TEIL 7

FOLGENABSCHÄTZUNG

— Anhang 1 —Radioaktive Stoffe

Platz des ANHANGs in der Impact-Studium

>> Nicht-technische Zusammenfassung, Allgemeine Zusammenfassung, Kapitel 1 bis 14: siehe Hauptordner

Anhang 1 – Radioaktive Stoffe
Anhang 2 – Chemikalien
Anhang 3 – Oberflächengewässer
Anhang 4 – Böden und Grundwasser
Anhang 5 – Bevölkerung und menschliche Gesundheit
Anhang 6 – Biodiversität

ZUSAMMENFASSUNG

l	EIL 7	1
	TABELLEN	4
	FIGUREN	
	P RESENTATION VON	
	ANHANG 1	
	1	15
	METHODOLOGIE FÜR DIE BEWERTUNG RADIOAKTIVER ABLEITUNGEN	15
	2	17

BEWER'	TUNG DER RADIOAKTIVEN ABLEITUNGEN UND HYPOTHESEN	. 17
2.1.	DEMONTAGESCHRITTE	. 17
2.2.	OPERATIONEN AUSGEWÄHLT FÜR	. 18
ABSC	HÄTZUNG VON RÜCKWÜRFEN UND PLANUNG	. 18
2.3.	ABWEISER DER ABLEHNUNG	. 20
2.3.	1. ABGESANDTER FLÜSSIGER RADIOAKTIVER ABLEITUNGEN	. 20
2.3.	2. ABGESANDTE RADIOAKTIVER ABLEITUNGEN IN ATMOSPHERE.	. 20
2.3.	3. DIFFUSE ABLEITUNGEN	. 21
	TUNG DER ABLEITUNGEN RADIOAKTIVER STOFFE DURCH	
	ΓΙΟΝ	
3.1.	ELEKTROMECHANISCHER LUFTÜBERZUG	
3.1.		
3.1.		
3.1.		
3.1.		
3.1.	5. BEHANDLUNG VON RÜCKWÜRFEN	. 34
3.1.	6. ERGEBNIS DER SCHÄTZUNG DER RÜCKWÜRFE IM SAMMENHANG MIT	24
	EKTROMECHANISCHER LUFTÜBERZUG	
	ELEKTROMECHANISCH UNTER WASSER	
3.2.		
3.2.		
3.2.		
3.2.		
	5. RADIOLOGISCHE DATEN	
3.2.		
3.2.		, 71
	SAMMENHANG MIT	. 41
ELE	EKTROMECHANISCH UNTER WASSER	. 41
3.3.	SANIERUNG	. 43
3.3.	1. BESCHREIBUNG DER OPERATION UND PLANUNG	. 44
3.3.	2. SUSPENSION IN DER LUFT	. 44
3.3.	3. PHYSIKALISCHE UND RADIOLOGISCHE DATEN	. 44
3.3.	4. BEHANDLUNG VON RÜCKWÜRFEN	. 48
3.3.	5. ERGEBNIS DER SCHÄTZUNG DER RÜCKWÜRFE	. 48
SAN	NIFRLING	48

3.4. AN BETRIEBLICHE TÄTIGKEITEN GEBUNDENE RADIOAKTIVE FREISETZUNGEN	49
3.4.1. ABLEITUNGEN AN VERDAMPFUNG UND ENTLEERUNG	
SCHWIMMBÄDER BK	
3.4.2. RADIOAKTIVE FREISETZUNGEN, DIE MIT DEM BETRIEB DES WASCHSALONS, DEN BODENREINIGUNGSOPERATIONEN UND DEN PUNKTUELLEN DECONTAMINATIONEN VERBUNDEN SIND	
3.4.3. SCHÄTZUNG DER FREISETZUNGEN AUS DEM BETRIEB	53
4	55
ERGEBNISSE DER SCHÄTZUNG DER ATMOSPHERISCHEN RADIOAKTIVE	ĹΝ
ABLEITUNGEN	
4.1. ERGEBNISSE DER GESAMTABLEITUNGEN PRO JAHR UND KATEO VON RADIONUKLEIDEN	
4.2. HISTOGRAMM DER ABLEITUNGEN	
4.3. SORTIERUNG VON RADIONUKLEIDEN	
4.4. KONSOLIDIERTE ERGEBNISSE DER GESCHÄTZTEN ABLEITUNGE ÜBERWIEGENDEM RADIONUCLEID	
4.4.1. KONSOLIDIERTE ERGEBNISSE DER SCHÄTZUNG DER	58
EINLEITUNGEN AUF ALLEN WEGEN	58
4.4.2. SCHÄTZUNG VON RÜCKWÜRFEN AUF DEM WEG DES BAN	60
4.4.3. SCHÄTZUNG VON RÜCKWÜRFEN AUF DEM WEG DER	
MODULARE BELÜFTUNG 1	60
4.4.4. SCHÄTZUNG VON RÜCKWÜRFEN AUF DEM WEG DER	
MODULARE BELÜFTUNG 2	61
4.4.5. SCHÄTZUNG VON RÜCKWÜRFEN AUF DEM WEG DER	61
MODULARE BELÜFTUNG 3	61
4.5. ABLEHNUNGSPERIODEN	62
4.6. MAXIMALE JÄHRLICHE RÜCKWÜRFE PRO ZEITRAUM	65
4.6.1. TRITIUM	65
4.6.2. KOHLENSTOFF 14	65
4.6.3. ANDERE BETA-GAMMA-SENDER	66
4.7. ANALYSE DER MESURABILITE	67
4.7.2. MINDESTWERTE FÜR DIE ERKLÄRUNG	67
4.8. BEANTRAGTE ABLEITUNGSGRENZWERTE FÜR RADIOAKTIVE ST 68	ГОFFE
ATMOSPHERISCHE	68
4.8.1. DEFINITION VON ZURÜCKWEISUNGSGRENZEN	68

4.8.2. GRENZWERTE IN JÄHRLICHEN AKTIVITÄTEN	70
4.8.3. GRENZWERTE FÜR VOLUMENAKTIVITÄTEN	70
4.8.4. LIMITS IN AKTIVITÄTS-DEBITS	71
ERGEBNISSE DER SCHÄTZUNG DER FLÜSSIGEN RADIOAKTIVEN ABLEITUNGEN	71
5.1. ERGEBNISSE DER GESAMTABLEITUNGEN PRO JAHR UND KATE VON RADIONUKLEIDEN	
5.2. HISTOGRAMM DER ABLEITUNGEN	73
5.3. SORTIERUNG VON RADIONUKLEIDEN	75
5.4. KONSOLIDIERTE ERGEBNISSE ZUR SCHÄTZUNG DER ABLEITUN DURCH VORHERRSCHENDES RADIONUCLEID	
5.5. ABLEHNUNGSPERIODEN	76
5.6. MAXIMALE JÄHRLICHE RÜCKWÜRFE PRO ZEITRAUM	79
5.7. ANALYSE DER MESURABILITE	79
5.8. BEANTRAGTE ABLEITUNGSGRENZWERTE FÜR FLÜSSIGE RADIOAKTIVE STOFFE	80
5.8.1. DEFINITION VON ZURÜCKWEISUNGSGRENZEN	80
5.8.2. GRENZWERTE IN JÄHRLICHEN AKTIVITÄTEN	81
5.8.3. GRENZWERTE IM EMPFÄNGERMEDIUM	81
4.1.1.	
TABELLEN	
TEIL 7	1
TABELLEN	4
FIGUREN	11
P RESENTATION VON	14
ANHANG 1	14
1	15
METHODOLOGIE FÜR DIE BEWERTUNG RADIOAKTIVER ABLEITUNGEN	I 15
2	17
BEWERTUNG DER RADIOAKTIVEN ABLEITUNGEN UND HYPOTHESEN	17
2.1. DEMONTAGESCHRITTE	
2.2. OPERATIONEN AUSGEWÄHLT FÜR	18
ABSCHÄTZUNG VON RÜCKWÜRFEN UND PLANUNG	
2.3. ABWEISER DER ABLEHNUNG	20
2.3.1. ABGESANDTER FLÜSSIGER RADIOAKTIVER ABLEITUNGEN	20
2.3.2. ABGESANDTE RADIOAKTIVER ABLEITUNGEN IN ATMOSPH	ERE. 20

2.3.3.	DIFFUSE ABLEITUNGEN	21
	ING DER ABLEITUNGEN RADIOAKTIVER STOFFE DURCH	
OPERATIO	ON	21
3.1. EI	EKTROMECHANISCHER LUFTÜBERZUG	21
3.1.1.	OPERATIONS- UND PLANUNGSBESCHREIBUNG	21
3.1.2.	SUSPENSION IN DER LUFT	23
3.1.3.	PHYSIKALISCHE DATEN	24
3.1.4.	RADIOLOGISCHE DATEN	30
3.1.5.	BEHANDLUNG VON RÜCKWÜRFEN	34
3.1.6. ZUSA	ERGEBNIS DER SCHÄTZUNG DER RÜCKWÜRFE IM MMENHANG MIT	34
ELEK	TROMECHANISCHER LUFTÜBERZUG	34
3.2. EI	EKTROMECHANISCH UNTER WASSER	36
3.2.1.	BESCHREIBUNG DER OPERATION UND PLANUNG	36
3.2.2.	AUSSETZUNG	36
3.2.3.	BEWERTUNG DER VERDAMPFUNG	37
3.2.4.	PHYSIKALISCHE DATEN	38
3.2.5.	RADIOLOGISCHE DATEN	39
3.2.6.	BEHANDLUNG VON RÜCKWÜRFEN	41
3.2.7. ZUSA	ERGEBNIS DER SCHÄTZUNG DER RÜCKWÜRFE IM MMENHANG MIT	41
	TROMECHANISCH UNTER WASSER	
	ANIERUNG	
3.3.1.	BESCHREIBUNG DER OPERATION UND PLANUNG	
3.3.2.	SUSPENSION IN DER LUFT	4.4
3.3.3.	PHYSIKALISCHE UND RADIOLOGISCHE DATEN	44
3.3.4.	BEHANDLUNG VON RÜCKWÜRFEN	
3.3.5.	ERGEBNIS DER SCHÄTZUNG DER RÜCKWÜRFE	
	ERUNG	
3.4. Al	N BETRIEBLICHE TÄTIGKEITEN GEBUNDENE RADIOAKTIVE IZUNGEN	
	ABLEITUNGEN AN VERDAMPFUNG UND ENTLEERUNG	
	/IMMBÄDER BK	
	RADIOAKTIVE FREISETZUNGEN, DIE MIT DEM BETRIEB DES	20
WASC	CHSALONS, DEN BODENREINIGUNGSOPERATIONEN UND DEN	
PUNK	TUELLEN DECONTAMINATIONEN VERBUNDEN SIND	52
3.4.3.	SCHÄTZUNG DER FREISETZUNGEN AUS DEM BETRIEB	53

4		. 55
	SE DER SCHÄTZUNG DER ATMOSPHERISCHEN RADIOAKTIVEN	. 55
	GEBNISSE DER GESAMTABLEITUNGEN PRO JAHR UND KATEGOR DIONUKLEIDEN	
4.2. HIS	STOGRAMM DER ABLEITUNGEN	. 56
4.3. SO	RTIERUNG VON RADIONUKLEIDEN	. 58
	ONSOLIDIERTE ERGEBNISSE DER GESCHÄTZTEN ABLEITUNGEN N EGENDEM RADIONUCLEID	
4.4.1.	KONSOLIDIERTE ERGEBNISSE DER SCHÄTZUNG DER	. 58
EINLE	ITUNGEN AUF ALLEN WEGEN	. 58
4.4.2.	SCHÄTZUNG VON RÜCKWÜRFEN AUF DEM WEG DES BAN	. 60
4.4.3.	SCHÄTZUNG VON RÜCKWÜRFEN AUF DEM WEG DER	. 60
MODU	JLARE BELÜFTUNG 1	. 60
4.4.4.	SCHÄTZUNG VON RÜCKWÜRFEN AUF DEM WEG DER	
MODU	JLARE BELÜFTUNG 2	. 61
4.4.5.	SCHÄTZUNG VON RÜCKWÜRFEN AUF DEM WEG DER	. 61
MODU	JLARE BELÜFTUNG 3	. 61
4.5. AE	LEHNUNGSPERIODEN	. 62
4.6. MA	AXIMALE JÄHRLICHE RÜCKWÜRFE PRO ZEITRAUM	. 65
4.6.1.	TRITIUM	. 65
4.6.2.	KOHLENSTOFF 14	. 65
4.6.3.	ANDERE BETA-GAMMA-SENDER	. 66
4.7. AN	IALYSE DER MESURABILITE	. 67
4.7.2.	MINDESTWERTE FÜR DIE ERKLÄRUNG	. 67
4.8. BE	ANTRAGTE ABLEITUNGSGRENZWERTE FÜR RADIOAKTIVE STOF	ΈE
ATMOSI	PHERISCHE	. 68
4.8.1.	DEFINITION VON ZURÜCKWEISUNGSGRENZEN	. 68
4.8.2.	GRENZWERTE IN JÄHRLICHEN AKTIVITÄTEN	. 70
4.8.3.	GRENZWERTE FÜR VOLUMENAKTIVITÄTEN	. 70
4.8.4.	LIMITS IN AKTIVITÄTS-DEBITS	. 71
	SE DER SCHÄTZUNG DER FLÜSSIGEN RADIOAKTIVEN IGEN	. 71
	GEBNISSE DER GESAMTABLEITUNGEN PRO JAHR UND KATEGOR DIONUKLEIDEN	
5.2. HIS	STOGRAMM DER ABLEITUNGEN	. 73

5.3. SORTIERUNG VON RADIONUKLEIDEN	75
5.4. KONSOLIDIERTE ERGEBNISSE ZUR SCHÄTZUNG DER ABLEITUNG	
DURCH VORHERRSCHENDES RADIONUCLEID	
5.5. ABLEHNUNGSPERIODEN	
5.6. MAXIMALE JÄHRLICHE RÜCKWÜRFE PRO ZEITRAUM	79
5.7. ANALYSE DER MESURABILITE	79
5.8. BEANTRAGTE ABLEITUNGSGRENZWERTE FÜR FLÜSSIGE RADIOAKTIVE STOFFE	80
5.8.1. DEFINITION VON ZURÜCKWEISUNGSGRENZEN	80
5.8.2. GRENZWERTE IN JÄHRLICHEN AKTIVITÄTEN	81
5.8.3. GRENZWERTE IM EMPFÄNGERMEDIUM	81
Tabelle y Aufbereitungstiefen, die den verschiedenen Kategorien entsprechen 43 TEIL 7	1
TABELLEN	
FIGUREN	
P RESENTATION VON	
ANHANG 1	
1	
METHODOLOGIE FÜR DIE BEWERTUNG RADIOAKTIVER ABLEITUNGEN	
2	17
BEWERTUNG DER RADIOAKTIVEN ABLEITUNGEN UND HYPOTHESEN	17
2.1. DEMONTAGESCHRITTE	17
2.2. OPERATIONEN AUSGEWÄHLT FÜR	18
ABSCHÄTZUNG VON RÜCKWÜRFEN UND PLANUNG	18
2.3. ABWEISER DER ABLEHNUNG	20
2.3.1. ABGESANDTER FLÜSSIGER RADIOAKTIVER ABLEITUNGEN	20
2.3.2. ABGESANDTE RADIOAKTIVER ABLEITUNGEN IN ATMOSPHER	E. 20
2.3.3. DIFFUSE ABLEITUNGEN	21
BEWERTUNG DER ABLEITUNGEN RADIOAKTIVER STOFFE DURCH	
OPERATION	21
3.1. ELEKTROMECHANISCHER LUFTÜBERZUG	21
3.1.1. OPERATIONS- UND PLANUNGSBESCHREIBUNG	21
3.1.2. SUSPENSION IN DER LUFT	23
3.1.3. PHYSIKALISCHE DATEN	24
3.1.4. RADIOLOGISCHE DATEN	30

3.1.5.	BEHANDLUNG VON RÜCKWÜRFEN	34
3.1.6.	ERGEBNIS DER SCHÄTZUNG DER RÜCKWÜRFE IM AMMENHANG MIT	21
	KTROMECHANISCHER LUFTÜBERZUG	
	LEKTROMECHANISCH UNTER WASSER	
3.2.1		
3.2.1.		
3.2.3.		
3.2.4.		
3.2.5.		
3.2.6.		
	ERGEBNIS DER SCHÄTZUNG DER RÜCKWÜRFE IM	
	AMMENHANG MIT	41
ELEF	KTROMECHANISCH UNTER WASSER	41
3.3. S	ANIERUNG	43
3.3.1.	BESCHREIBUNG DER OPERATION UND PLANUNG	44
3.3.2.	SUSPENSION IN DER LUFT	44
3.3.3.	PHYSIKALISCHE UND RADIOLOGISCHE DATEN	44
3.3.4.	BEHANDLUNG VON RÜCKWÜRFEN	48
3.3.5.	ERGEBNIS DER SCHÄTZUNG DER RÜCKWÜRFE	48
SAN	IERUNG	48
	N BETRIEBLICHE TÄTIGKEITEN GEBUNDENE RADIOAKTIVE	49
3.4.1.	ABLEITUNGEN AN VERDAMPFUNG UND ENTLEERUNG	50
SCH	WIMMBÄDER BK	50
	RADIOAKTIVE FREISETZUNGEN, DIE MIT DEM BETRIEB DES CHSALONS, DEN BODENREINIGUNGSOPERATIONEN UND DEN KTUELLEN DECONTAMINATIONEN VERBUNDEN SIND	. 52
	SCHÄTZUNG DER FREISETZUNGEN AUS DEM BETRIEB	
ERGEBN	ISSE DER SCHÄTZUNG DER ATMOSPHERISCHEN RADIOAKTIVEN INGEN	
	RGEBNISSE DER GESAMTABLEITUNGEN PRO JAHR UND KATEGOI	
	ADIONUKLEIDEN	
4.2. H	IISTOGRAMM DER ABLEITUNGEN	56
4.3. S	ORTIERUNG VON RADIONUKLEIDEN	58
4.4. K	ONSOLIDIERTE ERGEBNISSE DER GESCHÄTZTEN ABLEITUNGEN I	МІТ

ÜBEI	RWIEGENDEM RADIONUCLEID	58
4.4	.1. KONSOLIDIERTE ERGEBNISSE DER SCHÄTZUNG DER	58
EIN	NLEITUNGEN AUF ALLEN WEGEN	58
4.4	.2. SCHÄTZUNG VON RÜCKWÜRFEN AUF DEM WEG DES BAN	60
4.4	.3. SCHÄTZUNG VON RÜCKWÜRFEN AUF DEM WEG DER	60
MC	DULARE BELÜFTUNG 1	60
4.4	.4. SCHÄTZUNG VON RÜCKWÜRFEN AUF DEM WEG DER	61
MC	DDULARE BELÜFTUNG 2	61
4.4	.5. SCHÄTZUNG VON RÜCKWÜRFEN AUF DEM WEG DER	61
MC	DDULARE BELÜFTUNG 3	61
4.5.	ABLEHNUNGSPERIODEN	62
4.6.	MAXIMALE JÄHRLICHE RÜCKWÜRFE PRO ZEITRAUM	65
4.6	.1. TRITIUM	65
4.6	.2. KOHLENSTOFF 14	65
4.6	.3. ANDERE BETA-GAMMA-SENDER	66
4.7.	ANALYSE DER MESURABILITE	67
4.7	.2. MINDESTWERTE FÜR DIE ERKLÄRUNG	67
4.8.	BEANTRAGTE ABLEITUNGSGRENZWERTE FÜR RADIOAKTIVE S 68	TOFFE
ATM	OSPHERISCHE	68
4.8	.1. DEFINITION VON ZURÜCKWEISUNGSGRENZEN	68
4.8	.2. GRENZWERTE IN JÄHRLICHEN AKTIVITÄTEN	70
4.8	.3. GRENZWERTE FÜR VOLUMENAKTIVITÄTEN	70
4.8	.4. LIMITS IN AKTIVITÄTS-DEBITS	71
	NISSE DER SCHÄTZUNG DER FLÜSSIGEN RADIOAKTIVEN FUNGEN	71
	ERGEBNISSE DER GESAMTABLEITUNGEN PRO JAHR UND KATE RADIONUKLEIDEN	
5.2.	HISTOGRAMM DER ABLEITUNGEN	73
5.3.	SORTIERUNG VON RADIONUKLEIDEN	75
5.4. DUR	KONSOLIDIERTE ERGEBNISSE ZUR SCHÄTZUNG DER ABLEITUNCH VORHERRSCHENDES RADIONUCLEID	
5.5.	ABLEHNUNGSPERIODEN	76
5.6.	MAXIMALE JÄHRLICHE RÜCKWÜRFE PRO ZEITRAUM	
5.7.	ANALYSE DER MESURABILITE	79
5.8.	BEANTRAGTE ABLEITUNGSGRENZWERTE FÜR FLÜSSIGE	

RADIOA	KTIVE STOFFE	80
5.8.1.	DEFINITION VON ZURÜCKWEISUNGSGRENZEN	80
5.8.2.	GRENZWERTE IN JÄHRLICHEN AKTIVITÄTEN	81
5.8.3.	GRENZWERTE IM EMPFÄNGERMEDIUM	81
Tabelle aaa	Liste der vorherrschenden Radionuklide für flüssige Ableitungen und Verteilung innerha	
Tabelle bbb		
Tabelle ccc	Geschätzte flüssige radioaktive Freisetzungen pro Radioelement während des gesamten Stilllegungszeitraums, in dem flüssige radioaktive Freisetzungen vorgesehen sind	
Tabelle ddd	Geschätzte jährliche Höchstmengen für flüssige Ableitungen pro Ableitungszeitraum	75
Tabelle eee	Schwellenwerte für die Entscheidung der Maßnahme für flüssige Ableitungen (Bq/L)	76
Tabelle fff	Grenzwerte für jährliche Aktivitäten	77

FIGUREN

ГЕІL 7	1
TABELLEN	4
FIGUREN	11
P RESENTATION VON	14
ANHANG 1	14
1	15
METHODOLOGIE FÜR DIE BEWERTUNG RADIOAKTIVER ABLEITUNGEI	N15
2	17
BEWERTUNG DER RADIOAKTIVEN ABLEITUNGEN UND HYPOTHESEN.	17
2.1. DEMONTAGESCHRITTE	17
2.2. OPERATIONEN AUSGEWÄHLT FÜR	18
ABSCHÄTZUNG VON RÜCKWÜRFEN UND PLANUNG	18
2.3. ABWEISER DER ABLEHNUNG	20
2.3.1. ABGESANDTER FLÜSSIGER RADIOAKTIVER ABLEITUNGEN	J20
2.3.2. ABGESANDTE RADIOAKTIVER ABLEITUNGEN IN ATMOSPH	HERE20
2.3.3. DIFFUSE ABLEITUNGEN	21
BEWERTUNG DER ABLEITUNGEN RADIOAKTIVER STOFFE DURCH	
OPERATION	
3.1. ELEKTROMECHANISCHER LUFTÜBERZUG	
3.1.1. OPERATIONS- UND PLANUNGSBESCHREIBUNG	
3.1.2. SUSPENSION IN DER LUFT	
3.1.3. PHYSIKALISCHE DATEN	
3.1.4. RADIOLOGISCHE DATEN	
3.1.5. BEHANDLUNG VON RÜCKWÜRFEN	
3.1.6. ERGEBNIS DER SCHÄTZUNG DER RÜCKWÜRFE IM ZUSAMMENHANG MIT	
ELEKTROMECHANISCHER LUFTÜBERZUG	
3.2. ELEKTROMECHANISCH UNTER WASSER	
3.2.1. BESCHREIBUNG DER OPERATION UND PLANUNG	
2.2.2 AUSSETZUNG	36

3.2.3. I	BEWERTUNG DER VERDAMPFUNG	.37
3.2.4. I	PHYSIKALISCHE DATEN	.38
3.2.5. I	RADIOLOGISCHE DATEN	.39
3.2.6. I	BEHANDLUNG VON RÜCKWÜRFEN	.41
	ERGEBNIS DER SCHÄTZUNG DER RÜCKWÜRFE IM MENHANG MIT	.41
ELEKTR	OMECHANISCH UNTER WASSER	.41
3.3. SAN	IERUNG	.43
3.3.1. I	BESCHREIBUNG DER OPERATION UND PLANUNG	.44
3.3.2.	SUSPENSION IN DER LUFT	.44
3.3.3. I	PHYSIKALISCHE UND RADIOLOGISCHE DATEN	.44
3.3.4. I	BEHANDLUNG VON RÜCKWÜRFEN	.48
3.3.5. I	ERGEBNIS DER SCHÄTZUNG DER RÜCKWÜRFE	.48
SANIER	UNG	.48
	BETRIEBLICHE TÄTIGKEITEN GEBUNDENE RADIOAKTIVE UNGEN	.49
3.4.1. A	ABLEITUNGEN AN VERDAMPFUNG UND ENTLEERUNG	.50
SCHWIN	MBÄDER BK	.50
WASCH	RADIOAKTIVE FREISETZUNGEN, DIE MIT DEM BETRIEB DES SALONS, DEN BODENREINIGUNGSOPERATIONEN UND DEN JELLEN DECONTAMINATIONEN VERBUNDEN SIND	.52
3.4.3.	SCHÄTZUNG DER FREISETZUNGEN AUS DEM BETRIEB	.53
4		.55
	E DER SCHÄTZUNG DER ATMOSPHERISCHEN RADIOAKTIVEN EN	.55
	EBNISSE DER GESAMTABLEITUNGEN PRO JAHR UND KATEGOR IONUKLEIDEN	
4.2. HIST	OGRAMM DER ABLEITUNGEN	.56
4.3. SOR	TIERUNG VON RADIONUKLEIDEN	.58
	SOLIDIERTE ERGEBNISSE DER GESCHÄTZTEN ABLEITUNGEN M GENDEM RADIONUCLEID	
4.4.1. I	KONSOLIDIERTE ERGEBNISSE DER SCHÄTZUNG DER	.58
EINLEIT	UNGEN AUF ALLEN WEGEN	.58

