ABS Berlin - Frankfurt/Oder - Grenze D/PL

PA 16 Bf Köpenick und Parallelmaßnahmen in der S3 Ost

km 10,3+60 bis km 13,5+80

Berechnungen zur Entwässerung der Bauwerke

Die Entwässerung der Bauwerke erfolgt mittels Sickerschicht und teilporösem Grundrohr. Je nach Standort wird das Niederschlagswasser in Sickermulden oder Rigolen örtlich versickert oder an eine vorhandene Vorflut angeschlossen. Die Berechnungswassermenge wird nach Ril 836.4601 ermittelt. Die Ermittlung der maßgebenden Regenspende erfolgt auf Basis der Daten des Deutschen Wetterdienstes Abt. Hydrometeorologie (KOSTRA-DWD 2000) Der Nachweis der Versickerung erfolgt nach DWA-A138 für den ungünstigsten zu erwartenden Regen bemessen. Die Einleitmengen in eine Vorflu wird mit einem 15minütigen regen mit einer Wiederkehrwahrscheinlichkeit von n=0,2 pro Jahr ermittelt.

Ausgangswerte Berechnungswassermenge

Wassermenge Versickerung $Q = Q_R + Q_Z + Q_U$ Regenabfluss $Q_R = r_{T,n} * \phi * A_E * \psi_S$

gesammelt zugeführte Wassermenge $Q_Z = \frac{0}{0}$ Anteil entfällt

unterirdischer Zufluss $Q_U = \frac{0,02 \text{ l/(s*m)}}{(Stauwasser)}$ Ansatz nur bei Stützwänden

Einzugsfläche $A_E = L * B$ Regenhäufigkeit T = 5 Spitzenabflussbeiwert $\psi_S = 0,9$

Bemessungsregenspende für Einleitung in Vorflut $r_{15;0,2} = \frac{213,1}{l/(s^*ha)}$

Auswertung KOSTRA-DWD Tabellen für den Standort

Niederschlagshöhen und -spenden Zeitspanne: Januar - Dezember Rasterfeld: Spalte: 63 Zeile: 35

	Т	0,5	1	2	5	10	20	50	100
D		rN							
5	min	142,2	208,8	275,3	363,3	429,9	496,5	584,5	651,0
10	min	115,8	160,6	205,5	264,7	309,5	354,3	413,5	458,3
15	min	95,0	130,6	166,1	213,1	248,6	284,2	331,1	366,7
20	min	79,8	110,0	140,1	180,0	210,1	240,3	280,1	310,3
30	min	59,7	83,6	107,5	139,1	163,0	187,0	218,6	242,5
45	min	42,5	61,5	80,4	105,5	124,5	143,5	168,6	187,5
60	min	32,5	48,6	64,7	86,0	102,1	118,2	139,5	155,6
90	min	23,0	34,8	46,6	62,1	73,9	85,7	101,2	113,0
120	min	18,0	27,4	36,9	49,3	58,8	68,2	80,7	90,1
180	min	12,7	19,6	26,5	35,6	42,5	49,4	58,6	65,5
240	min	10,0	15,5	21,0	28,3	33,8	39,4	46,7	52,2
360	min	7,0	11,1	15,1	20,5	24,5	28,6	33,9	37,9
540	min	5,0	7,9	10,9	14,8	17,8	20,7	24,6	27,6
720	min	3,9	6,3	8,6	11,8	14,1	16,5	19,6	22,0
1080	min	2,9	4,6	6,3	8,5	10,2	11,9	14,1	15,8
1440	min	2,4	3,8	5,1	6,9	8,2	9,6	11,4	12,7
2880	min	1,5	2,2	2,9	3,8	4,6	5,3	6,2	6,9
4320	min	1,2	1,7	2,2	2,9	3,4	3,9	4,5	5,0

Für die Berechnung wurden folgende Grundwerte (hN in [mm]) verwendet:

T/D	15,0 min	60,0 min	12,0 h	24,0 h	48,0 h	72,0 h
1 a	11,75	17,50	27,00	32,50	37,50	45,00
100 a	33,00	56,00	95,00	110,00	120,00	130,00

Berechnung "Kurze Dauerstufen" (D<=60 min): u hyperbolisch, w doppelt logarithmisch

Wenn die angegebenen Werte für Planungszwecke herangezogen werden, sollte für rN(D;T) bzw. hN(D;T) in Abhängigkeit von der Wiederkehrzeit (Jährlichkeit)

bei $0.5 \text{ a} \le T \le 5 \text{ a}$ ein Toleranzbetrag $\pm 10 \text{ %}$, bei $5 \text{ a} \le T \le 50 \text{ a}$ ein Toleranzbetrag $\pm 15 \text{ %}$, bei $50 \text{ a} \le T \le 100 \text{ a}$ ein Toleranzbetrag $\pm 20 \text{ %}$, Berücksichtigung finden.

