

Fluid & Energy Engineering GmbH & Co. KG

Gutachten zu Risiken durch Eiswurf und Eisfall am Standort Schierenberg

Referenz-Nummer:

F2E-2021-TGZ-018, Rev. 1 - ungekürzte Fassung

Auftraggeber:

ABO Wind AG

Unter den Eichen 7, 65195 Wiesbaden

Die Ausarbeitung des Gutachtens erfolgte durch:

Fluid & Energy Engineering GmbH & Co. KG Borsteler Chaussee 178, 22453 Hamburg, www.f2e.de

Verfasser:

M.Sc. Rebecca Bode, Sachverständige,

Hamburg, 14.12.2021

Geprüft:

Mount John

Dr.-Ing. Thomas Hahm, Sachverständiger,

Hamburg, 14.12.2021

Für weitere Auskünfte:

Tel.: 040 53303680-0 Fax: 040 53303680-79

Rebecca Bode: bode@f2e.de oder Dr. Thomas Hahm: hahm@f2e.de

Urheber- und Nutzungsrecht:

Urheber des Gutachtens ist die Fluid & Energy Engineering GmbH & Co. KG. Der Auftraggeber erwirbt ein einfaches Nutzungsrecht entsprechend dem Gesetz über Urheberrecht und verwandte Schutzrechte (UrhG). Das Nutzungsrecht kann nur mit Zustimmung des Urhebers übertragen werden. Veröffentlichung und Bereitstellung zum uneingeschränkten Download in elektronischen Medien sind verboten. Eine Einsichtnahme der gekürzten Fassung des Gutachtens gemäß UVPG §23 (2) über die zentralen Internetportale von Bund und Ländern gemäß UVPG §20 Absatz (1) wird gestattet.

Gutachtliche Stellungnahme zu Risiken durch Eiswurf und Eisfall am Standort Schierenberg, Dezember 2021

für ABO Wind AG

Inhaltsverzeichnis

Grundlagen	4
2.1 Vereisung	4
2.2 Regelungen in den Normen	5
2.3 Grenzwerte und Risikobewertung	7
2.3.1 Grenzwerte individuelles Risiko	7
2.3.2 Grenzwerte kollektives Risiko	9
2.3.3 Risikobewertung	10
2.3.4 Risikomindernde Maßnahmen	12
2.3.5 Addition von Risiken	14
2.4 Berechnung der Flugbahnen von Eisstücken	15
2.5 Vereisungshäufigkeiten	16
2.6 Gültigkeit der Ergebnisse	18
2.7 Rotorblattheizung	19
Eingangsdaten	20
3.1 Ausgangssituation	20
3.2 Winddaten am Standort	20
3.3 Windparkkonfiguration und Schutzobjekte	23
3.4 Aufenthaltshäufigkeiten	25
3.5 Standortspezifische Grenzwerte für das kollektive Risiko	25
3.6 Vereisungsrelevante WEA-Systeme	26
3.6.1 WEA-interne Eiserkennungssysteme	26
3.6.2 Optionale Eiserkennungssysteme	26
3.6.3 Systeme zur Prävention und Enteisung	26
3.6.4 Betriebsführungssystem	26
3.7 Risikoreduzierende Maßnahmen	26
Durchgeführte Untersuchungen	27
4.1 Standortbesichtigung	27
4.2 Vereisungsbedingungen am Standort	27
4.3 Ermittlung der potentiellen Gefährdungsbereiche	28
4.4 Eiswurf	29
4.5 Eisfall	30
Weitere Maßnahmen	31
5.1 Eisfall	31
Zusammenfassung	32
6.2 Eiswurf	32
	2.1 Vereisung 2.2 Regelungen in den Normen 2.3 Grenzwerte und Risikobewertung 2.3.1 Grenzwerte individuelles Risiko 2.3.2 Grenzwerte kollektives Risiko 2.3.3 Risikobewertung 2.3.4 Risikomindernde Maßnahmen 2.3.5 Addition von Risiken 2.4 Berechnung der Flugbahnen von Eisstücken 2.5 Vereisungshäufigkeiten 2.6 Gültigkeit der Ergebnisse 2.7 Rotorblattheizung Eingangsdaten 3.1 Ausgangssituation 3.2 Winddaten am Standort 3.3 Windparkkonfiguration und Schutzobjekte 3.4 Aufenthaltshäufigkeiten 3.5 Standortspezifische Grenzwerte für das kollektive Risiko 3.6 Vereisungsrelevante WEA-Systeme 3.6.1 WEA-interne Eiserkennungssysteme 3.6.2 Optionale Eiserkennungssysteme 3.6.3 Systeme zur Prävention und Enteisung 3.6.4 Betriebsführungssystem 3.7 Risikoreduzierende Maßnahmen Durchgeführte Untersuchungen 4.1 Standortbesichtigung 4.2 Vereisungsbedingungen am Standort 4.3 Ermittlung der potentiellen Gefährdungsbereiche 4.4 Eiswurf 4.5 Eisfall Weitere Maßnahmen 5.1 Eisfall Zusammenfassung 6.1 Potentielle Gefährdungsbereiche 6.2 Eiswurf

Gutachtliche Stellungnahme zu Risiken durch Eiswurf und Eisfall am Standort Schierenberg, Dezember 2021 für ABO Wind AG

Referenz-Nr.: F2E-2021-TGZ-018, Revision 1 - ungekürzte Fassung

6.3 Eisfall	33
7 Formelzeichen und Abkürzungen	34
8 Literaturangaben	
Anhang A: Detaillierte Berechnungsergebnisse Eiswurf	
A.1 Berechnung der Auftreffhäufigkeiten	37

1 Aufgabenstellung

Die Fluid & Energy Engineering GmbH & Co. KG ist beauftragt worden, die vorliegende Windparkkonfiguration hinsichtlich einer Gefährdung durch Eiswurf und Eisfall ausgehend von sich in Betrieb befindlichen bzw. stillstehenden (trudelnden) Windenergieanlagen (WEA) zu betrachten und zu bewerten.

