

ÉTUDE D'IMPACT

- Annexe 3 - Eaux de surface

PLACE DE l'ANNEXE DANS L'ÉTUDE D'IMPACT

>> Résumé non technique, Sommaire général, Chapitres 1 à 14 : voir le classeur principal

Annexe 1 - Effluents radioactifs

Annexe 2 – Effluents chimiques

Annexe 3 - Eaux de surface

Annexe 4 – Sols et eaux souterraines

Annexe 5 – Population et santé humaine

Annexe 6 - Biodiversité

SOMMAIRE

PRE	ESENTATION DE L'ANNEXE 3	5
1.	CONCENTRATIONS AMONT ET AVAL	6
1.1.	SOURCES DES DONNEES 1.1.1. Données d'entrée considérées pour l'analyse rétrospective de l'impact des rejets passés et actuels	6
1.2. 1.3.	RESULTATS : CONCENTRATIONS RETENUES	9 9
2.	DEBIT D'ETIAGE RETENU	14
3.	LIMITES DE QUALITE FIXEES PAR L'ARRETE DU 25 JANVIER 2010 MODIFIE	15
3.1.3.2.	ETAT ECOLOGIQUE DES COURS D'EAU 3.1.1. Paramètres physico-chimiques généraux 3.1.2. Polluants spécifiques de l'état écologique 3.1.3. Eléments de qualité biologique ETAT CHIMIQUE DES COURS D'EAU	15 16 16
4.	SEUILS DU LOGICIEL SEQ-EAU (VERSION 1)	19
5.	GRILLE DE QUALITE D'EAU DE L'AGENCE DE L'EAU RHIN-MEUSE	21
6.	RECAPITUALTIF DES VALEURS DE REFERENCE UTILISEES DANS L'EVALUATION SUBSTANCE PAR SUBSTANCE	22
7.	PNEC ET DONNEES ECOTOXICOLOGIQUES	24
7.1. 7.2. 7.3.	PNEC DU CUIVRE PNEC DU ZINC PNEC DE L'ACIDE BORIQUE	26
7.4.	DONNEES ECOTOXICOLOGIQUES REPERTORIEES POUR LES SUBSTANCES DONT LE RATIO EST INFERIEUR A 5 %	28

7.5. DONNEES ECOTOXICOLOGIQUES REPERTORIEES POUR LE CHROME30

TABLEAUX

Tableau a	Caractéristiques des suivis physico-chimiques dont sont issues les données d'entrée de concentration amont et aval utilisées pour l'analyse rétrospective	6
Tableau b	Caractéristiques des suivis physico-chimiques dont sont issues les données de concentration amont et aval pour l'analyse de l'impact des rejets de démantèlement	7
Tableau c	Concentrations amont et aval des paramètres généraux de qualité d'eau utilisées pour l'analyse rétrospective	9
Tableau d	Concentrations amont et aval des métaux (en fraction totale) utilisées pour l'analyse rétrospective	10
Tableau e	Concentrations amont et aval des substances potentiellement toxiques autres que les métaux utilisées pour l'analyse rétrospective	10
Tableau f	Concentrations amont des paramètres globaux de qualité d'eau utilisées pour l'analyse des rejets futurs	11
Tableau g	Concentrations amont en métaux totaux utilisées pour l'analyse des rejets futurs	12
Tableau h	Concentrations amont des substances potentiellement toxiques autres que les métaux utilisées pour l'analyse de l'impact des rejets futurs	13
Tableau i	Concentrations amont considérées comme nulles pour les substances potentiellement toxiques autres que les métaux utilisées pour l'analyse de l'impact des rejets futurs	13
Tableau j	Limites de classes de qualité pour les différents paramètres généraux de qualité des eaux	16
Tableau k	Valeurs de NQE pour les polluants spécifiques de l'état écologique	16
Tableau I	Valeurs inférieures des limites de classe en EQR pour l'IBD	17
Tableau m	Valeurs de NQE pour les substances de l'état chimique considérées	17
Tableau n	Valeurs impératives et valeurs guides fixées par l'article D. 211-10 pour les nitrites	18
Tableau o	Codes couleur des classes de qualité définies pour l'outil SEQ-Eau	19
Tableau p	Classes de qualité du SEQ-Eau (version 1) pour la fonction « potentialités biologiques »	20
Tableau q	Classes de qualité du SEQ-Eau (version 1) pour la fonction « qualité globale de l'eau »	20
Tableau r	Grille de qualité de l'Agence de l'Eau Rhin-Meuse	21
Tableau s	Valeurs de NQE du cuivre, du zinc, du chrome, du nickel et du plomb	22
Tableau t	Seuils et valeurs guides utilisées dans l'évaluation substance par substance (les valeurs retenues sont en gras)	23
Tableau u	Données écotoxicologiques disponibles pour le cuivre	25
Tableau v	Données écotoxicologiques disponibles pour le zinc	26
Tableau w	Données écotoxicologiques disponibles pour l'acide borique	27
Tableau x	Données écotoxicologiques aigües pour les autres substances concernées	29
Tableau y	Données écotoxicologiques disponibles pour le chrome total	30

PRESENTATION DE L'ANNEXE 3

Cette annexe présente les données d'entrée suivantes, relatives au milieu aquatique et utilisées dans le <u>Chapitre 4</u> :

- les concentrations amont et aval des substances considérées ;
- les grilles de qualité d'eau des eaux de surface :
 - l'arrêté du 25 janvier 2010 modifié par l'arrêté du 27 juillet 2018 qui intervient comme mise en application réglementaire des exigences de la Directive Cadre sur l'Eau, en précisant les indicateurs, les valeurs seuils et les modes de calcul pour chaque indicateur biologique, physico-chimique ou chimique identifié pour qualifier l'état des eaux ;
 - o l'article D. 211-10 du code de l'environnement qui fixe les valeurs impératives ou guides de qualité des eaux douces piscicoles ;
 - o les grilles de qualité des eaux du logiciel SEQ-Eau version 1 ;
 - o la grille de qualité des eaux de l'Agence Rhin-Meuse ;
- les PNEC (Predicted No Effect Concentration) et les données écotoxicologiques de référence.

. CONCENTRATIONS AMONT ET AVAL

1.1. SOURCES DES DONNEES

1.1.1. DONNEES D'ENTREE CONSIDEREES POUR L'ANALYSE RETROSPECTIVE DE L'IMPACT DES REJETS PASSES ET ACTUELS

Les concentrations amont et aval utilisées pour l'analyse rétrospective de l'impact des rejets chimiques liquides du CNPE sont issues de l'exploitation des résultats de la surveillance environnementale du CNPE assurée par EDF et disponible sur la période 2008-2017 (Cf. Tableau a).

Dans le cas de substances pour lesquelles aucune donnée n'est disponible (ou en nombre insuffisant) sur la période de 10 ans, les concentrations amont et aval sont calculées sur une période plus courte.

Typo	de suivi	Période	Saisonnalité des		Station amont	S	Station aval
туре	ue Sulvi	de suivi	campagnes	Libellé Localisation		Libellé	Localisation
environnementale	Physico- chimie	Janvier 2008 – décembre 2017	6 campagnes / an (une en hiver, une au printemps, une en automne et 3 en été)	Station A ¹	A environ 200 m à l'amont du rejet, en rive gauche du canal de force de l'usine hydroélectrique, à l'entrée du canal d'amenée	Station C ²	A environ 4,5 km en aval de la zone de rejet, en rive droite du Grand Canal d'Alsace
Surveillance envi	Chimie	Janvier 2016 – décembre 2017 ³	Trimestrielle	Station SMP Amont	A environ 7 m à l'amont du rejet, dans le canal de prise d'eau du site (rive gauche du Grand Canal d'Alsace)	Station SMP Aval	A environ 4,5 km en aval de la zone de rejet, en rive gauche du Grand Canal d'Alsace

Tableau a Caractéristiques des suivis physico-chimiques dont sont issues les données d'entrée de concentration amont et aval utilisées pour l'analyse rétrospective

¹ La station A a été déplacée en 2009. En 2008, la station A était légèrement plus en amont du CNPE.

² La station C a été déplacée en 2016. Avant 2016, la station C était située à environ 4,5 km en aval de la zone de rejet, en rive droite du Grand Canal d'Alsace (soit l'actuelle station B).

³ Les données de surveillance pour les paramètres chimiques ne sont disponibles qu'à partir de janvier 2016.

1.1.2. DONNEES D'ENTREE CONSIDEREES POUR L'ANALYSE DE L'IMPACT DES REJETS FUTURS

Les concentrations amont utilisées pour l'analyse des incidences des rejets chimiques liquides dans le cadre du démantèlement de l'INB n°75 sont issues de l'exploitation des résultats des suivis disponibles sur la période 2013-2017 du secteur d'étude : surveillance environnementale du CNPE de Fessenheim assurée par le CNPE et mesures anticipatrices supplémentaires réalisées par EDF.

Les caractéristiques des campagnes de suivi exploitées dans cette étude sont présentées dans le <u>Tableau b</u>.

