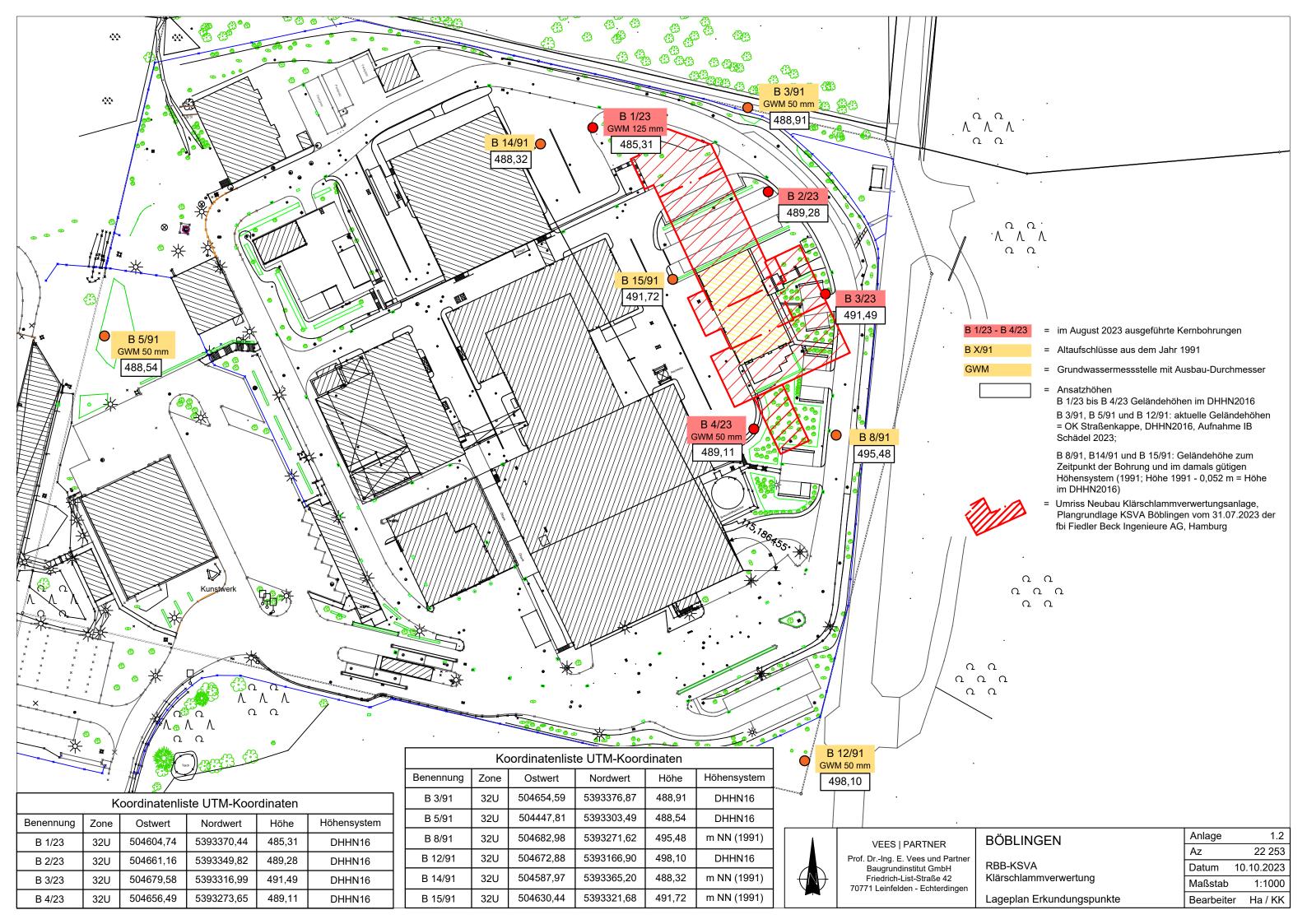
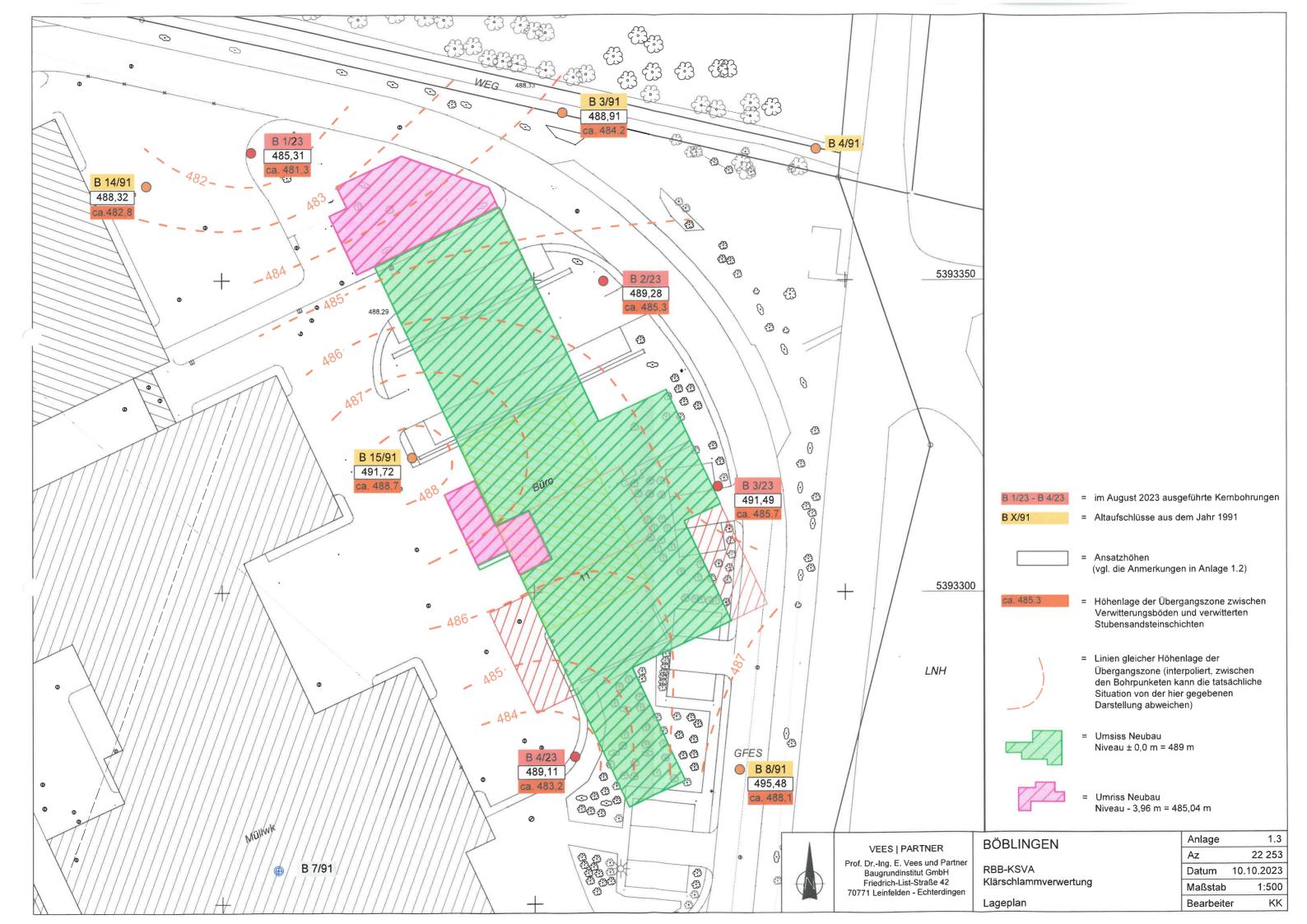
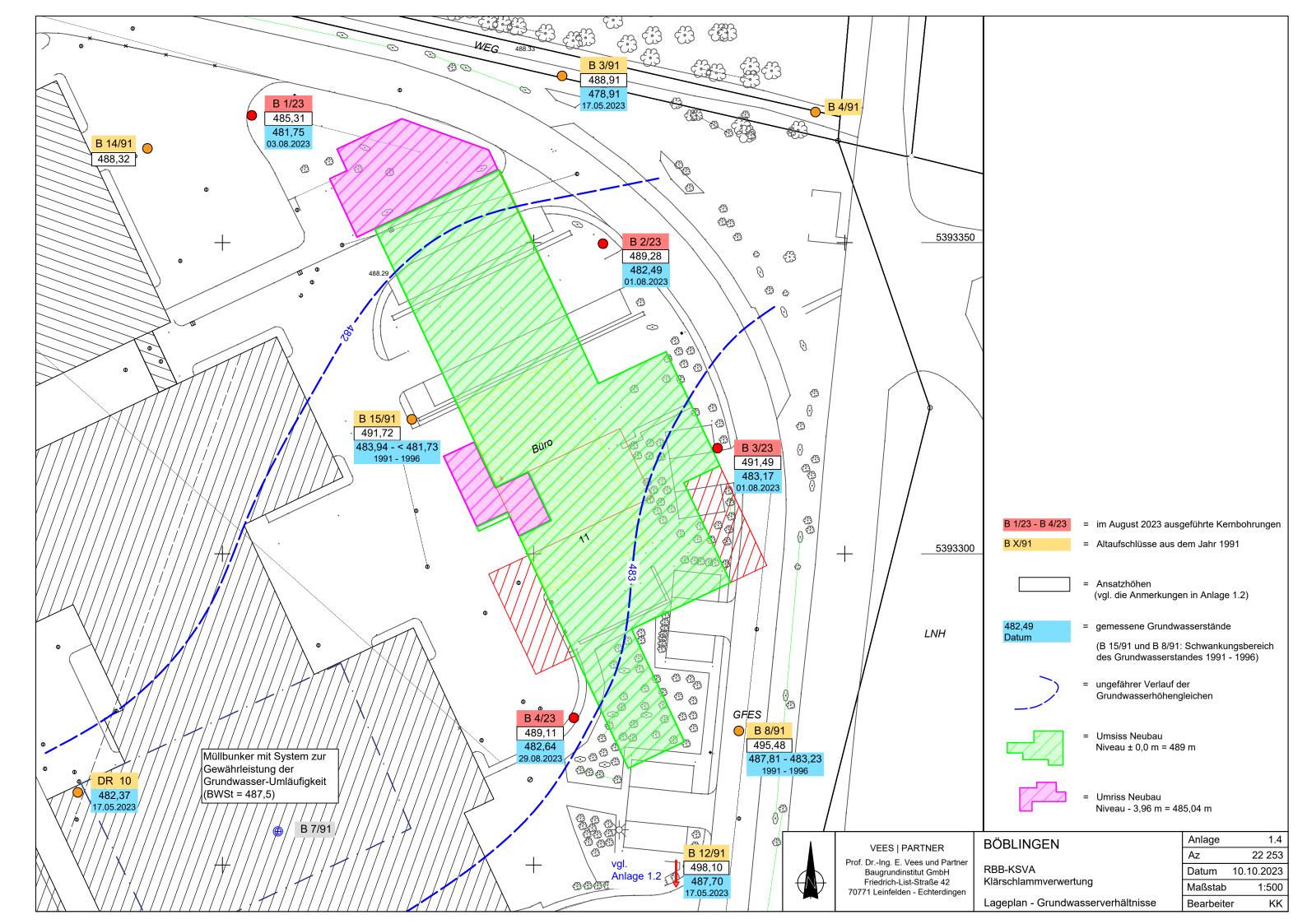


Top. Karte 1:25000 Baden-Württemberg (2017), Maßstab 1:10000 ©Copyright: siehe Hinweis auf dem verwendeten Datenträger (Landesamt für Geoinformation und Landentwicklung)


VEES | PARTNER


Prof. Dr.-Ing. E. Vees und Partner Baugrundinstitut GmbH Friedrich-List-Straße 42 70771 Leinfelden-Echterdingen


BÖBLINGEN

RBB-KSVA Klärschlammverwertung Übersichtslageplan

Anlage	1.1
Az	22 253
Datum	10.10.2023
Maßstab	1:10 000
Bearbeiter	Ha / KK

Schichtprofile der Kernbohrungen B 1/23 bis B 4/23 sowie B 3/93, B 8/91, B 14/91 und B15/91

(8 Blätter)

Legende:	
B x/xx	Aufschlussbohrung Nr./Jahr
GWM	Ausbau der Bohrung zur Grundwassermessstelle
Ansatz	Geländehöhen der Bohrungen 2023: in DHHN2016; der Bohrungen von 1991: im damals gültigen Höhensystem (Höhe 1991 – 0,052 m = Höhe im DHHN2016)
GW	Grundwasserstand im Bohrloch
₩	Grundwasserstand in der ausgebauten Messstelle
	gestrichelte Linie links der Profilsäule: Bohrung im Rammkernverfahren (Schappe)
	Doppelstrich links der Profilsäule: Bohrung im Rotationsverfahren mit Doppelkernrohr und Spülwasserzugabe
	n/Beschaffenheit hts der Profilsäule):
steif ha	albfest fest

Zur stratigrafischen Zuordnung:

Die hier erbohrten Schichten des natürlichen Untergrunds (Schlufftonstein, Sandstein) gehören nach der aktuellen lithostratigrafischen Normenklatur zur Löwenstein-Formation (kmLw). In den vorliegenden Schichtprofilen wurde die "alte", regionalgeologische Bezeichnung Stubensandstein (km4) beibehalten, um den Vergleich mit den früheren Berichten zu erleichtern.

Anlage

Datum

Maßstab 1:50

Bearbeiter KK / Ha

Projekt:

Baugrundinstitut GmbH

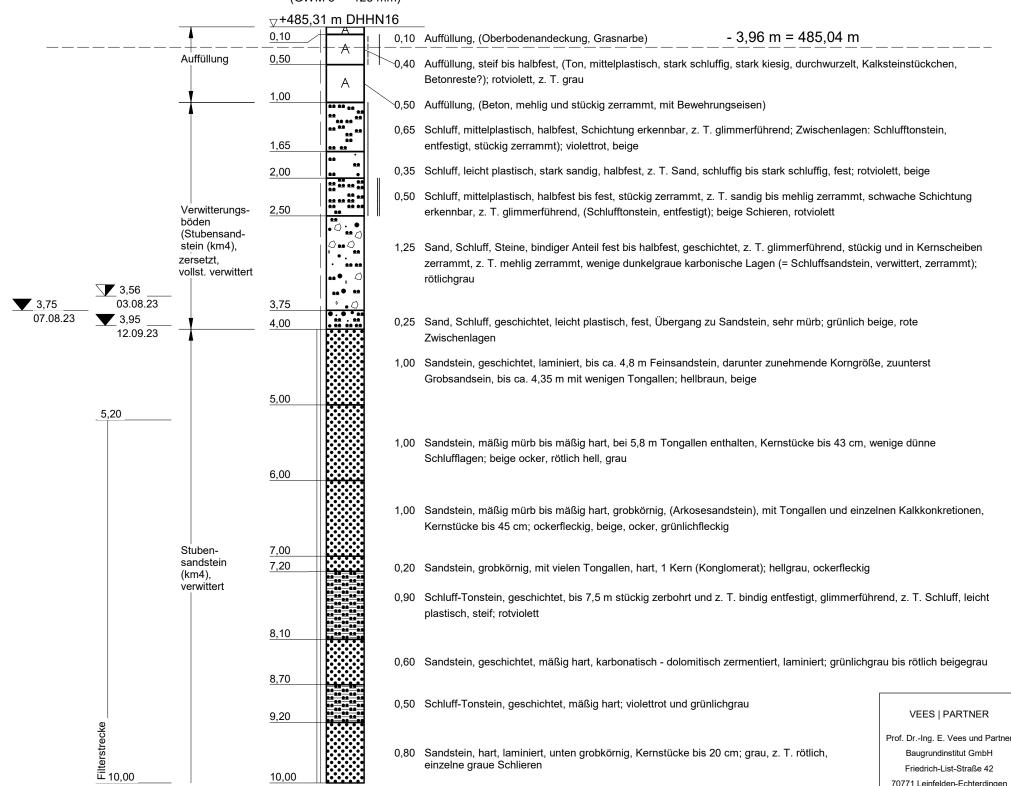
Friedrich-List-Straße 42

70771 Leinfelden-Echterdingen

BÖBLINGEN

Klärschlammverwertung

RBB-KSVA

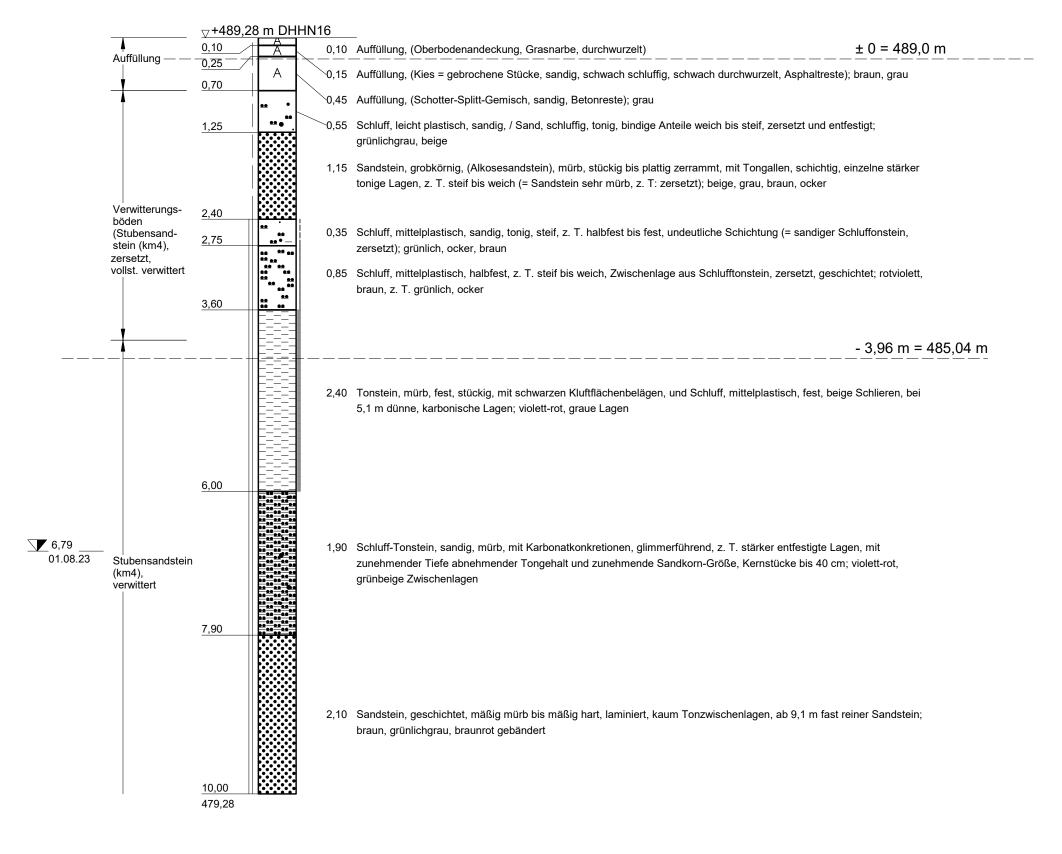

2.1

22 253

10.10.2023

B 1/23

(GWM 5" = 125 mm)



einzelne graue Schlieren

10,00

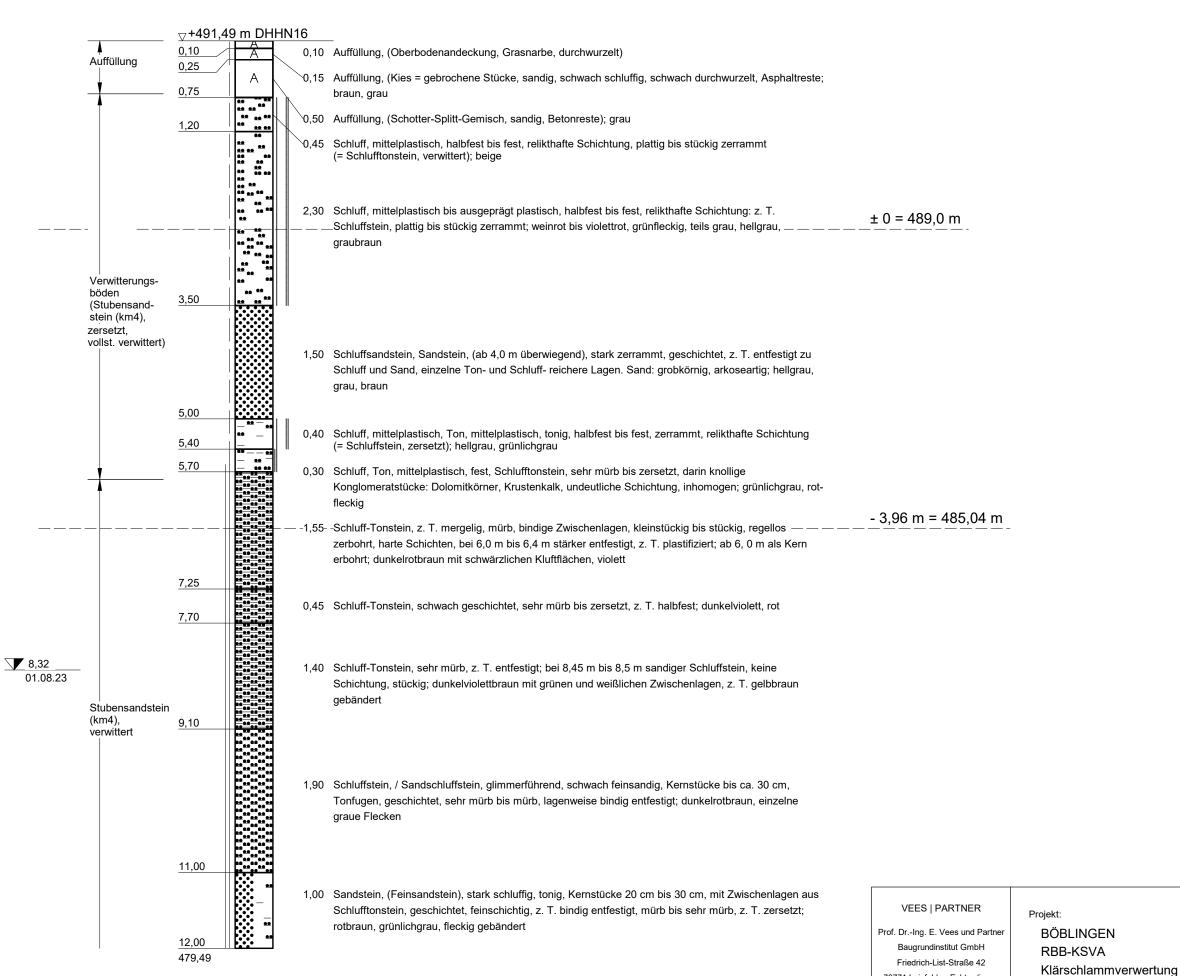
475,31

0,80 Sandstein, hart, laminiert, unten grobkörnig, Kernstücke bis 20 cm; grau, z. T. rötlich,