Gutachtliche Stellungnahme zu Risiken durch Eiswurf und Eisfall am Standort Schierenberg, Dezember 2021 für ABO Wind AG

Referenz-Nr.: F2E-2021-TGZ-018, Revision 1 - ungekürzte Fassung

2 Grundlagen

2.1 Vereisung

Abhängig von den Vereisungsbedingungen kann es auf dem Rotorblatt einer WEA zu starken Vereisungen kommen, in deren Folge eine Gefahr durch sich lösende bis zu mehreren Kilogramm schwere Eisstücke besteht.

Während des Betriebes der WEA erfahren diese Eisstücke einen deutlichen Anfangsimpuls durch das schnell rotierende Blatt. In diesem Fall wird daher von Eiswurf gesprochen. Während des Stillstandes der WEA trudelt diese mit deutlich niedrigeren Drehzahlen. In diesem Fall wird daher von Eisfall gesprochen. In beiden Fällen (Eiswurf und Eisfall) wirken auf die abgelösten Eisstücke durch den Wind weitere Kräfte. Bei Sturm und auch entlang eines abfallenden Geländes können so nennenswerte Flugweiten erreicht werden.

Vereisung tritt ein, wenn entweder unterkühlte Wassertropfen auf das Rotorblatt aufschlagen oder die Oberflächentemperatur des Rotorblattes unterhalb des Reifpunktes liegt und Wasserdampf auf der Oberfläche in Form von Reif resublimiert.

Im Temperaturbereich von ca. 0° bis -10°C bildet sich aus den Wassertropfen beim Auftreffen auf das Rotorblatt Eis. Bis etwa -4°C kommt es dabei aufgrund der verzögerten Eisbildung zu großflächiger Klareisbildung. Bei niedrigeren Temperaturen dominiert hingegen die Raueisbildung, mit geringer Haftoberfläche und einem milchigeren und rauerem Erscheinungsbild.

Unterhalb von -10°C können sich größere Ablagerungen von Raureif an den Profilkanten bilden. Der sich bei noch kälteren Temperaturen bildende Reif bildet typischerweise keine größeren Ablagerungen und spielt hinsichtlich einer Gefährdung durch Eisfall oder Eiswurf keine Rolle.

Grundsätzlich sollten bei der Gefährdung durch Eisfall bzw. Eiswurf daher zwischen großflächigen Eisplatten, die sich über einen großen Bereich der Profiltiefe ausbilden können, und schlankeren Eisstücken, die von der Profilkante abbrechen, unterschieden werden. Hinweise zu Form und Masse von Eisstücken finden sich z.B. in /1.1/.

Aufgrund der extrem hohen Variabilität der Vereisungstage von Jahr zu Jahr werden langjährige Messungen benötigt, die möglichst auf einen klimatologischen Zeitraum, also 30 Jahre, zu beziehen sind /2.1/. Derart langjährige Messungen oder Beobachtungen liegen in Deutschland z.B. in Bodennähe für die Klimastationen des Deutschen Wetterdienstes DWD vor. Messungen in Bodennähe unterliegen jedoch starken mikroskaligen Einflüssen, so dass sie bezüglich einer Vereisung schon wenige hundert Meter entfernt nicht mehr aussagekräftig sein können, wenn sich dort z.B.

Gutachtliche Stellungnahme zu Risiken durch Eiswurf und Eisfall am Standort Schierenberg, Dezember 2021

für ABO Wind AG

Referenz-Nr.: F2E-2021-TGZ-018, Revision 1 - ungekürzte Fassung

aufgrund einer lokalen Senke kalte Luft sammelt. Diese mikroskaligen Effekte, die auf Nabenhöhe der Windenergieanlagen typischerweise keine Rolle mehr spielen, zu identifizieren und entsprechend zu korrigieren ist so gut wie nicht möglich. Hinzu kommt, dass die Daten der Klimastationen oft über mehr als 10km und auf andere Höhen über Meeresniveau übertragen werden müssen, so dass die Unsicherheiten in der Vorhersage der Vereisungstage nach dieser Methode insgesamt sehr groß sind.

Eine weitere mögliche Quelle stellen großflächige Vereisungskarten dar, wie sie z.B. in /1.1/ und /1.2/ dargestellt sind. Diese Karten liefern jedoch nur Hinweise und Tendenzen. In /1.2/ wird darauf hingewiesen, dass im Gegensatz zu den in den großflächigen Karten dargestellten Werten, die tatsächlichen Werte schon auf kurzen Distanzen stark schwanken können und die lokale Geländetopografie berücksichtigt werden sollte. Die daraus entstehenden Unterschiede in der Einschätzung der Vereisungstage können extrem groß sein, so dass diese Karten selbst zur Plausibilisierung lokaler Vereisungsdaten nur sehr bedingt geeignet sind.

Für Deutschland liegt mittlerweile eine hochaufgelöste Vereisungskarte des DWD vor, die die lokale Topografie berücksichtigt /1.8/. Sie stellt vor dem Hintergrund der dargestellten Zusammenhänge die zurzeit beste Datengrundlage zur Ermittlung der Vereisungstage für Standorte in Deutschland dar.

2.2 Regelungen in den Normen

In /1.1/ findet sich für Regionen mit einer hohen Vereisungshäufigkeit die Empfehlung, einen Mindestabstand von 1,5 · (Nabenhöhe + Rotordurchmesser) zu gefährdeten Bereichen einzuhalten oder die Windenergieanlage bei Vereisungsbedingungen abzuschalten.

