Eosanderstr. 28 10587 Berlin

Tel. (030) 399 05 011

Schwingungstechnischer Bericht Nr. 784.3 "Haltestelle Proskauer Straße"

Thema:	Neubau der Haltestelle Proskauer Straße mit gegenüberliegenden Haltestellenkaps im Rahmen der Grundinstandsetzung der Anlagen der Straßenbahnlinie 21 in der Eldenaer Straße von Liebigstraße bis vor Scheffelstraßenbrücke. Einfluss der Baumaßnahme auf die Erschütterungs- und Sekundärluftschallimmissionen in benachbarten Gebäuden
Auftraggeber:	Ingenieurbüro Wosnitza und Knappe Rosenfelder Straße 15, 10315 Berlin Tel.: 55 74 23-0 Fax: 55 74 23 18
Anmerkung:	Der Bericht umfasst insgesamt 26 Seiten: Text Seiten 1 bis 18 Tabellen Seiten T 1 bis T 8 Der Bericht soll nur in Gänze an Dritte weitergegeben werden. Ein auszugsweises Zitieren ist mit dem Verfasser abzustimmen.

Berlin-Charlottenburg, im August 2018

hulluseen

Dipl.-Ing. C. Imelmann

Inhaltsverzeichnis

0	Vorbemerkung	3
1	Zusammenfassung	
2	Beschreibung der Baumaßnahme aus schwingungstechnischer Sicht, Aufgabenstellung	
3	Verwendete Unterlagen	6
4	Erläuterungen zu Erschütterungs- und Sekundärluftschallimmissionen 4.1 Grundlagen und Begriffe	7 7
5	Regelwerk	10
6	Durchführung der Prognoserechnungen	12
	6.1 Untersuchte Gebäude	13
	6.3 Schwingungstechnische Berechnungen	14
7	Ergebnisse der Schwingungstechnischen Berechnungen	17

Verzeichnis der Tabellen

Tabelle 1	Oberbauarten und Abstände zwischen Häusern und Gleisachsen in Bestand und Planung
Tabelle 2	Emissionsspektren des Straßenbahnverkehrs, Bezugsabstand 8 m T 2
Tabelle 3	Übertragungsfunktionen für Gebäude mit Holz- und Betondeckenaufbau T 3
Tabelle 4.1.1	Erschütterungs- und Sekundärluftschallimmissionen Eldenaer Str. 13 (Analyse Bestand Gleis 1)
Tabelle 4.1.2	Erschütterungs- und Sekundärluftschallimmissionen Eldenaer Str. 13 (Analyse Bestand Gleis 2)
Tabelle 4.2.1	Erschütterungs- und Sekundärluftschallimmissionen Eldenaer Str. 13 (Prognose Planung Gleis 1)
Tabelle 4.2.2	Erschütterungs- und Sekundärluftschallimmissionen Eldenaer Str. 13 (Prognose Planung Gleis 2)
Tabelle 5	Ergebnisse der Schwingungstechnischen Berechnungen T 8

0 Vorbemerkung

Die vorliegende Schwingungstechnische Untersuchung ergänzt die Schalltechnische Untersuchung des Unterzeichners zum Neubau der Haltestelle Proskauer Straße (Schalltechnischer Bericht Nr. 783.3 "Haltestelle Proskauer Straße").

Beide Untersuchungen basieren auf dem Bundes-Immissionsschutzgesetz.

Gegenstand der <u>Schalltechnischen</u> Untersuchung sind die Auswirkungen des geplanten Vorhabens auf die Luftschallimmissionen im Einwirkungsbereich der Baumaßnahme. Die Untersuchung wird im Hinblick auf die Frage durchgeführt, ob die Baumaßnahme zu Betroffenheiten führt und sich hieraus Anspruchsberechtigung auf passive Schallschutzmaßnahmen dem Grunde nach ergibt.

Gegenstand der <u>Schwingungstechnischen</u> Untersuchung sind die Auswirkungen des geplanten Vorhabens auf die Erschütterungs- und Sekundärluftschallimmissionen in schutzbedürftigen Räumen benachbarter Gebäude. Bei dieser Untersuchung steht die Frage im Vordergrund, ob die neuen Gleise der Straßenbahn mit zusätzlichen technischen Maßnahmen zur Minderung des Schwingungseintrages in den Boden ausgerüstet werden müssen, um eine wesentliche Erhöhung der bisherigen Immissionen (der Vorbelastung) auszuschließen.

Das Vorhaben wird im Schalltechnischen Bericht ausführlich beschrieben und anhand eines Lageplans verdeutlicht. Die Angaben werden hier nicht wiederholt.

1 Zusammenfassung

Anlässlich der Grundinstandsetzung der Anlagen der Straßenbahnlinie 21 in der Eldenaer Straße von Liebigstraße bis vor Scheffelstraßenbrücke ist eine Aufweitung des Gleisachsabstandes unter Einsatz einer verbesserten Gleisbauart vorgesehen.

Durch die Aufweitung des Gleisachsabstandes ändern sich die Abstände zwischen den Gleisen und der benachbarten Bebauung. Die größten Horizontalverschiebungen der Gleise treten im Bereich der geplanten Haltestelle Proskauer Straße auf.

Als Regelbauart ist das "Neue Berliner Straßenbahngleis" (NBS) vorgesehen. Es ersetzt in den geraden Gleisabschnitten das technisch überholte Großverbundplattengleis (GVP). Im Bereich der Gleisbögen westlich der Haltestelle Proskauer Straße ersetzt es die dort verbauten Rahmengleise.

Grundsätzlich führen Abstandsverminderungen infolge von Horizontalverschiebungen der Gleise zu einem Anstieg der Erschütterungs- und Sekundärluftschallimmissionen in benachbarten Gebäuden. Die Verbesserung der Oberbauart durch eine dem Stand der Technik entsprechende Konstruktion wirkt gegenläufig und führt zu einer Abnahme der Immissionen.

In der vorliegenden Schwingungstechnischen Untersuchung wird nun der Einfluss der geplanten Baumaßnahme auf die Erschütterungs- und Sekundärluftschallimmissionen in schutzbedürftigen Räumen benachbarter Gebäude prognostiziert. Hierzu werden fünf repräsentative Gebäude ausgewählt und die dort auftretenden Immissionen in den Szenarien Bestand (bisheriger Zustand) und Planung (künftiger Zustand) miteinander verglichen.

Die entsprechenden Immissionsberechnungen werden auf der Basis vorliegender Emissionsspektren nach einem Rechenverfahren auf Vorschlag der Deutschen Bahn AG durchgeführt. Dieses Verfahren ist gängig und führt zu Ergebnissen auf der sicheren Seite.

Die prognostizierten Änderungen der Erschütterungs- und Sekundärluftschallimmissionen werden ähnlich wie in der Verkehrslärmschutzverordnung – 16. BIm-SchV bewertet. Die entsprechenden Kriterien der "wesentlichen Erhöhung" sind

ein Anstieg der bewerteten Schwingstärke KB_F um mindestens 25 % in Verbindung mit dem Erreichen oder Überschreiten der Zumutbarkeitsschwelle KB_{Fmax} = 0,4

beziehungsweise

ein Anstieg des A-bewerteten Sekundärluftschallpegels um mehr als
 2 dB(A) in Verbindung mit dem Erreichen oder Überschreiten der Immissionsrichtwerte, die der Verkehrswege-Schallschutzmaßnahmenverordnung –
 24. BImSchV zugrunde liegen.

Die Untersuchung kommt zu dem Ergebnis, dass die Verbesserung durch den Einsatz des NBS die geringe Verschlechterung infolge der Abstandsverminderungen bei weitem überwiegt. Vor diesem Hintergrund ist es nicht erforderlich, zusätzliche technische Maßnahmen im Gleisbereich zur Minderung von Erschütterungs- und Sekundärluftschallimmissionen vorzusehen.

2 Beschreibung der Baumaßnahme aus schwingungstechnischer Sicht, Aufgabenstellung

Anlässlich der Grundinstandsetzung der Anlagen der Straßenbahnlinie 21 in der Eldenaer Straße von Liebigstraße bis vor Scheffelstraßenbrücke ist eine Aufweitung des Gleisachsabstandes unter Einsatz einer verbesserten Gleisbauart vorgesehen.

Einen Überblick über die bestehenden und geplanten Abstände der Gleisachsen sowie deren Verschiebungen gibt die folgende Tabelle. Die beispielhaft betrachteten Querschnitte liegen in der Mitte der Haltestelle sowie an den Grenzen des Untersuchungsbereiches gemäß Bild 1 aus der Schalltechnischen Untersuchung:

	Achsak	stand	Versch	iebung
	Bestand	Planung	Gleis 1	Gleis 2
Geraden westlich der Hst. Proskauer Straße	ca. 2,64 m	3,00 m	ca. 0,39 m	ca. 0,03 m
Mitte Hst. Proskauer Straße	ca. 2,64 m	7,16 m	ca. 2,26 m	ca. 2,26 m
Geraden östlich der Hst. Proskauer Straße	ca. 2,64 m	3,00 m	ca. 0,03 m	ca. 0,39 m

Als Regeloberbau ist das "Neue Berliner Straßenbahngleis" (NBS) vorgesehen. Das NBS besteht aus Rillenschienen mit elastischer Schienenfußummantelung auf einer Betontragschicht mit eingegossenen, vorher justierten Zweiblockschwellen. Es wird mit einer Asphalteindeckung versehen.

Das NBS entspricht dem Stand der Technik und weist aufgrund seiner besonderen konstruktiven Merkmale positive schwingungstechnische Eigenschaften auf. Dies wurde durch zahlreiche Messungen des Unterzeichners an entsprechend aufgebauten Straßenbahnstrecken im Berliner Netz belegt. Das NBS ersetzt in den geraden

Gleisabschnitten das technisch überholte Großverbundplattengleis (GVP). In den Gleisbögen westlich der Haltestelle Proskauer Straße ersetzt es die dort verbauten Rahmengleise.