Type	de suivi	Période de	Saisonnalité des	S	Station amont	Station aval		
Type	ue Sulvi	suivi	campagnes	Libellé	Localisation	Libellé	Localisation	
nnementale	Physico- chimie	Janvier 2013 – décembre 2017	6 campagnes / an (une en hiver, une au printemps, une en automne et 3 en été)	Station A	A environ 200 m à l'amont du rejet, en rive gauche du canal de force de l'usine hydroélectrique, à l'entrée du canal d'amenée	Station C ⁴	A environ 4,5 km en aval de la zone de rejet, en rive droite du Grand Canal d'Alsace	
Surveillance environnementale	Chimie	Janvier 2016 – décembre 2018 ⁵	Trimestrielle	Station SMP Amont	SMP prise d'eau du site		A environ 4,5 km en aval de la zone de rejet, en rive gauche du Grand Canal d'Alsace (en amont des rejets de la station d'épuration de Nambsheim)	
Mesures anticipatrices		Avril à novembre 2018	Campagnes bimensuelles	Station SMP Amont	A environ 70 m à l'amont du rejet, dans le canal de prise d'eau du site (rive gauche du Grand Canal d'Alsace)	Station SMP Aval	A environ 4,5 km en aval de la zone de rejet, en rive gauche du Grand Canal d'Alsace (en amont des rejets de la station d'épuration de Nambsheim)	

Tableau b Caractéristiques des suivis physico-chimiques dont sont issues les données de concentration amont et aval pour l'analyse de l'impact des rejets de démantèlement

Novembre 2020 Indice A

⁴ La station C a été déplacée en 2016. Avant 2016, la station C était située à environ 4,5 km en aval de la zone de rejet, en rive droite du Grand Canal d'Alsace (soit l'actuelle station B).

⁵ Les données de 2018 ont été utilisées afin de disposer de suffisamment de données d'entrées réparties sur l'année (au moins 10 mesures).

1.2. REGLES DE CALCUL

Les concentrations moyennes mensuelles, moyennes interannuelles et les percentiles 90 sont définis lorsque les données sont en nombre suffisant pour permettre leur calcul (plus de 10 valeurs pour le percentile 90).

La concentration moyenne mensuelle est établie par moyenne arithmétique des valeurs disponibles pour le mois considéré, sur la période d'étude. Lorsqu'aucune mesure n'est disponible pour un mois donné, la moyenne des concentrations mensuelles des mois adjacents est retenue. Dans ce cas, les valeurs de remplacement apparaissent en surligné vert dans les tableaux présentant les concentrations retenues.

La moyenne interannuelle est établie par moyenne arithmétique de l'ensemble des valeurs disponibles pour le paramètre considéré.

Le percentile 90 théorique est établi selon la règle dite des 90 %. Il correspond à une valeur mesurée, en-dessous de laquelle se trouvent 90 % des valeurs mesurées pour le paramètre considéré (méthode d'agrégation des résultats de qualité d'eau utilisée par le SEQ-Eau).

Lorsqu'une des valeurs de concentrations moyennes mensuelles dépasse la valeur du percentile 90 théorique, le percentile 90 retenu est pris égal à cette valeur moyenne mensuelle maximale. Dans ce cas, les tableaux présentant les concentrations retenues font apparaître en surligné rouge les percentiles 90 retenus et les valeurs moyennes mensuelles maximales correspondantes.

Le percentile retenu pour les MES fait exception à la règle du percentile 90 (théorique). En effet, pour ce paramètre, la règle de calcul retenue est basée sur un percentile 50, pour éviter de qualifier l'eau à partir d'événements pluvieux naturels, à caractère non exceptionnel, dont la fréquence d'apparition peut être supérieure à 10 %.

Dans le cas où toutes les valeurs mesurées sont inférieures à la limite de quantification ou qu'il n'existe pas de données pour cette substance, et qu'elle n'est pas naturellement présente dans le milieu aquatique, la concentration initiale est considérée comme nulle.

Lorsqu'il existe des valeurs inférieures et supérieures à la limite de quantification, les moyennes interannuelles ou mensuelles sont calculées en considérant comme égale à la limite de quantification les valeurs inférieures. Les valeurs mensuelles ainsi calculées apparaissent en jaune dans les tableaux.

1.3. RESULTATS: CONCENTRATIONS RETENUES

1.3.1. CONCENTRATIONS RETENUES POUR L'ANALYSE RETROSPECTIVE DE L'IMPACT DES REJETS

D/ to to		Amont (st	ation A)	Aval (sta	ation C)
Période considérée	Paramètres	Concentration moyenne (mg/L)*	Percentile 90 (mg/L)**	Concentration moyenne (mg/L) [*]	Percentile 90 (mg/L) [™]
	Ammonium	1,9.10 ⁻¹	3,9.10 ⁻¹	1,9.10 ⁻¹	3,6.10 ⁻¹
	Nitrates	5,6.10 ⁰	$8,0.10^{0}$	5,6.10 ⁰	8,2.10 ⁰
	Nitrites	1,1.10 ⁻¹	1,6.10 ⁻¹	9,9.10-2	3,5.10 ⁻¹
	NTK	6,5.10 ⁻¹	1,0.100	6,9.10 ⁻¹	9,9.10 ⁻¹
	Phosphates	1,3.10 ⁻¹	3,2.10 ⁻¹	1,2.10 ⁻¹	2,6.10 ⁻¹
	Phosphore total	4,9.10 ⁻²	1,0.10 ⁻¹	4,9.10 ⁻²	8,2.10-2
	Calcium	5,1.10 ¹	5,8.10 ¹	5,1.10 ¹	5,8.10 ¹
	Magnésium	7,1.10 ⁰	8,7.10 ⁰	7,2.10 ⁰	8,3.10 ⁰
	Potassium	1,7.10 ⁰	$2,1.10^{0}$	1,7.10 ⁰	2,0.10 ⁰
Janvier 2008	Hydroxydes	1,0.10 ⁰	1,0.10 ⁰	1,0.10 ⁰	1,0.10 ⁰
Janvier 2006	Hydrogénocarbonates	1,6.10 ²	1,9.10 ²	1,6.10 ²	1,9.10 ²
décembre 2017	Carbonates	1,0.10 ⁰	1,0.10 ⁰	1,0.10 ⁰	1,0.10 ⁰
2017	Sulfates	2,6.10 ¹	2,9.10 ¹	2,6.10 ¹	2,9.10 ¹
	Chlorures	1,2.10 ¹	1,9.10 ¹	1,2.10 ⁻¹	1,8.10 ¹
	Sodium	8,5.10 ⁰	1,2.10 ¹	8,4.10 ⁰	1,2.10 ¹
	Silice dissoute	3,4.10 ⁰	5,0.10 ⁰	3,4.10 ⁰	5,2.10 ⁰
	Carbone organique dissous (mesuré à partir de 2016)	2,2.100	2,6.10 ⁰	2,2.100	2,6.100
	Oxygène dissous	9,5.10 ⁰	1,2.10 ¹	9,2.10 ⁰	1,2.10 ¹
	DCO	7,4.10 ⁰	1,1.10 ¹	7,1.10 ⁰	1,1.10 ¹
	DBO ₅	2,4.100	3,0.100	2,3.100	3,0.100
	MES ⁶	1,5.10 ¹	9,0.100	1,7.10 ¹	1,0.10 ¹

^{*}Les moyennes mensuelles surlignées en jaune ont été calculées avec des valeurs inférieures à la LQ (remplacées par la valeur de la LQ)

Tableau c Concentrations amont et aval des paramètres généraux de qualité d'eau utilisées pour l'analyse rétrospective

_

^{**} Les percentiles 90 surlignés en rouge correspondent aux valeurs maximales des concentrations moyennes mensuelles

⁶ Pour les MES le percentile théorique est le percentile 50 conformément au SEQ-Eau.

Période	Paramètre	AMONT (Station – station SM		· ·	n 0KRS 400 AR – SMP aval)
considérée	raramono	Concentration moyenne [*] (μg/L)	Percentile 90 (μg/L) ^{**}	Concentration moyenne [*] (μg/L)	Percentile 90 (μg/L) ^{:*}
	Aluminium total	2,2.10 ²	$6,2.10^2$	1,5.10 ²	$5,9.10^{2}$
	Aluminium dissous	3,9.10 ¹	1,3.10 ²	3,3.10 ¹	1,0.10 ²
	Chrome total	5,0.10 ⁰	5,0.10 ⁰	5,0.10 ⁰	5,0.10°
	Chrome dissous	1,2.10 ⁰	$2,3.10^{0}$	1,1.10 ⁰	2,0.10 ⁰
	Cuivre total	5,0.10 ⁰	$5,0.10^{0}$	5,1.10 ⁰	$6,0.10^{0}$
	Cuivre dissous	2,8.10 ⁰	5,0	2,9.10 ⁰	5,8
Janvier 2016	Fer total	2,8.10 ²	$6,6.10^2$	1,5.10 ²	5,6.10 ²
_	Fer dissous	4,9.10 ¹	1,1.102	3,9.10 ¹	9,7.10 ¹
décembre 2017	Manganèse total	4,2.10 ¹	1,4.10 ²	1,9.10 ¹	7,3.10 ¹
	Manganèse dissous	4,6.10 ⁰	9,3.10°	4,8.10 ⁰	9,0.100
	Nickel total	5,0.10°	5,0.10 ⁰	5,0.10 ⁰	$5,0.10^{0}$
	Nickel dissous	1,4.10 ⁰	3,0	1,6.10 ⁰	2,6
	Plomb total	2,0.10 ⁰	6,0.10 ⁰	1,8.10 ⁰	$7,0.10^{0}$
	Plomb dissous	6,5.10 ⁻¹	1,0.100	6,1.10 ⁻¹	1,0.10 ⁰
	Zinc total	6,6.10 ⁰	1,6.10 ¹	6,1.10 ⁰	9,0.10 ⁰
	Zinc dissous	4,5.10 ⁰	1,6.10 ¹	4,9.10 ⁰	1,4.10 ¹

^{*} Les moyennes mensuelles surlignées en jaune ont été calculées avec des valeurs inférieures à la LQ (remplacées par la valeur de la LQ)

Tableau d Concentrations amont et aval des métaux (en fraction totale) utilisées pour l'analyse rétrospective