Der vorgeschlagene Mindestabstand von 1,5 · (Nabenhöhe + Rotordurchmesser) fand in Deutschland Eingang in die Muster-Liste der technischen Baubestimmungen bzw. die Muster-Verwaltungsvorschrift Technischen Baubestimmungen /2.2/. Dort heißt es in der Anlage zur Richtlinie für Windenergieanlagen:

"Abstände zu Verkehrswegen und Gebäuden sind unbeschadet der Anforderungen aus anderen Rechtsbereichen wegen der Gefahr des Eisabwurfs einzuhalten, soweit eine Gefährdung der öffentlichen Sicherheit nicht auszuschließen ist. Abstände größer als 1,5 x (Rotordurchmesser plus Nabenhöhe) gelten im Allgemeinen in nicht besonders eisgefährdeten Regionen als ausreichend. In anderen Fällen ist die Stellungnahme eines Sachverständigen erforderlich."

Soweit dieser Mindestabstand nicht eingehalten wird bzw. der Standort der Windenergieanlage in einer besonders eisgefährdeten Region liegt und der MindestabGutachtliche Stellungnahme zu Risiken durch Eiswurf und Eisfall am Standort Schierenberg, Dezember 2021 für ABO Wind AG

Seite 6 von 41

stand daher keine Anwendung finden kann, ist also das Risiko durch Eiswurf standortspezifisch zu bewerten.

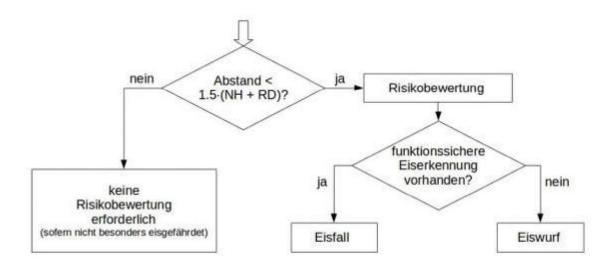
Weiterhin wird in /2.2/ ausgeführt, dass die gutachterliche Stellungnahme eines Sachverständigen zur Funktionssicherheit von Einrichtungen vorzulegen ist, durch die der Betrieb der Windenergieanlage bei Eisansatz sicher ausgeschlossen werden kann oder durch die ein Eisansatz verhindert werden kann. Dies hat immer dann zu erfolgen, wenn erforderliche Abstände wegen der Gefahr des Eisabwurfes nicht eingehalten werden.

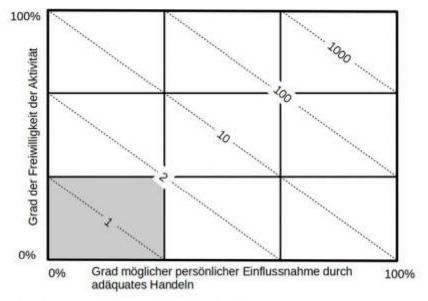
Die gutachterliche Stellungnahme zur Funktionssicherheit von Einrichtungen zur Eiserkennung ist im Gegensatz zur gutachterlichen Stellungnahme bei Unterschreitung des in der Muster-Liste genannten Mindestabstandes von 1,5 · (Nabenhöhe + Rotordurchmesser) kein standortspezifischer Nachweis, sondern ein entweder vom Hersteller des Eiserkennungssystemes bzw. für die Implementierung in eine spezifische Windenergieanlage vom Hersteller der Windenergieanlage einmalig für den jeweiligen Typ in Auftrag gegebenes Gutachten. Diese Systeme schließen damit den Betrieb bei potentiell gefährlichem Eisansatz aus, können aber nicht grundsätzlich Eisansatz verhindern. Das für eine Verhinderung des Eisansatzes in /2.2/ genannte Beispiel einer Rotorblattheizung ist an dieser Stelle typischerweise nicht als Sicherheitssystem konzipiert. Der Betrieb einer Rotorblattheizung wird daher durch einzelne Hersteller für Standorte, in deren Umgebung eventuell durch Eiswurf eine erhebliche Gefährdung besteht, sogar ausgeschlossen.

Damit ergibt sich die Situation, dass auch bei einem vorhandenen System zur Eiserkennung mit Eisfall (Ablösen von Eisstücken von der stillstehenden bzw. trudelnden Windenergieanlage) zu rechnen ist und damit auch in diesen Fällen bei Unterschreitung des Mindestabstandes von 1,5 · (Nabenhöhe + Rotordurchmesser) eine standortspezifische Bewertung des Risikos erfolgen sollte.

Der in der Abbildung 2.2.1 dargestellte Entscheidungsbaum für die Bewertung des Risikos durch Eiswurf und Eisfall fasst dies noch einmal zusammen.

Auf internationaler Ebene wurden durch die International Energy Agency (IEA) Empfehlungen für die Risikobewertung von Eisfall und Eiswurf erarbeitet /2.1/. Neben der Risikobewertung beschäftigen sich die Empfehlungen der IEA auch mit der mathematischen Modellierung und den eingehenden Randbedingungen. Die Empfehlungen der IEA /2.1/ werden im Folgenden berücksichtigt.




Abbildung 2.2.1: Entscheidungsbaum für die Bewertung des Risikos durch Eiswurf und Eisfall.

2.3 Grenzwerte und Risikobewertung

2.3.1 Grenzwerte individuelles Risiko

Für Personenschäden findet sich in der Literatur das Konzept der minimalen endogenen Sterblichkeit (MEM) /2.3/. Die minimale endogene Sterblichkeit in entwickelten Ländern findet sich in der Gruppe der fünf bis 15jährigen. Sie liegt bei $2 \cdot 10^{-4}$ Todesfällen pro Person und Jahr. Eine neue Technologie sollte diese endogene Sterblichkeit nicht nennenswert erhöhen. Es wird daher gefordert, dass die mit einer neuen Technologie verbundene Sterblichkeit nicht mehr als $1 \cdot 10^{-5}$ Todesfälle pro Person und Jahr betragen darf.

