone versickern kann. Eine weiterführende Behandlung des anfallenden Wassers wird somit nicht erforderlich.

Ein Anschluss an die Behandlungs-/Rückhalteanlage 3 bei Bau-km 2+940 ist aufgrund der Höhenverhältnisse nicht möglich.

4.1.9 Entwässerungsabschnitt 9

Teilabschnitt der Anschlussstelle /

<u>Verzögerungsstreifen Fahrbeziehung Schweinfurt – Kolitzheim</u>

Der Teilabschnitt der Anschlussstelle weist eine Verkehrsbelastung von rund 2.890 Kfz/24h auf. Es liegt somit eine mittlere Flächenverschmutzung nach Tabelle A.3 des DWA-Merkblattes M 153 vor.

Das verschmutzte Straßenoberflächenwasser des Verzögerungsstreifens (rund 990 m² Fahrbahnfläche) wird breitflächig über das Bankett in die angrenzende Rasenmulde vor dem Lärmschutzwall geleitet. Die Muldenroste der Ablaufschächte werden in diesem Bereich 10 cm über Muldensohle angeordnet, sodass das anfallende verschmutzte Straßenoberflächenwasser durch die belebte Oberbodenzone der 2 m breiten Mulde versickern kann. Durch die Oberbodenpassage erfährt das Wasser eine ausreichende Reinigung, sodass der Schutz von Boden und Gewässer gewährleistet ist. Anschließend wird es über die darunterliegenden Mehrzweckrohrleitungen an zwei Stellen dem Armutsgraben zugeführt (Einleitungsstellen 5a und 5b). Die zweigeteilte Weiterleitung wird aufgrund des Rechteckdurchlasses bei Bau-km 2+748 erforderlich. Wasser, das nicht versickert, wird über die höher sitzenden Muldenabläufe (Notüberlauf) ebenfalls dem Armutsgraben zugeführt.

4.1.10 Entwässerungsabschnitt 10

Teilabschnitt der Anschlussstelle /

Rampe Schweinfurt – Kolitzheim inklusive Anschluss an die St 2271

Der Teilabschnitt der Anschlussstelle weist eine Verkehrsbelastung von rund 2.890 Kfz/24h auf. Es liegt somit eine mittlere Flächenverschmutzung nach Tabelle A.3 des DWA-Merkblattes M 153 vor.

Das Entwässerungskonzept wird unverändert beibehalten.

Das anfallende, verschmutzte Straßenoberflächenwasser (rund 4.170 m² Fahrbahnfläche) wird breitflächig über das Bankett in die angrenzende Dammböschung abgeleitet, wo es durch die belebte Oberbodenzone versickern kann.

Wasser, das nicht versickert, fließt breitflächig dem parallel verlaufenden Armutsgraben zu (Einleitungsstelle E 6).

Eine signifikante Erhöhung der Abflussmengen liegt nicht vor, da keine Vergrößerung der Fahrbahnflächen geplant ist.

4.1.11 Entwässerungsabschnitt 11

<u>Teilabschnitt der Anschlussstelle / gemeinsame Führung der Fahrbeziehungen/</u> Bau-km 0+580 bis Überführungsbauwerk

Der Teilabschnitt der Anschlussstelle weist eine Verkehrsbelastung von rund 3.040 Kfz/24h auf. Es liegt somit eine mittlere Flächenverschmutzung nach Tabelle A.3 des DWA-Merkblattes M 153 vor.

Das Entwässerungskonzept wird unverändert beibehalten.

Das anfallende, verschmutzte Straßenoberflächenwasser (rund 1.520 m² Fahrbahn und Brückenfläche) wird breitflächig über das Bankett in das anschließende Gelände geleitet, wo es durch die belebte Oberbodenzone versickern kann. Eine weiterführende Behandlung des anfallenden Wassers wird somit nicht erforderlich.

4.1.12 Entwässerungsabschnitt 12

<u>Teilabschnitt der Anschlussstelle / Fahrbeziehung Kolitzheim – Gerolzhofen,</u>
<u>Bau-km 0+200 bis Bau-km 0+250</u>

Der Teilabschnitt der Anschlussstelle weist lediglich eine Verkehrsbelastung von rund 190 Kfz/24h auf. Es liegt somit eine geringe Flächenverschmutzung nach Tabelle A.3 des DWA-Merkblattes M 153 vor.

Das Entwässerungskonzept wird unverändert beibehalten.

Das anfallende, verschmutzte Straßenoberflächenwasser (rund 310 m² Fahrbahnfläche) wird breitflächig über das Bankett in das anschließende Gelände geleitet, wo es durch die belebte Oberbodenzone versickern kann. Eine weiterführende Behandlung des anfallenden Wassers wird somit nicht erforderlich.

4.1.13 Entwässerungsabschnitt 13

<u>Teilabschnitt der Anschlussstelle / Fahrbeziehung Kolitzheim – Gerolzhofen,</u>
<u>Bau-km 0+250 bis Bau-km 0+375</u>

Der Teilabschnitt der Anschlussstelle weist lediglich eine Verkehrsbelastung von rund 190 Kfz/24h auf. Es liegt somit eine geringe Flächenverschmutzung nach Tabelle A.3 des DWA-Merkblattes M 153 vor.

Das Entwässerungskonzept wird unverändert beibehalten.

Das anfallende, verschmutzte Straßenoberflächenwasser (rund 760 m² Fahrbahnfläche) wird breitflächig über das Bankett in die angrenzende Dammböschung abgeleitet, wo es durch die belebte Oberbodenzone versickern kann. Zusätzlich erfolgt die Versickerung von verschmutztem Straßenoberflächenwasser im anschließenden Dammfußgraben.

Wasser, das nicht versickert, wird über o. g. Dammfußgraben dem Brückenwasengraben zugeführt (Einleitungsstelle E 7).

Eine signifikante Erhöhung der Abflussmengen liegt nicht vor, da keine Vergrößerung der Fahrbahnflächen geplant ist.

4.1.14 Entwässerungsabschnitt 14

<u>Teilabschnitt der Anschlussstelle / Fahrbeziehung Kolitzheim – Gerolzhofen,</u> <u>Bau-km 0+375 bis Bau-km 0+435</u>

Der Teilabschnitt der Anschlussstelle weist lediglich eine Verkehrsbelastung von rund 190 Kfz/24h auf. Es liegt somit eine geringe Flächenverschmutzung nach Tabelle A.3 des DWA-Merkblattes M 153 vor.

Das Entwässerungskonzept wird unverändert beibehalten.

Das anfallende, verschmutzte Straßenoberflächenwasser (rund 340 m² Fahrbahnfläche) wird breitflächig über das Bankett in das anschließende Gelände innerhalb der Anschlussstelle geleitet, wo es durch die belebte Oberbodenzone versickern kann. Eine weiterführende Behandlung des anfallenden Wassers wird somit nicht erforderlich.

4.1.15 Entwässerungsabschnitt 15

B 286, Bau-km 2+845 bis 0+210 (Abschnitt 3)

Von Bau-km 2+845 des Bauabschnittes 2 bis Bau-km 0+210 des Bauabschnittes 3 verläuft die Fahrbahn der B 286 in leichter Dammlage. Zur Gewährleistung von Mindestlängsneigungen für die geplanten Rohrleitungen wird die neue Fahrbahn in diesem Bereich um bis zu 0,4 m gegenüber dem Bestand angehoben. Das anfallende, verschmutzte Straßenoberflächenwasser wird über Muldenabläufe, Sickerleitungen und Transportleitungen der Regenrückhalteanlage bei Bau-km 2+940 zugeführt. Vor Einleitung in den Armutsgraben wird das Wasser hier in zwei Sedimentationsanlagen gereinigt, in einer unterirdischen Füllkörperrigole gesammelt, in einem Auslaufschacht mit Wirbeldrossel gedrosselt und anschließend dem Vorfluter zugeführt (Einleitungsstelle E 8).

In den Entwässerungsabschnitt werden zusätzlich Teile des verschmutzten Straßenoberflächenwassers des Überführungsbauwerks der Anschlussstelle "AS Unterspiesheim (B 286 / St 2271)" über die B 286 eingeleitet.

Die geplante Regenbehandlungs-/Regenrückhalteanlage ist in Unterlage 18.3, Blatt 3, "Längsschnitt Regenbehandlungs-/Regenrückhalteanlage 3" dargestellt.

4.1.16 Entwässerungsabschnitt 16

Überführung der Staatsstraße St 2271 bei Bau-km 0+376, Ostseite

Im Zuge der Erneuerung des Überführungsbauwerkes wird die vorhandene Staatsstraße St 2271 um bis zu ca. 0,4 m angehoben und an gleicher Stelle wieder hergestellt.

Die Staatsstraße weist im betroffenen Abschnitt eine Verkehrsbelastung von rund 2.000 Kfz/24h auf. Es liegt somit eine mittlere Flächenverschmutzung nach Tabelle A.3 des DWA-Merkblattes M 153 vor.

Das Entwässerungskonzept wird unverändert beibehalten.

Das anfallende, verschmutzte Straßenoberflächenwasser (rund 1.480 m² Fahrbahnfläche) wird breitflächig über das Bankett in die angrenzende Dammböschung abgeleitet, wo es durch die belebte Oberbodenzone versickern kann. Zusätzlich erfolgt die Versickerung von verschmutztem Straßenoberflächenwasser im anschließenden Dammfußgraben.

Wasser, das nicht versickert, wird über o. g. Dammfußgraben dem Graben zum Heidenfelder Mühlbach zugeführt (Einleitungsstelle E 9).

Die Vergrößerung der Abflussmengen durch die Querschnittsaufweitung im unmittelbaren Brückenbereich ist vernachlässigbar.

4.1.17 Entwässerungsabschnitt 17

Überführung der Staatsstraße St 2271 bei Bau-km 0+376; Westseite

Im Zuge der Erneuerung des Überführungsbauwerkes wird die vorhandene Staatsstraße St 2271 um bis zu ca. 0,4 m angehoben und an gleicher Stelle wieder hergestellt.

Die Staatsstraße weist im betroffenen Abschnitt eine Verkehrsbelastung von rund 2.000 Kfz/24h auf. Es liegt somit eine mittlere Flächenverschmutzung nach Tabelle A.3 des DWA-Merkblattes M 153 vor.

Das Entwässerungskonzept wird unverändert beibehalten.

Das anfallende, verschmutzte Straßenoberflächenwasser (rund 930 m² Fahrbahnfläche) wird breitflächig über das Bankett in die angrenzende Dammböschung abgeleitet, wo es durch die belebte Oberbodenzone versickern kann. Zusätzlich erfolgt die Versickerung von verschmutztem Straßenoberflächenwasser im anschließenden Dammfußgraben. Wasser, das nicht versickert, wird über o. g. Dammfußgraben dem bestehenden Mulden- und Grabensystem in Richtung des Grabens zum Heidenfelder Mühlbach zugeführt (Einleitungsstelle E 10).

Die Vergrößerung der Abflussmengen durch die Querschnittsaufweitung im unmittelbaren Brückenbereich ist vernachlässigbar.

4.1.18 Entwässerungsabschnitt 18

Überführung der GVS Unterspiesheim - Grettstadt bei Bau-km 2+357, Ostseite

Im Zuge der Erneuerung des Überführungsbauwerkes wird die vorhandene Gemeindeverbindungstraße Unterspiesheim – Grettstadt um bis zu ca. 1,1 m angehoben und an gleicher Stelle wieder hergestellt.

Die Gemeindeverbindungsstraße weist im betroffenen Abschnitt eine Verkehrsbelastung von rund 800 Kfz/24h auf. Es liegt somit eine mittlere Flächenverschmutzung nach Tabelle A.3 des DWA-Merkblattes M 153 vor.

Das Entwässerungskonzept wird unverändert beibehalten.

Das anfallende, verschmutzte Straßenoberflächenwasser (rund 850 m² Fahrbahnfläche) wird breitflächig über das Bankett in die angrenzende Dammböschung abgeleitet, wo es durch die belebte Oberbodenzone versickern kann.

Zusätzlich erfolgt die Versickerung von verschmutztem Straßenoberflächenwasser im anschließenden Dammfußgraben.

Wasser, das nicht versickert, wird über o. g. Dammfußgraben dem Armutsgraben zugeführt (Einleitungsstelle E 11).

Eine signifikante Erhöhung der Abflussmengen liegt nicht vor, da keine Vergrößerung der Fahrbahnflächen geplant ist.

4.1.19 Entwässerungsabschnitt 19

Überführung der GVS Unterspiesheim - Grettstadt bei Bau-km 2+357, Westseite

Im Zuge der Erneuerung des Überführungsbauwerkes wird die vorhandene Gemeindeverbindungstraße Unterspiesheim – Grettstadt um bis zu ca. 1,1 m angehoben und an gleicher Stelle wieder hergestellt.

Die Gemeindeverbindungsstraße weist im betroffenen Abschnitt eine Verkehrsbelastung von rund 800 Kfz/24h auf. Es liegt somit eine mittlere Flächenverschmutzung nach Tabelle A.3 des DWA-Merkblattes M 153 vor.

Das Entwässerungskonzept wird unverändert beibehalten.

Das anfallende, verschmutzte Straßenoberflächenwasser (rund 920 m² Fahrbahn und Brückenfläche) wird breitflächig über das Bankett in die angrenzende Dammböschung abgeleitet, wo es durch die belebte Oberbodenzone versickern kann. Zusätzlich erfolgt die Versickerung von verschmutztem Straßenoberflächenwasser im anschließenden Dammfußgraben.

Wasser, das nicht versickert, wird über o. g. Dammfußgraben in Richtung Armutsgraben geleitet (Einleitungsstelle E 12).

Eine signifikante Erhöhung der Abflussmengen liegt nicht vor, da keine Vergrößerung der Fahrbahnflächen geplant ist.

5 Ermittlung des Regenabflusses mit wasserwirtschaftlichen Nachweisen

5.1 Bemessungsregenspende und Regenhäufigkeit

Grundlage für alle weiteren Berechnungen sind die Regenspenden gemäß Angaben des Deutschen Wetterdienstes, Abteilung Hydrometeorologie KOSTRA-DWD 2010R für den Planungsraum (Niederschlagshöhen und –spenden für Schwebheim, Zeitspanne: Januar – Dezember, Rasterfeld: Spalte 37, Zeile 68).

Für die Bemessung der Streckenentwässerung sowie der Behandlungsanlagen ist eine Regenhäufigkeit n $_{[1/a]}$ = 1 anzusetzen. Die maßgebliche Regenspende ergibt sich demnach zu $r_{15;1}$ = 112,2 l/(s x ha).