Seite 1 von 15 Planungsstand: 09.11.2018

ABS Berlin - Frankfurt/Oder - Grenze D/PL PA 16 Bf Köpenick und Parallelmaßnahmen in der S3 Ost

EÜ Hämmerlingstraße 11.0+73		
		NAC de ale se a se se de
Auf dem Überbau anfallendes Niederschlagswasser wird über da		
Dort wird das Wasser über einer eine Porositwand in die Grundro		
angeschlossen. Als Vorflut dient die geplante Straßenentwässeru	ung der neuen Ost-Wes	st-Trasse.
Länge Überbau	L:	30,10 m
Breite Überbau inkl. Kappe	B:	29,58 m
Spitzenabflussbeiwert		0,90
Splizeriabilussbeiweit	ψ _S :	0,90
zu entwässernde Fläche	$A_E = B^* L^* \psi_S$:	801,32 m²
Regenspende	r _{15;0,2} :	213,100 l/(s*ha)
Einleitmenge in die Straßenentwässerung OWT (Vorflut)	\mathbf{Q}_{R} :	18,00 l/s
	Q _R :	16,20 m³/15min
		,

ABS Berlin - Frankfurt/Oder - Grenze D/PL

PA 16 Bf Köpenick und Parallelmaßnahmen in der S3 Ost

<u> </u>		
Stützwand 1a von km : 12 Anfallendes Wasser wird über eine Porositwa Das Grundrohr entwässert im vorderen Abso		11.3+74
Ab ca. km 11,3+27 wird das Grundrohr zur E Die EÜ Wuhle entwässert in die Wuhle		
Wandlänge gesamt Kappenbreite	L : B :	280,00 m 1,57 m
Spitzenabflussbeiwert	Ψ _S :	0,90
Entwässerung in Vorflut Wuhle		44.0.00
von km bis km		11.2+82 11.3+74
angeschlossene Wandlänge	L1 :	92,00 m
Angeschlossene Fläche	$A_E = B^* L1 * \psi_S$:	130,00 m ²
Regenspende	r _{15;0,2} :	213,100 l/(s*ha)
unterirdischer Zufluss	$Q_U * L1$:	1,840 l/s
Einleitmenge in die Wuhle	\mathbf{Q}_{R} :	4,610 l/s
	Q_R :	4,149 m³/15min
Muldenversickerung		, , , , , , , , , , , , , , , , , , ,
von km		11.0+94
bis km		11.2+82
angeschlossene Wandlänge	L2:	188,00 m
Angeschlossene Fläche	$A_E = B^* L2 * \psi_S:$	265,64 m²
Breite der Sickermulde Sohlbreite der Sickermulde	B : B1 :	3,00 m 2,00 m
Neigung Böschung 1:n	n:	2,00
Länge	L:	21,00 m
Höhe der Mulde	H = 0.5 * (B-B1) / n H:	0,25 m
Oberkante Gelände	OKG :	35,20 mNN
Sohlhöhe Mulde	OKS:	34,95 mNN
Grundwasserstand	HGW:	33,40 mNN
Grundwasserflurabstand	h _s (mind. > 1,0 m) :	1,55 m
hydraulisches Gefälle	$I_{hy} = (h_s + z) / (h_s + z/2)$:	1,07 m/m
Speichervolumen Mulde	$V_M = L^*0,5^*(B+B1)^*H V_M$:	13,125 m³
benetzter Umfang (vereinfacht Breite d. Mulc	U = B u :	3,000 m
Versickerfläche As=u x L	$A_S = U * L As:$	63 m²
Zuschlagfaktor gemäß ATV-DVWK-A117	fz:	1,20
Durchlässigkeitsbeiwert d. gesättigten Zone		1,00E-04 m/s
Filtergeschwindigkeit	$V_{f,u} = k_f/2 * I_{hy}$	5,37E-05 m/s
Regen nach KOSTRA:		
maßgebene Regenspende	r(D,n):	180 l/(s*ha)
maßgebene Regenspende, Korrektur	10% r(D,n) : D :	198 l/(s*ha) 20 min
maßgebene Regendauer Häufigkeit gemäß Ril 836 -> T = 10 Jahre	Д. 1/Т :	0,10
für dezentrale Versickerung außerhalb Bahnl		0,10
Berechnungsergebnisse:	•	
Niederschlagsmenge gesamt	Q = $(Au + As) * r_{D,n} * D * 60 * fz Q$:	9,370 m³
unterirdischer Zufluss	$Q_U = Q_U * L2 * d * 60 Q_U$:	· · · · · · · · · · · · · · · · · · ·
SickerrateVersickerungsleistung	$Q_S = A_S * V_{f,u} * D * 60 Q_S$:	4,062 m ³
erforderliches Speichervolumen	$Q_S = A_S V_{f,u} D OU Q_S $.	9,820 m ³
geplantes Speichervolumen der Mulde	Vm:	13,13 m³
mittlere Einstauhöhe	zm = V / (L * (B+B1)/2) :	0,19 m
Entleerungszeit der Mulde	$t_e = 2 * z_m / v_{f.u}$:	1,9 h
	•e — — — m · •t,u ·	1,0