Grundsätzlich führen Abstandsverminderungen infolge von Horizontalverschiebungen der Gleise zu einem Anstieg der Erschütterungs- und Sekundärluftschallimmissionen in benachbarten Gebäuden. Die Verbesserung der Oberbauart durch den Einbau einer dem Stand der Technik entsprechenden Konstruktion wirkt gegenläufig und führt zu einer Abnahme der Immissionen.

Aufgabe der vorliegenden Untersuchung ist es nun, im Vorfeld der Baumaßnahme die zukünftigen Erschütterungs- und Sekundärluftschallimmissionen in Gebäuden mit schutzbedürftigen Aufenthaltsräumen zu prognostizieren und mit den ursprünglichen Immissionen (der Vorbelastung) zu vergleichen. Dies ermöglicht den Nachweis, dass Menschen in Gebäuden künftig keinen spürbar stärkeren Erschütterungs- und Sekundärluftschallimmissionen aus dem Straßenbahnverkehr im Sinne einer wesentlichen Erhöhung ausgesetzt sein werden, oder führt zu dem Ergebnis, dass besondere technische Schutzvorkehrungen im Gleisbereich erforderlich sind, um ein zulässiges Immissionsniveau nicht zu überschreiten.

3 Verwendete Unterlagen

Zur Bearbeitung der Aufgabe wurde vom Auftraggeber ein Lageplan M 1:250 aus der bestätigten Ausführungsplanung übergeben. Bearbeitungsstand ist der 16. Juli 2018.

Das Betriebsprogramm der Straßenbahnlinie 21 wurde dem künftigen Fahrplan entnommen (Recherche unter vbb.de für den beispielhaften Zeitraum vom 12. November 2018 bis 08. Dezember 2018). Hiernach ist je Richtung von 48 Fahrten tags (6 bis 22 Uhr) und 14 Fahrten nachts (22 bis 6 Uhr) auszugehen.

Die Schutzbedürftigkeit der Nachbarschaft im Einwirkungsbereich der Baumaßnahme wurde anhand der Karte "Reale Nutzung der bebauten Flächen 2015 aus dem Digitalen Umweltatlas Berlin (Karte 06.01) festgelegt. Hiernach gelten für die Wohnhäuser im betrachteten Bereich die Anhaltswerte für Einwirkungsorte, in deren Umgebung vorwiegend oder ausschließlich Wohnungen untergebracht sind

(vergleiche reines Wohngebiet BauNVO, § 3, allgemeine Wohngebiete BauNVO, § 4, Kleinsiedlungsgebiete BauNVO, § 2). Als besonders schutzbedürftige Einwirkungsorte wurden die neu errichteten Kindertagesstätten (Klax Kinderkrippe Mondbär, Klax Kindergarten Elements) Eldenaer Str. 36 berücksichtigt.

Ergänzend wurden herangezogen:

- /1/ Körperschall- und Erschütterungsschutz Leitfaden für den Planer: Beweissicherung, Prognose, Beurteilung und Schutzmaßnahmen, Deutsche Bahn AG, ZBT 511 München (Ausgabe August 1996, berichtigt Februar 1999)
- /2/ Gesetz zum Schutz vor schädlichen Umwelteinwirkungen durch Luftverunreinigungen, Geräusche, Erschütterungen und ähnliche Vorgänge (Bundes-Immissionsschutzgesetz – BImSchG) in der Fassung der Bekanntmachung vom 17. Mai 2013
- /3/ DIN 4150-2, Ausgabe: 1999-06 Erschütterungen im Bauwesen –
 Teil 2: Einwirkungen auf Menschen in Gebäuden
- /4/ Sechzehnte Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verkehrslärmschutzverordnung - 16. BImSchV) vom 12. Juni 1990
- /5/ Vierundzwanzigste Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verkehrswege-Schallschutzmaßnahmenverordnung – 24. BImSchV) vom 4. Februar 1997

4 Erläuterungen zu Erschütterungs- und Sekundärluftschallimmissionen

4.1 Grundlagen und Begriffe

Erschütterungs- und Sekundärluftschallimmissionen (unter dem Oberbegriff Schwingungsimmissionen) haben ihre Ursache im wesentlichen in dynamischen Erregerkräften in der Kontaktzone zwischen den Rädern des fahrendes Zuges und der Schiene. Die Schwingungen werden über den Oberbau und den Unterbau in den Boden übertragen, breiten sich dort in Wellenform aus und werden über die Fundamente in benachbarte Gebäude eingeleitet. Dort können sie zu wahrnehmbaren Bewegungen der Geschossdecken (Erschütterungen) und zu Schwingungen der Raumbegrenzungsflächen führen, die ihrerseits wieder als Schall abgestrahlt werden (Sekundärer Luftschall).

Erschütterungen bezeichnen tieffrequente Schwingungen eines Gebäudes, die der Mensch – sofern die auftretende Schwinggeschwindigkeit oberhalb der Fühlschwelle um 0,1 mm/s liegt – mit seinem ganzen Körper wahrnehmen kann. Sie können insbesondere dann zu Belästigungen führen, wenn Geschossdecken in Resonanz angeregt werden. Hieraus resultiert eine deutliche Verstärkung der Schwingungen. Je nach Aufbau und Spannweite der Decken liegt der Hauptfrequenzbereich zwischen 10 Hz und 40 Hz. Zur Kennzeichnung der Erschütterungsimmissionen dient die bewertete Schwingstärke KB_F, die aus dem gleitenden Effektivwert der frequenzbewerteten Schwinggeschwindigkeit abgeleitet wird.

Anmerkung:

Im Zusammenhang mit den Erschütterungen können gewisse Erscheinungen auftreten, die oft störender sind als die Erschütterungen selbst (z.B. Gläserklirren). Es ist allerdings nicht möglich, hieraus einen Rückschluss auf die Höhe der Erschütterungen zu ziehen, da diese Effekte bereits bei den geringsten Erschütterungsimmissionen auftreten können, sogar bei solchen, die unterhalb der Fühlschwelle liegen. Sie sind aber im Regelfall auch leicht zu beseitigen, etwa durch geringfügiges Verschieben der Gläser an einen anderen Platz.

<u>Sekundärer Luftschall</u> entsteht durch Körperschallabstrahlung von Decken und Wänden und kann innerhalb von Gebäuden in der Nachbarschaft von Bahntrassen hörbar sein. Die sekundären Luftschallimmissionen treten meist im Frequenzbereich um 80 Hz auf und werden als dumpfes Grollen wahrgenommen. Zur Kennzeichnung des Sekundärschalls dient der A-bewertete Beurteilungspegel L_r in dB(A). Der sekundäre Luftschall wird manchmal – nicht ganz korrekt – auch als Körperschall bezeichnet.

Anmerkung:

Bei oberirdischem Schienenverkehr wird der Sekundärluftschall in den Räumen auf der Seite des Schienenweges meist durch den Luftschalleintrag durch die Fenster überlagert, so dass er (wenn er überhaupt als solcher zu hören ist) weniger störend empfunden wird und mit einfachen Mitteln nicht gezielt zu messen ist. Dies gilt insbesondere dann, wenn die Fenster nur eine geringe Schalldämmung aufweisen und der Schienenweg sehr nah ist. Dieser "primäre" Luftschall ist Gegenstand der Schalltechnischen Untersuchung auf Grundlage der Verkehrslärmschutzverordnung – 16. BlmSchV.

4.2 Einflüsse und Minderungsmöglichkeiten

Die Stärke der auftretenden Erschütterungs- und Sekundärluftschallimmissionen wird maßgeblich bestimmt

- durch Art und Zustand von Fahrzeugen und Gleisen, insbesondere durch den Zustand der Kontaktflächen von Rad und Schiene,
- durch den Oberbau, Unterbau und den Untergrund,
- durch den Abstand zwischen dem Gleis und dem Gebäude mit schutzbedürftiger Nutzung,
- durch das Übertragungsverhalten des Bodens (Materialdämpfung),
- durch gebäudespezifische Übertragungsfaktoren,
- durch die Fahrgeschwindigkeit.

Da Erschütterungs- und Sekundärschallimmissionen zumeist mit Resonanzeffekten verbunden sind, ist nach Erfahrungen des Unterzeichners die Fahrgeschwindigkeit von geringerem Einfluss als bei den Luftschallimmissionen.

Zur Minderung von Erschütterungs- und Sekundärschallimmissionen sind über die regelmäßige Wartung der Rad-Schiene-Kontaktzone hinaus (Schleifen der Schienenoberfläche, Bearbeitung unrunder Räder)

- bauliche Maßnahmen im Bereich der Schienen- und Oberbaulagerung
 (z.B. Unterschottermatten, Elastische Schienen-Stützpunktlager, Kontinuierliche elastische Schienenlagerungen, Masse-Feder-Systeme, Elastische Lagerungen von Schwellen),
- Maßnahmen am Ausbreitungsweg
 (z.B. Abschirmmatten in Baugrundschlitzen),
- Maßnahmen bei der Gebäudegründung und -konstruktion
 (z.B. Versteifung von Decken, Abfederung ganzer Gebäude)

möglich und im Einzelfall hinsichtlich ihrer Wirksamkeit nachgewiesen, teilweise aber mit großem baulichen und finanziellen Aufwand verbunden.

Grundsätzlich gilt, dass moderne Fahrzeuge mit wirksamer Primärfederung und guten Radlaufflächen zu deutlich geringeren Erschütterungs- und Sekundärluftschallimmissionen führen können als Fahrzeuge ohne Primärfederung. Dasselbe gilt für neu verlegte Gleise im Vergleich zu alten. Die Verbesserung bleibt aber nur bei sehr guter Gleis- und Radpflege dauerhaft erhalten.