Die Bemessung der Behandlungsanlagen ist aus Ziffer 5 ersichtlich.

In Abstimmung mit dem Wasserwirtschaftsamt Bad Kissingen wird für die Bemessung der Rückhaltevolumina, aufgrund der Lage der Bundesstraße im Außerortsbereich, ein 2-jähriges Regenereignis (n $_{[1/a]} = 0.5$) zu Grunde gelegt.

Als Bemessungsverfahren findet das einfache Verfahren nach Arbeitsblatt DWA-A 117 Verwendung. Unter Zuhilfenahme der Regenspenden für die Bemessungshäufigkeit n = 0,5 wird anhand ausgewählter Dauerstufen das (maximal) erforderliche Rückhaltevolumen bestimmt.

Die detaillierte Bestimmung der erforderlichen Volumina für die Rückhalteanlagen ist aus Ziffer 5.3 ersichtlich.

5.2 Abflussbeiwerte

Angaben gem. RAS-Ew Ausgabe 2005, Ziffer 1.3.1:

Art der Fläche	Abflu	ussbeiwert
Fahrbahnen	ψ=	0,9
Bankett Schotterbefestigung	ψ=	0,6
Sonstige befestigte horizontale Flächen (je nach Art der Befestigung)	ψ=	0,6 - 0,9
Unbewachsene Felsböschungen aus gering geklüfteten Festgesteinen	ψ=	0,8

Spezifische Versickerraten gemäß Abstimmung mit WWA Bad Kissingen:

Böschungen	q _s = 150 l/s*ha
bewachsene Flächen im Straßenbereich	q _s = 150 l/s*ha
Rasenmulden	$q_s = 150 \text{ l/s*ha}$

5.3 Abflussmengen und wasserwirtschaftliche Nachweise

 $Q = r_{T,n} \times \Sigma A_E \times \psi_S$

Q [I/s] = Oberflächenabfluss

 $r_{T,n}$ [l/s×ha]= Regenspende

A_E [ha] = Größe der Einzugsfläche

 ψ_s [-] = zu A_E gehörender Abflussbeiwert

 $A_{red} = A_U [ha] = A_E \times \psi_s (undurchlässige Fläche)$

5.3.1 Entwässerungsabschnitt 1

Bei der Bemessungs-Regenspende r_{15,1} fallen folgende Wassermengen an:

Ermittlung der Wassermengen	nach RAS-Ew Ausgabe 2005, Abschnitt 1.3.2
-----------------------------	---

|--|

lfd. Nr.	Art	von	bis	Länge	Breite	Fläche	Abflußbei-	reduzierte		
		Bau-km	Bau-km				w ert	Fläche	spezifische	Wasser-
									Versickerrate	menge
				L	В	Α	Ψ	Α	q_s	Q
				[m]	[m]	[ha]		[ha]	I/(s*ha)	[l/s]
1	Fahrbahn					0,028	0,9	0,025		2,8
2	Bankett					0,004	0,6	0,002		0,3
						0,032		0,028	Summe:	3,1

Das verschmutzte Straßenoberflächenwasser versickert durch die belebte Oberbodenzone des angrenzenden Geländes. Die hierfür zur Verfügung stehende Fläche beträgt rund 290 m² und ist somit ausreichend groß. Der Abstand zwischen Fahrbahnoberfläche und mittlerem Grundwasserstand liegt über 2 m.

Grundlagen:

Vorfluter: Grundwasser (G 12)

Verkehrsbelastung: DTV₂₀₃₀= 15.900 Kfz/24h (F 6)

Der qualitative Nachweis nach DWA-Merkblatt M 153 ergibt sich wie folgt:

		100 100 100 100	00 000 20	0. 10				
939 Sh 707402 XVIII 200220000 NO	An acceptance on a	Qualitative G					vii = vG	August der Gestellen Jacobs der Beite
Projekt: B 286, An	MED LIMITON WITH AND ACCOUNTS		GSENTWL	JRF		1		25,03,2020
Gewässer (Anhang	5 18					Тур		erpunkte G
Entwässerungsabsc	chnitt 1 - Grundwass	er				G 12	G =	10
Flächenanteile f _i (Ka	ap. 4)		Luft L _i (1	Гаь. А.2)	Flächen F	(Tab. A.3)	Abflus	sbelastung B _i
Flächen	A _u in ha	f _i n. Gl.(4.2)	Тур	Punkte	Тур	Punkte	Bį	= f _i · (L _i +F _i)
ahrbahn	0,025	0,926	L 1	1	F 6	35		33,33
Bankett	0,002	0,074	L1	1	F 6	35		2,67
			L		F			
			L		F			
			L		F			
			L		F			
	Σ = 0,028	Σ = 1		Abfluss	belastung B	= Summe (B _i) :	B =	36
maximal zulässiger D)urchgangswert D	= G/B		3 1000000			D _{max} =	0,28
vorgesehene Beha			A 4b und	A 4c)		Тур		angswerte D;
Versickerung durch	<u>500</u>					D 2a		0.2
						D		
						D		
		ъ. т.	i F	S D 114	- B - C - 1		D-	0,2
		Durcng	angswert L) = Produkt	•	ne Kap 6.2.2) :	D=	
					Emissions	wert E= B · D	E=	7,2

Die ermittelte Abflussbelastung von B = 36,0 ist größer als die Gewässerpunkte G = 10 des Vorfluters. Eine Regenwasserbehandlung ist erforderlich. Diese erfolgt mittels Versickerung durch die vorhandene belebte Oberbodenzone. Für den qualitativen Nachweis wurde eine 20 cm dicke Oberbodenschicht angenommen. Im Allgemeinen sind die vorhandenen Oberbodenschichten dicker, sodass diese Annahme als Ansatz zur sicheren Seite hin angesehen werden kann. Schädliche Auswirkungen auf den Vorfluter Grundwasser können somit ausgeschlossen werden.

5.3.2 Entwässerungsabschnitt 2

Bei der Bemessungs-Regenspende r_{15.1} fallen folgende Wassermengen an:

Ermittlung der Wassermengen	nach RAS-Ew Ausgabe 2005, Abschnitt 1.3.2			
Dh v		1		
Regenhäufigkeit	n =1	r _{15(n=1)} =	112,2 l/s*ha	

lfd. Nr.	Art	von	bis	Länge	Breite	Fläche	Abflußbei-	reduzierte		
		Bau-km	Bau-km				w ert	Fläche	spezifische	Wasser-
									Versickerrate	menge
				L	В	Α	Ψ	Α	q _s	Q
				[m]	[m]	[ha]		[ha]	I/(s*ha)	[l/s]
1	Fahrbahn					0,004	0,9	0,004		0,4
2	Bankett					0,004	0,6	0,002		0,3
						0,008		0,006	Summe:	0,7

Das verschmutzte Straßenoberflächenwasser versickert durch die belebte Oberbodenzone des angrenzenden Geländes. Die hierfür zur Verfügung stehende Fläche beträgt rund 540 m² und ist somit ausreichend groß. Der Abstand zwischen Fahrbahnoberfläche und mittlerem Grundwasserstand liegt über 2 m.

Grundlagen:

Vorfluter: Grundwasser (G 12)

Verkehrsbelastung: DTV₂₀₃₀= 15.900 Kfz/24h (F 6)

Der qualitative Nachweis nach DWA-Merkblatt M 153 ergibt sich wie folgt:

	Ingenieuraktiengese	z amborg						
		Qualitative G	iewässerb	elastung				
Projekt: B 286, A	nbau ÜFS Abschn. 2	- FESTSTELLUNG	GSENTWL	JRF			Datum	25.03.2020
Gewässer (Anhang A, Tabelle A.1a und A.1b) Typ								erpunkte G
Entwässerungsabschnitt 2 - Grundwasser G 12								10
Flächenanteile f _i (K	ap. 4)		Luft L _i (1	Гаь. А.2)	Flächen	F _i (Tab. A.3)	Abflu	ssbelastung B _i
Flächen	A _u in ha	f; n. Gl.(4.2)	Тур	Punkte	Тур	Punkte	Bi	$_{i} = f_{i} \cdot (L_{i} + F_{i})$
Fahrbahn	0,004	0,667	L 1	1	F 6	35		24
Bankett	0,002	0,333	L1	1	F 6	35		12
			L		F			
			L		F			
			L		F			
			L		F			
	Σ = 0,006	Σ = 1		Abfluss	_l belastung B	= Summe (B _i) :	B =	36
maximal zulässiger l	Durchgangswert D _m	= G/B		3 100000			D _{max} =	0,28
	andlungsmaßnahme		A.4b und	A.4c)		Тур		gangswerte D;
Versickerung durch	n 20 cm bewachsene	n Oberboden				D 2a		0,2
2001						D		
						D		
		Durcha	angswert D) = Produkt	aller D; (siel	he Kap 6.2.2) :	D =	0,2
					A 575	swert E= B · D	E=	7,2
D:	Regenwasserbehand		F 70.0	10		_	_	

Die ermittelte Abflussbelastung von B=36,0 ist größer als die Gewässerpunkte G=10 des Vorfluters. Eine Regenwasserbehandlung ist erforderlich. Diese erfolgt mittels Versickerung durch die vorhandene belebte Oberbodenzone. Für den qualitativen Nachweis wurde eine 20 cm dicke Oberbodenschicht angenommen. Im Allgemeinen sind die vorhandenen Oberbodenschichten dicker, sodass diese Annahme als Ansatz zur sicheren Seite hin angesehen werden kann. Schädliche Auswirkungen auf den Vorfluter Grundwasser können somit ausgeschlossen werden.

5.3.3 Entwässerungsabschnitt 3

5.3.3.1 Wassermengenermittlung

Bei der Bemessungs-Regenspende r_{15.1} fallen folgende Wassermengen an:

Reger	nhäufigkeit					n =1	r _{15(n=1)} =	112,2	l/s*ha	
lfd. Nr.	Art	von	bis	Länge	Breite	Fläche	Abflußbei-	reduzierte	I	
		Bau-km	Bau-km				w ert	Fläche	spezifische Versickerrate	Wasser- menge
				L	В	Α	Ψ	Α	q_s	Q
				[m]	[m]	[ha]		[ha]	l/(s*ha)	[l/s]
1	Fahrbahn					1,715	0,9	1,544		173,
2	Brückenbereich St 2271					0,131	0,9	0,118		13,
3	Bankett					0,225	0,6	0,135		15,
4	Rasenmulde					0,300		0,300	150	-11,
	•					2,371		2,096	Summe:	190,

Berechnung von A_{red}

nach RAS-Ew Ausgabe 2005, Abschnitt 1.3.3

$$A_{red} = \frac{Q[l/s]}{r[l/(s^*ha)]} \frac{190,2}{112,2}$$

$$A_{red} = 1,695$$
 ha

5.3.3.2 Bagatellgrenzenüberprüfung "Qualitativ"

Grundlagen:

Vorfluter: Graben zum Heidenfelder Mühlbach (G 6)

Verkehrsbelastung: DTV₂₀₃₀= 15.900 Kfz/24h (F 6)

Einleitungsstelle	Kriterium r	nach M153 I	Punkt 6.1	Es kann von einer Regenwasserbehandlung
	Seite 15 erfüllt ?			abgesehen werden, wenn gleichzeitig alle drei
				<u>Bedingungen</u> eingehalten werden
	Α	В	С	
E1	Ja	Nein	Nein	Qualitative Behandlung notwendig

5.3.3.3 Bagatellgrenzenüberprüfung "Quantitativ"

Einleitungsstelle	Kriterium ı	nach M153 I	Punkt 6.1	Es kann auf die Schaffung von Rückhalteräu-
	Seite 15 erfüllt ?			men verzichtet werden ,wenn mindestens eine
				der drei Bedingungen eingehalten wird
	D	FF		
	D	_	Г	
E1	Nein	Nein	Nein	Rückhalteraum notwendig

5.3.3.4 Qualitative Gewässerbelastung

Mit Hilfe des Bewertungsverfahrens nach dem Merkblatt DWA-M 153 wird überprüft, ob das Schutzbedürfnis des Vorfluters so groß ist, das Behandlungsmaßnahmen vor Einleitung in diesen erforderlich sind. Ist dies der Fall, so kann die erforderliche Qualität der geplanten Behandlungsmaßnahme abgeschätzt und auf den jeweiligen Vorfluter abgestimmt werden. Im Bewertungsverfahren werden die Flächen mit unterschiedlicher Verschmutzung des Regenwassers bestimmten Flächentypen (F1 bis F7) zugewiesen. Grundsätzlich dürfen nur vier benachbarte Flächentypen miteinander kombiniert werden, um bei der Ermittlung der Behandlungsbedürftigkeit eine unerwünschte Verdünnung des belasteten Regenwassers durch Abfluss von weniger stark belasteten Flächen zu vermeiden.

Die Fahrbahnflächen der B 286 werden aufgrund der zukünftigen Verkehrsbelastung (> 15.000 Kfz/24 h) dem Flächentyp F 6 (starke Flächenverschmutzung) zugeordnet. Lediglich im Bereich der Anschlussstelle und des Abschnittes 3 liegen Verkehrsbelastungen < 15.000 Kfz/24 h vor, so dass hier der Flächentyp F5 (mittlere Flächenverschmutzung) Anwendung finden kann. Auch die Bankett- und Muldenflächen zu beiden Seiten sind, aufgrund ihrer Lage im Spritz- und Sprühfahnenbereich (Abstand < 3 m), jeweils dem gleichen Flächentyp zuzuordnen.

Der geplante Abschnitt befindet sich außerhalb von Siedlungen und ist somit nach Tabelle A.2 (Einflüsse aus der Luft) des Merkblattes DWA-M 153 als Typ L1 einzustufen.