Période	Paramètre	AMONT (Statio	n SMP amont)	AVAL (Station SMP aval)		
considérée		Concentration moyenne* (µg/L)	Percentile 90 (μg/L) ^{**}	Concentration moyenne* (µg/L)	Percentile 90 (μg/L) ^{**}	
Janvier 2016 – décembre 2017	Bore	1,6.10 ¹	2,5.10 ¹	1,5.10 ¹	2,3.10 ¹	
	Détergents anioniques	1,3.10 ¹	1,8.10 ¹	1,2.10 ¹	2,1.10 ¹	

Les moyennes mensuelles surlignées en jaune ont été calculées avec des valeurs inférieures à la LQ (remplacées par la valeur de la LQ)

Tableau e Concentrations amont et aval des substances potentiellement toxiques autres que les métaux utilisées pour l'analyse rétrospective

^{**} Il s'agit des valeurs maximales car le nombre de valeurs (8 mesures disponibles) est insuffisant pour calculer des percentiles

[&]quot;Il s'agit des valeurs maximales car le nombre de valeurs (8 mesures disponibles) est insuffisant pour calculer des percentiles

1.3.2. CONCENTRATIONS RETENUES POUR L'ANALYSE DE L'IMPACT DES REJETS FUTURS

Concentrat	ions amont	Ammonium	Nitrates	Nitrites	NTK	Sodium	DCO	MES ⁷
Ur	nité	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Origine de	s données	Surveillance	Surveillance	Surveillance	Surveillance	Surveillance	Surveillance	Surveillance
Nombre o	de valeurs	36	36	36	36	24	36	36
IV	lin	3,2.10-2	3,4.100	1,4.10-2	5,0.10 ⁻¹	5,7.10 ⁰	5,0.100	2,0.100
M	ах	5,7.10 ⁻¹	8,3.10 ⁰	2,2.10-1	1,4.10 ⁰	1,2.10 ¹	1,8.10 ¹	5,0.10 ¹
	enne nnuelle [*]	2,4.10-1	5,6.100	1,0.10-1	5,9.10 ⁻¹	8,4.100	6,9.10°	9,2.100
Rang per	centile 90	33	33	33	33	22	33	19
Percentile	90 théorique	4,3.10 ⁻¹	8,0.100	1,6.10 ⁻¹	9,0.10 ⁻¹	1,0.10 ¹	1,0.10 ¹	5,0.100
Percentile	90 retenu**	4,3.10 ⁻¹	8,0.100	1,6.10 ⁻¹	9,0.10 ⁻¹	$1,2.10^{1}$	1,0.10 ¹	5,0.100
	Janvier	1,7.10 ⁻¹	8,0.100	1,3.10 ⁻¹	5,0.10 ⁻¹	1,1.10 ¹	5,0.100	6,0.10 ⁰
<u>o</u>	Février	2,8.10 ⁻¹	8,0.100	1,6.10 ⁻¹	5,0.10 ⁻¹	1,2.10 ¹	5,7.100	3,3.100
le le	Mars	2,2.10 ⁻¹	$7,3.10^{0}$	1,4.10 ⁻¹	6,7.10 ⁻¹	$9,5.10^{0}$	$6,3.10^{\circ}$	$6,5.10^{\circ}$
nsı	Avril	1,7.10 ⁻¹	6,7.10 ⁰	1,2.10 ⁻¹	8,3.10 ⁻¹	8,6.10 ⁰	7,0.100	9,7.100
ne! •	Mai	2,4.10 ⁻¹	6,0.10 ⁰	1,1.10 ⁻¹	6,0.10 ⁻¹	8,0.100	9,2.100	1,3.10 ¹
itration me moyenne'''	Juin	3,2.10 ⁻¹	5,4.10 ⁰	8,4.10-2	5,7.10 ⁻¹	8,3.100	1,0.10 ¹	2,5.10 ¹
atio ye	Juillet	2,9.10 ⁻¹	4,7.100	8,5.10-2	5,0.10 ⁻¹	7,6.10 ⁰	5,6.100	9,4.100
itra mo	Août	2,1.10 ⁻¹	4,7.100	1,3.10 ⁻¹	7,4.10 ⁻¹	7,1.100	6,2.100	5,8.10 ⁰
Concentration mensuelle moyenne***	Septembre	2,8.10 ⁻¹	4,2.100	5,5.10 ⁻²	5,2.10 ⁻¹	7,9.100	7,0.100	4,6.10 ⁰
ou	Octobre	1,8.10 ⁻¹	5,2.100	1,0.10 ⁻¹	5,7.10 ⁻¹	8,4.100	7,0.100	1,0.10 ¹
<u>0</u>	Novembre	1,0.10 ⁻¹	6,1.10 ⁰	6,2.10-2	5,0.10 ⁻¹	$8,4.10^{0}$	5,5.10 ⁰	3,5.100
	Décembre	1,3.10-1	7,0.100	9,6.10-2	5,0.10 ⁻¹	$1,1.10^{1}$	5,3.100	4,8.100

^{*} Les moyennes mensuelles surlignées en jaune ont été calculées avec des valeurs inférieures à la LQ (remplacées par la valeur de la LQ)

Novembre 2020 Indice A

^{*}Les percentiles 90 retenus surlignés en rouge correspondent à la valeur maximale des concentrations moyennes mensuelles

[&]quot;Les moyennes mensuelles surlignées en vert prennent en compte les valeurs disponibles des mois adjacents (n-1 et n+1) du fait de l'absence ou de l'insuffisance des données disponibles pour le mois concerné

Tableau f Concentrations amont des paramètres globaux de qualité d'eau utilisées pour l'analyse des rejets futurs

⁷ Pour les MES le percentile théorique est le percentile 50 conformément au SEQ-Eau.