Prof. Dr.-Ing. E. Vees und Partner
Baugrundinstitut GmbH
Friedrich-List-Straße 42
70771 Leinfelden-Echterdingen

BÖBLINGEN RBB-KSVA Klärschlammverwertung

Projekt:


Anlage 2.2

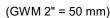
Az 22 253

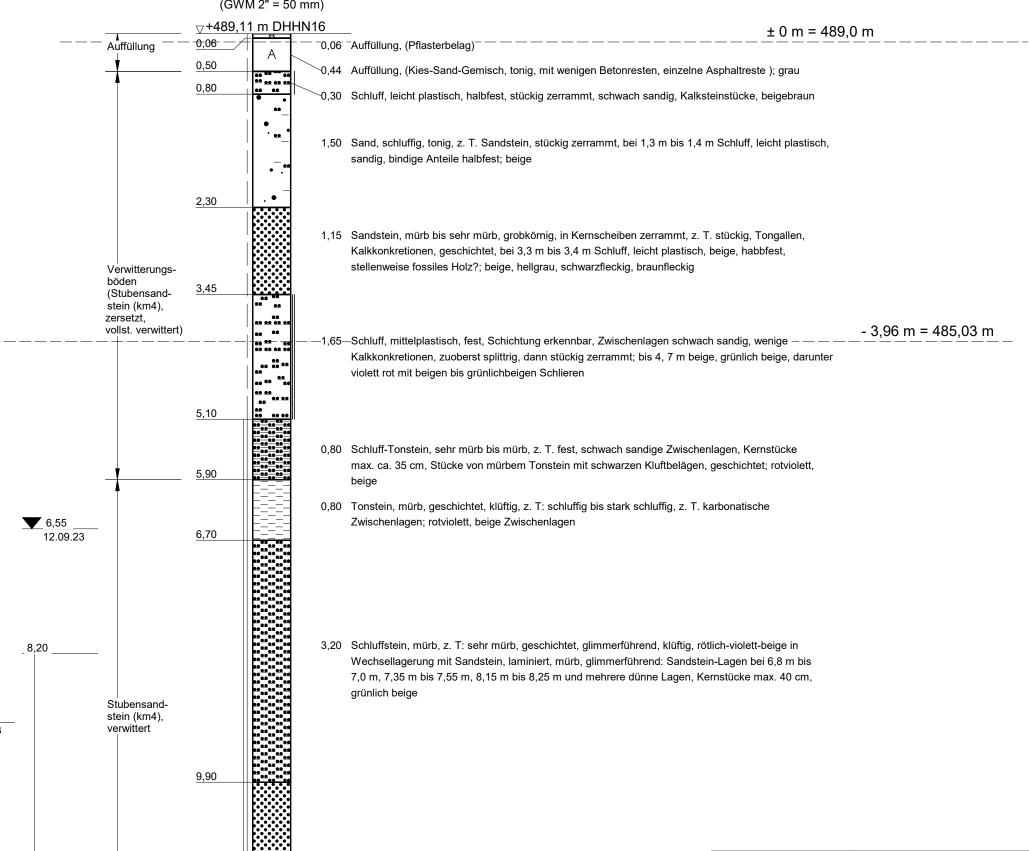
Datum 10.10.2023

Maßstab 1:50

Bearbeiter KK / Ha

By IDAT GmbH 1994 - 2018 - Y:\2022 Projekte\22253 Böblingen, Neubau Klärschlamm Verbrennungsanlage KSVA\Profile\22253 2023-08-09 B3 Al_2-3.bop Anlage 2.3 22 253 10.10.2023 Datum Maßstab 1:50 Bearbeiter KK / Ha


70771 Leinfelden-Echterdingen


9,11

Filterstr 12,00

12,00

477,11

2,10 Sandstein, Schluffsandstein, mäßig mürb bis mäßig hart,

Kernstücke max. 70 cm; violettgrau, beige, grünlich

geschichtet (laminiert), klüftig, glimmerführend,

VEES | PARTNER

Prof. Dr.-Ing. E. Vees und Partner

Baugrundinstitut GmbH

Friedrich-List-Straße 42

70771 Leinfelden-Echterdingen

Projekt:

BÖBLINGEN

Klärschlammverwertung

RBB-KSVA

DAT GmbH 1994 - 2018 - Y:\2022 Projekte\22253 Böblingen, Neubau Klärschlamm Verbrennungsanlage KSVA\Profile\22253 2023-08-09 B4 Al_2-4.bop Anlage 2.4 22 253 10.10.2023 Datum Maßstab 1:50 Bearbeiter KK / Ha

VEES | PARTNER

Prof. Dr.-Ing. E. Vees und Partner
Baugrundinstitut GmbH
Friedrich-List-Straße 42
70771 Leinfelden-Echterdingen

Projekt:

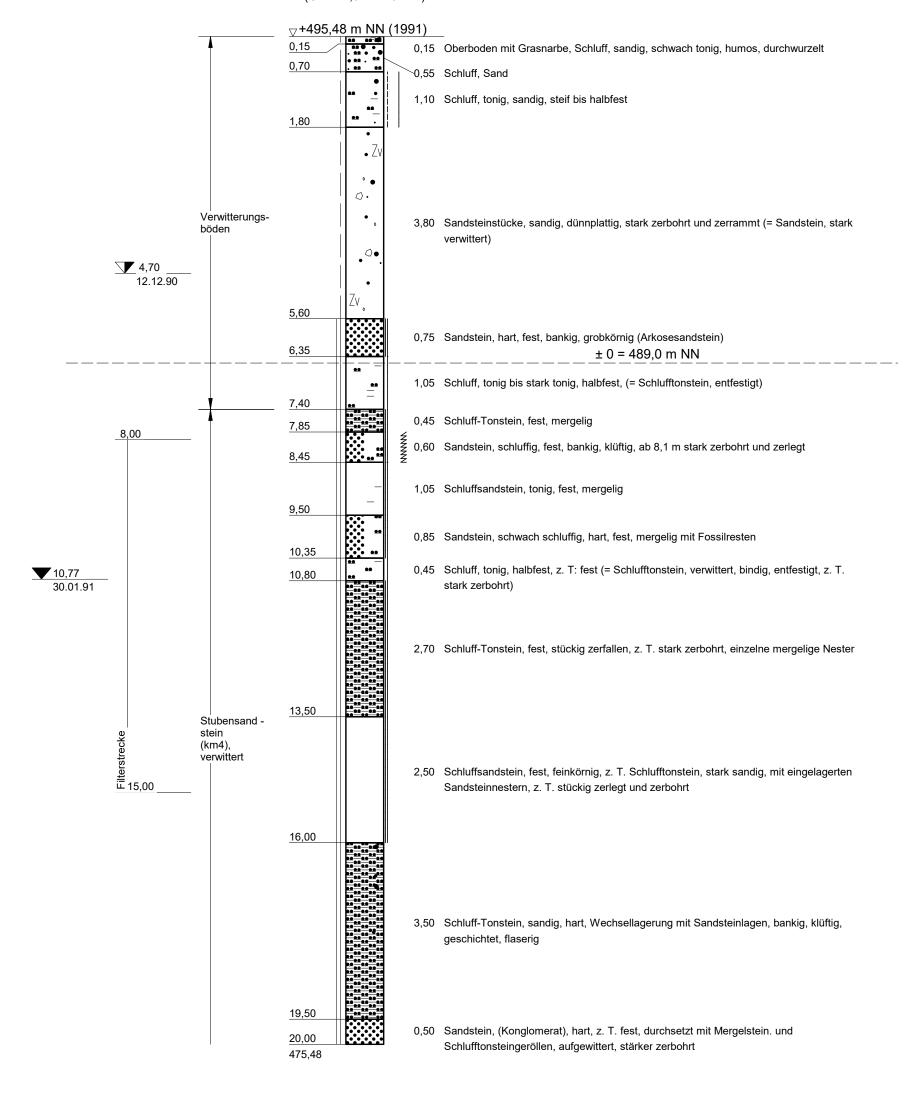
BÖBLINGEN

RBB-KSVA

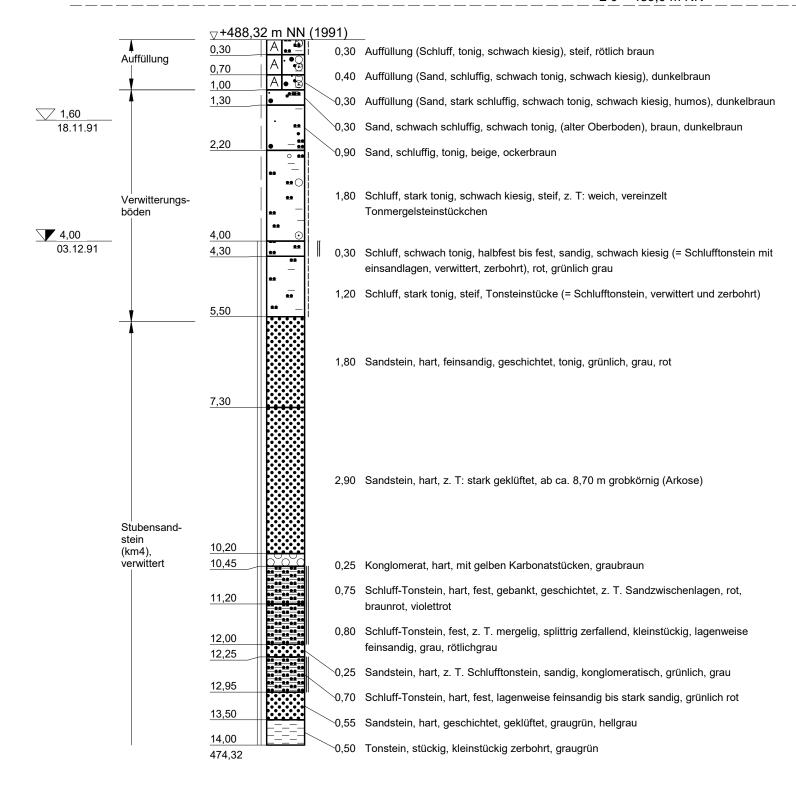
Klärschlammverwertung

 Anlage
 2.5

 Az
 22 253


 Datum
 10.10.2023

 Maßstab
 1 : 75


 Bearbeiter
 KK

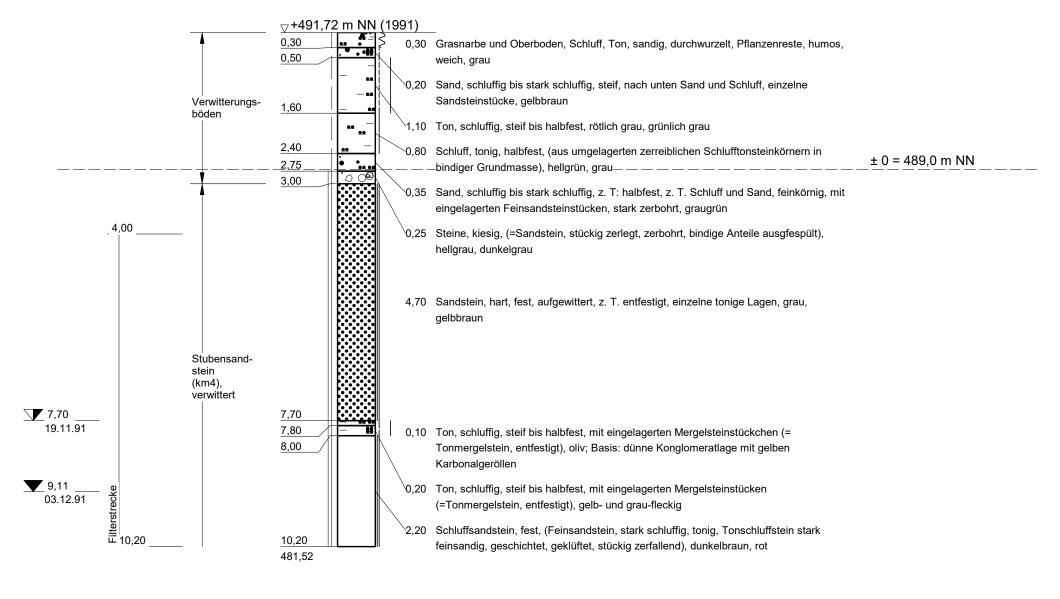
Copyright ©

B 8/91 (GWM 4,5" = 125 mm)

VEES PARTNER	Projekt:
Prof. DrIng. E. Vees und Partner	BÖBLINGEN
Baugrundinstitut GmbH	RBB-KSVA
Friedrich-List-Straße 42	Klärschlammverwertung
70771 Leinfelden-Echterdingen	Riaiscillaminverwertung

VEES | PARTNER rof. Dr.-Ing. E. Vees und Part

Prof. Dr.-Ing. E. Vees und Partner Baugrundinstitut GmbH Friedrich-List-Straße 42 70771 Leinfelden-Echterdingen Projekt:


BÖBLINGEN

RBB-KSVA

Klärschlammverwertung

Anlage	2.7
Az	22 253
Datum	10.10.2023
Maßstab	1:75
Bearbeiter	KK / Ha

B 15/91 (GWM 4,5" = 125 mm)

VEES | PARTNER

Prof. Dr.-Ing. E. Vees und Partner
Baugrundinstitut GmbH
Friedrich-List-Straße 42
70771 Leinfelden-Echterdingen

Projekt:

BÖBLINGEN

RBB-KSVA

Klärschlammverwertung

Az 22 253

Datum 10.10.2023

Maßstab 1 : 75

Bearbeiter KK / Ha

2.8

Anlage

Prof. Dr.-Ing. E. Vees und Partner Baugrundinstitut GmbH Friedrich-List-Straße 42 70771 Leinfelden-Echterdingen Az 22 253

Geotechnischer Bericht vom 10.10.2023 Anlage 3.1

BÖBLINGEN

Neubau

Klärschlamm-Verwertungsanlage KSVA

		ört, g = gestört	Einstufung	EN ISO 14688-1 EN ISO 14689-1	ehe Anlage	3 ≤ 0,063 mm [%]	ılt w _n [%]					br = breilg; sw = sehr weich, w = weich, st = stelf; hf = halbfest, f = fest	1 18196	alen Druckfestigkeit ♂u* MN/m²]
Probenherkunft	Entnahmetiefe t [m]	Probenart: UP = ungestört,	Bodenart / geologische Einstufung	Bezeichnung nach DIN EN ISO 14688-1 und DIN EN ISO 14689-1	Korngrößenverteilung siehe Anlage	Anteil der Kornfraktion $arnothin$	Natürlicher Wassergehalt wn [%]	Fließgrenze w∟ [%]	Ausrollgrenze w _P [%]	Plastizitätszahl I _P [%]	Konsistenzzahl I _c [-]	Zustandsform	Klassifizierung nach DIN 18196	Abschätzung der einaxialen Druckfestigkeit $\sigma_{\rm u}^*$ nach Punktlastversuch [MN/m²]
	1,0- 1,6	g		Schluff und Ton, mittelplastisch			10,5	37,2	15,9	21,3	1,25	f	TM	
	2,0	g		Schluff			10,2							
	2,3	g	Verwitterungs-	Schluff und Ton, mittelplastisch			7,0	38,1	13,2	24,9	1,25	f	TM	
	3,0	g	böden	Sand und Ton			6,4							
	3,5	g					7,4							
	4,0	g		Schluff und Ton, leicht plastisch			8,2	26,6	13,1	12,5	1,39	f	TL	
	5,0	g					5,6							0.7.
B 1/23	4,35- 4,53	g					1,3							6,7 / 18,4
1/23	5,0 5,43-	g					5,6							20,0 /
	5,76	g		Sandstein			0,8							10,6
	6,0	g	Stuben- sandstein,				7,0							11,0 /
	6,67	g	verwittert				0,8							16,2
	7,0 7,0-	g					3,4							78,3 /
	7,2	g					0,8							53,7
	9,0	g		Schlufftonstein			9,4							
	9,0	g					0,2							
	1,0	g		Schluff und Ton,			12,4	30,7	15,9	14,8	1,24	hf	TL	
B 2/23	1,85	g	Verwitterungs- böden	leicht plastisch Sand und Ton			10,6							
2/23	2,7	g	boden	Schluff und Ton, mittelplastisch			19,4	37,7	19,2	18,5	0,99	st	TM	

Prof. Dr.-Ing. E. Vees und Partner Baugrundinstitut GmbH Friedrich-List-Straße 42 70771 Leinfelden-Echterdingen Az 22 253

Geotechnischer Bericht vom 10.10.2023 Anlage 3.2

BÖBLINGEN

Neubau

Klärschlamm-Verwertungsanlage KSVA

		ıt, g = gestört	instufung	EN ISO 14688-1 EN ISO 14689-1	she Anlage	i ≤ 0,063 mm [%]	t w _n [%]	octobra contractor	ואסן ואסן מולקום ולמון			br = breiig; sw = sehr weich, w = weich, st = steif; hf = halbfest, f = fest	18196	len Druckfestigkeit $\sigma_{ m u}^*$ ////////////////////////////////////
Probenherkunft	Entnahmetiefe t [m]	Probenart: UP = ungestört,	Bodenart / geologische Einstufung	Bezeichnung nach DIN EN ISO 14688-1 und DIN EN ISO 14689-1	Korngrößenverteilung siehe Anlage	Anteil der Kornfraktion $arnothin$	Natürlicher Wassergehalt w _n [%]	Fließgrenze w _L [%]	Ausrollgrenze w _P [%]	Plastizitätszahl I _P [%]	Konsistenzzahl I $_{ m c}$ [-]	Zustandsform	Klassifizierung nach DIN	Abschätzung der einaxialen Druckfestigkeit $\sigma_{\rm u}^*$ nach Punktlastversuch [MN/m²]
	2,9	g	Verwitterungs-	Schluff und Ton, mittelplastisch			26,0	36,3	18,7	17,6	0,59	w	TM	
	4,0	g	böden	Ton und Schluff			19,0							
В	4,5	g					14,9							
2/23	5,0	g	Stubensand- stein,	Tonstein (z. T. Ton)			13,4							
	6,0	g	verwittert				11,4							
	7,0	g		Schlufftonstein			11,7							
	1,0	g		Schluff und Ton			20,0							
	2,0	g		Schluff und Ton,			14,5	39,6	17,6	22,0	1,14	hf	TM	
	3,0	g	Verwitterungs-	mittelplastisch			15,9	48,2	17,1	31,1	1,04	hf	TM	
	4,0	g	böden	Schluffsandstein			7,9							
В	5,0	g					11,2							
3/23	5,8	g		Schluff und Ton, leicht plastisch			14,8	31,4	13,2	18,2	0,91	st	TL	
	6,5	g					11,6							
	8,0	g	Stubensand-	Schlufftonstein			12,9							
	8,4	g	stein, verwittert	Schantonstein			9,8							
	9,8	g					9,5							

Prof. Dr.-Ing. E. Vees und Partner Baugrundinstitut GmbH Friedrich-List-Straße 42 70771 Leinfelden-Echterdingen Az 22 253

Geotechnischer Bericht vom 10.10.2023 Anlage 3.3

BÖBLINGEN

Neubau

Klärschlamm-Verwertungsanlage KSVA

		tört, g = gestört	Einstufung	ach DIN EN ISO 14688-1 und DIN EN ISO 14689-1	iehe Anlage	Ø ≤ 0,063 mm [%]	alt w _n [%]		Noi isisteli zgi elizeli			br = breiig; sw = sehr weich, w = weich, st = steif; hf = halbfest, f = fest	N 18196	Abschätzung der einaxialen Druckfestigkeit $\sigma_{ m u}^*$ nach Punktlastversuch [MN/m²]
Probenherkunft	Entnahmetiefe t [m]	Probenart: UP = ungestört,	Bodenart / geologische Einstufung	Bezeichnung nach DIN EN ISO 14688-1 und DIN EN ISO 14689-1	Korngrößenverteilung siehe Anlage	Anteil der Kornfraktion	Natürlicher Wassergehalt wn [%]	Fließgrenze w∟ [%]	Ausrollgrenze w⊦ [%]	Plastizitätszahl I _P [%]	Konsistenzzahl I _c [-]	Zustandsform	Klassifizierung nach DIN 18196	Abschätzung der einaxialen Dri nach Punktlastversuch [MN/m²]
	0,7	g		Schluff			8,3							
	1,0	g		Ton und Schluff, sandig,			9,4	25,9	11,8	14,1	1,17	hf	TL	
	2,0	g	Verwitterungs- böden	leicht plastisch Sandstein auch			9,0							
	3,0	g		mit Sand			6,5							
	4,0	g		Schluff und Ton, leicht plastisch			10,7	27,4	13,2	14,2	1,18	hf	TL	
В	5,0 6,0	g		Ton, Tonstein			11,4							
4/23	7,0	g g		Ton, Tonstein			5,7							
	8,0	g					6,1							
	9,0	g	Stubensand- stein,	Schluffstein, Sandstein			5,6							
	8,55 - 8,8	g	verwittert				2,8							4,5 / 21,4
	10,15 - 10,55	g		Sandstein			2,0							5,2 / 17,6

Bodenmechanische Laborergebnisse aus den Kernbohrungen 1991

5 Seiten, darin enthalten die Befunde aus B 3/91, B 8/91, B 14/91 und B 15/91

Quelle: unser Baugrund- und Gründungsgutachen (Az 90 136) vom 25.06.1992, Stand 23.09.1992 (= Fachbeitrag B2 zum Neubau des RMHKW BB)

INGENIEURBÜRO FÜR ERD- UND GRUNDBAU Anlage 3a

zum Gutachten vom 27.5.1991

Projekt: Böblingen, RMHKW

			ENSTELLUNG DER		\ITTE	LTE			MECH ———					RÖS		
Probenherkunft	Entnahmetiefe t (m)	Probenart UP = ungestört g = gestört	Bodenart	Kornverteilung siehe Anlage	Kennzeichnung nach der Kornverteilung	Anteil der Kornfraktion <0,063 mm $\phi(%)$	Ungleichförmigkeitszahl U = $\frac{d_{60}}{d_{10}}$	Natürlicher Wassergehalt w (%)	Fließgrenze w_{L} (%)	Ausrollgrenze $w_{ m P}$ (%)	Plastizitätszahl I _P	Konsistenzzahl I _C	Zustandsform b = breiig st = steif w = weich hf = halbfest	Klassifizierung nach DIN 18 196	Feuchtdichte(t/m^3)/Trockendichte(t/m^3)	Kompressionsversuch siehe Anlage
B1	0,80	9	Ton schluffig		Cal			16,5	33,4	12,6	208	0,81	sŧ.	TL		
	1,60	9	Sand, schw. kiesig,	3h	Sig'	11		154						50		
	3,0	9	Sand, st. kitsig, Schw. schluffig	3h	5,9	6	66,6	7,9						SU		
	520	g	Schluff, tonig, Sandig					12,8	245	172	7,3	160	£	ST/FL		
	60	g.	Schluff, tonia					16,1								
	710	a	Schlufftonstein aufaewittert					11.1								
	9,10	9	schluffsandstein, aufgewiltert					e, 8,9								
	15,0	9	Schlufflonstein, aufgewittert					101								
		J						,,								
B2	1,10	a	Too schluffin					189	33B	164	17,4	086	54	ナノ		
	2,60	2	Ton, schluffig Sand, st. kiesig Schw. schluffig Schluffionstein, aufgewittert	34	S,g	13		7.8	7	,,	1,1	700		SU		
	6,60	7	Schlufftonstein,	51)	U'	, 5										
								10,5 711							\neg	\neg
	8,70	9	Tonstein Schlufftonstein aufgewittert					7,4								\neg
	9,60		aufgewittert					13,0							-	\dashv
	10,50	9	"					9,4							-	_
<i>B</i> 3	0,50	9	Ton,st.schluffig Ton,schluffig					<i>28</i> 3							1	\dashv
	1	7	,					- 1								

INGENIEURBÜRO FÜR ERD- UND GRUNDBAU Anlage 3b

zum Gutachten vom 27.