An anderer Stelle wird das gesellschaftlich akzeptierte Todesfallrisiko abhängig vom Grad der Freiwilligkeit und möglichen Einflussnahme auf die Handlung dargestellt /1.7/. Die Akzeptanz sinkt, wenn zum einen die Möglichkeit sich durch adäquates Handeln zu schützen gegen Null geht und zum anderen sich die Person nicht freiwillig der Gefährdung aussetzt. Der unter diesen Randbedingungen definierte Grenzwert liegt bei $1 \cdot 10^{-5}$ Todesfällen pro Person und Jahr und entspricht damit dem definierten MEM-Kriterium.

Abbildung 2.3.1.1: Akzeptiertes Todesfallrisiko pro 100 000 Personen /1.7/. Grau hinterlegter Bereich entspricht dem MEM-Kriterium /2.3/.

Betrachtet man das Risiko in der Nähe einer WEA durch Eisfall oder Eiswurf tödlich zu verunglücken, begibt man sich in der Regel weder freiwillig in diese Lage noch hat man durch persönliche Einflussnahme eine Möglichkeit das Risiko nennenswert zu minimieren. Der Ansatz des MEM-Kriteriums ist daher an dieser Stelle gerechtfertigt und sinnvoll.

Damit liegt eine inakzeptable Gefährdung durch Eiswurf oder Eisfall nur vor, wenn der so definierte Grenzwert überschritten wird.

Um hier eine konservative Vorgehensweise zu gewährleisten, werden folgende Annahmen getroffen:

- Ein Eisstück, das eine ungeschützte Person außerhalb eines Fahrzeuges oder Gebäudes im Bereich des Kopfes trifft, führt immer zu einer schweren Verletzung oder zum Tode.
- Ein Eisstück, das direkt auf ein Fahrzeug im Bereich der Frontscheibe auftrifft, führt stets zu einer schweren Verletzung oder zum Tode der Insassen. Die durchschnittliche Anzahl von Personen in einem Kraftfahrzeug ist statistisch erfasst /1.6/, so dass sich hieraus eine Anzahl betroffener Personen ableiten lässt.

Mit dem Ausschluss leichter Verletzungen sowie der fehlenden Unterscheidung zwischen schweren und tödlichen Verletzungen wird hier ein konservativer Ansatz gewählt. Eine weitere Differenzierung gestaltet sich an dieser Stelle sehr schwierig und lässt sich statistisch zurzeit nicht ausreichend absichern.

2.3.2 Grenzwerte kollektives Risiko

Bei der Bewertung von Schutzobjekten, bei denen sich eine größere Anzahl von Personen in der Nähe der WEA aufhält, wie es typischerweise bei Verkehrswegen der Fall ist, ist gemäß /2.1/ das daraus resultierende Kollektivrisiko zu bewerten. Entsprechende Grenzwerte für das Kollektivrisiko werden in /2.1/ definiert. Diese liegen für das Kollektivrisiko zwei Größenordnungen oberhalb des MEM-Kriteriums /2.1/ und somit bei $1 \cdot 10^{-3}$ Todesfällen pro Jahr.

Gemäß /2.1/ kann für das Risiko im Straßenverkehr der Grenzwert für das kollektive Risiko basierend auf vorliegenden Unfallstatistiken ermittelt werden. Diese Vorgehensweise findet Anwendung für Straßen des Fernverkehrs und angeschlossene Straßen, die dem Durchgangsverkehr dienen. Dies sind in Deutschland die Bundesautobahnen, die Bundesstraßen und die Landesstraßen.

Das aktuelle Risiko ist dabei auf Basis der Todesfälle und der Schwerverletzten im Straßenverkehr zu ermitteln. Entsprechend der grundsätzlichen Idee des MEM-Kriteriums wird auch hier gefordert, dass ein bestehendes Risiko nicht nennenswert erhöht werden darf. Der anzusetzende Grenzwert für eine inakzeptable Gefährdung durch Eiswurf oder Eisfall wird daher eine Größenordnung niedriger gewählt als das bestehende Risiko /2.1/.

Mit /1.3/ liegen entsprechende Unfallzahlen für Kfz-Benutzer gegliedert nach Straßenklasse, Ortslage und Unfallfolge vor. Tabelle 2.3.2.1 listet die entsprechenden absoluten Unfallzahlen pro Jahr für die betreffenden Straßengruppen.

Tabelle 2.3.2.1: Verunglückte Kfz-Benutzer gegliedert nach Straßenklasse pro Jahr /1.3/.

Straßenklasse	Getötete	Schwerverletzte
Bundesautobahn	344	5673
Bundesstraße (außerorts)	640	7742
Landesstraße (außerorts)	646	9210

In Verbindung mit der Inlandsfahrleistung auf den verschiedenen Straßenklassen lassen sich daraus die bestehenden Risiken bezogen auf die gefahrene Strecke bestimmen. Damit ist es möglich abhängig von der Verkehrsdichte straßenspezifische Risikowerte festzulegen. Die Streckenlänge ist dabei so festzulegen, dass jeweils nur eine WEA zur Gefährdung beitragen kann, um auch hier zu gewährleisten, dass das von jeder WEA ausgehende Risiko unabhängig bewertet werden kann. Werden die Risikogrenzwerte standortspezifisch bestimmt, so sind sie in Kapitel 3 dargestellt. Für alle anderen Straßenklassen kann der oben definierte Grenzwert für das Kollektivrisiko von $1 \cdot 10^{-3}$ zugrunde gelegt werden.