Anbau Überholfahrstreifen, Abschnitt 2 nördlich Unterspiesheim – Feststellungsentwurf

Der qualitative Nachweis nach DWA-Merkblatt M 153 ergibt sich demnach wie folgt:

Gewässer (Tabellen A, 1a und A, 1b)	Тур	Gewässerpunkte G
Fließgewässer (1a) kleiner Flachlandbach (bSp < 1 m; v < 0,3 m/s)	G6	G = 15

Flächenar (Abschni		Luft Li Flächen Fi (Tabelle A.2) (Tabelle A.3)		SECOND DESIGN	Abflussbelastung Bi	
A _{u,i}	f,	Тур	Punkte	Тур	Punkte	$B_i = f_i \times (L_i + F_i)$
1,577	0,93	L1	1	F6	35	33,49
0,118	0,07	L1	1	F4	19	1,39
Σ = 1,695	=1			Abflussbe	elastung $B = \Sigma$ Bi:	34,89

Regenwasserbehandlung erforderlich, da B > G

maximal zulässiger Durchgangswert D _{max} = G / B:	maximal zulässiger Durchgangswert D _{max} = G / B:						
vorgesehene Behandlungsmaßnahmen (Tabellen A.4a, A.4b und A.4c)	Тур	Durchgangswerte Di					
3 Sedimentationsanlagen 600/22	D25	0,42					
Durchgangswert D = Produkt aller D	(Abschnitt 6.2.2):	D = 0,42					
Emission	E = 34,89 x 0,42 = 14,65						
Emissionswert E = B x D: (E = 14,65) < (G =	15)						

Die ermittelte Abflussbelastung von B = 34,9 ist größer als die Gewässerpunkte G = 15 des Vorfluters. Eine Regenwasserbehandlung ist erforderlich. Es werden für eine Regenabflussspende von r_{krit} = 96,52 l/s(ha) drei unterirdische Sedimentationsanlagen mit einer Länge von je 22 m und einem Rohrdurchmesser von 600 mm vorgesehen.

5.3.4 Entwässerungsabschnitt 4

5.3.4.1 Wassermengenermittlung

Bei der Bemessungs-Regenspende r_{15.1} fallen folgende Wassermengen an:

Rege	nhäufigkeit					n =1	r _{15(n=1)} =	112,2	l/s*ha	
lfd. Nr.	Art	von Bau-km	bis Bau-km	Länge	Breite	Fläche	Abflußbei- w ert	reduzierte Fläche	spezifische Versickerrate	Wasser- menge
				L	В	А	Ψ	Α	q_s	Q
				[m]	[m]	[ha]		[ha]	l/(s*ha)	[l/s]
1	Fahrbahn mit Nothaltbuchten					1,561	0,9	1,405		157
2	Brückenbereich GVS					0,009	0,9	0,008		(
3	Bankett links					0,209	0,6	0,125		1-
4	Rasenmulde					0,275		0,275	150	-1
	•		•			2,054		1,813	Summe:	162

Berechnung von A_{red}

nach RAS-Ew Ausgabe 2005, Abschnitt 1.3.3

$$A_{red} = \frac{Q[Vs]}{r[I/(s*ha)]} \frac{162,2}{112,2}$$

 $A_{red} = 1,446$ ha

5.3.4.2 Bagatellgrenzenüberprüfung "Qualitativ"

Grundlagen:

Vorfluter: Armutsgraben (G 6)

Verkehrsbelastung: DTV₂₀₃₀= 15.900 Kfz/24h (F 6)

Einleitungsstelle	Kriterium r	nach M153 I	Punkt 6.1	Es kann von einer Regenwasserbehandlung
	Se	ite 15 erfüllt	?	abgesehen werden, wenn gleichzeitig alle drei
				<u>Bedingungen</u> eingehalten werden
	Α	В	С	
E2	Ja	Nein	Nein	Qualitative Behandlung notwendig

5.3.4.3 Bagatellgrenzenüberprüfung "Quantitativ"

Einleitungsstelle	Kriterium ı	nach M153 I	Punkt 6.1	Es kann auf die Schaffung von Rückhalteräu-
	Seite 15 erfüllt ?			men verzichtet werden ,wenn mindestens eine
				der drei Bedingungen eingehalten wird
	D	FF		
		1	•	
E2	Nein	Nein	Nein	Rückhalteraum notwendig

5.3.4.4 Qualitative Gewässerbelastung

Der qualitative Nachweis nach DWA-Merkblatt M 153 ergibt sich demnach wie folgt:

Gew ässer (Tabellen A, 1a und A, 1b)	Тур	Gewässerpunkte G
Fließgewässer (1a) kleiner Flachlandbach (bSp < 1 m; v < 0,3 m/s)	G6	G = 15

Flächenar (Abschn		WOODS.	ft Li lle A.2)	20,000,000,000	nen Fi lle A.3)	Abflussbelastung Bi
A _{u,i}	fi	Тур	Punkte	Тур	Punkte	$B_i = f_i \times (L_i + F_i)$
1,438	0,99	L1	1	F6	35	35,80
0,008	0,01	L1	1	F4	19	0,11
			5			
Σ = 1,446	=1			Abflussbe	elastung B=Σ Bi:	35,91

Regenwasserbehandlung erforderlich, da B > G

maximal zulässiger Durchgangswert D _{max} = G / B:		D(max) = 0,42
vorgesehene Behandlungsmaßnahmen (Tabellen A.4a, A.4b und A.4c)	Тур	Durchgangswerte Di
3 Sedimentationsanlagen 600/20	D25	0,41
Durchgangswert D = Produkt aller D	(Abschnitt 6.2.2):	D = 0,41
Emissio	nswert E = B x D:	E = 35,91 x 0,41 = 14,72
Emissionswert E = B x D: (E = 14,72) < (G =	15)	

Die ermittelte Abflussbelastung von B = 35,9 ist größer als die Gewässerpunkte G = 15 des Vorfluters. Eine Regenwasserbehandlung ist erforderlich. Es werden für eine Regenabflussspende von r_{krit} = 98,76 l/s(ha) drei unterirdische Sedimentationsanlagen mit einer Länge von je 20 m und einem Rohrdurchmesser von 600 mm vorgesehen.

5.3.5 Entwässerungsabschnitt 5

Bei der Bemessungs-Regenspende r_{15,1} fallen folgende Wassermengen an:

Ermittlung	g der Wassermeng	jen nach RAS-l	Ew Ausgabe	2005, Ab	schnitt 1.	3.2				
Regenhäufigk	eit					n =1	r _{15(n=1)} =	112,2	l/s*ha	
							•			
lfd. Nr.	Art	von Bau-km	bis Bau-km	Länge	Breite	Fläche	Abflußbei- w ert	reduzierte Fläche	spezifische	Wasser-

lfd. Nr.	Art	von	bis	Länge	Breite	Fläche	Abflußbei-	reduzierte		
		Bau-km	Bau-km				w ert	Fläche	spezifische	Wasser-
									Versickerrate	menge
				L	В	Α	Ψ	Α	q_s	Q
				[m]	[m]	[ha]		[ha]	l/(s*ha)	[l/s]
1	Fahrbahn Rampe					0,080	0,9	0,072		8,1
2	Bankett					0,016	0,6	0,010		1,1
3	Seitenbereiche					0,042		0,042	150	-1,6
						0,138		0,124	Summe:	7,6

Wie unter Ziffer 4.1.5 beschrieben, wird das Entwässerungskonzept unverändert beibehalten.

Das anfallende, verschmutzte Straßenoberflächenwasser (rund 800 m² Fahrbahnfläche) wird breitflächig über das Bankett in die angrenzende Dammböschung abgeleitet, wo es durch die belebte Oberbodenzone versickern kann. Zusätzlich erfolgt die Versickerung von verschmutztem Straßenoberflächenwasser im anschließenden Dammfußgraben.

Wasser, das nicht versickert, wird über o. g. Dammfußgraben dem Armutsgraben zugeführt (Einleitungsstelle E 3).

Grundlagen:

Vorfluter: Armutsgraben (G 6)

Verkehrsbelastung: DTV₂₀₃₀= 2.880 Kfz/24h (F 4)

Eine signifikante Erhöhung der Abflussmengen liegt nicht vor, da keine Vergrößerung der Fahrbahnflächen geplant ist.

Die bei der Bemessung verwendeten spezifischen Versickerraten stellen tendenziell einen Ansatz zur sicheren Seite hin dar. In der Praxis stellt sich im Allgemeinen eine noch höhere Versickerung ein, sodass der Vorfluter im Bemessungsfall noch kleinere Wassermengen aufnehmen muss.

Das bestehende Entwässerungssystem ist in jedem Fall in der Lage, die anfallenden Wassermengen unbeschadet aufzunehmen und abzuleiten.

Ergänzend sei darauf hingewiesen, dass die fehlende Rückhaltung durch einen 10 %-igen Zuschlag bei der Volumenermittlung für die Kunststoff-Füllkörper aller Regenrückhalteanlagen (vgl. Ziffer 6) ausgeglichen wird.

5.3.6 Entwässerungsabschnitt 6

Bei der Bemessungs-Regenspende r_{15.1} fallen folgende Wassermengen an:

Ermittlung der Wassermengen	nach RAS-Ew Ausgabe 2005, Abschnitt 1.3.2		
Regenhäufigkeit	n =1	r _{15(n=1)} =	112,2 l/s*ha

lfd. Nr.	Art	von	bis	Länge	Breite	Fläche	Abflußbei-	reduzierte		
		Bau-km	Bau-km				w ert	Fläche	spezifische	Wasser-
									Versickerrate	menge
				L	В	Α	Ψ	Α	q_s	Q
				[m]	[m]	[ha]		[ha]	I/(s*ha)	[l/s]
1	Fahrbahn Rampe					0,073	0,9	0,066		7,4
2	Bankett					0,013	0,6	0,008		0,9
3	Rasenmulde					0,025		0,025	150	-0,9
						0,111		0,099	Summe:	7,3

Wie unter Ziffer 4.1.6 beschrieben, wird das Entwässerungskonzept unverändert beibehalten.

Das anfallende, verschmutzte Straßenoberflächenwasser (rund 730 m² Fahrbahnfläche) wird breitflächig über das Bankett in die angrenzende Rasenmulde abgeleitet, wo es durch die belebte Oberbodenzone versickern kann. Ein Anschluss an die Behandlungs-/ Rückhalteanlage 3 bei Bau-km 2+940 ist aufgrund der Höhenverhältnisse nicht möglich.

Wasser, das nicht versickert, wird über Muldenabläufe, Mehrzweckrohrleitungen sowie einen Querdurchlass bei Bau-km 2+838 dem Armutsgraben zugeführt (Einleitungsstelle E 4).

Grundlagen:

Vorfluter: Armutsgraben (G 6)

Verkehrsbelastung: DTV₂₀₃₀= 170 Kfz/24h (F 3)

Eine signifikante Erhöhung der Abflussmengen liegt nicht vor, da keine Vergrößerung der Fahrbahnflächen geplant ist.

Die bei der Bemessung verwendeten spezifischen Versickerraten stellen tendenziell einen Ansatz zur sicheren Seite hin dar. In der Praxis stellt sich im Allgemeinen eine noch höhere Versickerung ein. Das bestehende Entwässerungssystem ist in jedem Fall in der Lage, die anfallenden Wassermengen unbeschadet aufzunehmen und abzuleiten.

Ergänzend sei darauf hingewiesen, dass die fehlende Rückhaltung durch einen 10 %-igen Zuschlag bei der Volumenermittlung für die Kunststoff-Füllkörper aller Regenrückhalteanlagen (vgl. Ziffer 6) ausgeglichen wird.

5.3.7 Entwässerungsabschnitt 7

Bei der Bemessungs-Regenspende $r_{15,1}$ fallen folgende Wassermengen an:

Erm	ittlung der Wassermengen	nach RAS-l	Ew Ausgabe	2005, Ab	schnitt 1	.3.2				
Rege	nhäufigkeit					n =1	r _{15(n=1)} =	112,2	l/s*ha	
lfd. Nr	. Art	von	bis	Länge	Breite	Fläche	Abflußbei-	reduzierte		
		Bau-km	Bau-km				w ert	Fläche	spezifische Versickerrate	Wasser- menge
				L	В	Α	Ψ	Α	q_s	Q
				[m]	[m]	[ha]		[ha]	l/(s*ha)	[l/s]
1	Fahrbahn Rampe					0,219	0,9	0,197		2:
2	Bankett					0,029	0,6	0,017		
	•	•				0,248	1	0,215	Summe:	24

Wie unter Ziffer 4.1.7 beschrieben, wird das Entwässerungskonzept unverändert beibehalten.

Das verschmutzte Straßenoberflächenwasser versickert durch die belebte Oberbodenzone des angrenzenden Geländes innerhalb der Anschlussstelle. Die hierfür zur Verfügung stehende Fläche beträgt rund 10.650 m² und ist somit ausreichend groß. Der Abstand zwischen Fahrbahnoberfläche und mittlerem Grundwasserstand liegt durchgehend über 4 m.

Grundlagen:

Vorfluter: Grundwasser (G 12)

Verkehrsbelastung: DTV₂₀₃₀= 3.050 Kfz/24h (F 4)

Der qualitative Nachweis nach DWA-Merkblatt M 153 ergibt sich wie folgt:

	Ingenieuraktiengese							
		Qualitative G	iewässerb	elastung				
Projekt: B 286, A	nbau ÜFS Abschn. 2	- FESTSTELLUNG	GSENTWL	JRF			Datum :	25.03.2020
Gewässer (Anhan	g A, Tabelle A.1a un	d A.1b)				Тур	Gewäss	erpunkte G
Entwässerungsabs	chnitt 7 - Grundwass	er				G 12	G =	10
Flächenanteile f _i (K	.ap. 4)		Luft L _i (1	Гаь. А.2)	Flächen	F _i (Tab. A.3)	Abflu:	ssbelastung B _i
Flächen	Bi	$= f_i \cdot (L_i + F_i)$						
Fahrbahn	0,197	0,921	L 1	1	F 4	19		18,41
Bankett	0,017	0,079	L1	1	F 4	19		1,59
			L		F			
			L		F			
			L		F			
			L		F			
	Σ = 0,214	$\Sigma = 1$		Abfluss	belastung B	= Summe (B _i) :	B =	20
maximal zulässiger	Durchgangswert D _m	_{av} = G/B	1	pa Meccedeaus		-	D _{max} =	0,5
	andlungsmaßnahme		A.4b und	A.4c)		Тур		jangswerte D;
Versickerung durch	n 20 cm bewachsene	n Oberboden		U026		D 2a		0,2
						D		
						D		
		Durchg	angswert [) = Produkt	aller D; (sie	he Kap 6.2.2) :	D=	0,2
					Emission	swert E= B · D	E=	4
Die vorgesehens 5	Regenwasserbehand	una raicht aus da	E = 1 / C :	- 10				-

Die ermittelte Abflussbelastung von B=20,0 ist größer als die Gewässerpunkte G=10 des Vorfluters. Eine Regenwasserbehandlung ist erforderlich. Es wird deshalb eine Versickerung durch 20 cm dicken Oberboden vorgesehen. Schädliche Auswirkungen auf den Vorfluter Grundwasser können somit ausgeschlossen werden.