27.5.1991

Projekt: Böblingen, RMHKW

Probenherkunft	Entnahmetiefe t (m)	Probenart UP = ungestört g = gestört	Bodenart	Kornverteilung siehe Anlage	Kennzeichnung nach der Kornverteilung	Anteil der Kornfraktion $< 0,063 \text{ mm } \phi(\$)$	Ungleichförmigkeitszahl U = $\frac{d60}{d10}$	Natürlicher Wassergehalt w (%)	Fließgrenze $w_{ m L}$ (%)	Ausrollgrenze Wp (%)	Plastizitätszahl I _P	Konsistenzzahl I _C	Zustandsform b = breiig st = steif w = weich hf = halbfest	Klassifizierung nach DIN 18 196	Feuchtdichte(t/m^3)/Trockendichte(t/m^3)	Kompressionsversuch siehe Anlage
<i>B</i> 3	2,10	9	Schluff, tonig					16,9								
	330	9	"					14,5								
	5.70	0	Tonstein					6,6								
	650	9	Schluffstein					8.9								
		2	schlufffonstein, aufgewittert													
	1090	9	Ŭ.					13,3								
	12,80	2	Tonstein Tonstein, aufgewittert					2,0								
	15,0	9	aufgewittert					12,8								
B 4	0,60	a	Ton,schw.schluffic					134								
	1,10	a	, , , , , , , , , , , , , , , , , , ,					253	545	164	381	077	51	TA		
	190	2	Schluff, tonig, sandig					145	ν.	162	172	1.1	hs	TI		
	320	g	Ton Schluffia					279	387	231	156	019	la/	TM		
	370	3	Schluff sandig					174	-4	San Jel	12,0	روبد	**/			
	440	3	Schluftonstein,					140								
	570	9	U U					11.8								
		9						/								
	7,0	9	Schluffstein "					7,8							\dashv	
	0,48	9	" Mergelstein,					8,7 122							\dashv	
	16,6	2	tonig	20033				12,2								

INGENIEURBÜRO FÜR ERD- UND GRUNDBAU Anlage 3c

zum Gutachten vom 27.5.1991

Projekt: Böblingen, RMHKW

	200	ДППП	ENSTELLUNG DER		11 1 1 1	LIE	1 10	ואוםעוי			001112	.14 10		יאטאי	J_11	
Probenherkunft	Entnahmetiefe t (m)	Probenart UP = ungestört g = gestört	Bodenart	Kornverteilung siehe Anlage	Kennzeichnung nach der Kornverteilung	Anteil der Kornfraktion <0,063 mm ø(%)	Ungleichförmigkeitszahl U = $\frac{d60}{d_{10}}$	Natürlicher Wassergehalt w (%)	Fließgrenze $w_{ m L}$ (%)	Ausrollgrenze $w_{ m P}$ (%)	Plastizitätszahl I _P	Konsistenzzahl I _C	<pre>Zustandsform b = breiig st = steif w = weich hf = halbfest</pre>	Klassifizierung nach DIN 18196	Feuchtdichte(t/m^3)/Trockendichte(t/m^3)	Kompressionsversuch siehe Anlage
<i>B</i> 4	17,7	9	Mergelstein					7, 8								
85	070	9	Ton					24,2	54,3	18,7	35,6	0,85	st	TA		
	1,50	9	Schluff, tonig					12,2	304	19,2	11,2	163	£	TL		
	250	9	l)					226								-
	3,50	9	11					17,8								
	460	9	Schluffsandstein Schlufftonstein					94								
	720	- SES	5 <i>chluff to</i> ns lein II					10,1								
	920 1160	9	"					5,3								
	11,60	9	"					10,4								
B6	0,90	g	Ton					23,4	52 ₈	19,6	33,2	0,89	sŁ	TA		
	1,40	9	Schluff, sandig		<i>-</i>			159								_
_	2,40	9	Sand, kiesig, schluffig schlufftonstein,	3 <i>i</i>	5,9,	29		17,3						รบิ		\dashv
	3,50	9	aufgewittert					125								_
	410	7.00	//					12,9						_		_
-	- 31	~	Schlufftonstein					5,1						\dashv		\dashv
	9,10	9	Schluffsandstein					6,1								

INGENIEURBÜRO FÜR ERD- UND GRUNDBAU Anlage 3d

zum Gutachten vom 27.5.1991

Projekt: Böblingen, RMHKW

		Ariri	ENSTELLUNG DEK	LIVI										inus.		
	(1	ungestört g = gestört		siehe Anlage	n der Kornverteilung	aktion <0,063 mm ø(%)	$tszahl U = \frac{d60}{d_{10}}$	Wassergehalt w (%)	(8)	(%) Konsistenzgrenzen	Τp	IC	breiig st = steif weich hf = halbfest	IN 18 196	Feuchtdichte(t/m^3)/Trockendichte(t/m^3)	ch siehe Anlage
Probenherkunft	Entnahmetiefe t (m)	Probenart UP = ung	Bodenart	Kornverteilung sie	Kennzeichnung nach	Anteil der Kornfraktion	Ungleichförmigkeitszahl	Natürlicher Wasser	Fließgrenze w $_{ m L}$ (Ausrollgrenze wp (Plastizitätszahl 1	Konsistenzzahl 1	Zustandsform $b = k$	g n	Feuchtdichte (t/m^3)	Kompressionsversuch
B6	11,70	9	Schlufftonstein					103								
	1330	-	li .					112								
	150	٦	μ					9,8								
	10,0	9						5,0								
<i>B</i> 7	080	9	Sand, schluffig	<i>3</i> ;	5,0	28		12,8						5Ū		
	2,30	9	Sand, kiesig Schw Schluffig	<i>3i</i>	5,9,	14		10,1						SU		
	30	9	Ton, schluffig					20,7	39,8	221	17,7	1,08	hf	TM		
	860-	a	Schlufftonstein, aufgewittert					132								
	1260-	9	Schluffstein					84								
	17,0	a	Shlufftonstein					28								
			"													
	19,3 19,6- 20,0	9						9,6								
	I	-	Tonstein					9,9								
	29,7	9	Schlufftonslein					10,5								
BB	1,50	9	Schluff, tonig					144	49p	15,0	34,0	1,02	hf	TM		
	6,50	9						193	451	248	203	127	hf	TM		
	10,60	0	u					265	,,	,	1	-				
	13,0	~	schlufftonstein, aufgewittert					12,3								

INGENIEURBÜRO FÜR ERD- UND GRUNDBAU Anlage 3e

zum Gutachten vom 27.5.1991

Projekt:Böblingen, RMHKW

Probenherkunft Britishmetiefe t (m)	Probenart UP = u	Bodenart	Kornverteilung siehe Anlage	Kennzeichnung nach der Kornverteilung	der Kornfraktion < 0,063 mm $\phi(%)$	Ungleichförmigkeitszahl U = $\frac{d_{60}}{d_{10}}$	er Wassergehalt w (%)	WL (%)	e Wp (%)	zahl I _P	$_{ m L}$	b = breiig st = steif w = weich hf = halbfest	ung nach DIN 18 196	Feuchtdichte(t/m^3)/Trockendichte(t/m^3)	versuch siehe Anlage
B8 18,0	9 9			Kenr	Anteil	Ungleich	Natürlicher	Fließgrenze	Ausrollgrenze	Plastizitätszahl	Konsistenzzahl	Zustandsform	Klassifizierung	Feuchtdichte	Kompressionsversuch
1 1	13	Schlufftonstein					613								
89 1,0 1,80 3,70 5,10 8,3		Schluff, tonig Schlufftonstein-v. Schluffsandstein " Schlufftonstein					18,1 11,8 10,0 7,5 10,0	363	15,3 15,9	. 60	100	st hf	7Z. TL.		
370 4,80 6,50 7,10 8,10		Ton, schluffig Schluff, tonig Sand, schluffig Schlufftonstein, aufgewiltert Schluffsandstein " " Schluffsandstein "					209 221 110 136 86 80 77 119	43,3	19,6	23,7	0,35	st	TM		

INGENIEURBÜRO FÜR ERD- UND GRUNDBAU Anlage 3f

zum Gutachten vom

27.5.1991

Projekt: Böblingen, RMHKW

Probenherkunft	Entnahmetiefe t (m)	Probenart UP = ungestört g = gestört	Bodenart	Kornverteilung siehe Anlage	Kennzeichnung nach der Kornverteilung	Anteil der Kornfraktion < 0,063 mm \(\phi(\) \)	Ungleichförmigkeitszahl U = $\frac{d_6\Omega}{d_{10}}$	Natürlicher Wassergehalt w (%)	Fließgrenze w_L (%)	Ausrollgrenze Wp (%)	Plastizitätszahl I _P	Konsistenzzahl I _C	Zustandsform b = breiig st = steif w = weich hf = halbfest	Klassifizierung nach DIN 18 196	Feuchtdichte(t/m^3)/Trockendichte(t/m^3)	Kompressionsversuch siehe Anlage
B11	090	9	Schluff, tonig					19.8								
	1,80	9	"					13,0	26,1	16,9	92	1,42	hf	TL		
	460	9	и					18,1	33,7	21,9	11,6	1,34	hf	TL		
	6,0	9	#					185	279	173	10,6	089	st	TL		
	8,10	9	Schluffsandstein, verwittert					10,4		= 3						
	9,0	9	Schluffstein					89								
	1250	9	Schluffonstein					8,8								
	15,0	9	//					11,2								
B12	1,30	a	Ton, schluffig					16,1	419	125	294	088	< <i>f</i>	TM		
	2,40			3k	5 u	27		113		,	-1	7		SŨ		
	3.10	9	Sand, schluffig Sand, schw Schluffig	- /-1	,-			10.5								
	420	9	"					91								
	820	0	Sand, schlulfig					171								
	10,0	9	Schluffstein					108								
	1270	0	schlufftonstein, außewittert					16.8								
	1376	9	schlufftonstein					10,7								
	16.0	2 a	11					9,7								

INGENIEURBÜRO FÜR ERD- UND GRUNDBAU Anlage 3g

zum Gutachten vom 27.5.1991

Projekt: Böblingen, RMHKW

	ZUSAMMENSTELLUNG DER ERMITTELTEN BUDENMECHANISCHEN RENNGRUSSEN															
Probenherkunft	Entnahmetiefe t (m)	Probenart UP = ungestört g = gestört	Bodenart	Kornverteilung siehe Anlage	Kennzeichnung nach der Kornverteilung	Anteil der Kornfraktion $< 0,063 \text{ mm } \phi(\$)$	Ungleichförmigkeitszahl U = $\frac{d60}{d_{10}}$	Natürlicher Wassergehalt w (%)	Fließgrenze $w_{ m L}$ (%)	Ausrollgrenze Wp (%)	Plastizitätszahl I _P	Konsistenzzahl I _C	<pre>Zustandsform b = breiig st = steif w = weich hf = halbfest</pre>	Klassifizierung nach DIN 18 196	Feuchtdichte(t/m^3)/Trockendichte(t/m^3)	Kompressionsversuch siehe Anlage
B12	170 190	9	Schluftlonstein "					9,6 9,7								

Fotodokumentation der Bohrkerne aus den Bohrungen B 1/23 bis B4/23

		Catadala.	m ontation		
	Projekt:	BÖBLINGEN RBB-KSVA Klärschlammv	mentation rerwertung		
m	Bohrung:	B 1/23		0,0 – 10,0 m	m
0		88.1-2			1
1					2
2			88 A-38		3
3			LIVE		4
4	4	S	Ci-23	5	5
5					6
6		19	.)		7
7		门野			8
8	8	DK			9
9	g Can Janahaman				10
	0 0,2	0,4	0,6	0,8 1m	

	Fotodokumentation Projekt: BÖBLINGEN RBB-KSVA Klärschlammverwertung		
	Bohrung: B 2/23	0,0 – 10,0 m	
0			1
1	Sold State of the		2
2		SAI	3
3	J. B. M. C.		4
4			5
5		6	6
6		1	7
7			8
8	8	S S S S S S S S S S S S S S S S S S S	9
9		5	10
	0 0,2 0,4 0,6	0,8 1m	

	Projekt:	Fotodokum BÖBLINGEN RBB-KSVA Klärschlammver			
	Bohrung:	B 3/23		0,0 – 12,0 m	
0					1
1		BV3-2			2
2					3
3		BU3		The second second	4
4				ROM!	5
5			Approximation of the control of the		6
6	6 1 80	B(3-)			7
7	7 3833		A A		8
8		7 12	F	THE STATE OF THE S	9
9		(Arthur			10
10					11
11		1			12
	0 0,2	0,4	0,6	0,8 1m	

Projekt: BÖBLINGEN RBB-KSVA Klärschlammverwertung Böhrung: B 4/23 0,0 – 12,0 m 1			.			
1 1 1 2 2 2 3 3 3 4 4 4 5 5 6 6 6 7 7 7 8 8 8 8 9 9 10 10 10 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5		Projekt:	BÖBLINGEN RBB-KSVA			
1 2 2 3 3 3 4 4 4 5 5 6 6 6 6 7 7 7 8 8 8 9 9 10 10 10 11 11 11 12 12		Bohrung:	B 4/23		0,0 – 12,0 m	
2 3 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 10 10 10 11 12	0					1
4 4 4 6 6 6 7 7 7 8 8 9 9 10 10 11 11 11 11 11	1		R. S.		8167	2
4	2			N.W.		3
4	3					4
6 7 8 8 9 9 10 10 11 11 12	4			1-2	TUES	5
6 8 8 9 10 10 11 12	5					6
9 9 10 11 11 11 12	6					7
9 9 10 10 11 11 11	7	The state of the s				8
10 6 11 12	8		MM		CO	9
10 a 11 11 12 12 12 12 12 12 12 12 12 12 12	9					10
	10		* BK			11
0 0,2 0,4 0,6 0,8 1m	11					12
0 0,2 0,4 0,6 0,8 1m						
		0 0,2	0,4	0,6	0,8 1m	

Dokumentation der Bohrunternehmung Terrasond GmbH & Co. KG zu den Bohrungen B 1/23 bis B 4/23

(35 Seiten)

Terrasond GmbH & Co.KG St.-Ulrich-Straße 12-16 89312 Günzburg-Deffingen Tel.: 0 82 21/9 06-0/ Fax:-40

Kopfblatt	Name des Unternehmens	Terrasond GmbH & Co. KG	St-Ulrich-Str. 12 - 16 89312 Günzburg-Deffingen
Aufschlussart:	Name des Auftraggebers	TBF + Partner AG	Alsterarkaden 9
Bohrung			20354 Hamburg
B 1/23			
Projektbezeichnung	Böblingen, Musberger Sträßle 11	Nr des Projekts	2022-0874
Datum	02.0803.08.2023	Höhe	
La	qe	Neigung der Bohrung	lotrecht

Aufschlussart:	Name des	Auftraggebers	TBF + Partner AG	Alsterarkaden 9
Bohrung <i>B 1/23</i>				20354 Hamburg
Projektbezeichnung	Böblingen, Musi	berger Sträßle 11	Nr des Projekts	2022-0874
Datum	02.0803.08.202	3	Höhe	
La	ge		Neigung der Bohrung	lotrecht
			Richtung der Bohrung	
Tiefe der freien Grundwasseroberfläche	3.56 m	ı	Tiefe der Bohrung	10.00 m
Lageskizze (unmaßstäblich)				
Ausführung und Typ des Entnahmegeräts				
Beigefügte Protokolle		 ☑ Bohrprotokoll ☑ Probenentnahmeprof ☐ Verfüllprotokoll ☑ Schichtenverzeichnis ☑ Ausbauprotokoll eine ☐ Protokoll der Grundw ☐ Andere: 	r Grundwassermessstelle	
Bemerkungen (Unterbrechungen, Hindernisse, Schwierigkeiten usw.)	10 m Ke	rnkisten vorhalten		
Name des qualifizierten Technikers	Claudio	Riccardi		
Unterschrift des qualifizierten				

Terrasond GmbH & Co.KG St.-Ulrich-Straße 12-16 89312 Günzburg-Deffingen

Tel.: 0 82 21/9 06-0/ Fax:-40

	Bohrprotokoll Na	Name	des	Unternehm	nens	Terraso	nd GmbH	& Co. KG			StUlrich-Str. 12 - 16 89312 Günzburg-Deffingen		
	sonrpi	Otoko	11	Name	des	Auftragge	bers	TBF + P	artner AG			Alstera	arkaden 9 Hamburg
Projektb	ezeichnur	ng		Böblinge	en, Musbe	rger Sträß	le 11	Projektn	ummer			2022-0874	
Datum o	der Bohrun	ıg		02.0803	3.08.2023			Bezeichi	nung des E	Bohrlochs		B 1/23	
Bohrger jahr)	ät (Typ, He	erstell-			ohrgerät a s-LKW, Bj		r	Endtiefe	des Bohrlo	ochs		10.00 m	
Verfahre bohrens	en des Voi	·-						Ramme	n				
Bohrloci	Bohrlochdurchmesser				178 mm				146 mm	1			273 mm
Tiefe Bohren				Bohrwe	erkzeug			Verrohrun	g	Spülu	ıng		
von	bis	Verfahren	Lösens des Bodens/Fels	Typ, Bohrkrone	Durchmesser mm	Rammen	Spülung	Innenduch- messer mm	Innenduch- messer mm Außendurch- messer mm Tiefe m Spülumsatz		Bemerkungen		
0,00	3,70	вк	rot	EK	220	G	-	154	178	3,70			
3,70	10,00	вк	rot	s	100	G	ws	124	146	10,00			
0,00	3,00	BuP	rot	EK	273	G	-	248	273	3,00			Aufweiten
3,00	10,00	BuP	rot	Mei	230	G	ws						Aufweiten
	Bemerkungen (Unterbrechungen, Hindernisse, Schwierigkeiten usw.)												
Name d	es qualifizi	erten Tech	nikers		Claudio Ri	ccardi							
	Unterschrift des qualifizierten Fechnikers												