Con	acentrations amont	Aluminium total	Aluminium dissous	Chrome total	Chrome dissous	Cuivre total	Cuivre dissous	Fer total	Fer dissous	Manganèse total	Manganèse dissous	Nickel total	Nickel dissous	Plomb total	Plomb dissous	Zinc total	Zinc dissous
	Unité	A	Α̈́	Ch		บี	J		μg		Ĕ	Ż	J	ā		Z	Zin
	rigine des données	Surveillance	Surveillance	Mesures anticipatrices	Mesures anticipatrices	Mesures anticipatrices	Surveillance	Surveillance	Surveillance	Surveillance	Mesures anticipatrices	Mesures anticipatrices	Mesures anticipatrices	Mesures anticipatrices	Mesures anticipatrices	Mesures anticipatrices	Surveillance
	ombre de valeurs	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
	Min	2,6. 10 ¹	5,0. 10 ⁰	1,7. 10 ⁻¹	1,0. 10 ⁻¹	8,0. 10 ⁻¹	5,0. 10 ⁻¹	2,9. 10 ¹	1,0. 10 ¹	4,0. 10 ⁰	2,0. 10 ⁻¹	4,0. 10 ⁻¹	2,0. 10 ⁻¹	2,0. 10 ⁻¹	1,8. 10 ⁻¹	1,0. 10 ⁰	1,0. 10 ⁰
	Max	6,2. 10 ² 1,6.	1,3. 10 ²	9,0. 10 ⁻¹	8,0. 10 ⁻¹	3,2. 10 ⁰	5,0. 10 ⁰	6,6. 10²	1,1. 10 ²	1,4. 10 ²	6,0. 10 ⁰	2,1. 10 ⁰	6,0. 10 ⁻¹	6,0. 10 ⁻¹	6,1. 10 ⁻¹	5,0. 10 ⁰	1,6. 10 ¹
int	Moyenne interannuelle*		3,0. .10 ¹	4,9. 10 ⁻¹	2,3. 10 ⁻¹	1,3. 10 ⁰	2,4. 10 ⁰	2,0. 10 ²	4,0. 10 ¹	3,0. 10 ¹	9,3. 10 ⁻¹	8,8. 10 ⁻¹	4,3. 10 ⁻¹	4,0. 10 ⁻¹	3,7. 10 ⁻¹	1,5. 10 ⁰	4,4. 10 ⁰
Ran	Rang percentile 90		11	11	11	11	11	11	11	11	11	11	11	11	11	11	11
	rcentile 90 héorique	2,9. 10 ²	6,0. 10 ¹	8,5. 10 ⁻¹	3,0. 10 ⁰¹	2,0. 10 ⁰	4,0. 10 ⁰	5,7. 10 ²	8,4. 10 ¹	6,7. 10 ¹	1,2. 10 ⁰	1,2. 10 ⁰	6,0. 10 ⁻¹	6,0. 10 ⁻¹	5,3. 10 ⁻¹	3,0. 10 ⁰	4,8. 10 ⁰
	rcentile 90 retenu**	3,0. 10 ²	6,6.	8,8. 10 ⁻¹	5,0. 10 ⁻¹	2,3 .10 ⁰	4,0. 10 ⁰	5,7. 10²	8,4. 10 ¹	6,7. 10 ¹	6,0. 10 ⁰	2,1. 10 ⁰	6,0. 10 ⁻¹	6,0. 10 ⁻¹	6,1. 10 ⁻¹	3,0. 10 ⁰	1,0. 10 ¹
	Janvier	1,2. 10 ²	8,7. 10 ⁰	2,5. 10 ⁻¹	2,4. 10 ⁻¹	9,0. 10 ⁻¹	1,6. 10 ⁰	2,4. 10²	1,4. 10 ¹	5,0. 10 ¹	1,2. 10 ⁰	6,0. 10 ⁻¹	3,0. 10 ⁻¹	3,0. 10 ⁻¹	6,1. 10 ⁻¹	1,0. 10 ⁰	4,2. 10 ⁰
	Février	1,2. 10 ²	8,7. 10 ⁰	3,0. 10 ⁻¹	3,0. 10 ⁻¹	9,0. 10 ⁻¹	1,6. 10 ⁰	2,4. 10 ²	1,4. 10 ¹	5,0. 10 ¹	6,0. 10 ⁰	5,0. 10 ⁻¹	2,0. 10 ⁻¹	2,0. 10 ⁻¹	4,0. 10 ⁻¹	1,0. 10 ⁰	4,2. 10 ⁰
ne***	Mars	1,2. 10 ²	8,7. 10 ⁰	3,0. 10 ⁻¹	3,0. 10 ⁻¹	9,0. 10 ⁻¹	1,6. 10 ⁰	2,4. 10 ²	1,4. 10 ¹	5,0. 10 ¹	6,0. 10 ⁰	5,0. 10 ⁻¹	2,0. 10 ⁻¹	2,0. 10 ⁻¹	4,0. 10 ⁻¹	1,0. 10 ⁰	4,2. 10 ⁰
oyen	Avril	3,0. 10 ²	6,6. 10 ¹	3,0. 10 ⁻¹	3,0. 10 ⁻¹	9,0. 10 ⁻¹	3,3. 10 ⁰	3,4. 10 ²	6,8. 10 ¹	4,6. 10 ¹	6,0. 10 ⁰	5,0. 10 ⁻¹	2,0. 10 ⁻¹	2,0. 10 ⁻¹	4,0. 10 ⁻¹	1,0. 10 ⁰	3,3. 10 ⁰
ensuelle moyenne***	Mai	3,0. 10 ²	6,6. 10 ¹	7,5. 10 ⁻¹	1,8. 10 ⁻¹	1,6. 10 ⁰	3,3. 10 ⁰	3,4. 10 ²	6,8. 10 ¹	4,6. 10 ¹	6,5. 10 ⁻¹	9,5. 10 ⁻¹	5,0. 10 ⁻¹	4,7. 10 ⁻¹	3,7. 10 ⁻¹	3,0. 10 ⁰	3,3. 10 ⁰
nsne	Juin	3,0. 10 ²	6,6. 10 ¹	8,8. 10 ⁻¹	5,0. 10 ⁻¹	2,3. 10 ⁰	3,3. 10 ⁰	3,4. 10 ²	6,8. 10 ¹	4,6. 10 ¹	4,5. 10 ⁻¹	1,0. 10 ⁰	3,7. 10 ⁻¹	5,5. 10 ⁻¹	3,6. 10 ⁻¹	2,1. 10 ⁰	3,3. 10 ⁰
n me	Juillet	1,6. 10 ²	3,0. 10 ¹	4,2. 10 ⁻¹	1,7. 10 ⁻¹	9,0. 10 ⁻¹	2,8. 10 ⁰	1,3. 10 ²	5,5. 10 ¹	1,4. 10 ¹	2,0. 10 ⁻¹	6,0. 10 ⁻¹	4,0. 10 ⁻¹	4,0. 10 ⁻¹	4,0. 10 ⁻¹	1,0. 10 ⁰	7,2. 10 ⁰
Concentration m	Août	9,9. 10 ¹	2,9. 10 ¹	3,9. 10 ⁻¹	1,4. 10 ⁻¹	9,5. 10 ⁻¹	2,3. 10 ⁰	8,1. 10 ¹	6,0. 10 ¹	1,1. 10 ¹	2,0. 10 ⁻¹	5,5. 10 ⁻¹	4,0. 10 ⁻¹	3,5. 10 ⁻¹	2,4. 10 ⁻¹	1,1. 10 ⁰	1,0. 10 ¹
ncen	Septembre	9,9. 10 ¹	2,9. 10 ¹	3,4. 10 ⁻¹	1,3. 10 ⁻¹	1,1. 10 ⁰	2,3. 10 ⁰	8,1. 10 ¹	6,0. 10 ¹	1,1. 10 ¹	3,0. 10 ⁻¹	2,1. 10 ⁰	6,0. 10 ⁻¹	3,4. 10 ⁻¹	5,3 .10 ⁻¹	1,0. 10 ⁰	1,0. 10 ¹
Col	Octobre	5,8. 10 ¹	1,4. 10 ¹	2,5. 10 ⁻¹	1,5. 10 ⁻¹	8,5. 10 ⁻¹	2,0. 10 ⁰	7,6.	2,5. 10 ¹	9,0. 10 ⁰	4,5. 10 ⁻¹	8,6. 10 ⁻¹	5,4. 10 ⁻¹	4,0. 10 ⁻¹	2,8. 10 ⁻¹	1,1. 10 ⁰	2,8. 10 ⁰
	Novembre	5,8. 10 ¹	1,4. 10 ¹	2,5. 10 ⁻¹	2,4. 10 ⁻¹	9,0. 10 ⁻¹	2,0. 10 ⁰	7,6. 10 ²	2,5. 10 ¹	9,0. 10 ⁰	1,2. 10 ⁰	6,0. 10 ⁻¹	3,0. 10 ⁻¹	3,0. 10 ⁻¹	6,1. 10 ⁻¹	1,0. 10 ⁰	2,8. 10 ⁰
	Décembre	5,8. 10 ¹	1,4. 10 ¹	2,5. 10 ⁻¹	2,4. 10 ⁻¹	9,0. 10 ⁻¹	2,0. 10 ⁰	7,6. 10 ¹	2,5. 10 ¹	9,0. 10°	1,2. 10 ⁰	6,0. 10 ⁻¹	3,0. 10 ⁻¹	3,0. 10 ⁻¹	6,1. 10 ⁻¹	1,0. 10 ⁰	2,8. 10 ⁰

^{*} Les moyennes mensuelles surlignées en jaune ont été calculées avec des valeurs inférieures à la LQ (remplacées par la valeur de la LQ).
**Les percentiles 90 retenus surlignés en jouge correspondent à la valeur maximale des concentrations moyennes mensuelles.

Concentrations amont en métaux totaux utilisées pour l'analyse des rejets futurs Tableau g

^{***} Les moyennes mensuelles surlignées en vert prennent en compte les valeurs disponibles des mois adjacents (n-1 et n+1) du fait de l'absence ou de l'insuffisance des données disponibles pour le mois concerné.

Coi	ncentrations amont	amont Bore total borique ⁸ anioniques		Détergents anioniques	Détergents cationiques	Détergents non ioniques	Lithium	Lithine
	Unité	μg/L	μg/L	μg/L	mg/L	mg/L	μg/L	μg/L
	rigine des données	Surveillance	Calcul	Surveillance	Mesures anticipatrices	Mesures anticipatrices	Mesures anticipatrices	Calcul
Nomi	bre de valeurs	12	12	12	12	12	12	12
	Min	1,1.10 ¹	6,3.10 ¹	1,0.10 ¹	1,0.10 ⁻¹	1,0.10 ⁻¹	< 4,0.10 ⁰	13,8.10 ⁰
	Max	2,5.10 ¹	1,4.10 ²	1,8.10 ¹	2,0.10-1	3,0.10-1	< 4,0.10 ⁰	13,8.100
	Moyenne terannuelle*	1,6.10 ¹	9,4.10 ¹	1,2.10 ¹	1,1.10 ⁻¹	1,8.10 ⁻¹	< 4,0.10 ⁰	13,8.100
Rang	percentile 90	11	11	11	11	11	11	11
1	ercentile 90 théorique	2,2.10 ¹	1,3.10 ²	1,6.10 ¹	1,2.10 ⁻¹	2,0.10 ⁻¹	< 4,0.100	1,4.10 ¹
Pe	ercentile 90 retenu**	2,4.10 ¹	1,3.10 ²	1,6.10 ¹	2,0.10 ⁻¹	3,0.10 ⁻¹	< 4,0.10 ⁰	1,4.10 ¹
	Janvier	1,3.10 ¹	7,6.10 ¹	1,5.10 ¹	1,0.10 ⁻¹	2,0.10 ⁻¹	< 4,0.10 ⁰	1,4.10 ¹
1	Février	1,3.10 ¹	7,6.10 ¹	1,5.10 ¹	2,0.10 ⁻¹	2,0.10 ⁻¹	< 4,0.10 ⁰	1,4.10 ¹
nne	Mars	1,3.10 ¹	7,6.10 ¹	1,5.10 ¹	2,0.10 ⁻¹	2,0.10 ⁻¹	< 4,0.10 ⁰	1,4.10 ¹
noye	Avril	1,7.10 ¹	9,5.10 ¹	1,2.10 ¹	2,0.10 ⁻¹	2,0.10 ⁻¹	< 4,0.100	1,4.10 ¹
le n	Mai	1,7.10 ¹	9,5.10 ¹	1,2.10 ¹	1,1.10 ⁻¹	1,0.10 ⁻¹	< 4,0.10 ⁰	1,4.10 ¹
ensı	Juin	1,6.10 ¹	9,3.10 ¹	1,2.10 ¹	1,0.10 ⁻¹	2,0.10 ⁻¹	< 4,0.10 ⁰	1,4.10 ¹
mer	Juillet	2,1.10 ¹	1,2.10 ²	1,0.10 ¹	1,0.10-1	3,0.10-1	< 4,0.10 ⁰	1,4.10 ¹
tion	Août	2,4.10 ¹	1,3.10 ²	1,2.10 ¹	1,0.10-1	1,5.10 ⁻¹	< 4,0.10 ⁰	1,4.10 ¹
Concentration mensuelle moyenne***	Septembre	2,4.10 ¹	1,3.10 ²	1,2.10 ¹	1,0.10 ⁻¹	2,0.10-1	< 4,0.10 ⁰	1,4.10 ¹
ouce	Octobre	1,5.10 ¹	8,6.10 ¹	1,1.10 ¹	1,0.10 ⁻¹	2,0.10 ⁻¹	< 4,0.100	1,4.10 ¹
ပိ	Novembre	1,5.10 ¹	8,6.10 ¹	1,1.10 ¹	1,0.10 ⁻¹	2,0.10 ⁻¹	< 4,0.100	1,4.10 ¹
	Décembre	1,5.10 ¹	8,6.10 ¹	1,1.10 ¹	1,0.10 ⁻¹	2,0.10 ⁻¹	< 4,0.10 ⁰	1,4.10 ¹

^{*} Les moyennes mensuelles surlignées en <mark>jaune</mark> ont été calculées avec des valeurs inférieures à la LQ (remplacées par la valeur de la LQ).