4.4	1.2.	SCHÄTZUNG VON RÜCKWÜRFEN AUF DEM WEG DES BAN	60
4.4	1.3.	SCHÄTZUNG VON RÜCKWÜRFEN AUF DEM WEG DER	60
Mo	ODU	LARE BELÜFTUNG 1	60
4.4	1.4.	SCHÄTZUNG VON RÜCKWÜRFEN AUF DEM WEG DER	61
Mo	ODU	LARE BELÜFTUNG 2	61
4.4	1.5.	SCHÄTZUNG VON RÜCKWÜRFEN AUF DEM WEG DER	61
Mo	ODU	LARE BELÜFTUNG 3	61
4.5.	AB	LEHNUNGSPERIODEN	62
4.6.	MA	XIMALE JÄHRLICHE RÜCKWÜRFE PRO ZEITRAUM	65
4.6	5.1.	TRITIUM	65
4.6	5.2.	KOHLENSTOFF 14	65
4.6	5.3.	ANDERE BETA-GAMMA-SENDER	66
4.7.	AN	ALYSE DER MESURABILITE	67
4.7	7.2.	MINDESTWERTE FÜR DIE ERKLÄRUNG	67
4.8.		ANTRAGTE ABLEITUNGSGRENZWERTE FÜR RADIOAKTIVE ST	OFFE
	68		
		HERISCHE	
	3.1.	DEFINITION VON ZURÜCKWEISUNGSGRENZEN	
		GRENZWERTE IN JÄHRLICHEN AKTIVITÄTEN	
	3.3.		
		LIMITS IN AKTIVITÄTS-DEBITS	71
_		SE DER SCHÄTZUNG DER FLÜSSIGEN RADIOAKTIVEN GEN	71
5.1.		GEBNISSE DER GESAMTABLEITUNGEN PRO JAHR UND KATEGO	
0.1.		DIONUKLEIDEN	
5.2.	HIS	TOGRAMM DER ABLEITUNGEN	73
5.3.	SO	RTIERUNG VON RADIONUKLEIDEN	75
5.4. DUR		NSOLIDIERTE ERGEBNISSE ZUR SCHÄTZUNG DER ABLEITUNG VORHERRSCHENDES RADIONUCLEID	
5.5.	AB	LEHNUNGSPERIODEN	76
5.6.	MA	XIMALE JÄHRLICHE RÜCKWÜRFE PRO ZEITRAUM	79
57	ΔN	ALVSE DER MESURARILITE	79

5.8.	BE	ANTRAGTE ABLEITUNGSGRENZWERTE FÜR FLÜSSIGE	
RAD	IOAl	KTIVE STOFFE	80
5.8	3.1.	DEFINITION VON ZURÜCKWEISUNGSGRENZEN	80
5.8	3.2.	GRENZWERTE IN JÄHRLICHEN AKTIVITÄTEN	81
5.8	3.3.	GRENZWERTE IM EMPFÄNGERMEDIUM	81

P RESENTATION VON ANHANG 1

Zweck dieses Anhangs ist es, eine Schätzung der radioaktiven Freisetzungen in die Luft und in Flüssigkeiten vorzulegen, die bei sämtlichen Stilllegungsvorgängen des INB Nr. 75 entstehen. Die Elemente dieses Anhangs werden in Kapitel 2 Ziffer 2.6.2und in Kapitel 6 Absatz 6.3 verwendet.

Zunächst werden die Methodik für die Bewertung der radioaktiven Ableitungen, der Umfang und die Annahmen dargelegt (Abschnitt 1 und 2).

Anschließend wird eine Bewertung der radioaktiven Freisetzungen in die Luft und in Flüssigkeiten durchgeführt (Abschnitt 3).

Schließlich werden die Ergebnisse der Schätzung der radioaktiven Freisetzungen in die <u>Luft(Absatz 4)</u> und der flüssigen radioaktiven <u>Ableitungen(Absatz 5)</u> vorgelegt: geschätzte Tätigkeiten pro Jahr, Festlegung der Ableitungszeiträume, Listen der wichtigsten Radionuklide, Analyse der Messbarkeit und beantragte Grenzwerte pro Ableitungszeitraum.

1.

METHODOLOGIE FÜR DIE BEWERTUNG RADIOAKTIVER ABLEITUNGEN

Diese Bewertung erstreckt sich auf sämtliche Abschaltungen des INB Nr. 75, die radioaktive Ableitungen vom elektromechanischen Abbau bis zur Sanierung der Räumlichkeiten ausstoßen können.

Die geschätzten Rückwürfe im Zusammenhang mit der Stilllegung beruhen auf folgenden Schritten:

- Bestandsaufnahme der Massen und Flächen der vom Abbau betroffenen Bauteile;
- radiologisches Inventar der vom Abbau betroffenen Bauteile;
- Prüfung der Tätigkeiten, die von der Tätigkeit freigesetzt werden können (Schneiden, Kratzen, Verdunstung usw.) und Anwendung entsprechender Aussetzungskoeffizienten;
- Anwendung von Reinigungsfaktoren (Luftfiltration und Wasseraufbereitung).

Das Verfahren zur Schätzung der Rückwürfe ist in Abbildung a schematisiert.

Schneidevorgang

Abbildung a Beginn der Schätzung der Rückwürfe des Abbaus

Die Suspensionierung in der Luft, die durch die Verschiebung der abgebauten Teile entsteht, wird berücksichtigt, ist jedoch im Vergleich zu der durch die Teilungen und Sanierungen bedingten Vernachlässigung zu vernachlässigen (Schwebungsfaktor betrachtet 1000 bis 100000 mal geringer als bei den Zerlegungen je nach Art der Kontamination, siehe Tabelle c).

Rückwürfe aus dem laufenden Betrieb des Standorts durch Stilllegung (d. h. Vorgänge, die nicht unmittelbar mit der Stilllegung in Zusammenhang stehen: Waschen von Kleidung und Räumen, Dekontaminationen usw., siehe Ziffer 3.4) werden ebenfalls bewertet und zu den eigentlichen Stilllegungsemissionen hinzugefügt. Die abgelehnten Tätigkeiten werden anschließend geschätzt und analysiert. Die Analyse ermöglicht:

- gegebenenfalls Festlegung von Zurückweisungszeiträumen in Bezug auf dimensionierende Vorgänge;
- die Auswahl der Kategorien von Radionukliden, für die eine Ablehnung beantragt werden soll, und die Festlegung der Liste der überwiegenden Radionuklide;
- Analyse der Messbarkeit von Rückwürfen.

Dies ermöglicht es, die geforderten jährlichen Grenzwerte nach Radionuklidkategorie und Ableitungszeitraum zu

erreichen.

Die geplanten Rückwürfe sind aufgrund der für das Projekt getroffenen Entscheidungen so gering wie vernünftigerweise möglich: vorgezogene mechanische Zerlegungen gegenüber thermischen Schnitten, Wahl des Abbaus unter Wasser für den Behälter und die Innenräume, Einführung von Behandlungsmitteln zur Begrenzung der Einleitungen (siehe <u>Kapitel 2</u>, <u>Absatz 2.7</u>).

2. BEWERTUNG DER RADIOAKTIVEN ABLEITUNGEN UND HYPOTHESEN

wo die SUSZEPTIBLICHE PRODUKTLICHE VERORDNUNG RADIOAKTIVE STOFFE

Der Abbau des INB Nr. 75 erfolgt in mehreren Schritten: der elektromechanische Abbau und die Sanierung zielen darauf ab, das radiologische Risiko zu beseitigen, der konventionelle Abriss und die Sanierung des Standorts führen zum Endzustand des Standorts. Nur die ersten beiden Stufen können radioaktive Stoffe erzeugen.

2.1. DEMONTAGESCHRITTE

Wie in Kapitel 2 Ziffer 2.3.3 dargelegt, sind die Stilllegungsschritte wie folgt gegliedert:

- Schritt 1: elektromechanische Demontagearbeiten:
 - o elektromechanischer Abbau in Luft;
 - o elektromechanische Demontage unter Wasser;
- Schritt 2: Sanierung der Strukturen (nur für Kerngebäude);
- Schritt 3: konventioneller Abriss der Strukturen;
- Schritt 4: Sanierung des Standorts für die zukünftige Nutzung.

Diese verschiedenen Schritte sind auf der Ebene jedes Gebäudes aufeinanderfolgend, überlappen sich jedoch auf der gesamten Ebene des Standorts. So soll beispielsweise mit der Sanierung eines der BK (Brennstoffgebäude) begonnen werden, bevor der elektromechanische Abbau der übrigen Gebäude abgeschlossen ist.

Das Prinzip der Verkettung dieser 4 Stufen ist in Abbildung b dargestellt.

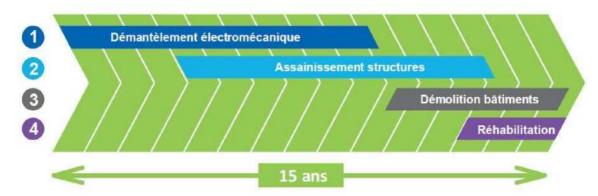
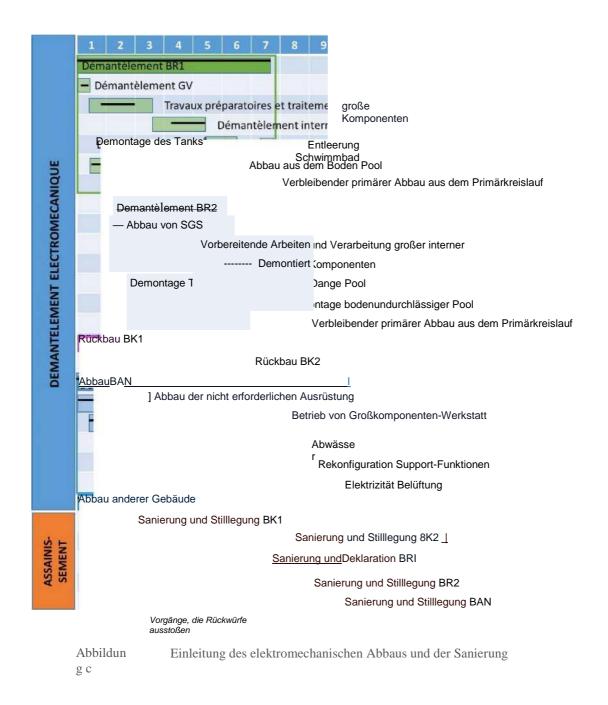


Abbildung b Prinzip der Verkettung der 4 Stufen des Abbauprojekts des INB Nr. 75

2.2. OPERATIONEN AUSGEWÄHLT FÜR ABSCHÄTZUNG VON RÜCKWÜRFEN UND PLANUNG

Bei der Schätzung der radioaktiven Freisetzungen werden folgende Vorgänge berücksichtigt:


- elektromechanische Demontagearbeiten:
 - O elektromechanischer Abbau in Luft;
 - O elektromechanische Demontage unter Wasser;
- Sanierung der Strukturen.

Dies liegt daran, dass die anderen Vorgänge keine radioaktiven Ableitungen verursachen.

Im Übrigen sind bei der Schätzung der Einleitungen Rückwürfe im Zusammenhang mit dem laufenden Betrieb des Standorts zu berücksichtigen: Betrieb des Waschsalons, Bodenwäsche, punktuelle Dekontamination, Verdunstung und Entleerung von Kapazitäten aus dem Betrieb des CNPE, die noch während des Abbaus vorhanden sind.

Die Schätzung der Rückwürfe aus dem Abbau von INB Nr. 75 erfolgt unter Berücksichtigung einer Stilllegungsund Sanierungszeit von 12 Jahren für beide Einheiten (Jahre 1 bis 12) gemäß dem prognostizierten Zeitplan des Stilllegungsplans.

Bei der Abschätzung der radioaktiven Freisetzungen wird der in <u>Abbildung c</u> dargestellte Zeitplan zugrunde gelegt. Die genaue Reihenfolge und der Zeitpunkt der Programmierung können geändert werden, ohne dass sich die Gesamtmenge der Ableitungen auf die gesamte Stilllegung auswirkt. Mögliche Überschneidungen von Vorhaben könnten sich auf die jährliche Verteilung der Rückwurfprognosen auswirken. Um den sich daraus ergebenden Anstiegen der Rückwürfe in einigen Jahren Rechnung zu tragen, wird auf die geschätzten jährlichen Rückwürfe ein Unsicherheitskoeffizient von 50 % (entspricht einer Verzögerung von 6 Monaten bei einem der Einheiten) angewandt, um die in <u>Paragraph 4.8und Ziffer 5.8 dieses Anhangs geforderten Grenzwerte zu erreichen (siehe Paragraphen 4.8.1 und 5.8.1)</u>. Darüber hinaus werden die mit den Grenzwerten verbundenen Zeiträume in Form von physikalischen Meilensteinen formuliert: Entleerung von Schwimmbädern, Zerlegungsarbeiten unter Wasser usw. und sind nicht an ein Jahr der Ausführung gebunden.

STILLLEGUNGSDOSSIER
INB Nr. 75: FESSENHEIM
Index C

2.3. ABWEISER DER ABLEHNUNG

2.3.1. ABGESANDTER FLÜSSIGER RADIOAKTIVER ABLEITUNGEN

Die flüssigen radioaktiven Ableitungen werden an der Hauptableitungsanlage gemäß <u>Kapitel 2 Absatz 2.4.2</u> durchgeführt.

Die maximale Abstoßrate am Hauptabstoßwerk beträgt höchstens 50 m^{3/h}.

Es ist vorgesehen, flüssige radioaktive Ableitungen bis zum Stillstand des TEU-Stromkreises nach dem Entleeren der letzten Schwimmbäder durchzuführen: flüssige Ableitungen sind bis zum Jahr 8 nach Beginn der Stilllegung geplant.

2.3.2. ABGESANDTE RADIOAKTIVER ABLEITUNGEN IN ATMOSPHERE

Die Emissionen radioaktiver Freisetzungen in die Atmosphäre sind in <u>Kapitel 2 Ziffer 2.4.4.1</u> aufgeführt. Emissionen im Zusammenhang mit radioaktiven Freisetzungen in die Atmosphäre entwickeln sich im Laufe des Projekts:

- zu Beginn des Projekts werden die Hauptgebäude durch das DVN-System belüftet, das für die Stilllegung neu konfiguriert wurde. Die Einleitungen erfolgen am Schornstein des BAN (mindestens 56 m über dem Boden). Bei streuungsgefährdeten Arbeiten beträgt der prognostizierte durchschnittliche Nennabzugsdurchsatz 231 000 m 3/h·wobei der Durchfluss zwischen 100 000 m 3/h^{und}257200 m 3/h variieren kann;
- zur Durchführung von Arbeiten an kontaminierten Elementen, die nicht an die allgemeine Belüftung angeschlossen sind (Abbau der externen Abwasserspeicher vor der Ableitung des BES), oder um den vollständigen elektromechanischen Abbau zu ermöglichen, bevor die Sanierungsphasen der Gebäudebetone eingeschaltet werden (einschließlich der Demontage des Lüftungssystems DVN), sind modulare Lüftungseinheiten (modulare Lüftung Einheit 1, modulare Lüftungseinheit 2, modulare Belüftung 3 (Außenbehälter und dann BES)) vorgesehen. Die Mindesthöhe des Schornsteins über dem Boden beträgt 10 m. Die nominale Abluftleistung pro Einheit beträgt 90 000 m 3/h·wobei der Durchfluss zwischen 5 000 m 3/h·und90000 m 3/h je nach^{Bedarf}variieren kann.

Der Arbeitsplan für jeden dieser Emittenten ist in Tabelle a dargestellt.

Gesandter	Betriebszeit		
Historischer Kamin des Ban	Jahre 1 bis 9		
Modulare Belüftung Außentanks	Jahr 8		
Modulare Belüftung BES (Wiederverwertung der modularen Belüftung Außentanks)	Jahre 11 und 12		
Modulare Lüftung Einheit 1	O Labora bio mana Enda dan Sanisman		
Modulare Lüftung Einheit 2	9 Jahre bis zum Ende der Sanierung		

Tabelle a Betriebsplanung der Ausstossstoffe radioaktiver Freisetzungen in die Luft

Einige Gebäude und Räume verfügen über Lüftungen mit Emissionsanlagen, die nicht an die allgemeine Belüftung des Standorts angeschlossen sind: das Standortwartungsgebäude (BES), in dem die Wäscherei, die Erweiterung der Warze BR, das RRI-Gebäude und dessen Erweiterung untergebracht sind. Während des Betriebs des CNPE wurden

die Luftabwässer, die in diesen Anlagen vorhanden sein könnten, vor der Einleitung gefiltert, und es wurde eine Abwesenheitsmaßnahme eingeführt, um sicherzustellen, dass die damit verbundenen Emissionen vernachlässigbar sind. Während des Abbaus von INB Nr. 75 müssen die Luftabwässer, die in diesen Anlagen vorhanden sein könnten, dieselbe Art und dieselbe Aktivität aufweisen wie während des Betriebs des CNPE (mit Ausnahme der während der Stilllegungsphase des BES emittierten Luftabwässer, für die eine modulare Lüftungsanlage eingerichtet wird (siehe Tabelle a)). Diese Abwässer werden vorab gefiltert. Die durchgeführte Überwachung ist in Kapitel 6 Absatz 6.3 dargestellt. Die mit diesen Emittenten verbundenen Rückwürfe werden bei der weiteren Schätzung der Rückwürfe nicht berücksichtigt, da sie durch die Maßnahmen der Nichtabweisung bestätigt wurden.

2.3.3. DIFFUSE ABLEITUNGEN

Zusätzlich zu den Ableitungen, die von den in den vorstehenden Absätzen genannten Emissionen vorgenommen werden, können radioaktive Freisetzungen in die Luft durch die Entlüftungsöffnungen der Abwasserspeicher vor der Ableitung (T-T-Behälter) erfolgen.

Diese Freisetzungen können auch durch spezifische Zerlegungsvorgänge verursacht werden.

Alle diese Freisetzungen in die Luft stellen diffuse Emissionen dar.

Etwaige diffuse Rückwürfe werden auf der Grundlage einer Vorabberechnung gemeldet.

5.
BEWERTUNG DER
ABLEITUNGEN RADIOAKTIVE

ABLEITUNGEN RADIOAKTIVER STOFFE DURCH OPERATION

Die Annahmen für die Bewertung der Rückwürfe für jedes Vorhaben sind in den folgenden Absätzen aufgeführt:

- <u>Absatz 3.1</u> für den elektromechanischen Abbau von Luftkreisläufen;
- <u>Absatz 3.2</u> für Teilungen unter Wasser;
- Ziffer 3.3 für die Sanierung von Strukturen;
- Absatz 3.4 für Ableitungen aus dem laufenden Betrieb.

Jede Operation erzeugt flüssige und/oder atmosphärische radioaktive Freisetzungen.

3.1. ELEKTROMECHANISCHER LUFTÜBERZUG

Der elektromechanische Abbau in der Luft erzeugt im Wesentlichen radioaktive Freisetzungen in die Luft. Die damit verbundenen flüssigen radioaktiven Freisetzungen (Waschen und Dekontamination von Werkzeugen) werden in <u>Paragraph 3.4</u> geschätzt.

3.1.1. OPERATIONS- UND PLANUNGSBESCHREIBUNG

Die elektromechanischen Abbrucharbeiten in Luft bestehen darin, elektromechanische Anlagen in den verschiedenen Räumen abzulagern (Demontage oder Schneiden) und Abfall zu konditionieren. Nach Abschluss dieser Phase werden nur der Tiefbau und die Strukturelemente des Gebäudes sowie die für die Durchführung der

Sanierungsarbeiten erforderlichen Ausrüstungen (Zugangsmittel, Unterstützungsfunktionen des Lüftungstyps und gegebenenfalls nach Umgestaltung der Beleuchtung) an Ort und Stelle gelassen.

In jedem Gebäude zerfallen die elektromechanischen Abbauarbeiten in große Arbeitsgänge.

Für jedes der beiden Reaktorgebäude (BR):

- · die Evakuierung der Dampferzeuger;
- Einrichtung einer "Großbaugruppe" zum Zerlegen oder Aufbereiten von Großanlagen, die nicht direkt in Standardabfallpakete verpackt werden können;
- Abbau der primären Hauptabschaltungskreise;
- Abbau der Schleifen des Primärkreislaufs (ohne Behälter);
- Durchführung von Vorkehrungen für den Abbau der Innenräume und des Tanks (Abfallverpackungszelle und Abfallkinematik);
- die Demontage der letzten vorhandenen Ausrüstungen, einschließlich der unterstützenden Funktionen, zur Sanierung.

Für jedes der beiden brennbaren Gebäude (BK):

- die Demontage der im Poolboden vorhandenen Ausrüstungen und der Abteile des BK-Pools (Fortsetzung der Lagerungsregale, die möglicherweise in der Vorbereitungsphase für den Abbau und anschließende Entfernung des Liners begonnen werden);
- die Stilllegung der Räume unterhalb des Poolbodens;
- die Demontage der letzten vorhandenen Ausrüstungen, einschließlich der unterstützenden Funktionen, zur Sanierung.

Für das Kernhilfsgebäude (BAN) und für jedes der beiden Peripheriegebäude (BW):

- Einrichtung einer "Großbaugruppe" zum Zerlegen oder Aufbereiten von Großanlagen, die nicht direkt in Standardabfallpakete verpackt werden können;
- eine erste Phase des Abbaus von Ausrüstung, die für die Stilllegung nicht erforderlich ist;
- eine zweite Phase des Abbaus der Stützfunktionen im NB, die den Kerngebäuden gemeinsam sind, wenn deren Betrieb für die Stilllegung nicht mehr erforderlich ist (z. B. Abwassermanagement und Lüftung). In dieser zweiten Phase der Arbeiten des BAN wird die ursprüngliche Belüftung neu konfiguriert. Diese Belüftung, von der der größte Teil der Blas- und Abluftnetze im BAN enthalten ist, wird durch modulare Lüftungseinheiten ersetzt, die den verschiedenen betroffenen Gebäuden (BR, BK, BW usw.) gewidmet sind, um den Rest der dort vorgesehenen Arbeiten zu ermöglichen;
- eine dritte Phase des Abbaus der letzten vorhandenen Ausrüstung für die Sanierung.

Für das Standortwartungsgebäude (BES): den Abbau aller vorhandenen Ausrüstungsgegenstände für die Sanierung;

Bei externen Abwasserspeicherbehältern vor der Ableitung: diese Tanks werden durch Anpassung des Verfahrens an die Typologie jedes Behälters (Metall, lackierter Beton, Beton mit Metallliner) abgebaut. Analog zu dem, was für Kerngebäude vorgesehen ist, kann eine modulare Lüftungseinheit für die Arbeiten im Zusammenhang mit diesen Außentanks eingesetzt werden.

Bei der Schätzung der Freisetzungen handelt es sich um die in Tabelle b dargestellten Vorgänge an den in <u>Tabelle</u> b dargestellten Schaltkreisen, die das kontaminierte Fluid transportieren.

Schaltkreise für die Ableitungsschätzung						
EAS	Aspersion-Rezirkulation der Aspersion					
PTR	Behandlung und Abkühlung des Schwimmwassers					
RCP	Primärkühlungskreis					
RCV	Chemische und volumetrische Kontrolle					

REA	Zusatz Wasser und Bore				
REN	Kernproben-Schaltung				
RIS	Sicherheitsinjektion				
RPE	Säuberungen, Events, Atomexhaures				
RRA	Abkühlung des Reaktors im Stillstand				
TEP	Behandlung von primären Effluenten				
DEINE	Behandlung von Solid Effluents				
TEU	Behandlung von flüssigen Efluenten				

Tabelle b Schaltkreise für die Schätzung der Rückwürfe

Die anderen Schaltkreise sind nicht funktionell kontaminiert und werden als TFA (Sehr niedrige Aktivität) eingestuft. Ihre mögliche Kontamination ist um mehrere Größenordnungen kleiner als die Kontamination früherer Kreisläufe, so dass die damit verbundenen Einleitungen im Vergleich zu den Abwrackvorgängen auf funktional kontaminierten Kreisläufen vernachlässigbar sind.

Der elektromechanische Abbau von Bauteilen, die radioaktive Stoffe verursachen können, ist für die Jahre 1 bis 9 ab dem Beginn der Stilllegung vorgesehen (siehe <u>Abbildung c</u>) für die beiden BR-Gebäude, die 2 BK-Gebäude, die beiden BW-Gebäude und das BAN-Gebäude. Der elektromechanische Abbau des BES-Gebäudes ist für die Jahre 11 und 12 geplant.