Terrasond GmbH & Co.KG St.-Ulrich-Straße 12-16 89312 Günzburg-Deffingen

Tel.: 0 82 21/9 06-0/ Fax:-40

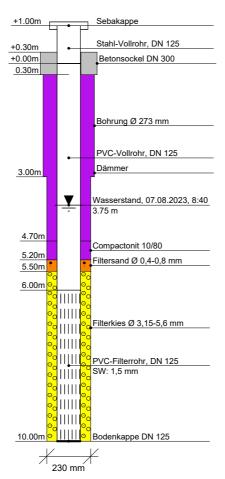
Probener prote		Name	des Unt	ernehmen	ıs	Terrasor	nd GmbH & C	o. KG		StUlrich-Str. 12 - 16 89312 Günzburg-Deffingen	
ριοι ι	UNUII	Name	des Au	ftraggeber	rs .	TBF + Pa	artner AG			nrkaden 9 Hamburg	
Projektbezeichnun	g	Böblinge	en, Musberge	r Sträßle 1	11	Projektnu	ımmer			2022-0874	
Entnahmedatum		02.0803	3.08.2023			Bezeichn	ung des Aufso	chlusses		B 1/23	
Bezeichnung der P	Probe										
Tiefe/Kern	marsch	Pro	obe	Felsgüte u Kerngewir		Enthanmege		nmegerät	Bemerkur - Kernfar - Störung	ngring	
m		Länge mm	messer		TCR RQD SCR		Aus- führung			/Felsart	
von 0.90	bis 1.00	100.00					rot	EK	GP 1		
von 1.90	bis 2.00	100.00					rot	EK	GP 2		
von 2.90	bis 3.00	100.00					rot	EK	GP 3		
von 3.90	bis 4.00	100.00					rot	SK6L	GP 4		
von 4.90	bis 5.00	100.00					rot	SK6L	GP 5		
von 5.90	bis 6.00	100.00					rot	SK6L	GP 6		
von 6.90	bis 7.00	100.00					rot	SK6L	GP 7		
von 7.90	bis 8.00	100.00					rot	SK6L	GP 8		
von 8.90	bis 9.00	100.00					rot	SK6L	GP 9		
von 9.90	bis 10.00	100.00					rot	SK6L	GP 10		
von	bis										
von	bis										
von	bis										
von	bis										
von	bis										
von	bis										
von	bis										
von	bis										
von	bis										
von	bis										
von	bis										
von	bis										
von	bis										
Bemerkungen	Bodenp Fr. Haßi	roben ai lwanter i	n 03.08.20 ibergeber	023 an 1							
Name des qu	alifizierten Tech	nnikers		Claudio	Riccard	ï					

Terrasond GmbH & Co.KG St.-Ulrich-Straße 12-16 89312 Günzburg-Deffingen

Tel.: 0 82 21/9 06-0/ Fax:-40

Name Bohrverfa Durchmes		Name und Ur	Schichtenverzeichnis nach ISC und ISO 14689-1	Seite: 4 Aufschluss: B 1/23 Projektnr: 2022-0874					
1	2	3	4	Claudio Riccardi	6 7				
Tiefe bis m	Bezeichnung der Boden- bzw. Felsart Ergänzende Bemerkungen Geol. Benennung (Stratigraphie)	Farbe Kalk- gehalt	Beschreibung der Probe Konsistenz, Plastizität, Härte, einachsige Festigkeit Kornform, Matrix Verwitterung, Trennflächen usw.	Beschreibung des Bohrfortschritts - Bohrbarkeit/Kernform - Meißeleinsatz - Beobachtungen usw.	Proben Versuche - Typ - Nr - Tiefe	Bemerkungen - Wasserführung/Spülung - Bohrwerkzeuge/Verrohrung - Kernverlust - Kernlänge			
0.10	Grasnarbe			leicht zu bohren					
0.50	Auffüllung (Schluff, tonig, Bewehrung)	violettrot, grau	halbfest, erdfeucht	mittel zu bohren					
0.95	Schluffstein	grau	fest, erdfeucht	mittel zu bohren					

Terras	sond GmbH & Co.KG				Seite: 5	
StUli	rich-Straße 12-16					
89312	Günzburg-Deffingen				Aufschluss: B 1/23	
Tel.: 0	82 21/9 06-0/ Fax:-40				Projektnr: 2022-08	74
1	2	3	4	5	6	7
Tiefe bis	Bezeichnung der Boden- bzw. Felsart Ergänzende Bemerkungen	Farbe Kalk-	Beschreibung der Probe - Konsistenz, Plastizität, Härte,	Beschreibung des Bohrfortschritts	Proben Versuche	Bemerkungen - Wasserführung/Spülung
m		gehalt	einachsige Festigkeit	- Bohrbarkeit/Kernform	- Typ	- Bohrwerkzeuge/Verrohrung
			- Kornform, Matrix	- Meißeleinsatz	- Nr	- Kernverlust
	Geol. Benennung (Stratigraphie)		- Verwitterung, Trennflächen usw.	- Beobachtungen usw.	- Tiefe	- Kernlänge
	Schluffstein	rot	halbfest, erdfeucht	mittel zu bohren	GP 1, 0.90-1.00m	
1.60						
	Sandstein, tonige Zwischenlagen	rot	mürbe, erdfeucht	mittel zu bohren	GP 2, 1.90-2.00m GP 3, 2.90-3.00m	3.56m u. AP 03.08.2023 Wasserstand nach Bohrende
3.70						
	Sandstein	grau	hart	mittel zu bohren	GP 4, 3.90-4.00m GP 5, 4.90-5.00m GP 6, 5.90-6.00m	
7.30					GP 7, 6.90-7.00m	
	Ton, Tonmergelstein, sandig	rot	fest	mittel zu bohren	GP 8, 7.90-8.00m	
8.00						


Terrasond GmbH & Co.KG					Seite: 6	
StUlrich-Straße 12-16						
89312 Günzburg-Deffingen					Aufschluss: B 1/23	
Tel.: 0 82 21/9 06-0/ Fax:-40					Projektnr: 2022-0874	
1	2	3	4	5	6	7
Tiefe bis	Bezeichnung der Boden- bzw. Felsart	Farbe	Beschreibung der Probe	Beschreibung des	Proben	Bemerkungen
				Bohrfortschritts	Versuche	
m	Ergänzende Bemerkungen	Kalk- gehalt	- Konsistenz, Plastizität, Härte, einachsige Festigkeit	- Bohrbarkeit/Kernform	Tun	Wasserführung/SpülungBohrwerkzeuge/Verrohrung
m		genan		- Meißeleinsatz	- Typ - Nr	- Kernverlust
			·			
	Geol. Benennung (Stratigraphie)		- Verwitterung, Trennflächen usw.	- Beobachtungen usw.	- Tiefe	- Kernlänge
	Ton, Tonmergelstein	grünlich, grau	fest	mittel zu bohren		
8.10						
	Sandstein, tonig	grau	mürbe	mittel zu bohren		
8.50						
	Ton, Tonmergelstein	rot	fest	mittel zu bohren	GP 9, 8.90-9.00m	
9.20						
9.20						
	Sandstein	grau	hart	mittel zu bohren	GP 10, 9.90-10.00m	
10.00						

Tel.: 0	82 21/	/9 06-0/	Fax:-40
---------	--------	----------	---------

	Protokol		Nar	ne des l	Internehme	ens	Terr	asond Gmbl	Н & Co. KG		StUlric 89312 G		12 - 16 rg-Deffingen	,	
	Piezome installa		Nar	ne des .	Auftraggeb	ers	TBF	+ Partner A	G 		Alsterari 20354 H				
Projektb	ezeichnung		Böb	lingen, Musber	ger Sträßl	e 11	Pro	jektnummer			2022-08	74			
Einbaud	atum		03.0	98.2023				zeichnung d nrung/Messste	der elle		B 1/23	_			
Lage de	r Messstelle						Höl	he der Messs	telle					m	
Nr der A	usrüstung für	geschlossene	Systeme				Höl	he des Filte	ers						
	Rohr							Filtermaterial				Abo	dichtungsmat	erial	
Nr	Тур	von m	bis m	Durch- messer	Materia	І Тур	o	von m	bis m	Korn- größe mm	Ту	/p	von m	bis m	
1	PVC-Filt.	6.00	10.00	125		Filt.sa	nd	5.20	5.50	0.4 - 0.8	Dämn	ner	0.00	4.70	
2	PVC-Voll	0.00	6.00	125		Filterk	ies	5.50	10.00	3.15 - 5.6	Ton		4.70	5.20	
3	Stahl-Voll	+1.00	0.00	125											
Wassers	stand vor o	der Untersud	chung	m		•		D	atum	•	•	Uhrze	eit		
Wassers	stand nach	Absenkung	usw.	m				D	atum			Uhrze	eit		
Erste	relevante	Ablesung		m				D	atum			Uhrze	eit		
Weitere	Wasserstand	sablesungen													
Nr	1	Datum		Uhrzeit		v	Vasse m	erstand	Tief	Tiefe der Verrohrung m			Tiefe des Bohrlochs		
1	02.08.2023,	kein GW				-		•	3,70	_			3,70		
2	02.08.2023,	vor Ausblas	en 18:0	05		+ 1,50 (ül	ber G	ок)	3,70 / 8,5	50		10,0	0		
3	02.08.2023,	nach Ausbla	se			8,20			3,70 / 8,5	50		10,0	0		
4	02.08.2023,	eingespiege	lt 18:1	10		6,90			3,70 / 8,5			10,0			
5	03.08.2023					3,56			3,70 / 8,5	50		10,0	0		
									+						
Bemerku	ungen		1		Betonso	eite des Fi ckel DN 30 Ihalter eing	0, Bo	hrs: 1,5 mm, den- und Sei it	bakappe DN	l 125		1			
Name de	es qualifizierte	n Technikers			Claudio	Riccardi									
Untersch Technike	nrift des qualif ers	izierten													

Terrasond GmbH & Co.KG	Projekt: Böblingen, Musberger Sträßle 11
StUlrich-Straße 12-16	Projektnr.: 2022-0874
89312 Günzburg-Deffingen	Datum: 03.08.2023
Tel.: 0 82 21/9 06-0/ Fax:-40	Maßstab : 1: 100 / 1: 20

B 1/23 Ausbau DN 125

Abstandhalter bei 1,20 m; 6,20 m und 9,70 m

TERRASOND CCC

Gesellschaft für Baugrunduntersuchungen mbH & Co.KG Günzburg Freiburg Stuttgart Rhein-Main Sachsen-Anhalt Tel.: 0 82 21/ 9 06-0
Tel.: 0 76 43/ 9 36 21 - 0
Tel.: 0 71 59/ 1 80 90 72
Tel.: 0 61 52/ 96 23 10
Tel.: 03 44 65/ 6 83 00

Fax: 0 82 21/ 9 06 40 Fax: 0 76 43/ 9 36 21 - 20 Fax: 07159/ 1 80 90 74 Fax: 0 61 52/ 9 62 31 40 Fax: 03 44 65/ 68 30 40

B 1/23

Pumpversuch Bohrung Nr.

Böblingen, Musberger Sträßle 11			Bl	att:1
			Auftr.Nr.	2022-0874
Pumpeneinlauf bei	9,70	m	Datum:	7. August 2023
Ablaufleitung:	5.00	m	Ausgeführt von:	Claudio Riccardi

Meßstelle	B 1/23					
Höhe ROK	+1,0 m					
Datum/ Zeit		aße ab Meßpunkt F	ROK			Wassermenge I/s
08:40 0'	4,75		Wiederanst	ieg		
1'	7,80		08:54	10,35		
2'	8,05		1'	10,32		
3'	8,32		2'	10,29		
4'	8,52		3'	10,23		
5'	8,85	0,166 l/s	4'	10,18		
6'	9,09		5'	10,13	0,0 l/s	
7'	9,30		11'	9,97		
8'	9,50		21'	9,45		
9'	9,74		31'	9,25		
10'	9,95		41'	9,06		
13', 30"	leer -		51'	8,84		
08.53:30			09:45			
09:45	8,87	Pumpe an	Wiederanst	ieg		
1'	8,91		11:02	10,36		
2'	8,94		1'	10,31		
3'	8,97		2'	10,26		
4'	9,05		3'	10,23		
5'	9,09	0,0288	8'	10,02	-	
10'	9,25	†	13'	9,80	0,0 l/s	
15'	9,42		48'	8,65		
25'	9,53		58'	8,08		
35'	9,75		16:45	4,79		
50'	9,95					
65'	10,10_					
77'	10,35	Pumpe aus				
11:02						

Tel ·	0	82	21/	9 06-	-0/	Fax:-40

Technikers

	Name des Unternehmens	Terrasond GmbH & Co. KG	St-Ulrich-Str. 12 - 16 89312 Günzburg-Deffingen
Aufschlussart: Bohrung 3 2/23	Name des Auftraggebers	TBF + Partner AG	Alsterarkaden 9 20354 Hamburg
Projektbezeichnung	Böblingen, Musberger Sträßle 11	Nr des Projekts	2022-0874
Datum	01.08.2023	Höhe	
	Lage	Neigung der Bohrung	lotrecht
		Richtung der Bohrung	
Tiefe der freien Grundwasseroberfläche	6.79 m	Tiefe der Bohrung	10.00 m
Ausführung und Typ des Entnahmegeräts			
Entnahmegeräts	 ☑ Probenentnahme ☑ Verfüllprotokoll ☑ Schichtenverzeic ☐ Ausbauprotokoll ☑ Protokoll der Gru ☐ Andere: 10 m Kernkisten vorhalten	hnis einer Grundwassermessstelle	
Entnahmegeräts Beigefügte Protokolle Bemerkungen (Unterbrechungen,	 ☑ Probenentnahme ☑ Verfüllprotokoll ☑ Schichtenverzeic ☐ Ausbauprotokoll ☑ Protokoll der Gru ☐ Andere: 10 m Kernkisten vorhalten	hnis einer Grundwassermessstelle	

_				Name	des	Unternehm	nens	Terraso	nd GmbH	& Co. KG			ich-Str. 12 - 16	
i	Bohrpi	rotoko	II					705 . 5					Günzburg-Deffingen	
				Name	des	Auftragge	bers	TBF + P					erarkaden 9 54 Hamburg	
Projektb	ezeichnur	ng		Böblinge	en, Musbe	rger Sträß	le 11	Projektn	ummer		2022-0874			
Datum o	der Bohrun	ng		01.08.20	23			Bezeich	nung des E	Bohrlochs			B 2/23	
Bohrger jahr)	rät (Typ, He	erstell-		TT 53, B Zweiach	ohrgerät a s-LKW, Bj	uf Daimlei . 2020	r	Endtiefe	des Bohrlo	ochs			10.00 m	
Verfahren des Vorbohrens							Ramme	n						
Bohrloci	hdurchmes	sser			178 mm				146 mm	1			mm	
Ti	iefe	Во	hren		Bohrwe	erkzeug			Verrohrun	g	Spülu	ıng		
von	bis	Verfahren	Lösens des Bodens/Fels	Typ, Bohrkrone	Durchmesser mm	Rammen	Spülung	Innenduch- messer mm	Außendurch- messer mm	Tiefe m	Druck	Spülumsatz	Bemerkungen	
0,00	3,50	вк	rot	EK	178	G	-	154	178	3,50				
3,50	10,00	вк	rot	s	100	G	ws	124	146	10,00				
	• .	iterbrechur vierigkeiten	•											
Name des qualifizierten Technikers					Claudio Riccardi									
	Unterschrift des qualifizierten Technikers				_	_	_	_	_	_	_			

	ntnahme- okoll	Name	des Unte	ernehmen	is	Terrasor	nd GmbH & C	o. KG		ch-Str. 12 - 16 Günzburg-Deffingen
prot	UNUII	Name	des Auf	traggeber	rs .	TBF + Pa	artner AG			nrkaden 9 Hamburg
Projektbezeichnur	ng	Böblinge	en, Musberger	Sträßle 1	11	Projektnummer				2022-0874
Entnahmedatum		01.08.20	23			Bezeichn	ung des Aufsc	hlusses		B 2/23
Bezeichnung der F	Probe									
Tiefe/Kernmarsch		Pro	obe		elsgüte u Kerngewii		Entnah	megerät	Bemerkur - Kernfar - Störung	gring
m	1	Länge mm	Durch- messer mm	TCR	RQD	SCR	Aus- führung	Тур	- Boden-	/Felsart
von 0.90	bis 1.00	100.00					rot	EK		
von 1.90	bis 2.00	100.00					rot	EK		
von 2.90	bis 3.00	100.00					rot	EK		
von 3.90	bis 4.00	100.00					rot	SK6L		
von 4.90	bis 5.00	100.00					rot	SK6L		
von 5.90	bis 6.00	100.00					rot	SK6L		
von 6.90	bis 7.00	100.00					rot	SK6L		
von 7.90	bis 8.00	100.00					rot	SK6L		
von 8.90	bis 9.00	100.00					rot	SK6L		
von 9.90	bis 10.00	100.00					rot	SK6L		
von	bis								1 Wasser	orobe entnommen
von	bis									
von	bis									
von	bis									
von	bis									
von	bis									
von	bis									
von	bis									
von	bis									
von	bis									
von	bis									
von	bis									
von	bis									
Bemerkungen	Bemerkungen			Bodenp Fr. Haßi	roben ar lwanter/ l	n 01.08.20 Hr. Dr. Kle	023 an einert übergel	oen		
Name des qu	ualifizierten Tecl	nnikers		Claudio	Riccard	i				
Unterschrift de	es qualifizierte	n Technike	ers							

			Schichtenverzeichnis nach ISC und ISO 14689-1	Seite: 4 Aufschluss: B 2/23 Projektnr: 2022-0874						
Projektbez	zeichnung: Böblingen, Musberger Sträßle 11	Name und Ur	Name und Unterschrift des qualifizierten Technikers: <i>Claudio Riccardi</i>							
1	2	3	4	5	6	7				
Tiefe bis m	Bezeichnung der Boden- bzw. Felsart Ergänzende Bemerkungen Geol. Benennung (Stratigraphie)	Farbe Kalk- gehalt	Beschreibung der Probe Konsistenz, Plastizität, Härte, einachsige Festigkeit Kornform, Matrix Verwitterung, Trennflächen usw.	Beschreibung des Bohrfortschritts - Bohrbarkeit/Kernform - Meißeleinsatz - Beobachtungen usw.	Proben Versuche - Typ - Nr - Tiefe	Bemerkungen - Wasserführung/Spülung - Bohrwerkzeuge/Verrohrung - Kernverlust - Kernlänge				
0.10	Grasnarbe					Vorschacht				
0.70	Auffüllung (Schotter, kiesig, stark sandig)	grau				Vorschacht				
1.00	Schluff, tonig	grünlich grau	steif bis halbfest		GP 1, 0.90-1.00m	Vorschacht				

Terras	sond GmbH & Co.KG				Seite: 5	
StUI	rich-Straße 12-16					
89312	? Günzburg-Deffingen				Aufschluss: B 2/23	
Tel.: 0	82 21/9 06-0/ Fax:-40				Projektnr: 2022-08	74
1	2	3	4	5	6	7
Tiefe bis	Bezeichnung der Boden- bzw. Felsart Ergänzende Bemerkungen	Farbe Kalk-	Beschreibung der Probe - Konsistenz, Plastizität, Härte,	Beschreibung des Bohrfortschritts	Proben Versuche	Bemerkungen - Wasserführung/Spülung
m	-	gehalt	einachsige Festigkeit	- Bohrbarkeit/Kernform	- Typ	- Bohrwerkzeuge/Verrohrung
			- Kornform, Matrix	- Meißeleinsatz	- Nr	- Kernverlust
	Geol. Benennung (Stratigraphie)		- Verwitterung, Trennflächen usw.	- Beobachtungen usw.	- Tiefe	- Kernlänge
	Schluff, tonig	belblich braun	steif bis halbfest			Vorschacht
1.20						
	Sandstein mit bindigen Schluff, tonig - Zwischenlagen	grau	mürbe, steif bis halbfest, erdfeucht	mittel zu bohren	GP 2, 1.90-2.00m	
2.50						
	Schluff, tonig	grünlich, grau, violett	steif bis halbfest, erdfeucht	mittel zu bohren	GP 3, 2.90-3.00m	
3.50						
	Ton, Tonmergelstein, verwittert	violettrot	fest	mittel zu bohren	GP 4, 3.90-4.00m GP 5, 4.90-5.00m GP 6, 5.90-6.00m	6.79m u. AP 01.08.2023, 13:30 nach Bohrende eingespiegelt
7.90					GP 7, 6.90-7.00m	

StUI 89312	sond GmbH & Co.KG rich-Straße 12-16 2 Günzburg-Deffingen 0 82 21/9 06-0/ Fax:-40				Seite: 6 Aufschluss: <i>B</i> 2/23 Projektnr: 2022-08	274
1	2	3	4	5	6	7
Tiefe bis m	Bezeichnung der Boden- bzw. Felsart Ergänzende Bemerkungen Geol. Benennung (Stratigraphie)	Farbe Kalk- gehalt	Beschreibung der Probe - Konsistenz, Plastizität, Härte, einachsige Festigkeit - Kornform, Matrix - Verwitterung, Trennflächen usw.	Beschreibung des Bohrfortschritts - Bohrbarkeit/Kernform - Meißeleinsatz - Beobachtungen usw.	Proben Versuche - Typ - Nr - Tiefe	Bemerkungen - Wasserführung/Spülung - Bohrwerkzeuge/Verrohrung - Kernverlust - Kernlänge
10.00	Sandstein	grauweiß	hart	mittel zu bohren	GP 8, 7.90-8.00m GP 9, 8.90-9.00m GP 10, 9.90-10.00m	

Verfül	lprotokoll	Name des l	Internehmens	Terrasond GmbH &	Co. KG	StUlrich-Str. 12 - 89312 Günzburg-D	
		Name des	Auftraggebers	TBF + Partner AG		Alsterarkaden 9 20354 Hamburg	
Projektbezeichn	nung	Böblingen, Musbei	rger Sträßle 11	2022-0874			
Datum des Verf	üllens	01.08.2023		Bezeichnung des Aufschlusses Tiefe m		B 2/23	
	Tiefe m	Verfüll	material			Verfüll	material
von 0,00	bis 0,50	Bohrgut (Kies/	Sand)	von	bis		
von 0,50	bis 10,00	Brunnendämmer		von	bis		
von	bis			von	bis		
von	bis			von	bis		
von	bis			von	bis		
von	bis			von	bis		
/on	bis			von	bis		
/on	bis			von	bis		
/on	bis			von	bis		
von	bis			von	bis		
von	bis			von	bis		
von	bis			von	bis		
von	bis			von	bis		
von	bis			von	bis		
Bemerkungen							
Name des quali	fizierten Technikers		Claudio Riccardi				
Unterschrift des Technikers	qualifizierten						

ı	Protokoll der		Name des Unternehmens	ausführenden	Ten	rasond GmbH & Co. KG		StUlrich-Str. 89312 Günzbu	
	Grundwasser- messungen		Name des	Auftraggebers	TBF	+ Partner AG		Alsterarkaden 20354 Hambui	9 9
Projektb	ezeichnung		Böblingen, Musber	ger Sträßle 11	Pro	jektnummer		2022-0874	
Datum d	er Messung		02.08.2023	Bohr		zeichnung der hrung oder der ssstelle		B 2/23	
Nr	Datum		Zeit	Messwerte		Gemessener atmosphäri- scher Druck		rechneter Druck	Bemerkungen
1	01.08.2023			-		Verrohrung: 3,50 m	Bohrtiefe	e: 3,50 m	kein GW
2	01.08.2023	12:3	30	+1,60 m (über GOK))	Verrohrung:	Bohrtiefe	o:	vor Ausblasen
3	01.08.2023			8,30 m		Verrohrung:	Bohrtiefe:		nach Ausblasen
4	01.08.2023	12:4	15	6,75 m		Verrohrung: 3,5/8,5 m	Bohrtiefe	e: 10,00 m	Einspiegeln
5	01.08.2023	13:3	30	6,79 m		Verrohrung: 3,5/8,5 m	Bohrtiefe	e: 10,00 m	Einspiegeln
Bemerkı	ingen								
Name de	es qualifizierten Technikers			Claudio Riccardi					
Untersch Technike	nrift des qualifizierten ers								

TERRASOND CCC

Gesellschaft für Baugrunduntersuchungen mbH & Co.KG Günzburg Freiburg Stuttgart Rhein-Main Sachsen-Anhalt Tel.: 0 82 21/ 9 06-0
Tel.: 0 76 43/ 9 36 21 - 0
Tel.: 0 71 59/ 1 80 90 72
Tel.: 0 61 52/ 96 23 10
Tel.: 03 44 65/ 6 83 00

Fax: 0 82 21/ 9 06 40 Fax: 0 76 43/ 9 36 21 - 20 Fax: 07159/ 1 80 90 74 Fax: 0 61 52/ 9 62 31 40 Fax: 03 44 65/ 68 30 40

B 2/23

Pumpversuch Bohrung Nr.