km 10,3+60 bis km 13,5+80

Auswertung Datenreihe für T = 5 Jahre für Stützwand 1a

D	r(D,N)	Q (inkl. +10%)	QS	V
[min]	l/s*ha	[m³]	[m³]	[m³]
5	363,30	4,728	1,02	3,713
10	264,70	6,890	2,03	4,859
15	213,10	8,320	3,05	5,273
20	180,00	9,370	4,06	5,308
30	139,10	10,862	6,09	4,769
45	105,50	12,357	9,14	3,217
60	86,00	13,431	12,19	1,244
90	62,10	14,547	18,28	-3,732
120	49,30	15,399	24,37	-8,974
180	35,60	16,679	36,56	-19,880
240	28,30	17,679	48,75	-31,066
360	20,50	19,209	73,12	-53,909
540	14,80	20,802	109,68	-88,874
720	11,80	22,114	146,24	-124,121
1080	8,50	23,894	219,35	-195,459
1440	6,90	25,862	292,47	-266,608
2880	3,80	28,486	584,94	-556,455
4320	2,90	32,609	877,41	-844,803

maßgebendes Regenereignis

Unterlage 16.2

ABS Berlin - Frankfurt/Oder - Grenze D/PL

PA 16 Bf Köpenick und Parallelmaßnahmen in der S3 Ost

Stützwand 1b von km :	11.3+97 bis km :	11.4+05
Anfallendes Wasser wird über eine Poros	sitwand in ein Grundrohr eingeleitet.	
	t und mit dem Grundrohr der EÜ Wuhle ve	erbunden.
Die EÜ Wuhle entwässert in die Wuhle		
Wandlänge gesamt	Ŀ	8,00 m
Kappenbreite	B:	1,57 m
Spitzenabflussbeiwert	ψ_{S} :	0,90
Entwässerung in Vorflut Wuhle		
von km		11.3+97
bis km		11.4+05
angeschlossene Wandlänge	L1 :	8,00 m
Angeschlossene Fläche	$A_E = B^* L1 * \psi_S$:	11,30 m²
Regenspende	r _{15;0,2} :	213,100 l/(s*ha)
unterirdischer Zufluss	Q_U * L1 :	0,160 l/s
Einleitmenge in die Wuhle	\mathbf{Q}_{R} :	0,401 l/s
	\mathbf{Q}_{R} :	0,361 m³/15min
	•	

ABS Berlin - Frankfurt/Oder - Grenze D/PL

PA 16 Bf Köpenick und Parallelmaßnahmen in der S3 Ost

Stützwand 2a von km :	11.4+05 bis km :	11.4+26
Anfallendes Wasser wird über eine Poro		
Das Grundrohr wird an das Grundrohr de		
Die Stützwand 1b entwässert über die El		
	_	
Wandlänge gesamt	L:	21,00 m
Kappenbreite	B:	1,57 m
Spitzenabflussbeiwert	ψ_{S} :	0,90
Entwässerung in Vorflut Wuhle		
von km		11.4+05
bis km		11.4+26
angeschlossene Wandlänge	L1 :	21,00 m
Angeschlossene Fläche	$A_E = B^* L1 * \psi_S$:	29,67 m²
Regenspende	r _{15;0,2} :	213,100 l/(s*ha)
unterirdischer Zufluss	$Q_U * L1$:	0,420 l/s
Einleitmenge in die Wuhle	\mathbf{Q}_{R} :	1,052 l/s
	\mathbf{Q}_{R} :	0,947 m³/15min

ABS Berlin - Frankfurt/Oder - Grenze D/PL

PA 16 Bf Köpenick und Parallelmaßnahmen in der S3 Ost

Stützwand 2b	von km :	11.4+44	bis km	n : 11.5+85	
Anfallendes Wasser wird über					
Das Grundrohr wird an den ge					
Der Regenwasserkanal münd					
, and the second					
Wandlänge gesamt				L: 141,00	
Kappenbreite				3 : 1,57	m
Spitzenabflussbeiwert			Ψ	v _S : 0,90	
Entwässerung in Vorflut Wu	ıhle				
von km	0			11.4+44	
bis km				11.5+85	
angeschlossene Wandlänge			L1		
Angeschlossene Fläche			$A_E = B^* L1 * \psi$		
Regenspende			r _{15;0,2}		
unterirdischer Zufluss			Q _U * L1		
Einleitmenge in die Wuhle			Q_{R}		
			Q_{F}	_R : 6,359	m³/15min