5 Regelwerk

Der geplante Neubau der Haltestelle Proskauer Straße liegt im Geltungsbereich des Bundes-Immissionsschutzgesetzes (BImSchG). Dies ist in der deutlich sichtbaren Veränderung der Straßenbahnanlagen im Bereich der Haltestelle, in den Gleisverschiebungen und der Änderung der Gleisbauart begründet, die eine Änderung der Immissionsverhältnisse im Einwirkungsbereich erwarten lassen.

Zweck des BImSchG ist es, Menschen und Sachgüter vor schädlichen Umwelteinwirkungen zu schützen und dem Entstehen schädlicher Umwelteinwirkungen vorzubeugen. Zu den Immissionen im Sinne des Gesetzes gehören Geräusche (hier zu verstehen als Luftschallabstrahlung innerhalb von Räumen infolge Körperschalleinleitung) und Erschütterungen.

Da allerdings in der Verordnungsermächtigung des § 43 Abs. 1 BImSchG, welche die Grundlage für die 16. BImSchV darstellt, Erschütterungs- und Sekundärluftschallimmissionen nicht angesprochen werden, fehlt im Verkehrsbereich die Rechtsgrundlage für den Erlass einer entsprechenden Verordnung. Dies betrifft insbesondere

- die fehlende Festlegung von Grenzwerten und der Verfahren zur Ermittlung der Emissionen und Immissionen,
- die fehlende Festlegung von Kriterien, wann ein erheblicher baulicher Eingriff zu einer wesentlichen Erhöhung der Erschütterungs- und Sekundärluftschallimmissionen führt, woraus das Erfordernis von entsprechenden Vorsorgemaßnahmen abgeleitet werden könnte.

In der Praxis sind bis zur endgültigen Klärung der rechtlichen und bewertungstechnischen Fragen Ersatzlösungen eingeführt. Sie sind im Leitfaden der Deutschen Bahn AG /1/ eingehend beschrieben. Hiernach darf beim Umbau oder Ausbau einer bestehenden Strecke – also im Fall mit Vorbelastung – nach der Fertigstellung der baulichen Maßnahme keine wesentliche Erhöhung der Erschütterungs- und Sekundärluftschallimmissionen auftreten.

a) Beurteilung von Erschütterungsimmissionen

Unter einer wesentlichen Erhöhung der Erschütterungsimmissionen wird eine Zunahme der maximalen bewerteten Schwingstärke KB $_{\rm Fmax}$ beziehungsweise der Beurteilungs-Schwingstärke KB $_{\rm FTr}$ um mindestens 25 % der Vorbelastung verstanden. Erschütterungsimmissionen unterhalb der Zumutbarkeitsschwelle KB $_{\rm Fmax}$ = 0,4 werden als zulässig betrachtet. Bei einer wesentlichen Erhöhung sind die Anhaltswerte $A_{\rm u}$, $A_{\rm o}$ und $A_{\rm r}$ für die Beurteilung von Erschütterungsimmissionen in Wohnungen und vergleichbar genutzten Räumen an oberirdischen Schienenwegen des ÖPNV gemäß DIN 4150-2 heranzuziehen.

b) Beurteilung von Sekundärluftschallimmissionen

Eine wesentliche Erhöhung des A-bewerteten Sekundärluftschallpegels wird analog zu den Regelungen der Verkehrslärmschutzverordnung - 16. BImSchV mit einer Differenz der Beurteilungspegel um mehr als 2 dB(A) definiert. Liegt eine wesentliche Erhöhung vor, sind die Beurteilungspegel in schutzbedürftigen Räumen – in Ermangelung rechtlich verbindlicher Grenzwerte – hilfsweise mit denselben Immissionsrichtwerten zu vergleichen, die auch der Verkehrswege-Schallschutzmaßnahmenverordnung - 24. BImSchV zugrunde liegen.

Anmerkungen:

• Die Immissionsrichtwerte der 24. BImSchV ergeben sich unter Anwendung eines Zuschlages von 3 dB(A) aus den Korrektursummanden D zur Berücksichtigung der Raumnutzung gemäß Tabelle 1 dieser Verordnung. Der Einfachheit halber werden in der vorliegenden Untersuchung nur die Immissionsrichtwerte für Wohnräume herangezogen sowie für Räume, die überwiegend zum Schlafen benutzt werden (40 dB(A) tags beziehungsweise 30 dB(A) nachts). Werden diese Immissionsrichtwerte eingehalten, gilt dies für weniger empfindliche Räume mit entsprechend höheren Immissionsrichtwerten allemal.

• Die Frage, ob auch bei den Sekundärschallimmissionen den Besonderheiten des Schienenverkehrs in Analogie zu den (früheren) Regelungen der 16. BlmSchV durch einen Abschlag von 5 dB(A) Rechnung getragen werden soll, ist umstritten ("Schienenbonus"). In der vorliegenden Untersuchung wird der Abschlag berücksichtigt, da aus Sicht des Unterzeichners die Ergebnisse der interdisziplinären Feldstudie zur Einführung des Schienenbonus' vom Ende der 1970er und Anfang der 1980er Jahre in weitgehend gleicher Weise sowohl für den primären als auch für den sekundären Luftschall gelten und keine gesicherten, einen neuen Kenntnisstand wiedergebende Forschungsergebnisse vorliegen, die gegen eine Berücksichtigung dieses Abschlages sprächen.

6 Durchführung der Prognoserechnungen

Im Zentrum der Schwingungstechnischen Untersuchung stehen die rechnerische Ermittlung

- der maximalen bewerteten Schwingstärken KB_{Fmax} sowie der hieraus unter Berücksichtigung des Betriebsprogramms und getrennt für die Beurteilungszeiträume tags und nachts berechneten Beurteilungs-Schwingstärken KB_{FTr} (tags) und KB_{FTr} (nachts),
- der maximalen A-bewerteten Sekundärluftschallpegel L_{Amax} und der Beurteilungspegel L_r (tags) und L_r (nachts)

in schutzbedürftigen Räumen benachbarter Gebäude. Die Berechnung erfolgt nach einem von der DB AG beschriebenen Verfahren /1/ und wird für die Vergleichsfälle ohne Baumaßnahme (Analyse Bestand) und mit Baumaßnahme (Prognose Planung) vorgenommen. Sofern die Kriterien der wesentlichen Erhöhung nicht erfüllt sind, ist die Untersuchung mit diesem Vergleich beendet. Andernfalls sind die Beurteilungsgrößen für den Planfall mit den geltenden Anhalts- und Immissionsrichtwerten zu vergleichen.

6.1 Untersuchte Gebäude

Der Einfluss der geplanten Baumaßnahme auf die Erschütterungs- und Sekundärluftschallimmissionen wird mit dem Ziel einer "worst-case-Betrachtung" an denjenigen Gebäuden durchgeführt, die im Planfall den geringsten Abstand zu den Gleisen aufweisen oder bei denen die relativ größten Abstandsminderungen auftreten (siehe die Zusammenstellung in Tabelle 1). Hierdurch werden alle typischen Immissionsfälle erfasst. Betrachtet werden die folgenden Häuser

- Proskauer Straße 20 Ecke Dolziger Straße 1, 1A
 Das Wohnhaus (Altbau) liegt in Höhe der Gleisbögen westlich der geplanten Haltestelle Proskauer Straße. Dort ersetzt das NBS das bestehende Rahmengleis.
- Dolziger Straße 2
 Das Wohnhaus (Altbau) liegt in Höhe der geplanten Haltestelle. Dort ersetzt das NBS die bestehende GVP.
- Eldenaer Straße 13
 Das Wohnhaus (Altbau) liegt in Höhe der Gleisaufweitung an der östlichen Haltestellenzufahrt. Dort ersetzt das NBS die bestehende GVP.
- Eldenaer Straße 14
 Das Wohnhaus (Altbau) liegt in Höhe der geraden Streckengleise östlich der Haltestelle Proskauer Straße). Dort ersetzt das NBS die bestehende GVP.
- Eldenaer Straße 36
 In Höhe des in jüngster Zeit errichteten Kita-Gebäudes (gegenüber Eldenaer Straße 14) ersetzt das NBS die bestehende GVP.

Gemäß der Karte "Stadtstruktur differenziert 2015" aus dem Berliner Umweltatlas ist davon auszugehen, dass die Altbauten zwischen 1870 und 1918 errichtet worden sind (geschlossene Blockbebauung der Gründerzeit mit Seitenflügeln und Hinterhäusern, 5-geschossig, teilweise mit Dachausbau). Solche Häuser weisen typischerweise Holzbalkendecken auf. Beim Kita-Neubau wird von Betondecken ausgegangen.

6.2 Prognoseverfahren

Die Erschütterungs- und Sekundärluftschallimmissionen in den untersuchten Gebäuden ergeben sich aus den Emissionsspektren des Straßenbahnverkehrs, der Abstands- und Materialdämpfung im Boden sowie den Übertragungsfunktionen, die zur Charakterisierung der gebäudespezifischen Eigenschaften angesetzt werden und die Schwingungsweiterleitung vom Boden ins Fundament und vom Fundament zu den Geschossdecken beschreiben. Durch Variation der Deckenresonanzfrequenzen werden die Ergebnisse in Form einer Spanne ermittelt. Für die Beurteilung der Immissionen werden die Höchstwerte herangezogen. Hierdurch liegen die Ergebnisse – unabhängig von den tatsächlichen Eigenschaften des jeweiligen Gebäudes – auf der sicheren Seite.

Anmerkung:

Überschreiten die Ergebnisse der Variationsrechnung die zur Beurteilung herangezogenen Immissionswerte, bedeutet das nicht, dass in den realen Gebäuden auch tatsächlich Überschreitungen auftreten. Es bedeutet nur, dass in ungünstigsten Fällen Überschreitungen nicht ausgeschlossen werden können.

Die Emissions-Terzpegelspektren zur Beschreibung der unterschiedlichen Oberbauarten wurden vom Unterzeichner an zahlreichen Fahrzeugen und Gleisen im Straßenbahnnetz der BVG unter betriebsüblichen Bedingungen gemessen. Die in dieser Untersuchung verwendeten Emissionsspektren für die Bauarten GVP, Rahmengleis und NBS zeigt Tabelle 2. Sie gelten für die Fahrgeschwindigkeit 50 km/h.