Böblingen, Musberger Sträßle 11			В	latt: 1
			Auftr.Nr.	2022-0874
Pumpeneinlauf bei	9,60	m	Datum:	1. August 2023
Ablaufleitung:	6,00	m	Ausgeführt von:	Claudio Riccardi

	Abiauneili	ung. <u>6,00</u>	<u> </u>	Ausgelunit von.	Claudio Riccardi
Meßstelle	B 2/23	offenes Bohrloch			
Höhe ROK	0,85				
Datum/ Zeit	Abstichm	naße ab Meßpunkt G	ОК		Wassermenge I/s
13:45	7,55	nach Einbau U-Pum	pe		1,0
13:46	leer	Pumpe aus			1,0
<u>Wiederanstieg</u>					
13:49	9,52				0,0
13:50	9,49				0,0
14:00	9,20				0,0
14:01	Pumpe ar	│ ∩, ab Meßpunkt ROK			
14:02	9,20	-			0,1666
14:03	9,28				0,1666
14:06	9,52				0,1666
14:10	9,72				0,1666
14:15	9,91				0,1666
14:20	10,01				0,1666
14:25	10,03				0,1666
14:30	10,06				0,1666
14:40	9,83				0,1666
14:45	9,74				0,1666
14:55	9,71	Pumpe aus			0,1666
Wiederanstieg					
14:56	9,21				0,0
14:57	8,81				0,0
14:58	8,56				0,0
14:59	8,34				0,0
15:00	8,19				0,0
15:02	7,95				0,0
15:03	7,89				0,0
15:04	7,83				0,0
15:05	7,79				0,0
15:10	7,65				0,0
15:20	7,64	nach Ziehen der U-F	Pumpe		0,0

Tel ·	n	82	21/9	06-0/	Fax:-40

Technikers

		Terrasond GmbH & Co. KG	StUlrich-Str. 12 - 16 89312 Günzburg-Deffingen
Aufschlussart: Bohrung B 3/23	Name des Auftraggebers	TBF + Partner AG	Alsterarkaden 9 20354 Hamburg
Projektbezeichnung	Böblingen, Musberger Sträßle 11	Nr des Projekts	2022-0874
Datum	31.0701.08.2023	Höhe	
	Lage	Neigung der Bohrung	lotrecht
		Richtung der Bohrung	
Tiefe der freien Grundwasseroberfläche	8.32 m	Tiefe der Bohrung	12.00 m
Ausführung und Typ des Entnahmegeräts			
• ,			
Entnahmegeräts	 ☑ Probenentnahn ☑ Verfüllprotokoll ☑ Schichtenverze ☐ Ausbauprotoko ☑ Protokoll der Gr 	ichnis Il einer Grundwassermessstelle rundwassermessungen	
Entnahmegeräts Beigefügte Protokolle Bemerkungen (Unterbrechungen,	 ☑ Probenentnahn ☑ Verfüllprotokoll ☑ Schichtenverze ☐ Ausbauprotoko ☑ Protokoll der Gi ☐ Andere: 	ichnis Il einer Grundwassermessstelle rundwassermessungen	

į	Bohrprotokoll		Name	des	Unternehm	nens	Terraso	nd GmbH	& Co. KG			ich-Str. 12 - 16 Günzburg-Deffingen	
				Name	des	Auftragge	bers	TBF + F	artner AG	i			arkaden 9 Hamburg
Projekth	oezeichnur	ng		Böblinge	en, Musbe	rger Sträß	le 11	Projektn	ummer				2022-0874
Datum o	der Bohrun	ng		31.0701	1.08.2023			Bezeich	nung des E	Bohrlochs			B 3/23
Bohrger jahr)	rät (Typ, He	erstell-			ohrgerät a s-LKW, Bj		r	Endtiefe	des Bohrl	ochs		12.00 m	
Verfahre bohrens	en des Voi	r-						Ramme	Rammen				
Bohrloc	hdurchmes	sser			178 mm				178 mm	ı			146 mm
Ti	iefe	Во	hren		Bohrwerkzeug				Verrohrun	g	Spülı	ıng	
von	bis	Verfahren	Lösens des Bodens/Fels	Typ, Bohrkrone	Durchmesser mm	Rammen	Spülung	Innenduch- messer mm	Außendurch- messer mm	Tiefe m	Druck	Spülumsatz	Bemerkungen
0,00	4,00	вк	rot	EK	178	G	-	154	178	4,00			
4,00	5,60	вк	ram	Schap	140	DR	-	154	154 178 5,60				
5,60	12,00	вк	rot	s	100	G	ws	124	146	12,00			
		iterbrechur vierigkeiten	_										
Name d	les qualifizi	ierten Tech	nikers		Claudio Ri	iccardi							
Untersc Technik	-	ualifizierten											

	ntnahme- okoll	Name	des Unte	ernehmen	ıs	Terrasor	nd GmbH & C	o. KG		ch-Str. 12 - 16 Günzburg-Deffingen	
prot	OKOII	Name	des Auf	ftraggebei	rs .	TBF + Pa	artner AG			nrkaden 9 Hamburg	
Projektbezeichnur	ng	Böblinge	en, Musberger	r Sträßle	11	Projektnu	ımmer		•	2022-0874	
Entnahmedatum		31.0701	.08.2023			Bezeichn	ung des Aufsc	chlusses		B 3/23	
Bezeichnung der f	Probe										
Tiefe/Kerr		Probe		Felsgüte ur Kerngewin		Enthanmege		megerät	- Kernfar	Bemerkungen - Kernfangring - Störung - Boden-/Felsart - Rammeinsatz	
m	l	Länge Durch- mm messer mm		TCR RQD		α Aus- O führung		Тур	- Boden-		
von 0.90	bis 1.00	100.00					rot	EK			
von 1.90	bis 2.00	100.00					rot	EK			
von 2.90	bis 3.00	100.00					rot	EK			
von 3.90	bis 4.00	100.00					rot	EK			
von 4.90	bis 5.00	100.00					ram	Schap			
von 5.90	bis 6.00	100.00					rot	SK6L			
von 6.90	bis 7.00	100.00					rot	SK6L			
von 7.90	bis 8.00	100.00					rot	SK6L			
von 8.90	bis 9.00	100.00					rot	SK6L			
von 9.90	bis 10.00	100.00					rot	SK6L			
von 10.90	bis 11.00	100.00					rot	SK6L			
von 11.90	bis 12.00	100.00					rot	SK6L			
von	bis								1 Wasser	orobe entnommen	
von	bis										
von	bis										
von	bis										
von	bis										
von	bis										
von	bis										
von	bis										
von	bis										
von	bis										
von	bis										
Bemerkungen				Bodenp Fr. Haß	roben ar lwanter/ l	n 01.08.20 Hr. Dr. Kle	023 an inert übergel	ben			
Name des qu	ualifizierten Tec	hnikers		Claudio	Riccard	i					
Unterschrift de	es qualifizierte	n Technike	ers								

	des Unternehmens: Terrasond GmbH & Co. KG des Auftraggebers: TBF + Partner AG nren: BK Datum: 31.0701.08.2023		Schichtenverzeichnis nach ISC und ISO 14689-1) 14688-1	Seite: 4 Aufschluss: B 3/23	
Durchmes	ŭ ŭ	Name und Ur	nterschrift des qualifizierten Technikers:	Claudio Riccardi	Projektnr: 2022-08	374
Projektbez	reichnung: Böblingen, Musberger Sträßle 11	Name und Or	nterschnit des quannzierten Fechnikers.	Ciaudio Riccardi	I	
1	2	3	4	5	6	7
Tiefe bis m	Bezeichnung der Boden- bzw. Felsart Ergänzende Bemerkungen	Farbe Kalk- gehalt	Beschreibung der Probe - Konsistenz, Plastizität, Härte, einachsige Festigkeit - Kornform, Matrix	Beschreibung des Bohrfortschritts - Bohrbarkeit/Kernform - Meißeleinsatz	Proben Versuche - Typ - Nr	Bemerkungen - Wasserführung/Spülung - Bohrwerkzeuge/Verrohrung - Kernverlust
	Geol. Benennung (Stratigraphie)		- Verwitterung, Trennflächen usw.	- Beobachtungen usw.	- Tiefe	- Kernlänge
0.15	Grasnarbe		erdfeucht	leicht zu bohren		
0.75	Auffüllung (Kies, stark sandig, Betonreste)	grau	erdfeucht	mittel zu bohren		
1.10	Schluff, tonig	gelblich, braun	steif bis halbfest, erdfeucht	mittel zu bohren	GP 1, 0.90-1.00m	

Terras	sond GmbH & Co.KG				Seite: 5	
StUli	rich-Straße 12-16					
89312	Günzburg-Deffingen				Aufschluss: B 3/23	
Tel.: 0	82 21/9 06-0/ Fax:-40				Projektnr: 2022-08	74
1	2	3	4	5	6	7
Tiefe bis	Bezeichnung der Boden- bzw. Felsart	Farbe	Beschreibung der Probe	Beschreibung des Bohrfortschritts	Proben Versuche	Bemerkungen
	Ergänzende Bemerkungen	Kalk-	- Konsistenz, Plastizität, Härte,			- Wasserführung/Spülung
m		gehalt	einachsige Festigkeit	- Bohrbarkeit/Kernform	- Тур	- Bohrwerkzeuge/Verrohrung
			- Kornform, Matrix	- Meißeleinsatz	- Nr	- Kernverlust
	Geol. Benennung (Stratigraphie)		- Verwitterung, Trennflächen usw.	- Beobachtungen usw.	- Tiefe	- Kernlänge
	Schluff, tonig	grünlich grau, violett rot	steif bis halbfest, erdfeucht	mittel zu bohren		
1.60						
	Ton, schluffig	grau, violett	steif bis halbfest, erdfeucht	mittel zu bohren	GP 2, 1.90-2.00m	
2.50						
	Ton, schluffig	grünlich grau	steif, halbfest, erdfeucht	mittel zu bohren	GP 3, 2.90-3.00m	
3.50						
	Sandstein, tonige Zwischenlagen	grau	mürbe, erdfeucht	mittel zu bohren	GP 4, 3.90-4.00m GP 5, 4.90-5.00m	
5.00						

Terras	sond GmbH & Co.KG				Seite: 6	
StUli	rich-Straße 12-16					
89312	Günzburg-Deffingen				Aufschluss: B 3/23	
Tel.: 0	82 21/9 06-0/ Fax:-40				Projektnr: 2022-08	74
1	2	3	4	5	6	7
Tiefe bis	Bezeichnung der Boden- bzw. Felsart Ergänzende Bemerkungen	Farbe Kalk-	Beschreibung der Probe - Konsistenz, Plastizität, Härte,	Beschreibung des Bohrfortschritts	Proben Versuche	Bemerkungen - Wasserführung/Spülung
m	· ·	gehalt	einachsige Festigkeit	- Bohrbarkeit/Kernform	- Тур	- Bohrwerkzeuge/Verrohrung
			- Kornform, Matrix	- Meißeleinsatz	- Nr	- Kernverlust
	Geol. Benennung (Stratigraphie)		- Verwitterung, Trennflächen usw.	- Beobachtungen usw.	- Tiefe	- Kernlänge
	Ton, schluffig	grüngrau	halbfest bis fest, erdfeucht	mittel zu bohren		
5.60						
	Ton, Tonmergelstein, verwittert	violett, rot	halbfest bis fest	mittel zu bohren	GP 6, 5.90-6.00m GP 7, 6.90-7.00m GP 8, 7.90-8.00m	8.32m u. AP 01.08.2023, 07:20
10.40					GP 9, 8.90-9.00m GP 10, 9.90-10.00m	nach Bohrende gemessen
	Sandstein, tonig bis stark tonig	violett, rot grünlich grau	fest	mittel zu bohren	GP 11, 10.90-11.00m	
11.70						
	Sandstein, schwach tonig bis tonig	grünlich grau, violett	fest	mittel zu bohren	GP 12, 11.90-12.00m	
12.00						

Tel.: 0	82 21	/9 06-0/	' Fax:-4	٠0
---------	-------	----------	----------	----

Verfül	Verfüllprotokoll		Internehmens	Terrasond GmbH &	Co. KG	StUlrich-Str. 12 - 89312 Günzburg-D				
		Name des	Auftraggebers	TBF + Partner AG		Alsterarkaden 9 20354 Hamburg				
Projektbezeichr	nung	Böblingen, Musbel	rger Sträßle 11	Projektnummer		2022-0874				
Datum des Ver	füllens	01.08.2023		Bezeichnung des Aufschlusses	S	B 3/23				
	Tiefe m	Verfüllmaterial			i efe m	Verfüll	material			
von <i>0,00</i>	bis 0,30	Bohrgut (Kies/	Sand)	von	bis					
von 0,30	bis 1,00	Fertigzement		von	bis					
von 1,00	bis 12,00	Brunnendämmer		von	bis					
von	bis			von	bis					
von	bis			von	bis					
von	bis			von	bis					
von	bis			von	bis					
von	bis			von	bis					
von	bis			von	bis					
von	bis			von	bis					
von	bis			von	bis					
von	bis			von	bis					
von	bis			von	bis					
von	bis			von	bis					
Bemerkungen										
Name des qual	ifizierten Technikers		Claudio Riccardi							
Unterschrift des	qualifizierten									

	Protokoll der Grundwasser-		Name des Unternehmens	ausführenden	Ten	rasond GmbH & Co. KG		StUlrich-Str. 89312 Günzbu		
	messungen		Name des	Auftraggebers	TBF	+ Partner AG		Alsterarkaden 20354 Hambu		
Projektb	ezeichnung		Böblingen, Musber	ger Sträßle 11	Pro	jektnummer		2022-0874		
Datum d	er Messung		31.0701.08.2023			zeichnung der hrung oder der ssstelle		B 3/23		
Nr	Datum		Zeit	Messwerte		Gemessener atmosphäri- scher Druck	Berechneter Druck		Bemerkungen	
1	31.07.2023	12:0	00	-		Verrohrung: 3,60 m	Bohrtiefe	e: 5,60 m	kein GW	
2	31.07.2023	15:3	30	+1,50 m (über GOK))	Verrohrung: 5,6/11,8m	Bohrtiefe	e: 12,00 m	vor Ausblasen	
3	31.07.2023			11,65 m		Verrohrung: 5,6/11,8m	Bohrtiefe	e: 12,00 m	nach Ausblasen	
4	31.07.2023	15:3	35	11,57m		Verrohrung: 5,6/9,5 m	Bohrtiefe	e: 12,00 m	gemessen	
5	31.07.2023	15:4	15	11,51 m		Verrohrung: 5,6/9,5 m	Bohrtiefe	e: 12,00 m	gemessen	
6			10	11,37 m		Verrohrung: 5,6/9,5 m	Bohrtiefe	e: 12,00 m	gemessen	
7	31.07.2023 16:30		11,24 m		Verrohrung: 5,6/9,5 m	Bohrtiefe	e: 12,00 m	gemessen		
8	31.07.2023 17:15		10,94 m		Verrohrung: 5,6/9,5 m	Bohrtiefe: 12,00 m		gemessen		
9	01.08.2023 07:20		8,32 m		Verrohrung: 5,6 m	Bohrtiefe	e: 12,00 m	gemessen		
Bemerku	ıngen									
Name de	es qualifizierten Technikers			Claudio Riccardi						
Untersch Technike	nrift des qualifizierten ers									

Terrasond GmbH & Co.KG St.-Ulrich-Straße 12-16 89312 Günzburg-Deffingen Tel.: 0 82 21/9 06-0/ Fax:-40

Kopfblatt	Name des Unternehmens	Terrasond GmbH & Co. KG	StUlrich-Str. 12 - 16 89312 Günzburg-Deffingen
Aufschlussart:	Name des Auftraggebers	TBF + Partner AG	Alsterarkaden 9
Bohrung			20354 Hamburg
B 4/23			
Projektbezeichnung	Böblingen, Musberger Sträßle 11	Nr des Projekts	2022-0874
Datum	01.0802.08.2023	Höhe	
Le	age	Neigung der Bohrung	lotrecht
		Richtung der Bohrung	
Tiefe der freien	9.11 m	Tiefe der Bohrung	12.00 m
Grundwasseroberfläche			

Bohrung <i>B 4/23</i>				20354 Hamburg			
Projektbezeichnung	Böblingen, Musi	berger Sträßle 11	Nr des Projekts	2022-0874			
Datum	01.0802.08.202	3	Höhe				
La	ge		Neigung der Bohrung	lotrecht			
			Richtung der Bohrung				
Tiefe der freien Grundwasseroberfläche	9.11 m	1	Tiefe der Bohrung	12.00 m			
Lageskizze (unmaßstäblich)							
Ausführung und Typ des Entnahmegeräts							
Beigefügte Protokolle		 ☑ Bohrprotokoll ☑ Probenentnahmepro ☐ Verfüllprotokoll ☑ Schichtenverzeichnis ☑ Ausbauprotokoll eine ☑ Protokoll der Grundw ☐ Andere: 	s er Grundwassermessstelle				
Bemerkungen (Unterbrechungen, Hindernisse, Schwierigkeiten usw.)	12 m Ke	ernkisten vorhalten					
Name des qualifizierten Technikers	Claudio	Riccardi					
Unterschrift des qualifizierten							

Bemerkungen (Unterbrechungen, Hindernisse, Schwierigkeiten usw.)	12 m Kernkisten vorhalten
Name des qualifizierten Technikers	Claudio Riccardi
Unterschrift des qualifizierten	

E	Bohrprotokoll			Name	e des Unternehmens				nd GmbH	& Co. KG			StUlrich-Str. 12 - 16 89312 Günzburg-Deffingen		
				Name	des	Auftragge	bers	TBF + P	artner AG				lsterarkaden 9 354 Hamburg		
Projektb	ezeichnun	ıg		Böblinge	en, Musbei	rger Sträß	le 11	Projektn	ummer				2022-0874		
Datum o	der Bohrun	g		01.0802	2.08.2023			Bezeich	nung des E	Bohrlochs			B 4/23		
Bohrger jahr)	ät (Typ, He	erstell-			ohrgerät a s-LKW, Bj.		r	Endtiefe	des Bohrlo	ochs			12.00 m		
Verfahre bohrens	en des Vor	-						Ramme	n						
Bohrloch	hdurchmes	sser			178 mm				178 mm	ı			146 mm		
Ti	efe	Во	hren		Bohrwe	erkzeug			Verrohrun	g	Spülu	ng			
von	sid	Verfahren	Lösens des Bodens/Fels	Typ, Bohrkrone	Durchmesser mm	Rammen	Spülung	Innenduch- messer mm	Innenduch- messer mm Außendurch- messer mm		Druck	Spülumsatz	Bemerkungen		
0,00	4,00	вк	rot	EK	178	G	-	154 178 4,00							
4,00	5,10	вк	ram	Schap	140	DR	-	154	178	5,10					
5,10	12,00	вк	rot	s	100	G	ws	124	146	12,00					
	Bemerkungen (Unterbrechungen, Hindernisse, Schwierigkeiten usw.)														
Name d	es qualifizi	erten Tech	nikers		Claudio Riccardi										
	Unterschrift des qualifizierten Technikers														