ABS Berlin - Frankfurt/Oder - Grenze D/PL

PA 16 Bf Köpenick und Parallelmaßnahmen in der S3 Ost

Stützwand 3 von km :	11.6+44 bis km :	11.8+45
Anfallendes Wasser wird über eine Poros		
Das Grundrohr wird an den geplanten Re		
Der Regenwasserkanal mündet in die Wi		
Wandlänge gesamt	L:[201,00 m
Kappenbreite	В:	1,57 m
Spitzenabflussbeiwert	Ψs:	0,90
Entwässerung in Vorflut Wuhle		
von km	ı	11.6+44
bis km		11.8+45
angeschlossene Wandlänge	L1 :	201,00 m
Angeschlossene Fläche	$A_E = B^* L1 * \psi_S$:	284,01 m²
Regenspende	r _{15;0,2} :	213,100 l/(s*ha)
unterirdischer Zufluss	Q _U * L1 :	4,020 l/s
Einleitmenge	Q_R :	10,072 l/s
		9,065 m³/15min
	Q_R :	9,000

ABS Berlin - Frankfurt/Oder - Grenze D/PL

PA 16 Bf Köpenick und Parallelmaßnahmen in der S3 Ost

Stützwand 4 von km :	11.3+59 bis km :	11.3+71
Anfallendes Wasser wird über eine Poros		
	t und mit dem Grundrohr der EÜ Wuhle ve	rhunden
Die EÜ Wuhle entwässert in die Wuhle	t direction of distributions del LO Walle Ve	
Wandlänge gesamt	L:	12,00 m
Kappenbreite	В:	2,01 m
Spitzenabflussbeiwert	ψ_{S} :	0,90
		,
Entwässerung in Vorflut Wuhle	-	
von km		11.3+59
bis km	14.	11.3+71
angeschlossene Wandlänge	L1:	12,00 m
Angeschlossene Fläche	$A_E = B^* L1 * \psi_S$:	21,71 m²
Regenspende	r _{15;0,2} :	213,100 l/(s*ha)
unterirdischer Zufluss	$Q_U * L1$:	0,240 l/s
Einleitmenge	\mathbf{Q}_{R} :	0,703 l/s
	\mathbf{Q}_{R} :	0,632 m³/15min
	•	

ABS Berlin - Frankfurt/Oder - Grenze D/PL

PA 16 Bf Köpenick und Parallelmaßnahmen in der S3 Ost

Stützwand 5 von km :	11.3+93 bis km :	11.4+16
Anfallendes Wasser wird über eine Poros	sitwand in ein Grundrohr eingeleitet.	
Das Grundrohr wird zur EÜ Wuhle gefühl	rt und mit dem Grundrohr der EÜ Wuhle ve	rbunden.
Die EÜ Wuhle entwässert in die Wuhle		
Wandlänge gesamt	Ŀ	23,00 m
Kappenbreite	B:	2,01 m
Spitzenabflussbeiwert	ψs:	0,90
Entwässerung in Vorflut Wuhle		
von km		11.3+93
bis km		11.4+16
angeschlossene Wandlänge	L1:	23,00 m
Angeschlossene Fläche	$A_E = B^* L1 * \psi_S$:	41,61 m²
Regenspende	r _{15;0,2} :	213,100 l/(s*ha)
unterirdischer Zufluss	$Q_U * L1$:	0,460 l/s
Einleitmenge	\mathbf{Q}_{R} :	1,347 l/s
	\mathbf{Q}_{R} :	1,212 m³/15min

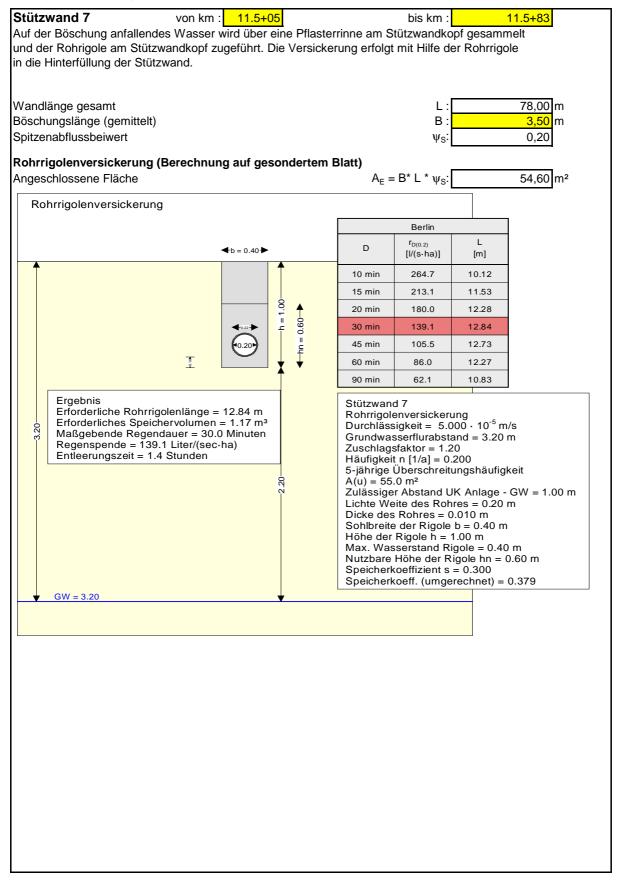
ABS Berlin - Frankfurt/Oder - Grenze D/PL