Die Übertragungsfunktionen für Gebäude mit Beton- und Holzbalkendeckenaufbau sind dem Leitfaden /1/ entnommen. Die beiden unter realen Verhältnissen maßgeblichen Übertragungsfunktionen für Betondecken und Holzbalkendecken sind in Tabelle 3 dargestellt.

Bei Gebäuden mit Holzbalkendeckenaufbau wird die Berechnung für die typischen Deckenresonanzfrequenzen 10 Hz, 12,5 Hz, 16 Hz und 20 Hz durchgeführt. Bei Gebäuden mit Betondeckenaufbau erfolgt die Berechnung für die Deckenresonanzfrequenzen 20 Hz, 25 Hz, 31,5 Hz und 40 Hz. Da der Deckenaufbau der untersuchten Gebäude in seinen Einzelheiten nicht bekannt ist, wurden die Höchstwerte aus den beiden Berechnungsvarianten "Holz" beziehungsweise "Beton" ausgewertet.

Für die Abstands- und Materialdämpfung wird gemäß dem Leitfaden /1/ eine frequenzabhängig abgestufte Pegelminderung zwischen 0 dB und 11,4 dB je Entfernungsverdopplung angesetzt. Wegen der Anwendung des Taktmaximalverfahrens auf Basis einer Taktdauer von 30 s gehen nur die Mindestentfernungen zwischen den Gebäuden und den Gleisachsen in die Berechnung ein.

6.3 Schwingungstechnische Berechnungen

Die Schwingungstechnischen Berechnungen sind in den Tabellen 4.1.1 bis 4.2.2 beispielhaft dokumentiert. Die Berechnungen gelten für das Gebäude mit der relativ größten Abstandsminderung (Eldenaer Straße 13 in Höhe der Gleisaufweitung

an der östlichen Haltestellenzufahrt). Berechnet werden die Immissionen der bestehenden Gleise (Analyse Bestand) und der geplanten Gleise (Prognose Planung).

Die linke Seite der Tabellen zeigt die vollständige Einzelberechnung für die Übertragungsfunktion einer Holzbalkendecke gemäß Tabelle 3 mit einer typischen Deckenresonanzfrequenz von 16 Hz. Bei der Prognose der Immissionen vom geplanten Gleis 1 (Tabelle 4.2.1) ergeben sich

die maximale bewertete Schwingstärke

 $KB_{Fmax} = 0.072$

• der maximale A-bewertete Sekundärluftschallpegel

 $L_{Amax} = 18,9 \text{ dB(A)}.$

Die Ergebnisse der Mehrfachberechnung bei Variation der Übertragungsfunktionen und Deckenresonanzfrequenzen zeigt die rechte Seite der Tabelle in Form einer Matrix. Die oben genannten Werte von KB $_{\rm Fmax}$ und L $_{\rm Amax}$ finden sich in der Spalte für die Übertragungsfunktion ÜF 4 und in den Zeilen für die Deckenresonanzfrequenz f = 16 Hz wieder. Die unterhalb der Matrix angegebenen Spannen gelten bei Berücksichtigung aller in /1/ dokumentierten Übertragungsfunktionen für Betonund Holzbalkendecken (graue Zahlen) beziehungsweise bei Konzentration auf die unter realen Verhältnissen maßgeblichen Funktionen (schwarze Zahlen). Zieht man nun die Höchstwerte aus den realen Spannen für die Beurteilung der Immissionsverhältnisse heran, ergeben sich bei Holzbalkendecken die maximalen bewerteten Schwingstärken KB $_{\rm Fmax}$ und die maximalen A-bewerteten Sekundärluftschallpegel L $_{\rm Amax}$ der folgenden Tabelle:

	maximale bewertete Schwingstärke KB _{Fmax}	maximaler A-bewerteter Sekundärluftschallpegel L _{Amax}
Analyse Bestand Gl. 1	0,698	32,3 dB(A)
Prognose Planung Gl. 1	0,102	21,2 dB(A)
vorhabensbedingte Änderung	- 85,3 %	- 11,1 dB(A)
Analyse Bestand Gl. 2	0,851	36,0 dB(A)
Prognose Planung Gl. 2	0,202	30,4 dB(A)
vorhabensbedingte Änderung	- 76,3 %	- 5,6 dB(A)

Aus dem Vergleich der Analyse des Bestands mit der Prognose für das geplante Gleis 2 – die Immissionen vom weiter entfernten Gleis 1 können bei der Maximalwertbetrachtung vernachlässigt werden –, sind aus der Baumaßnahme eine Abnahme der maximalen bewerteten Schwingstärke KB_{Fmax} um 76 % und ein Rückgang des maximalen A-bewerteten Sekundärluftschallpegels L_{Amax} um mehr als 5 dB(A) zu erwarten. Der negative Einfluss aus der Abstandsminderung von 9,81 m auf 8,16 m spielt also im Vergleich zu der erheblichen Verbesserung durch den Einsatz des NBS anstelle des GVP keine Rolle.

Die Beurteilungs-Schwingstärken KB_{FTr} (tags) und KB_{FTr} (nachts) ergeben sich nach dem Taktmaximalverfahren aus den Höchstwerten KB_{Fmax} unter Berücksichtigung der Zugzahlen N_T (tags) und N_N (nachts) und unter Ansatz einer fiktiven Vorbeifahrtdauer von 30 s. Hierbei gelten die Beziehungen

$$KB_{FTr,tags} = KB_{F \max} \sqrt{\frac{N_T \cdot 30}{16 \cdot 60 \cdot 60}} \quad \text{und} \quad KB_{FTr,nachts} = KB_{F \max} \sqrt{\frac{N_N \cdot 30}{8 \cdot 60 \cdot 60}}.$$

Die analogen Ausdrücke zur Berechnung der Beurteilungspegel lauten

$$L_{r,tags} = L_{A\max} + 10\log \frac{N_T \cdot 30}{16 \cdot 60 \cdot 60} dB(A) \cdot \cdot \cdot \text{und} \cdot \cdot \cdot L_{r,nachts} = L_{A\max} + 10\log \frac{N_N \cdot 30}{8 \cdot 60 \cdot 60} dB(A)$$

Bei zweigleisigen Strecken müssen die Immissionen beider Gleise energetisch addiert werden. Mit N_T = 48 Fahrten tags und N_N = 14 Fahrten nachts je Richtung ergeben sich schließlich die Beurteilungsgrößen der folgenden Tabelle:

	Beurteilungs-Sch	wingstärke KB _{FTr}	Beurteilung	jspegel L _r
	tags	nachts	tags	nachts
Analyse Bestand Gl. 1	0,110	0,084	16,3 dB(A)	13,9 dB(A)
Analyse Bestand Gl. 2	0,135	0,103	20,0 dB(A)	17,6 dB(A)
Summe Gl. 1 + 2	0,174	0,133	21,5 dB(A)	19,2 dB(A)
Prognose Planung Gl. 1	0,016	0,012	5,2 dB(A)	2,8 dB(A)
Prognose Planung Gl. 2	0,032	0,024	14,4 dB(A)	12,0 dB(A)
Summe Gl. 1 + 2	0,036	0,027	14,9 dB(A)	12,5 dB(A)
vorhabensbedingte Änderung	- 79,4 %	- 79,4 %	- 6,6 dB(A)	- 6,6 dB(A)

Da bei der Berechnung der Beurteilungsgrößen – im Gegensatz zu der anfangs durchgeführten Maximalwertbetrachtung – die Immissionen des jeweils weiter entfernten Gleises nicht vernachlässigt werden dürfen, sind die Änderungen der Beurteilungsgrößen in ihrer Tendenz zwar ähnlich wie die Änderung der Maximalwerte, aber nicht zahlenmäßig gleich.

7 Ergebnisse der Schwingungstechnischen Berechnungen

Die Ergebnisse der Schwingungstechnischen Untersuchung sind in Tabelle 5 zusammengefasst. Der Inhalt der Spalten ist wie folgt:

Spalten 1 bis 8: Allgemeine Angaben zum betrachteten Bezugspunkt und zu den benachbarten Gleisen (Abstände, Oberbau, Zugzahlen).

Spalten 9 bis 11: Maximale bewertete Schwingstärke KB_{Fmax} und Beurteilungs-Schwingstärken KB_{FTr} für tags und nachts für jedes Gleis und in der Summe (Zeile " Σ "). Prozentuale Veränderungen beim Vergleich zwischen Bestand und Planung.

Spalten 12 bis 17: Gebietseinstufung und Festlegung der geltenden Anhaltswerte für die Beurteilung der Erschütterungsimmissionen.

Spalten 18 bis 22: Vergleich der KB_{Fmax} und KB_{FTr} im Planfall mit den Anhaltswerten tags und nachts. Die Einträge bedeuten:

 Der Vergleich KB_{FTr} mit A_r ist nicht erforderlich, da KB_{Fmax} kleiner / gleich A_u ist.

> KB_{Fmax} ist größer A_u , also muss KB_{FTr} mit A_r verglichen werden.

Ü Überschreitung.

Spalten 23 bis 25: Maximale A-bewertete Sekundärluftschallpegel L_{Amax} und Beurteilungspegel L_r tags und nachts für jedes Gleis und in der Summe (Zeile "Σ"). Pegeldifferenzen beim Vergleich zwischen Bestand und Planung.

Spalten 26 bis 27: Vergleich der L_r mit den Immissionsrichtwerten 40 dB(A) tags beziehungsweise 30 dB(A) nachts.

Die Auswertung der Ergebnisse zeichnet folgendes Bild:

An <u>allen</u> untersuchten Gebäuden im Einwirkungsbereich führt das Vorhaben zu einer Minderung der Beurteilungs-Schwingstärken und der sekundären Luftschallimmissionen.