5.3.8 Entwässerungsabschnitt 8

Bei der Bemessungs-Regenspende r_{15.1} fallen folgende Wassermengen an:

Ermittlung der Wassermengen	nach RAS-Ew Ausgabe 2005, Abschnitt 1.3.2		
Regenhäufigkeit	n =1	r _{15(p-1)} =	112,2 l/s*ha
3 3		13(11=1)	,

lfd. Nr.	Art	von	bis	Länge	Breite	Fläche	Abflußbei-	reduzierte		
		Bau-km	Bau-km				w ert	Fläche	spezifische	Wasser-
									Versickerrate	menge
				L	В	Α	Ψ	Α	q _s	Q
				[m]	[m]	[ha]		[ha]	I/(s*ha)	[l/s]
1	Fahrbahn B 286					0,086	0,9	0,077		8,7
2	Bankett					0,016	0,6	0,010		1,1
						0,102		0,087	Summe:	9,8

Das verschmutzte Straßenoberflächenwasser versickert durch die belebte Oberbodenzone des angrenzenden Geländes innerhalb der Anschlussstelle. Die hierfür zur Verfügung stehende Fläche beträgt rund 1.600 m² und ist somit ausreichend groß. Der Abstand zwischen Fahrbahnoberfläche und mittlerem Grundwasserstand beträgt ca. 2 m.

Grundlagen:

Vorfluter: Grundwasser (G 12)

Verkehrsbelastung: DTV₂₀₃₀= 13.000 Kfz/24h (F 5)

Der qualitative Nachweis nach DWA-Merkblatt M 153 ergibt sich wie folgt:

	Ingenieuraktiengese	bambarg						
		Qualitative G	ewässerb	elastung				
Projekt: B 286, A	nbau ÜFS Abschn. 2	- FESTSTELLUNG	GSENTWL	JRF			Datum :	25.03.2020
Gewässer (Anhang	g A, Tabelle A.1a un	d A.1b)				Тур	Gewäss	erpunkte G
Entwässerungsabs	chnitt 8 - Grundwass	er				G 12	G =	10
Flächenanteile f _i (K	ap. 4)		Luft L _i (1	Гаь. А.2)	Flächen	F _i (Tab. A.3)	Abflu:	ssbelastung B _i
Flächen	A _u in ha	f; n. Gl.(4.2)	Тур	Punkte	Тур	Punkte	Bi	$= f_i \cdot (L_i + F_i)$
Fahrbahn	0,077	0,885	L 1	1	F 5	27		24,78
Bankett	0,01	0,115	L1	1	F 5	27		3,22
			L		F			
			L		F			
			L		F			
			L		F			
	Σ = 0,087	Σ = 1		Abfluss	belastung B	= Summe (B _i) :	B =	28
maximal zulässiger l	Durchgangswert D _m	_{av} = G/B	ı	13 NOTES		э Р	D _{max} =	0,36
	andlungsmaßnahme		A.4b und	A.4c)		Тур		jangswerte D;
Versickerung durch	n 20 cm bewachsene	n Oberboden		029		D 2a		0,2
WAR!						D		
						D		
		Durchg	angswert D) = Produkt	aller D; [siel	he Kap 6.2.2):	D=	0,2
			-		A 1956	swert E= B · D	E=	5,6
D:	Regenwasserbehand		F	10			_	-0.55

Die ermittelte Abflussbelastung von B=28,0 ist größer als die Gewässerpunkte G=10 des Vorfluters. Eine Regenwasserbehandlung ist erforderlich. Es wird deshalb eine Versickerung durch 20 cm dicken Oberboden vorgesehen. Schädliche Auswirkungen auf den Vorfluter Grundwasser können somit ausgeschlossen werden.

5.3.9 Entwässerungsabschnitt 9

Bei der Bemessungs-Regenspende r_{15,1} fallen im Bereich zwischen Bau-km 2+670 und dem Rechteckdurchlass bei Bau-km 2+748 folgende Wassermengen an:

Regenhäufigkeit							n 1 r 112.2 l/o*ho				
Regenhauligkeit						$n = 1$ $r_{15(n=1)} = 112,2 \text{ l/s*ha}$					
lfd. Nr.	. Art	von	bis	Länge	Breite	Fläche	Abflußbei-	reduzierte			
		Bau-km	Bau-km				w ert	Fläche	spezifische	Wasser-	
									Versickerrate	menge	
				L	В	Α	Ψ	Α	q_s	Q	
				[m]	[m]	[ha]		[ha]	l/(s*ha)	[l/s]	
1	Fahrbahn					0,071	0,9	0,064		7,2	
2	Bankett					0,025	0,6	0,015		1,	
2	Rasenmulde					0,034		0,034	150	-1,	
					-	0,130		0,113	Summe:	7,	

Zwischen dem Rechteckdurchlass und Bau-km 2+880 ergeben sich die Wassermengen infolge der Bemessungs-Regenspende r_{15,1} wie folgt:

Regenhäufigkeit						n =1	$r_{15(n=1)} = 112,2 \text{ l/s*ha}$				
	_		•	•				•			
fd. Nr.	Art	von	bis	Länge	Breite	Fläche	Abflußbei-	reduzierte			
		Bau-km	Bau-km	_			w ert	Fläche	spezifische	Wasser-	
									Versickerrate	menge	
				L	В	Α	Ψ	Α	q_s	Q	
				[m]	[m]	[ha]		[ha]	I/(s*ha)	[l/s]	
1	Fahrbahn					0,028	0,9	0,025		2,	
2	Bankett					0,006	0,6	0,004		0,	
3	Rasenmulde					0,008		0,008	150	-0,	
						0,042		0,037	Summe:	2,	

Das verschmutzte Straßenoberflächenwasser des Verzögerungsstreifens (rund 990 m² Fahrbahnfläche) wird breitflächig über das Bankett in die angrenzende Rasenmulde vor dem Lärmschutzwall geleitet. Die Muldenroste der Ablaufschächte werden in diesem Bereich 10 cm über Muldensohle angeordnet, sodass das anfallende verschmutzte Straßenoberflächenwasser durch die belebte Oberbodenzone der 2 m breiten Mulde versickern kann. Durch die Oberbodenpassage erfährt das Wasser eine ausreichende Reinigung, sodass der Schutz von Boden und Gewässer gewährleistet ist. Anschließend wird es über die darunterliegenden Mehrzweckrohrleitungen an zwei Stellen dem Armutsgraben zugeführt (Einleitungsstellen 5a und 5b). Die zweigeteilte Weiterleitung wird aufgrund des Rechteckdurchlasses bei Bau-km 2+748 erforderlich. Wasser, das nicht versickert, wird über die höher sitzenden Muldenabläufe (Notüberlauf) ebenfalls dem Armutsgraben zugeführt.

Grundlagen:

Vorfluter: Armutsgraben (G 6)

Verkehrsbelastung: DTV₂₀₃₀= 2.900 Kfz/24h (F 4)

Der qualitative Nachweis nach DWA-Merkblatt M 153 ergibt sich wie folgt:

nonnen « nattret,	Ingenieuraktiengese	iscriait, ballipelg								
		Qualitative G	iewässerb	elastung						
Projekt: B 286, Ai	nbau ÜFS Abschn. 2	- FESTSTELLUNG	GSENTWL	JRF			Datum :	25.03.2020		
Gewässer (Anhang	g A, Tabelle A.1a un	d A.1b)				Тур	Gewäss	erpunkte G		
Entwässerungsabs	chnitt 9 - Grundwass	er				G 12	G =	10		
Flächenanteile f _i (K	Flächenanteile f _i (Kap. 4) Luft L _i (Tab. A.2) Flächen F _i (Tab. A.3)									
Flächen	A _u in ha	f _i n. Gl.(4.2)	Тур	Punkte	Тур	Punkte	Bi	$= f_i \cdot (L_i + F_i)$		
Fahrbahn	0,089	0,824	L1	1	F 4	19		16,48		
Bankett	0,019	0,176	L 1	1	F 4	19		3,52		
			L		F					
			L		F					
			L		F					
			L		F					
	Σ = 0,108	$\Sigma = 1$		Abfluss	L belastung B	 = Summe (B;) :	B =	20		
maximal zulässiger l	Durchgangswert D _m	50 = G/B	-			, F	D _{max} =	0,5		
	andlungsmaßnahme		A.4b und	A.4c)		Тур		jangswerte D;		
Versickerung durch	n 20 cm bewachsene	en Oberboden		02%		D 2a		0,2		
3000 E						D				
						D				
		Durcha	angswert D) = Produkt	aller D: Ísie	he Kap 6.2.2) :	D=	0,2		
			-		1.000	swert E= B · D	E=	4		
Die wergesehen - D	Regenwasserbehand	lung rajaht aya da	E = 1 / C	- 10						

Die ermittelte Abflussbelastung von B=20,0 ist größer als die Gewässerpunkte G=10 des Vorfluters. Eine Regenwasserbehandlung ist erforderlich. Es wird deshalb eine Versickerung durch 20 cm dicken Oberboden vorgesehen. Schädliche Auswirkungen auf den Vorfluter Grundwasser können somit ausgeschlossen werden.

Eine signifikante Erhöhung der Abflussmengen liegt nicht vor, da der Abfluss in den Vorfluter lediglich in Form eines Notüberlaufs erfolgt.

Die bei der Bemessung verwendeten spezifischen Versickerraten stellen tendenziell einen Ansatz zur sicheren Seite hin dar. In der Praxis stellt sich im Allgemeinen eine noch höhere Versickerung ein. Das bestehende Entwässerungssystem ist in jedem Fall in der Lage, die anfallenden Wassermengen unbeschadet aufzunehmen und abzuleiten.

-24,3

0,375

0,037

0,644

1,056

Summe:

0,6

0,061

0,644

1,122

Ergänzend sei darauf hingewiesen, dass die fehlende Rückhaltung durch einen 10 %-igen Zuschlag bei der Volumenermittlung für die Kunststoff-Füllkörper aller Regenrückhalteanlagen (vgl. Ziffer 6) ausgeglichen wird.

5.3.10 Entwässerungsabschnitt 10

FB Rampe

Seitenbereiche

Bankett

Bei der Bemessungs-Regenspende r_{15,1} fallen folgende Wassermengen an:

nach BAS Ew Ausgaha 2005 Absolptit 1.2

Limitiang	uci wasseriiici	igen nacimizati	_w Ausgabe	2000, 70	ocimile i.	.0.2				
Regenhäufigke	eit					n =1	r _{15(n=1)} =	112,2	l/s*ha	
lfd. Nr.	Art	von	bis	Länge	Breite	Fläche	Abf lußbei-	reduzierte		
		Bau-km	Bau-km				w ert	Fläche	spezifische Versickerrate	Wasser menge
				L	В	Α	Ψ	Α	q_s	Q
				[m]	[m]	[ha]		[ha]	l/(s*ha)	[l/s]

Wie unter Ziffer 4.1.10 beschrieben, wird das Entwässerungskonzept unverändert beibehalten.

Das anfallende, verschmutzte Straßenoberflächenwasser (rund 4.170 m² Fahrbahnfläche) wird breitflächig über das Bankett in die angrenzende Dammböschung abgeleitet, wo es durch die belebte Oberbodenzone versickern kann.

Wasser, das nicht versickert, fließt breitflächig dem parallel verlaufenden Armutsgraben zu (Einleitungsstelle 6).

Grundlagen:

Vorfluter: Armutsgraben (G 6)

Verkehrsbelastung: DTV₂₀₃₀= 2.900 Kfz/24h (F 4)

Eine signifikante Erhöhung der Abflussmengen liegt nicht vor, da keine Vergrößerung der Fahrbahnflächen geplant ist.

Die bei der Bemessung verwendeten spezifischen Versickerraten stellen tendenziell einen Ansatz zur sicheren Seite hin dar. In der Praxis stellt sich im Allgemeinen eine noch höhere Versickerung ein. Das bestehende Entwässerungssystem ist in jedem Fall in der Lage, die anfallenden Wassermengen unbeschadet aufzunehmen und abzuleiten.

5.3.11 Entwässerungsabschnitt 11

Bei der Bemessungs-Regenspende r_{15.1} fallen folgende Wassermengen an:

Ermittlung der Wassermenger	nach RAS-Ew Ausgabe 2005, Abschnitt 1.3.2			
Regenhäufigkeit	n =1	r _{15(n=1)} =	112,2 l/s*ha	

lfd. Nr.	Art	von	bis	Länge	Breite	Fläche	Abflußbei-	reduzierte		
		Bau-km	Bau-km				w ert	Fläche	spezifische	Wasser-
									Versickerrate	menge
				L	В	Α	Ψ	Α	q_s	Q
				[m]	[m]	[ha]		[ha]	l/(s*ha)	[l/s]
1	Fahrbahn/Brückenbereich					0,152	0,9	0,137		15,3
2	Bankett					0,024	0,6	0,014		1,6
						0,176		0,151	Summe:	17,0

Wie unter Ziffer 4.1.11 beschrieben, wird das Entwässerungskonzept unverändert beibehalten.

Das anfallende, verschmutzte Straßenoberflächenwasser (rund 1.520 m² Fahrbahn und Brückenfläche) wird breitflächig über das Bankett in das anschließende Gelände geleitet, wo es durch die belebte Oberbodenzone versickern kann.

Die hierfür zur Verfügung stehende Fläche beträgt rund 3.170 m² und ist somit ausreichend groß. Der Abstand zwischen Fahrbahnoberfläche und mittlerem Grundwasserstand beträgt zwischen 2 und 6 m.

Grundlagen:

Vorfluter: Grundwasser (G 12)

Verkehrsbelastung: DTV₂₀₃₀= 3.050 Kfz/24h (F 4)

Der qualitative Nachweis nach DWA-Merkblatt M 153 ergibt sich wie folgt:

		E4 (C2) (C)	0 000 50	9 16					
north on provide contraction to	An SANSONOM NOVE NO 10	Qualitative G						ACCEPTED THE AMORPHONIC CONTROL OF THE SECOND	
	ınbau ÜFS Abschn. 2	N. N. Profesi S. Greeker Monthly	GSENTWL	JRF		1 2 2		: 25.03.2020	
	g A, Tabelle A.1a un					Тур		serpunkte G	
Entwässerungsabs	schnitt 11 - Grundwas	ser				G 12	G =	10	
Flächenanteile f _i (K	Abflu	ssbelastung B _i							
Flächen	g 1 31								
Fahrbahn	0,137	0,907	L 1	1	F 4	19		18,15	
Bankett	0,014	0,093	L1	1	F 4	19		1,85	
			L		F				
			L		F				
			L		F				
			L		F				
	Σ = 0,151	Σ = 1		Abfluss	⊥ belastung E	B = Summe (B _i) :	B =	20	
maximal zulässiger	Durchgangswert D _m	50 = G/B	1			, p	D _{max} =	0,5	
	andlungsmaßnahme		A.4b und	A.4c)		Тур	_	gangswerte D _i	
Versickerung durc	h 20 cm bewachsene	n Oberboden		(2)		D 2a		0,2	
71						D			
						D			
		Durcha	angewert F) – Produkt	aller D. (sie	he Kap 6.2.2) :	D =	0.2	
		Darcing	angswent E	z = 1 Todaki		swert E= B · D	F=	4	
	Regenwasserbehand				EIIISSIUII	SWell E- B · D	E=	4	

Die ermittelte Abflussbelastung von B=20,0 ist größer als die Gewässerpunkte G=10 des Vorfluters. Eine Regenwasserbehandlung ist erforderlich. Es wird deshalb eine Versickerung durch 20 cm dicken Oberboden vorgesehen. Schädliche Auswirkungen auf den Vorfluter Grundwasser können somit ausgeschlossen werden.