3.1.2. SUSPENSION IN DER LUFT

Die atmosphärischen radioaktiven Stoffe, die bei der elektromechanischen Abwrackung an der Luft entstehen, stammen aus:

- die Suspension der labilen Oberflächenkontamination in der Luft beim Handling der Bauteile;
- die Suspension der T\u00e4tigkeit an der Stelle, an der das Schneiden durchgef\u00fchrt wird, in der Luft;
- flüchtige Radionuklide, die auf der Oberfläche und in der wärmebeeinflussten Masse vorhanden sind und die den Schnittstrich umgeben, in der Luft bei thermischen Schnittschnitten suspendiert werden.

Die vorgesehenen Schneidarten können mechanische oder thermische Verfahren in der Luft sein:

- · dem mechanischen Schneiden wird Vorrang eingeräumt, um die Freisetzungen zu verringern;
- das thermische Schneiden ist für bestimmte Bauteile vorgesehen, bei denen die Zuschnitte Mechaniken können nicht verwendet werden, insbesondere für Komponenten mit hoher Dicke.

Die betreffenden Schwebekoeffizienten in der Luft sind in Tabelle c dargestellt.

Art der Intervention	Art des mobilisierten Quellbegriffs	Betroffene Fläche, Masse oder Volumen	Betroffenes RN (Radionuklid)	Koeffizient für die Aussetzung
Verschieben/Handling der Elemente vor dem Schneiden	Labile Oberflächenkontaminati on	Äußere kontaminierte Gesamtfläche	Alle RN	1.10-5
	Labile	Geschnittene Oberfläche	Alle RN	1
Zuschneiden (mechanisch und thermisch) an die Umgebungsluft	Oberflächenkontaminati on	Thermisch beeinflußte Fläche	RN Gazeux	1
Onigeoungstutt	Fixierte Oberflächenkontaminati	Geschnittene Oberfläche	RN Gazeux	1

	on		RN-Gas	1.10-1
		Thermisch beeinflußte Fläche	RN Gazeux	1
	Massenaktivität	Geschnittene Masse	RN Gazeux	1
		Geschilltene Wasse	RN-Gas	1.10-2
		Thermisch betroffene Masse	RN Gazeux	1

Tabelle c Luftsuspensionskoeffizienten für Schneidvorgänge in der Luft

3.1.3. PHYSIKALISCHE DATEN

Für die meisten Elemente wurden folgende Annahmen herangezogen:

- einem Schnittanteil von 1 % (d. h. 0,01) für Rohrleitungen und Linearelemente (geschnitten nach einer Größe entsprechend einem Schnitt von einem Zentimeter pro Meter);
- ein Schneidanteil von 2 % (d. h. 0,02) für Behälter-/Wärmetauscherbauteile (geschnitten in zwei Dimensionen).

Bei einigen Bauteilen (insbesondere in der Werkstatt geschnitten) lassen sich anhand der Stilllegungsszenarien die Anzahl der erforderlichen Teilungen abschätzen, so dass der Schnittanteil an der Oberfläche des Bauteils genau berechnet werden kann.

Für die meisten luftgeschnittenen Bauteile ist ein mechanisches Schneiden vorgesehen, wodurch die mit den Ausschnitten verbundenen Emissionen in die Luft reduziert werden.

Bei einigen Bauteilen kann ein mechanisches Schneiden z. B. aufgrund der hohen Dicke des zu schneidenden Bauteils kaum in Betracht gezogen werden. In diesem Fall kann ein thermischer Schnitt durchgeführt werden. Thermisch beeinflußte Massen und Oberflächen gelten als das Vierfache der geschnittenen Massen und Flächen.

Die für die luftgeschnittenen Bauteile für jede Produktionseinheit (oder Scheibe) betrachteten Massen und Flächen sind in den nachstehenden <u>Tabellen d bis Tabelle</u> gdargestellt (die Werte gelten für beide Produktionseinheiten als identisch). <u>Tabelle h</u> zeigt die Massen und Oberflächen für die luftgeschnittenen Komponenten, die für beide Einheiten gemeinsam sind.

Zu schneidende Komponente	Gebäude	Schaltung	Geschätzte kontaminierte Fläche (m²)	Geschätzte Masse (kg)	Geschätzter Anteil	Art des Schneidens
Kesselhalterring – Luftthermisches Schneiden	BR	_	0	15039	0,01	Thermische
Kalorienabweisender Metallkofferkasten	BR	_	0	4800	0,01	Mechanik
Behälterdeckel	BR (ausgeschnitt en im BAN)	RCP	162	55500	0,00174	Thermische
RCP Heißer Zweig (BC)	BR	RCP	46	29039	0,0055	Mechanik
RCP Heißer Zweig nachgeschnitten in Großhandelskomponenten-Werkstatt	BR	RCP	46	29039	0,0074	Mechanik
RCP Teile Heißer Zweig in der Nähe von Tankschläuchen (Atelier BAN)	BR	RCP	46	29039	0,00589	Thermische
RCP Entsolidarisierung BF, BU, PP Volute vor der Übertragung in Großbauteilwerkstatt	BR	RCP	105	63175	0,0060	Mechanik
RCP Kaltverzweigung (BF), U- Verzweigung (BU)	BR	RCP	105	63175	0,0060	Mechanik
RCP Teile Kalter Zweig in der Nähe von Tankschläuchen (Atelier BAN)	BR	RCP	49	29705	0,0054	Thermische
RCP Druckdämpfer	BR	RCP	76	79000	0,019	Mechanik
RCP Volute Primärpumpe	BR	RCP	141	129000	0,01	Mechanik
RCP-Mechanismen Befehlsleisten	BR	RCP	55	29760	0,0018	Mechanik
RCP Kleine Rohrleitungen (kalte Zweige)	BR	RCP	83	13824	0,01	Mechanik
RCP Druckschläuche	BR	RCP	114	12662	0,01	Mechanik
RCP Entladungsbehälter des Druckbehälters	BR	RCP	79	9000	0,02	Thermische

Tabelle d Schätzung der Massen und geschnittenen Flächen (für jede Produktionseinheit — Behälter und Primärkreislauf)

Zu schneidende Komponente	Gebäude	Schaltung	Geschätzte kontaminierte Fläche (m²)	Geschätzte Masse (kg)	Geschätzter Anteil	Art des Schneidens
RCV Austauscher Regenerator (ER) – Drei Flaschen Wärmetauscher	BR	RCV	288	4120	0,0019	Mechanik
RCV Ausziehaustauscher	BR	RCV	6	500	0,0030	Mechanik
RCV Rohrleitungen ER – BR	BR	RCV	152	7515	0,01	Mechanik
RCV Rohrleitungen ENR – BR	BR	RCV	152	7515	0,01	Mechanik
RCV ENR (nicht regenerativer Austauscher)	BAN	RCV	42	2790	0,02	Mechanik
RCV Abwärtsschläuche ENR – BAN	BAN	RCV	94	3046	0,01	Mechanik
RCV vorgelagerte Mineralisierer – BW	BW	RCV	72	2188	0,01	Mechanik
RCV Austauscher GMPP (CEPP- Austauscher) + 2 REI gemischte Betten und + kationische REI	BAN	RCV	35	3590	0,02	Mechanik
RCV Ballon	BAN	RCV	16	1800	0,02	Thermische
RRA 2 Austauscher	BR	RRA	908	21640	0,0049	Mechanik
RRA Vorlaufschläuche Austauscher	BR	RRA	67	5544	0,01	Mechanik
RRA Nachlaufschläuche Austauscher	BR	RRA	44	3640	0,01	Mechanik

Tabelle e Schätzung der geschnittenen Massen und Flächen (für jede Produktionseinheit—RCV- und RRA-Schaltungen)

Zu schneidende Komponente	Gebäude	Schaltung	Geschätzte kontaminierte Fläche (m²)	Geschätzte Masse (kg)	Geschätzter Anteil	Art des Schneidens
Ren Rohrleitungen Amont Austauscher	BR	REN	96	2368	0,01	Mechanik
Ren 10 Austauscher	BW	REN	10	810	0,02	Mechanik
Ren Rohrleitungen Aval Austauscher	BW	REN	32	694	0,01	Mechanik
REA Scheibenschläuche – BAN	BAN	REA	14	467	0,01	Mechanik
REA Scheibenschläuche – BR (+BK)	BR	REA	27	564	0,01	Mechanik
REA Tank Borsäure	BAN	REA	74	4500	0,02	Thermische
RIS Rohrleitungen – BR	BR	RIS	300	44907	0,01	Mechanik
RIS Rohrleitungen – BW	BW	RIS	116	10156	0,01	Mechanik
RIS 3 Akkus Injektion	BR	RIS	204	93000	0,02	Thermische
RIS Konzentrierter Bortank	BW	RIS	13	10798	0,02	Thermische
RIS Tank Bor Expansion	BAN	RIS	4	190	0,02	Mechanik
EAS Rohrleitungen BK	BK	EAS	167	8250	0,01	Mechanik
EAS Rohrleitungen BW	BW	EAS	176	10863	0,01	Mechanik
EAS 2 Austauscher	BK	EAS	2206	58900	0,02	Thermische
EAS Austauscher Nr. 5	BK	EAS	123	3670	0,02	Mechanik

Tabelle f Schätzung der Massen und geschnittenen Flächen (für jede Produktionseinheit – REN, REA, RIS, EAS)

Zu schneidende Komponente	Gebäude	Schaltung	Geschätzte kontaminierte Fläche (m²)	Geschätzte Masse (kg)	Geschätzter Anteil	Art des Schneidens
PTR Boot + Lademaschine	BR	PTR	173	3508	0,01	Thermische
PTR Rohrleitungen – BR	BR	PTR	103	2891	0,01	Mechanik
PTR Rohrleitungen – BK	BK	PTR	160	3799	0,01	Mechanik
PTR Rohrleitungen – BW	BW	PTR	85	1974	0,01	Mechanik
PTR Tank Nr. 1	BW	PTR	701	42563	0,02	Thermische
PTR 2 Austauscher	BK	PTR	446	11600	0,02	Thermische
PTR Entmineralisierer	BAN	PTR	13	900	0,02	Mechanik
Rohrübertragung	BK	PTR	8,5	683	0,0071	Mechanik
PTR-Liner von Fächern Pool BK (Lagerung, Sarg, Transfer)	ВК	PTR	1078	25225	0,014	Mechanik
PTR liner von BR- Schwimmfächern	BR	PTR	800	19200	0,012	Mechanik
RPE Rohrleitungen – BR	BR	RPE	478	11732	0,01	Mechanik
RPE Rohrleitungen – BK	BK	RPE	20	610	0,01	Mechanik
RPE Rohrleitungen – BW	BW	RPE	6	152	0,01	Mechanik
RPE-Reservoirs Primärabwässer und RPE-	BR	RPE	21	1280	0,02	Mechanik
RPE Tanks Nr. 10 und 11	BK	RPE	28	855	0,02	Mechanik
RPE Tank Nr. 4	BAN	RPE	47	2280	0,02	Mechanik
RPE Tank Nr. 5 Servituden RIS	BW	RPE	31	2280	0,02	Mechanik
TEP Rohrleitungen BR	BR	TEP	5	109	0,01	Mechanik

Tabelle g Schätzung der Massen und geschnittenen Flächen (für jede Produktionseinheit — Stromkreise PTR, RPE, TEP)

Zu schneidende Komponente	Gebäude	Schaltung	Geschätzte kontaminierte Fläche (m²)	Geschätzte Masse (kg)	Geschätzter Anteil	Art des Schneidens
RCV vorgelagerte Mineralisiererrohre – BAN (Gemeinden und Scheiben)	BAN	RCV	502	17838	0,01	Mechanik
REA Gemeinsame Rohrleitungen	BAN	REA	94	3113	0,01	Mechanik
REA Gemeinsamer Bortank Nr. 3	BAN	REA	74	4500	0,02	Thermische
REA 2 Reaktive Zusatzwassertanks	BAN	REA	490	40000	0,02	Thermische
RIS Gemeinsame Rohrleitungen BAN	BAN	RIS	38	1977	0,01	Mechanik
PTR Rohrleitungen – BAN (Gemeinden und Tranchen)	BAN	PTR	94	1816	0,01	Mechanik
PTR Gemeinsame Filter Nr. 3 und Nr. 4	BAN	PTR	8	710	0,02	Mechanik
RPE Gemeinschaftsrohre + 2 BAN-Einheiten	BAN	RPE	476	18026	0,01	Mechanik
RPE Generalschatz Nr. 3 und Primärabwässer Nr. 4	BAN	RPE	45	3980	0,02	Mechanik
TEP Rohrleitungen BAN (Gemeinden + 2 Einheiten)	BAN	TEP	303	9131	0,01	Mechanik
TEP Tanks (Kopftank, Zwischenlagerung 2-3-4, Behälter 5-6-7)	BAN	ТЕР	612	57850	0,02	Thermische
TEP Verdampfer	BAN	TEP	30	1600	0,02	Mechanik
TEP Austauscher, Werkstattkondensatoren	BAN	TEP	360	10600	0,02	Mechanik
TEP Austauscher, Kondensatoren	BAN	TEP	35	1200	0,02	Mechanik
TEP 7 Entmineralisierer	BAN	TEP	66	5300	0,02	Mechanik
Teu – Rohrleitungen (Gemeinden + 2 Einheiten)	BAN	TEU	198	5888	0,01	Mechanik
Teu – Tanks (Abflusslagerung 1-2-3-4 und Lagerung 56)	BAN	TEU	318	21000	0,02	Thermische
Teu 2 Entmineralisierer	BAN	TEU	23	1510	0,02	Mechanik

Zu schneidende Komponente	Gebäude	Schaltung	Geschätzte kontaminierte Fläche (m²)	Geschätzte Masse (kg)	Geschätzter Anteil	Art des Schneidens
Teu Heizung Verdampfer	BAN	TEU	54	1300	0,02	Mechanik
Teu Verdampfer	BAN	TEU	150	1600	0,02	Mechanik
Teu Kondensator	BAN	TEU	26	750	0,02	Mechanik
Teu Kühler	BAN	TEU	5	200	0,02	Mechanik
TSE – Tanks 2, 7	BAN	DEINE	49	1720	0,02	Thermische
TSE – Tanks 1, 3, 4, 5	BAN	DEINE	32	1938	0,02	Mechanik
TES – Rohrleitungen	BAN	DEINE	46	1423	0,01	Mechanik
Teu – Außentanks	Ext	TEU	1939	1796000	0,02	Mechanik
Teu – Außenrohre	Ext	TEU	52	1731	0,01	Mechanik
Elektromechanische Demontage des BES	BES	_	100000	37000	0,02	Mechanik

Tabelle h Schätzung der Massen und geschnittenen Flächen (gemeinsame Schaltungen beider Einheiten von Produktion)

3.1.4. RADIOLOGISCHE DATEN

Die radiologische Aktivität der abzubauenden Strukturen beim elektromechanischen Luftabbau beruht hauptsächlich auf der Kontamination.

Einige luftgetrennte Elemente werden aktiviert (die bei der elektromechanischen Demontage weniger als 2 Massenprozent der zu schneidenden Elemente ausmachen).

Die radiologischen Inventare der zu zerlegenden Strukturen werden zum Zeitpunkt des Beginns des Abbaus (d. h. 5 Jahre nach der endgültigen Stilllegung des CNPE für die Berechnungen des Abbaus) betrachtet und sind in den nachstehenden Absätzen aufgeführt.

3.1.4.1. Kontamination von Schaltkreisen

Die Oberflächenkontamination der Schaltkreise resultiert aus Ablagerungen:

- Partikel, die den Strukturen durch Korrosion und mechanischen Verschleiß abgerissen und unter Neutronenstrom aktiviert werden;
- Spaltprodukte und Aktiniden, die freigesetzt werden, wenn eine brennbare Hülle während des Betriebs nicht dicht ist.

Der Grad der Kontamination hängt von mehreren Faktoren ab, von denen die wichtigsten sind:

- Betriebsbedingungen (Druck, Temperatur und Durchfluss des Fluids);
- Materialart (Zusammensetzung, Oberflächenzustand);
- die Geometrie der Struktur in Kontakt mit der Vektorflüssigkeit.

Die Radionuklide in der Kontamination stammen alle aus dem Kern des Reaktors. Um also ein Kontaminationsvektor zu sein, muss eine Flüssigkeit in Kontakt mit dem Reaktorkern stehen. Für das INB Nr. 75, die REP-Technologiezentrale, ist das Kontaminationsmedium Primärwasser. Beim Betrieb eines REP handelt es sich bei den von der Kontamination betroffenen Kreisläufen um den Primärkreislauf sowie alle Hilfskreise, die das Primärwasser transportieren, aufbereiten oder recyceln.

^1 SPALTPRODUKTE, AKTIVIERUNGSPRODUKTE

Aktivierungsprodukte sind Radionuklide, die aus dem Phänomen der Aktivierung von Flüssigkeiten und Strukturen stammen, die dem Neutronenstrom ausgesetzt sind, der während des Reaktorbetriebs erzeugt wird.

Spaltprodukte sind Radionuklide, die aus Brennelementen stammen und während des Reaktorbetriebs erzeugt werden.

Die radiologischen Inventare werden auf folgender Grundlage geschätzt:

- betriebliche Maßnahmen;
- Entnahme von Rohren an Dampferzeugern;
- die Kapitalisierung der Analysen der Betriebsabfälle der in Betrieb befindlichen Kernkraftwerke.

Darüber hinaus ist für den Zeitraum nach Betriebsausfall und vor Beginn des Stilllegungszeitraums eine Dekontaminierung mehrerer Schaltkreise vorgesehen, um insbesondere die Dosimetrie des eingesetzten Personals zu verringern. Die dekontaminierten Schaltkreise sind der RCP-Stromkreis (Primärkreis), der RRA-Schaltung (Reaktor-Kühlkreis bei Stillstand) und ein Teil des RCV-Stromkreises (chemische und volumetrische Kontrolle) (bis einschließlich des regeneratorischen Austauschers). Für diese Schaltkreise besteht das Ziel darin, mehr als 95 % der ursprünglichen Kontamination zu entfernen. Konservativ wird angenommen, dass die Dekontamination 90 % der ursprünglichen Kontamination entfernt.

Oberflächenkontaminationen pro Kreislauf können für jede Produktionseinheit unterschiedlich sein. Benachteiligend werden Oberflächenkontaminationen für die beiden Produktionseinheiten als identisch angesehen, wobei die am stärksten benachteiligte Oberflächenkontamination berücksichtigt wird.

Die Kontaminationswerte für Kobalt 60 sind in <u>Tabelle i</u> für jeden der betreffenden Schaltkreise oder Teile davon zum Zeitpunkt des Beginns des Abbaus (d. h. 5 Jahre nach der endgültigen Einstellung der Produktion des CNPE) aufgeführt. Wie in <u>Ziffer 3.1.1</u> dargelegt, wird darauf hingewiesen, dass nicht funktional kontaminierte Schaltkreise in der Ableitungsschätzung nicht berücksichtigt werden.

Schaltung betrachtet	Teil der Schaltung	Surfaktivität Co60 (GBq/m²)
	Unterströmung	0,1
	Heißer Zweig	0,06
Primärkreis	Kalter Zweig	0,1
	Druck- und RDP-Druckbehälter (Druckentlastungsbehälter)	0,1
	GV (Dampfgeneratoren)	0,02
	Amont ER (Regenerator-Wechselrichter) und ER	0,04
	Amont ENR (nicht regenerativer Austauscher)	0,02
RCV	ENR	0,001
	ENR-Stamm	0,04
	RCV nach unten Filter Nr. 1	0,09
	Vorgelagerte Austauscher	0,06
RRA	Austauscher	0,1
	Abflusstauscher	0,004
	Vorgelagerte Austauscher	0,6
REN	Austauscher	0,03
	Abflusstauscher.	0,008
REA	REA	0,07
RIS	RIS	0,6
EAS	EAS	1
PTR	PTR	1
RPE	RPE	0,4
	TEP	0,1
Gemeinsame Schaltungen	Teu (Teil vor der Behandlung)	0,2
-	DEINE	0,04

Tabelle i Geschätzte Surfaktivitäten in Co60 der Touren zum Zeitpunkt des Beginns des Stilllegung (unter Annahme 5 Jahre nach der endgültigen Einstellung der Produktion)

Das Spektrum (Aufteilung der Radionuklide) zum Zeitpunkt des Stilllegungsbeginns ist in <u>Tabelle j</u> dargestellt und ist für alle untersuchten Schaltkreise identisch.

Radioelement	Verhältnis/Co60
14 _C	7,14.10 ⁻⁰²
³⁶ Cl	1,93.10 ⁻⁰⁸
129 _I	9,89.10 ⁻⁰⁸
⁵⁸ Co	3,29.10 ⁻⁰⁸
⁶⁰ Co	1
⁵⁴ Mio.	3,18.10 ⁻⁰³
65 _{Zn}	2,58.10 ⁻⁰⁴
125 _{Sb}	1,31.10 ⁻⁰²
110 m _A g	3,18.10 ⁻⁰³
137 _{Cs}	8,61.10 ⁻⁰³
134 _{Cs}	9,01.10 ⁻⁰⁴
⁷⁹ Se	3,96.10 ⁻⁰⁷
⁹⁹ tc	4,14.10 ⁻⁰⁵
107 _{Pd}	9,89.10 ⁻⁰⁷
126 _{Sn}	8,90.10 ⁻⁰⁷
135 _{Cs}	2,97.10 ⁻⁰⁷
151 _{Sm}	3,81.10 ⁻⁰⁴
10_{Be}	3,85.10 ⁻⁰⁷

Radioelement	Verhältnis/Co6
⁴¹ Ca	9,63.10 ⁻⁰⁶
⁵⁵ Fe	1,14
59 _{Ni}	1,02.10 ⁻⁰³
⁶³ Ni	1,36
⁹⁰ Sr	4,43.10 ⁻⁰²
⁹³ MB	1,87.10 ⁻⁰⁶
93 _{Zr} .	9,63.10 ⁻⁰⁵
⁹⁴ Nb	5,79.10 ⁻⁰⁴
108 m _A g	1,34.10 ⁻⁰²
121 ms n	3,62.10 ⁻⁰⁵
241 _{Pu}	1,61.10 ⁻⁰³
238 _{Pu}	1,44.10 ⁻⁰⁴
239 _{Pu}	5,49.10 ⁻⁰⁵
240 _{Pu}	5,09.10 ⁻⁰⁵
241 _{Am}	2,03.10 ⁻⁰⁴
242 _{Cm}	9,52.10 ⁻⁰⁸
²⁴⁴ Cm	9,89.10 ⁻⁰⁵

Tabelle j Schätzwerte im Vergleich zu Co60 für die Kontamination von Schaltkreisen zum Zeitpunkt des Beginn der Stilllegung (unter Annahme 5 Jahre nach der endgültigen Einstellung der Produktion)

Für Kreisläufe, die nach dem Stillstand dekontaminiert wurden, gilt die nach der Dekontaminierung verbleibende Kontamination als vollständig fixiert.

Bei anderen Kreisläufen ergibt sich aus der Analyse des Erfahrungsberichts, dass der an der Oberflächenkontamination festgelegte Anteil der Kontamination 50 % beträgt.

Bei Tritium handelt es sich um eine Massenkontamination, die zum Zeitpunkt des Beginns des Abbaus für alle funktionell kontaminierten Schaltkreise 0,1 Bq/g beträgt.

3.1.4.2. Aktivierung von Strukturen

Die Aktivierung der Materialien resultiert aus dem Betrieb des Reaktorkerns. Während dieser Zeit wurden die Anlagen um das Herz (Metallstrukturen und Beton) dem Neutronenstrom ausgesetzt. Einige Atome, die diese Materialien bilden, wurden durch Neutronenabscheidung von radioaktiven Atomen.

Die Aktivierung der Materialien wird durch Berechnung bewertet.

Die vom Abbau in Luft betroffenen Strukturen, die nur aktiviert sind, sind:

- der Behälterhalterring;
- das Gehäuse des Behälterwärmeschutzmittels.

Die Co60-Massenaktivitäten dieser Strukturen sind in <u>Tabelle k</u> dargestellt. Da der Beginn des Abbaus der Behälterinnen und Behälter 3 Jahre nach Beginn der Stilllegung geplant ist, werden die Aktivierungsspektren 3 Jahre nach Beginn des Abbaus (d. h. 8 Jahre nach der endgültigen Einstellung der Produktion) betrachtet.

Betrachtetes Element	Tätigkeiten Co60 (Bq/g)		
Ring Tankhalterung	1,0.10+04		
Casing des Behälterwärmeschutzmittels	4,0.10+04		

Tabelle k Co60-Massentätigkeiten von luftgeschnittenen Metallelementen, 3 Jahre nach Beginn des Abbaus

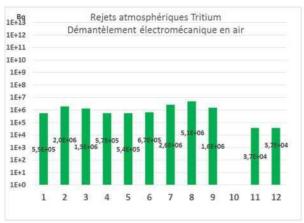
Die Verhältnisse der anderen Radioelemente zu Co60 sind in Tabelle r (Spalte "Ratio/Co60 Cuve") dargestellt.