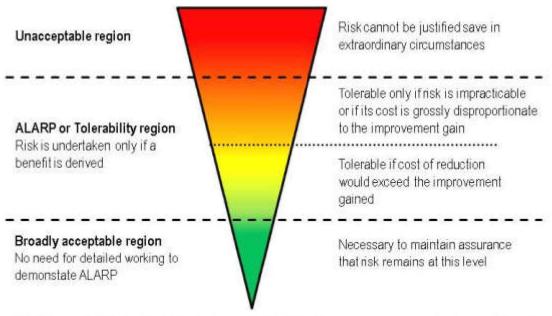
Gutachtliche Stellungnahme zu Risiken durch Eiswurf und Eisfall am Standort Schierenberg, Dezember 2021 für ABO Wind AG

Referenz-Nr.: F2E-2021-TGZ-018, Revision 1 - ungekürzte Fassung

2.3.3 Risikobewertung

Im Folgenden wird in allen Fällen das individuelle Risiko und das kollektive Risiko ermittelt. Anschließend wird in Abhängigkeit von der Aufenthaltshäufigkeit von Personen das individuelle oder kollektive Risiko für eine Bewertung zugrunde gelegt. In Anlehnung an /2.1/ kann dabei folgende Aufteilung verwendet werden:

- Individuelles Risiko:
 - land- und forstwirtschaftlich genutzte Wege, Wanderwege, Fahrradwege und Straßen mit geringer Verkehrsdichte,
 - Objekte wie Scheunen, Hütten etc., die regelmäßig durch den Besitzer oder durch einen kleinen Personenkreis genutzt werden.
- Kollektives Risiko:
 - stark genutzte Gemeindestraßen, Kreisstraßen, Landesstraßen, Bundesstraßen und Autobahnen,
 - Objekte, die von generellem Interesse für die Öffentlichkeit sind und entsprechend durch eine größere Personengruppe genutzt werden (öffentliche Parkplätze, Industrieanlagen etc.).


Für die Bewertung des kollektiven Risikos sind dabei die Risiken aller zu betrachtenden Personengruppen zu addieren. Für die Bewertung des individuellen Risikos ist das sogenannte kritische Individuum maßgeblich, das aufgrund seiner Nutzung der Schutzobjekte dem höchsten Risiko ausgesetzt ist. Das individuelle Risiko ist im Gegensatz zum kollektiven Risiko daher nicht von der Gesamtanzahl der Personen abhängig, die die Schutzobjekte frequentieren. Auf kleineren Wegen, auf denen nur eine geringe Fahrgeschwindigkeit von Kfz zu unterstellen ist, ist das kritische Individuum z.B. in der Regel der Fußgänger.

Entsprechend dem Vorgehen der UK Health and Safety Executive (HSE) /1.9/ werden in /2.1/ unterhalb des inakzeptablen Bereiches weitere Risikobereiche definiert, die unterschiedliche Maßnahmen erfordern.

Das MEM-Kriterium definiert für das individuelle Risiko dabei die Obergrenze des sogenannten ALARP-Bereichs (As Low As Reasonably Practicable, s. Abbildung 2.3.3.1). Risiken die höher als das MEM-Kriterium liegen, sind demnach nicht akzeptabel.

Seite 11 von 41

Referenz-Nr.: F2E-2021-TGZ-018, Revision 1 - ungekürzte Fassung

Abbildung 2.3.3.1: ALARP-Prinzip /1.9/. Die Grenze zum roten inakzeptablen Bereich wird für das individuelle Risiko durch das MEM-Kriterium /2.3/ definiert.

Darunter folgt der ALARP-Bereich, welcher sich über zwei Größenordnungen der Risikowerte erstreckt.

Liegt das Risiko im oberen ALARP-Bereich, sollen Maßnahmen in Betracht gezogen werden, um das Risiko weiter zu reduzieren. Die Maßnahmen sollten sich an den bekannten und etablierten Techniken und den am Standort gegebenen Möglichkeiten orientieren.

Liegt das Risiko im unteren ALARP-Bereich, sind Maßnahmen zur Reduzierung des Risikos in der Regel nicht erforderlich. Im Rahmen des Gutachtens werden entsprechend nur im Einzelfall Maßnahmen vorgeschlagen.

Liegt das Risiko mehr als zwei Größenordnungen unterhalb des MEM-Kriteriums, ist es ohne weitere Maßnahmen uneingeschränkt akzeptabel.

Bei der Bewertung der individuellen und kollektiven Risiken wird entsprechend zwischen den vier in Tabelle 2.3.3.1 genannten Bereichen unterschieden.

Da Sachschäden hier in ihrer Schwere gegenüber Personenschäden vernachlässigbar sind, werden diese in der Regel nicht weiter bewertet und in den Detailergebnissen im Anhang nicht dargestellt.

Tabelle 2.3.3.1: Risikobereiche für das individuelle und kollektive Risiko nach /2.1/.

Individuelles Risiko	Kollektives Risiko	Bewertung
> 10 ⁻⁵	> 10 ⁻³ oder standortspezifisch	Roter Bereich: Risiko inakzeptabel - Maßnahmen sind einzuleiten und deren Nutzen nachzuweisen
10 ⁻⁶ bis 10 ⁻⁵	10 ⁻⁴ bis 10 ⁻³ oder standortspezifisch	Oranger Bereich: Risiko akzeptabel - Maßnahmen sind in Betracht zu ziehen
10 ⁻⁷ bis 10 ⁻⁶	10 ⁻⁵ bis 10 ⁻⁴ oder standortspezifisch	Gelber Bereich: Risiko akzeptabel - Maßnahmen in der Regel nicht erforderlich
< 10 ⁻⁷	< 10 ⁻⁵ oder standortspezifisch	Grüner Bereich: Risiko uneingeschränkt akzeptabel

Das individuelle Risiko ist in der Regel für stark genutzte überregionale Verkehrswege nicht maßgeblich. Eine Ausnahme bilden hier die überregionalen Bahnstrecken, da hier nur wenige individuelle Personen, nämlich die Lokführer, gefährdet sind. Da es nicht praktikabel oder nicht möglich ist, das individuelle Risiko entlang einer gesamten Bahnstrecke zu bewerten, werden in diesem Fall die Grenzwerte für das individuelle Risiko um den Faktor zehn erniedrigt.