5.3.12 Entwässerungsabschnitt 12

Bei der Bemessungs-Regenspende r_{15,1} fallen folgende Wassermengen an:

Ermittlung der Wassermengen	nach RAS-Ew Ausgabe 2005, Abschnitt 1.3.2			
Regenhäufigkeit	n =1	r _{15(n=1)} =	112,2 l/s*ha	
	·	•		

lfd. Nr.	. Art	von	bis	Länge	Breite	Fläche	Abflußbei-	reduzierte		
		Bau-km	Bau-km				w ert	Fläche	spezifische	Wasser-
									Versickerrate	menge
				L	В	Α	Ψ	Α	q_s	Q
				[m]	[m]	[ha]		[ha]	I/(s*ha)	[l/s]
1	Fahrbahn Rampe					0,031	0,9	0,028		3,1
2	Bankett					0,009	0,6	0,005		0,6
						0,040		0,033	Summe:	3,7

Wie unter Ziffer 4.1.12 beschrieben, wird das Entwässerungskonzept unverändert beibehalten.

Das anfallende, verschmutzte Straßenoberflächenwasser (rund 310 m² Fahrbahnfläche) wird breitflächig über das Bankett in das anschließende Gelände geleitet, wo es durch die belebte Oberbodenzone versickern kann.

Die für die Versickerung des verschmutzten Straßenoberflächenwassers zur Verfügung stehende Fläche beträgt rund 390 m² und ist somit ausreichend groß. Der Abstand zwischen Fahrbahnoberfläche und mittlerem Grundwasserstand beträgt zwischen 2 und 10 m.

Grundlagen:

Vorfluter: Grundwasser (G 12)

Verkehrsbelastung: DTV₂₀₃₀= 190 Kfz/24h (F 3)

Der qualitative Nachweis nach DWA-Merkblatt M 153 ergibt sich wie folgt:

ANTONIES MA CHIMENA	Ingenieuraktiengese								
		Qualitative G	ewässerb	elastung					
Projekt: B 286, A	nbau ÜFS Abschn. 2	- FESTSTELLUNG	GSENTWL	JRF			Datum :	25.03.2020	
Gewässer (Anhang	g A, Tabelle A.1a un	d A.1b)				Тур	Gewäss	erpunkte G	
Entwässerungsabs	chnitt 12 - Grundwas	ser				G 12	G =	10	
Flächenanteile f _i (K	Flächenanteile f _i (Kap. 4) Luft L _i (Tab. A.2) Flächen F _i (Tab. A.3)								
Flächen	A _u in ha	f; n. Gl.(4.2)	Тур	Punkte	Тур	Punkte	Bi	$= f_i \cdot (L_i + F_i)$	
Fahrbahn	0,028	0,848	L 1	1	F 3	12		11,03	
Bankett	0,005	0,152	L1	1	F 3	12		1,97	
			L		F				
			L		F				
			L		F				
			L		F				
	Σ = 0,033	Σ = 1		Abfluss	belastung B	= Summe (B _i) :	B =	13	
maximal zulässiger l	Durchgangswert D _m	= G/B		3 3000000			D _{max} =	0.77	
	andlungsmaßnahme		A.4b und	A.4c)		Тур		jangswerte D _i	
Versickerung durch	n 20 cm bewachsene	n Oberboden		320		D 2a		0,2	
WAR!						D			
						D			
		Durcha	angswert [) = Produkt	aller D; (siel	he Kap 6.2.2) :	D=	0,2	
					A 5375	swert E= B · D	E=	2,6	
D:	Regenwasserbehand		F 20.4	10		_	_	1000	

Die ermittelte Abflussbelastung von B=13,0 ist größer als die Gewässerpunkte G=10 des Vorfluters. Eine Regenwasserbehandlung ist erforderlich. Es wird deshalb eine Versickerung durch 20 cm dicken Oberboden vorgesehen. Schädliche Auswirkungen auf den Vorfluter Grundwasser können somit ausgeschlossen werden.

0.199 Summe:

5.3.13 Entwässerungsabschnitt 13

Bei der Bemessungs-Regenspende r_{15,1} fallen folgende Wassermengen an:

Erm	ittlung der Wassermengen	nach RAS-l	Ew Ausgabe	2005, Ab	schnitt 1	.3.2				
Rege	nhäufigkeit					n =1	r _{15(n=1)} =	112,2	l/s*ha	
lfd. Nr.	Art	von Bau-km	bis Bau-km	Länge	Breite	Fläche	Abflußbei- w ert	Fläche	spezifische Versickerrate	Wasser- menge
				L	В	А	Ψ	Α	q_s	Q
				[m]	[m]	[ha]		[ha]	l/(s*ha)	[l/s]
1	Fahrbahn Rampe					0,076	0,9	0,068		7,
2	Bankett					0,021	0,6	0,013		1,4
3	Saitanharaicha					0.118		0.118	150	-4 '

Wie unter Ziffer 4.1.13 beschrieben, wird das Entwässerungskonzept unverändert beibehalten.

Das anfallende, verschmutzte Straßenoberflächenwasser (rund 760 m² Fahrbahnfläche) wird breitflächig über das Bankett in die angrenzende Dammböschung abgeleitet, wo es durch die belebte Oberbodenzone versickern kann. Zusätzlich erfolgt die Versickerung von verschmutztem Straßenoberflächenwasser im anschließenden Dammfußgraben.

Wasser, das nicht versickert, wird über o. g. Dammfußgraben dem Brückenwasengraben zugeführt (Einleitungsstelle E 7).

Grundlagen:

Vorfluter: Brückenwasengraben (G 6) Verkehrsbelastung: DTV₂₀₃₀= 190 Kfz/24h (F 3)

Eine signifikante Erhöhung der Abflussmengen liegt nicht vor, da keine Vergrößerung der Fahrbahnflächen geplant ist.

Die bei der Bemessung verwendeten spezifischen Versickerraten stellen tendenziell einen Ansatz zur sicheren Seite hin dar. In der Praxis stellt sich im Allgemeinen eine noch höhere Versickerung ein. Das bestehende Entwässerungssystem ist in jedem Fall in der Lage, die anfallenden Wassermengen unbeschadet aufzunehmen und abzuleiten.

5.3.14 Entwässerungsabschnitt 14

Bei der Bemessungs-Regenspende r_{15,1} fallen folgende Wassermengen an:

Ermittlung	der Wassermen	gen nach RAS-l	Ew Ausgabe	2005, Ab	schnitt 1.	3.2				
Regenhäufigk	eit					n =1	r _{15(n=1)} =	112,2	l/s*ha	
lfd. Nr.	Art	von	bis	Länge	Breite	Fläche	Abflußbei-	reduzierte		
		Bau-km	Bau-km				w ert	Fläche	spezifische	Wasser-
					l				Versickerrate	menae

lfd. Nr.	Art	von	bis	Länge	Breite	Fläche	Abflußbei-	reduzierte		
		Bau-km	Bau-km				w ert	Fläche	spezifische	Wasser-
									Versickerrate	menge
				L	В	Α	Ψ	Α	q_s	Q
				[m]	[m]	[ha]		[ha]	l/(s*ha)	[l/s]
1	Fahrbahn Rampe					0,034	0,9	0,031		3,4
2	Bankett					0,010	0,6	0,006		0,7
3	Dammböschung					0,010		0,010	150	-0,4
						0,054		0,047	Summe:	3,7

Wie unter Ziffer 4.1.14 beschrieben, wird das Entwässerungskonzept unverändert beibehalten.

Das anfallende, verschmutzte Straßenoberflächenwasser (rund 340 m² Fahrbahnfläche) wird breitflächig über das Bankett in das anschließende Gelände innerhalb der Anschlussstelle geleitet, wo es durch die belebte Oberbodenzone versickern kann.

Die für die Versickerung des verschmutzten Straßenoberflächenwassers zur Verfügung stehende Fläche beträgt rund 350 m² und ist somit ausreichend groß. Der Abstand zwischen Fahrbahnoberfläche und mittlerem Grundwasserstand beträgt rund 2 m.

Grundlagen:

Vorfluter: Grundwasser (G 12)

Verkehrsbelastung: DTV₂₀₃₀= 190 Kfz/24h (F 3)

Der qualitative Nachweis nach DWA-Merkblatt M 153 ergibt sich wie folgt:

AND THE PROPERTY OF THE PROPER		10-01 JCC10 NO. ***********************************	-a 000 W	10 10					
		Qualitative G	iewässerb	elastung					
Projekt: B 286, A	nbau ÜFS Abschn. 2	- FESTSTELLUNG	GSENTWL	JRF			Datum :	25.03.2020	
Gewässer (Anhan	g A, Tabelle A.1a un	d A.1b)				Тур	Gewäss	erpunkte G	
Entwässerungsabs	chnitt 14 - Grundwas	ser				G 12	G =	10	
Flächenanteile f _i (K	Flächenanteile f _i (Kap. 4) Luft L _i (Tab. A.2) Flächen F _i (Tab. A.3)								
Flächen	A _u in ha	f _i n. Gl.(4.2)	Тур	Punkte	Тур	Punkte	Bi	$= f_i \cdot (L_i + F_i)$	
Fahrbahn	0,031	0,689	L 1	1	F 3	12		8,96	
Bankett	0,014	0,311	L1	1	F 3	12		4,04	
			L		F				
			L		F				
			L		F				
	-		L		F				
	Σ = 0,045	Σ = 1		Abfluss	 belastuna B	= Summe (B _i) :	B =	13	
maximal zulässiger	Durchgangswert D _m .	_{av} = G/B	-			э Р	D _{max} =	0,77	
	andlungsmaßnahme		A.4b und	A.4c)		Тур		jangswerte D;	
Versickerung durch	n 20 cm bewachsene	n Oberboden		320		D 2a		0,2	
						D			
						D			
		Durchg	angswert [) = Produkt	aller D _i (sie	he Kap 6.2.2):	D=	0,2	
		5,5756	1360		Emission	swert E= B · D	E=	2,6	
Die vergesehene F	Regenwasserbehand	una raiobt suo da	E = 2E / C	2 = 10			1	-000	

Die ermittelte Abflussbelastung von B=13,0 ist größer als die Gewässerpunkte G=10 des Vorfluters. Eine Regenwasserbehandlung ist erforderlich. Es wird deshalb eine Versickerung durch 20 cm dicken Oberboden vorgesehen. Schädliche Auswirkungen auf den Vorfluter Grundwasser können somit ausgeschlossen werden.

5.3.15 Entwässerungsabschnitt 15

5.3.15.1 Wassermengenermittlung

Bedingt durch den Tiefpunkt der Trasse bei Bau-km 2+980 und den zur Ableitung des anfallenden Oberflächenwassers in Richtung Armutsgraben erforderlichen Querdurchlass, werden zwei getrennte Behandlungsanlagen für den Gesamtentwässerungsabschnitt notwendig. Der <u>nördliche Entwässerungsbereich</u> beginnt bei Bau-km 2+845 und endet am Tiefpunkt. Bei der Bemessungs-Regenspende r_{15,1} fallen folgende Wassermengen an:

Ermittlung der Wassermengen	nach RAS-Ew Ausgabe 2005, Abschnitt 1.3.2			
Regenhäufigkeit	n =1	r _{15(n=1)} =	112,2 l/s*ha	

lfd. Nr.	Art	von	bis	Länge	Breite	Fläche	Abflußbei-	reduzierte		
		Bau-km	Bau-km				w ert	Fläche	spezifische	Wasser-
									Versickerrate	menge
				L	В	Α	Ψ	Α	q_s	Q
				[m]	[m]	[ha]		[ha]	l/(s*ha)	[l/s]
1	Fahrbahn					0,172	0,9	0,155		17,4
2	Bankett					0,022	0,6	0,013		1,5
3	Rasenmulde					0,029		0,029	150	-1,1
						0,223		0,197	Summe:	17,8

Berechnung von A_{red} nach RAS-Ew Ausgabe 2005, Abschnitt 1.3.3 $A_{red} = \frac{Q \left[\text{l/s} \right]}{r \left[\text{l/(s*ha)} \right]} \frac{17,8}{112,2}$

 $A_{red} = 0,159 \text{ ha}$

Der <u>südliche Entwässerungsbereich</u> beginnt am Tiefpunkt und endet bei Bau-km 0+210 des Abschnittes 3 (Bereich Oberspiesheim). Bei der Bemessungs-Regenspende $r_{15,1}$ fallen folgende Wassermengen an:

lfd. Nr.	Art	von	bis	Länge	Breite	Fläche	Abflußbei-	reduzierte		
		Bau-km	Bau-km				w ert	Fläche	spezifische	Wasser-
									Versickerrate	menge
				L	В	Α	Ψ	Α	q_s	Q
				[m]	[m]	[ha]		[ha]	I/(s*ha)	[l/s]
1	Fahrbahn					0,568	0,9	0,511		57,4
2	Brücke Anschlussstelle					0,064	0,9	0,058		6,5
3	Bankett					0,077	0,6	0,046		5,2
4	Rasenmulde					0,102		0,102	150	-3,9
						0,811		0,717	Summe:	65,1

Berechnung von A_{red} nach RAS-Ew Ausgabe 2005, Abschnitt 1.3.3

$$A_{red} = \frac{Q[Vs]}{r[I/(s^*ha)]} \frac{65,1}{112,2}$$

A red = 0,580 ha

5.3.15.2 Bagatellgrenzenüberprüfung "Qualitativ"

Grundlagen:

Vorfluter: Armutsgraben (G 6)