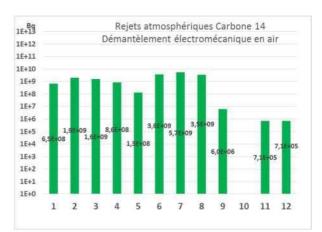
3.1.5. BEHANDLUNG VON RÜCKWÜRFEN

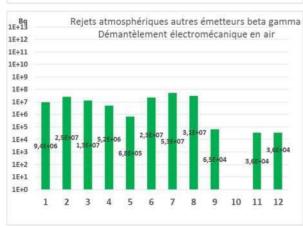
Vor der Freisetzung durch einen der Ableitungsschächte in die Umwelt werden die atmosphärischen Abwässer aus dem elektromechanischen Luftabbau durch einen THE-Filter (Sehr hohe Effizienz) gefiltert.

Der gewählte Behandlungskoeffizient beträgt 1000 für alle Radionuklide außer denen, die als gasförmig angesehen werden (Tritium, Kohlenstoff 14, Chlor 36), für die die Filter als unwirksam angesehen werden (siehe Kapitel 2, Ziffer 2.5.2).

3.1.6. ERGEBNIS DER SCHÄTZUNG DER RÜCKWÜRFE IM ZUSAMMENHANG MIT


ELEKTROMECHANISCHER LUFTÜBERZUG


Die geschätzten Tätigkeiten der radioaktiven Freisetzungen in die Luft nach Jahr und Kategorie von Radionukliden aus allen Schornsteinen im Zusammenhang mit dem elektromechanischen Abbau in Luft sind in <u>Tabelle 1 und in Abbildung d</u> dargestellt.


Rückwürfe	Jahr 1	Jahr 2	Jahr 3	Jahr 4	Jahr 5	Jahr 6
atmosphärisch	Bq/Jahr	Bq/Jahr	Bq/Jahr	Bq/Jahr	Bq/Jahr	Bq/Jahr
Tritium	5,5.10+05	2,0.10+06	1,3.10+06	5,7.10 ^{+ 05}	5,4.10 ⁺⁰⁵	6,7.10+05
Kohlenstoff 14	6,5.10+08	1,9.10+09	1,6.10+09	8,6.10+08	1,3.10+08	3,6.10+09
Beta Gamma	9,4.10+06	2,5.10+07	1,3.10+07	5,2.10+06	6,8.10+05	2,3.10+07
Alpha	1,5.10+03	3,9.10+03	2,0.10+03	8,0.10+02	9,6.10+01	3,5E.10 ⁺⁰³

Freisetzungen in die Luft	Jahr 7 Bq/Jahr	Jahr 8 Bq/Jahr	Jahr 9 Bq/Jahr	Jahr 10 Bq/Jahr	Jahr 11 Bq/Jahr	Jahr 12 Bq/Jahr
Tritium	$2,6.10^{+06}$	5,1.10+06	1,6.10+06	_	3,7.10+04	3,7.10+04
Kohlenstoff 14	5,7.10+09	3,5.10+09	6,0.10+06	_	7,1.10+05	7,1.10+05
Beta Gamma	5,3.10+07	3,1.10+07	6,5.10+04	_	3,6.10+04	3,6.10+04
Alpha	$8,2.10^{+03}$	4,8E10 ⁺⁰³	_	_	5,5	5,5

Tabelle l Geschätzte radioaktive Freisetzungen in der Luft nach Kategorien für den Abbau elektromechanische Luft

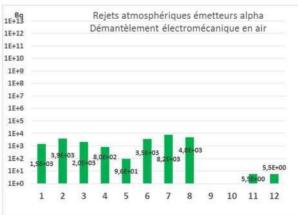


Abbildung d Geschätzte radioaktive Freisetzungen in der Luft nach Kategorien für den Abbau elektromechanische Luft

3.2. ELEKTROMECHANISCH UNTER WASSER

Die elektromechanische Demontage unter Wasser führt zu flüssigen radioaktiven Freisetzungen (in Verbindung mit Wasser- und Wasserzerlegungen) und radioaktiven Freisetzungen in die Luft (insbesondere im Zusammenhang mit der Verdunstung).

3.2.1. BESCHREIBUNG DER OPERATION UND PLANUNG

Die Operation ist in Kapitel 2 Ziffer 2.3.4 dargestellt.

Dieser Vorgang besteht darin, die Behälterinnenräume unter Wasser zu demontieren und dann den Behälter in jedem der beiden Reaktorgebäude (BR) abzubauen.

Nach der Wasserversorgung des Pools der einzelnen Reaktorgebäude erfolgt das Schneiden der Innenräume, beginnend mit den oberen Innenräumen und dann mit den unteren Innenräumen.

Ein mechanisches Schneidverfahren wird einem thermischen Schneidverfahren vorgezogen, um die Freisetzungen zu minimieren.

Am Ende des Schneidens der Innenräume für jedes BR-Gebäude wird das BR-Pool entleert, eine Handhabung des Tanks erfolgt, ein Behälterbrunnenverschluss wird eingerichtet. Dann wird das BR-Pool des Gebäudes wieder in Wasser gebracht, und das Schneiden des Tanks erfolgt mit einem geeigneten Schneidmittel. Benachteiligend wird bei der Abschätzung der Ableitungen ein thermischer Ausschnitt des Behälters berücksichtigt.

Für die Jahre 4 bis 7 ab dem Beginn der Stilllegung ist der Abbau unter Wasser des Behälters und des Behälterinnenraums vorgesehen (4-6 für die Stilllegung der ersten Produktionseinheit, 5 bis 7 für die Stilllegung der zweiten Produktionseinheit). Die Entleerung der BR-Pools ist für die Jahre 7 und 8 vorgesehen.

3.2.2. AUSSETZUNG

Flüssige radioaktive Abwässer aus elektromechanischen Abbauvorgängen unter Wasser stammen aus:

- die Suspension der Oberflächenkontamination der untergetauchten Elemente im Wasser;
- das Zerlegen unter Wasser und die Suspension der Aktivität am Schnittstrich im Wasser;
- das Schneiden unter Wasser und die Suspension in Wasser bei thermischen Ausschnitten von "volatilen"
 Radionukliden auf der Oberfläche und in der thermisch betroffenen Masse, die den Schnittstrich umspannt.

Die betreffenden Koeffizienten für die Suspension in Wasser sind in <u>Tabelle m</u> dargestellt.

Art der Intervention	Art des mobilisierten Quellbegriffs	Betroffene Fläche, Masse oder Volumen	Betroffenes RN (Radionuklid)	Koeffizient für die Aussetzung
Wassereinspeisung: Wäscherei	Labile Oberflächenkontaminati	Verunreinigte Gesamtfläche	Alle RN	1,0
	Fixierte	Geschnittene Oberfläche	Alle RN	1,0
Schneiden (mechanisch und thermisch) unter	Oberflächenkontaminati on	Thermisch beeinflußte Fläche	RN Gazeux	1,0
Wasser		Geschnittene Masse	Alle RN	1,0
	Massenaktivität	Thermisch betroffene Masse	RN Gazeux	1,0

Tabelle m Suspensionskoeffizienten im Wasser, die für die Zuschnitte unter Wasser

Die atmosphärischen radioaktiven Abwässer, die bei der elektromechanischen Demontage unter Wasser entstehen, stammen aus:

- die Suspension der T\u00e4tigkeit an der Stelle, an der das Schneiden durchgef\u00fchrt wird, in der Luft;
- die Suspension der flüchtigen Radionuklide auf der Oberfläche und in der thermisch betroffenen Masse, die den Schnittstrich umschließen, in der Luft bei thermischen Schnittschnitten;
- Verdunstung von kontaminiertem Wasser (insbesondere durch Schneiden).

Die betreffenden Schwebekoeffizienten in der Luft sind in Tabelle n dargestellt.

Die betterfenden Senwebekoernizienten in der Eurt sind in Tabene is dangestent.					
Art der Intervention	Art des mobilisierten Quellbegriffs	Betroffene Fläche, Masse oder Volumen	Betroffenes RN (Radionuklid)	Koeffizient für die Aussetzung	
Verdampfung bei Abbau unter Wasser	Volumenaktivität des Wassers	Austauschfläche	Alle RN	Vgl. <u>Paragraph</u> 3.2.3	
Schneiden (mechanisch	Fixierte Oberflächenkontaminati on Massenaktivität	Geschnittene Oberfläche	RN Gazeux	1,0.10-02	
		Gesemmene Obernaene	RN-Gas	1,0.10 ⁻⁰³	
		Thermisch beeinflußte Fläche	RN Gazeux	1,0.10 ⁻⁰²	
und thermisch) unter Wasser		Geschnittene Masse	RN Gazeux	1,0.10-02	
		Geschinttene Wasse	RN-Gas	1,0.10 ⁻⁰⁴	
		Thermisch betroffene Masse	RN Gazeux	1,0.10 ⁻⁰²	

Tabelle n Luft-Suspensionskoeffizienten für Schneidvorgänge unter Wasser

3.2.3. BEWERTUNG DER VERDAMPFUNG

Die zugehörige Verdunstungsrate wird anhand der folgenden Formeln berechnet:

$$Q \text{Evap } \text{S.V. } (X, \text{`-}X\text{q}) \qquad \text{ und } \qquad \textbf{X}_{q} \text{`-} \textbf{X}_{geblasen} + \\ \qquad \qquad \qquad P^{Q_{ventil}}$$

Mit

Q_{Evap} kg/h Verdunstungsdurchsatz;

- S m² Wasserdeckefläche;
- A kg/m²/h Verdampfungskoeffizient;

Der Wert von ε hängt von den Bewegungen des Wassers an der Oberfläche ab:

- 030kg/m²/hentsprichtzu einersehr unruhiges Wasser (höchster Wert)benachteiligend);
- 020kg/m²/hentsprichtzu einermittelgeschütteltes Wasser;
- 010kg/m²/hentsprichtzu einerwenig unruhiges Wasser;
- X' kg/kg Wassermassengehalt der gesättigten Luft bei Wasseroberflächentemperatur;
- X_{eq} kg/kg Wassermasse in der Luft in der Nähe der Schnittstelle;
- Xgeblasen kg/kg Massenwassergehalt der auf dem Wasserdecke geblasenen Luft;

Sie ist anhand des Wassermassengehalts der Außenluft und der gegebenenfalls an der Belüftungsluft angeblasenen Luftbehandlungen (Kühlung, Heizung, Entfeuchtung usw.) zu bewerten. Je nach Temperaturschwankungen der Umgebungsluft sollte der am stärksten belastende Wert (niedrigster Wassergehalt) gewählt werden.

- P kg/m³ Dichte der feuchten Luft;
- QGebläse m³/h Belüftungsdurchfluss des Luftvolumens über dem Tischdecke.

Die Massengehalte werden im feuchten Luftdiagramm in Abhängigkeit von der Wassertemperatur angegeben (Beispiel $X'=0.0145 \text{ kg Wasser/kg Luft bei } 20 \,^{\circ}\text{C}$).

Jedes der BR-Pools wird für die Zuschnitte des Beckens und der Innenräume unter Wasser aus Wasser sein: ein Benachteiligungswert von 30 kg/m²/h (Wasser wird beim Schneiden gerührt). Der Lüftungsdurchsatz beträgt 35 000 m 3/h, was dem Luftstrom entspricht, der auf Höhe des Poolbodens unter Berücksichtigung der maximalen Belüftung für nur 1 Produktionseinheit gewonnen wird.

Verschiedene Berechnungen werden in <u>Tabelle o</u> durchgeführt und synthetisiert.

Schwimmbad BR	Oberfläche Wasserdeck e (m²)	Koeff evap (kg/m²/h)	X" (kg/kgair)	Q Gebläse (m^3/h)	XGeblasen	Rho	XEQ (kgeau/kgair)	Qevap (kg/h)
Winter (T=- 28 °C/Feuchtigkeit = 90 %)	162	30	0,01469	35000	0,00034	1,2	0,00182564	62,54
Winter (T=- 15 °C/Feuchtigkeit = 90 %)	162	30	0,01469	35000	0,00106	1,2	0,00247015	59,41
Sommer (T=30 °C/Feuchtigkeit = 30 %)	162	30	0,01469	35000	0,00792	1,2	0,00862235	29,51
Hülle Fall (Feuchtigkeit =0 %)	162	30	0,01469	35000	0	1,2	0,00152393	64,01

Tabelle o Berechnung der Verdunstung für jedes der Pools BR

Der Wert von 64,01 kg/h, vernünftigerweise Umschlag, wird beibehalten.

3.2.4. PHYSIKALISCHE DATEN

Die Merkmale der unter Wasser geschnittenen Teile sind in <u>Tabelle p</u> dargestellt, sie sind für jede Produktionseinheit identisch.

Art der Geschätzte Geschätzte Art des Geschätzte Komponente Geschnittenes Stück Gesamtfläch Gesamtmasse(k Schneidens Spänmasse (kg) Fläche, berechnet aus der Schneidebene

Interne	Thermischer Bildschirm	112	26187	Mechanik	470	0,0179478
Interne	Hoher thermischer Bildschirm Solidar Teil der Herzhülle	74,7	4042	Mechanik	160	0,0395844
Interne	Trennwand + Herzhülle	204,3	32998	Mechanik	560	0,0169707
Interne	Obere Kernplatte	16,3	3240	Mechanik	120	0,037037
Interne	Untere Kernplatte	19,5	3410	Mechanik	140	0,0410557
Behälter	Thermisches Schneiden unter Wasser	141,42	260200	Thermische	5068	0,0194773

Tabelle p Eigenschaften der geschnittenen Teile (innere Behälter und Behälter) für eine Einheit von Produktion

Beim Schneiden des Behälters gilt die thermisch betroffene Masse als viermal so groß wie die geschnittene Masse.

3.2.5. RADIOLOGISCHE DATEN

Die radiologische Aktivität, die für den Abbau der Behälterinnenräume und des Behälters zu berücksichtigen ist, ist auf:

- radiologische Aktivierung, da sich diese Bestandteile in unmittelbarer Nähe des Herzens befinden;
- Kontamination, die auf den Strukturen durch Wasser des Primärkreislaufs abgelagert wird.

3.2.5.1. Aktivierung von Strukturen

Die Aktivierung der Materialien resultiert aus dem Betrieb des Reaktorkerns. Während dieser Zeit wurden Metallstrukturen in der Nähe des aktiven Kerns dem Neutronenstrom ausgesetzt. Einige Atome, die diese Materialien bilden, wurden durch Neutronenabscheidung von radioaktiven Atomen. Diese Metallkonstruktionen sind die Bestandteile des Tanks und der festen Innenräume des Behälters. Die am stärksten aktivierten Strukturen oder Teile davon sind diejenigen, die sich am aktiven Kern des Reaktors befinden, d. h.: Kernhülle, Trennwand, Wärmeschirm sowie untere und obere Kernplatten. Der größte Teil der radiologischen Aktivität des Tanks und der Innenräume kommt vom Aktivierungsphänomen.

Die Materialaktivierung wird durch Modellierung bewertet.

Da der Beginn des Abbaus des Tankinnenraums und des Behälters 3 Jahre nach Beginn der Stilllegung geplant ist, werden die Aktivierungsspektren 3 Jahre nach Beginn des Abbaus betrachtet (d. h. 8 Jahre nach der endgültigen Einstellung der Produktion, wobei der Zeitpunkt des Beginns des Abbaus 5 Jahre nach dem Stillstand liegt). Die Co60-Massenaktivitäten der einzelnen Elemente sind in <u>Tabelle q</u> dargestellt.

Betrachtetes Element	Tätigkeiten Co60 (Bq/g)
Thermischer Bildschirm	1,2.10+07
High-Screen-Thermikteil	1,5.10+07
Umschlag/Absperrung	2,4.10+08
Obere Platte	1,7.10+07
Untere Platte	1,8.10+08
Behälter	4,6.10+05

Tabelle q Co60-Massenaktivitäten der Innenräume des Tanks und des Tanks nach 3 Jahren nach dem Beginn des Abbaus

Die Verhältnisse der anderen Radioelemente zu Co60 sind in Tabelle r dargestellt.

adioelement	Verhältnis/Co60 Kessel	Verhältnis/Co60 Internes	Radioelement	Verhältnis/Co60 Kessel	Verhältnis/Co60 Internes
$14_{\rm C}$	7,98.10 ⁻⁰⁴	3,13.10 ⁻⁰³	⁵⁴ Mio.	2,05.10 ⁻⁰³	1,57.10 ⁻⁰³
³ UHR	2,07.10 ⁻⁰⁴	1,17.10 ⁻⁰³	⁹³ MB	3,41.10 ⁻⁰⁴	1,70.10 ⁻⁰⁴
49 _V	3,95.10 ⁻⁰⁸	3,14.10 ⁻⁰⁷	⁹¹ Nb	8,22.10 ⁻⁰⁶	2,77.10 ⁻⁰⁶
118 m _A g	4,18.10 ⁻⁰⁷	3,11.10 ⁻⁰⁷	93 m _{Nb}	3,30.10 ⁻⁰⁴	4,21.10 ⁻⁰³
110 m _A g	5,68.10 ⁻⁰⁸	2,65.10 ⁻⁰⁸	⁹⁴ Nb	4,49.10 ⁻⁰⁶	7,20.10 ⁻⁰⁵
³⁹ Ar	7,65.10 ⁻⁰⁷	2,67.10 ⁻⁰⁷	⁵⁹ Ni	2,13.10 ⁻⁰³	9,59.10 ⁻⁰³
¹³³ Ba	9,57.10 ⁻⁰⁸	5,36.10 ⁻⁰⁸	⁶³ Ni	2,14.10 ⁻⁰¹	1,26
⁴¹ Ca	1,01.10 ⁻⁰⁷	1,02.10 ⁻⁰⁷	145 _{Pm}	5,04.10 ⁻⁰⁸	1,38.10 ⁻⁰⁸
109 _{Cd}	6,18.10 ⁻⁰⁹	6,68.10 ⁻⁰⁷	147 _{Pm}	3,24.10 ⁻⁰⁷	4,48.10 ⁻⁰⁸
113 m _{CD}	7,93.10 ⁻⁰⁷	1,48.10 ⁻⁰⁸	193 _{Pt}	1,63.10 ⁻⁰⁷	1,94.10 ⁻⁰⁵
¹⁴⁴ Das	1,22.10 ⁻¹⁰	1,76.10 ⁻¹⁰	238 _{Pu}	2,60.10-12	1,58.10 ⁻⁰⁸
³⁶ Cl	2,35.10 ⁻⁰⁸	2,41.10 ⁻⁰⁸	241 _{Pu}	4,76.10-11	1,50.10 ⁻⁰⁷
⁵⁷ Co	7,12.10 ⁻⁰⁷	2,61.10 ⁻⁰⁶	106 _{Ru}	9,14.10 ⁻¹¹	7,23.10 ⁻¹⁰
60 _{Co}	1	1	125 _{Sb}	8,53.10 ⁻⁰⁵	1,02.10 ⁻⁰⁴
134 _{Cs}	5,60.10 ⁻⁰⁷	1,53.10 ⁻⁰⁷	79 _{Se}	1,25.10 ⁻⁰⁹	2,88.10 ⁻⁰⁸
137 _{Cs}	5,35.10 ⁻⁰⁸	1,10.10 ⁻⁰⁷	151 _{Sm}	5,75.10 ⁻⁰⁶	3,70.10 ⁻⁰⁷
152 _{EU}	1,30.10 ⁻⁰⁴	7,54.10 ⁻⁰⁷	119 m _s n	2,31.10 ⁻⁰⁷	3,33.10 ⁻⁰⁷
154 _{EU}	2,52.10 ⁻⁰⁵	3,57.10 ⁻⁰⁶	121 m _s n	4,46.10 ⁻⁰⁶	4,22.10 ⁻⁰⁶
155 _{EU}	8,99.10 ⁻⁰⁷	3,08.10 ⁻⁰⁷	90 _{Sr}	8,22.10 ⁻⁰⁸	9,52.10 ⁻⁰⁸
⁵⁵ Fe	3,08	1,38	⁹⁹ tc	5,94.10 ⁻⁰⁵	2,35.10 ⁻⁰⁵
153 _{Gd}	5,94.10 ⁻¹⁰	2,00.10 ⁻¹⁰	204 _{T1}	4,68.10 ⁻⁰⁷	3,61.10 ⁻⁰⁷
178n _{HF}	1,80.10 ⁻⁰⁶	7,46.10 ⁻⁰⁸	171 _{Tm}	9,73.10 ⁻⁰⁸	7,78.10 ⁻⁰⁹
85_{Kr}	6,42.10 ⁻⁰⁹	1,63.10 ⁻⁰⁸	65 _{Zn}	1,06.10 ⁻⁰⁷	4,58.10 ⁻⁰⁷

Tabelle r Ratios gegenüber Co60 für die Aktivierung der Innenräume des Behälters und des Behälters, 3 Jahre nach Beginn des Abbaus

3.2.5.2. Kontamination von Schaltkreisen

Die geschnittenen Elemente sind Teil des Primärkreislaufs, die entsprechende Kontamination ist in <u>Abschnitt 3.1.4.1</u> dargestellt. Es wird daran erinnert, dass der Primärkreislauf (einschließlich Behälter und Behälterinnen) nach dem Abschalten dekontaminiert wurde, das Ziel besteht darin, mehr als 95 % der ursprünglichen Kontamination zu entfernen. Konservativ wird angenommen, dass die Dekontamination 90 % der ursprünglichen Kontamination entfernt. Die verbleibende Kontamination gilt als vollständig fixiert.

3.2.6. BEHANDLUNG VON RÜCKWÜRFEN

Vor der Freisetzung durch einen der Ableitungsschächte in die Umwelt werden die atmosphärischen Abwässer aus dem elektromechanischen Abbau unter Wasser durch einen THE-Filter (Sehr hohe Effizienz) gefiltert. Der gewählte Behandlungskoeffizient beträgt 1000 (TH) für alle Radionuklide außer denen, die als gasförmig angesehen werden (Tritium, Kohlenstoff 14, Chlor 36), für die die Filter als unwirksam angesehen werden (siehe Kapitel 2, Ziffer 2.5.2).

Bei flüssigen Abwässern ist die Aufbereitung von kontaminiertem Wasser ein Kompromiss zwischen der Menge der produzierten Abfälle (Filter und Harze) und der Aktivität des Abwassers. Das Wasser aus den Schwimmbädern, in dem die Zerlegungen durchgeführt wurden, wird so behandelt, dass eine Aktivität in der Größenordnung von 2 000 Bq/L in der Beta-Gamma-Aktivität (in ähnlicher Weise wie das in der Betriebsphase des CNPE angestrebte Reinigungsziel) angestrebt wird. Für Tritium und Kohlenstoff 14 gilt die Wirksamkeit von Wasserfiltern und -harzen als Null (siehe <u>Kapitel 2, Ziffer 2.5.1</u>).

3.2.7. ERGEBNIS DER SCHÄTZUNG DER RÜCKWÜRFE IM ZUSAMMENHANG MIT

ELEKTROMECHANISCH UNTER WASSER

3.2.7.1. Radioaktive Freisetzungen in die Luft im Zusammenhang mit dem elektromechanischen Abbau unter Wasser

Die geschätzten Tätigkeiten der radioaktiven Freisetzungen in die Luft nach Jahr und Kategorie von Radionukliden aller Schornsteine im Zusammenhang mit dem elektromechanischen Abbau unter Wasser sind in <u>Tabelle s und in Abbildung e</u> dargestellt.

Werte unter 1 Bq/Jahr werden nicht angegeben.

Rückwürfe	Jahr 4	Jahr 5	Jahr 6	Jahr 7
atmosphärisch	Bq/Jahr	Bq/Jahr	Bq/Jahr	Bq/Jahr
Tritium	4,2.10+10	8,8.10+10	1,5.10+11	7,5.10 ⁺¹⁰
Kohlenstoff 14	1,1.10+11	2,4.10+11	4,1.10+11	2,0.10+11
Beta Gamma	3,6.10+07	4,1.10+07	5,7.10+07	3,0.10+06
Alpha	—	_	_	_

Tabelle s Geschätzte radioaktive Freisetzungen in der Luft nach Kategorien für den Abbau elektromechanisch unter Wasser

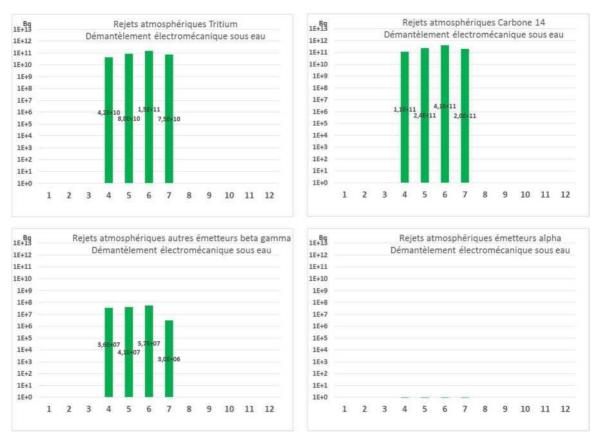


Abbildung e Geschätzte radioaktive Freisetzungen in der Luft nach Kategorien für den Abbau elektromechanisch unter Wasser

3.2.7.3. Flüssige radioaktive Freisetzungen im Zusammenhang mit dem elektromechanischen Abbau unter Wasser

Die geschätzten Tätigkeiten der flüssigen radioaktiven Freisetzungen pro Jahr und Kategorie von Radionukliden im Zusammenhang mit dem elektromechanischen Abbau unter Wasser sind in <u>Tabelle t und in Abbildung f</u> dargestellt. Werte unter 1 Bq/Jahr werden nicht angegeben.