PA 16 Bf Köpenick und Parallelmaßnahmen in der S3 Ost

Stützwand 6 von km: 11.4+45 bis km: 11.4+62 Auf der Böschung anfallendes Wasser wird über eine Pflasterrinne am Stützwandkopf gesammelt. Die Pflasterinne entwässert in eine Sickermulde am Böschungsfuss Wandlänge gesamt Böschungslänge (gemittelt) Spitzenabflussbeiwert Was: 0,20 Muldenversickerung Angeschlossene Fläche Breite der Sickermulde Bi: 0,500 Sohlbreite der Sickermulde Bi: 0,000 Neigung Böschung 1:n Länge L: 12,000 Höhe der Mulde H = 0,5 * (B-B1) / n H: 0,17 Oberkante Gelände Sohlihöhe Mulde OKS: 35,30 Grundwasserstand Grundwasserflurabstand hg (mind. > 1,0 m): 1,63 hydraulisches Gefälle V _M = L*0,5*(B+B1)*H V _M : 0,5 benetzter Umfang (vereinfacht Breite d. Mulde) Versickerfläche As=u x L A _S = U * L As: 6 Zuschlagfaktor gemäß ATV-DVWK-A117 Durchlässigkeitsbeiwert d. gesättigten Zone d. Untergrundes Filtergeschwindigkeit	m m² m m
Die Pflasterinne entwässert in eine Sickermulde am Böschungsfuss Wandlänge gesamt Böschungslänge (gemittelt) B: 3,10 Spitzenabflussbeiwert Ws: 0,20 Muldenversickerung Angeschlossene Fläche Breite der Sickermulde B: 0,50 Sohlbreite der Sickermulde B: 0,00 Sohlbreite der Sickermulde B: 0,00 Neigung Böschung 1:n Länge Höhe der Mulde H = 0,5 * (B-B1) / n H: 0,17 Oberkante Gelände OKG: 35,30 Sohlhöhe Mulde OKS: 35,13 Grundwasserstand Grundwasserstand HGW: 33,50 Grundwasserflurabstand h _S (mind. > 1,0 m): 1,63 hydraulisches Gefälle I _{hy} = (h _S +z) / (h _S + z/2): 1,05 Speichervolumen Mulde V _M = L*0,5*(B+B1)*H V _M : 0,5 Speichervolumen Mulde Versickerfläche As=u x L A _S = U * L As: 6 Zuschlagfaktor gemäß ATV-DVWK-A117 Durchlässigkeitsbeiwert d. gesättigten Zone d. Untergrundes	m m² m m
Wandlänge gesamt Böschungslänge (gemittelt) Bis 3,10 Spitzenabflussbeiwert Wsis 0,20 Muldenversickerung Angeschlossene Fläche Breite der Sickermulde Sohlbreite der Sickermulde Sohlbreite der Sickermulde Neigung Böschung 1:n Länge Höhe der Mulde H = 0,5 * (B-B1) / n H : 0,17 Oberkante Gelände Sohlbreite der Sickermulde Hein der Mulde H = 0,5 * (B-B1) / n H : 0,17 Oberkante Gelände Sohlhöhe Mulde OKS: 35,30 Grundwasserstand Grundwasserstand HGW: 33,50 Grundwasserstand HgW: 33,50 Frundwasserstand Grundwasserflurabstand hydraulisches Gefälle Ihy = (h_s+z) / (h_s + z/2) : 1,05 Speichervolumen Mulde Versickerfläche As=u x L As = U * L As: 6 in 1,00E-04 in	m m² m m
Böschungslänge (gemittelt) Spitzenabflussbeiwert W _S : 0,20 Muldenversickerung Angeschlossene Fläche Breite der Sickermulde Sohlbreite der Sickermulde Neigung Böschung 1:n Länge Höhe der Mulde H = 0,5 * (B-B1) / n H: Oberkante Gelände Sohlbhöhe Mulde Grundwasserstand Grundwasserstand Grundwasserflurabstand hydraulisches Gefälle Speichervolumen Mulde V _M = L*0,5*(B+B1)*H V _M : Denetzter Umfang (vereinfacht Breite d. Mulde) Versickerfläche As=u x L Zuschlagfaktor gemäß ATV-DVWK-A117 Durchlässigkeitsbeiwert d. gesättigten Zone d. Untergrundes Ag = B* L * ψ_S : 0,20 Ag = 0,20 Ag = B* L * ψ_S : 0,50 Ag = B* L * ψ_S : 0,70 Ag = B* L * ψ_S : 0,70 Ag = B	m m² m m
Böschungslänge (gemittelt) Spitzenabflussbeiwert W _S : 0,20 Muldenversickerung Angeschlossene Fläche Breite der Sickermulde Sohlbreite der Sickermulde Neigung Böschung 1:n Länge Höhe der Mulde Oberkante Gelände Sohlhöhe Mulde Grundwasserstand Grundwasserstand Grundwasserstand Grundwasserflurabstand hydraulisches Gefälle V _M = L*0,5*(B+B1)*H V _M : Denetzter Umfang (vereinfacht Breite d. Mulde) Versickerfläche As=u x L Zuschlagfaktor gemäß ATV-DVWK-A117 Durchlässigkeitsbeiwert d. gesättigten Zone d. Untergrundes AE = B* L * ψ_S : 0,20 AB 3,10 RE	m m² m m