Verkehrsbelastung: DTV₂₀₃₀= 10.300 bis 10.500 Kfz/24h (F 5)

Einleitungsstelle	Kriterium nach M153 Punkt 6.1 Seite 15 erfüllt ?			Es kann von einer Regenwasserbehandlung abgesehen werden, wenn <u>gleichzeitig alle drei</u> <u>Bedingungen</u> eingehalten werden
	Α	В	С	
E8	Ja	Nein	Nein	Qualitative Behandlung notwendig

5.3.15.3 Bagatellgrenzenüberprüfung "Quantitativ"

Einleitungsstelle		Kriterium nach M153 Punkt 6.1 Seite 15 erfüllt ? Es kann auf die Schaffung räumen verzichtet werden tens eine der drei Bedingun wird					
	D	Е	F				
E8	Nein Nein		Nein	Rückhalteraum notwendig			

5.3.15.4 Qualitative Gewässerbelastung

Für den <u>nördlichen Entwässerungsbereich</u> ergibt sich der qualitative Nachweis nach DWA-Merkblatt M 153 demnach wie folgt:

Gewässer (Tabellen A, 1a und A, 1b)	Тур	Gewässerpunkte G
Fließgewässer (1a) kleiner Flachlandbach (bSp < 1 m; v < 0,3 m/s)	G6	G = 15

THE STATE OF THE S	Flächenanteil fi (Abschnitt 4)		Luft Li (Tabelle A.2)		nen Fi lle A.3)	Abflussbelastung Bi
$A_{u,i}$	f	Тур	Punkte	Тур	Punkte	$B_i = f_i \times (L_i + F_i)$
0,159	1,00	Ĺĺ	1	F5	27	28,00
			6			
$\Sigma = 0,159$	= 1			Abflussbe	elastung $B = \Sigma$ Bi:	28,00

Regenwasserbehandlung erforderlich, da B > G

maximal zulässiger Durchgangswert D _{max} = G / B:	D(max) = 0,54	
vorgesehene Behandlungsmaßnahmen (Tabellen A.4a, A.4b und A.4c)	Тур	Durchgangswerte Di
1 Sedimentationsanlage 600/6	D25	0,53
Durchgangswert D = Produkt aller D	(Abschnitt 6.2.2):	D = 0,53
Emission	E = 28 x 0,53 = 14,84	
Emissionswert E = B x D: (E = 14,84) < (G =	15)	

Die ermittelte Abflussbelastung von B = 28,0 ist größer als die Gewässerpunkte G = 15 des Vorfluters. Eine Regenwasserbehandlung ist erforderlich. Es wird für eine Regenabflussspende von r_{krit} = 71,88 l/s(ha) eine unterirdische Sedimentationsanlage mit einer Länge von 6 m und einem Rohrdurchmesser von 600 mm vorgesehen.

Anbau Überholfahrstreifen, Abschnitt 2 nördlich Unterspiesheim - Feststellungsentwurf

Für den <u>südlichen Entwässerungsbereich</u> ergibt sich der qualitative Nachweis nach DWA-Merkblatt M 153 demnach wie folgt:

Gewässer (Tabellen A, 1a und A, 1b)	Тур	Gewässerpunkte G
Fließgewässer (1a) kleiner Flachlandbach (bSp < 1 m; v < 0,3 m/s)	G6	G = 15

Flächenanteil fi (Abschnitt 4)			off Li elle A.2)	10000000	hen Fi elle A.3)	Abflussbelastung Bi
A _{u,i}	f	Тур	Punkte	Тур	Punkte	$B_i = f_i x (L_i + F_i)$
0,523	0,90	L1	1	F5	27	25,25
0,057	0,10	L1	1	F4	19	1,97
Σ = 0,58	= 1		1	Abflussb	elastung B=Σ Bi:	27,21

Regenwasserbehandlung erforderlich, da B > G

maximal zulässiger Durchgangswert D _{max} = G / B:	D(max) = 0,55	
vorgesehene Behandlungsmaßnahmen	Тур	Durchgangswerte Di
(Tabellen A.4a, A.4b und A.4c)	1.5%	Darongangon ente Di
1 Sedimentationsanlage 600/16	D25	0,54
Durchgangswert D = Produkt aller D	(Abschnitt 6.2.2):	D = 0,54
Emissio	nswert E = B x D:	E = 27,21 x 0,54 = 14,69
Emissionswert $E = B \times D$: $(E = 14,69) < (G = 14,69)$	15)	

Die ermittelte Abflussbelastung von B = 27,2 ist größer als die Gewässerpunkte G = 15 des Vorfluters. Eine Regenwasserbehandlung ist erforderlich. Es wird für eine Regenabflussspende von r_{krit} = 69,64 l/s(ha) eine unterirdische Sedimentationsanlage mit einer Länge von 16 m und einem Rohrdurchmesser von 600 mm vorgesehen.

5.3.16 Entwässerungsabschnitt 16

Bei der Bemessungs-Regenspende r_{15,1} fallen folgende Wassermengen an:

Rege	nhäufigkeit					n =1	r _{15(n=1)} =	112,2	l/s*ha	
lfd. Nr.	. Art	von Bau-km	bis Bau-km	Länge	Breite	Fläche	Abflußbei- w ert	reduzierte Fläche	spezifische Versickerrate	Wasser- menge
				L	В	А	Ψ	Α	q _s	Q
				[m]	[m]	[ha]		[ha]	l/(s*ha)	[l/s]
1	Fahrbahn					0,148	0,9	0,133		14
2	Bankett					0,025	0,6	0,015		
3	Seitenbereiche					0,205		0,205	150	-
	•	•	•		•	0,378		0,353	Summe:	8

Wie unter Ziffer 4.1.16 beschrieben, wird das Entwässerungskonzept unverändert beibehalten.

Das anfallende, verschmutzte Straßenoberflächenwasser (rund 1.480 m² Fahrbahnfläche) wird breitflächig über das Bankett in die angrenzende Dammböschung abgeleitet, wo es durch die belebte Oberbodenzone versickern kann. Zusätzlich erfolgt die Versickerung von verschmutztem Straßenoberflächenwasser im anschließenden Dammfußgraben.

Wasser, das nicht versickert, wird über o. g. Dammfußgraben dem Graben zum Heidenfelder Mühlbach zugeführt (Einleitungsstelle E 9).

Grundlagen:

Vorfluter: Graben zum Heidenfelder Mühlbach (G 6)

Verkehrsbelastung: DTV₂₀₃₀= 2.000 Kfz/24h (F 4)

Die Vergrößerung der Abflussmengen durch die Querschnittsaufweitung im unmittelbaren Brückenbereich ist vernachlässigbar.

Die bei der Bemessung verwendeten spezifischen Versickerraten stellen tendenziell einen Ansatz zur sicheren Seite hin dar. In der Praxis stellt sich im Allgemeinen eine noch höhere Versickerung ein. Das bestehende Entwässerungssystem ist in jedem Fall in der Lage, die anfallenden Wassermengen unbeschadet aufzunehmen und abzuleiten.

0.229

Summe

5.3.17 Entwässerungsabschnitt 17

Bei der Bemessungs-Regenspende r_{15,1} fallen folgende Wassermengen an:

Rege	nhäufigkeit					n =1	$r_{15(n=1)} = 112,2 \text{ l/s*ha}$			
v		1		I	L 5 %	L 5: 1	ALCI OL :			
fd. Nr.	Art	von Bau-km	bis Bau-km	Länge	Breite	Fläche	w ert	reduzierte Fläche	spezifische Versickerrate	Wasser- menge
				L	В	Α	Ψ	Α	q_s	Q
				[m]	[m]	[ha]		[ha]	l/(s*ha)	[l/s]
1	Fahrbahn					0,093	0,9	0,084		
2	Bankett					0,016	0,6	0,010		
3	Seitenbereiche					0,136		0,136	150	

Wie unter Ziffer 4.1.17 beschrieben, wird das Entwässerungskonzept unverändert beibehalten.

Das anfallende, verschmutzte Straßenoberflächenwasser (rund 930 m² Fahrbahnfläche) wird breitflächig über das Bankett in die angrenzende Dammböschung abgeleitet, wo es durch die belebte Oberbodenzone versickern kann. Zusätzlich erfolgt die Versickerung von verschmutztem Straßenoberflächenwasser im anschließenden Dammfußgraben.

Wasser, das nicht versickert, wird über o. g. Dammfußgraben dem bestehenden Mulden- und Grabensystem in Richtung des Grabens zum Heidenfelder Mühlbach zugeführt (Einleitungsstelle E 10).

Grundlagen:

Vorfluter: Graben zum Heidenfelder Mühlbach (G 6)

Verkehrsbelastung: DTV_{2030} = 2.000 Kfz/24h (F 4)

Die Vergrößerung der Abflussmengen durch die Querschnittsaufweitung im unmittelbaren Brückenbereich ist vernachlässigbar.

Die bei der Bemessung verwendeten spezifischen Versickerraten stellen tendenziell einen Ansatz zur sicheren Seite hin dar. In der Praxis stellt sich im Allgemeinen eine noch höhere Versickerung ein. Das bestehende Entwässerungssystem ist in jedem Fall in der Lage, die anfallenden Wassermengen unbeschadet aufzunehmen und abzuleiten.

5.3.18 Entwässerungsabschnitt 18

Bei der Bemessungs-Regenspende r_{15,1} fallen folgende Wassermengen an:

Regenhäufigk	eit					n =1	r _{15(n=1)} =	112,2	l/s*ha	
lfd. Nr.	Art	von	bis	Länge	Breite	Fläche	Abf lußbei-	reduzierte		
		Bau-km	Bau-km	9-			w ert	Fläche	spezifische	Wasser-
									Versickerrate	menge

Ira. Nr.	Art	von	DIS	Lange	Breite	Flache	Apriuispei-	reduzierte		
		Bau-km	Bau-km				w ert	Fläche	spezifische	Wasser-
									Versickerrate	menge
				L	В	Α	Ψ	Α	q_s	Q
				[m]	[m]	[ha]		[ha]	l/(s*ha)	[l/s]
1	Fahrbahn/Brückenbereich					0,085	0,9	0,077		8,6
2	Bankett					0,022	0,6	0,013		1,5
3	Seitenbereiche					0,160		0,160	150	-6,0
						0,267		0,250	Summe:	4,0

Wie unter Ziffer 4.1.18 beschrieben, wird das Entwässerungskonzept unverändert beibehalten.

Das anfallende, verschmutzte Straßenoberflächenwasser (rund 850 m² Fahrbahnfläche) wird breitflächig über das Bankett in die angrenzende Dammböschung abgeleitet, wo es durch die belebte Oberbodenzone versickern kann.

Zusätzlich erfolgt die Versickerung von verschmutztem Straßenoberflächenwasser im anschließenden Dammfußgraben.

Wasser, das nicht versickert, wird über o. g. Dammfußgraben dem Armutsgraben zugeführt (Einleitungsstelle E 11).

Grundlagen:

Vorfluter: Armutsgraben (G 6)

Verkehrsbelastung: DTV₂₀₃₀= 800 Kfz/24h (F 4)

Eine signifikante Erhöhung der Abflussmengen liegt nicht vor, da keine Vergrößerung der Fahrbahnflächen geplant ist.

Die bei der Bemessung verwendeten spezifischen Versickerraten stellen tendenziell einen Ansatz zur sicheren Seite hin dar. In der Praxis stellt sich im Allgemeinen eine noch höhere Versickerung ein. Das bestehende Entwässerungssystem ist in jedem Fall in der Lage, die anfallenden Wassermengen unbeschadet aufzunehmen und abzuleiten.

-5,6

5.3.19 Entwässerungsabschnitt 19

Seitenbereiche

Bei der Bemessungs-Regenspende r_{15,1} fallen folgende Wassermengen an:

Erm	ittlung der Wassermenge	n nach RAS-	Ew Ausgabe	2005, Ab	schnitt 1	.3.2				
Rege	nhäufigkeit					n =1	r _{15(n=1)} =	112,2	l/s*ha	
lfd. Nr.	Art	von Bau-km	bis Bau-km	Länge	Breite	Fläche	Abflußbei- w ert	reduzierte Fläche	spezifische Versickerrate	Wasser- menge
				L	В	Α	Ψ	Α	q_s	Q
				[m]	[m]	[ha]		[ha]	l/(s*ha)	[l/s]
1	Fahrbahn/Brückenbereich					0,092	0,9	0,083		9
2	Bankett					0,021	0,6	0,013		1.

Wie unter Ziffer 4.1.19 beschrieben, wird das Entwässerungskonzept unverändert beibehalten.

0,149

0,149

Das anfallende, verschmutzte Straßenoberflächenwasser (rund 920 m² Fahrbahn und Brückenfläche) wird breitflächig über das Bankett in die angrenzende Dammböschung abgeleitet, wo es durch die belebte Oberbodenzone versickern kann. Zusätzlich erfolgt die Versickerung von verschmutztem Straßenoberflächenwasser im anschließenden Dammfußgraben.

Wasser, das nicht versickert, wird über o. g. Dammfußgraben in Richtung Armutsgraben geleitet (Einleitungsstelle E 12).

Grundlagen:

Vorfluter: Armutsgraben (G 6)

Verkehrsbelastung: DTV₂₀₃₀= 800 Kfz/24h (F 4)

Eine signifikante Erhöhung der Abflussmengen liegt nicht vor, da keine Vergrößerung der Fahrbahnflächen geplant ist.

Die bei der Bemessung verwendeten spezifischen Versickerraten stellen tendenziell einen Ansatz zur sicheren Seite hin dar. In der Praxis stellt sich im Allgemeinen eine noch höhere Versickerung ein. Das bestehende Entwässerungssystem ist in jedem Fall in der Lage, die anfallenden Wassermengen unbeschadet aufzunehmen und abzuleiten.

6 Bemessung der Behandlungs- und Regenrückhalteanlagen

6.1 Allgemeines

In Abstimmung mit dem Wasserwirtschaftsamt Bad Kissingen wird für die Bemessung der Rückhaltevolumina, aufgrund der Lage der Bundesstraße im Außerortsbereich, ein 2-jähriges Regenereignis (n_[1/a] = 0,5) zu Grunde gelegt.

Der erforderliche Regenrückhalteraum wird nach dem einfachen Verfahren gem. DWA-A117 berechnet. Hier ist der Maximalwert ggf. um einen Risikofaktor f_z zu erhöhen. Gemäß RAS-Ew 2005 ist jedoch bei außerörtlichen Straßen aufgrund der bereits hohen Sicherheitsreserven (lange Fließzeiten, großer Anteil versickerungsfähiger Flächen, Spritzverluste) keine Erhöhung erforderlich ($f_z = 1$).