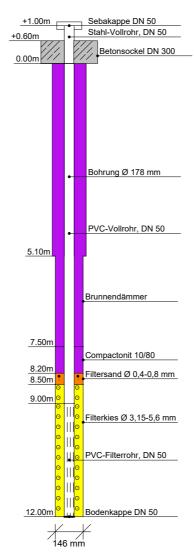
Probenentnahme- protokoll		Name	des Unte	ernehmen	s	Terrason	nd GmbH & C		ch-Str. 12 - 16 Günzburg-Deffingen			
prot	OKOII	Name	des Auf	ftraggeber	s	TBF + Pa	artner AG			nrkaden 9 Hamburg		
Projektbezeichnu	ng	Böblinge	en, Musbergei	r Sträßle 1	11	Projektnu	mmer			2022-0874		
Entnahmedatum		01.0802	2.08.2023			Bezeichn	ung des Aufsc	hlusses		B 4/23		
Bezeichnung der	Probe											
Tiefe/Keri	nmarsch	Pro	obe		elsgüte u Kerngewii		Entnah	megerät	Bemerkun - Kernfar - Störung	gring		
n	1	Länge mm	Durch- messer mm	TCR RQD		SCR	Aus- führung		- Boden- - Ramme	/Felsart		
von 0.90	bis 1.00	100.00					rot	EK	GP 1			
von 1.90	bis 2.00	100.00					rot	EK	GP 2			
von 2.90	bis 3.00	100.00					rot	EK	GP 3			
von 3.90	bis 4.00	100.00					rot	SK6L	GP 4			
von 4.90	bis 5.00	100.00					rot	SK6L	GP 5			
von 5.90	bis 6.00	100.00					rot	SK6L	GP 6			
von 6.90	bis 7.00	100.00					rot	SK6L	GP 7			
von 7.90	bis 8.00	100.00					rot	SK6L	GP 8			
von 8.90	bis 9.00	100.00					rot	SK6L	GP 9			
von 9.90	bis 10.00	100.00					rot	SK6L	GP 10			
von 10.90	bis 11.00	100.00					rot	SK6L	GP 11			
von 11.90	bis 12.00	100.00					rot	SK6L	GP 12			
von	bis											
von	bis											
von	bis											
von	bis											
von	bis											
von	bis											
von	bis											
von	bis											
von	bis											
von	bis											
von	bis											
Bemerkungen	emerkungen					n 03.08.20 ibergeben						
Name des q	ualifizierten Tecl	hnikers		Claudio Riccardi								
	erschrift des qualifizierten Technikers											

	ser: 178 mm Neigung: <i>lotrecht</i>	Name und Ur	Schichtenverzeichnis nach ISC und ISO 14689-1	Seite: 4 Aufschluss: B 4/23 Projektnr: 2022-0874			
1	2	3	4	5	6	7	
Tiefe bis m	Bezeichnung der Boden- bzw. Felsart Ergänzende Bemerkungen Geol. Benennung (Stratigraphie)	Farbe Kalk- gehalt	Beschreibung der Probe - Konsistenz, Plastizität, Härte, einachsige Festigkeit - Kornform, Matrix - Verwitterung, Trennflächen usw.	Beschreibung des Bohrfortschritts - Bohrbarkeit/Kernform - Meißeleinsatz - Beobachtungen usw.	Proben Versuche - Typ - Nr - Tiefe	Bemerkungen - Wasserführung/Spülung - Bohrwerkzeuge/Verrohrung - Kernverlust - Kernlänge	
0.05	Pflasterstein	grau		mittel zu bohren			
0.30	Kies, stark sandig, Schotter	grau		mittel zu bohren			
1.90	Schluff, tonig	grau, gelblich	halbfest bis fest, erdfeucht	mittel zu bohren	GP 1, 0.90-1.00m		

Terras	sond GmbH & Co.KG				Seite: 5	
StUl	rich-Straße 12-16					
89312	? Günzburg-Deffingen				Aufschluss: B 4/23	
Tel.: 0	82 21/9 06-0/ Fax:-40				Projektnr: 2022-08	374
1	2	3	4	5	6	7
Tiefe bis	Bezeichnung der Boden- bzw. Felsart	Farbe	Beschreibung der Probe	Beschreibung des Bohrfortschritts	Proben Versuche	Bemerkungen
	Ergänzende Bemerkungen	Kalk-	- Konsistenz, Plastizität, Härte,			- Wasserführung/Spülung
m		gehalt	einachsige Festigkeit	- Bohrbarkeit/Kernform	- Typ	- Bohrwerkzeuge/Verrohrung
			- Kornform, Matrix	- Meißeleinsatz	- Nr	- Kernverlust
	Geol. Benennung (Stratigraphie)		- Verwitterung, Trennflächen usw.	- Beobachtungen usw.	- Tiefe	- Kernlänge
	Sandstein	grau	mürbe, erdfeucht	mittel zu bohren - schwer zu bohren	GP 2, 1.90-2.00m GP 3, 2.90-3.00m	
3.40						
	Schluff, tonig	grünlich, grau, violett	halbfest bis fest, erdfeucht	mittel zu bohren	GP 4, 3.90-4.00m	
4.00						
	Ton, Tonmergelstein	violett	fest, erdfeucht	mittel zu bohren		
4.60						
	Sandstein, schwach tonig bis stark tonig	grau, violett	fest	mittel zu bohren	GP 5, 4.90-5.00m GP 6, 5.90-6.00m GP 7, 6.90-7.00m	9.11m u. AP 02.08.2023, 12:30 nach Bohrende eingespiegelt
10.00					GP 8, 7.90-8.00m GP 9, 8.90-9.00m GP 10, 9.90-10.00m	

Terras	sond GmbH & Co.KG				Seite: 6		
StUl	rich-Straße 12-16						
89312	2 Günzburg-Deffingen		Aufschluss: B 4/23				
Tel.: 0) 82 21/9 06-0/ Fax:-40		Projektnr: 2022-08	74			
1	2	3	4	5	6	7	
Tiefe bis m	Bezeichnung der Boden- bzw. Felsart Ergänzende Bemerkungen Geol. Benennung (Stratigraphie)	Farbe Kalk- gehalt	Beschreibung der Probe Konsistenz, Plastizität, Härte, einachsige Festigkeit Kornform, Matrix Verwitterung, Trennflächen usw.	Beschreibung des Bohrfortschritts - Bohrbarkeit/Kernform - Meißeleinsatz - Beobachtungen usw.	Proben Versuche - Typ - Nr - Tiefe	Bemerkungen - Wasserführung/Spülung - Bohrwerkzeuge/Verrohrung - Kernverlust - Kernlänge	
12.00	Sandstein, schwach tonig, tonig	grünlich, violett gebändert	fest	mittel zu bohren	GP 11, 10.90-11.00m GP 12, 11.90-12.00m		

Tel.: (82	21/9	06-0/	Fax:-4	.0
---------	----	------	-------	--------	----


	Protoko			Name	des U	Internehme	ens	Ten	Terrasond GmbH & Co. KG				StUlrich-Str. 12 - 16 89312 Günzburg-Deffingen			
	Piezome installa			Name	des A	Auftraggeb	ers	TBF	TBF + Partner AG				Alsterarkaden 9 20354 Hamburg			
Projekth	ezeichnung			Böbling	gen, Musber	rger Sträßle 11			Projektnummer				2022-0874			
Einbaud	latum			02.08.2	023				zeichnung d nrung/Messste	der elle		B 4/23				
Lage de	r Messstelle							Höl	he der Messs	telle					m	
Nr der A	usrüstung für	geschlossene	Syst	eme		Höhe des Filters					·					
		Ro	hr						Filtermaterial				Abo	dichtungsmat	erial	
Nr	Von bis Durch- messer		Materia	І Тур)	von	bis	Korn- größe	Ту	/p	von	bis				
1	PVC-Filt.	9.00	m m m 500 00 12.00 50				Filt.sai	nd	8.20	8.50	mm 0.4 - 0.8	Dämr	nor	0.00	7.50	
2	PVC-Voll 0.00 9.00 50					Filterk		8.50	12.00	3.15 - 5.6		iici	7.50	8.20		
3	Stahl-Voll +1.00 0.00 50															
Wasser	stand vor	der Untersud	chung		m				D	atum			Uhrze	eit		
Wasser	stand nach	Absenkung	USW.		m				D	atum			Uhrze			
Erste	relevante	Ablesung			m				D	atum			Uhrze	eit		
Weitere	Wasserstand	sablesungen														
Nr		Datum			Uhrzeit		V	/asserstand Tiefe der Verro m m			ohrung Tiefe des Bohrlochs m					
1	01.08.2023,	18:00		18:00			kein GW	5,10				5,10				
2	02.08.2023			07:00			kein GW			5,10			5,10			
3	02.08.2023,	vor Ausblas	en	9:45			+ 1,50 (ül	ber G	ок)	5,10 / 10	,00		12,0	0		
4	02.08.2023,	nach Ausbl.					11,70			5,10 / 10	,00		12,0	0		
5	02.08.2023,	eingespiege	lt	10:05			11,25									
6		eingespiege		10:20			10,95									
7		eingespiege		10:35			10,66									
8		eingespiege	lt	11:00		Cablitan	10,25	14	hvord E man							
Bemerk	Bemerkungen					Schlitzweite des Filterrohrs: 1,5 mm, Betonsockel DN 300, Boden- und Sebakappe DN 50 3 Abtandhalter eingebaut										
Name d	Name des qualifizierten Technikers					Claudio Riccardi										
Untersc Technik	hrift des qualif	izierten														
TOOTHIK																

Tel.: 0 82 21/9 ()6-0/ Fax:-40
-------------------	---------------

Protokoll der Untermehmens Grundwasser-				Terrasond GmbH & Co. KG		StUlrich-Str. 12 - 16 89312 Günzburg-Deffingen			
		Auftraggebers TBF + Partner AG		Alsterarkaden 9 20354 Hamburg					
Projektb	ezeichnung		Böblingen, Musber	ger Sträßle 11	e 11 Projektnummer 2		2022-0874		
Datum d	er Messung		02.08.2023		Bol	zeichnung der hrung oder der ssstelle		B 4/23	
Nr	Datum		Zeit	Messwerte		Gemessener atmosphäri- scher Druck		rechneter Druck	Bemerkungen
9	02.08.2023	11:2	20	10,09 m		-	-		Wasser eingespiegelt
10	02.08.2023	11:5	55	9,52 m		-	-		Wasser eingespiegelt
11	02.08.2023	12:3	30	9,11 m		-	-		Wasser eingespiegelt
									auf Anordnung Hr.
									Dr. Kleinert, IB. VEES
							-		
_									
Bemerkungen									
Name de	es qualifizierten Technikers			Claudio Riccardi					
Unterschrift des qualifizierten Technikers									

Terrasond GmbH & Co.KG	Projekt: Böblingen, Musberger Sträßle 11
StUlrich-Straße 12-16	Projektnr.: 2022-0874
89312 Günzburg-Deffingen	Datum: 03.08.2023
Tel.: 0 82 21/9 06-0/ Fax:-40	Maßstab: 1: 100 / 1: 20

B 4/23 Ausbau DN 50

Abstandhalter bei 1,20 m; 8,70 m und 11,70 m

Ergebnisse chemischer Analysen an vier Bodenmischproben der BVU GmbH

- 6.1 Einstufung der Bodenmischproben MP 1 bis MP 4 nach EBV (4 Seiten)
- 6.2 Analyseergebnisse der BVU GmbH vom 19.09.2023 (12 Seiten)

Projekt	Aktenzeichen	22 253
BÖBLINGEN, Neubau Klärschlamm Verwertungsanlage KSVA		

Probenbezeichnung	MP 1		
Entnahmestelle	B 1/23, B 2/23		
Entnahmetiefe	0,1 m - 0,95 m		
Probenmaterial	Auffüllungen		

Entnahmedatum	01.08 03.08.2023		
Einstufungskat.	Lehm/Schluff		
Entnahmeprotokoll	-		
Prüfbericht Nr.	455/0355		

Laborwerte				
2000	Probe			
		MP 1		
Mineralischer Fremdbestandteil	[%]	10 - 50		
	[70]	8,7		
pH-Wert 1	01	188		
Leitfähigkeit 1	μS/cm			
Sulfat	mg/l	9 2,8		
Arsen	mg/kg	2,8 < 4		
Blei	µg/l	6,5		
DIEI	mg/kg μg/l	< 5		
0 1 :-		0,18		
Cadmium	mg/kg			
Ob	μg/l	< 0,1 13		
Chrom, gesamt	mg/kg	6		
Kupfer	µg/l	15		
Kupiei	mg/kg	8		
Nickel	µg/l	9,4		
Nickei	mg/kg	< 5		
0 1 11 3	µg/l	< 0,02		
Quecksilber 3	mg/kg			
T 1 111 3	µg/l	< 0,05		
Thallium ³	mg/kg	< 0,4		
	μg/l	< 0,2		
Zink	mg/kg	24		
T00	μg/l	< 10		
TOC	M%	0,25 < 30		
KW C10-C22	mg/kg			
KW C10-C40	mg/kg	< 50		
MKW Ponzo(a)nyron	µg/l			
Benzo(a)pyren	mg/kg	< 0,04		
PAK ₁₆	mg/kg	0,09		
PAK ₁₅	µg/l	0,054		
Naphtalin und Methylnaphtaline, gesamt	μg/l	0,075		
PCB ₆ und PCB-	mg/kg	0		
118	μg/l	0		
EOX	mg/kg	< 0,5		
Einstufung		BM-/BG- F0*		

Materialwerte nach EBV								
BM-/BG- 0 Sand	BM-/BG-0 Lehm/Schluff	BM-/BG-0 Ton	BM-/BG-0* TOC <0,5%	BM-/BG-0* TOC >0,5%	BM-/BG- F0*	BM-/BG-F1	BM-/BG-F2	BM-/BG-F3
10	10	10	10	10	50	50	50	50
	nicl	nt maßgeblic	ch		6.5-9.5	6.5-9.5	6.5-9.5	5,5-12
	nicht maßgeblic	ch	350	350	350	500	500	2000
250	250	250	250	250	250	450	450	1000
10	20	20	20	20	40	40	40	150
	nicht maßgeblic		8	13	12	20	85	100
40	70	100	140	140	140	140	140	700
	nicht maßgeblic		23	43	35	90	250	470
0,4	1	1,5	1 ²	1	2	2	2	10
	nicht maßgeblic		2	4	3	3	10	15
30	60	100	120	120	120	120	120	600
	nicht maßgeblic		10	19	15	150	290	530
20	40	60	80	80	80	80	80	320
	nicht maßgeblid		20	41	30	110	170	320
15	50	. 70	100	100	100	100	100	350
	nicht maßgeblic		20	31	30	30		280
0,2	0,3	0,3	0,6	0,6	0,6	0,6		0,6
	nicht maßgeblic	h	0,1	0,1	nicht maßgeblich		1	
0,5	1	1	1	1	2	2		7
	nicht maßgeblic		0,2	0,3	nicht maßgeblich			
60	150	200	300	300	300	300	300	1200
	nicht maßgeblic		100	210	150	160	840	1600
1	1	. 1	1	1	5	5		5
	nicht maßgeblic		300	300	300	300	300	1000
	nicht maßgeblic		600	600	600	600	600	2000
0.0	0,3	nt maßgeblic 0.3	cn		150	160 aßgeblich	160	310
0,3	0,3	3	6	6	6	6	9	30
							_	
nicht maßgeblich			0,2	0,2	0,3 1,5 3,8		20	
	nicht maßgeblic	ch	2	2	2 nicht maßgeblich			
0,05	0,05	0,05	0,1	0,1	0,15	0,15		0,5
	nicht maßgeblic	ch	0,01	0,01	0,01	0,02	0,02	0,04
1	1	1	1	1	3	3	3	10

Eine Überschreitung dieser Parameter allein ist kein Ausschlusskriterium.
 Kann das BM-/BG-0* Material der Bodenart Ton zugeordnet werden, gilt der Grenzwert von 1,5 mg/kg

Projekt	Aktenzeichen	22 253
BÖBLINGEN, Neubau Klärschlamm Verwertungsanlage KSVA	1	

Probenbezeichnung	MP 2
Entnahmestelle	B 1/23, B 2/23
Entnahmetiefe	0,7 m - 4,5 m
Probenmaterial	Boden

Entnahmedatum	01.08 03.08.2023
Einstufungskat.	Lehm/Schluff
Entnahmeprotokoll	-
Prüfbericht Nr.	455/0356

Laborwerte			
		Probe	
		MP 2	
Mineralischer Fremdbestandteil	[%]	<10	
pH-Wert 1		8,74	
Leitfähigkeit ¹	μS/cm	239	
Sulfat	mg/l	14	
Arsen	mg/kg	2,5	
	µg/l	< 4	
Blei	mg/kg	7,2	
	μg/l	< 5	
Cadmium	mg/kg	0,2	
	μg/l	< 0,1	
Chrom, gesamt	mg/kg	29	
	μg/l	< 5	
Kupfer	mg/kg	9,8	
	μg/l	< 5	
Nickel	mg/kg	21	
	μg/l	< 5	
Quecksilber 3	mg/kg	< 0,02	
	μg/l	< 0,05	
Thallium ³	mg/kg	< 0,4	
	μg/l	< 0,2	
Zink	mg/kg	29	
	μg/l	< 10	
TOC	Μ%	0,42	
KW C10-C22	mg/kg	< 30	
KW C10-C40	mg/kg	< 50	
MKW	μg/l	-	
Benzo(a)pyren	mg/kg	< 0,04	
PAK ₁₆	mg/kg	0	
PAK ₁₅	μg/l	0,033	
Naphtalin und Methylnaphtaline, gesamt	μg/l	0,019	
PCB ₆ und PCB-	mg/kg	0	
118	µg/l	0	
EOX	mg/kg	< 0.5	
Einstufung		BM-/BG-0	

	Materialwerte nach EBV							
BM-/BG- 0 Sand		BM-/BG-0 Ton		BM-/BG-0* TOC >0,5%	BM-/BG- F0*	BM-/BG-F1	BM-/BG-F2	BM-/BG-F3
10	10	10	10	10	50	50		
		nt maßgeblic	ch	ı	6.5-9.5	6.5-9.5	6.5-9.5	5,5-12
	nicht maßgeblic		350	350	350	500	500	2000
250	250	250	250	250	250	450	450	1000
10	20	20	20	20	40	40		
	nicht maßgeblic		8	13	12	20	85	
40	70 nicht maßgeblic	100	140 23	140 43	140 35	140 90	140 250	700 470
0.4	nicht maisgeblic	1,5	1 ²	1	2	2		10
	nicht maßgeblic		2	4	3	3		15
30	60	100	120	120	120	120	120	600
	nicht maßgeblic		10	19	15	150		530
20	40	60	80	80	80	80		
	nicht maßgeblic	ch	20	41	30	110	170	320
15	50	70	100	100	100	100	100	350
	nicht maßgeblic	ch	20	31	30	30	150	280
0,2	0,3	0,3	0,6	0,6	0,6	0,6	0,6	0,6
	nicht maßgeblic	ch	0,1	0,1		nicht ma	aßgeblich	
0,5	1	1	1	1	2	2	2	7
	nicht maßgeblic		0,2	0,3			aßgeblich	
60	150	200	300	300	300	300	300	1200
	nicht maßgeblic		100	210	150	160		1600
1	1	. 1	1	1	5	5		5
	nicht maßgeblic		300	300	300	300	300	1000
	nicht maßgeblic		600	600	600	600		2000
0,3	0,3	nt maßgeblic 0,3	cn		150	160 aßgeblich	160	310
3	0,3	3	6	6	6	6	9	30
	nicht maßgeblic		0,2	0,2	0,3	1,5		
	nicht maßgeblic		2	2	0,3	,	aßgeblich	
0,05	0,05	0,05	0,1	0,1	0,15	0,15		0,5
	nicht maßgeblic	ch	0,01	0,01	0,01	0,02	0,02	0,04
1	1	1	1	1	3	3	3	10

Eine Überschreitung dieser Parameter allein ist kein Ausschlusskriterium.
 Kann das BM-/BG-0* Material der Bodenart Ton zugeordnet werden, gilt der Grenzwert von 1,5 mg/kg

Projekt	Aktenzeichen	22 253
BÖBLINGEN, Neubau Klärschlamm Verwertungsanlage KSVA		

Probenbezeichnung	MP 3
Entnahmestelle	B 3/23, B 4/23
Entnahmetiefe	0,06 m – 0,75 m
Probenmaterial	Auffüllung

Entnahmedatum	01.08 03.08.2023
Einstufungskat.	Lehm/Schluff
Entnahmeprotokoll	-
Prüfbericht Nr.	455/0357

Labo	rwerte	
	Probe	
		MP 3
Mineralischer Fremdbestandteil	[%]	10-50
pH-Wert ¹	[,0]	10,15
Leitfähigkeit ¹	μS/cm	116
Sulfat	mg/l	12
Arsen	mg/kg	2,6
	µg/l	< 4
Blei	mg/kg	3,8
	μg/l	< 5
Cadmium	mg/kg	0,25
	µg/l	< 0,1
Chrom, gesamt	mg/kg	8
	μg/l	< 5
Kupfer	mg/kg	10
	μg/l	< 5
Nickel	mg/kg	6,4
	μg/l	< 5
Quecksilber 3	mg/kg	< 0,02
	μg/l	< 0,05
Thallium ³	mg/kg	< 0,4
	μg/l	< 0,2
Zink	mg/kg	44
	μg/l	< 10
TOC	M%	0,11
KW C10-C22	mg/kg	< 30
KW C10-C40	mg/kg	< 50
MKW	μg/l	-
Benzo(a)pyren	mg/kg	< 0,04
PAK ₁₆	mg/kg	0
PAK ₁₅	μg/l	0,02
Naphtalin und Methylnaphtaline, gesamt	μg/l	0,031
PCB ₆ und PCB-	mg/kg	0
118	μg/l	0
EOX	mg/kg	< 0,5
Einstufung	ı	BM-/BG- F0*