Tableau h Concentrations amont des substances potentiellement toxiques autres que les métaux utilisées pour l'analyse de l'impact des rejets futurs

Substances	Origine des données	Nombre de valeurs	Période disponible	Justification
Hydrocarbures totaux	Campagne de mesures anticipatrices	12	Avril à Novembre 2018	Les résultats sont systématiquement inférieurs à la limite de quantification

Tableau i Concentrations amont considérées comme nulles pour les substances potentiellement toxiques autres que les métaux utilisées pour l'analyse de l'impact des rejets futurs

Novembre 2020 Indice A

^{**}Les percentiles 90 retenus surlignés en rouge correspondent à la valeur maximale des concentrations moyennes mensuelles.

Les moyennes mensuelles surlignées en vert prennent en compte les valeurs disponibles des mois adjacents (n-1 et n+1) du fait de l'absence ou de l'insuffisance des données disponibles pour le mois concerné.

⁸ Les valeurs indiquées pour l'acide borique ont été calculées sur la base des données mesurées pour le bore.

2. DEBIT D'ETIAGE RETENU

Le débit d'étiage d'un cours d'eau est le débit minimum calculé sur un pas de temps donné en période de basses eaux. Ainsi, pour une année donnée, on peut définir plusieurs débits d'étiage et, sur plusieurs années, on peut associer statistiquement les débits d'étiage à différentes fréquences de retour. On détermine ainsi le QMNA5 (débit moyen mensuel de fréquence quinquennale) et le VCN3 – 10 ans (débit moyen journalier minimal sur 3 jours consécutifs pour une période de retour sur 10 ans), représentatif d'un étiage sévère.

Les débits d'étiage reconstitués dans le Grand Canal d'Alsace sur la base des débits d'étiage mesurés à Kembs (auxquels sont soustraits le débit réservé dans le vieux Rhin) sont les suivants :

- VCN3 10 ans = 314 m³/s (débit reconstitué dans le Grand Canal d'Alsace);
- QMNA5 = 420 m³/s (débit reconstitué dans le Grand Canal d'Alsace).

Il existe, selon les cours d'eau, des dispositions locales (SDAGE, SAGE, conventions nationales ou internationales, débit réservé, etc.) qui définissent des débits minimums de gestion du cours d'eau qui correspondent alors à un débit d'étiage sévère. Le SDAGE Rhin-Meuse 2016-2021 a ainsi défini un débit seuil de crise (DCR - Débit de Crise Renforcé) d'une valeur de 254 m³/s à la station de Lauterbourg (sur le Rhin Supérieur, située à environ 140 km en aval du CNPE).

La décision n°2016-DC-0551 de l'ASN du 29 mars 2016 fixant les prescriptions relatives aux modalités de prélèvement et de consommation d'eau, de rejets d'effluents et de surveillance de l'environnement du CNPE de Fessenheim fixe un débit minimum en dessous duquel les rejets d'effluents radioactifs liquides ne peuvent être effectués. Ce seuil est fixé à 200 m³/s dans le Grand Canal d'Alsace.

Le débit d'étiage représentatif, à l'aval de l'INB n°75, pris en compte pour l'évaluation de l'incidence du projet sur les eaux de surface est donc fixé à 200 m³/s.

3. LIMITES DE QUALITE FIXEES PAR L'ARRETE DU 25 JANVIER 2010 MODIFIE

Pour les paramètres considérés, les valeurs seuils définies dans l'arrêté du 25 janvier 2010 modifié par l'arrêté du 27 juillet 2018 relatif aux méthodes et critères d'évaluation de l'état écologique, de l'état chimique et du potentiel écologique des eaux de surface sont présentées ci-après.

3.1. ETAT ECOLOGIQUE DES COURS D'EAU

3.1.1. PARAMETRES PHYSICO-CHIMIQUES GENERAUX

Selon la Directive Cadre sur l'Eau n°2000/60/CE du 23 octobre 2000 (DCE), les éléments physicochimiques généraux interviennent essentiellement comme facteurs explicatifs des conditions biologiques.

Les critères de qualité des paramètres physico-chimiques étudiés sont définis en comparant les percentiles 90 des chroniques de données étudiées ou des percentiles 10 (pour l'oxygène dissous, le taux de saturation d'oxygène dissous et le pH minimum) avec les valeurs de référence définies dans l'arrêté du 25 janvier modifié. Les règles de calcul (percentile 10 et percentile 90 des mesures) s'effectuent selon la formule du SEQ-Eau.

Le <u>Tableau</u> j fournit, pour les paramètres généraux de qualité des eaux de surface, les limites de classes de qualité définies par l'arrêté du 25 janvier 2010 modifié.

	Critères de qualité								
Paramètres par élément de qualité	Qualité très bonne / Bonne	Qualité bonne / Moyenne	Qualité moyenne / Médiocre	Qualité médiocre / mauvaise					
Oxygène dissous (mg O ₂ /L)	8	6	4	3					
Taux de saturation en O ₂ dissous (%)	90	70	50	30					
DBO ₅ (mg O ₂ /L)	3	6	10	25					
Eaux cyprinicoles – Température (°C)	24	25,5	27	28					
PO ₄ ³⁻ (mg PO ₄ ³⁻ /L)	0,1	0,5	1	2					
Phosphore total (mg P/L)	0,05	0,2	0,5	1					
NH ₄ = (mg/L)	0,1	0,5	2	5					
NO_2^- (mg/L)	0,1	0,3	0,5	1					
NO ₃ - (mg/L)	10	50	*	*					
pH minimum	6,5	6	5,5	4,5					
pH maximum	8,2	9	9,5	10					

Tableau j Limites de classes de qualité pour les différents paramètres généraux de qualité des eaux

3.1.2. POLLUANTS SPECIFIQUES DE L'ETAT ECOLOGIQUE

L'arrêté du 25 janvier 2010 modifié définit une liste de polluants spécifiques de l'état écologique et associe à ces substances des Normes de Qualité Environnementales (NQE) à respecter.

Les NQE établies pour les substances de l'état écologique sont exprimées en moyenne annuelle. Le <u>Tableau k</u> présente les NQE exploitées dans le <u>Chapitre 4</u>.

	NQE Moyenne Annuelle (μg/L)	NQE Concentration Maximale Admissible (μg/L)
Chrome	Fond géochimique + 3,4 (Cr dissous)	Absence de seuil réglementaire
Cuivre	Fond géochimique + 1 (Cu dissous biodisponible)	Absence de seuil réglementaire
Zinc	Fond géochimique + 7,8 (Zn dissous biodisponible)	Absence de seuil réglementaire

Tableau k Valeurs de NQE pour les polluants spécifiques de l'état écologique

Pour les métaux et leurs composés, il est possible de tenir compte des concentrations de fond naturelles lors de l'évaluation des résultats obtenus au regard des NQE.

3.1.3. ELEMENTS DE QUALITE BIOLOGIQUE

En complément des éléments physico-chimique généraux, la qualité écologique des masses d'eau est évaluée grâce à des éléments de qualité biologique. Pour les cours d'eau, les éléments à prendre en compte sont :

- la flore aquatique, à l'aide :
 - o du phytobenthos (Indice Biologique Diatomées IBD);
 - o des macrophytes (Indice Biologique Macrophytes en Rivière IBMR) ;
 - o du phytoplancton (indice en cours de développement);

- la faune benthique invertébrée à l'aide de l'Indice Biologique Global Normalisée (IBGN);
- l'Ichtyofaune à l'aide de l'Indice Poisson en Rivière (IPR).

Les valeurs seuils pour une bonne qualité sont fixées de manière à permettre le bon fonctionnement de l'écosystème.

Seul le phytobenthos (IBD) est exploitable dans le cadre de cette analyse. L'indice Poisson Rivière (IPR), calculé en 2016 n'est pas adapté à un milieu aussi artificiel que le Grand Canal d'Alsace. L'IPR+9, calculé depuis 2017, n'est pas analysé car il n'y a pas suffisamment de données.

Le calcul des indices et les classes de qualité correspondantes sont définis selon les hydroécorégions, le rang de Strahler¹⁰ et/ou la taille du bassin versant : dans le cas de Fessenheim, on considère que le Grand Canal d'Alsace possède la même typologie que le Vieux Rhin, c'est-à-dire un type TTGA (Très Très Grand fleuve Alpin) et dont le bassin versant est supérieur à 10 000 km².

L'Indice Biologique Diatomées utilisé est l'IBD, établi selon la norme AFNOR NF T 90-354. Le Tableau I indique les valeurs inférieures des limites de classe, en Ratio de Qualité Ecologique (EQR).