Unter Zuhilfenahme der Regenspenden für die Bemessungshäufigkeit n = 0,5 wird anhand ausgewählter Dauerstufen das (maximal) erforderliche Rückhaltevolumen bestimmt.

Bei der Bemessung der Rückhaltevolumina wird ein Zuschlag von 10 Volumen-% berücksichtigt, um die fehlende Rückhaltung einiger Kleineinleitungen im Maßnahmenbereich auszugleichen (vgl. Ziffer 5.3).

Die vorgeschalteten Sedimentationsanlagen bestehen aus einem gegen die Fließrichtung geneigten Rohr DN 600 aus Polypropylen (Sedimentationsstrecke), das zwischen einem Startschacht (mit Schlamm- und Geröllfang) und einem Zielschacht (mit Tauchrohr)verläuft. Die Sedimentationsstrecke ist mit einem oberen und unteren Strömungstrenner ausgestattet. Schadstoffe, die durch abfließendes Regenwasser mitgespült werden, sind überwiegend an kleine und kleinste Festpartikel gebunden. Das Sediment lagert sich infolge der Schwerkraft im unteren Teil der Sedimentationsstrecke ab. Der untere Strömungstrenner verhindert die Remobilisierung bereits abgelagerter Sedimente und somit den Austrag in die nachgelagerte Rückhalteanlage. Er bildet einen strömungsberuhigten Raum, in dem das Sediment bei einem Starkregen nicht wieder aufgewirbelt wird. Die im anfallenden Straßenoberflächenwasser enthaltenen Leichtflüssigkeiten sammeln sich im oberen Bereich der Sedimentationsstrecke sowie im Zielschacht. Der obere Strömungstrenner verhindert die Remobilisierung dieser Leichtflüssigkeiten und somit den Austrag in die nachgelagerte Rückhalteanlage.

6.2 Regenrückhalteanlage 1, Bau km 0+100 links

6.2.1 Wahl und Bemessung der Behandlungsanlage

Die Bemessung der Behandlungsanlagen wurde mit Hilfe der Software Rigoplan Version 6.42 – Software zur Bemessung unterirdischer Sedimentationsanlagen der Fränkische Rohrwerke GmbH & Co. KG durchgeführt.

Ergebnisse:			
Anzuschließende zu behandelnde Fläche	А	23.710,00	m²
undurchlässige Fläche	Au	16.950,00	m²
Auswahl der Regenwasserbehandlung:	Тур	D25	
Regenwasserbehandlung gewählt für eine kritische Regenspende von:	r(krit)	96,52	I/(s • ha)
Durchgangswert DW für r(krit)	DW	0,42	

vorgesehene Behandlungsanlagen:			
Anlagenauswahl:			
Sedimentationsanlage 600/22		3	Anlager
Anlagentyp	Тур	D25	
Durchgangswert der Anlage	Di	0,42	
Anschliessbare Fläche für eine Regenwasserbehandlung	Amax	18527,61	m²
Emissionswert E = B x Di	E	14,65	
Durchgangswert D aller hintereinander geschalteten Anlagen	D	0,42	

Um eine gleichmäßige Verteilung des anfallenden Oberflächenwassers, insbesondere bei Regenereignissen im Bereich der kritischen Regenspende, zu gewährleiten, wird ein vorgelagerter Verteilerschacht mit Überlaufschwelle (Oberkante Schwelle = Scheitel des ankommenden Transportrohres) eingebaut. Bei Regenereignissen im Bereich der kritischen Regenspende wird somit das ankommende Oberflächenwasser beruhigt und über die Schwelle gleichmäßig auf die weiterführenden Rohrleitungen verteilt.

Um einen Dauerstau im vorgelagerten Rohrnetz zu vermeiden, werden gleichzeitig für alle weiterführenden Leitungen sohlgleiche Drosselbohrungen DN 125 vorgesehen.

6.2.2 Bemessung des erforderlichen Rückhaltevolumens

3. Ermittlung der Drosselabflussspenden

nach DWA-M 153

Typ des Vorflutgewässers: kleiner Flachlandbach Zulässiger Regenabflussspende: $q_r = 15 \text{ I/(s * ha)}$ "Undurchlässige" Fläche: $A_u = 1,695 \text{ ha}$ Zulässiger Drosselabfluss: $Q_{dr} = q_r * A_u \text{ I/s}$

Q_{dr} = 25,4 I/s

Gewählter Drosselabfluss: $Q_{dr,max (gewählt)} = 25,0 l/s$

Q_{dr,mittel(gewählt)} = 17,0 l/s

In Folge der gewählten Drosselorgans (Wirbeldrossel) erbibt sich Qdr,mittel(gewählt): Qdr,max (gewählt) = 0,68

Regenanteil der Drosselabflussspende: $q_{dr,r,u} = 10,0 l/(s * ha)$

4. Ermittlung des Abminderungsfaktors f_A

nach Anhang B, DWA-A 117

Fließzeit: t_{f} = 10 min Überschreitungshäufigkeit: n= 0,5 1/a Abminderungsfaktor: f_{A} = 0,990

5. Festlegung des Zuschlagsfaktors fz

nach Tabelle 2, DWA-A 117

 $\label{eq:Zuschlagsfaktor:fz} \textbf{Zuschlagsfaktor:} \qquad \qquad \textbf{f}_{\textbf{Z}} = \qquad 1,00 \qquad \text{Risikoma\&: Au\&erortsstra\&e} \\ \text{Für den Außerortsstraßenbereich wird auf Grund der bereits hohen Sicherheitsreserven (lange Fließzeiten,} \\$

6. Bestimmung der statistischen Niederschlagshöhen und Regenspenden

Anwendung von Gleichung 2 (DWA-A 117) für ausgewählte Dauerstufen

großer Anteil versickerungsfähiger Flächen, Spritzverluste) für fz = 1,0 gew ählt

Spezifisches Speichervolumen $V_{s,u} = (r_{D,n} - q_{dr,r,u}) * D * f_Z * f_A * 0,06 \quad [m^3/ha]$

Grundlage: KOSTRA-ATLAS

Dauerstufe D	Niederschlagshöhe hN	Zugehörige	Drosselabfluss-	Differenz zw.	spezifisches
	für (n=0,5) /a	Regenspende r	spende q _{dr,r,u}	r und q _{dr,r,u}	Speichervolumen
					V _{s.u}
[min]	[mm]	[l/(s*ha)]	[l/(s*ha)]	[l/(s*ha)]	[m³/ha]
10	10,5	174,2	10,0	164,2	97
20	15,0	125,2	10,0	115,2	137
30	17,8	98,9	10,0	88,9	158
45	20,5	76,1	10,0	66,1	177
60	22,4	62,3	10,0	52,3	186
90	23,6	43,7	10,0	33,7	180
120	24,5	34,0	10,0	24,0	171
180	25,8	23,9	10,0	13,9	148
240	26,8	18,6	10,0	8,6	122
360	28,3	13,1	10,0	3,1	66

7. Bestimmung des erforderlichen Rückhaltevolumens

Erforderliches Rückhaltevolumen: V= $V_{s,u} * A_u m^3$

"Undurchlässige" Fläche: A_u = 1,695 ha Erforderliches spezifisches Volumen: $V_{s,u}$ = 186 m^3 /ha

Erforderliches Volumen: V= 316 m³

Gewähltes Volumen: V= 351 m³ (Zuschlag 11,0%)

6.3 Regenrückhalteanlage 2, Bau km 2+715 links

6.3.1 Wahl und Bemessung der Behandlungsanlage

Die Bemessung der Behandlungsanlagen wurde mit Hilfe der Software Rigoplan Version 6.42 – Software zur Bemessung unterirdischer Sedimentationsanlagen der Fränkische Rohrwerke GmbH & Co. KG durchgeführt.

Ergebnisse:			
Anzuschließende zu behandelnde Fläche	А	14.460,00	m²
undurchlässige Fläche	Au	14.460,00	m²
Auswahl der Regenwasserbehandlung:	Тур	D25	
Regenwasserbehandlung gewählt für eine kritische Regenspende von:	r(krit)	98,76	I/(s • ha)
Durchgangswert DW für r(krit)	DW	0,41	

vorgesehene Behandlungsanlagen:			
Anlagenauswahl:			
Aniagoriauswani.			
Sedimentationsanlage 600/20		3	Anlager
Anlagentyp	Тур	D25	
Durchgangswert der Anlage	Di	0,41	
Anschliessbare Fläche für eine Regenwasserbehandlung	Amax	15962,97	m²
Emissionswert E = B x Di	E	14,72	
Durchgangswert D aller hintereinander geschalteten Anlagen	D	0,41	

Um eine gleichmäßige Verteilung des anfallenden Oberflächenwassers, insbesondere bei Regenereignissen im Bereich der kritischen Regenspende, zu gewährleiten, wird ein vorgelagerter Verteilerschacht mit Überlaufschwelle (Oberkante Schwelle = Scheitel des ankommenden Transportrohres) eingebaut. Bei Regenereignissen im Bereich der kritischen Regenspende wird somit das ankommende Oberflächenwasser beruhigt und über die Schwelle gleichmäßig auf die weiterführenden Rohrleitungen verteilt.

Um einen Dauerstau im vorgelagerten Rohrnetz zu vermeiden, werden gleichzeitig für alle weiterführenden Leitungen sohlgleiche Drosselbohrungen DN 125 vorgesehen.

6.3.2 Bemessung des erforderlichen Rückhaltevolumens

3. Ermittlung der Drosselabflussspenden

nach DWA-M 153

Typ des Vorflutgewässers: kleiner Flachlandbach Zulässiger Regenabflussspende: $q_r = 15 \text{ l/(s * ha)}$ "Undurchlässige" Fläche: $A_u = 1,446 \text{ ha}$ Zulässiger Drosselabfluss: $Q_{dr} = q_r * A_u \text{ l/s}$

Q_{dr} = 21,7 I/s

Gewählter Drosselabfluss: Q_{dr,max (gewählt)} = 21,0 l/s

Q_{dr,mittel(gewählt)} = 14,3 l/s

In Folge der gewählten Drosselorgans (Wirbeldrossel) erbibt sich Qdr,mittel(gewählt): Qdr,max(gewählt) = 0,68

Regenanteil der Drosselabflussspende: $q_{dr,r,u} = 9,9 l/(s * ha)$

4. Ermittlung des Abminderungsfaktors f_A

nach Anhang B, DWA-A 117

Fließzeit: t_{f} = 10 min Überschreitungshäufigkeit: n= 0,5 1/a Abminderungsfaktor: f_{A} = 0,990

5. Festlegung des Zuschlagsfaktors fz

nach Tabelle 2, DWA-A 117

Zuschlagsfaktor: f_Z= 1,00 Risikomaß: Außerortsstraße

Für den Außerortsstraßenbereich wird auf Grund der bereits hohen Sicherheitsreserven (lange Fließzeiten, großer Anteil versickerungsfähiger Flächen, Spritzverluste) für fz = 1,0 gewählt.

6. Bestimmung der statistischen Niederschlagshöhen und Regenspenden

Anwendung von Gleichung 2 (DWA-A 117) für ausgewählte Dauerstufen

Spezifisches Speichervolumen $V_{s,u} = (r_{D,n} - q_{dr,r,u}) * D * f_Z * f_A * 0,06 \quad [m^3/ha]$

Grundlage: KOSTRA-ATLAS

Dauerstufe D	Niederschlagshöhe hN	Zugehörige	Drosselabfluss-	Differenz zw.	spezifisches
	für (n=0,5) /a	Regenspende r	spende q _{dr,r,u}	r und q _{dr,r,u}	Speichervolumen
			1		V _{s.u}
[min]	[mm]	[l/(s*ha)]	[l/(s*ha)]	[l/(s*ha)]	[m³/ha]
10	10,5	174,2	9,9	164,3	98
20	15,0	125,2	9,9	115,3	137
30	17,8	98,9	9,9	89,0	159
45	20,5	76,1	9,9	66,2	177
60	22,4	62,3	9,9	52,4	187
90	23,6	43,7	9,9	33,8	181
120	24,5	34,0	9,9	24,1	172
180	25,8	23,9	9,9	14,0	150
240	26,8	18,6	9,9	8,7	124
360	28,3	13,1	9,9	3,2	69

7. Bestimmung des erforderlichen Rückhaltevolumens

Erforderliches Rückhaltevolumen: V= $V_{s,u} * A_u m^3$

"Undurchlässige" Fläche: A_u = 1,446 ha Erforderliches spezifisches Volumen: $V_{s,u}$ = 187 m^3 /ha

Erforderliches Volumen: V= 270 m³

Gewähltes Volumen: V= 301 m³ (Zuschlag 11,5%)

6.4 Regenrückhalteanlage 3, Bau km 2+940 links

6.4.1 Wahl und Bemessung der Behandlungsanlagen

6.4.1.1 Behandlungsanlage nördlicher Entwässerungsbereich

Die Bemessung der Behandlungsanlagen wurde mit Hilfe der Software Rigoplan Version 6.42 – Software zur Bemessung unterirdischer Sedimentationsanlagen der Fränkische Rohrwerke GmbH & Co. KG durchgeführt.

Ergebnisse:			
Anzuschließende zu behandelnde Fläche	А	1.590,00	m²
undurchlässige Fläche	Au	1.590,00	m²
Auswahl der Regenwasserbehandlung:	Тур	D25	
Regenwasserbehandlung gewählt für eine kritische Regenspende von:	r(krit)	71,88	I/(s • ha)
Durchgangswert DW für r(krit)	DW	0,53	

vorgesenene Benandlungsanlagen:			
Anlagenauswahl:			
Sedimentationsanlage 600/6		1	Anlag
Anlagentyp	Тур	D25	
Durchgangswert der Anlage	Di	0,53	
Anschliessbare Fläche für eine Regenwasserbehandlung	Amax	2484,64	m²
<u>'</u>			
	Е	14,84	
Emissionswert E = B x Di	_		
Emissionswert E = B x Di Durchgangswert D aller hintereinander geschalteten Anlagen	D	0,53	

6.4.1.2 Behandlungsanlage südlicher Entwässerungsbereich

Die Bemessung der Behandlungsanlagen wurde mit Hilfe der Software Rigoplan Version 6.42 – Software zur Bemessung unterirdischer Sedimentationsanlagen der Fränkische Rohrwerke GmbH & Co. KG durchgeführt.