	Materialwerte nach EBV							
BM-/BG- 0 Sand	BM-/BG-0 Lehm/Schluff	BM-/BG-0 Ton	BM-/BG-0* TOC <0,5%	BM-/BG-0* TOC >0,5%	BM-/BG- F0*	BM-/BG-F1	BM-/BG-F2	BM-/BG-F3
10	10	10	10	10	50	50	50	50
	nicl	nt maßgeblic	ch	•	6.5-9.5	6.5-9.5	6.5-9.5	5,5-12
	nicht maßgeblic		350	350	350	500	500	2000
250	250	250	250	250	250	450	450	1000
10	20	20	20	20	40	40	40	150
	nicht maßgeblic		8	13	12	20	85	
40	70	100	140	140	140	140	140	
	nicht maßgeblic	h	23	43	35	90	250	470
0,4	1	1,5	1 ²	1	2	2	2	10
	nicht maßgeblic	ch	2	4	3	3	10	15
30	60	100	120	120	120	120	120	600
	nicht maßgeblic	ch	10	19	15	150	290	530
20	40	60	80	80	80	80	80	320
	nicht maßgeblic	ch	20	41	30	110	170	320
15	50	70	100	100	100	100	100	350
	nicht maßgeblic	ch	20	31	30	30	150	280
0,2	0,3	0,3	0,6	0,6	0,6	0,6	0,6	0,6
	nicht maßgeblic	ch	0,1	0,1		nicht ma	aßgeblich	
0.5	1	1	1	1	2	2	2	7
- /-	nicht maßgeblic	h	0.2	0,3		nicht ma	aßgeblich	•
60	150	200	300	300	300	300		1200
	nicht maßgeblic	ch	100	210	150	160	840	1600
1	1	1	1	1	5	5	5	5
	nicht maßgeblic	ch	300	300	300	300	300	1000
	nicht maßgeblic	ch	600	600	600	600	600	2000
	nicl	nt maßgeblic	ch		150	160	160	310
0,3	0,3	0,3			nicht ma	aßgeblich		
3	3	3	6	6	6	6	9	30
	nicht maßgeblic	ch	0,2	0,2	0,3	1,5	3,8	20
	nicht maßgeblid	ch	2	2		nicht ma	aßgeblich	
0,05	0,05		0,1	0,1	0,15	0,15		-,-
	nicht maßgeblic		0,01	0,01	0,01	0,02		
1	1	1	1	1	3	3	3	10

Eine Überschreitung dieser Parameter allein ist kein Ausschlusskriterium.
 Kann das BM-/BG-0* Material der Bodenart Ton zugeordnet werden, gilt der Grenzwert von 1,5 mg/kg

Projekt	Aktenzeichen	22 253
BÖBLINGEN, Neubau Klärschlamm Verwertungsanlage KSVA		

Probenbezeichnung	MP 4			
Entnahmestelle	B 3/23, B 4/23			
Entnahmetiefe	0,5 m - 6,5 m			
Probenmaterial	Boden			

Entnahmedatum	01.08 03.08.2023		
Einstufungskat.	Lehm/Schluff		
Entnahmeprotokoll	-		
Prüfbericht Nr.	455/0358		

Laborwerte						
	Probe					
		MP 4				
Mineralischer						
Fremdbestandteil	[%]	<10				
pH-Wert 1		8,12				
Leitfähigkeit 1	μS/cm	261				
Sulfat	mg/l	8				
Arsen	mg/kg	4,4				
	μg/l	< 4				
Blei	mg/kg	7,2				
	μg/l	< 5				
Cadmium	mg/kg	0,1				
	μg/l	< 0,1				
Chrom, gesamt	mg/kg	32				
	μg/l	< 5				
Kupfer	mg/kg	25				
	μg/l	< 5				
Nickel	mg/kg	21				
	μg/l	< 5				
Quecksilber 3	mg/kg	< 0,02				
	μg/l	< 0,05				
Thallium ³	mg/kg	< 0,4				
	μg/l	< 0,2				
Zink	mg/kg	28				
	μg/l	< 10				
TOC	M%	0,31				
KW C10-C22	mg/kg	< 30				
KW C10-C40	mg/kg	< 50				
MKW	μg/l	-				
Benzo(a)pyren	mg/kg	< 0,04				
PAK ₁₆	mg/kg	0				
PAK ₁₅	μg/l	0,06				
Naphtalin und						
Methylnaphtaline,		0,025				
gesamt	μg/l					
PCB ₆ und PCB-	mg/kg	0				
118	μg/l	0				
EOX	mg/kg	< 0,5				
Einstufung	l	BM-/BG-0				

	Materialwerte nach EBV							
BM-/BG- 0 Sand	BM-/BG-0 Lehm/Schluff	BM-/BG-0 Ton	BM-/BG-0* TOC <0,5%	BM-/BG-0* TOC >0,5%	BM-/BG- F0*	BM-/BG-F1	BM-/BG-F2	BM-/BG-F3
10	10	10	10	10	50	50	50	50
	nicl	nt maßgeblic	ch	•	6.5-9.5	6.5-9.5	6.5-9.5	5,5-12
	nicht maßgeblic	ch	350	350	350	500	500	2000
250	250	250	250	250	250	450	450	1000
10	20	20	20	20	40	40	40	150
	nicht maßgeblic		8	13	12	20	85	
40	70	100	140	140	140	140	140	
	nicht maßgeblic		23	43	35	90	250	470
0,4	1	1,5	1 ²	1	2	2	2	10
	nicht maßgeblic		2	4	3	3	10	15
30	60	100	120	120	120	120	120	600
	nicht maßgeblic		10	19	15	150	290	530
20	40	60	80	80	80	80	80	320
	nicht maßgeblid		20	41	30	110	170	
15	50	70	100	100	100	100	100	350
	nicht maßgeblic		20	31	30	30		
0,2	0,3	0,3	0,6	0,6	0,6	0,6		0,6
	nicht maßgeblic	h	0,1	0,1			aßgeblich	
0,5	1	1	1	1	2	2		7
	nicht maßgeblic		0,2	0,3			aßgeblich	
60	150	200	300	300	300	300	300	1200
	nicht maßgeblic		100	210	150	160	840	1600
1	1	. 1	1	1	5	5		5
	nicht maßgeblic		300	300	300	300	300	1000
	nicht maßgeblic		600	600	600	600	600	2000
0.0	0,3	nt maßgeblic 0.3	cn		150	160 aßgeblich	160	310
0,3	0,3	3	6	6	6	6	9	30
-					-		_	
	nicht maßgeblic		0,2	0,2	0,3	1,5	,	20
	nicht maßgeblic		2	2		nicht m	aßgeblich	
0,05	0,05	-,	0,1	0,1	0,15	0,15		
	nicht maßgeblic		0,01	0,01	0,01	0,02	0,02	- , -
1	1	1	1	1	3	3	3	10

Eine Überschreitung dieser Parameter allein ist kein Ausschlusskriterium.
 Kann das BM-/BG-0* Material der Bodenart Ton zugeordnet werden, gilt der Grenzwert von 1,5 mg/kg

Gewerbestraße 10 87733 Markt Rettenbach Tel. 08392/921-0 Fax 08392/921-30 bvu@bvu-analytik.de

BVU GmbH · Gewerbestraße 10 · 87733 Markt Rettenbach

VEES | PARTNER - Prof. Dr.-Ing. E. Vees und Partner

Baugrundinstitut GmbH

Friedrich-List-Str. 42

70771 Leinfelden-Echterdingen

Analysenbericht Nr. 455/0355	Datum:	19.09.2023
------------------------------	--------	------------

Allgemeine Angaben

Auftraggeber : VEES | PARTNER - Prof. Dr.-Ing. E. Vees und Partner Baugrundinstitut GmbH

Projekt : Böblingen, Neubau Klärschlamm Verbrennungsanlage KSVA

Projekt-Nr. : Az 22253

Entnahmestelle : Art der Probenahme : ohne Angabe

Art der Probe : Boden Probenehmer : von Seiten des Auftraggebers

: 12.09.2023

Entnahmedatum : 03.08.2023 Probeneingang

Originalbezeich. : MP 1 Auffüllungen

Probenbezeich. : 455/0355

Untersuch.-zeitraum : 12.09.2023 – 19.09.2023

1 Ergebnisse der Untersuchung aus der Ges.-Fraktion (BM-0*)

Parameter	Einheit	Messwert	BM-0*	Methode
Erstellen der Prüfprobe aus Laborprobe				DIN 19747:2009-07
Trockensubstanz	[%]	94,9	-	DIN EN 14346 : 2017-09
Fraktion < 2 mm	[Masse %]	33	-	Siebung
Glühverlust	[Masse %]	2,0	-	DIN EN 15169 :2007-05
TOC	[Masse %]	0,25	1	DIN EN 15936 :2012-11

2 Ergebnisse der Untersuchung aus der Fraktion < 2mm (BM-0*)

2.1 Allgemeine Parameter, Schwermetalle

Parameter	Einheit	Messwert	BM-0*	Methode
Arsen	[mg/kg TS]	2,8	20	EN ISO 11885 :2009-09
Blei	[mg/kg TS]	6,5	140	EN ISO 11885 :2009-09
Cadmium	[mg/kg TS]	0,18	1	EN ISO 11885 :2009-09
Chrom (gesamt)	[mg/kg TS]	13	120	EN ISO 11885 :2009-09
Kupfer	[mg/kg TS]	15	80	EN ISO 11885 :2009-09
Nickel	[mg/kg TS]	9,4	100	EN ISO 11885 :2009-09
Quecksilber	[mg/kg TS]	< 0,02	0,6	DIN EN ISO 12846:2012-08
Thallium	[mg/kg TS]	< 0,4	1	EN ISO 11885 :2009-09
Zink	[mg/kg TS]	24	300	EN ISO 11885 :2009-09
Aufschluß mit Königswasser				EN 13657 :2003-01

2.2 Summenparameter, PCB, PAK

Parameter	Einheit	Messwert	BM-0*	Methode
EOX	[mg/kg TS]	< 0,5	1	DIN 38 409 -17 :2005-12
MKW (C10 – C22)	[mg/kg TS]	< 30		DIN EN 14039 :2005-01
MKW (C10 – C40)	[mg/kg TS]	< 50	300	DIN EN 14039 :2005-01
PCB 28	[mg/kg TS]	< 0,01		
PCB 52	[mg/kg TS]	< 0,01		
PCB 101	[mg/kg TS]	< 0,01		
PCB 118	[mg/kg TS]	< 0,01		
PCB 138	[mg/kg TS]	< 0,01		
PCB 153	[mg/kg TS]	< 0,01		
PCB 180	[mg/kg TS]	< 0,01		
Σ PCB (7):	[mg/kg TS]	n.n.	0,1	DIN EN 15308 :2016-12
• •			•	
Naphthalin	[mg/kg TS]	< 0,04		
Acenaphthen	[mg/kg TS]	< 0,04		
Acenaphthylen	[mg/kg TS]	< 0,04		
Fluoren	[mg/kg TS]	< 0,04		
Phenanthren	[mg/kg TS]	< 0,04		
Anthracen	[mg/kg TS]	< 0,04		
Fluoranthen	[mg/kg TS]	0,05		
Pyren	[mg/kg TS]	0,04		
Benzo(a)anthracen	[mg/kg TS]	< 0,04		
Chrysen	[mg/kg TS]	< 0,04		
Benzo(b)fluoranthen	[mg/kg TS]	< 0,04		
Benzo(k)fluoranthen	[mg/kg TS]	< 0,04		
Benzo(a)pyren	[mg/kg TS]	< 0,04		
Dibenz(a,h)anthracen	[mg/kg TS]	< 0,04		
Benzo(g,h,i)perylen	[mg/kg TS]	< 0,04		
Indeno(1,2,3-cd)pyren	[mg/kg TS]	< 0,04		
Σ PAK (EPA Liste):	[mg/kg TS]	0,09	6	DIN ISO 18287 :2006-05

3 Ergebnisse der Untersuchung aus dem Eluat (BM-0*)

Parameter	Einheit	Messwert	BM-0*	Methode
			DIVI-U	
Eluatherstelllung – Schütteleluat [l:s]		2:1		DIN 19529 : 2015-12
pH-Wert	[-]	8,70		DIN EN ISO 10523 04-2012
elektr. Leitfähigkeit	[µS/cm]	188	350	DIN EN 27 888 : 1993
Arsen	[µg/l]	< 4	8	DIN EN ISO 17294-2:2017-01
Blei	[µg/l]	< 5	23	DIN EN ISO 17294-2:2017-01
Cadmium	[µg/l]	< 0,1	2	DIN EN ISO 17294-2:2017-01
Chrom (gesamt)	[µg/l]	6	10	DIN EN ISO 17294-2:2017-01
Kupfer	[µg/l]	8	20	DIN EN ISO 17294-2:2017-01
Nickel	[µg/l]	< 5	20	DIN EN ISO 17294-2:2017-01
Quecksilber	[µg/l]	< 0,05	0,1	DIN EN ISO 12846 :2012-08
Thallium	[µg/l]	< 0,2	0,2	DIN EN ISO 17294-2:2017-01
Zink	[µg/l]	< 10	100	DIN EN ISO 17294-2:2017-01
Sulfat	[mg/l]	9	250	EN ISO 10304 :2009-07

Parameter	Einheit	Messwert	BM-0*	Methode
PCB 28	[µg/l]	< 0,002		
PCB 52	[µg/l]	< 0,002		
PCB 101	[µg/l]	< 0,002		
PCB 118	[µg/l]	< 0,002		
PCB 138	[µg/l]	< 0,002		
PCB 153	[µg/l]	< 0,002		
PCB 180	[µg/l]	< 0,002		
Σ PCB (7):	[µg/l]	n.n.	0,01	DIN EN 15308 :2016-12
1-Methylnaphthalin	[µg/l]	0,012		DIN 38 407 F 39 : 2011-09
2-Methylnaphthalin	[µg/l]	0,012	2	DIN 38 407 F 39 : 2011-09
Naphthalin	[μg/l]	0,048		DIN 38 407 F 39 : 2011-09
Acenaphthylen	[µg/l]	< 0,005		Dii 100 107 1 00 . 201 1 00
Acenaphthen	[µg/l]	0,007		
Fluoren	[µg/l]	0,008		
Phenanthren	[µg/l]	0,014		
Anthracen	[µg/l]	0,005		
Fluoranthen	[µg/l]	0,011		
Pyren	[µg/l]	0,009		
Benzo(a)anthracen	[µg/l]	< 0,005		
Chrysen	[µg/l]	< 0,005		
Benzo(b)fluoranthen	[µg/l]	< 0,005		_
Benzo(k)fluoranthen	[µg/l]	< 0,005		
Benzo(a)pyren	[µg/l]	< 0,005		
Dibenz(a,h)anthracen	[µg/l]	< 0,005		
Benzo(a,h,i)perylen	[µg/l]	< 0,005		
Indeno(1,2,3-cd)pyren	[µg/l]	< 0,005		
Σ PAK (15):	[µg/l]	0,054	0,2	DIN 38 407 F 39 : 2011-09

 $\label{thm:proposed_prop} \mbox{Die Pr\"{u}fergebnisse beziehen sich ausschließlich auf die im Pr\"{u}fbericht spezifizierten Pr\"{u}fgegenst\"{a}nde.}$

Markt Rettenbach, den 19.09.2023

Onlinedokument ohne Unterschrift

Gewerbestraße 10 87733 Markt Rettenbach Tel. 08392/921-0 Fax 08392/921-30 bvu@bvu-analytik.de

BVU GmbH · Gewerbestraße 10 · 87733 Markt Rettenbach

VEES | PARTNER - Prof. Dr.-Ing. E. Vees und Partner

Baugrundinstitut GmbH

Friedrich-List-Str. 42

70771 Leinfelden-Echterdingen

Allgemeine Angaben

Auftraggeber : VEES | PARTNER - Prof. Dr.-Ing. E. Vees und Partner Baugrundinstitut GmbH

Projekt : Böblingen, Neubau Klärschlamm Verbrennungsanlage KSVA

Projekt-Nr. : Az 22253

Entnahmestelle : Art der Probenahme : ohne Angabe

Art der Probe : Boden Probenehmer : von Seiten des Auftraggebers

Entnahmedatum : 03.08.2023 Probeneingang : 12.09.2023

Originalbezeich. : MP 2 natürlicher Boden

Probenbezeich. : 455/0356

Untersuch.-zeitraum : 12.09.2023 – 19.09.2023

1 Ergebnisse der Untersuchung aus der Ges.-Fraktion (BM-0*)

Parameter	Einheit	Messwert		BM-0*	Methode
Erstellen der Prüfprobe aus Laborprobe					DIN 19747:2009-07
Trockensubstanz	[%]	91,3		-	DIN EN 14346 : 2017-09
Fraktion < 2 mm	[Masse %]	44		-	Siebung
Glühverlust	[Masse %]	3,0		-	DIN EN 15169 :2007-05
TOC	[Masse %]	0,42		1	DIN EN 15936 :2012-11

2 Ergebnisse der Untersuchung aus der Fraktion < 2mm (BM-0*)

2.1 Allgemeine Parameter, Schwermetalle

Parameter	Einheit	Messwert	BM-0*	Methode
Arsen	[mg/kg TS]	2,5	20	EN ISO 11885 :2009-09
Blei	[mg/kg TS]	7,2	140	EN ISO 11885 :2009-09
Cadmium	[mg/kg TS]	0,2	1	EN ISO 11885 :2009-09
Chrom (gesamt)	[mg/kg TS]	29	120	EN ISO 11885 :2009-09
Kupfer	[mg/kg TS]	9,8	80	EN ISO 11885 :2009-09
Nickel	[mg/kg TS]	21	100	EN ISO 11885 :2009-09
Quecksilber	[mg/kg TS]	< 0,02	0,6	DIN EN ISO 12846:2012-08
Thallium	[mg/kg TS]	< 0,4	1	EN ISO 11885 :2009-09
Zink	[mg/kg TS]	29	300	EN ISO 11885 :2009-09
Aufschluß mit Königswa	asser			EN 13657 :2003-01

2.2 Summenparameter, PCB, PAK

Parameter	Einheit	Messwert		BM-0*	Methode
EOX	[mg/kg TS]	< 0,5		1	DIN 38 409 -17 :2005-12
MKW (C10 – C22)	[mg/kg TS]	< 30			DIN EN 14039 :2005-01
MKW (C10 - C40)	[mg/kg TS]	< 50		300	DIN EN 14039 :2005-01
	· · · · · · · · · · · · · · · · · · ·		1	1	T .
PCB 28	[mg/kg TS]	< 0,01			
PCB 52	[mg/kg TS]	< 0,01			
PCB 101	[mg/kg TS]	< 0,01			
PCB 118	[mg/kg TS]	< 0,01			
PCB 138	[mg/kg TS]	< 0,01			
PCB 153	[mg/kg TS]	< 0,01			
PCB 180	[mg/kg TS]	< 0,01			
Σ PCB (7):	[mg/kg TS]	n.n.		0,1	DIN EN 15308 :2016-12
Naphthalin	[mg/kg TS]	< 0,04			
Acenaphthen	[mg/kg TS]	< 0,04			
Acenaphthylen	[mg/kg TS]	< 0,04			
Fluoren	[mg/kg TS]	< 0,04			
Phenanthren	[mg/kg TS]	< 0,04			
Anthracen	[mg/kg TS]	< 0,04			
Fluoranthen	[mg/kg TS]	< 0,04			
Pyren	[mg/kg TS]	< 0,04			
Benzo(a)anthracen	[mg/kg TS]	< 0,04			
Chrysen	[mg/kg TS]	< 0,04			
Benzo(b)fluoranthen	[mg/kg TS]	< 0,04			
Benzo(k)fluoranthen	[mg/kg TS]	< 0,04			
Benzo(a)pyren	[mg/kg TS]	< 0,04			
Dibenz(a,h)anthracen	[mg/kg TS]	< 0,04			
Benzo(g,h,i)perylen	[mg/kg TS]	< 0,04			
Indeno(1,2,3-cd)pyren	[mg/kg TS]	< 0,04			
Σ PAK (EPA Liste):	[mg/kg TS]	n.n.		6	DIN ISO 18287 :2006-05

3 Ergebnisse der Untersuchung aus dem Eluat (BM-0*)

_				
Parameter	Einheit	Messwert	BM-0*	Methode
Eluatherstelllung – Sch	ütteleluat [l:s]	2:1		DIN 19529 : 2015-12
pH-Wert	[-]	8,74		DIN EN ISO 10523 04-2012
elektr. Leitfähigkeit	[µS/cm]	239	350	DIN EN 27 888 : 1993
Arsen	[µg/l]	< 4	8	DIN EN ISO 17294-2:2017-01
Blei	[µg/l]	< 5	23	DIN EN ISO 17294-2:2017-01
Cadmium	[µg/l]	< 0,1	2	DIN EN ISO 17294-2:2017-01
Chrom (gesamt)	[µg/l]	< 5	10	DIN EN ISO 17294-2:2017-01
Kupfer	[µg/l]	< 5	20	DIN EN ISO 17294-2:2017-01
Nickel	[µg/l]	< 5	20	DIN EN ISO 17294-2:2017-01
Quecksilber	[µg/l]	< 0,05	0,1	DIN EN ISO 12846 :2012-08
Thallium	[µg/l]	< 0,2	0,2	DIN EN ISO 17294-2:2017-01
Zink	[µg/l]	< 10	100	DIN EN ISO 17294-2:2017-01
Sulfat	[mg/l]	14	250	EN ISO 10304 :2009-07

Parameter	Einheit	Messwert	BM-0*	Methode
PCB 28	[µg/l]	< 0,002		
PCB 52	[µg/l]	< 0,002		
PCB 101	[µg/l]	< 0,002		
PCB 118	[µg/l]	< 0,002		
PCB 138	[µg/l]	< 0,002		
PCB 153	[µg/l]	< 0,002		
PCB 180	[µg/l]	< 0,002		
Σ PCB (7):	[µg/l]	n.n.	0,01	DIN EN 15308 :2016-12
1-Methylnaphthalin	[µg/l]	0,005		DIN 38 407 F 39 : 2011-09
2-Methylnaphthalin	[µg/l]	< 0,005	2	DIN 38 407 F 39 : 2011-09
Naphthalin	[μg/l]	0,009		DIN 38 407 F 39 : 2011-09
Acenaphthylen	[µg/l]	< 0,005		2
Acenaphthen	[µg/l]	0,006		
Fluoren	[µg/l]	0,015		
Phenanthren	[µg/l]	0,012		
Anthracen	[µg/l]	< 0,005		
Fluoranthen	[µg/l]	< 0,005		
Pyren	[µg/l]	< 0,005		
Benzo(a)anthracen	[µg/l]	< 0,005		
Chrysen	[µg/l]	< 0,005		
Benzo(b)fluoranthen	[µg/l]	< 0,005		
Benzo(k)fluoranthen	[µg/l]	< 0,005		
Benzo(a)pyren	[µg/l]	< 0,005		
Dibenz(a,h)anthracen	[µg/l]	< 0,005		
Benzo(a,h,i)perylen	[µg/l]	< 0,005		
Indeno(1,2,3-cd)pyren	[µg/l]	< 0,005		
Σ PAK (15):	[µg/l]	0,033	0,2	DIN 38 407 F 39 : 2011-09

Die Prüfergebnisse beziehen sich ausschließlich auf die im Prüfbericht spezifizierten Prüfgegenstände.