	Très bon / Bon	Bon / Moyen	Moyen / Médiocre	Médiocre / Mauvais
IBD en EQR	0,92	0,76	0,52	0,26

Tableau I

Valeurs inférieures des limites de classe en EQR pour l'IBD

La moyenne des indices obtenus (en EQR) à partir des données acquises est comparée aux limites de classe indiquées dans le Tableau I. La note en EQR se calcule via la formule :

Note en EQR = (note observée - note minimale du type) / (note de référence du type - note minimale du type).

Avec, pour le Grand Canal d'Alsace à Fessenheim, comme note de référence : 19,1 et comme note minimale: 1 selon la typologie TTGA.

ETAT CHIMIQUE DES COURS D'EAU

L'arrêté du 25 janvier 2010 modifié définit une liste de polluants spécifiques de l'état chimique et associe à ces substances des Normes de Qualité Environnementales (NQE) à respecter.

Les NQE établies pour les substances de l'état chimique sont exprimées en moyenne annuelle et en concentrations maximales admissibles pour le nickel et le plomb. Le Tableau m donne les NQE exploitées dans le Chapitre 4.

	NQE Moyenne Annuelle (μg/L)	NQE Concentration Maximale Admissible (μg/L)
Plomb	Fond géochimique + 1,2 (Pb dissous biodisponible)	Fond géochimique + 14 (Pb dissous)
Nickel	Fond géochimique + 4 (Ni dissous biodisponible)	Fond géochimique + 34 (Ni dissous)

Tableau m Valeurs de NQE pour les substances de l'état chimique considérées

⁹ Nouvel indice poisson rivière.

¹⁰ Le rang de Strahler d'un bassin versant correspond à l'ordre du drain principal à l'exutoire.

Pour les métaux et leurs composés, il est possible de tenir compte des concentrations de fond naturelles lors de l'évaluation des résultats obtenus au regard des NQE.

L'article D. 211-10 du code de l'environnement fixe des objectifs de qualité des eaux douces ayant besoin d'être protégées ou améliorées pour être aptes à la vie des poissons.

Le <u>Tableau n</u> présente les valeurs fixées par cet article pour les substances concernées.

	Valeur impérative	Valeur guide
Nitrites (mg/L)	-	0,03

Tableau n Valeurs impératives et valeurs guides fixées par l'article D. 211-10 pour les nitrites

4. SEUILS DU LOGICIEL SEQ-EAU (VERSION 1)

Le SEQ-Eau¹¹, outil mis au point par les Agences de l'Eau et opérationnel depuis 1999, permet, entre autre, d'évaluer la qualité des cours d'eau. Il définit cinq classes de qualité (Cf. <u>Tableau o</u>).

Classe de Qualité	Code couleur
Très bonne	
Bonne	
Passable	
Mauvaise	
Très mauvaise	

Tableau o Codes couleur des classes de qualité définies pour l'outil SEQ-Eau

La fonction « potentialités biologiques » exprime l'aptitude de l'eau à permettre les équilibres biologiques ou plus simplement l'aptitude de l'eau à la biologie, lorsque les conditions hydrologiques et morphologiques conditionnant l'habitat des êtres vivants sont par ailleurs réunies.

Cinq classes de qualité sont définies :

Potentialité de l'eau à héberger un grand nombre de taxons polluo-sensibles, avec une diversité satisfaisante

Potentialité de l'eau à provoquer la disparition des certains taxons polluo-sensibles, avec une diversité satisfaisante

Potentialité de l'eau à réduire de manière importante le nombre de taxons polluo-sensibles, avec une diversité satisfaisante

Potentialité de l'eau à réduire de manière importante le nombre de taxons polluo-sensibles, avec une réduction de la diversité

Potentialité de l'eau à réduire de manière importante le nombre de taxons polluo-sensibles ou à les supprimer, avec une diversité très faible

-

¹¹ Système d'Evaluation de la Qualité des cours d'Eau.

Les grilles considérées dans le SEQ-Eau pour les paramètres concernés pour la fonction **«potentialités biologiques »** sont présentées dans le <u>Tableau p</u>.

Altérations	Paramètres	Bleu	Vert	Jaune	Orange	Rouge
	DBO ₅ (mg/L O ₂)	3	6	10	25	
MATIÈRES ORGANIQUES ET OXYDABLES	DCO (mg/L O ₂)	20	30	40	80	
ET OXTBABLES	Ammonium (mg/L NH ₄ +)	0,5	1,5	4	8	
MATIÈRES AZOTÉES	Ammonium (mg/L NH ₄ +)	0,1	0,5	2	5	
	Nitrites (mg/L NO ₂ -)	0,03	0,1	0,5	1	
NITRATES	Nitrates (mg/L NO ₃ -)	2	10	25	50	
MATIÈRES Phosphates (mg/L PHOSPHORÉES PO ₄ ³⁻)		0,1	0,5	1	2	
PARTICULES EN SUSPENSION	MES (mg/L)	25	50	100	150	

Tableau p Classes de qualité du SEQ-Eau (version 1) pour la fonction « potentialités biologiques »

Les grilles considérées dans le SEQ-Eau pour les paramètres concernés pour la fonction **qualité globale de l'eau** sont présentées dans le <u>Tableau q</u>.

Altérations	Paramètres	Bleu	Vert	Jaune	Orange	Rouge
MATIÈRES ORGANIQUES	DCO (mg/L O ₂)	20	30	40	80	
ET OXYDABLES	Ammonium (mg/L NH ₄ +)	0,5	1,5	2,8	6	
MATIÈRES AZOTÉES	Ammonium (mg/L NH ₄ +)	0,1	0,5	2	5	
MATIEREO AEOTEEO	Nitrites (mg/L NO ₂ -)	0,03	0,1	0,5	1	
NITRATES	Nitrates (mg/L NO ₃ -)	2	10	25	50	
MATIÈRES PHOSPHORÉES	Phosphates (mg/L PO ₄ ³⁻)	0,1	0,5	1	2	
PARTICULES EN SUSPENSION	MES (mg/L)	5	25	38	50	
	Chlorures (mg/L)	62,5	125	190	250	
MINÉRALISATION	Sulfates (mg/L)	62,5	125	190	250	
	Sodium (mg/L)	200	225	250	750	

Tableau q Classes de qualité du SEQ-Eau (version 1) pour la fonction « qualité globale de l'eau »

5. GRILLE DE QUALITE D'EAU DE L'AGENCE DE L'EAU RHINMEUSE

Les grilles de qualité d'eau des Agences de l'Eau, éditées en 1971, permettent l'évaluation de la qualité des cours d'eau pour une série de paramètres physico-chimiques auxquels sont associés des valeurs seuils à cinq classes de qualité.

Ces grilles de qualité générale des eaux, ou « grilles multi-usages », ont permis une évaluation sommaire de l'aptitude de l'eau aux principaux usages et fonctions 12.

Les Agences de l'Eau ont cherché, par la suite, à harmoniser, moderniser et enrichir ce système d'évaluation. La grille a ainsi évolué depuis sa création pour répondre aux spécificités de chaque bassin. Par conséquent, le nombre de paramètres et les valeurs seuils associées diffèrent d'une Agence à une autre.

Parmi les paramètres figurant dans la grille de l'Agence de l'Eau Rhin-Meuse, seuls sont présentés dans le <u>Tableau r</u> les paramètres concernés par l'étude d'impact du projet.

Paramètre :	Classes de qualité						
raianieue.	1A	1B	2	3	4		
DCO (mg/L O ₂)	<20	20-25	25-40	40-80	>80		
Ammonium (mg/L NH ₄)	<0,1	0,1-0,5	0,5-2	2-8	>8		
Nitrates (mg/L NO ₃)	<44			44-100	>100		
MES (mg/L)	<30			30-70	>70		

Tableau r Grille de qualité de l'Agence de l'Eau Rhin-Meuse

¹² À noter que l'arrêté du 25 janvier 2010 modifié, pris en application de la directive 2000/60/CE, définit désormais les méthodes et critères servant à caractériser les différentes classes d'état écologique, d'état chimique et de potentiel écologique des eaux de surface.

RECAPITUALTIF DES VALEURS DE REFERENCE UTILISEES DANS L'EVALUATION SUBSTANCE PAR SUBSTANCE

Un récapitulatif des valeurs de référence utilisées pour l'évaluation substance par substance est présenté dans le <u>Tableau s</u> et le <u>Tableau t</u>.

	NQE Moyenne Annuelle (μg/L)	NQE Concentration Maximale Admissible (µg/L)
Cuivre	Fond géochimique + 1 (Cu dissous biodisponible)	Absence de seuil réglementaire
Zinc	Fond géochimique + 7,8 (Zn biodisponible)	Absence de seuil réglementaire
Chrome	Fond géochimique + 3,4 (Cr dissous)	Absence de seuil réglementaire
Nickel	Fond géochimique + 4 (Ni dissous biodisponible)	Fond géochimique + 34 (Ni dissous)
Plomb	Fond géochimique + 1,2 (Pb dissous biodisponible)	Fond géochimique + 14 (Pb dissous)

Tableau s Valeurs de NQE du cuivre, du zinc, du chrome, du nickel et du plomb

	Arrêté du 25 janvier 2010 modifié*	Art. D211-10 du code de l'environnement Biologiques » Art. D211-10 du Fonction Agence de « Potentialités l'Eau Rhin Biologiques » Meuse		de Fonction « Potentialités		Annexe III, A3 de l'ari 11/01/20	rêté du
	Limite de la classe de bon état	Valeur impérative	Valeur guide ***	Limite de la classe de bonne potentialité biologique	Limite de la classe de bonne qualité 1B	Valeur impérative	Valeur guide ***
Ammonium (mg/L)	0,5	1	0,2	< 1,5*	0,5	4	2
Ammonium (mg/L)	0,3	'	0,2	< 0,5 **	0,5	7	
Nitrites (mg/L)	0,3	-	0,03	0,1	-	-	-
Nitrates (mg/L)	50	-	-	10	44***	50	-
MES (mg/L)	-	-	25	50	30****	-	-
Sodium (mg/L)	-	-	-	< 225	-	-	-
DCO (mg/L)	-	-	-	30	25	-	30

^{*:} valeurs de référence de l'ammonium pour la fonction « matières organiques et oxydables » dans le SEQ-Eau (Version 1).