Böschungslänge (gemittelt) Spitzenabflussbeiwert W _S : 0,20 Muldenversickerung Angeschlossene Fläche Breite der Sickermulde Sohlbreite der Sickermulde Neigung Böschung 1:n Länge Höhe der Mulde H = 0,5 * (B-B1) / n H: Oberkante Gelände Sohlbhöhe Mulde Grundwasserstand Grundwasserstand Grundwasserflurabstand hydraulisches Gefälle Speichervolumen Mulde V _M = L*0,5*(B+B1)*H V _M : Denetzter Umfang (vereinfacht Breite d. Mulde) Versickerfläche As=u x L Zuschlagfaktor gemäß ATV-DVWK-A117 Durchlässigkeitsbeiwert d. gesättigten Zone d. Untergrundes Ag = B* L * ψ_S : 0,20 Ag = 0,20 Ag = B* L * ψ_S : 0,50 Ag = B* L * ψ_S : 0,70 Ag = B* L * ψ_S : 0,70 Ag = B	m m² m m
$\begin{tabular}{l lllllllllllllllllllllllllllllllllll$	m² m m
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	m m
Angeschlossene Fläche Breite der Sickermulde Sohlbreite der Sickermulde Neigung Böschung 1:n Länge Höhe der Mulde Oberkante Gelände Sohlhöhe Mulde Grundwasserstand Grundwasserflurabstand hydraulisches Gefälle Speichervolumen Mulde VM = L*0,5*(B+B1)*H VM = L*0,5*(B+B1)*H VM = D,5*(B+B1)*H NB = D,5*(B+	m m
Angeschlossene Fläche Breite der Sickermulde Sohlbreite der Sickermulde Neigung Böschung 1:n Länge Höhe der Mulde Oberkante Gelände Sohlhöhe Mulde Grundwasserstand Grundwasserflurabstand hydraulisches Gefälle Ag = B* L * ψ_s : 10,23 r 10,20 r 10,20 r 10,20 r 10,21 r 10,21 r 10,23 r 10,24 r 10,25 r 10,27 r 10,28	m m
Breite der Sickermulde B: 0,50 r Sohlbreite der Sickermulde B1: 0,00 r Neigung Böschung 1:n n: 1,50 Länge L: 12,00 r Höhe der Mulde $H = 0,5 * (B-B1) / n$ H: 0,17 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,17 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,17 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,17 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,17 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,17 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,17 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,17 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,17 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,5 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,5 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,5 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,5 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,5 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,5 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,5 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,5 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,5 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,5 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,5 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,5 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,5 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,5 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,5 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,5 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,5 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,5 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,5 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,17 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,17 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,17 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,17 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,17 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,17 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,17 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,17 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,17 r Oberkante Gelände $H = 0,5 * (B-B1) / n$ H: 0,17 r Oberkante Ge	m m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	m