Flüssige Ableitungen	Jahr 7 Bq/Jahr	Jahr 8 Bq/Jahr
Tritium	2,0.10+11	2,0.10+11
Kohlenstoff 14	5,4.10+11	5,4.10+11
Beta Gamma	3,1.10+09	3,1.10+09
Alpha	1,7.10+01	1,7.10+01

Tabelle t Geschätzte flüssige radioaktive Freisetzungen nach Kategorien für den Abbau elektromechanisch unter Wasser

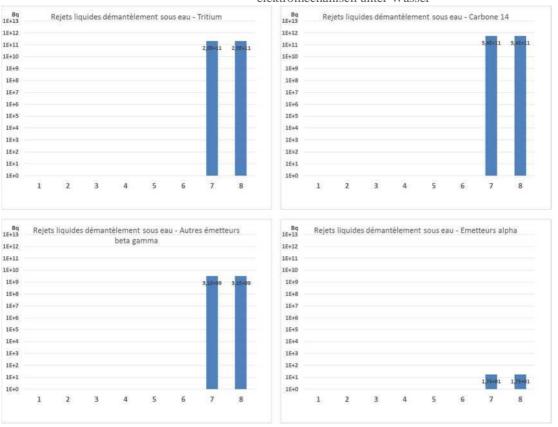


Abbildung f Geschätzte flüssige radioaktive Freisetzungen nach Kategorien für den elektromechanischen Abbau unter Wasser

3.3. SANIERUNG

Die Sanierungsmaßnahmen führen hauptsächlich zu radioaktiven Freisetzungen in die Luft. Die damit verbundenen flüssigen radioaktiven Freisetzungen (Waschen und Dekontamination von Werkzeugen) werden in <u>Paragraph 3.4</u> geschätzt.

3.3.1. BESCHREIBUNG DER OPERATION UND PLANUNG

Die Sanierung der Gebäude betrifft kerntechnische Gebäude, bei denen die Radioaktivität (Aktivierung, Ablagerung oder Migration von Kontaminationen), die möglicherweise in der Gebäudestruktur vorhanden sein könnte, mit Hilfe mechanischer Mittel (Schleifen, Verriegeln usw.) entfernt werden soll.

Die Sanierungsmaßnahmen sind in allen Kerngebäuden ähnlich (zwei BR-Reaktorgebäude, zwei BK-Brenngebäude, zwei BW-Gebäude, BAN-AKW-Gebäude, Wartungsgebäude am Standort BES), mit Ausnahme eines spezifischen Vorgangs, der darin besteht, den aktivierten Teil des Stahlbetons zu entfernen, der den Reaktortankbrunnen in beiden BR bildet, der durch Zerlegung von Betonblöcken aktiviert wird.

Die Sanierungsarbeiten an einem Gebäude können bereits nach dem Ende der Etappe des elektromechanischen Abbaus desselben Gebäudes beginnen.

Die Sanierung ist für die Jahre 5 bis 12 ab dem Beginn des Abbaus geplant.

3.3.2. SUSPENSION IN DER LUFT

Die atmosphärischen radioaktiven Stoffe aus der Abwasserentsorgung stammen aus:

- die Suspension der Massenaktivität (Aktivierung) in der Luft, die sich in den Betonblöcken des Behälterbrunnens an der Stelle befindet, an der sie geschnitten werden;
- der Suspensionierung der vorhandenen Aktivität in der Luft (Oberflächenkontamination und Massenaktivität) im Beton bei der mechanischen Sanierung (Kratzen) von Betonflächen.

Die betreffenden Schwebekoeffizienten in der Luft sind in Tabelle u dargestellt.

Art der Intervention	Art des mobilisierten Quellbegriffs	Betroffene Fläche, Masse oder Volumen	Betroffenes RN (Radionuklid)	Koeffizient für die Aussetzung
	Labile Oberflächenkontaminati	Sanierte Oberfläche	Alle RN	1
Sanierung	Fixierte Oberflächenkontaminati	Sanierte Oberfläche	Alle RN	1.10 ⁻⁰²
	Massenaktivität	Sanierte Masse	Alle RN	1.10 ⁻⁰²

Tabelle u Suspensionskoeffizienten in der Luft, die für den Betrieb verwendet werden Sanierung

3.3.3. PHYSIKALISCHE UND RADIOLOGISCHE DATEN

3.3.3.1. Beton des Behälterbrunnens

Während des Reaktorbetriebs wurde der Beton des Behälterbrunnens in einer Umgebung in der Nähe des Tanks einem Neutronenstrom aus dem Reaktor ausgesetzt. Dieser Beton wird entsprechend auf den ersten Zentimetern der Dicke aktiviert, wenn auch auf einem viel niedrigeren Niveau als im Tank und in den Innenräumen, aufgrund des exponentiellen Rückgangs des Neutronenflusses mit dem Abstand zum Kern.

Der betreffende Betonteil besteht aus Beton des Behälterbrunnens, der sich rechts am aktiven Reaktorkern befindet. Es ist geplant, Beton aus dem Behälterbrunnen in Blöcke zu schneiden. Abbildung gzeigt die betreffenden aktivierten Betonblöcke (Block der oberen und unteren Krone).

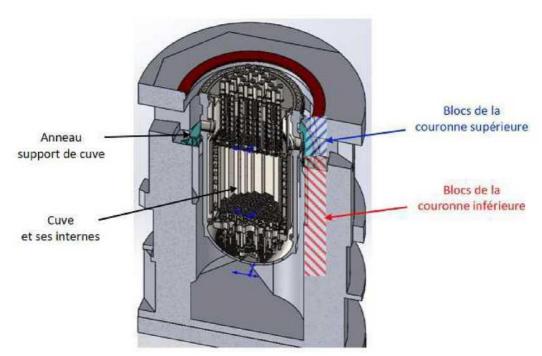


Abbildung g Schnittansicht des Reaktortankbrunnens

Das Schneiden des Betons aus dem Behälterbrunnen erzeugt feine Schnitte. Die Masse der Feinschneider der aktivierten Blöcke wird auf 3 600 kg pro Produktionseinheit geschätzt.

Die durchschnittliche Massenaktivierungsaktivität des Tankbrunnenbetons (einschließlich Bewehrung) innerhalb der ersten 15 Zentimeter am rechten Rand des aktiven Kerns wird auf $2,35.10^4$ Bq/g Co60, 3 Jahre nach Beginn des Abbaus (d. h. 8 Jahre nach der endgültigen Einstellung der Produktion) geschätzt, die Verhältniszahlen der wichtigsten Radionuklide zu Co60 sind in <u>Tabelle v</u> dargestellt.

RN	Verhältnis/Co60
3 _{UHR}	1,09.10+01
14 _C	7,74.10 ⁻⁰³
⁶⁰ Co	1
⁵⁵ Fe	5,58
63 _{Ni}	1,37.10 ⁻⁰¹
152 _{EU}	1,09
154 _{EU}	7,24.10 ⁻⁰²

Tabelle v Ratios bezogen auf Co60 für die Aktivierung des Betons des Behälterbrunnens, 3 Jahre nach Beginn des Abbaus

3.3.3.2. Merkmale der zu sanierenden Räume

Die Kontamination der zu sanierenden Räume kann auf zwei Arten charakterisiert werden:

- eine Oberflächenkontamination im Zusammenhang mit dem Zustand der radiologischen Sauberkeit der Räumlichkeiten;
- eine Massenkontamination des Betons im Zusammenhang mit früheren Tätigkeiten im Raum.

3.3.3.2.1. Oberflächenkontamination

Für die Zonenabfall werden die Räume als K (konventionell) oder N (nuklear) eingestuft. Innerhalb der Einstufung N sind drei Kontaminationsstufen definiert: NP (Eigene Nuclear), mit einer Surfaktivität von weniger als 0,4 Bq/cm², N1 mit einer Surfaktivität von weniger als 4 Bq/cm² und N2 mit einer Surfaktivität von mehr als 4 Bq/cm².

Die betreffenden Flächen für jedes Gebäude sind in Tabelle w dargestellt.

Flächen (m²)	NP	N1	N2
BR	140	410	1100
BK	1700	20	0
BW	1100	0	60
BAN	6010	100	830
Galerien Ban	1230	0	220

Tabelle w Größenordnung der zu sanierenden Flächen nach Gebäuden

Die für jeden Oberflächentyp ausgewählten Oberflächenkontaminationen sind in <u>Tabelle x (Co60-</u> Flächenkontamination zum Zeitpunkt des Beginns des Abbaus (d. h. 5 Jahre nach der endgültigen Einstellung der Produktion) aufgeführt):

Grad der Kontamination	NP	N1	N2
Surfaktivität (Bq/cm²)	0,4	4	40

Tabelle x Flächenverunreinigungen in Co60 nach Art der zu sanierenden Fläche

Für das BES-Gebäude gilt eine Fläche von 3 500 m 2^{mit} einer Oberflächenbelastung von 0,24 Bq/cm 2ⁱⁿ Co60.

Das Spektrum der Oberflächenkontamination der Räume wird als identisch mit dem Spektrum der Kreisläufe angesehen und ist in <u>Tabelle i</u> dargestellt.

3.3.3.2.2. Massenkontamination

Die Massenkontamination des Betons hängt mit den vergangenen Tätigkeiten im Raum zusammen. Die Historienanalyse ermöglicht es, verschiedene Oberflächenkategorien (von 0 bis 3) zu bestimmen, wobei für jede Dicke zu entfernen ist.

Die <u>Tabelle zeigt</u> die anzuwendenden Behandlungen und die Tiefen, auf denen sie für die verschiedenen Kategorien angewendet werden können.

Kategorie für Beton	Behandlung
Kategorie 0	Entstaubung
Kategorie 1	2 mm Schrumpfung
Kategorie 2	Schrumpfung von 25 mm auf den Böden und 10 mm auf den Segeln
Kategorie 3	Entnahme im Einzelfall mit einem Minimum von 50 mm

Tabelle y Behandlungstiefen für die verschiedenen Kategorien

Die Menge an pulverförmigen Abfällen, die durch die Behandlung pro Gebäude erzeugt werden, ist <u>Tabelle z</u> zu entnehmen.

Pulver (kg)	Kategorie 1	Kategorie 2	Kategorie 3	
BR	46200	81400	15400	
BK	8800	33000	8800	
BW	8800	8800	2200	
BAN	55000	59400	4400	
Galerien des Ban	13200	0	13200	
BES	BES 80000		1000	

Tabelle z Durch Gebäudesanierung erzeugte Sprühmengen

Die CO60-Tätigkeiten zum Zeitpunkt des Beginns des Abbaus (d. h. 5 Jahre nach der endgültigen Einstellung der Produktion) für die Betonkategorien sind in Tabelle aa angegeben.

	Kategorie 0	Kategorie 1	Kategorie 2	Kategorie 3	
Bq/g	⁰ n	10 N	100	5000	

Tabelle aa Massentätigkeiten in Co60 nach Betonkategorien für Sanierung

Das zugehörige Spektrum wird in <u>Tabelle bb</u>dargestellt (bei dem Spektrum handelt es sich um ein Spektrum, das zum Zeitpunkt des Beginns des Abbaus 20 Jahre alt ist, um den alten Charakter der Massenkontamination darzustellen).

Radionuklid	Verhältnis/Co60
14 _C	9,88.10 ⁻⁰¹
129 ₁	1,37.10 ⁻⁰⁶
36 _{Cl}	2,67.10 ⁻⁰⁷
60 _{Co}	1,00
⁶³ Ni	1,65.10+01
⁹⁰ Sr	3,81.10 ⁻⁰¹
137 _{Cs}	7,52.10 ⁻⁰²
108 m _A g	1,80.10 ⁻⁰¹
238 _{Pu}	1,71.10 ⁻⁰³
239 _{Pu}	7,60.10 ⁻⁰⁴
240 _{Pu}	7,08.10 ⁻⁰⁴
241 _{Am}	3,17.10 ⁻⁰³
²⁴⁴ Cm	6,37.10 ⁻⁰⁴

Tabelle bb Ratios im Vergleich zu Co60 für die Sanierung

Die Tritiumaktivität wird als 0,02 Bq/g betrachtet, unabhängig von der Kategorie.

3.3.4. BEHANDLUNG VON RÜCKWÜRFEN

Vor der Freisetzung durch einen der Ableitungsschächte in die Umwelt wird der aus der Abwasserentsorgung gewonnene Luftabfluss durch einen THE-Filter (Sehr hohe Effizienz) gefültert.

Der gewählte Behandlungskoeffizient beträgt 1000 (1 TE) für alle Radionuklide außer denen, die als gasförmig angesehen werden (Tritium, Kohlenstoff 14, Chlor 36), für die die Filter als unwirksam angesehen werden (siehe Kapitel 2, Ziffer 2.5.2).

3.3.5. ERGEBNIS DER SCHÄTZUNG DER RÜCKWÜRFE SANIERUNG

Die geschätzten Tätigkeiten der radioaktiven Freisetzungen in die Luft nach Jahr und Kategorie von Radionukliden aller Schornsteine im Zusammenhang mit der Sanierung sind in <u>Tabelle cc und in Abbildung h</u> dargestellt.

Freisetzungen in die	Jahr 5	Jahr 6	Jahr 7	Jahr 8	Jahr 9	Jahr 10	Jahr 11	Jahr 12
Luft	Bq/Jahr							
Tritium	1,5.10+04	3,3.10+04	9,4.10+08	4,2.10+09	8,4.10+09	4,2.10+09	9,4.10+08	1,4.10+05
Kohlenstoff 14	1,4.10+08	3,0.10+08	1,1.10+08	4,3.10+08	9,4.10+08	7,7.10+08	1,1.10+09	2,5.10+08
Beta Gamma	2,6.10+06	5,6.10+06	2,9.10+06	1,1.10+07	2,4.10+07	1,8.10+07	2,1.10+07	4,9.10+06
Alpha	9,9.10+02	2,2.10+03	8,0.10+02	3,1.10+03	6,6.10+03	5,5.10+03	7,4.10+03	1,7.10+03

Tabelle cc Geschätzte atmosphärische radioaktive Freisetzungen nach Kategorien für die Sanierung

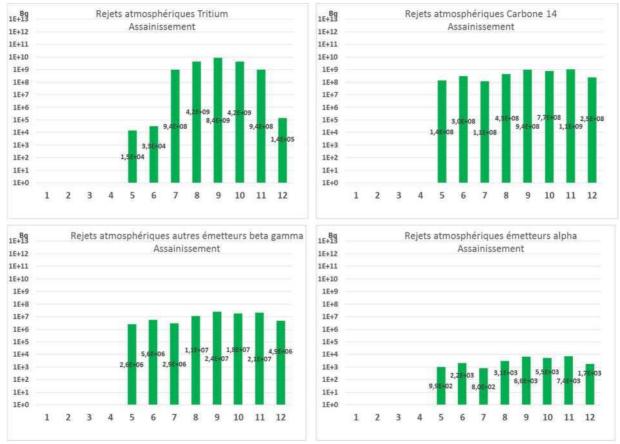


Abbildung h Geschätzte radioaktive Freisetzungen in der Luft nach Kategorien für die Sanierung

Ein Teil der Gebäudesanierung erfolgt nach der Einrichtung der modularen Lüftungseinheiten, die im Laufe des Jahres 8 geplant sind. Für jede Produktionseinheit wird eine modulare Lüftungseinheit installiert. Die Gebäude der Produktionseinheit Nr. 1 werden der modularen Lüftungseinheit 1 zugewiesen, die Gebäude der Produktionseinheit Nr. 2 werden der modularen Lüftungseinheit 2 zugewiesen. Konservativ wird die Sanierung der BAN und der BAN-Stollen als den beiden modularen Lüftungseinheiten zugeordnet, was bedeutet, dass sie zweimal gezählt wird.

3.4. AN BETRIEBLICHE TÄTIGKEITEN GEBUNDENE RADIOAKTIVE FREISETZUNGEN

Zusätzlich zu den Rückwürfen, die in unmittelbarem Zusammenhang mit der Stilllegung stehen (geschätzt in den Paragraphen 3.1, 3.2 und 3.3), sind bei der Schätzung der Rückwürfe nicht unmittelbar mit der Stilllegung

zusammenhängende Rückwürfe zu berücksichtigen: dabei handelt es sich um Freisetzungen im Zusammenhang mit dem laufenden Betrieb des Standorts (Betrieb des Waschsalons, Bodenwäsche, punktuelle Dekontaminationen (Werkzeuge, Schwimmbäder usw.)) und Einleitungen im Zusammenhang mit Betriebsende, die nicht in der Phase des Vorabbaus durchgeführt wurden (Verdunstung und Entleerung von Kapazitäten, die sich aus dem Betrieb des CNPE noch während des Abbaus ergeben, usw.).

Die Schätzung dieser radioaktiven Freisetzungen in die Luft und in Flüssigkeiten, sogenannte Freisetzungen im Zusammenhang mit betrieblichen Tätigkeiten, ist nachstehend dargestellt.

3.4.1. ABLEITUNGEN AN VERDAMPFUNG UND ENTLEERUNG SCHWIMMBÄDER BK

Während des Betriebs des CNPE muss bei Vorhandensein von Brennstoffen das Deaktivierungsbecken jedes brennbaren Gebäudes (BK) im Borwasser gehalten werden, um die nukleare Reaktion zu kontrollieren und die Sicherheit zu gewährleisten. Zuschläge werden durchgeführt, um die Verdunstung zu kompensieren. Nach dem Abtransport des Brennstoffs ist das Vorhandensein von Bor nicht mehr erforderlich. Ziel ist es, das gesamte Bor vor dem Beginn des Abbaus zu behandeln. Angesichts des umfangreichen Bestands an Borsäure in der Anlage, insbesondere in diesen brennbaren Schwimmbädern, ist jedoch nicht garantiert, dass der gesamte Bor vor Beginn des Abbaus verarbeitet wird und somit die Schwimmbäder vollständig entleert werden konnten. Daher wird konservativ davon ausgegangen, dass die Schwimmbäder der beiden BK-Gebäude zu Beginn des Abbaus in Bornwasser sind.

Die damit verbundenen radioaktiven Stoffe würden in diesem Fall während der Stilllegungsphase potenziell freigesetzt:

- atmosphärische radioaktive Abwässer im Zusammenhang mit der Verdunstung von Wasser in BK-Pools, solange sie nicht entleert werden;
- flüssige radioaktive Abwässer im Zusammenhang mit der Entleerung dieser Schwimmbäder.

3.4.1.1. Physikalische und radiologische Daten

Zur Bewertung der damit verbundenen Ableitungen wird davon ausgegangen, dass die Aktivität in den BK-Pools der Höchstaktivität entspricht, die während der Laufzeit des CNPE festgestellt wurde, nämlich:

- höchstens 841 MBq/T Tritium (im Zeitraum 2016-2017), gerundet auf 900 MBq/T;
- höchstens 0,69 MBq/T in Beta-Gamma-Sendern (im Zeitraum 2016-2017), gerundet auf 1 MBq/T. Das Spektrum für "andere Beta-Gamma-Sender" ist das PTR-Spektrum (siehe <u>Ziffer 3.1.4.1, Tabelle i</u>).

Das zugehörige Volumen beträgt 1 560 m 3^{pro} Pool.

3.4.1.2. Bewertung der Verdunstung

Der Verdunstungsdurchsatz wird in gleicher Weise berechnet wie die Verdunstung von Schwimmbädern in BR-Gebäuden (siehe Ziffer 3.2.3).

Der für die Berechnung der Verdunstung verwendete Wert von ε hängt von den Bewegungen des Wassers an der Oberfläche ab. Da in den BK-Pools in den meisten Fällen keine Arbeiten durchgeführt werden, wird ein Wert von 10 kg/m²/h für die BK-Schwimmbäder berücksichtigt. Die Belüftungsleistung beträgt 20 000 m 3/h.

Verschiedene Berechnungen werden durchgeführt und in der Tabelle dd dargestellt.

Schwimmbad BK	Oberfläch e Wasserdec ke (m²)	Koeff evap (kg/m²/h)	X" (kg/kgair)	Qventil (m³/h)	Xsoufflé	Rho	XEQ (kgeau/kgair)	Qévap (kg/h)
Winter (T=-28 °C/Feuchtigkeit = 90 %)	123	10	0,01469	20000	0,00034	1,2	0,00103655	16,80
Winter (T=-15 °C/Feuchtigkeit = 90 %)	123	10	0,01469	20000	0,00106	1,2	0,00172059	15,96
Sommer (T=30 °C/Feuchtigkeit = 30 %)	123	10	0,01469	20000	0,00792	1,2	0,00825005	7,93
Hülle Fall (Feuchtigkeit =0 %)	123	10	0,01469	20000	0	1,2	0,00071634	17,19

Tabelle dd Berechnung der Verdunstung für jeden der BK-Pools

Der Wert von 17,19 kg/h, vernünftigerweise Umschlag, wird beibehalten.

3.4.1.3. Behandlung von Rückwürfen

Vor der Freisetzung durch einen der Ableitungsschächte in die Umwelt werden die aus der Verdunstung gewonnenen Abwässer durch einen THE-Filter (Sehr hohe Effizienz) gefiltert. Der gewählte Behandlungskoeffizient beträgt 1000 (1 THE-Filter) für alle Radionuklide ohne Tritium, Kohlenstoff 14, bei denen die Filtereffizienz als Null eingestuft wird (siehe Kapitel 2, Ziffer 2.5.2).

Der Behandlungskoeffizient für flüssige Abwässer beträgt 10⁴ (entsprechend einer Harzbehandlung) für alle Radionuklide ohne Tritium und Kohlenstoff 14, bei denen die Wirksamkeit als Null gilt (siehe <u>Kapitel 2, Ziffer 2.5.1</u>).

3.4.1.4. Ergebnis der Schätzung der Ableitungen im Zusammenhang mit dem Betrieb und der Entleerung von Schwimmbädern BK

Die damit verbundenen Freisetzungen sind in der <u>Tabelle ee (Luftableitung) und in der Tabelle ff (</u>Flüssigkeitsableitungen) dargestellt.

Jährliche gasförmige Emissionen	Bq/Jahr
Tritium	$1,4.10^{+11}$
Kohlenstoff 14	1,1.10+07
Andere Beta-/Gammasender	5,4.10+03
Alpha	& 1

Tabelle ee jährliche atmosphärische radioaktive Freisetzungen im Zusammenhang mit der Verdunstung eines BK-Pools, sowohl dass die BK-Pools im Wasser sind

Flüssige Ableitungen im Jahr der Entleerung	Bq/Jahr
Tritium	1,4.10+12
Kohlenstoff 14	1,1.10+08
Andere Beta-/Gammasender	5,6.10+05
Alpha	8,6.10+01

Tabelle ff Flüssige radioaktive Ableitungen im Zusammenhang mit der Entleerung eines Pools BK, Jahr der Entleerung

3.4.2. RADIOAKTIVE FREISETZUNGEN, DIE MIT DEM BETRIEB DES WASCHSALONS, DEN BODENREINIGUNGSOPERATIONEN UND DEN PUNKTUELLEN DECONTAMINATIONEN VERBUNDEN SIND

Während des Betriebs des CNPE wurden flüssige radioaktive Freisetzungen im Zusammenhang mit dem Betrieb des Waschsalons, der Bodenwäsche und der punktuellen Dekontamination nicht speziell bewertet, da sie angesichts der Ableitungen im Zusammenhang mit dem Betrieb des CNPE vernachlässigbar waren.

In der Stilllegungsphase, abgesehen von der Abwrackung unter Wasser, werden die meisten Vorgänge trocken durchgeführt und keine flüssigen Ableitungen erzeugt.

Diese flüssigen Betriebsabwässer werden somit vorherrschend.

Es wird eine Schätzung der jährlichen Aktivität der radioaktiven Ableitungen in flüssiger Form vorgenommen. Die Freisetzungen in die Luft, die mit laufenden Betrieben verbunden sind, wie das Waschen von Wäsche und Räumen, gelten als vernachlässigbar gegenüber den Abwrackvorgängen; dies wird für das Waschen der Wäsche durch die Überprüfung bestätigt, dass in der Betriebsphase des CNPE keine Freisetzungen beim Abgesandten des BES festgestellt wurden.

Es wird angenommen, dass die Tätigkeit des Waschwassers 0,1 % der Tätigkeit ausmacht, die während des Stilllegungsvorgangs im Raum suspendiert wird (diese Tätigkeit wird nicht durch Belüftung wiederaufgenommen und findet sich auf dem Boden und den Werkzeugen wieder).

Die Aktivität der atmosphärischen Abwässer von Tritium und Kohlenstoff 14 beträgt maximal 3.10¹¹ Bq/Jahr und 4,10¹¹ Bq/Jahr (siehe <u>Tabelle ii</u>), was einer Gesamtaktivität bei flüssigen Abwässern von 3.10^{8 bzw.} 4.10⁸ Bq/Jahr für Tritium und Kohlenstoff 14 entspricht.

Da es keine Erfahrungen mit der Tätigkeit von Flüssigabwässern im Zusammenhang mit diesen Vorgängen gibt (insbesondere gibt es keine Erfahrungen mit dem Waschen von kontrollierten Flächenkleidungen für stillgelegte Standorte, da diese von den in Betrieb befindlichen CNPE-Waschanlagen durchgeführt wird), wird für die Anträge auf Grenzwerte ein Unsicherheitskoeffizient von 100 % für die mit diesen Vorgängen verbundenen Abwässer angewandt.