Cases grisées de la colonne SEQ-Eau : en l'absence de classes de qualité définies pour la fonction « potentialités biologiques », les seuils disponibles pour la fonction « qualité globale » de l'eau ont été retenus.

Tableau t Seuils et valeurs guides utilisées dans l'évaluation substance par substance (les valeurs retenues sont en gras)

^{** :} valeurs de référence de l'ammonium pour la fonction « matières azotées » dans le SEQ-Eau (Version 1).

^{*** :} la valeur guide correspond à la valeur des paramètres qu'il est souhaitable de ne pas dépasser.

^{**** :} les valeurs de référence pour les nitrates et les MES correspondent à la limite entre les classes 1A et 3.

¹³ Arrêté du 11 janvier 2007 relatif aux limites et références de qualité des eaux brutes et des eaux destinées à la consommation humaine mentionnées aux articles R. 1321-2, R. 1321-3, R. 1321-7 et R. 1321-38 du code de la santé publique.

PNEC ET DONNEES ECOTOXICOLOGIQUES

Pour les substances potentiellement écotoxicologiques pour lesquelles le ratio entre la concentration maximale ajoutée dans le milieu et la concentration moyenne amont dans le Grand Canal d'Alsace est inférieur à 5 %, une comparaison à la PNEC¹⁴ ou aux données écotoxicologiques aigues (en l'absence de PNEC) est réalisée.

7.1. PNEC DU CUIVRE

La PNEC du cuivre est proposée par EDF R&D suite à une proposition de l'ECHA¹⁵. Cette PNEC a été proposée par EuroCopper en 2008 à l'ECHA dans le cadre d'une VRAR (Voluntary Risk Assessment Report). Ce rapport a été revu et commenté par les états membres. Le SCHER (Scientific Committee on Health and Environmental Risks) et le TCNES (Technical Committee on New and Existing Substances) en ont validé l'approche. On peut donc considérer que cette PNEC est conforme aux exigences de la règlementation REACH et validée par l'ECHA.

Les données écotoxicologiques inventoriées pour le cuivre sont répertoriées dans le <u>Tableau u</u>.

La PNEC validée par l'ECHA est une PNEC chronique statistique prenant en compte 139 données écotoxicologiques chroniques réparties sur 27 espèces.

La PNEC chronique eau douce du cuivre est de 7,8 µg Cu dissous biodisponible / L. Cette PNEC peut être utilisée de manière enveloppe en approche maximale pour le calcul d'un Indice de Risque (IR) aigu mais reste pénalisante. Cette PNEC ne permettant pas la correction par le fond géochimique présent sur le site, le calcul d'IR se fait avec la concentration cumulée dans le milieu (amont + ajouté).

¹⁴ Predicted No Effect Concentration.

¹⁵ ECHA (2008). Voluntary risk assessment report of copper, copper II sulphate pentahydrate, copper(I)oxide, copper(II)oxide, dicopper chloride trihydroxide.

Taxon	Espèce	Critère d'effet	Valeur (μg/L)	Référence/source
	Donnée	s chroniques	(μg/L)	
	Catostomus commersoni	NOEC ¹⁶	28,5-41,9	ECHA, 2008
	Esox lucius	NOEC	71,7-135,1	ECHA, 2008
	Ictalurus punctatus	NOEC	23,6-34,7	ECHA, 2008
	Noemacheilus barbatulus	NOEC	91,5-175,7	ECHA, 2008
	Oncorhynchus kisutch	NOEC	18,4-27	ECHA, 2008
Poissons	Oncorhynchus mykiss	NOEC	27,5-40,5	ECHA, 2008
	Perca fluviatilis	NOEC	58,1-103	ECHA, 2008
	Pimephales notatus	NOEC	73,1-137,3	ECHA, 2008
	Pimephales promelas	NOEC	45,3-70,4	ECHA, 2008
	Salvelinus fontinalis	NOEC	37,7-54,8	ECHA, 2008
	Campeloma decisum	NOEC	7-17,8	ECHA, 2008
	Dreissenia polymorpha	NOEC	7,2-18,2	ECHA, 2008
Mollusques	Juga plicifera	NOEC	3,6-9,1	ECHA, 2008
	Villosa iris	NOEC	12,1-28,5	ECHA, 2008
	Ceriodaphnia dubia	NOEC	8,9-21,4	ECHA, 2008
Arthropodes	Clistoronia magnifica	NOEC	6,6-16,2	ECHA, 2008
	Daphnia magna	NOEC	10,3-24,5	ECHA, 2008
	Daphnia pulex	NOEC	40,9-86,3	ECHA, 2008
	Gammarus pulex	NOEC	16,7-38,1	ECHA, 2008
Plantes	Lemna minor L,	NOEC	24,6-70,1	ECHA, 2008
Algues	Chlamydomonas reinhardtii	NOEC	13-41,9	ECHA, 2008
	Chlorella vulgaris	NOEC	14-44,4	ECHA, 2008
, aguss	Pseudokirchneriella subcapitata	NOEC	6-21,6	ECHA, 2008
Rotifères	Brachionus calyciflorus	NOEC	2,7-6,9	ECHA, 2008
<u> </u>	Donn	ées aiguës		
	Catostomus commersoni	CL50 ¹⁷ 96h	886	ECOTOX, EPA
	Cyprinodon variegatus	CL50 96h	630	ECOTOX, EPA
	Cyprinus carpio	CL50 96h	50-1000	ECOTOX, EPA
	Ictalurus punctatus	CL50 96h	51-2436	ECOTOX, EPA
	Lepomis macrochirus	CL50 96h	1250-320000	ECOTOX, EPA
Poissons	Oncorhynchus kisutch	CL50 96h	17-103	ECOTOX, EPA
	Oncorhynchus mykiss	CL50 96h	17-5100	ECOTOX, EPA
	Oncorhynchus tshawytscha	CL50 96h	20-200	ECOTOX, EPA
	Pimephales promelas	CL50 96h	9,4-21000	ECOTOX, EPA
	Poecilia reticulata	CL50 96h	112-550	ECOTOX, EPA
	Salmo salar	CL50 96h	125	ECOTOX, EPA
	Ceriodaphnia dubia	CE50 ¹⁸ 48h	1,0-127	ECOTOX, EPA
Invortábrác	Daphnia magna	CE50 48h	2,5-1213	ECOTOX, EPA
Invertébrés	Daphnia pulex	CE50 48h	31-53	ECOTOX, EPA
	Gammarus lacustris	CL50 96h	212	ECOTOX, EPA
Algues	Pseudokirchneriella subcapitata	CE50 72-96h	18-917	ECOTOX, EPA

Tableau u Données écotoxicologiques disponibles pour le cuivre

7.2. PNEC DU ZINC

La PNEC du zinc est proposée par EDF R&D suite à une proposition de l'ECHA dans un RAR (Risk Assessment Report) de 2008¹⁶. Les données écotoxicologiques disponibles pour le zinc sont présentées dans le <u>Tableau v</u>.

Taxon	Espèce	Critère d'effet	Valeur (μg/L)	Référence / source
	Données écoto	oxicologiques	chroniques	
	Salvelinus fontinalis	NOEC ¹⁷ 2- 36M	530-1370	JRC, 2010
	Pimephales promelas	NOEC 7-35S	78-291	JRC, 2010
Poissons	Phoxinus phoxinus	NOEC 5M	50-130	JRC, 2010
Poissons	Oncorhynchus mykiss	NOEC 3- 100S	25-974	JRC, 2010
	Jordanella floidae	NOEC 14S	26-75	JRC, 2010
	Brachydanio rerio	NOEC 2S	180-2900	JRC, 2010
A	Daphnia magna	NOEC 2-7S	25-420	JRC, 2010
Arthropodes	Ceriodaphnia dubia	NOEC 4-7J	14-100	JRC, 2010
Mollusques	2 Mollusques sp	NOEC 10- 16S	75-400	JRC, 2010
Eponges	4 Poriferes sp	NOEC 7J	43-65	JRC, 2010
	Cladophora glomerata	NOEC 72h	60	JRC, 2010
Algues	Pseudokirchneriella subcapitata	NOEC 72h	5,2-124	JRC, 2010
	Données éc	otoxicologique	s aiguës	
Poissons	127 tests	CL50 ¹⁸	66-300000	JRC, 2010
Invertébrés	47 tests	CE50 24- 96h	32-41000	JRC, 2010
	Cladophora glomerata	CE50 ¹⁹ 72h	> 60	JRC, 2010
Algues	Pseudokirchneriella subcapitata	CE50 72h	> 5,2-124	JRC, 2010

Tableau v Données écotoxicologiques disponibles pour le zinc

La PNEC validée par l'ECHA est une PNEC chronique statistique prenant en compte 120 données écotoxicologiques chroniques réparties sur 18 espèces. La PNEC chronique eau douce du zinc est de 7,8 µg zinc dissous biodisponible / L. Cette PNEC peut être utilisée de manière enveloppe en approche maximale pour le calcul d'un Indice de Risque (IR) aigu mais reste pénalisante. La PNEC permettant la correction par le fond géochimique présent sur le site, le calcul d'IR se fait avec la concentration ajoutée dans le milieu.

¹⁶ ECHA (2008). European Union Risk Assessment Report. Zinc metal.