2.3.4 Risikomindernde Maßnahmen

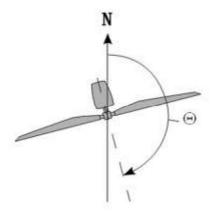
Liegt das Risiko im inakzeptablen roten Bereich, ist ein Nachweis erforderlich, dass das Risiko durch geeignete Maßnahmen in den ALARP-Bereich verschoben werden kann. Gemäß /2.1/ kommen insbesondere folgende Maßnahmen in Frage, um das Risiko in den ALARP-Bereich zu verschieben:

- Fixierung der Azimut-Position des Rotors der WEA nach Abschaltung durch die Eiserkennung,
- Wahl eines kleineren WEA-Typs,
- Verschiebung der WEA,
- Verlegung des betroffenen Schutzobjektes.

In allen Fällen ist durch eine erneute Berechnung nachzuweisen, dass das Risiko anschließend nicht mehr im roten inakzeptablen Bereich liegt /2.1/.

Liegt das Risiko im oberen orangen ALARP-Bereich sind etablierte risikomindernde Maßnahmen umzusetzen. Zu den empfohlenen Maßnahmen zählen:

• Fixierung der Azimut-Position des Rotors der WEA nach Abschaltung durch


die Eiserkennung, wenn dies aufgrund der Lage der Schutzobjekte möglich und sinnvoll ist,

- Einsatz einer funktionssicheren Eiserkennung,
- Warnschilder,
- Warnleuchten, die mit dem Eiserkennungssystem der WEA gekoppelt sind,
- Physische Barrieren wie Schranken sofern dies vor Ort umgesetzt werden kann.

Die Auswahl der Maßnahmen sollte sich an den bekannten und etablierten Techniken und den am Standort gegebenen Möglichkeiten orientieren.

Auf Freiflächen mit kontrolliertem und beschränktem Zutritt wie z.B. einem Betriebsgelände kann das Risiko auch durch Aufenthaltsbeschränkungen oder das Tragen eines Schutzhelmes reduziert werden. Bei der Quantifizierung dieser Maßnahmen kann gemäß /1.10/ davon ausgegangen werden, dass das Tragen eines Schutzhelmes mit einem Chancenverhältnis (odds ratio) für schwere und tödliche Kopfverletzungen von etwa ½ verbunden ist.

Bei einer Fixierung der Azimut-Position wird die WEA nach einer Abschaltung durch die Eiserkennung in eine fixe Azimut-Position gefahren. Damit kann die Trefferhäufigkeit von Eisstücken auf die Schutzobjekte verringert werden, indem im Falle eines Verkehrsweges z.B. der Rotor parallel zum Fahrbahnrand ausgerichtet wird. Die Azimut-Position wird dabei definiert über den Azimutwinkel zwischen geografisch Nord und der Achsenrichtung der WEA.

Abbildung 2.3.4.1: Definition des Azimutwinkels Θ .

Gutachtliche Stellungnahme zu Risiken durch Eiswurf und Eisfall am Standort Schierenberg, Dezember 2021 für ABO Wind AG

Referenz-Nr.: F2E-2021-TGZ-018, Revision 1 - ungekürzte Fassung

2.3.5 Addition von Risiken

Entlang von Verkehrswegen kann in der Regel nicht ausgeschlossen werden, dass einzelne oder alle Personen mehrere WEA passieren und damit einer Summe von Risiken ausgesetzt sind.

Dies spielt für den überregionalen Verkehr keine Rolle, da hier mit Grenzwerten verglichen wird, die auf die gefahrene Strecke bezogen sind (siehe Kapitel 2.3.2).

WEA an Autobahnen, Bundesstraßen und Landesstraßen können daher stets einzeln betrachtet werden. Hier sind benachbarte WEA nur dann von Interesse, wenn sich die Gefährdungsbereiche der zu bewertenden WEA und einer benachbarten WEA überlappen.

Bei der Bewertung von Verkehrswegen des regionalen bzw. des Nahverkehrs werden die akzeptierten Grenzwerte für das individuelle bzw. kollektive Risiko herangezogen. Für Kreisstraßen, Gemeindestraßen und sonstige Verkehrswege ist daher zu prüfen, ob die übliche Nutzung dazu führt, dass die Gefährdungsbereiche mehrerer WEA passiert werden. Diese Betrachtung kann aufgrund des regionalen Charakters dieser Verkehrswege dabei auf den zu betrachtenden Windpark beschränkt werden.

In einem verzweigten Verkehrswegenetz innerhalb eines Windparks gibt es eine Vielzahl von Routen, die nicht alle betrachtet werden können. Es ist hier ausreichend eine repräsentative Route zu wählen, die eine konservative Bewertung gewährleistet.