Für die anderen Beta-Gamma-Emittenten wird unter Berücksichtigung der Behandlung des flüssigen Abwassers vor der Ableitung eine Schätzung zugrunde gelegt, die sich auf Folgendes stützt:

- die in <u>Anhang 2 Ziffer 2.3.1 vorgenommene Schätzung des Betriebsabgasvolumens</u>: die Schätzung des Waschabwässers für den Stilllegungszeitraum beträgt ca. 1 100 m 3. Zur Berücksichtigung aller möglichen Abwässer (Waschen der Räume, Waschen der Werkzeuge, punktuelle Dekontaminationen...) wird dieser Wert auf 2 000 m 3 gerundet. Zu beachten ist, dass dieses Volumen weder die Entleerung der BR-Pools, die bei der Stilllegung berücksichtigt werden, noch die in <u>Absatz 3.4.1</u>berücksichtigten Entleerungen der BK-Pools umfasst;
- eine Schätzung der Volumenaktivität in anderen Beta-Gamma-Emittenten dieser Abwässer auf der Grundlage der aktuellen Erfahrungen mit der Tätigkeit in den Ableitungsbehältern, d. h. höchstens 200 Bq/l, verteilt auf das atmosphärische Abwasserspektrum.

Die jährliche Aktivität in anderen Beta-Gamma-Sendern wird daher auf 2000 x 1000 x 200 = 4,108 Bq geschätzt Die Volumenaktivität in Alpha-Sendern wird als unterhalb der Nachweisgrenze betrachtet.

3.4.3. SCHÄTZUNG DER FREISETZUNGEN AUS DEM BETRIEB

3.4.3.1. Radioaktive Freisetzungen in die Luft im Zusammenhang mit Freisetzungen aus dem Betrieb

Die geschätzten Tätigkeiten der radioaktiven Freisetzungen in die Nutzung in die Luft nach Jahr und Kategorie von Radionukliden aller Schornsteine sind in <u>Tabelle gg und in Abbildung i</u> dargestellt.

Werte unter 1 Bq/Jahr werden nicht angegeben.

Freisetzungen in die	<u> </u>		I	I 1 4 D /I 1	I	I	I
Luft	Janr I Bq/Janr	Janr 2 Bq/Janr	Janr 3 Bq/Janr	Janr 4 Bq/Janr	Janr 5 Bq/Janr	Janr 6 Bq/Janr	Jahr 7 Bq/Jahr
Tritium	2,7.10+11	2,7.10+11	1,4.10+11	1,4.10+11	1,4.10+11	1,4.10+11	1,4.10+11
Kohlenstoff 14	2,2.10+07	2,2.10+07	1,1.10+07	1,1.10+07	1,1.10+07	1,1.10+07	1,1.10+07
Beta Gamma	1,1.10+04	1,1.10+04	5,4.10+03	5,4.10+03	5,4.10+03	5,4.10+03	5,4.10+03
Alpha	1,7	1,7					

Tabelle gg Geschätzte atmosphärische radioaktive Ableitungen nach Kategorien für den Betrieb Betrieb

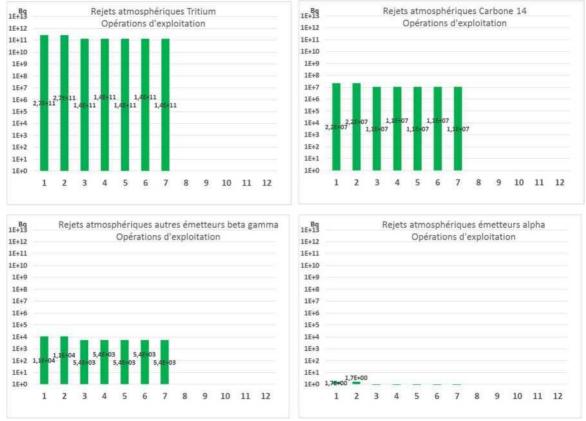


Abbildung i Geschätzte atmosphärische radioaktive Freisetzungen nach Kategorien für betriebliche Tätigkeiten

3.4.3.2. Flüssige radioaktive Freisetzungen im Zusammenhang mit Freisetzungen aus dem Betrieb

Die geschätzten Tätigkeiten der flüssigen radioaktiven Freisetzungen aus dem Betrieb nach Jahr und Kategorie von Radionukliden sind in <u>Tabelle hh und in Abbildung i</u> dargestellt.

Werte unter 1 Bq/Jahr werden nicht angegeben.

Flüssige	Jahr 1	Jahr 2	Jahr 3	Jahr 4	Jahr 5	Jahr 6	Jahr 7	Jahr 8
Ableitungen	Bq/Jahr							
Tritium	3,0.10+08	3,0.10+08	1,4.10+12	3,0.10+08	3,0.10+08	3,0.10+08	3,0.10+08	1,4.10+12
Kohlenstoff 14	4,0.10+08	4,0.10+08	5,1.10+08	4,0.10+08	4,0.10+08	4,0.10+08	4,0.10+08	5,1.10+08
Beta Gamma	4,0.10+08	4,0.10+08	4,0.10+08	4,0.10+08	4,0.10+08	4,0.10+08	4,0.10+08	4,0.10+08
Alpha	-	-	8,6.10+01	-	-	-	-	8,6.10+01

Tabelle hh Geschätzte flüssige radioaktive Ableitungen nach Kategorien für Betriebstätigkeiten

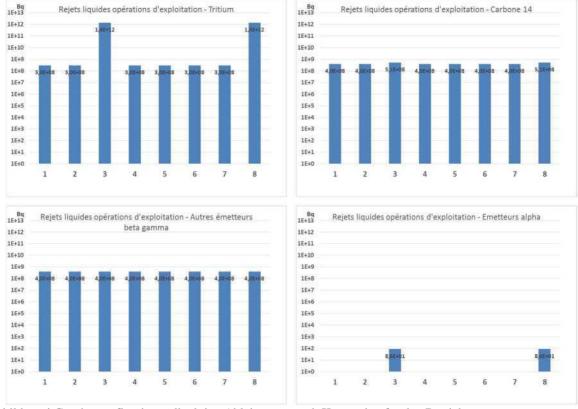


Abbildung j Geschätzte flüssige radioaktive Ableitungen nach Kategorien für den Betrieb

4. ERGEBNISSE DER SCHÄTZUNG DER ATMOSPHERISCHEN RADIOAKTIVEN ABLEITUNGEN

4.1. ERGEBNISSE DER GESAMTABLEITUNGEN PRO JAHR UND KATEGORIE VON RADIONUKLEIDEN

Die geschätzten Tätigkeiten der radioaktiven Freisetzungen in die Luft nach Jahr und Kategorie von Radionukliden aller Schornsteine, einschließlich Freisetzungen im Zusammenhang mit der elektromechanischen Stilllegung (Abschnitt 3.1 und 3.2), Ableitungen im Zusammenhang mit der Sanierung (Absatz 3.3) und Ableitungen aus dem Betrieb (Absatz 3.4), sind in Tabelle ii aufgeführt.

Freisetzungen in die						
Luft	Jahr 1 Bq/Jahr	Jahr 2 Bq/Jahr	Jahr 3 Bq/Jahr	Jahr 4 Bq/Jahr	Jahr 5 Bq/Jahr	Jahr 6 Bq/Jahr
Tritium	2,7.10+11	2,7.10+11	1,4.10+11	1,8.10+11	2,2.10+11	2,9.10+11
Kohlenstoff 14	6,7.10+11	1,9.10+09	1,6.10+09	1,1.10+11	2,4.10+11	4,1.10+11
Beta Gamma	9,4.10+06	2,5.10+07	1,3.10+07	4,1.10+07	4,4.10 ⁺⁰⁷	8,5.10+07
Alpha	1,5.10+03	3,9.10+03	2,0.10+03	8,0.10+02	1,1.10+03	5,7.10+03

Freisetzungen in die						
Luft	Jahr 7 Bq/Jahr	Jahr 8 Bq/Jahr	Jahr 9 Bq/Jahr	Jahr 10 Bq/Jahr	Jahr 11 Bq/Jahr	Jahr 12 Bq/Jahr
Tritium	2,1.10+11	4,2.10+09	8,4.10+09	4,2.10+09	9,4.10+08	1,8.10+05
Kohlenstoff 14	2,1.10+11	4,0.10+09	9,5.10+08	7,7.10+08	1,1.10+09	2,5.10+08
Beta Gamma	5,9.10+07	4,2.10+07	2,4.10+07	1,8.10+07	2,1.10+07	4,9.10+06
Alpha	9,0.10+03	7,8.10+03	6,6.10+03	5,5.10+03	7,4.10+03	1,8.10+03

Tabelle ii Geschätzte atmosphärische radioaktive Freisetzungen nach Kategorien für den gesamten Zeitraum Demontage

4.2. HISTOGRAMM DER ABLEITUNGEN

Die nachstehenden Abbildungen zeigen die voraussichtliche Entwicklung der geschätzten Tätigkeiten von radioaktiven Abwässern aus der Atmosphäre mit Tritium, Kohlenstoff 14, anderen P/y-Emittenten und α -Strahlern für alle Jahre des Abbaus, in denen alle Schornsteine für die Erzeugung von atmosphärischen radioaktiven Stoffen vorgesehen sind.

Abbildung k Geschätzte Tätigkeiten pro Jahr der radioaktiven Freisetzungen in die Luft durch Tritium

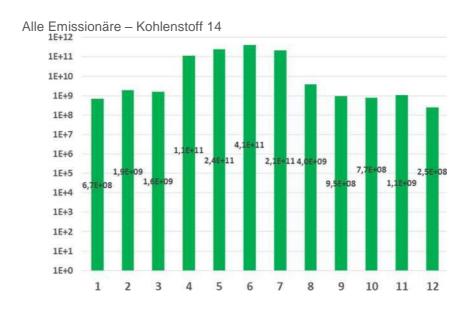


Abbildung geschätzte jährliche Tätigkeiten radioaktiver Kohlenstoffemissionen in die Luft 14

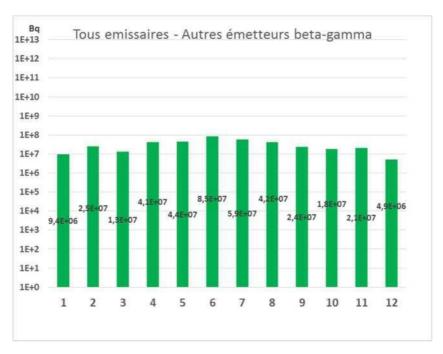


Abbildung m Geschätzte jährliche Tätigkeiten der radioaktiven Freisetzungen in die Luft in andere Sender $\sqrt[h]{y}$

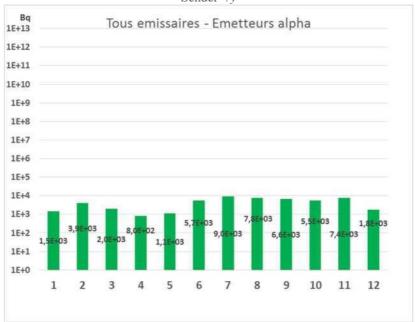


Abbildung n Geschätzte Tätigkeiten jährlicher radioaktiver Freisetzungen in die Luft

Alpha-Sender erreichen maximal 9 000 Bq/Jahr (siehe Abbildung \underline{n}). In Anbetracht einer gleichmäßigen Verteilung der Emissionen von Alpha-Emittenten über die Stilllegungsjahre und einer durchschnittlichen Belüftungsleistung von 231 000 m 3^{h} beträgt die durchschnittliche jährliche Volumenaktivität 4,4.10- 6^{Bq} /m 3° So weisen die entnommenen Aerosole keine Gesamtalpha-Volumenaktivität künstlicher Herkunft auf, die über der Entscheidungsschwelle für die Messung liegt (~ 10- 3^{Bq} /m 3). Sie werden im Anschluss an die Bewertung der Rückwürfe nicht vorgelegt.

Die Entwicklung der Rückwürfe in Verbindung mit der Planung der Hauptphasen des Stilllegungsprojekts führt dazu, dass verschiedene Phasen der Ablehnung unterschieden werden:

- für Tritium eine erste Periode von Jahr 1 bis Jahr 7, die der Phase entspricht, in der die Schwimmbäder BR oder BK im Wasser liegen (erheblicher Beitrag aufgrund der Verdunstung der Schwimmbäder, siehe <u>Abschnitt</u> 3.4.1.4) und eine zweite Periode des Jahres 8 bis zum Jahr 12, die nach dem Entleeren aller Schwimmbäder beginnt;
- für Kohlenstoff 14, drei Perioden: vom Jahr 1 bis zum Jahr 3, dann vom Jahr 8 bis zum Jahr 12 mit einem Grundableitungsniveau und einem höheren Ableitungszeitraum von Jahr 4 bis Jahr 7, der dem Abbau des Beckens und der Innenräume unter Wasser in den BR-Pools entspricht (siehe Ziffer 3.2.7);
- bei anderen Beta-/Gamma-Emittenten bleiben die Ableitungen während des gesamten Abbaus in der gleichen Größenordnung, es wird kein Abwurfzeitraum unterschieden.

4.3. SORTIERUNG VON RADIONUKLEIDEN

Mit Ausnahme der Kategorien " ³H" und " ¹⁴C" können die Kategorien, für die ein Antrag auf Genehmigung von Ableitungen gestellt werden kann, möglicherweise aus mehreren Radionukliden bestehen. Diese "multielementaren" Kategorien sind zu sortieren, um nur die für jede dieser Kategorien repräsentativen überwiegenden Radionuklide zu erhalten.

Als überwiegende Radionuklide gelten Radionuklide, die mehr als 1 % der jährlichen Aktivität ihrer Zugehörigkeitskategorie ausmachen ODER, deren potenzieller Beitrag zur jährlichen effektiven Dosis, berechnet auf der Grundlage der geschätzten Ableitungen (alle Kategorien), über 1 % aller Schornsteine beträgt.

Endgültig ausgeschlossen sind Radionuklide, die weniger als 1 % der jährlichen Aktivität ihrer Zugehörigkeitskategorie ET ausmachen, deren Beitrag zur effektiven Jahresdosis, berechnet auf der Grundlage der geschätzten Ableitungen (alle Kategorien), weniger als 1 % beträgt.

Die vorherrschenden Radionuklide für die Freisetzung in die Luft und ihre Verteilung innerhalb ihrer Zugehörigkeitskategorie sind in <u>Tabelle ji</u> angegeben.

Zu den überwiegenden Radionukliden der Kategorie β/γ kommen Tritium und Kohlenstoff 14 als eigenständige Kategorie hinzu.

Kategorie	Tritium	Kohlenstoff 14			Ander	e Beta-/C	Gammasend	ler	
Radionuklid	³ UHR	14 _C	⁶⁰ Co	⁵⁵ Fe	⁶³ Ni	⁹⁰ Sr	152 _{EU}	137 _{Cs}	108 m _A g
Aufteilung innerhalb der Kategorie (%)	100	100	23	30	45	0,9	0,5	0,2	0,4

Tabelle jj Liste der vorherrschenden Radionuklide für Freisetzungen in die Luft und Verteilung innerhalb ihrer Kategorie

Hinweis: Die in <u>Tabelle ji</u> aufgeführten Radionuklide werden in <u>Kapitel 6 Absatz 6.3</u> zur Erfassung radioaktiver Freisetzungen in die Luft verwendet.

4.4. KONSOLIDIERTE ERGEBNISSE DER GESCHÄTZTEN ABLEITUNGEN MIT ÜBERWIEGENDEM RADIONUCLEID

4.4.1. KONSOLIDIERTE ERGEBNISSE DER SCHÄTZUNG DER EINLEITUNGEN AUF ALLEN WEGEN

Die geschätzten Tätigkeiten der radioaktiven Freisetzungen in die Luft pro Jahr und mit überwiegendem Radionuklid aus allen Schornsteinen, einschließlich Freisetzungen im Zusammenhang mit der elektromechanischen Stilllegung, sanierungsbedingten Ableitungen und Freisetzungen aus dem Betrieb, sind in Tabelle kk aufgeführt. Dieses Detail ist

notwendig, um die Messbarkeit von Radionukliden zu bewerten und anschließend die damit verbundenen Grenzwerte zu bestimmen.

Jahr	1	2	3	4	5	6	7	8	9	10	11	12
Freisetzungen in die Luft	Bq/Jahr	Bq/Jahr	Bq/Jahr	Bq/Jahr	Bq/Jahr	Bq/Jahr	Bq/Jahr	Bq/Jahr	Bq/Jahr	Bq/Jahr	Bq/Jahr	Bq/Jahr
3 _{UHR}	2,7.10+11	2,7.10+11	1,4.10+11	1,8.10+11	2,2.10+11	2,9.10+11	2,1.10+11	4,2.10+09	8,4.10+09	4,2.10+09	9,4.10+08	1,8.10+05
14 _C	6,7.10+08	1,9.10+09	1,6.10+09	1,1.10+11	2,4.10+11	4,1.10+11	2,1.10+11	4,0.10+09	9,5.10+08	7,7.10 ⁺⁰⁸	1,1.10+09	2,5.10+08
⁶⁰ Co	2,6.10 ⁺⁰⁶	7,2.10+06	3,7.10+06	1,1.10+07	1,2.10+07	2,2.10 ⁺⁰⁷	1,6.10+07	9,6.10+06	2,1.10+06	1,6.10+06	1,5.10+06	4,2.10+05
⁵⁵ Fe	3,0.10+06	8,1.10+06	4,2.10+06	1,5.10+07	1,6.10+07	2,9.10 ⁺⁰⁷	1,9.10+07	1,2.10+07	4,8.10+06	2,7.10+06	9,7.10+05	2,1.10+05
63 _{Ni}	3,6.10+06	9,7.10 ⁺⁰⁶	5,0.10+06	1,4.10+07	1,6.10+07	3,3.10+07	2,3.10+07	1,9.10+07	1,6.10+07	1,3.10+07	1,8.10+07	4,1.10+06
⁹⁰ Sr	1,2.10+05	3,2.10+05	1,6.10+05	6,5.10+04	6,2.10+04	4,0.10+05	7,0.10+05	5,5.10+05	3,7.10+05	3,1.10+05	4,1.10+05	9,8.10+04
152 _{EU}	0	0	0	0	0	0	9,4.10+04	4,2.10+05	8,4.10+05	4,2.10 ^{+ 05}	9,4.10+04	0
137 _{Cs}	2,3.10+04	6,2.10+04	3,2.10+04	1,3.10+04	1,2.10+04	7,8.10 ^{+ 04}	1,4.10+05	1,1.10+05	7,2.10+04	6,0.10+04	8,1.10+04	1,9.10+04
108 m _A g	3,5.10+04	9,6.10+04	4,9.10+04	1,9.10+04	2,8.10+04	1,4.10+05	2,2.10+05	1,9.10+05	1,7.10+05	1,4.10+05	1,9.10+05	4,5.10+04
Tritium	2,7.10+11	2,7.10+11	1,4.10+11	1,8.10+11	2,2.10+11	2,9.10+11	2,1.10+11	4,2.10+09	8,4.10+09	4,2.10 ^{+ 09}	9,4.10+08	1,8.10+05
Kohlenstoff14	6,7.10+08	1,9.10+09	1,6.10+09	1,1.10+11	2,4.10+11	4,1.10+11	2,1.10+11	4,0.10+09	9,5.10+08	7,7.10+08	1,1.10+09	2,5.10+08
Weitere Beta/Gamma	9,4.10+06	2,5.10 ⁺⁰⁷	1,3.10+07	4,1.10+07	4,4.10 ⁺⁰⁷	8,5.10 ⁺⁰⁷	5,9.10 ⁺⁰⁷	4,2.10+07	2,4.10+07	1,8.10+07	2,1.10 ⁺⁰⁷	4,9.10+06

Tabelle kk Geschätzte atmosphärische radioaktive Freisetzungen pro Radioelement und Jahr für die gesamte Stilllegungszeit (alle Schornsteine zusammen)

Einzelheiten der geschätzten Tätigkeiten der jährlichen radioaktiven Freisetzungen in die Luft und das überwiegende Radionuklid, einschließlich der Freisetzungen im Zusammenhang mit der elektromechanischen Stilllegung, der Einleitungen im Zusammenhang mit der Sanierung und der Freisetzung aus dem Betrieb, sind der <u>Tabelle 1 in Tabelle 00</u> zu entnehmen. In den Jahren 10 bis 12 der Stilllegung liegt die Summe der Freisetzungen je Schornstein etwas höher als die zuvor geschätzten Gesamtemissionen: diese Abweichung ist auf die doppelte Verbuchung der Sanierungsmaßnahmen des NB und der Stollen des NB zurückzuführen, die den einzelnen modularen Lüftungseinheiten zugewiesen sind (siehe Ziffer 3.3.5), dies ändert nichts an den Schlussfolgerungen der Schätzung.

4.4.2. SCHÄTZUNG VON RÜCKWÜRFEN AUF DEM WEG DES BAN

Jahr Kamin des Ban	1 Bq/Jahr	2 Bq/Jahr	3 Bq/Jahr	4 Bq/Jahr	5 Bq/Jahr	6 Bq/Jahr	7 Bq/Jahr	8 Bq/Jahr	9 Bq/Jahr
³ UHR	2,7.10+11	2,7.10+11	1,4.10+11	1,8.10+11	2,2.10+11	2,9.10+11	2,1.10+11	4,2.10+09	1,3.10+09
14 _C	6,7.10+08	1,9.10+09	1,6.10+09	1,1.10+11	2,4.10+11	4,1.10+11	2,1.10+11	4,0.10+09	1,1.10+08
⁶⁰ Co	2,6.10+06	7,2.10+06	3,7.10+06	1,1.10+07	1,2.10+07	2,2.10+07	1,6.10+07	9,6.10+06	2,7.10+05
⁵⁵ Fe	3,0.10+06	8,1.10+06	4,2.10+06	1,5.10+07	1,6.10+07	2,9.10+07	1,9.10+07	1,2.10+07	7,0.10+05
⁶³ Ni	3,6.10+06	9,7.10+06	5,0.10+06	1,4.10+07	1,6.10+07	3,3.10+07	2,3.10+07	1,9.10+07	1,9.10+06
⁹⁰ Sr	1,2.10+05	3,2.10+05	1,6.10+05	6,5.10+04	6,2.10+04	4,0.10+05	7,0.10+05	5,5.10+05	4,4.10+04
152 _{EU}	0	0	0	0	0	0	9,4.10+04	4,2.10+05	1,3.10+05
137 _{Cs}	2,3.10+04	6,2.10+04	3,2.10+04	1,3.10+04	1,2.10+04	7,8.10+04	1,4.10+05	1,1.10+05	8,7.10+03
108 m _A g	3,5.10+04	9,6.10+04	4,9.10+04	1,9.10+04	2,8.10+04	1,4.10+05	2,2.10+05	1,9.10+05	2,0.10+04
Tritium	2,7.10+11	2,7.10+11	1,4.10+11	1,8.10+11	2,2.10+11	2,9.10+11	2,1.10+11	4,2.10+09	1,3.10+09
Kohlenstoff14	6,7.10+08	1,9.10+09	1,6.10+09	1,1.10+11	2,4.10+11	4,1.10+11	2,1.10+11	4,0.10+09	1,1.10+08
Weitere Beta/Gamma	9,4.10+06	2,5.10+07	1,3.10+07	4,1.10 ⁺⁰⁷	4,4.10+07	8,5.10+07	5,9.10+07	4,2.10+07	3,1.10+06

Tabelle Il Geschätzte atmosphärische radioaktive Freisetzungen pro Radioelement und Jahr Kamin des Ban

4.4.3. SCHÄTZUNG VON RÜCKWÜRFEN AUF DEM WEG DER MODULARE BELÜFTUNG 1

Jahr Modulare Belüftung 1	9 Bq/Jahr	10 Bq/Jahr	11 Bq/Jahr	12 Bq/Jahr
3 _{UHR}	3,4.10+09	9,0.10+04	7,4.10+04	3,6.10+04
14c	2,8.10+08	4,3.10+08	7,8.10+08	9,2.10+07
⁶⁰ Co	7,4.10+05	7,2.10+05	1,0.10+06	1,9.10+05
⁵⁵ Fe	1,9.10+06	3,5.10+05	2,7.10+05	1,2.10+05
⁶³ Ni	4,6.10+06	7,2.10+06	1,3.10+07	1,6.10+06
⁹⁰ Sr	1,1.10+05	1,7.10+05	3,1.10+05	3,7.10+04
152 _{EU}	3,4.10+05		_	
137 _{Cs}	2,1.10+04	3,4.10+04	6,0.10+04	7,4.10+03
108 m _A g	5,0.10+04	7,9.10+04	1,4.10+05	1,7.10+04
Tritium	3,4.10+09	9,0.10+04	7,4.10+04	3,6.10+04
Kohlenstoff14	2,8.10+08	4,3.10+08	7,8.10+08	9,2.10+07
Weitere Beta/Gamma	7,8.10+06	8,6.10+06	1,5.10+07	1,9.10+06

Tabelle mm Geschätzte atmosphärische radioaktive Freisetzungen pro Radioelement und Jahr modularer Lüftungskamin Produktionseinheit 1