Am Eckhaus Proskauer Straße 20 / Dolziger Straße 1, 1A kann unter ungünstigen Umständen eine geringfügige Zunahme der maximalen bewerteten Schwingstärke $\mathrm{KB}_{\mathrm{Fmax}}$ eintreten. Da der Anstieg kleiner als 25 % ist und die Zumutbarkeitsschwelle $\mathrm{KB}_{\mathrm{Fmax}}$ = 0,4 nicht überschritten wird, liegt aber keine wesentliche Erhöhung vor.

Ergänzend wird darauf hingewiesen, dass im Planfall sowohl die geltenden Anhaltswerte zur Beurteilung der Erschütterungsimmissionen als auch die Immissionsrichtwerte zur Beurteilung der Sekundärluftschallimmissionen in allen untersuchten Gebäuden eingehalten werden. Immissionen in der prognostizierten Höhe lägen also auch beim Neubau einer Straßenbahnstrecke im zulässigen Rahmen.

Angesichts der vorliegenden Ergebnisse ist es nicht erforderlich, über den Einsatz des Neuen Berliner Straßenbahngleises NBS hinaus zusätzliche technische Maßnahmen zur Minderung von Erschütterungsimmissionen vorzusehen.

Die Schwingungstechnische Untersuchung ist mit diesem Hinweis beendet.

Anlagen Straßenbahn Der Betriebsleiter

Dipl.-Ing. Imelmann Schwingungstechnischer Bericht Nr. 784.3 Haltestelle Proskauer Straße

			Bestand	and	Plan	Planung	Gleisverschiebung	hiebung	Bemerkingen
Haus Nr.	Bezugspunkt	S S S	Oberbau	Abstand	Oberbau	Abstand	absolut	relativ	
Proskauer Straße 20 / Dolziger Straße 1 / 1A	Gebäudekante Nord	01	Rahmen Rahmen	14,44 m 11,63 m	NBS NBS	17,89 m 10,32 m	3,45 m -1,31 m	23,9 %	Gleisbögen westl. Haltestelle
Doiziger Straße 2	Gebäudekante West	- 00	GVP GVP	26.75 m 24,12 m	NBS NBS	29,01 m 21,86 m	2,26 m -2,26 m	8,4 % -9,4 %	Haltestellenbereich
Eldenaer Straße 13	Gebäudekante West	01	GVP GVP	12,43 m 9,81 m	NBS NBS	14,49 m 8,16 m	2.06 m -1,65 m	16,5 % -16,8 %	Aufweitung östl. Haltestelle
Eidenaer Straße 14	Mitte Fassade	- 0	GVP GVP	12,44 m 9,80 m	NBS NBS	12,41 m 9,41 m	-0,03 m -0,39 m	-0,2 % -4.0 %	Standard Eldenaer Straße 5stl. Hst.
Eldenaer Straße 36 (Kita)	Gebäudekante Sûd	- 0	GVP GVP	12,90 m 15,54 m	NBS NBS	12.93 m 15.93 m	0,03 m 0,39 m	0.2 %	Standard Eldenaer Straße östl. Hst.

Oberbauarten	Bestand	Rahmen GVP	Rahmengleis mit Asphalteindeckung Großverbundplatte
Oberbauarten	Bestand	Rahmen	Rahmengleis mit Asphalteindeckung
-			
	Planung	NBS	Neues Berliner Straßenbahngleis mit Asphalteindeckung
	- Alleman Andrews		THE PARTY OF THE P

Tabelle 1 Oberbauarten und Abstände zwischen Häusern und Gleisachsen in Bestand und Planung

					Mitt	lere T	erzpeg	gelspe	ktren	der Sc	hnelle	in dB	(Verti	kalkor	npone	nte)				
	4 Hz	5	6,3	8	10	12,5	16	20	25	31,5	40	50	63	80	100	125	160	200	250	315
Großverbundplatte	42,3	42,0	42,5	44,5	53,7	60,2	60,1	59,0	61,5	63,3	64,3	63,3	67,9	67,4	64,5	64,0	54,7	50,6		
Rahmengleis	31,8	33,3	33,5	35,7	36,7	40,8	43,8	45,9	48,6	51,9	55,8	58,3	61,8	64,0	65,4	63,0	60,2	54,4		
Neues Berliner Straßenbahngleis NBS	19,7	24,4	26,3	26,5	27,9	32,5	41,0	44,9	51,2	53,0	52,6	57,4	59,8	59,8	58,5	51,1	43,1	40,1		

Die Messungen der Emissionsspektren erfolgten zwischen 1998 und 2008

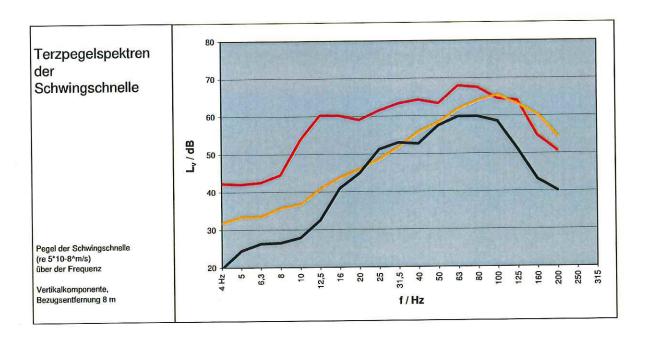


Tabelle 2 Emissionsspektren des Straßenbahnverkehrs, Bezugsabstand 8 m

					f /	$f_0 = $	Verh	ältnis	der	betr	achte	eten	Freq	uenz	zur	Res	onan	zfrec	uen:	z der	Dec	ke				
	0,063	80.0	0,1	0,125	0,16	2,0	0,25	0,315	6,4	9,0	0,63	8,0	1,0	1,25	1,6	2,0	2,5	3,15	4.0	2,0	6,3	8,0	10,0	12,5	16,0	20,0
eton ¹⁾	-2	-2	-2	-2	-1	-1	-1	-1	0 .	1	2	6	13	4	0	-2	-2,5	-3	-4	-5	-6	-7	-8	-9	-10	-11
olz ²⁾			0	0	1	2	3	4	5,5	7	10	17	21	11	6	2	-3	-5	-7	-9	-11	-13	-15	-17	-19	-21

- Übertragungsmaß vom Baugrund zur Decke für Gebäude mit Betondeckenaufbau (Mittelwert in dB)
- dito für Gebäude mit Holzbalkendeckenaufbau

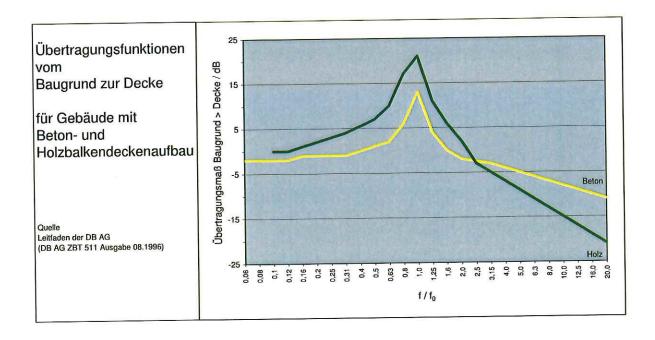


Tabelle 3 Übertragungsfunktionen für Gebäude mit Holz- und Betondeckenaufbau

Dipl.-Ing. Imelmann Schwingungstechnischer Bericht Nr. 784.3 Haltestelle Proskauer Straße

Kennziffer für die Übertragungsfunktion	Beton (MW+Std> 1/ MW> 2 / MW-Std> 3):	Holz (2.0G> 4/1.0G> 5/EG> 6):	Resonanzfrequenz d. Decke (f = 10 Hz 40 Hz)
Kennziffer für di	Beton (MW+Std -	Holz (2.0G	Resonanzfredue

	2	Kennziffer fur die Dertragungstuhktion	4 4 4 5 Hz	Kennzifer fur die Pantbahnart GVP> 1 / Rahmen> 2 / NBS> 5 Abstand Bezugspunkt / Gleisachse	1 12,43 m
		Emissionsspektrum		-	D.O.
Emissionsspektrum GVP		Einfügungsdämmung elastischer Lager	ungen oder ander	rer dämmender Maßnahmen	
g elastischer Lagerungen oder anderer dämmender Maßnahmen		Entfernungsbedingte Pegelabnahme			
erungen oder anderer dämmender Maßnahmen		Übertragungsfunktion Gebäude außen	> innen		
erungen oder anderer dämmender Maßnahmen n -> innen		Pegel der Deckenschnelle im Raum			
erungen oder anderer dämmender Maßnahmen n -> innen		KB-Bewertung			
ərungen oder anderer dämmender Maßnahmen n -> innen	LVRKB	KB-bewerteter Pegel der Deckenschne	Je		
Emissionsspektrum Einfügungsdämmung elastischer Lagerungen oder anderer dämmender Maßnahmen Einfügungsdedingte Pegeläbnahme Übertragungsfunktion Gebäude außen> innen Pegel der Deckenschnelle im Raum KB-Bewertung KB-bewerteter Pegel der Deckenschnelle	KBFmax	KB bewertete Deckenschnelle in mm/s (mittlerer Maximalwert)	(mittlerer Maxima	alwert)	

è	4	ĸ	6.3	α	10	12.5	9	ន	g	ຕັ້	4	9	53	80	ges.
ļ	F	,	3		1	000	, 50	6 63	u 70	6 63	6.23	63.2	67.0	£7.4	
_	42.3	42.0	425	4 0	Š	3	ė	9,00	, D	3	Š	;	;	;	
	•	!						•	ć	ć	c	c	9	2	
	0.0	0.0	0	0.0	0,0	ر د د))) ()	2	5	;	,	2	3	
						č	č		5	ų	ď	7		.73	
	00	0	0.0	0		?	 ?	į	Ť	j	7	2	:	?	
)	-	· ·	. 1			1	č	•	ď	0	٥.	r,	-1	<u>_</u>	
	c)	0.4	ņ	0,	⊃ 2	∩' ∴	2,	?	ģ	û	į	Š	2	2	
_		:		ì		7	10	0	c	000	n C	ï	5	ii.	
	45.3	46.0	48.0	5	200	+	0,0	ģ	ź	5	5	•	9	;	
				,	,	0	t	ć	9	ç	ç	ç	c	0.0	
	-4.7	ņ	Ņ	`	\ <u>+</u>	þ	Ş	2	1	5	;	5	;		
	. !	. !	,	,		1	1	Li C	ç	C O	ű	E.	C.	Ľ,	79.4
ă	40 B	42.5	45.5	20	n	2	0	ה ה	ŝ	9	ŝ	,	•	•	
j	•	1	!												0.508