Neigung Böschung 1:n	
LängeL: $12,00$ rHöhe der Mulde $H = 0,5 * (B-B1) / n$ $H:$ $0,17$ rOberkante GeländeOKG: $35,30$ rSohlhöhe MuldeOKS: $35,13$ rGrundwasserstandHGW: $33,50$ rGrundwasserflurabstand h_s (mind. $> 1,0$ m): $1,63$ rhydraulisches Gefälle $I_{hy} = (h_s + z) / (h_s + z/2):$ $1,05$ rSpeichervolumen Mulde $V_M = L^*0,5^*(B+B1)^*H$ $V_M :$ $0,5$ rbenetzter Umfang (vereinfacht Breite d. Mulde) $U = B$ u: $0,500$ rVersickerfläche As=u x L $A_S = U * L$ $A_S :$ 6 rZuschlagfaktor gemäß ATV-DVWK-A117 $fz :$ $1,20$ Durchlässigkeitsbeiwert d. gesättigten Zone d. Untergrundes $kf :$ $1,00E-04$ r	
Höhe der Mulde $H = 0.5 * (B-B1) / n H : 0.17 $ Oberkante Gelände $OKG : 35,30 $ Sohlhöhe Mulde $OKS : 35,13 $ Grundwasserstand $HGW : 33,50 $ Grundwasserflurabstand $h_s (mind. > 1,0 m) : 1,63 $ hydraulisches Gefälle $I_{hy} = (h_s + z) / (h_s + z/2) : 1,05 $ Speichervolumen Mulde $V_M = L^*0.5^*(B+B1)^*H V_M : 0.55 $ benetzter Umfang (vereinfacht Breite d. Mulde) $V_M = L^*0.5^*(B+B1)^*H V_M : 0.50 $ Versickerfläche As=u x L $A_S = U^*L As: 0 $ Zuschlagfaktor gemäß ATV-DVWK-A117 $Fz : 1,200 $ Durchlässigkeitsbeiwert d. gesättigten Zone d. Untergrundes $Fz : 1,00E-04 $	m
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	mNN
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	mNN
hydraulisches Gefälle $I_{hy} = (h_s + z) / (h_s + z/2) : 1,05 \text{ r}$ Speichervolumen Mulde $V_M = L^*0,5^*(B+B1)^*H V_M : 0,5 \text{ r}$ benetzter Umfang (vereinfacht Breite d. Mulde) $U = B u : 0,500 \text{ r}$ Versickerfläche As=u x L $A_S = U * L As: 6 \text{ r}$ Zuschlagfaktor gemäß ATV-DVWK-A117 $fz : 1,200 \text{ Durchlässigkeitsbeiwert d. gesättigten Zone d. Untergrundes} \qquad kf : 1,00E-04 \text{ r}$	mNN
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	m
benetzter Umfang (vereinfacht Breite d. Mulde) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	m/m
benetzter Umfang (vereinfacht Breite d. Mulde) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	
Versickerfläche As=u x LAs = U * LAs:6 rZuschlagfaktor gemäß ATV-DVWK-A117fz :1,20Durchlässigkeitsbeiwert d. gesättigten Zone d. Untergrundeskf :1,00E-04 r	m³
Zuschlagfaktor gemäß ATV-DVWK-A117 fz: 1,20 Durchlässigkeitsbeiwert d. gesättigten Zone d. Untergrundes kf: 1,00E-04 r	m
Durchlässigkeitsbeiwert d. gesättigten Zone d. Untergrundes kf : 1,00E-04 r	m²
Filtergeschwindigkeit $V_{f,u} = k_f/2 * I_{hy}$ 5,24E-05	m/s
	m/s
Regen nach KOSTRA:	
	l/(s*ha)
	l/(s*ha)
maßgebene Regendauer D: 20 r	min
Häufigkeit gemäß Ril 836 -> T = 10 Jahre 1/T : 0,10 für dezentrale Versickerung außerhalb Bahnkörper	
Tur dezentrale versickerung adisernalb barrikorper	
Berechnungsergebnisse:	
Niederschlagsmenge gesamt $Q = (Au + As) * r_{D,n} * D * 60 * fz Q : 0,463 r_{D,n} * D * $	m³
unterirdischer Zufluss $Q_U = Q_U * L*d*60 Q_U$: 0,396 r	m³
Sickerrate Versickerungsleistung $Q_S = A_S * v_{f,u} * D * 60 Qs : 0,377 r$	m³
erforderliches Speichervolumen V: 0,481	m³
geplantes Speichervolumen der Mulde Vm: 0,50 r	
mittlere Einstauhöhe $zm = V / (L * (B+B1)/2) : 0,16$	
Entleerungszeit der Mulde $t_e = 2 * z_m / v_{f,u}: 1,7 \text{ is } 1$	
Linicerungszeit der Mulde	m
	m