4.4.4. SCHÄTZUNG VON RÜCKWÜRFEN AUF DEM WEG DER MODULARE BELÜFTUNG 2

Jahr	9	10	11	12
Modulare Belüftung 2	Bq/Jahr	Bq/Jahr	Bq/Jahr	Bq/Jahr
3 _{UHR}	3,8.10+09	4,2.10+09	9,4.10+08	5,0.10+04
14 _C	5,6.10+08	4,3.10+08	1,1.10+09	1,8.10+08
60 _{Co}	1,1.10+06	1,1.10+06	1,5.10+06	3,4.10+05
⁵⁵ Fe	2,2.10+06	2,5.10+06	9,6.10+05	1,9.10+05
⁶³ Ni	9,2.10+06	7,3.10+06	1,8.10+07	3,0.10+06
⁹⁰ Sr	2,1.10+05	1,7.10+05	4,1.10+05	7,3.10+04
152 _{EU}	3,8.10+05	4,2.10+05	9,4.10+04	_
137 _{Cs}	4,2.10+04	3,4.10+04	8,1.10+04	1,4.10+04
108 m _A g	1,0.10+05	7,9.10+04	1,9.10+05	3,3.10+04
Tritium	3,8.10+09	4,2.10+09	9,4.10+08	5,0.10+04
Kohlenstoff14	5,6.10+08	4,3.10+08	1,1.10+09	1,8.10+08
Weitere Beta/Gamma	1,3.10+07	1,2.10+07	2,1.10+07	3,7.10+06

Tabelle nn

Geschätzte Gesamtradioaktive Freisetzungen in die Luft je Radioelement und Jahr Kamin der modularen Belüftung Produktionseinheit 2

4.4.5. SCHÄTZUNG VON RÜCKWÜRFEN AUF DEM WEG DER MODULARE BELÜFTUNG 3

Taba.	Abbau von Außenbehältern	Abbau des BE	S
Jahr	8	11	12
Modulare Belüftung 3	Bq/Jahr	Bq/Jahr	Bq/Jahr
³ UHR	$3,6.10^{+06}$	3,7.10+04	1,3.10+05
14 _C	5,6.10+04	7,1.10+05	6,5.10+07
60 _{Co}	$7,9.10^{+02}$	1,0.10+04	8,3.10+04
⁵⁵ Fe	$9,0.10^{+0.2}$	1,1.10+04	2,1.10+04
$63_{ m Ni}$	$1,1.10^{+03}$	1,4.10+04	1,1.10+06
90_{Sr}	35	4,4.10+02	2,5.10+04
152 _{EU}	_	_	
137 _{Cs}	6,8	86	5,0.10+03
108 m _A g	11	1,3.10+02	1,2.10+04
Tritium	3,6.10+06	3,7.10+04	1,3.10+05
Kohlenstoff14	5,6.10+04	7,1.10+05	6,5.10+07
Weitere Beta/Gamma	$2,8.10^{+03}$	3,6.10+04	1,2.10+06

Tabelle oo Geschätzte atmosphärische radioaktive Freisetzungen pro Radioelement und Jahr Schornstein der modularen Belüftung 3 verwendet für den Abbau von Außenbehältern und dann BES

4.5. ABLEHNUNGSPERIODEN

Wie in Ziffer 4.2 dargelegt, führt die Entwicklung der Rückwürfe in Verbindung mit der Planung der Hauptschritte des Stilllegungsprojekts zu einer Unterscheidung mehrerer Ablehnungszeiträume, die in den folgenden Abbildungen dargestellt sind (Abbildung o bis Abbildung q):

- für Tritium einen ersten Zeitraum, der der Phase entspricht, in der die BR- oder BK-Pools im Wasser liegen (erheblicher Beitrag aufgrund der Verdunstung der Schwimmbäder) und ein zweiter Zeitraum nach dem Entleeren aller Schwimmbäder;
- für Kohlenstoff 14, drei Perioden: zwei Zeiträume, die einem Grundableitungsniveau entsprechen und einen längeren Ableitungszeitraum einschließen, der dem Abbau des Beckens und der Innenräume unter Wasser in BR-Pools entspricht;
- bei anderen Beta-/Gamma-Emittenten bleiben die Ableitungen während des gesamten Abbaus in der gleichen Größenordnung, es wird kein Abwurfzeitraum unterschieden.

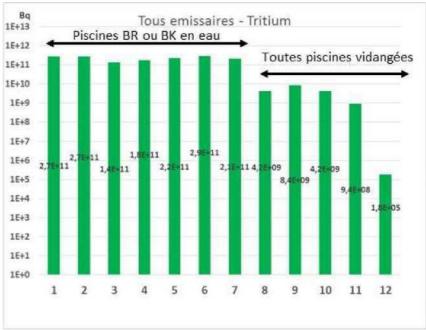


Abbildung o Ableitungsperioden für Tritium (atmosphärische Ableitungen)

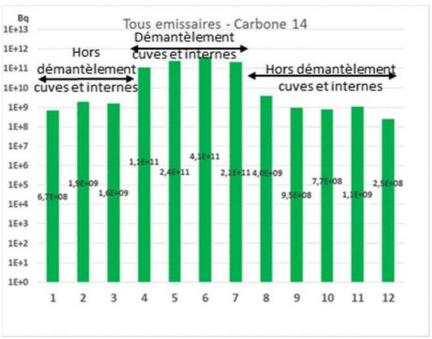


Abbildung p Emissionsperioden für Kohlenstoff 14 (Luftableitungen)

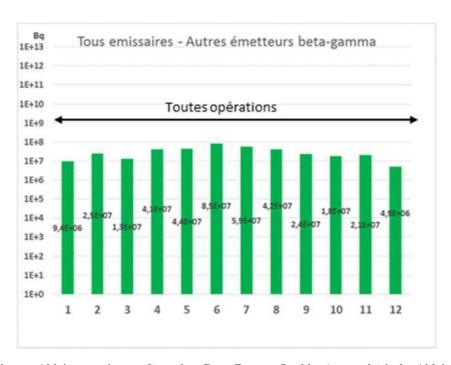


Abbildung q Ableitungszeitraum für andere Beta-Gamma-Strahler (atmosphärische Ableitungen)

So können für alle Radionuklide 3 Ableitungsphasen bestimmt werden, die auf der <u>Abbildung r</u>:

• Phase 1: BK-Wasserbecken, leere BR-Pools (d. h. vor dem Abbau des Beckens und der Innenräume);

- Phase 2: BK-Wasser-Pools, BR-Wasserpools (d. h. während des Abbaus des Beckens und der Innenräume unter Wasser);
- Phase 3: BK- und BR-Schwimmbecken (das Ende der Entleerung der Pools BR und BK ist im selben Jahr geplant).

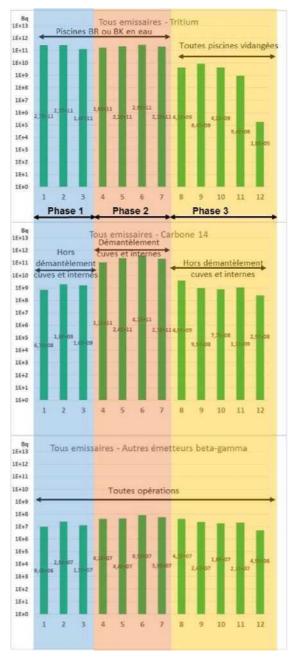


Abbildung r Definition der Einleitungsphasen (Luftableitung)

Um die geforderten Grenzwerte zu bestimmen, wird diese Phase aufgrund der Umstellung der DVN-Lüftung auf mehrere modulare Lüftungseinheiten in Phase 3a (vor dem Abschalten der DVN-Lüftung) und 3b (nach der Umstellung auf modulare Lüftungseinheiten) getrennt.

4.6. MAXIMALE JÄHRLICHE RÜCKWÜRFE PRO ZEITRAUM

Die geschätzten maximalen jährlichen Tätigkeiten je Schornstein, Ableitungszeitraum und Radionuklidkategorie sind in den nachstehenden Tabellen dargestellt.

4.6.1. TRITIUM

Maximale jährliche Tritium-Aktivitäten (Bq/Jahr)	Phase 1	Phase 2	Phase 3 a	Phase 3b
Kamin des Ban	2,7.10+11	2,9.10+11	$4,2.10^{+09}$	_
Modulare Lüftung Einheit 1	_	_	_	3,4.10+09
Modulare Lüftung Einheit 2	_	_	_	4,2.10+09
Modulare Belüftung 3 Abbau von Außenbehältern	_	_	3,6.10+06 *	_
Modulare Belüftung 3 Abbau des BES		_		1,3.10+05 *

^{(*):} Diese Aktivität ist bei diesem Schornstein angesichts der analytischen Leistung der installierten Probenahme- und Analysemittel nicht messbar.

Tabelle pp Geschätzte jährliche Höchstwerte für Tritium je Schornstein und Zeitraum von Einleitung (Wegwerfungen)

4.6.2. KOHLENSTOFF 14

Maximale jährliche Kohlenstoffaktivitäten 14 (Bq/Jahr)	Phase 1	Phase 2	Phase 3 a	Phase 3b
Kamin des Ban	$1,9.10^{+09}$	4,1E.10 ⁺¹¹	$4,0.10^{+09}$	_
Modulare Lüftung Einheit 1	-	_	-	7,8.10+08
Modulare Lüftung Einheit 2	_	_	_	1,1.10+09
Modulare Belüftung 3 Abbau von Außenbehältern	_	_	5,6.10+04 *	_
Modulare Belüftung 3 Abbau des BES		_		6,5.10+07

^{(*):} Diese Aktivität ist bei diesem Schornstein angesichts der analytischen Leistung der installierten Probenahme- und Analysemittel nicht messbar.

Tabelle qq Geschätzte jährliche Höchstwerte für Kohlenstoff 14 pro Schornstein und Zeitraum Einleitung (Luftableitung)

4.6.3. ANDERE BETA-GAMMA-SENDER

Maximale jährliche Tätigkeiten in anderen Emittenten β/γ (Bq/Jahr)	Phase 1	Phase 2	Phase 3 a	Phase 3b
Kamin des Ban	2,5.10+07	8,5.10+07	$4,2.10^{+07}$	_
Modulare Lüftung Einheit 1	_	_	_	1,5.10+07
Modulare Lüftung Einheit 2	_	_	_	2,0.10+07
Modulare Belüftung 3 Abbau von Außenbehältern	_	_	2,8.10+03 *	_
Modulare Belüftung 3 Abbau des BES	_	_	_	1,2.10+06

^{(*):} Diese Aktivität ist bei diesem Schornstein angesichts der analytischen Leistung der installierten Probenahme- und Analysemittel nicht messbar.

Tabelle r r Geschätzte jährliche Höchstwerte in anderen Beta-Gamma-Emittenten pro Schornstein und Ableitungszeitraum (Luftableitung)

Die geschätzte maximale jährliche Aktivität für alle Kategorien von Radioelementen wird im Jahr 6 (in Phase 2) erzielt, in dem für die beiden Produktionseinheiten die Zerlegung der Innenräume unter Wasser vorgesehen ist.

4.7. ANALYSE DER MESURABILITE

Im vorstehenden Absatz wurde für jeden Ableitungskamin, für jeden Zeitraum und jede Kategorie von Radionukliden die maximale Aktivität ermittelt, die abgelehnt werden kann. Es muss nun klargestellt werden, inwieweit diese Tätigkeiten, die abgelehnt werden können, den Antrag auf Genehmigung von Rückwürfen erfordern.

Zu diesem Zweck wird davon ausgegangen, dass eine nicht nachweisbare abgelehnte Tätigkeit (mit den besten industriellen Probenahme- und Analysemitteln gekennzeichnet) keinen Antrag auf Genehmigung von Rückwürfen erfordert.

Die Umsetzung dieses Ansatzes erfolgt in diesem Absatz.

4.7.1. zum jetzigenZeitpunkt wird davon ausgegangen, dass alle überwiegenden

Radionuklide systematisch erfasst Die werden, mindestens jedoch bei der Entscheidungsschwelle der Maßnahme.

Die Messte Entscheidungsschwelle der Detekt Nachwenach

Die Schwellen für die Entscheidung (SD) für regulatorische Maßnahmen, die für stillgelegte Standorte gelten, sind in der <u>Tabelle</u>ss angegeben.

Die Entscheidungsschwellen (SD) der verwendeten Messtechniken stellen eine analytische Leistung dar. Die Entscheidungsschwellenwerte entsprechen der Hälfte der Detektionsgrenzwerte. Bei derselben Messung variieren diese Nachweisgrenzen je nach den Verfahren der Probenahmen. Je nach Art der Freisetzungen sind die Vorgehensweisen unterschiedlich, was die unterschiedlichen Nachweisgrenzen erklärt.

Schwellenwerte für die Entscheidung der Maßnahme (Bq/m³)							
	20						
	Kohlenstoff 14						
	Durch Gammaspektrometrie gemessene Elemente (Co60, Eu152, Cs137, Ag108m)	0,001					
Andere Sender β/γ	Ni63	0,001					
	Sr90	0,01					
	Fe55	0,001					

Tabelle ss Entscheidungsschwellen der Maßnahme für Freisetzungen in die Luft (Bq/m³)

4.7.2. MINDESTWERTE FÜR DIE ERKLÄRUNG

Die Meldemindestwerte (MMS) für die einzelnen Radioelemente für jeden der Schornsteine werden nach folgender Formel berechnet:

VMD (Bq/Jahr) = SD-Messung (Bq/m³) x Durchflusslüftung (m³/h) x Anzahl Stunden pro Jahr (h)

Bei dieser VMD handelt es sich um die Tätigkeit, bei der der Betreiber die abgelehnte Tätigkeit nicht genau quantifizieren kann und die bei Fehlen eines Nachweises mindestens gemeldet wird.

Der Lüftungsdurchsatz wird als 257 200 m 3/h für^{den}Schornstein des BAN und 90 000 m 3/h^{für}modulare Belüftungen (maximale Belüftungsraten, siehe Ziffer 2.3.2) <u>betrachtet.</u> Die Mindestwerte für die Meldung (VMD) nach Schornsteintyp und Kategorie sind in <u>Tabelle tt angegeben</u>.

Mindestwert der Meldung (Bq/Jahr)	Kamin des Ban	Modularer Lüftungskamin
Tritium	4,5.10+10	1,6.10+10

Kohlenstoff 14	1,1.10+10	3,9.10+09
Sr90	2,3.10+07	7,9.10+06
Andere Sender β/γ (Co60, Eu152, Cs137, Ag108m, Ni63, Fe55)	2,3.10+06	7,9.10+05

Tabelle tt Mindestberichtswerte (VMD) nach Schornsteintyp (Bq/Jahr)

4.8. BEANTRAGTE ABLEITUNGSGRENZWERTE FÜR RADIOAKTIVE STOFFE ATMOSPHERISCHE

4.8.1. DEFINITION VON ZURÜCKWEISUNGSGRENZEN

Die maximalen jährlichen Tätigkeiten nach <u>Abschnitt 4.6 werden</u> mit den VMDs in <u>Tabelle tt</u> verglichen. Diese Analyse ermöglicht es, die Ableitungsgrenzwerte für jede Ableitungsphase und jede Kategorie von Radionukliden festzulegen. Der für den Rückwurfgrenzwert nach Zeitraum und Kategorie zugrunde gelegte Wert ist ein Wert, der entweder

- der VMD (wenn die geschätzte maximale jährliche Aktivität niedriger ist als die nicht messbare);
- der geschätzten maximalen jährlichen Aktivität (wenn sie die analytische Leistung des VMD übersteigt).

Für den Fall, dass die Aktivität auf der Ebene eines Senders nicht messbar ist (unter Berücksichtigung der besten analytischen Leistung der Messgeräte), wird davon ausgegangen, dass dieser Sender keine Ableitungen für die betreffende Radionuklidkategorie und den betreffenden Ableitungszeitraum durchführt.

Die Analyse erfolgt über Schornstein, wobei der Grenzwert für den gesamten Standort durch Hinzufügung der pro Schornstein ausgewählten Tätigkeiten festgelegt wird.

Die nachstehende <u>Tabelle</u>zeigt den Ansatz für Tritium, wobei der Ansatz für die anderen Kategorien ähnlich ist (bei den anderen Beta-Gamma-Emittenten wird die Summe erreicht).

gewählte Tätigkeiten in Tritium (Bq/Ja Kamin gewählte Aktivität wird herv		n Phase 1	Phase 2	Phase 3 a	Phase 31
Kamin des Ban	Maximaler Wert	2,7.10+11	2,9.10+11	4,2.10+09	_
Kanini des Ban	VMD	4,5.10+10	4,5.10+10	4,5.10+10	_
Modulare Lüftung Einheit 1	Maximaler Wert	_	_	_	3,4.10+0
Woddiaic Luitung Linneit 1	VMD	_	_	_	1,6.10 ⁺¹
Modulare Lüftung Einheit 2	Maximaler Wert	_	_	_	4,2.10+(
Woddiale Luitung Ennicit 2	VMD	-	-	-	1,6.10+1
Modulare Belüftung Abbau von Außenbehältern	Maximaler Wert	_	_	3,6.10 ⁺⁰⁶ (nicht messbar)	_
Auschoenatem	VMD	_	_	1,6.10+10	_
Modulare Belüftung Abbau des BES	Maximaler Wert	_	_	_	1,3.10 ⁺⁵ (<u>n</u> messbar
	VMD	_	_	_	1,6.10+1

Tabelle uu Beginn der Beantragung von Grenzwerten: Beispiel Tritium

Nach diesem Vorgehen für jede Kategorie wird die Summe der pro Schornstein für jede Phase ausgewählten Tätigkeiten durchgeführt und in der nachstehenden <u>Tabelle vv</u>dargestellt.

Ausgewählte jährliche Tätigkeiten (Bq/Jahr)	Phase 1	Phase 2	Phase 3 a	Phase 3b	Maximal Phase 3
Tritium	2,7.10+11	2,9.10+11	4,5.10+10	3,2.10+10	4,5.10+10
Kohlenstoff 14	1,1.10+10	4,1.10+11	1,1.10+10	1,2.10+10	1,2.10+10
Andere Beta/Gamma-Sender	5,2.10+07	1,1.10+08	7,2.10+07	7,0.10+07	7,2.10+07

Tabelle vv Summe für alle Kamine der ausgewählten jährlichen Tätigkeiten nach Kategorie

Die Grenzwerte werden dann für jede Radionuklidkategorie für jeden in <u>Absatz 4.5</u> definierten Zeitraum bestimmt, indem auf den ermittelten Wert ein Unsicherheitskoeffizient gemäß <u>Absatz 2.2</u> ("Koeffizient Unsicherheit planning" in den nachstehenden Absätzen) angewendet wird.

Bei Kohlenstoff 14 ergeben die Gegenkontrollen (Vergleich der Ergebnisse von Messungen an zwei am selben Ableitungspunkt identischen Messkanälen) eine große Unsicherheit bei dieser Messung, weshalb ein zusätzlicher Unsicherheitskoeffizient von 100 % für einen hohen berechneten Wert bzw. 150 % für einen niedrigen berechneten Wert (die Messunsicherheit ist größer, wenn der Messwert niedriger ist) auf den für Kohlenstoff 14 ermittelten Wert angewendet wird ("Koeffizient Unsicherheit Kohlenstoff 14" in den nachstehenden Absätzen). Anschließend werden die Ergebnisse gerundet.

Für Tritium entspricht der erste Zeitraum dem Zeitpunkt, zu dem sich die BR- und BK-Pools im Wasser befinden, d. h. in den Phasen 1 und 2. Das jährliche Maximum dieser beiden Phasen beträgt 2,9.10¹¹ Bq. Bei Anwendung des "Planungsunsicherheitskoeffizienten" erhält man 4,4.10¹¹ Bq, gerundet auf 5. 10¹¹ Bq. Die beantragte Obergrenze beträgt 5.10¹¹ Bq/Jahr. Die zweite Periode beginnt nach der Entleerung der Schwimmbäder, d. h. der Phase 3, für die das jährliche Maximum 4,5.10¹⁰ Bq beträgt. Dieser Wert basiert nur auf VMDs oder nicht messbaren Werten, es wird kein Unsicherheitskoeffizient angewendet. Der geforderte Grenzwert ist ein gerundeter Wert von 5.10¹⁰ Bq/Jahr.

Bei Kohlenstoff 14 ist die wichtigste Ableitungszeit die Stilllegung des Tanks und der Innenräume unter Wasser, d. h. Phase 2, mit einem jährlichen Höchstwert von 4,1.10¹¹ Bq. Bei Anwendung des "Koeffizienten Unsicherheitsplanung"

und des "Koeffizienten Kohlenstoff 14 Messunsicherheit" von 100 % ergibt sich 1,2.10¹² Bq, gerundet auf 1.10¹² Bq. Die beantragte Obergrenze beträgt 1.10¹² Bq/Jahr. Die Basisabstoßung entspricht dem jährlichen Höchstwert der Phasen 1 und 3, d. h. 1,2.10¹⁰ Bq. Bei Anwendung des "Koeffizienten Unsicherheitsplanung" und des "Koeffizienten Unsicherheit messen Kohlenstoff 14" von 150 % ergibt sich 4,5.10¹⁰ Bq. Der geforderte Grenzwert ist ein gerundeter Wert von 5.10¹⁰ Bq/Jahr.

Bei anderen Beta-/Gamma-Emittenten wird kein Ableitungszeitraum unterschieden, der jährliche Höchstwert für alle drei Phasen beträgt 1,1.10⁸ Bq. Bei Anwendung des "Koeffizienten Unsicherheitsplanung" erhält man 1,7.10⁸ Bq. Der geforderte Grenzwert ist ein gerundeter Wert von 2.10⁸ Bq/Jahr.

4.8.2. GRENZWERTE IN JÄHRLICHEN AKTIVITÄTEN

Die beantragten jährlichen Grenzwerte für die Freisetzung in die Luft je Zeitraum und für jede Kategorie von Radionukliden sind in <u>Tabelle ww</u> aufgeführt.

Beantragte Grenzwerte für rädic	oaktive Freisetzungen in die Luft (Bq/Jahr)	
Tritium	Jahre, in denen mindestens ein BR- und/oder BK-Pool im Wasser liegt (ganz oder teilweise des Jahres) (entsprechend den Jahren der Phasen 1 und 2)	5.10+11
	Ab dem Jahr nach der Entleerung aller Schwimmbäder BR und BK (entsprechend den Jahren der Phase 3)	5.10+10
Kohlenstoff 14	Jahre, in denen mindestens ein BR-Pool im Wasser liegt (ganz oder teilweise des Jahres) (entsprechend den Jahren der Phase 2)	1.10+12
Komenston 14	Jahre, in denen kein BR-Pool aus Wasser besteht (entsprechend den Jahren der Phasen 1 und 3)	s.10+ 10
Andere Spalt- oder Aktivieru	ngsprodukte für Beta- oder Gamma-Emitter	2.10+08

Tabelle ww Beantragte jährliche Aktivitätsgrenzwerte für Freisetzungen in die Luft

Der Betreiber stellt durch die Messung sicher, dass keine künstlichen Alpha-Strahler-Radionuklide freigesetzt werden. Der beantragte Jahresgrenzwert für die Kategorie "Sonstige Beta-/Gamma-Emittenten" bezieht sich auf die verschiedenen überwiegenden Radionuklide, deren Art und Verteilung in Tabelle ji aufgeführt sind.

Bei den diffusen Ableitungen handelt es sich zudem um radioaktive Ableitungen in den Entlüftungsöffnungen der Flüssigkeitsbehälter und aus besonderen Vorgängen, deren Ableitungen nicht auf die Ableitungsschächte ausgerichtet werden können. Sie werden monatlich pro Berechnung geschätzt, um insbesondere sicherzustellen, dass sie vernachlässigbar sind.

4.8.3. GRENZWERTE FÜR VOLUMENAKTIVITÄTEN

Die Grenzwerte für Volumenaktivitäten, die in der Luft auf Bodenhöhe gemessen werden, dürfen die Werte in <u>Tabelle xx</u> nicht überschreiten.

Die Analyse von Aerosolen, die kontinuierlich unter den vorherrschenden Winden aus der Luft entnommen werden, wird täglich durchgeführt (Messungen bei J+ 6). Die Tritiumanalyse wird einmal pro Regulierungszeitraum anhand einer kontinuierlichen Probenahme unter den vorherrschenden Winden durchgeführt.

Grenzwerte für Volumenaktivitäten (Bq/m³) in der Luft unter den vorherrschenden Winden					
Tritium 50					
Andere Sender β/γ	0,01				

Tabelle xx Grenzen in Volumenaktivitäten

4.8.4. LIMITS IN AKTIVITÄTS-DEBITS

Die Aktivitätsraten an den Schornsteinen des INB Nr. 75 werden anhand der Grenzwerte in Volumenaktivität in der Umgebung und des Atmosphärischen Transferkoeffizienten (TAC) ermittelt, der 4,5.10-6 s/m³ für INB Nr. 75 entspricht.

Die Aktivitätsraten von INB Nr. 75 werden durch Division der Grenzwerte in Volumenaktivitäten in der Umgebung (Bq/m^3) durch $CT\grave{A}$ (s/m^3) bestimmt.

Es wurde eine Schätzung der Aktivitätsraten für jeden Schornstein vorgenommen. Aufgrund des Vorhandenseins von Schornsteinen von modularen Lüftungseinheiten, bei denen die abgelehnte Aktivität jedes Jahr unterschiedlich ist (siehe Abschnitt 4.4), weist der relative Anteil der Freisetzung von Schornsteinen im Verhältnis zueinander ebenfalls eine große Variabilität auf. Daher erscheint es unerheblich, für jeden Schornstein eine Begrenzung des individuellen Aktivitätsdurchsatzes zu beantragen. Auch wird ein Gesamtgrenzwert für die verschiedenen Kamine gefordert.