Ergebnisse:			
Anzuschließende zu behandelnde Fläche	A	5.800,00	m²
undurchlässige Fläche	Au	5.800,00	m²
Auswahl der Regenwasserbehandlung:	Тур	D25	
Regenwasserbehandlung gewählt für eine kritische Regenspende von:	r(krit)	69,64	I/(s • ha)
Durchgangswert DW für r(krit)	DW	0,54	

Anlagenauswahl:			
Sedimentationsanlage 600/16		1	Anla
Anlagentyp	Тур	D25	
Durchgangswert der Anlage	Di	0,54	
Anschliessbare Fläche für eine Regenwasserbehandlung	Amax	6032,80	m²
Emissionswert E = B x Di	E	14,7	
Durchgangswert D aller hintereinander geschalteten Anlagen	D	0,54	

6.4.2 Bemessung des erforderlichen Rückhaltevolumens

3. Ermittlung der Drosselabflussspenden

nach DWA-M 153

Typ des Vorflutgewässers: kleiner Flachlandbach Zulässiger Regenabflussspende: $q_r = 15 \text{ I/(s * ha)}$ "Undurchlässige" Fläche: $A_u = 0,739 \text{ ha}$ Zulässiger Drosselabfluss: $Q_{dr} = q_r * A_u \text{ I/s}$

Q_{dr} = 11,1 I/s

Gewählter Drosselabfluss: $Q_{dr,max (gewählt)} = 10,0 l/s$

Q_{dr,mittel(gewählt)} = 6,8 l/s

In Folge der gewählten Drosselorgans (Wirbeldrossel) erbibt sich Qdr,mittel(gewählt): Qdr,max(gewählt) = 0,68

Regenanteil der Drosselabflussspende: $q_{dr,r,u} = 9,2 l/(s * ha)$

4. Ermittlung des Abminderungsfaktors f_A

nach Anhang B, DWA-A 117

Fließzeit: t_f = 10 min Überschreitungshäufigkeit: n= 0,5 1/a Abminderungsfaktor: f_A = 0,991

5. Festlegung des Zuschlagsfaktors fz

nach Tabelle 2, DWA-A 117

Zuschlagsfaktor: f_Z= 1,00 Risikomaß: Außerortsstraße

Für den Außerortsstraßenbereich wird auf Grund der bereits hohen Sicherheitsreserven (lange Fließzeiten, großer Anteil versickerungsfähiger Flächen, Spritzverluste) für fz = 1,0 gewählt.

6. Bestimmung der statistischen Niederschlagshöhen und Regenspenden

Anwendung von Gleichung 2 (DWA-A 117) für ausgewählte Dauerstufen

 $V_{s,u} = (r_{D,n} - q_{dr,r,u}) * D * f_Z * f_A * 0,06 \quad [m^3/ha]$ Spezifisches Speichervolumen

Grundlage: KOSTRA-ATLAS

Dauerstufe D	Niederschlagshöhe hN	Zugehörige	Drosselabfluss-	Differenz zw.	spezifisches
	für (n=0,5) /a	Regenspende r	spende q _{dr,r,u}	r und $q_{dr,r,u}$	Speichervolumen
					V _{s.u}
[min]	[mm]	[l/(s*ha)]	[l/(s*ha)]	[l/(s*ha)]	[m³/ha]
10	10,5	174,2	9,2	165,0	98
20	15,0	125,2	9,2	116,0	138
30	17,8	98,9	9,2	89,7	160
45	20,5	76,1	9,2	66,9	179
60	22,4	62,3	9,2	53,1	189
90	23,6	43,7	9,2	34,5	185
120	24,5	34,0	9,2	24,8	177
180	25,8	23,9	9,2	14,7	157
240	26,8	18,6	9,2	9,4	134
360	28,3	13,1	9,2	3,9	83

7. Bestimmung des erforderlichen Rückhaltevolumens

Erforderliches Rückhaltevolumen: V= $V_{s,u} * A_u m^3$

"Undurchlässige" Fläche: A_u = 0,739 ha Erforderliches spezifisches Volumen: $V_{s,u}$ = 189 m^3 /ha

Erforderliches Volumen: V= 140 m³

Gewähltes Volumen: V= 157 m³ (Zuschlag 12,1%)

7 Zusammenstellung der Einleitungen

Über die Einleitung in das Grundwasser hinaus ergeben sich folgende Einleitungsstellen:

Einleitungs- stelle	Bau-km	Vorfluter	Gemarkung Flurnummer	Einzugs- gebiet A _E [ha]	Einleitungs- menge [l/s]	Vorbehandlung Rückhaltung
E 1	0+027	Graben zum	Heidenfeld	2,371	25,0	Ja / Ja
		Heidenfelder	852		(aus RBRA 1)	
		Mühlbach				
E 2	2+729	Armutsgraben	Unterspiesheim	2,031	21,0	Ja / Ja
			971		(aus RBRA 2)	
E 3	2+734	Armutsgraben	Unterspiesheim	0,138	7,6	Nein / Nein
			971		(aus EW-Abschnitt 5)	
E 4	2+838	Armutsgraben	Unterspiesheim	0,111	7,3	Nein / Nein
			941/1		(aus EW-Abschnitt 6)	
E 5a/b	2+764	Armutsgraben	Unterspiesheim	0,172	10,5	Nein / Nein
	2+838		941/1		(aus EW-Abschnitt 9)	
E 6	2+999	Armutsgraben	Unterspiesheim	1,122	21,9	Nein / Nein
			961		(aus EW-Abschnitt 10)	
E 7	3+032	Brücken-	Unterspiesheim	0,215	4,6	Nein / Nein
		wasengraben	817/18		(aus EW-Abschnitt 13)	
E 8	2+946	Armutsgraben	Unterspiesheim	1,046	10,0	Ja / Ja
			941/1		(aus RBRA 3)	
E 9	0+420	Graben zum	Heidenfeld	0,378	8,9	Nein / Nein
	(St 2271)	Heidenfelder	853		(aus EW-Abschnitt 16)	
		Mühlbach				
E 10	0+036	Graben zum	Heidenfeld	0,245	5,3	Nein / Nein
		Heidenfelder	853		(aus EW-Abschnitt 17)	
		Mühlbach				
E 11	2+370	Armutsgraben	Unterspiesheim	0,267	4,0	Nein / Nein
			1224		(aus EW-Abschnitt 18)	
E 12	2+764	Armutsgraben	Unterspiesheim	0,253	5,1	Nein / Nein
			941/1		(aus EW-Abschnitt 19)	

8 Gewässerquerungen

Die Bundesstraße quert folgende Gewässer bzw. Gräben:

Name	Bau-km	Vorh. Durchlass	Gepl. Durchlass
Graben zum Heiden- felder Mühlbach	0+031	DN 800	DN 800
Armutsgraben	2+748	LW = 1,95 m LH = 1,10 m	LW = 1,95 m LH = 1,10 m

9 Vorübergehende Absenkung des Grundwassers

Falls im Zuge der Baumaßnahme eine Bauwasserhaltung notwendig wird, wird diese beim zuständigen Landratsamt beantragt.

Anlage 1

Maßgebliche Regenreihe KOSTRA-DWD 2010R (Spalte 37, Zeile 68)

KOSTRA-DWD 2010R

Nach den Vorgaben des Deutschen Wetterdienstes - Hydrometeorologie -

Niederschlagshöhen nach **KOSTRA-DWD 2010R**

Rasterfeld : Spalte 37, Zeile 68 Ortsname : Schwebheim (BY)

Bemerkung

Zeitspanne : Januar - Dezember

Dauerstufe			Niede	erschlagshöhen	hN [mm] je Wie	ederkehrinterva	∥ T [a]		
	1 a	2 a	3 a	5 a	10 a	20 a	30 a	50 a	100 a
5 min	5,0	6,8	7,8	9,0	10,7	12,5	13,5	14,7	16,4
10 min	8,1	10,5	11,9	13,7	16,1	18,5	19,9	21,7	24,1
15 min	10,1	13,0	14,8	16,9	19,9	22,8	24,5	26,7	29,6
20 min	11,5	14,9	16,9	19,4	22,8	26,2	28,1	30,6	34,0
30 min	13,5	17,6	20,0	23,0	27,2	31,3	33,7	36,7	40,8
45 min	15,2	20,2	23,1	26,8	31,9	36,9	39,8	43,5	48,5
60 min	16,2	22,0	25,4	29,6	35,4	41,2	44,6	48,8	54,6
90 min	17,3	23,2	26,6	30,9	36,8	42,6	46,0	50,4	56,2
2 h	18,1	24,1	27,5	31,9	37,8	43,7	47,1	51,5	57,4
3 h	19,4	25,4	28,9	33,3	39,3	45,3	48,8	53,2	59,2
4 h	20,3	26,4	29,9	34,4	40,4	46,4	50,0	54,4	60,5
6 h	21,7	27,8	31,4	35,9	42,1	48,2	51,8	56,3	62,4
9 h	23,2	29,4	33,0	37,6	43,8	50,0	53,7	58,2	64,4
12 h	24,3	30,6	34,2	38,8	45,1	51,4	55,1	59,7	65,9
18 h	26,0	32,3	36,0	40,7	47,1	53,4	57,1	61,8	68,2
24 h	27,2	33,6	37,4	42,1	48,5	54,9	58,7	63,4	69,8
48 h	35,3	42,7	47,1	52,5	59,9	67,4	71,7	77,2	84,6
72 h	41,1	49,1	53,8	59,7	67,7	75,7	80,4	86,3	94,3

Legende

Τ Wiederkehrintervall, Jährlichkeit in [a]: mittlere Zeitspanne, in der ein Ereignis einen Wert einmal erreicht

oder überschreitet

D Dauerstufe in [min, h]: definierte Niederschlagsdauer einschließlich Unterbrechungen

hN Niederschlagshöhe in [mm]

Für die Berechnung wurden folgende Klassenwerte verwendet:

Wiederkehrintervall	Klassenwerte	Niederschlagshöhen hN [mm] je Dauerstufe					
wiederkennntervan	Klasseriwerte	15 min	60 min	24 h	72 h		
1 a	Faktor [-]	DWD-Vorgabe	DWD-Vorgabe	DWD-Vorgabe	DWD-Vorgabe		
	[mm]	10,10	16,20	27,20	41,10		
100 a	Faktor [-]	DWD-Vorgabe	DWD-Vorgabe	DWD-Vorgabe	DWD-Vorgabe		
	100 a [mm] 29		54,60	69,80	94,30		

Wenn die angegebenen Werte für Planungszwecke herangezogen werden, sollte für rN(D;T) bzw. hN(D;T) in Abhängigkeit vom Wiederkehrintervall

bei 1 a ≤ T ≤ 5 a bei 5 a < T ≤ 50 a bei 50 a < T ≤ 100 a ein Toleranzbetrag von ±10 %, ein Toleranzbetrag von ±15 %, ein Toleranzbetrag von ±20 %

Berücksichtigung finden.

KOSTRA-DWD 2010R

Nach den Vorgaben des Deutschen Wetterdienstes - Hydrometeorologie -

Niederschlagsspenden nach **KOSTRA-DWD 2010R**

Rasterfeld : Spalte 37, Zeile 68 : Schwebheim (BY) Ortsname

Bemerkung

Zeitspanne : Januar - Dezember

Dauerstufe			Nieders	chlagspenden	rN [l/(s·ha)] je V	Viederkehrinter	/all T [a]		
	1 a	2 a	3 a	5 a	10 a	20 a	30 a	50 a	100 a
5 min	168,0	225,2	258,6	300,8	357,9	415,1	448,6	490,7	547,9
10 min	134,6	174,7	198,1	227,7	267,8	308,0	331,4	361,0	401,1
15 min	112,2	144,8	163,9	187,9	220,6	253,2	272,2	296,3	328,9
20 min	96,2	124,4	140,9	161,6	189,8	217,9	234,4	255,1	283,3
30 min	74,9	97,8	111,2	128,0	150,9	173,8	187,2	204,1	226,9
45 min	56,2	74,8	85,7	99,4	118,0	136,6	147,5	161,2	179,8
60 min	45,0	61,1	70,4	82,3	98,3	114,4	123,8	135,6	151,
90 min	32,1	42,9	49,2	57,2	68,1	78,9	85,3	93,3	104,
2 h	25,2	33,4	38,2	44,3	52,5	60,7	65,5	71,5	79,7
3 h	17,9	23,5	26,7	30,8	36,4	41,9	45,2	49,3	54,8
4 h	14,1	18,3	20,8	23,9	28,1	32,3	34,7	37,8	42,0
6 h	10,0	12,9	14,5	16,6	19,5	22,3	24,0	26,1	28,9
9 h	7,2	9,1	10,2	11,6	13,5	15,4	16,6	18,0	19,9
12 h	5,6	7,1	7,9	9,0	10,4	11,9	12,7	13,8	15,3
18 h	4,0	5,0	5,6	6,3	7,3	8,2	8,8	9,5	10,5
24 h	3,1	3,9	4,3	4,9	5,6	6,4	6,8	7,3	8,1
48 h	2,0	2,5	2,7	3,0	3,5	3,9	4,1	4,5	4,9
72 h	1,6	1,9	2,1	2,3	2,6	2,9	3,1	3,3	3,6

Legende

Τ Wiederkehrintervall, Jährlichkeit in [a]: mittlere Zeitspanne, in der ein Ereignis einen Wert einmal erreicht oder überschreitet

D Dauerstufe in [min, h]: definierte Niederschlagsdauer einschließlich Unterbrechungen

rΝ Niederschlagsspende in [l/(s·ha)]

Für die Berechnung wurden folgende Klassenwerte verwendet:

Wiederkehrintervall	Klassenwerte	Niederschlagshöhen hN [mm] je Dauerstufe						
vviederkennitervali	Klasseriwerte	15 min	60 min	24 h	72 h			
1 a	Faktor [-]	DWD-Vorgabe	DWD-Vorgabe	DWD-Vorgabe	DWD-Vorgabe			
	[mm]	10,10	16,20	27,20	41,10			
100 a	Faktor [-]	DWD-Vorgabe	DWD-Vorgabe	DWD-Vorgabe	DWD-Vorgabe			
	[mm]	29,60	54,60	69,80	94,30			

Wenn die angegebenen Werte für Planungszwecke herangezogen werden, sollte für rN(D;T) bzw. hN(D;T) in Abhängigkeit vom Wiederkehrintervall

bei 1 a ≤ T ≤ 5 a bei 5 a < T ≤ 50 a bei 50 a < T ≤ 100 a ein Toleranzbetrag von ±10 %, ein Toleranzbetrag von ±15 %, ein Toleranzbetrag von ±20 %

Berücksichtigung finden.