Markt Rettenbach, den 19.09.2023

Onlinedokument ohne Unterschrift

Gewerbestraße 10 87733 Markt Rettenbach Tel. 08392/921-0 Fax 08392/921-30 bvu@bvu-analytik.de

BVU GmbH · Gewerbestraße 10 · 87733 Markt Rettenbach

VEES | PARTNER - Prof. Dr.-Ing. E. Vees und Partner

Baugrundinstitut GmbH

Friedrich-List-Str. 42

70771 Leinfelden-Echterdingen

Analysenbericht Nr. 455/	0357 Datum:	19.09.2023
--------------------------	-------------	------------

Allgemeine Angaben

Originalbezeich.

Auftraggeber : VEES | PARTNER - Prof. Dr.-Ing. E. Vees und Partner Baugrundinstitut GmbH

Projekt : Böblingen, Neubau Klärschlamm Verbrennungsanlage KSVA

Projekt-Nr. : Az 22253

Entnahmestelle Art der Probenahme : ohne Angabe

Art der Probe : von Seiten des Auftraggebers : Boden Probenehmer

: 12.09.2023

Entnahmedatum : 03.08.2023 Probeneingang : MP 3 Auffüllungen

Probenbezeich. : 455/0357

Untersuch.-zeitraum : 12.09.2023 - 19.09.2023

Ergebnisse der Untersuchung aus der Ges.-Fraktion (BM-0*)

Parameter	Einheit	Messwert		BM-0*	Methode
Erstellen der Prüfprobe aus Laborprobe					DIN 19747:2009-07
Trockensubstanz	[%]	95,5		-	DIN EN 14346 : 2017-09
Fraktion < 2 mm	[Masse %]	28		-	Siebung
Glühverlust	[Masse %]	1,4		-	DIN EN 15169 :2007-05
TOC	[Masse %]	0,11		1	DIN EN 15936 :2012-11

2 Ergebnisse der Untersuchung aus der Fraktion < 2mm (BM-0*)

2.1 Allgemeine Parameter, Schwermetalle

Parameter	Einheit	Messwert	BM-0*	Methode
Arsen	[mg/kg TS]	2,6	20	EN ISO 11885 :2009-09
Blei	[mg/kg TS]	3,8	140	EN ISO 11885 :2009-09
Cadmium	[mg/kg TS]	0,25	1	EN ISO 11885 :2009-09
Chrom (gesamt)	[mg/kg TS]	8	120	EN ISO 11885 :2009-09
Kupfer	[mg/kg TS]	10	80	EN ISO 11885 :2009-09
Nickel	[mg/kg TS]	6,4	100	EN ISO 11885 :2009-09
Quecksilber	[mg/kg TS]	< 0,02	0,6	DIN EN ISO 12846:2012-08
Thallium	[mg/kg TS]	< 0,4	1	EN ISO 11885 :2009-09
Zink	[mg/kg TS]	44	300	EN ISO 11885 :2009-09
Aufschluß mit Königsw	asser			EN 13657 :2003-01

2.2 Summenparameter, PCB, PAK

Parameter	Einheit	Messwert	BM-0*	Methode
EOX	[mg/kg TS]	< 0,5	1	DIN 38 409 -17 :2005-12
MKW (C10 – C22)	[mg/kg TS]	< 30		DIN EN 14039 :2005-01
MKW (C10 - C40)	[mg/kg TS]	< 50	300	DIN EN 14039 :2005-01
PCB 28	[mg/kg TS]	< 0,01		
PCB 52	[mg/kg TS]	< 0,01		
PCB 101	[mg/kg TS]	< 0,01		
PCB 118	[mg/kg TS]	< 0,01		
PCB 138	[mg/kg TS]	< 0,01		
PCB 153	[mg/kg TS]	< 0,01	· · · · · ·	
PCB 180	[mg/kg TS]	< 0,01		
Σ PCB (7):	[mg/kg TS]	n.n.	0,1	DIN EN 15308 :2016-12
Naphthalin	[mg/kg TS]	< 0,04		
Acenaphthen	[mg/kg TS]	< 0,04		
Acenaphthylen	[mg/kg TS]	< 0,04		
Fluoren	[mg/kg TS]	< 0,04		
Phenanthren	[mg/kg TS]	< 0,04		
Anthracen	[mg/kg TS]	< 0,04		
Fluoranthen	[mg/kg TS]	< 0,04		
Pyren	[mg/kg TS]	< 0,04		
Benzo(a)anthracen	[mg/kg TS]	< 0,04		
Chrysen	[mg/kg TS]	< 0,04		
Benzo(b)fluoranthen	[mg/kg TS]	< 0,04		
Benzo(k)fluoranthen	[mg/kg TS]	< 0,04		
Benzo(a)pyren	[mg/kg TS]	< 0,04		
Dibenz(a,h)anthracen	[mg/kg TS]	< 0,04		
Benzo(g,h,i)perylen	[mg/kg TS]	< 0,04		
Indeno(1,2,3-cd)pyren	[mg/kg TS]	< 0,04		
Σ PAK (EPA Liste):	[mg/kg TS]	n.n.	6	DIN ISO 18287 :2006-05

3 Ergebnisse der Untersuchung aus dem Eluat (BM-0*)

Parameter	Einheit	Messwert	BM-0*	Methode
	Eluatherstelllung – Schütteleluat [I:s]		Biii 0	DIN 19529 : 2015-12
pH-Wert	[-]	2 : 1 10,15		DIN EN ISO 10523 04-2012
elektr. Leitfähigkeit	[µS/cm]	116	350	DIN EN 27 888 : 1993
Arsen	[µg/l]	< 4	8	DIN EN ISO 17294-2:2017-01
Blei	[µg/l]	< 5	23	DIN EN ISO 17294-2:2017-01
Cadmium	[µg/l]	< 0,1	2	DIN EN ISO 17294-2:2017-01
Chrom (gesamt)	[µg/l]	< 5	10	DIN EN ISO 17294-2:2017-01
Kupfer	[µg/l]	< 5	20	DIN EN ISO 17294-2:2017-01
Nickel	[µg/l]	< 5	20	DIN EN ISO 17294-2:2017-01
Quecksilber	[µg/l]	< 0,05	0,1	DIN EN ISO 12846:2012-08
Thallium	[µg/l]	< 0,2	0,2	DIN EN ISO 17294-2:2017-01
Zink	[µg/l]	< 10	100	DIN EN ISO 17294-2:2017-01
	1			
Sulfat	[mg/l]	12	250	EN ISO 10304 :2009-07

Parameter	Einheit	Messwert	BM-0*	Methode
PCB 28	[µg/l]	< 0,002		
PCB 52	[µg/l]	< 0,002		
PCB 101	[µg/l]	< 0,002		
PCB 118	[µg/l]	< 0,002		
PCB 138	[µg/l]	< 0,002		
PCB 153	[µg/l]	< 0,002		
PCB 180	[µg/l]	< 0,002		
Σ PCB (7):	[µg/l]	n.n.	0,01	DIN EN 15308 :2016-12
1-Methylnaphthalin	[µg/l]	0.006		DIN 38 407 F 39 : 2011-09
2-Methylnaphthalin	[µg/l]	0,006	2	DIN 38 407 F 39 : 2011-09
Naphthalin	[µg/l]	0,019		DIN 38 407 F 39 : 2011-09
Acenaphthylen	[µg/l]	< 0,005		
Acenaphthen	[µg/l]	< 0,005		
Fluoren	[µg/l]	0,005		
Phenanthren	[µg/l]	0,01		
Anthracen	[µg/l]	< 0,005		
Fluoranthen	[µg/l]	0,005		
Pyren	[µg/l]	< 0,005		
Benzo(a)anthracen	[µg/l]	< 0,005		
Chrysen	[µg/l]	< 0,005		
Benzo(b)fluoranthen	[µg/l]	< 0,005		
Benzo(k)fluoranthen	[µg/l]	< 0,005		
Benzo(a)pyren	[µg/l]	< 0,005		
Dibenz(a,h)anthracen	[µg/l]	< 0,005		
Benzo(a,h,i)perylen	[µg/l]	< 0,005		
Indeno(1,2,3-cd)pyren	[µg/l]	< 0,005		
Σ PAK (15):	[µg/l]	0,02	0,2	DIN 38 407 F 39 : 2011-09

 $\label{thm:proposed_prop} \mbox{Die Pr\"{u}fergebnisse beziehen sich ausschließlich auf die im Pr\"{u}fbericht spezifizierten Pr\"{u}fgegenst\"{a}nde.}$

Markt Rettenbach, den 19.09.2023

Onlinedokument ohne Unterschrift

Gewerbestraße 10 87733 Markt Rettenbach Tel. 083 92/9 21-0 Fax 083 92/9 21-30 bvu@bvu-analytik.de

BVU GmbH · Gewerbestraße 10 · 87733 Markt Rettenbach

VEES | PARTNER - Prof. Dr.-Ing. E. Vees und Partner

Baugrundinstitut GmbH

Friedrich-List-Str. 42

70771 Leinfelden-Echterdingen

Analysenbericht Nr.	455/0358	Datum:	19.09.2023
---------------------	----------	--------	------------

Allgemeine Angaben

Auftraggeber : VEES | PARTNER - Prof. Dr.-Ing. E. Vees und Partner Baugrundinstitut GmbH

Projekt : Böblingen, Neubau Klärschlamm Verbrennungsanlage KSVA

Projekt-Nr. : Az 22253

Entnahmestelle : Art der Probenahme : ohne Angabe

Art der Probe : Boden Probenehmer : von Seiten des Auftraggebers

Entnahmedatum : 03.08.2023 Probeneingang : 12.09.2023

Originalbezeich. : MP 4 natürlicher Boden

Probenbezeich. : 455/0358

Untersuch.-zeitraum : 12.09.2023 – 19.09.2023

1 Ergebnisse der Untersuchung aus der Ges.-Fraktion (BM-0*)

Parameter	Einheit	Messwert	BM-0*	Methode
Erstellen der Prüfprobe aus Laborprobe				DIN 19747:2009-07
Trockensubstanz	[%]	92,3	-	DIN EN 14346 : 2017-09
Fraktion < 2 mm	[Masse %]	25	-	Siebung
Glühverlust	[Masse %]	3,7	-	DIN EN 15169 :2007-05
TOC	[Masse %]	0,31	1	DIN EN 15936 :2012-11

2 Ergebnisse der Untersuchung aus der Fraktion < 2mm (BM-0*)

2.1 Allgemeine Parameter, Schwermetalle

Parameter	Einheit	Messwert	BM-0*	Methode
Arsen	[mg/kg TS]	4,4	20	EN ISO 11885 :2009-09
Blei	[mg/kg TS]	7,2	140	EN ISO 11885 :2009-09
Cadmium	[mg/kg TS]	0,1	1	EN ISO 11885 :2009-09
Chrom (gesamt)	[mg/kg TS]	32	120	EN ISO 11885 :2009-09
Kupfer	[mg/kg TS]	25	80	EN ISO 11885 :2009-09
Nickel	[mg/kg TS]	21	100	EN ISO 11885 :2009-09
Quecksilber	[mg/kg TS]	< 0,02	0,6	DIN EN ISO 12846:2012-08
Thallium	[mg/kg TS]	< 0,4	1	EN ISO 11885 :2009-09
Zink	[mg/kg TS]	28	300	EN ISO 11885 :2009-09
Aufschluß mit Königswa	sser			EN 13657 :2003-01

2.2 Summenparameter, PCB, PAK

Parameter	Einheit	Messwert	BM-0*	Methode
EOX	[mg/kg TS]	< 0,5	1	DIN 38 409 -17 :2005-12
MKW (C10 – C22)	[mg/kg TS]	< 30		DIN EN 14039 :2005-01
MKW (C10 - C40)	[mg/kg TS]	< 50	300	DIN EN 14039 :2005-01
DCD 00	[// TC]	. 0.04	1	1
PCB 28 PCB 52	[mg/kg TS]	< 0,01		
	[mg/kg TS]	< 0,01		
PCB 101	[mg/kg TS]	< 0,01		
PCB 118	[mg/kg TS]	< 0,01		
PCB 138	[mg/kg TS]	< 0,01		
PCB 153	[mg/kg TS]	< 0,01		
PCB 180	[mg/kg TS]	< 0,01		
Σ PCB (7):	[mg/kg TS]	n.n.	0,1	DIN EN 15308 :2016-12
		T-	1	1
Naphthalin	[mg/kg TS]	< 0,04		
Acenaphthen	[mg/kg TS]	< 0,04		
Acenaphthylen	[mg/kg TS]	< 0,04		
Fluoren	[mg/kg TS]	< 0,04		
Phenanthren	[mg/kg TS]	< 0,04		
Anthracen	[mg/kg TS]	< 0,04		
Fluoranthen	[mg/kg TS]	< 0,04		
Pyren	[mg/kg TS]	< 0,04		
Benzo(a)anthracen	[mg/kg TS]	< 0,04		
Chrysen	[mg/kg TS]	< 0,04		
Benzo(b)fluoranthen	[mg/kg TS]	< 0,04		
Benzo(k)fluoranthen	[mg/kg TS]	< 0,04		
Benzo(a)pyren	[mg/kg TS]	< 0,04		
Dibenz(a,h)anthracen	[mg/kg TS]	< 0,04		
Benzo(g,h,i)perylen	[mg/kg TS]	< 0,04		
Indeno(1,2,3-cd)pyren	[mg/kg TS]	< 0,04		
Σ PAK (EPA Liste):	[mg/kg TS]	n.n.	6	DIN ISO 18287 :2006-05

3 Ergebnisse der Untersuchung aus dem Eluat (BM-0*)

_				
Parameter	Einheit	Messwert	BM-0*	Methode
Eluatherstelllung – Sch	ütteleluat [l:s]	2:1		DIN 19529 : 2015-12
pH-Wert	[-]	8,12		DIN EN ISO 10523 04-2012
elektr. Leitfähigkeit	[µS/cm]	261	350	DIN EN 27 888 : 1993
Arsen	[µg/l]	< 4	8	DIN EN ISO 17294-2:2017-01
Blei	[µg/l]	< 5	23	DIN EN ISO 17294-2:2017-01
Cadmium	[µg/l]	< 0,1	2	DIN EN ISO 17294-2:2017-01
Chrom (gesamt)	[µg/l]	< 5	10	DIN EN ISO 17294-2:2017-01
Kupfer	[µg/l]	< 5	20	DIN EN ISO 17294-2:2017-01
Nickel	[µg/l]	< 5	20	DIN EN ISO 17294-2:2017-01
Quecksilber	[µg/l]	< 0,05	0,1	DIN EN ISO 12846:2012-08
Thallium	[µg/l]	< 0,2	0,2	DIN EN ISO 17294-2:2017-01
Zink	[µg/l]	< 10	100	DIN EN ISO 17294-2:2017-01
Sulfat	[mg/l]	8	250	EN ISO 10304 :2009-07

Parameter	Einheit	Messwert	BM-0*	Methode
PCB 28	[µg/l]	< 0,002		
PCB 52	[µg/l]	< 0,002		
PCB 101	[µg/l]	< 0,002		
PCB 118	[µg/l]	< 0,002		
PCB 138	[µg/l]	< 0,002		
PCB 153	[µg/l]	< 0,002		
PCB 180	[µg/l]	< 0,002		
Σ PCB (7):	[µg/l]	n.n.	0,01	DIN EN 15308 :2016-12
1-Methylnaphthalin	[µg/l]	0,008		DIN 38 407 F 39 : 2011-09
2-Methylnaphthalin	[µg/l]	0,005	2	DIN 38 407 F 39 : 2011-09
Naphthalin	[µg/l]	0,012		DIN 38 407 F 39 : 2011-09
Acenaphthylen	[µg/l]	< 0,005		
Acenaphthen	[µg/l]	0,01		
Fluoren	[µg/l]	0,027		
Phenanthren	[µg/l]	0,023		
Anthracen	[µg/l]	< 0,005		
Fluoranthen	[µg/l]	< 0,005		
Pyren	[µg/l]	< 0,005		
Benzo(a)anthracen	[µg/l]	< 0,005		
Chrysen	[µg/l]	< 0,005		
Benzo(b)fluoranthen	[µg/l]	< 0,005		
Benzo(k)fluoranthen	[µg/l]	< 0,005		
Benzo(a)pyren	[µg/l]	< 0,005		
Dibenz(a,h)anthracen	[µg/l]	< 0,005		
Benzo(a,h,i)perylen	[µg/l]	< 0,005		
Indeno(1,2,3-cd)pyren	[µg/l]	< 0,005		
Σ PAK (15):	[µg/l]	0,06	0,2	DIN 38 407 F 39 : 2011-09

Die Prüfergebnisse beziehen sich ausschließlich auf die im Prüfbericht spezifizierten Prüfgegenstände.

Markt Rettenbach, den 19.09.2023

Onlinedokument ohne Unterschrift

Boden- und Felsklassen nach DIN 18300 Erdarbeiten

Ausgabe September 2012

(ersetzt durch die aktuelle Ausgabe September 2019)

Klasse 1: Oberboden

Oberste Schicht des Bodens, die neben anorganischen Stoffen, z. B. Kies-, Sand-, Schluff- und Tongemischen, auch Humus und Bodenlebewesen enthält.

Klasse 2: Fließende Bodenarten

Bodenarten, die von flüssiger bis breiiger Konsistenz sind und die das Wasser schwer abgeben.

Klasse 3: Leicht lösbare Bodenarten

Sande, Kiese und Sand-Kies-Gemische mit höchstens 15 % Masseanteil an Schluff und Ton mit Korngrößen kleiner 0,063 mm und mit höchstens 30 % Masseanteil an Steinen mit Korngrößen über 63 mm bis 200 mm.

Organische Bodenarten, die nicht von flüssiger bis breiiger Konsistenz sind, und Torfe.

Klasse 4: Mittelschwer lösbare Bodenarten

Gemische von Sand, Kies, Schluff und Ton mit über 15 % Masseanteil der Korngröße kleiner 0,063 mm. Bodenarten von leichter bis mittlerer Plastizität, die je nach Wassergehalt weich bis halbfest sind und höchstens 30 % Masseanteil an Steinen enthalten.

Klasse 5: Schwer lösbare Bodenarten

Bodenarten nach den Klassen 3 und 4, jedoch mit über 30 % Masseanteil an Steinen. Bodenarten mit höchstens 30 % Masseanteil an Blöcken der Korngröße über 200 mm bis 630 mm. Ausgeprägt plastische Tone, die je nach Wassergehalt weich bis halbfest sind.

Klasse 6: Leicht lösbarer Fels und vergleichbare Bodenarten

Felsarten, die einen mineralisch gebundenen Zusammenhalt haben, jedoch stark klüftig, brüchig, bröckelig, schiefrig oder verwittert sind, sowie vergleichbare feste oder verfestigte Bodenarten, z. B. durch Austrocknung, Gefrieren, chemische Bindungen.

Bodenarten mit über 30 % Masseanteil an Blöcken.

Klasse 7: Schwer lösbarer Fels

Felsarten, die einen mineralisch gebundenen Zusammenhalt und eine hohe Festigkeit haben und die nur wenig klüftig oder verwittert sind, auch unverwitterter Tonschiefer, Nagelfluhschichten, verfestigte Schlacken und dergleichen.

Haufwerke aus großen Blöcken mit Korngrößen über 630 mm.

Boden- und Felsklassen nach DIN 18301 Bohrarbeiten

Ausgabe September 2012 (ersetzt durch die aktuelle Ausgabe September 2023)

Klasse B: Boden

Klasse BN: Nichtbindige Böden, Hauptbestandteile Sand und Kies, Korngröße bis 63 mm.

Feinkornanteil	Klasse
bis 15 %	BN 1
über 15 %	BN 2

Klasse BB: Bindige Böden, Hauptbestandteile Schluff, Ton oder Sand, Kies mit starkem Einfluss der bindigen Anteile.

Undränierte Scherfestigkeit c _u kN/m ²	Konsistenz	Klasse
bis 20	flüssig bis breiig	BB 1
über 20 bis 200	weich bis steif	BB 2
über 200 bis 600	halbfest	BB 3
über 600	fest bis sehr fest	BB 4

Klasse BO: Organische Böden, Hauptbestandteile Torf, Mudde und Humus.

Hauptbestandteile	Klasse
Mudde, Humus und zersetzte Torfe	BO 1
unzersetzte Torfe	BO 2

Zusatzklasse BS: Steine und Blöcke

Kommen in Lockergesteinen Steine und Blöcke vor, so ist die Zusatzklasse BS ergänzend zu den Klassen BN, BB und BO anzugeben.

Wannanii 0 a	Volumenanteil Steine und Blöcke		
Korngröße	bis 30 %	über 30 %	
über 63 mm bis 200 mm (Steine)	BS 1	BS 2	
über 200 mm bis 630 mm (Blöcke)	BS 3	BS 4	

Blöcke größer als 630 mm sind hinsichtlich ihrer Größe gesondert anzugeben.

Klasse F: Fels

Klasse FV

	Trennflächenabstand			
Verwitterungsgrad	bis 10 cm	über 30 cm		
zersetzt	in Klasse BB oder BN einzustufen			
entfestigt	FV 1			
angewittert	FV 2 FV 3			
unverwittert	FV 4	FV 6		

Verwitterungsgrad und Trennflächenabstand sind gemäß FGSV 543 anzugeben.

Zusatzklassen FD: Einaxiale Festigkeit

Für die Felsklassen FV 2 bis FV 6 sind die Zusatzklassen FD ergänzend anzugeben.

Einaxiale Festigkeit N/mm²	Klasse
bis 20	FD 1
über 20 bis 80	FD 2
über 80 bis 200	FD 3
über 200 bis 300	FD 4
über 300	FD 5