In der Praxis kann für Verkehrswege des regionalen bzw. des Nahverkehrs folgendermaßen vorgegangen werden:

- Im ersten Schritt werden die Risiken ausgehend von jeder einzelnen WEA und bezogen auf die verschiedenen Schutzobjekte ermittelt. Wenn einzelne Risiken hier bereits im oberen ALARP-Bereich liegen, werden die entsprechenden Maßnahmen abgeleitet (siehe auch Kapitel 5).
- Im zweiten Schritt wird eine repräsentative Route festgelegt und hierfür das Risiko ermittelt und bewertet. Eventuell sind hieraus weitere risikomindernde Maßnahmen abzuleiten.
- Auf den zweiten Schritt kann verzichtet werden, wenn die Summe der Risiken über alle WEA die jeweils anzusetzenden Grenzwerte für das individuelle bzw. kollektive Risiko nicht übersteigen.
- Auf den zweiten Schritt kann ebenfalls verzichtet werden, wenn die Risiken der geplanten WEA bezüglich der relevanten Schutzobjekte jeweils im uneingeschränkt akzeptablen Bereich liegen, da der Beitrag zum Gesamtrisiko entlang eines repräsentativen Weges dann vernachlässigbar ist. Liegen die

Risiken der geplanten WEA bezüglich der relevanten Schutzobjekte im unteren ALARP-Bereich, ist im Einzelfall zu prüfen, ob der Beitrag zum Gesamtrisiko als nicht signifikant eingestuft werden kann.

Es ergeben sich folgende Begriffe und Symbole, die im Zusammenhang mit WEA im Gutachten verwendet werden:

Tabelle 2.3.5.1: Erläuterung der verwendeten Begriffe und Symbole.

Erlä	iuterung der Begr	iffe			
人	"geplante WEA"	WEA, deren Risiko im Rahmen des Gutachtens zu bewerten ist.			
人	"benachbarte WEA"	Alle weiteren WEA, die vom Auftraggeber übermittelt wurden. Es ist dabei unerheblich, ob sich einzelne benachbarte WEA ebenfalls in Planung oder Bau befinden. Entscheidend ist die Windparkkonfiguration, die als Vorbelastung für die geplanten WEA zu unterstellen ist. Alle benachbarten WEA sind in Tabelle 3.3.1 aufgeführt.			
a_0	"Referenzpunkt der Winddaten"	Jeweiliger Standort, auf dessen Koordinaten sich die verwendeten Winddaten beziehen.			
Farl	bliche Zuordnung	der Symbole			
人	Zu bewertende WEA: geplante WEA, deren Risiko bewertet wird.				
人	WEA Einfluss auf da	e WEA: Benachbarte WEA, die aufgrund ihres Abstandes zu den geplanten as Risiko im Gefährdungsbereich der zu bewertenden WEA (人) nehmen Nutzung der Schutzobjekte innerhalb des Windparks potentiell zu			
人	Windpark nicht be	die aufgrund ihres Abstandes zu den geplanten WEA und ihrer Lage im ei der Bewertung des Risikos der zu bewertenden WEA (人) zu Diese WEA sind eventuell nur zum Teil in Abbildung 3.3.1 dargestellt.			
a_{b}	Referenzpunkte der 1	Winddaten.			
丛	Referenzpunkt der W	Vinddaten auf den Koordinaten einer (in diesem Fall geplanten) WEA.			

2.4 Berechnung der Flugbahnen von Eisstücken

Für die Berechnung der Flugbahnen der Eisstücke wird basierend auf den Luftwiderstandsbeiwerten, der Geometrie und der Masse der Eisstücke die Lage des Eisstückes während der gesamten Bewegung erfasst und verfolgt, so dass sich im Vergleich zu einer rein ballistischen Flugbahn ein realistischeres Bild der Flugweiten ergibt.

Im Rahmen einer Monte-Carlo-Simulation werden dabei folgende Größen zufällig im Rahmen der am Standort zu erwartenden Wahrscheinlichkeitsverteilung variiert:

Windgeschwindigkeit auf Nabenhöhe,

- Windrichtung,
- Position des Eisstückes auf dem Blatt,
- Geometrie und Dichte des Eisstückes,
- Drehzahl und Stellung des Rotors im Moment der Ablösung des Eisstückes.

Für das Geländemodell in der Umgebung der WEA werden Daten aus /1.5/ berücksichtigt. Eine eventuell vorhandene Schutzwirkung durch Bewuchs oder Gebäude wird dabei vernachlässigt.

Das Berechnungsmodell wurde im Rahmen der Entwicklung der IEA Recommendations /2.1/ anhand von Messkampagnen in realen Windparks validiert.

2.5 Vereisungshäufigkeiten

Datengrundlage für die Bewertung der Vereisungshäufigkeit bildet die Vereisungskarte des Deutschen Wetterdienstes /1.8/. Für die Bestimmung der Häufigkeit atmosphärischer Vereisung wurden hierzu in /1.8/ verschiedene Wetter-Meldungen ausgewertet:

- Allgemeine Wetterereignisse:
 - leichter, mäßiger oder starker gefrierender Regen,
 - leichter, mäßiger oder starker gefrierender Sprühregen,
 - leichter, m\u00e4\u00dfiger oder starker Schneeregen,
 - Eiskörner (gefrorene Regentropfen),
 - Nebel mit Reifansatz
- Wetterereignisse bei Temperaturen ≤ 0° Celsius:
 - durchgehender oder unterbrochener leichter, mäßiger oder starker Sprühregen,
 - leichter, mäßiger oder starker Sprühregen mit Regen,
 - durchgehender oder unterbrochener leichter, mäßiger oder starker Regen,
 - Nebel oder Nebel mit Reifansatz
- Wetterereignisse bei Temperaturen > 0° Celsius:
 - durchgehender oder unterbrochener leichter, mäßiger oder starker Schneefall,
 - leichter, mäßiger oder starker Schneeregen- oder Schneeschauer,
- Wetterereignisse der letzten Stunde aber nicht zur Beobachtungszeit:
 - Schneefall,

Gutachtliche Stellungnahme zu Risiken durch Eiswurf und Eisfall am Standort Schierenberg, Dezember 2021 für ABO Wind AG

Referenz-Nr.: F2E-2021-TGZ-018, Revision 1 - ungekürzte Fassung

- Schneeregen oder Eiskörner,
- gefrierender Regen,
- Schneeschauer bei Temperaturen > 0° Celsius,
- ∘ Nebel bei Temperaturen ≤ 0° Celsius.