0,698	
KBFmax	

					Seku	ındärlufts	challana	Sekundärluftschallanalyse / Einzelberechnung	zelberech	gunu						
Zeile 6: Zeile 7:	A LvRA		A-Bewertung A-bewerteter A-bewerteter	A-Bewertung A-bewerteter Pegel der Deckenschnelle A-bewerteter Schalldrucknertel	der Decke	snschnelle										
Zelle o.	valii la				6											٢
1/4	16	20	52	31.5	40	20	အ	80	100	125	160	200	250	315	ges.	т
11 11	60.1	59.0	61.5	63.3	64,3	63,3	6.79	67,4	64,5	64,0	54,7	20,6		•••••		
<u> </u>		0.0	0.0	0.0	0'0	0,0	0,0	0'0	0,0	0,0	0,0	0,0				
) (e		4	4	φ	φ	-7.3	-7,3	-7,3	-7,3	-7,3	-7,3	-7,3				
§ €		<u>+</u>	0.9	20.5	3.0	5,0	-7,0	0.6-	-11,0	-13,0	0,5	-17,0				
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	78.0	85.8	63.3	59,2	55,2	5,0	53,6	51,1	46,2	43,7	32,4	26,3				_
: }	. 1	1		2	0 70	000	0.30	7 00	191,	18.	-13.4	10.9		_		_

					_				_			_		ı	_		
											20.0	200					29.9 dB(A)
																	I Amax
•	0,0	5,7	2 !	-17,0		20,0	•	200	¥	1						 	
•	oʻo	6,7	2	- 0 0		4,4		4.5.	9	0							
٠	o,o	P.	2	-13.0		5.	,	 Q	1	, V							
	0,0	1	2	-		46.2	,	19.1	,	, , , ,							
	000	r	į	-9.0	· ·	51,		22.5		o N							
	0,0	1	0.	-7.0	-	53,6	+ + 1	26,2	,	7/7							
	0,0	1	2.	-5.0	•	S		9	:	200							
,	0'0		ڄ ف	C.	;	55.2		8,50		20.5							
2	0.0	1	Ģ	0	ì	59.2		39.4		000							
•	0.0	: :	4	9	5	63.3	-	-44.7		989	1						
	0.0																
5	0		ςį		2	78.0	5	-56.7	•	2	2						
<u> </u>	2 W	1 (1	<u>6</u>	· -	4	<u> </u>		۵)۵	· ·	∇ Q′ - (<u> </u>	Verma I (8)	V (0.				

Erschütterungsanalyse / Mehrfachberechnung

- - - -		Retor			Holz	
/ = =				0,340	0.223	9.123
12.5				0,615	6,339	0.157
16				0.698	0.358	0.159
8	0.597	0,255	0.117	0,640	0,350	0,166
55	0.658	0,300	0.130			
31,5	0.692	0,309	0.137			
40	0.749	0,333	0,149			
	0	0.117 0.719	<u>\$</u>	ö	0,121.0,698	88
Spanne	ó	0,255 0,333	စ္တ	o	0,340 0,698	88
-						

<u> </u>	-	cu	ო	ಶ	LO.	ω
		Beton			Hoiz	
, -				25.5	33.0	32.9
12.5				27.6	G) 65	65 65
19				29.9	62 85	10,40
8	5. 55.	35,0	33.0	32,3	36.0	35.2
52	45,1	36,0	32.9			
31,5	45,6	37,1	32.4			
40	10° 10° 10° 10° 10° 10° 10° 10° 10° 10°	38,7	(c) (c)			
	31.5	31.5 46,5 dB(A)	B(A)	25.5	25.5 36.0 dB(A)	B(A)
Spanne	35,0	35,0 38,7 dB(A)	B(A)	25,5	25,5 32,3 dB(A)	B(A)

Tabelle 4.1.1 Erschütterungs- und Sekundärluftschallimmissionen Eldenaer Straße 13 (Analyse Bestand Gleis 1)

Schwingungstechnischer Bericht Nr. 784.3 Haltestelle Proskauer Straße Dipl.-Ing. Imelmann

Kennziffer für die Fahrbahnart	GVP> 1 / Rahmen> 2 / NBS		Abstand Bezugspunkt / Gleisach	
		47	16 Hz	
Kennziffer für die Übertragungsfunktion	Beton (MW+Std> 1/ MW> 2 / MW-Std> 3):	Holz (2.0G> 4 / 1.0G> 5 / EG> 6):	Resonanzfrequenz d. Decke (f = 10 Hz 40 Hz)	

Beton (MW	V+Std> 1/ MW	Beton (MW+Std> 1/ MW> 2 / MW-Std> 3);	•	GVP> 1 / Rahmen> 2 / NBS> 5	
Holz (2.0	0.174/1.0	Holz (2.0G> 4/1.0G> 5/EG> 6):	4		-
Resonanz	frequenz d. Dec	Resonanzfrequenz d. Decke (f = 10 Hz 40 Hz)	16 Hz	Abstand Bezugspunkt / Gleisachse	9,81 m
			1		
		Erschütten	ingsanalyse / E	Erschütterungsanalyse / Einzelberechnung	
Zeile 1:	J.	Emissionsspektrum			GVP
Zeile 2:	EM.	Einfügungsdämmung elastischer Lagerungen oder anderer dämmender Maßnahmen	ungen oder and	erer dämmender Maßnahmen	
Zeile 3:	FB	Entfernungsbedingte Pegelabnahme			
Zeile 4:	re	Übertragungsfunktion Gebäude außen> innen	> innen		
Zeile 5:	L'A	Pegel der Deckenschnelle im Raum			
Zeile 6:	₹	KB-Bewertung			
Zeile 7:	LvRKB	KB-bewerteter Pegel der Deckenschnelle	e e		
Zeile 8:	KBFmax	KB bewertete Deckenschnelle in mm/s (mittlerer Maximalwert)	(mittlerer Maxim	ialwert)	

1/14	4	5	5.3	œ	10	12,5	92	20	52		4	20	63	80	ges.
116	42.3	42.0	42.5	44.5	53,7	60,2	50,1	29,0	61,5	63,3	64,3	63,3	6,79	67.4	
	0,0	0.0	0.0	0.0	0'0	0,0	0,0	0'0	0'0	0,0	0.0	0.0	0.0	0.0	
<u> </u>	0.0	0.0	0.0	0.0	4.1-	4.	4,1	٠. 9	6,1,	-2,8	ς, Θ	4.5	4,δ.	မှ 4	
2	6	0.4	IC.	7.0	10.0	17.0	21,0	11,0	6,0	2,0	0,5	-5,0	-7,0	0.6-	
4× 1	45,3	46.0	48.0	5.15	62.3	75.8	79.7	68.1	65,6	62,5	58,5	54,9	57,5	55.0	
-	4	i e	2.55	-1.7	5	9,0	Ó,	Ó.	-0,2	ó	Ó.	Ó,	0,0	0,0	
	40.6	42.5	45.5	8.64	6	75.0	79.2	67.7	65,3	62,3	58,4	54,9	57,5	55,0	1,18
KBEmay	2	Î	<u> </u>	!				-							0,851

0.166 0.207 0.222 0.223

0,412 0,747 0,851 0,816

0,155 0,172 0,192 0,242

0,338 0,401 0,443 0,485

0.792 0.893 0.990 1.056

12.5 16 20 23.5 40

5 Hokz 0,283 0,421 0,450

f/Hz:

Erschütterungsanalyse / Mehrfachberechnung

0,412..0,851 0,166 .. 0,851

0,338 .. 0,485 0.155 .. 1.056

Spanne

Sekundärluftschallanalyse / Mehrfachberechnung

0,851		
KBFmax		

					Seku	Sekundärluftschallanalyse / Einzelberechnung	challana	yse / Ein	zelberech	Bunui					
Zeile 6:	4		A-Bewertung	Bur											
Zeile 7:	LvRA		A-bewerte	A-bewerteter Pegel der Deckenschnelle	der Decke	nschnelle									
Zeile 8:	LAmax		A-bewerte	A-bewerteter Schalidruckpege	druckpege										
4 / Hz	16	20	25	31.5	9	95	83	88	100	125	160	200	250	315	ges.
1 1 1	69.1	59.0	61.5	63.3	64,3	63,3	6,79	67,4	64.5	64,0	54,7	50,6			
<u>P</u>	0.0	0.0	0.0	0.0	0.0	0,0	0'0	0,0	0,0	0,0	0'0	0'0			
(i	4.	<u>.</u>	6	2,8	2.8	3.4	3.4	3.4	-3,4	4	4,5,	4.			
<u>ع د</u>	21.0	11.0	9	2.0	3.0	-5,0	-7.0	-9.0	11.0	-13,0	-15,0	-17,0			
3 / Y	79.7	68.1	65.6	62.5	58.5	54.9	57.5	55,0	50,1	47.6	36,3	30,2			
. Α (((((((((((((((((((58.7	-50.5	-44.7	-39.4	34.6	-30.2	-28.2	22.5	19.1	-16,1	-13,4	-10,9			
7 LVRA	23.0	17,6	20,9	23,1	23.9	24,7	31,3	32,5	31.0	31,5	22,9	6. 6.			
, t A T	<u>.</u>														33,6