PA 16 Bf Köpenick und Parallelmaßnahmen in der S3 Ost km 10,3+60 bis km 13,5+80

Auswertung	Datenreihe	für T = 5	Jahre für	Stützwand 6


D	r(D,N)	Q (inkl. +10%)	QS	٧
[min]	l/s*ha	[m³]	[m³]	[m³]
5	363,30	0,233	0,09	0,139
10	264,70	0,340	0,19	0,152
15	213,10	0,411	0,28	0,128
20	180,00	0,463	0,38	0,085
30	139,10	0,536	0,57	-0,030
45	105,50	0,610	0,85	-0,239
60	86,00	0,663	1,13	-0,469
90	62,10	0,718	1,70	-0,980
120	49,30	0,760	2,26	-1,504
180	35,60	0,824	3,40	-2,574
240	28,30	0,873	4,53	-3,657
360	20,50	0,949	6,79	-5,846
540	14,80	1,027	10,19	-9,165
720	11,80	1,092	13,59	-12,497
1080	8,50	1,180	20,38	-19,204
1440	6,90	1,277	27,18	-25,901
2880	3,80	1,407	54,36	-52,950
4320	2,90	1,610	81,53	-79,924

maßgebendes Regenereignis

Seite 12 von 15 Planungsstand: 09.11.2018

ABS Berlin - Frankfurt/Oder - Grenze D/PL

PA 16 Bf Köpenick und Parallelmaßnahmen in der S3 Ost

ABS Berlin - Frankfurt/Oder - Grenze D/PL

PA 16 Bf Köpenick und Parallelmaßnahmen in der S3 Ost

Stützwand 8 von km : 1	1.0+93 bis km :	11.1+21				
Auf der Böschung anfallendes Wasser wird über eine Pflasterrinne am Stützwandkopf. Die Pflasterinne entwässert in eine Sickermulde am Böschungsfuss						
	gg					
Wandlänge gesamt	L:	30,00 m				
Böschungslänge (gemittelt)	B :	5,31 m				
Spitzenabflussbeiwert	ψs:	0,20				
Muldenversickerung						
Angeschlossene Fläche	$A_E = B^* L^* \psi_S$:	31,86 m²				
Breite der Sickermulde	В:	0,80 m				
Sohlbreite der Sickermulde	B1 :	0,00 m				
Neigung Böschung 1:n	n :	1,50				
Länge	L:	14,00 m				
Höhe der Mulde	H = 0.5 * (B-B1) / n H :	0,27 m				
Oberkante Gelände	OKG :	35,30 mNN				
Sohlhöhe Mulde	OKS:	35,03 mNN				
Grundwasserstand	HGW :	33,90 mNN				
Grundwasserflurabstand	h_s (mind. > 1,0 m) :	1,13 m				
hydraulisches Gefälle	$I_{hy} = (h_s + z) / (h_s + z/2)$:	1,11 m/m				
Speichervolumen Mulde	$V_M = L^*0,5^*(B+B1)^*H V_M$:	1,493 m³				
benetzter Umfang (vereinfacht Breite d. Muld	de) U = B u :	0,800 m				
Versickerfläche As=u x L	$A_S = U * L As:$	11,2 m ²				
Zuschlagfaktor gemäß ATV-DVWK-A117	fz:	1,20				
Durchlässigkeitsbeiwert d. gesättigten Zone		1,00E-04 m/s				
Filtergeschwindigkeit	$v_{f,u} = k_f/2 * I_{hy}$	5,53E-05 m/s				
Regen nach KOSTRA:						
maßgebene Regenspende	r(D,n) :	180 l/(s*ha)				
maßgebene Regenspende, Korrektur	10% r(D,n):	198 l/(s*ha)				
maßgebene Regendauer	Ď:	20 min				
Häufigkeit gemäß Ril 836 -> T = 10 Jahre	1/T :	0,10				
für dezentrale Versickerung außerhalb Bahn	körper					
Berechnungsergebnisse:						
Niederschlagsmenge gesamt	$Q = (Au + As) * r_{D,n} * D * 60 * fz Q$:	1,228 m³				
unterirdischer Zufluss	$Q_U = Q_U * L*d*60 Q_U$:	0,720 m³				
SickerrateVersickerungsleistung	$Q_S = A_S * v_{f,u} * D * 60 Qs$:	0,743 m³				
erforderliches Speichervolumen	V :	1,205 m³				
geplantes Speichervolumen der Mulde	Vm:	1,49 m³				
mittlere Einstauhöhe	zm = V / (L * (B+B1)/2):	0,22 m				
Entleerungszeit der Mulde	$t_e = 2 * z_m / v_{f,u}$:	2,2 h				

PA 16 Bf Köpenick und Parallelmaßnahmen in der S3 Ost km 10,3+60 bis km 13,5+80

Auswertung Datenreihe für T = 5 Jahre für Stützwand 8

D	r(D,N)	Q (inkl. +10%)	QS	V
[min]	l/s*ha	[m³]	[m³]	[m³]
5	363,30	0,619	0,19	0,434
10	264,70	0,903	0,37	0,531
15	213,10	1,090	0,56	0,533
20	180,00	1,228	0,74	0,485
30	139,10	1,423	1,11	0,309
45	105,50	1,619	1,67	-0,052
60	86,00	1,760	2,23	-0,468
90	62,10	1,906	3,34	-1,436
120	49,30	2,018	4,46	-2,439
180	35,60	2,185	6,68	-4,499
240	28,30	2,316	8,91	-6,597
360	20,50	2,517	13,37	-10,852
540	14,80	2,726	20,05	-17,328
720	11,80	2,897	26,74	-23,841
1080	8,50	3,131	40,11	-36,977
1440	6,90	3,389	53,48	-50,089
2880	3,80	3,732	106,95	-103,222
4320	2,90	4,272	160,43	-156,159

maßgebendes Regenereignis

Seite 15 von 15 Planungsstand: 09.11.2018