Die Summe der Aktivitätsraten an den verschiedenen Schornsteinen entspricht den folgenden Werten:

Grenzwerte für den durchschnittlichen Aktivitätsdurchsatz (Bq/s) (Summe der Aktivitätsraten an den verschiedenen Schornsteinen)						
Tritium 1,1.10+07						
Andere Sender β/γ	2,2.10+03					

Tableau yy Grenzwerte in Aktivitätsraten an Schornsteinen

Diese Grenzwerte für den durchschnittlichen Aktivitätsdurchsatz sind in jedem Zeitraum einzuhalten.

ERGEBNISSE DER SCHÄTZUNG DER FLÜSSIGEN RADIOAKTIVEN ABLEITUNGEN

5.1. ERGEBNISSE DER GESAMTABLEITUNGEN PRO JAHR UND KATEGORIE VON RADIONUKLEIDEN

Die geschätzten Tätigkeiten der flüssigen radioaktiven Freisetzungen pro Jahr und Kategorie von Radionukliden mit Hauptableitung (einzigartiger Ausstoß), einschließlich der Freisetzungen im Zusammenhang mit dem elektromechanischen Abbau unter Wasser (Absatz 3.2) und der Freisetzungen aus dem Betrieb (Absatz 3.4), sind in Tabelle zz dargestellt.

Rückwürfe	Jahr 1	Jahr 2	Jahr 3	Jahr 4	Jahr 5	Jahr 6	Jahr 7	Jahr 8
Flüssigkeiten	Bq/Jahr							
Tritium	3,0.10+08	3,0.10+08	1,4.10+12	3,0.10+08	3,0.10+08	3,0.10+08	2,0.10+11	1,6.10+12
Kohlenstoff 14	4,0.10+08	4,0.10+08	5,1.10+08	4,0.10+08	4,0.10+08	4,0.10+08	5,4.10+11	5,4.10+11

STILLLEGUNGSDOSSIER INB Nr. 75: FESSENHEIM

Beta Gamma	4,0.10+08	4,0.10+08	4,0.10+08	4,0.10+08	4,0.10+08	4,0.10+08	3,5.10 ⁺⁰⁹	3,5.10+09
Alpha	_	_	8,6.10+01	_	-	-	1,7.10+01	1,0.10+02

Tabelle zz Geschätzte flüssige radioaktive Ableitungen pro Jahr für den gesamten Zeitraum Abbau, bei dem flüssige radioaktive Ableitungen geplant sind

5.2. HISTOGRAMM DER ABLEITUNGEN

Die folgenden Abbildungen zeigen die Entwicklung der geschätzten Tätigkeiten flüssiger radioaktiver Stoffe, die an den Hauptableitungsabsender an Tritium, Kohlenstoff 14, andere P/Y-Strahler und α -Emittenten für alle Jahre der Stilllegung, in denen flüssige radioaktive Freisetzungen vorgesehen sind, abgegeben werden (siehe <u>Paragraph 2.3.1</u>).

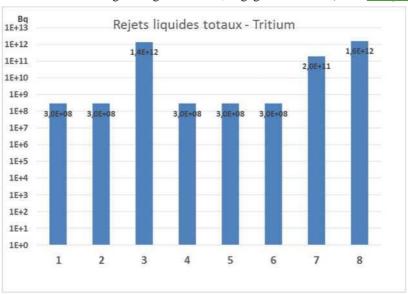


Abbildung s Geschätzte jährliche Tätigkeiten flüssiger radioaktiver Tritiumableitungen

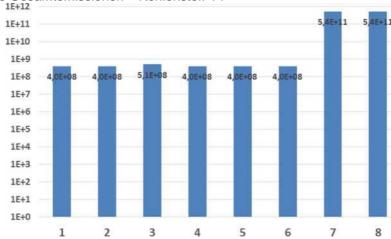


Abbildung t Geschätzte jährliche Tätigkeiten flüssiger radioaktiver Kohlenstoffableitungen 14

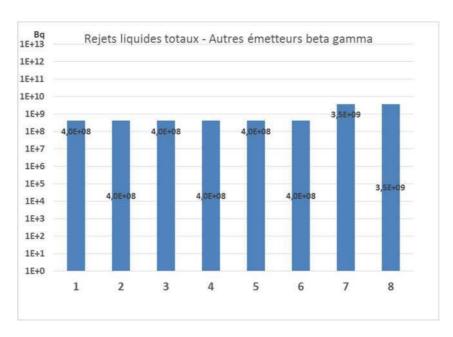


Abbildung u Geschätzte jährliche Tätigkeiten flüssiger radioaktiver Ableitungen in anderen Sendern 🖖

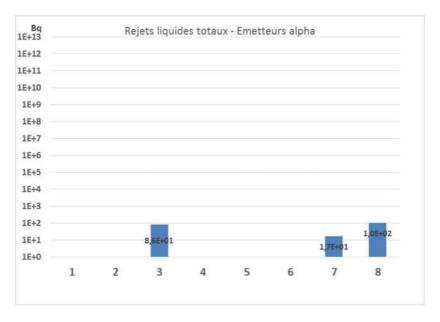


Abbildung v Geschätzte Tätigkeiten jährlicher radioaktiver Freisetzungen in die Luft

Die Alpha-Emittenten erreichen maximal 100 Bq/Jahr (siehe <u>Abbildung v</u>), die zugehörige Volumenaktivität beträgt 7.10-5^{Bq} /L (das damit verbundene abgelehnte Volumen^{beträgt} 1500 m 3, d. h. das Volumen eines Pools). Die abgeführten Abwässer weisen daher keine Gesamtalpha-Volumenaktivität künstlicher Herkunft auf, die über dem Schwellenwert für die Entscheidung der Maßnahme liegt (in der Größenordnung von 2 bis 5.10⁻¹ Bq/L).

Die Entwicklung der prognostizierten Rückwürfe in Verbindung mit den wichtigsten Etappen des Stilllegungsprojekts führt dazu, dass mehrere typische Jahre der Rückwürfe unterschieden werden:

- für Tritium entsprechen die Jahre der Entleerung des Pools BR oder BK einer signifikant größeren Freisetzung als für Jahre ohne Entleerung des Pools (erheblicher Beitrag aufgrund des anfänglichen Tritiuminventars des Pools BK vgl. Paragraph 3.4.1.4 und der Teilungen unter Wasser im Pool BR vgl. Ziffer 3.2.7.2);
- bei Kohlenstoff 14 entsprechen die Jahre der Entleerung des BR-Pools einer signifikant h\u00f6heren Freisetzung als

in den Jahren ohne Beckenentleerung oder nur mit BK-Poolentleerung (wichtiger Beitrag der Wasserschnitte der Behälterinneninnen – siehe Abschnitt 3.2.7.2);

• bei anderen Beta-/Gamma-Emittenten bleiben die Ableitungen während des gesamten Abbaus in der gleichen Größenordnung, es wird kein Abwurfzeitraum unterschieden.

5.3. SORTIERUNG VON RADIONUKLEIDEN

Mit Ausnahme der Kategorien " ³H" und " ¹⁴C" können die Kategorien, für die ein Antrag auf Genehmigung von Ableitungen gestellt werden kann, möglicherweise aus mehreren Radionukliden bestehen. Es wird eine Sortierung dieser "multielementaren" Kategorien vorgenommen, um nur die für sie repräsentativen überwiegenden Radionuklide zu erhalten.

Als überwiegende Radionuklide gelten Radionuklide, die mehr als 1 % der jährlichen Aktivität ihrer Zugehörigkeitskategorie ausmachen ODER, deren potenzieller Beitrag zur effektiven Jahresdosis, berechnet auf der Grundlage der geschätzten Ableitungen (alle Kategorien), mehr als 1 % beträgt.

Endgültig ausgeschlossen sind Radionuklide, die weniger als 1 % der jährlichen Aktivität ihrer Zugehörigkeitskategorie ET ausmachen, deren Beitrag zur effektiven Jahresdosis, berechnet auf der Grundlage der geschätzten Ableitungen (alle Kategorien), weniger als 1 % beträgt.

Die vorherrschenden Radionuklide für flüssige Ableitungen und deren Verteilung innerhalb ihrer Zugehörigkeitskategorie sind in der <u>Tabelle aaa</u> angegeben.

Zu den überwiegenden Radionukliden der Kategorie β/γ kommen Tritium und Kohlenstoff 14 als eigenständige Kategorie hinzu.

Kategorie	Tritium	Kohlenstoff 14	Andere Beta-/Gammasender			
Radionuklid	³ UHR	14 _C	⁶⁰ Co	⁵⁵ Fe	⁶³ Ni	⁹⁰ Sr
Aufteilung innerhalb der Kategorie (%)	100	100	27,7	36,3	35,6	0,4

Tabelle aaa Liste der vorherrschenden Radionuklide für flüssige Ableitungen und Verteilung innerhalb ihrer Kategorie

Hinweis: Die in der <u>Tabelle aaa</u> aufgeführten Radionuklide werden in <u>Kapitel 6 Absatz 6.3</u> zur Erfassung flüssiger radioaktiver Ableitungen verwendet.

5.4. KONSOLIDIERTE ERGEBNISSE ZUR SCHÄTZUNG DER ABLEITUNGEN DURCH VORHERRSCHENDES RADIONUCLEID

Die geschätzten Tätigkeiten der flüssigen radioaktiven Freisetzungen pro Jahr und überwiegendem Radionuklid sind in <u>Tabelle bbb aufgeführt</u>. Dieses Detail ist notwendig, um die Messbarkeit von Radionukliden zu bewerten und anschließend die damit verbundenen Grenzwerte zu bestimmen.

Flüssige Ableitungen	Jahr 1	Jahr 2	Jahr 3	Jahr 4	Jahr 5	Jahr 6	Jahr 7	Jahr 8
	Bq/Jahr							
³ UHR	3,0.10+08	3,0.10+08	1,4.10+12	3,0.10+08	3,0.10+08	3,0.10+08	2,0.10+11	1,6.10+12
14 _C	4,0.10+08	4,0.10+08	5,1.10+08	4,0.10+08	4,0.10+08	4,0.10+08	5,4.10+11	5,4.10+11
60 _{Co}	1,1.10+08	1,1.10+08	1,1.10+08	1,1.10+08	1,1.10+08	1,1.10+08	9,7.10+08	9,7.10+08

STILLLEGUNGSDOSSIER INB Nr. 75: FESSENHEIM

⁵⁵ Fe	1,3.10+08	1,3.10+08	1,3.10+08	1,3.10+08	1,3.10+08	1,3.10+08	1,3.10+09	1,3.10+09
⁶³ Ni	1,5.10+08	1,5.10+08	1,5.10+08	1,5.10+08	1,5.10+08	1,5.10+08	1,2.10+09	1,2.10+09
90 _{Sr}	5,0.10+06	5,0.10+06	5,0.10+06	5,0.10+06	5,0.10+06	5,0.10+06	5,0.10+06	5,0.10+06
Tritium	3,0.10+08	3,0.10+08	1,4.10+12	3,0.10+08	3,0.10+08	3,0.10+08	2,0.10+11	1,6.10+12
Kohlenstoff14	4,0.10+08	4,0.10+08	5,1.10+08	4,0.10+08	4,0.10+08	4,0.10+08	5,4.10+11	5,4.10+11
Weitere Beta/Gamma	4,0.10+08	4,0.10+08	4,0.10+08	4,0.10+08	4,0.10+08	4,0.10+08	3,5.10+09	3,5.10+09

Tabelle bbb Geschätzte flüssige radioaktive Freisetzungen pro Radioelement über den gesamten Zeitraum Abbau, bei dem flüssige radioaktive Ableitungen geplant sind

5.5. ABLEHNUNGSPERIODEN

Wie in Ziffer 5.2 dargelegt, führt die Entwicklung der Rückwürfe in Verbindung mit der Planung der Hauptschritte des Stilllegungsprojekts dazu, dass mehrere Ablehnungszeiträume unterschieden werden, die in den folgenden Abbildungen dargestellt sind (Abbildung w und Abbildung x):

- für Tritium entsprechen die Jahre der BR- oder BK-Poolentleerung einer signifikant größeren Freisetzung als in Jahren ohne Schwimmbadentleerung;
- bei Kohlenstoff 14 entsprechen die Jahre der BR-Poolentleerung einer signifikant größeren Freisetzung als in den Jahren ohne Schwimmbadentleerung oder nur mit BK-Poolentleerung;
- bei anderen Beta-/Gamma-Emittenten bleiben die Ableitungen während des gesamten Abbaus in der gleichen Größenordnung, es wird kein Abwurfzeitraum unterschieden.

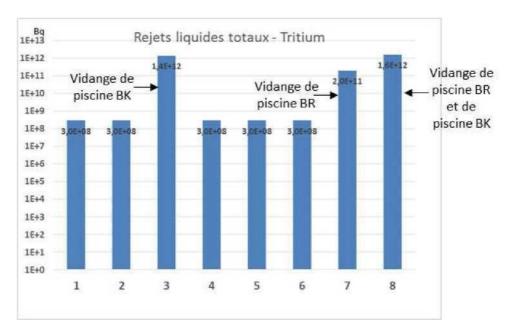


Abbildung w Ableitungsperioden für Tritium (Flüssigkeitsabweisen)

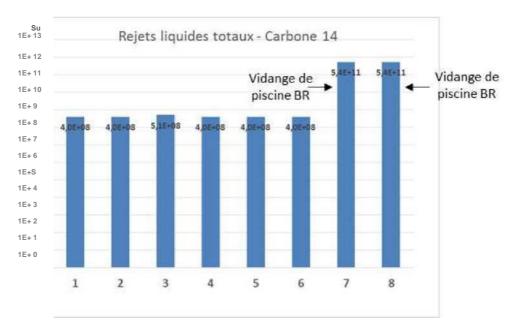


Abbildung x Ableitungszeiträume für Kohlenstoff 14 (Flüssigkeitsableitungen)

So können für alle Radionuklide 4 Arten von Ableitungsjahren bestimmt werden, die in der <u>folgenden</u> <u>Abbildung</u>dargestellt sind:

- Jahr Typ 0: ordentliches Jahr mit nur Betriebsableitungen (d. h. Jahr ohne Schwimmbadentleerung);
- Jahr Typ 1: Jahr mit Entleerung eines BK-Pools allein (voraussichtliche Ablehnung im Jahr 3) und Ausstoß aus dem Betrieb;
- Jahr Typ 2: Jahr mit Entleerung eines BR-Pools allein (voraussichtliche Ablehnung im Jahr 7) und Ausstoß aus dem Betrieb;
- Jahr Typ 3: Jahr mit Entleerung eines BR-Pools und eines BK-Pools (voraussichtliche Ablehnung im Jahr 8) und Betriebsausstoß.

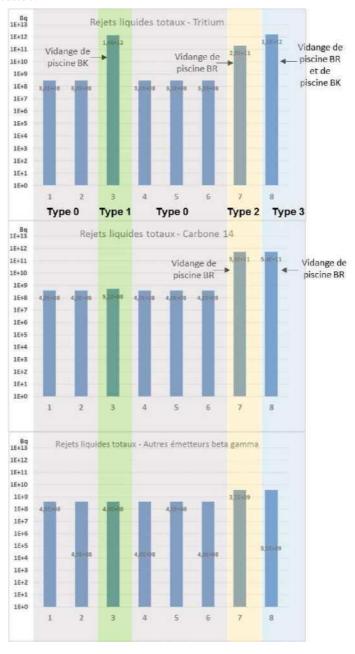


Abbildung y Definition der typischen Ableitungsjahre (Flüssigkeitsabweisen)

5.6. MAXIMALE JÄHRLICHE RÜCKWÜRFE PRO ZEITRAUM

Die geschätzten maximalen jährlichen Tätigkeiten nach Ableitungszeitraum und Radionuklidkategorie sind in <u>Tabelle ccc angegeben</u>.

Maximale jährliche Tätigkeiten flüssiger Ableitungen (Bq/Jahr)	Jahr Typ 0 (Jahr ohne Entleerung Pool)	Jahr Typ 1 (Schwimmbad BK)	Jahr Typ 2 (Schwimmbad BR)	Jahr Typ 3 (Swimming Pool Entleerung BR und BK)
Tritium	3,0.10+08	1,4.10+12	2,0.10+11	1,6.10+12
Kohlenstoff 14	4,0.10+08	5,1.10+08	5,4.10+11	5,4.10+11
Andere Sender β/γ	4,0.10+08	4,0.10+08	3,5.10+09	3,5.10+09

Tabelle ccc geschätzte jährliche Höchstwerte für flüssige Ableitungen je Ableitungszeitraum

Die geschätzte jährliche Höchstaktivität für alle Kategorien von Radioelementen wird für das Jahr Typ 3 ermittelt, in dem die Abwässer aus den Schwimmbädern BR und BK zu den Betriebsabwässern hinzukommen.

Die jährlichen Volumenaktivitäten werden auf der Grundlage der Mindestmengen berechnet, die jedes Jahr abgelehnt werden.

Die Mindestableitungen aus dem Betrieb werden als 2 000 m 3 betrachtet

Freisetzungen im Zusammenhang mit der Entleerung eines BR-Pools oder eines BK-Pools werden als 1 500 m 3⁽⁾ gerundeter Wert) betrachtet.

Jährliche Volumenaktivitäten flüssiger Ableitungen (Bq/L)	Jahr Typ 0 (Jahr ohne Entleerung Pool)	Jahr Typ 1 (Schwimmbad BK)	Jahr Typ 2 (Schwimmbad BR)	Jahr Typ 3 (Swimming Pool Entleerung BR und BK)
Tritium	150	4.10+05	$5,7.10^{+04}$	3,2.10+05
Kohlenstoff 14	200	146	1,5.10+05	1,1.10+05
Andere Sender β/γ	200	114	1000	700

Tabelle dd Schätzwerte jährliche Höchstmengen flüssiger Ableitungen je Ableitungszeitraum

5.7. ANALYSE DER MESURABILITE

Im vorstehenden Absatz wurde für jeden Zeitraum und jede Kategorie von Radionukliden die maximale Aktivität ermittelt, die abgelehnt werden kann. Es muss nun klargestellt werden, inwieweit diese Tätigkeiten, die abgelehnt werden können, den Antrag auf Genehmigung von Rückwürfen erfordern.

Zu diesem Zweck wird davon ausgegangen, dass eine nicht nachweisbare abgelehnte Tätigkeit (mit den besten industriellen Probenahme- und Analysemitteln gekennzeichnet) keinen Antrag auf Genehmigung von Rückwürfen erfordert.

Die Umsetzung dieses Ansatzes erfolgt in diesem Absatz.

Zum jetzigen Zeitpunkt wird davon ausgegangen, dass alle überwiegenden Radionuklide systematisch, mindestens jedoch bei der Entscheidungsschwelle der Maßnahme, erfasst werden.

Die Schwellenwerte für regulatorische Maßnahmen (SD) für stillgelegte Standorte sind der nachstehenden <u>Tabelle eee</u> zu entnehmen.

Schwellenwerte für die Entscheidung der Maßnahme (Bq/L)

Tritium		50
	Kohlenstoff 14	50
Andere Sender β/γ	Elemente gemessen durch Gammaspektrometrie (Co60)	2,5
	Ni63	2
	Sr90	0,5
	Fe55	4

Tabelle eee Entscheidungsschwellen der Maßnahme für flüssige Ableitungen (Bq/L)

5.8. BEANTRAGTE ABLEITUNGSGRENZWERTE FÜR FLÜSSIGE RADIOAKTIVE STOFFE

5.8.1. DEFINITION VON ZURÜCKWEISUNGSGRENZEN

Die maximalen jährlichen Volumenaktivitäten je Zeitraum der <u>Tabelle ddd</u> werden mit den Entscheidungsschwellen in <u>Tabelle eee</u>verglichen.

Diese Analyse ermöglicht es, die Ableitungsgrenzwerte für jeden Ableitungszeitraum und jede Kategorie von Radionukliden festzulegen. Der für den Rückwurfgrenzwert nach Zeitraum und Kategorie zugrunde gelegte Wert ist ein Wert, der entweder

- das abgelehnte Volumen multipliziert mit der Entscheidungsschwelle (wenn die geschätzte jährliche Höchstmenge geringer ist als die nicht messbare Menge);
- der geschätzten maximalen jährlichen Tätigkeit (wenn sie die analytische Leistung der Entscheidungsschwelle überschreitet).

Aus dieser Analyse ergibt sich, dass alle geschätzten Aktivitäten messbar sind.

Die Grenzwerte werden dann für jede Radionuklidkategorie für jeden in Absatz 5.5 definierten Zeitraum festgelegt, indem auf den ermittelten Wert der Unsicherheitskoeffizient gemäß Absatz 2.2 ("Koeffizient Unsicherheit planning" in den nachstehenden Absätzen) angewendet wird, um mögliche Überschneidungen von Vorgängen zu vermeiden, die zu einer Erhöhung der jährlichen Aktivität des Waschwassers führen würden, mit Ausnahme der geplanten Jahre mit Entleerung von Schwimmbädern.

Bei Tritium und Kohlenstoff 14 wird der in <u>Absatz 3.4.2</u> definierte "Koeffizient Ungewissheitsabfluss" in den Jahren ohne Entleerung des Pools angewendet, da es schwierig ist, die Menge dieser Radionuklide in flüssigen Ableitungen zu bestimmen.

Anschließend werden die Ergebnisse gerundet.

Für Tritium entspricht die größte Freisetzung den Jahren der Entleerung des Pools BR oder BK (Typ 1, 2 oder 3). Das jährliche Maximum dieser 3 Arten von Jahren beträgt 1,6.10¹² Bq, gerundet auf 2.10¹² Bq. Die beantragte Obergrenze beträgt 2.10¹² Bq/Jahr. In den Jahren ohne Entleerung des Pools (Jahr Typ 0) wird das jährliche Maximum auf 3,0.10⁸ Bq geschätzt. Bei Anwendung des "Koeffizienten Unsicherheitsplanung" und des "Koeffizienten Abwässerwaschung" erhält man 9.10⁸ Bq, gerundet auf 1.10⁹ Bq. Die beantragte Obergrenze beträgt 1.10⁹ Bq/Jahr.

Bei Kohlenstoff 14 entspricht die größte Freisetzung den Jahren der BR-Poolentleerung (Typ-2- und 3-Jahre). Das jährliche Maximum dieser beiden Arten von Jahren beträgt 5,4.10¹¹ Bq. Die beantragte Obergrenze beträgt 6.10¹¹ Bq/Jahr. In den Jahren ohne Schwimmbadentleerung oder mit Poolentleerung BK (Jahr Typ 0 und 1) wird das jährliche Maximum auf 4,0.10⁸ Bq geschätzt. Bei Anwendung des "Koeffizienten Unsicherheitsplanung" und des "Koeffizienten Ungewissheit Spülung" erhält man 1,2.10⁹ Bq, gerundet auf 1.10⁹ Bq. Die beantragte Obergrenze beträgt 1.10⁹ Bq/Jahr. Bei anderen Beta-/Gamma-Emittenten wird kein Ableitungszeitraum unterschieden, der jährliche Höchstwert für die

gesamte Stilllegungszeit wird auf 3,5.10⁹ Bq geschätzt. Bei Anwendung des "Koeffizienten Planungsunsicherheit" erhält man 5,3.10⁹ Bq, auf 5.10⁹ gerundet. Die beantragte Grenze ist 5.10⁹ Bq/Jahr.

5.8.2. GRENZWERTE IN JÄHRLICHEN AKTIVITÄTEN

Die beantragten jährlichen Grenzwerte für flüssige Ableitungen je Zeitraum und für jede Kategorie von Radionukliden sind in <u>Tabelle fff</u> aufgeführt.

Beantragte Gre	nzwerte für flüssige radioaktive Ableitungen (Bq/Jahr)		
Tritium	Jahr mit BR- und/oder Poolentleerung BK (entsprechend den Jahren Typ 1, 2 und 3)	2.10+12	
	Jahr ohne Entleerung des BR-Pools oder des Pools BK (entsprechend den Jahren Typ 0)	1.10+ 09	
Kohlenstoff 14	Jahr mit Poolentleerung BR (entsprechend den Jahren Typ 2 und 3)	6.10+11	
	Jahr ohne Entleerung des BR-Pools (entsprechend den Jahren Typ 0 und 1)	1.10+09	
Andere Spalt- oder Aktivierungsprodukte für Beta- oder Gamma-Emitter		5.10+09	

Tabelle fff Grenzwerte in jährlichen Tätigkeiten

Der Betreiber stellt durch die Messung sicher, dass keine künstlichen Alpha-Strahler-Radionuklide freigesetzt werden. Der beantragte Jahresgrenzwert für die Kategorie "Sonstige Beta-/Gamma-Emittenten" bezieht sich auf die verschiedenen überwiegenden Radionuklide, deren Art und Verteilung in der <u>Tabelle aaa</u> aufgeführt sind.

5.8.3. GRENZWERTE IM EMPFÄNGERMEDIUM

Die Aktivitätsrate (Bq/s) am Einleitungspunkt variiert je nach Durchfluss D (L/s) des Flusses, in den die Einleitungen durchgeführt werden. Im Durchschnitt über 24 Stunden sollte die Aktivitätsrate bei Tritium 80 x D und bei anderen Betaund Gamma-Emittenten 0,7 x D nicht überschreiten.