¹⁷ NOEC : No Observed Effect Concentration.

¹⁸ CL50 : concentration létale sur 50% des organismes par rapport au contrôle.

¹⁹ CE50 : Concentration présentant des effets pour 50% des individus testés.

7.3. PNEC DE L'ACIDE BORIQUE

Les PNEC présentées ci-dessous sont issues d'un travail réalisés par EDF-R&D à partir d'une recherche bibliographique en 2005 et d'un rapport européen d'évaluation du risque publié en 2008 par l'ECHA dans le cadre de la réglementation sur les substances existantes (Règlement 1907/2006). Ce rapport reste à ce jour l'analyse la plus complète sur les risques associés à l'acide borique.

L'ensemble des données écotoxicologiques concernant les algues, les vertébrés (poissons) et invertébrés ont été recensées. Les principales valeurs écotoxicologiques chroniques et aiguës les plus basses, sélectionnées comme recevables (dont celles classées Klimisch 1 par l'ECHA), sont présentées par groupe taxonomique dans le <u>Tableau w</u>.

Compartiment	Espèce	Critère d'effet	Valeur (mg Ac Borique/L)	Source						
Données chronique										
Poissons	Brachydanio rerio	NOEC ¹⁶ – 34 j	10,3	Hooftman et al., 2000 – UE 2008						
Invertébrés	Daphnia magna	NOEC – 21 j	57	Hooftman et al., 2000 – UE 2008						
Algues	Selenastrum capricornutum	NOEC – 72 h	100	Hanstveit and Oldersma, 2000 – UE 2008						
Données aiguës										
Poissons	Xyrauchen texanus Gila elegans	CL50 ¹⁷ – 96 h	572	Bringmann et Kuhn, 1977						
Invertébrés	Daphnia magna	CE50 ¹⁸ – 48 h	760	Gersich, 1984						
Algues	Selenastrum capricornutum	CE50 – 72 h	300	Hanstveit and Oldersma, 2000 – UE 2008						

Tableau w Données écotoxicologiques disponibles pour l'acide borique

PNEC chronique par facteur d'évaluation - Eaux douces :

A partir de ces valeurs, la méthode des facteurs d'incertitude présentée dans les guides techniques de l'ECHA est appliquée. Le jeu de données chroniques valides disponibles couvrant les trois groupes taxonomiques requis, un facteur 10 est appliqué sur la plus faible des 3 valeurs (dans le cas présent, la valeur obtenue sur le poisson : NOEC = 10,3 mg/L). La valeur de la PNEC chronique en eau douce de l'acide borique calculée conformément aux recommandations de l'ECHA est donc égale à 1,03 mg/L. Cette PNEC est également proposée par l'ECHA. Cette PNEC permet la correction par le fond géochimique présent sur le site, le calcul d'IR se fait avec la concentration ajoutée dans le milieu.

PNEC aiguë par facteur d'évaluation – Eaux douces :

Concernant la PNEC aiguë, la méthode des facteurs d'incertitude présentée dans le guide technique de l'ECHA est utilisée. Un facteur 100 est appliqué sur la plus faible valeur aiguë recensée (dans le cas présent, la valeur obtenue sur l'algue : CE50 = 300 mg/L). La PNEC aiguë en eau douce pour l'acide borique est égale à 3 mg/L. Cette PNEC permet la correction par le fond géochimique présent sur le site, le calcul d'IR se fait avec la concentration ajoutée dans le milieu.

7.4. DONNEES ECOTOXICOLOGIQUES REPERTORIEES POUR LES SUBSTANCES DONT LE RATIO EST INFERIEUR A 5 %

Le <u>Tableau x</u> présente les données écotoxicologiques disponibles pour les autres substances (pour lesquelles le ratio entre la concentration maximale ajoutée dans le milieu et la concentration moyenne amont dans le Grand Canal d'Alsace est inférieur à 5 %).

Substance	Taxon	Espèce	Critère d'effet	Valeur (μg/L)	Référence / source
Aluminium	Poissons	Jordanella floridae	CE50 ¹⁸ 96 h	95	Hutchinson & Sprague, 1986
		Pimephales promelas	CL50 ¹⁷ 96 h	1160-218644	ECHA, 1992, 2009
		Salmo trout	CL50 96 h	> 80	ECHA, 1996
	Invertébrés	Ctenodrilus serratus	CE50 96 h	480	Petrich & Reish, 1979 - Art.26, CRUAS 2011
		Daphnia magna	CL50 48 h	> 135	ECHA, 1996
		Ceriodaphnia dubia	CL50 48 h	720-200000	ECHA, 1992
	Algues	Pseudokirchnerella subcapitata	EC50 72 h	1050	ECHA, 1996, 2000
		Lemna minor	EC50 7 J	8643	ECHA, 2012
	Plantes	Myriophyllum spicatum	CE50 96 h	2500	Stanley, 1974 - Art.26, CRUAS 2011
Fer	Poissons	Brachydanio rerio	CL0 96 h	≥ 50000	Dossier REACH. key study 01. Validité 2
		Danio rerio	CL50 96 h	> 10E9	ECHA, 1989, 2000
	Invertébrés	Daphnia magna	CE50 48 h	> 100 (µg/L)	Dossier REACH. key study 01. Validité 2
		Daphnia magna	CL50 48 h	> 10E8	ECHA, 2000, 2008
	Plantes	Lemna minor	EC50 7 J	22410	ECOTOX, EPA
	Poissons	Basilichthys australis	CL50 96 h	50000	INERIS. Fiche de données toxicologiques et environnementales des substances chimiques. Manganèse et ses dérivés. 2012
		Oncorhynchus mykiss	CL50 96 h	> 3600	ECHA, 2010
Manganèse		Daphnia magna	EC50 48 h	> 1600	ECHA, 2010
	Invertébrés	Daphnia magna	CL50 48 h	9800	INERIS. Fiche de données toxicologiques et environnementales des substances chimiques. Manganèse et ses dérivés. 2012
	Algues	Desmodesmus subspicatus	CE50 72 h	2800-4500	ECHA, 2010
		Oncorhynchus mykiss	CL50 96 h	15300	Dossier REACH. Key Study 01. Validité 2.
		Danio rerio	LC50 96 h	100000-320000	ECHA, 1993
	Poissons	Oncorhynchus mykiss	LC50 96 h	8100-21200	ECHA, 1985, 2004
Nickel		Rasbora sumatrana	LC50 96 h	830-9750	ECHA, 2012
		Poecilia reticulata	LC50 96 h	15620	ECHA, 2012
	Invertébrés	Ceriodaphnia dubia	CL50 48 h	74-276	ECHA, 2010
		Ceriodaphnia dubia	EC50 48 h	27,6-276	ECHA, 2004, 2005
MOROI		Daphnia magna	EC50 48 h	6680-9480	ECHA, 1992, 1993
	Algues	Pseudokirchneriella subcapitata	CE50-72 h	81,5 - 145	ECHA, 2010
		Pseudokirchnerella subcapitata	EC50 72 h	> 81,5	ECHA, 2004
		Skeletonema costatum	EC50 72 h	> 122,7-773,4	ECHA, 2007
		Macrocystic pyrifera	EC50 48 h	> 96,7-494	ECHA, 2007
	Plantes	Lemna minor	EC50 7 J	29,2-59,6	ECHA, 2013
Plomb	Poisson	Poisson	LC50	110	INERIS - UE, 2011
	Invertébrés	Invertébrés	EC50	10	INERIS - UE, 2011
	Algue	Algue	EC50	500	INERIS - UE, 2011
Lithine -	Poisson	Danio rerio	CL50 96 h	62200	ECHA, 2010
	Invertébrés	Daphnia magna	CE50 48 h	19100 - 34300	ECHA, 2010
	Algue	Pseudokirchneriella subcapitata	CEr50 72 h	87570	ECHA, 2010

Tableau x Données écotoxicologiques aigües pour les autres substances concernées

7.5. DONNEES ECOTOXICOLOGIQUES REPERTORIEES POUR LE CHROME

Le <u>Tableau y</u> recense les données écotoxicologiques disponibles pour le chrome total.

Compartiment eau douce	Espèce	Critère d'effet	Valeur (μg/L)	Source et Validité					
Données chroniques									
Poissons	Pimephales promelas	NOEC – 7 J	3000	ECOTOX, EPA					
	Cyprinus carpio	NOEC – 28 J	17	ECOTOX, EPA					
	Oncorhynchus tshawytscha	NOEC – 134 J	24-266	ECOTOX, EPA					
	Oncorhynchus mykiss	NOEC – 24 J	10	ECOTOX, EPA					
Invertébrés	Americamysis bahia	NOEC – 51 J	88	ECOTOX, EPA					
Données aiguës									
Poissons	Oryzias latipes	CL50 – 96 h	120000-210000	ECOTOX, EPA					
	Pimephales promelas	CL50 – 96 h	37000-52000	ECOTOX, EPA					
	Menidia peninsulae	CL50 – 96 h	21800	ECOTOX, EPA					
	Leiostomus xanthurus	CL50 – 96 h	27300	ECOTOX, EPA					
	Cyprinus carpio	CL50 – 96 h	14300-93600	ECOTOX, EPA					
	Daphnia magna	EC50 – 48 h	22-70	ECOTOX, EPA					
Invertébrés	Daphnia pulex	LC50 – 48 h	48-90400	ECOTOX, EPA					
	Americamysis bahia	LC50 – 96 h	2030	ECOTOX, EPA					
Algues	Lemna minor	EC50 – 7 J	8500	ECOTOX, EPA					

Tableau y Données écotoxicologiques disponibles pour le chrome total