33,6 dB(A)		LAmax	•			
33,6			د و ا	22,9	31,5	- 1
			-10,9	-13,4	-16,1	
			30,2	36,3	47.6	
			-17,0	15.0	-13,0	
			4	4.6	6. 4	
			0'0	0,0	0'0	
			50,6	54,7	64,0	l .
ges.	2	520	200	160	125	i
	33.6 33.6 33.6 dB(A)	95	32. 23. 24.	315	200 250 315 50.6 0.0 -3.4 -17.0 30,2 19.3 LAmax	160 200 250 315 54,7 50.6 0,0 0,0 15,0 -17,0 36,3 30,2 1 -13,4 -10,9 5 22,9 19,3

38.8 37.7 38.4 39.1

29,4 31,4 33,6 36,0

9,985 9,885 8,885 8,885 8,885

38,9 39,9 42,4

ଜ୍ୟୁ ଜ୍ୟୁ ଜ୍ୟୁ ଜ୍ୟୁ ଜ୍ୟୁ ଜ୍ୟୁ ଜ୍ୟୁ

1/ Hz: 10 12,5 16 20 20 25 31,5

38.7 38.7 38.7 38.7 38.7 38.7

29,4 .. 39,9 dB(A) 29,4 .. 36,0 dB(A)

35.3 .. 50.3 dB(A) 38,9 .. 42,4 dB(A)

Spanne

Erschütterungs- und Sekundärluftschallimmissionen Eldenaer Straße 13 (Analyse Bestand Gleis 2) Tabelle 4.1.2

Schwingungstechnischer Bericht Nr. 784.3 Haltestelle Proskauer Straße Dipl.-Ing. Imelmann

Kennziffer für die Übertragungsfunktion Beton (MW+Std> 1/ MW> 2 / MW-Std> 3):		Kennzilfer für die Fahrbahnart GVP> 1 / Rahmen> 2 / NBS>
Holz (2.0G> 4/1.0G> 5/EG> 6):	4	
Resonanzfrequenz d. Decke (f = 10 Hz 40 Hz)	16 Hz	Abstand Bezugspunkt / Glelsach

Beton (MV	V+Std> 1/ MW	Beton (MW+Std> 1/ MW> 2 / MW-Std> 3);	4	GVP> 1 / Rahmen> 2 / NBS> 5	មា
Resonanz	frequenz d. Dec	Resonantifications d. Decke (f = 10 Hz 40 Hz)	16 Hz	Abstand Bezugspunkt / Glelsachse	14,49 m
			qsprognose / E	Erschütterungsprognose / Einzelberechnung	
Zeile 1:	31	Emissionsspektrum			NBS
Zelle 2:	ΓW	Einfügungsdämmung elastischer Lagerungen oder anderer dämmender Maßnahmen	ingen oder ande	ərer dämmender Maßnahmen	
Zeile 3:	.	Entfernungsbedingte Pegelabnahme			
Zeile 4:	១	Übertragungsfunktion Gebäude außen> innen	> innen		
Zeile 5:	LvB	Pegel der Deckenschnelle im Raum			
Zeile 6:	χB	KB-Bewertung			
Zeile 7:	LvRKB	KB-bewerteter Pegel der Deckenschnelle	le le		
Zeile 8:	KBFmax	KB bewertete Deckenschnelle in mm/s (mittlerer Maximalwert)	(mittlerer Maxim	(alwert)	

Erschütterungsprognose / Mehrfachberechnung

								_
ges.							9,65	0,072
8	59.8	0,0	8 6	0.6	0,14	0,0	41,0	_
63	59.8	0,0	တု ထ	-7,0	43,0	0,0	43,0	
20	57,4	0,0	8 [.] 6	ů, O	42,6	Ģ	42,5	
9	52,6	0,0	က	3,0	41,3	Ċ,	41,3	
31.5	53,0	0,0	ထု် လ	2,0	46,7	ó	46,6	
ដ	51,2	0,0	, 7,	9'0	5, 5,	ó 2	51,3	
ន	6,44	0,0	-5,7	11,0	50,2	e,	49,9	
16	41,0	0'0	4	21,0	57,9	Ó S	57,4	
12,5	32,5	0.0	4	17,0	45,4	0	44,6	
10	27.9	0,0	4	10,0	33,8	7	32,6	
8	26.5	0 0	0'0	7,0	33,5	-1.7	31,8	
6.3	26.3	0,0	0'0	5,5	31.8	-2.5	29,3	
2	24.4	0.0	0,0	4,0	28.4	5	24,9	
4	19.7	0,0	0,0	3.0	22.7	4	18,0	
1/ Hz	1) LE	N	3) [B	4) LG	5) IVB	E X	7) LVRKB	8) KBFmax

		Sekundärluftschallprognose / Einzelberechnung
Zeile 6:	Ą	A-Bewertung
Zeile 7:	LvRA	A-bewerteter Pegel der Deckenschneile
Zeile 8:	LAmax	A-bewerteter Schalldruckpegei

Zeile 6: A	_	ď	A-Bewertung	- But		:									
Zeile 7: L	LVRA	۹.	4-bewerter	A-bewerteter Pegel der Deckenschnelle	ler Decker	schnelle									
Zeile 8:	LAmax	٩	1-bewerter	A-bewerteter Schalldruckpegel	ruckpegel										
1/ Hz	16	202	23	31,5	6	20	83	8	100	125	160	200	250	315	ges.
1) LE	41.0	44,9	51,2	53,0	52,6	57,4	59,8	59.8	58,5	51,1	43,1	40,1			
2) [M	0.0	0.0	00	0'0	0.0	0,0	0,0	0,0	0,0	0,0	0,0	0,0			
3) LB	4	5.7	5.7	-8,3	e G	8'6-	8	8,6-	6. 6.	و. 8	ပ ု (၁)	8. 6.			
(4	21.0	11.0	6.0	2.0	-3,0	-5,0	-7.0	0.6-	110	-13,0	-15,0	-17,0			
5) LVR	57.9	50,2	5,5	46,7	41,3	42,6	43,0	41,0	37.7	28.3	18,3	13,3			
	-56.7	50.5	-44.7	-39,4	34.6	-30,2	-26,2	22.5	19.1	-16,1	-13,4	-10,9			
	5	6,0	8,9	7.3	6,7	12,4	16,8	18,5	18,6	12,2	4,9	2,4			
8) I.Amax															18.9

18,9 dB(A)	
L.Amax	

14,8.. 21,2 dB(A) 14,8 .. 24,9 dB(A)

19.6 .. 35.3 dB(A) 24,0 .. 27,3 dB(A)

Spanne

0.926 0.927 6.930 0.034 0,027..0,102 0.026 .. 0,102 5 Hok 0,031 0,037 0,050 0,050 0,027 0,040 0,072 0,102 0,023 0.036 0.034 0.033 0.023 .. 0.173 0.049..0,076 0,049 0.073 0.074 0.076 0.120 Spanne

0,072

KBFmax

				_				
	9	21.9	6) 6) 6)	93.5	22.9			
echnung	5 Folz	22.0	22.9	S3 93	24,9			
fachber	4	14.8	16,8	18,9	21,2			
se / Meh	۳ ا				23.9	(c)	ଜୁନ	60
Sekundärluftschallprognose / Mehrfachberechnung	2 Reton				24,0	25,0	26,0	27.3
fuftscha	-				33.k	33.8	34,3	63
ekundär	_ 	/						
v	i //i	2	12,5	9	ଛ	82	3,5	40

Erschütterungs- und Sekundärluftschallimmissionen Eldenaer Straße 13 (Prognose Planung Gleis 1) Tabelle 4.2.1

Dipl.-Ing. Imelmann Schwingungstechnischer Bericht Nr. 784.3 Haltestelle Proskauer Straße

2 / MW-Std> 3): 5 / EG> 6):	Kennziffer für die Übertragungsfunktion Beton (MW+Std -> 1/ MW -> 2 / MW-Std -> 3): Holz (2.OG> 4/ 1.OG -> 5 / EG -> 6):
	die Übertragung d> 1/ MW> > 4 / 1. OG>

Kennziner für die Fanrbannart GVP> 1 / Rahmen> 2 / NBS> 5	
Abetand Rezugenunkt / Gleisachse	8.16 m

eton (MV	V+Std> 1/ MW	Beton (MW+Std> 1/ MW> 2 / MW-Std> 3):	4	GVP> 1 / Rahmen> 2 / NBS> 5	ro
OIZ (Z.C	rfrequenz d. De	Resonantirentienz d. Decke (f = 10 Hz 40 Hz)	16 Hz	Abstand Bezugspunkt / Gleisachse	8,16 m
		Ш	/dsproduose /	Erschütterungsprognose / Einzelberechnung	
Zeile 1:	LE	Emissionsspektrum			NBS
Zeile 2:	L	Einfügungsdämmung elastischer Lagerungen oder anderer dämmender Maßnahmen	ungen oder and	lerer dämmender Maßnahmen	
Zeile 3:	9	Entfernungsbedingte Pegelabnahme			
Zeile 4:	LG	Übertragungsfunktion Gebäude außen> innen	> innen		
Zeile 5:	LVR	Pegel der Deckenschnelle im Raum			
Zeile 6:	κB	KB-Bewertung			
Zeile 7:	LVRKB	KB-bewerteter Pegel der Deckenschnelle	lle		
Zoile 8.	KBFmax	KB bewertete Deckenschnelle in mm/s (mittlerer Maximalwert)	(mittlerer Maxir	nalwert)	

Erschütterungsprognose / Mehrfachberechnung

+/ H2	4	ır	6	00	10	12.5	16	20	22	31,5	9	20	63	80	ges.
1 1 1	19.7	24.4	26.3	26.5	27.9	32.5	41.0	44.9	51,2	53,0	52,6	57,4	59,8	59,8	
3 - 6		0	0.0	0.0	0.0	0.0	0.0	0,0	0,0	0,0	0.0	0,0	0.0	0,0	
) (c	0 0	0	0	0.0	0.1	-0.1	-0.1	-0,2	-0,2	6,0	6,0	6,0	6,0-	6,0	
9 6	5 6	, 4 0, C	ט ני	200	10.0	17.0	21.0	11.0	6,0	2,0	-3,0	-5,0	-7,0	0.6-	
) [c	2,00	28.4	2 6	33.5	37.8	49.4	61.9	55.7	57,0	54,7	49,3	52,1	52,5	50,5	
() ()	-47	, e	, c	1.7	-12	-0.8	-0.5	6,0	-0,2	, 0,	6,1	0,1	0,0	0,0	
0) (c)		24.9	200	6	36.6	48.6	61.4	55.4	56.8	54,6	49,2	52,0	52,4	50,5	64,9
O CALLAD	2,5	2	2	5)										0,132

0.074

0,053 0,078 0,132 0,202

2 Beton

0,055 0,064 0,076 0,085

0,113 0,157 0,186 0,198

0,281 0,362 0,420 0.462

1/ Hz: 10 16 16 20 20 31,5

g	
0,132	4
KBFmax	

0,053 .. 0,202 0.053 .. 0,202

0,113 .. 0,198 0.055 .. 0,462

Spanne

		Sekundärluftschallprognose / Einzelberechnung	
Zeile 6:	A	A-Bewertung	
Zeile 7:	LVRA	A-bewerteter Pegel der Deckenschnelle	
Zeile 8:	LAmax	A-bewerteter Schalldruckpegel	
		350 000 000 000	100

Zeile 8:	LAmax		A-bewerte	A-bewerteter Schalldru	druckpege										
f/Hz	16	20	52	31,5	40	20	63	80	100	125	160	200	250	315	des.
116	41.0	44.9	51.2	53.0	52,6	57,4	29,8	29,8	58,5	51,1	43,1	40,1			
N	0.0	0.0	0.0	0.0	0'0	0,0	0,0	0,0	0'0	0,0	0,0	0,0			
a	ļ Ģ	-0.2	-0.2	6.0	-0,3	6,0	-0,3	-0,3	-0,3	-0,3	6,0	-0,3			
9 5	21.0	11.0	9.0	2.0	-3.0	-5,0	-7,0	0'6-	-11,0	-13,0	-15,0	-17,0			
27.16	6	55.7	57.0	54.7	49.3	52,1	52,5	50,5	47,2	37,8	27,8	22,8			
(S) A	-56.7	-50.5	44.7	-39.4	-34.6	-30,2	-26,2	-22,5	-19,1	-16,1	-13,4	-10,9			
7) I VRA	5,2	5.2	12.3	15,3	14,7	21,9	26,3	28,0	28,1	21,7	14,4	11,9			
															28,3

						1531		
/	_	2	10	•	10	rV.		Spanne
-	9	12	-	N	Ñ	မ	4	
_							71	
							28,3	28,3 dB(A)
							23	28,3

LAmax

Beton 24,2 26,2 26,2 28,3 42,8 33,4 31,4 30,4 43,5 35,4 29,0 44,6 35,6 29,1 29,0 44,6 dB(A) 24,2	2 3 Beton 33,4 34,4 30.7 35,4 29.0 25,6 29.0
---	--

Tabelle 4.2.2 Erschütterungs- und Sekundärluftschallimmissionen Eldenaer Straße 13 (Prognose Planung Gleis 2)

													Ausv	vertung l	Erschütt	erunger	n						Auswertung S	Sekundärer Luft	schall	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
Bezugs- punkt	Fall	Gleis	Emissions- spektrum	Linien	Anzahl Züge tags	Anzahl Züge nachts	Abstand Haus Gleisachse	KBFmax	KBFTr tags	KBFTr nachts	Gebiet	Au tags	Ar tags	Ao nachts	Au nachts	Ar nachts	KBFmax <= Au tags	KBFTr <= Ar tags	KBFmax <= Ao nachts	KBFmax <= Au nachts	KBFTr <= Ar nachts	LA max	Lr tags	Lr nachts	Lr tags <= 40 dB(A)	Lr nachts <= 30 dB(A)
20 / 1A	Bestand	1 2 Σ	Rahmengleis Rahmengleis	21 21	48 48 96	14 14 28	14,44 m 11,63 m	0,113 0,145 0,145	0,018 0,023 0,029	0,014 0,017 0,022							a ^t					27,6 dB(A) 31,2 dB(A) 31,2 dB(A)	11,6 dB(A) 15,2 dB(A) 16,8 dB(A)	9,2 dB(A) 12,8 dB(A) 14,4 dB(A)		
er Str. Str. 1,	Planung	1 2 Σ	NBS NBS	21 21	48 48 96	14 14 28	17,89 m 10,32 m	0,081 0,152 0,152	0,013 0,024 0,027	0,010 0,018 0,021	WA	0,22	0,10	0,30	0,15	0,07	ok		ok	>	ok	17,9 dB(A) 26,6 dB(A) 26,6 dB(A)	1,9 dB(A) 10,6 dB(A) 11,1 dB(A)	-0,5 dB(A) 8,2 dB(A) 8,8 dB(A)	ok	ok
Proskaue Dolziger	Änderung							5,1%	-6,2%	-6,2%												-4,6 dB(A)	-5,6 dB(A)	-5,6 dB(A)		
	Bestand	1 2 Σ	GVP GVP	21 21	48 48 96	14 14 28	26,75 m 24,12 m	0,372 0,404 0,404	0,059 0,064 0,087	0,045 0,049 0,066		0										21,0 dB(A) 22,5 dB(A) 22,5 dB(A)	5,0 dB(A) 6,5 dB(A) 8,8 dB(A)	2,6 dB(A) 4,1 dB(A) 6,5 dB(A)		
Dolziger Str. 2	Planung	1 2 Σ	NBS NBS	21 21	48 48 96	14 14 28	29,01 m 21,86 m	0,048 0,065 0,065	0,008 0,010 0,013	0,006 0,008 0,010	WA	0,22	0,10	0,30	0,15		ok	-	ok	ok	1	10,4 dB(A) 14,7 dB(A) 14,7 dB(A)	-5,6 dB(A) -1,3 dB(A) 0,1 dB(A)	-8,0 dB(A) -3,7 dB(A) -2,3 dB(A)	ok	ok
Dolz	Änderung							-84,0%	-85,4%	-85,4%									y :			-7,8 dB(A)	-8,8 dB(A)	-8,8 dB(A)		
	Bestand	1 2 Σ	GVP GVP	21 21	48 48 96	14 14 28	12,43 m 9,81 m	0,698 0,851 0,851	0,110 0,135 0,174	0,084 0,103 0,133	=	-		9	7	T a		25	Dusii			32,3 dB(A) 36,0 dB(A) 36,0 dB(A)	16,3 dB(A) 20,0 dB(A) 21,5 dB(A)	13,9 dB(A) 17,6 dB(A) 19,2 dB(A)		
naer Str. 13	Planung	1 2 Σ	NBS NBS	21 21	48 48 96	14 14 28	14,49 m 8,16 m	0,102 0,202 0,202	0,016 0,032 0,036	0,012 0,024 0,027	WA	0,22	0,10	0,30	0,15	0,07	ok	-	ok	>	ok	21,2 dB(A) 30,4 dB(A) 30,4 dB(A)	5,2 dB(A) 14,4 dB(A) 14,9 dB(A)	2,8 dB(A) 12,0 dB(A) 12,5 dB(A)	ok	ok
Elden	Änderung	-						-76,3%	-79,4%	-79,4%				********								-5,6 dB(A)	-6,6 dB(A)	-6,6 dB(A)		
_	Bestand	1 2 Σ	GVP GVP	21 21	48 48 96	14 14 28	12,44 m 9,80 m	0,697 0,852 0,852	0,110 0,135 0,174	0,084 0,103 0,133				e								32,3 dB(A) 36,0 dB(A) 36,0 dB(A)	16,3 dB(A) 20,0 dB(A) 21,5 dB(A)	13,9 dB(A) 17,6 dB(A) 19,2 dB(A)		
enaer Str. 14	Planung	1 2 Σ	NBS NBS	21 21	48 48 96	14 14 28	12,41 m 9,41 m	0,122 0,170 0,170	0,019 0,027 0,033	0,015 0,020 0,025	WA	0,22	0,10	0,30	0,15	0,07	ok		ok	>	ok	23,7 dB(A) 28,1 dB(A) 28,1 dB(A)	7,7 dB(A) 12,1 dB(A) 13,4 dB(A)	5,3 dB(A) 9,7 dB(A) 11,1 dB(A)	ok	ok
Elde	Änderung							-80,1%	-81,0%	-81,0%												-7,9 dB(A)	-8,1 dB(A)	-8,1 dB(A)		
(Kita)	Bestand	1 2 Σ	GVP GVP	21 21	48 48 96	14 14 28	12,90 m 15,54 m	0,314 0,235 0,314	0,050 0,037 0,062	0,038 0,028 0,047												38,1 dB(A) 35,1 dB(A) 38,1 dB(A)	22,1 dB(A) 19,1 dB(A) 23,8 dB(A)	19,7 dB(A) 16,7 dB(A) 21,5 dB(A)		
naer Str. 36	Planung	1 2 Σ	NBS NBS	21 21	48 48 96	14 14 28	12,93 m 15,93 m	0,092 0,065 0,092	0,014 0,010 0,018	0,011 0,008 0,014	so			0,22			ok	-	ok	ok	-	29,1 dB(A) 25,7 dB(A) 29,1 dB(A)	13,1 dB(A) 9,7 dB(A) 14,7 dB(A)	10,7 dB(A) 7,3 dB(A) 12,4 dB(A)	ok	ok
Eldenaer	Änderung	-		1				-70,9%	-71,4%	-71,4%												-9,0 dB(A)	-9,1 dB(A)	-9,1 dB(A)		

Tabelle 5 Ergebnisse der Schwingungstechnischen Berechnungen