Damit werden eine Vielzahl von Ereignissen erfasst, die nicht in allen Fällen zu einer signifikanten Vereisung bzw. in einigen Fällen zu keiner Vereisung der WEA führen. Gleichzeitig beziehen sich die Meldungen auf Beobachterhöhe und nicht auf die Nabenhöhe der WEA. Es wurden daher Vergleiche mit verschiedenen Klimastationen des Deutschen Wetterdienstes durchgeführt. Hierzu wurden langjährige (30 Jahre) Messreihen zum Tagesmittel der relativen Luftfeuchte und der Lufttemperatur ausgewertet, um die Vereisungshäufigkeit auf Nabenhöhe zu bestimmen. Der Vergleich zeigt, dass die in /1.8/ auf Beobachterhöhe ermittelten Vereisungshäufigkeiten konservativere Ergebnisse liefern. Eine Umrechnung auf Nabenhöhe der WEA ist daher unter Berücksichtigung der in /1.8/ betrachteten Ereignisse nicht erforderlich.

Gemäß /1.8/ sind für Standorte in großen Höhen besondere Betrachtungen erforderlich, wenn diese besonders exponiert oder besonders geschützt liegen. Entsprechende Orte wurden in /1.8/ daher gefiltert. Die niedrigste betroffene Höhe liegt bei ca. 700m üNN, so dass das hier verwendete Verfahren im Folgenden für Orte bis zu einer Höhe von 700m üNN ohne Korrekturen angewendet wird. In diesem Höhenbereich weist die in /1.8/ verwendete exponentielle Regression eine gute Annäherung an die Daten auf und wird daher hier verwendet. Abbildung 2.5.1 zeigt die hierauf beruhende Vereisungskarte für Deutschland.

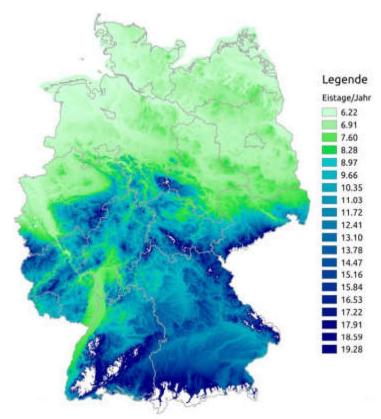
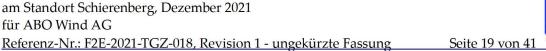


Abbildung 2.5.1: Eistage pro Jahr basierend auf /1.8/ für Höhen bis 700m üNN.


2.6 Gültigkeit der Ergebnisse

Die für die Risikobewertung erforderliche Häufigkeitsverteilung von Eisstücken in der Umgebung der WEA hängt von mehreren Faktoren ab. Dies sind neben den WEA-Daten (Koordinaten, WEA-Typ, Nabenhöhe, Nennleistung, Betriebsweise der WEA sowie Vorhandensein und Art des Eiserkennungssystems), Windbedingungen (Häufigkeitsverteilung der Windrichtung, sektorielle Weibull-Parameter der Windgeschwindigkeitsverteilung) und die Vereisungsbedingungen am Standort. Mit letzterem sind neben der Anzahl der Vereisungstage auch die zu erwartende Eismasse auf dem Rotorblatt sowie die Massen- und Formverteilung der sich lösenden Eisstücke gemeint. Weiterhin ist die Risikobewertung abhängig von der Aufenthaltshäufigkeit und dem Bewegungsmuster von Personen im Umfeld der WEA.

Jede Änderung dieser Randbedingungen erfordert daher eine Neubewertung des Risikos.

Für alle Parameter, die einen Einfluss auf die Auftreffpunkte der Eisstücke haben, lassen sich keine pauschalen konservativen Werte festlegen /2.1/. Dies bedeutet

Gutachtliche Stellungnahme zu Risiken durch Eiswurf und Eisfall am Standort Schierenberg, Dezember 2021

insbesondere, dass eine Reduzierung der Nabenhöhe nicht automatisch zu einer Reduzierung des Risikos führt. Auch sind die Ergebnisse eines Risikos durch Eiswurf nicht unbedingt abdeckend für das Risiko durch Eisfall von derselben WEA am selben Standort.

In den Berechnungen zum Risiko durch Eisfall wird angenommen, dass die gesamte auf den Rotorblättern im Vereisungsfall unterstellte Eismasse in Form von Eisstücken abgeworfen wird.

2.7 Rotorblattheizung

Zurzeit liegen keine Erkenntnisse vor, wie die Verteilung von Eisstückgrößen oder deren Dichte durch eine Rotorblattheizung beeinflusst wird. Es kann aber davon ausgegangen werden, dass ein beheiztes Rotorblatt weniger stark vereist. Die Berechnungen decken daher den Einsatz einer Rotorblattheizung im Trudelbetrieb bzw. bei Stillstand der WEA und manuellem Wiederanfahren ab.

Gutachtliche Stellungnahme zu Risiken durch Eiswurf und Eisfall am Standort Schierenberg, Dezember 2021 für ABO Wind AG

Referenz-Nr.: F2E-2021-TGZ-018, Revision 1 - ungekürzte Fassung

3 Eingangsdaten

3.1 Ausgangssituation

Am Standort Schierenberg (Brandenburg) plant der Auftraggeber die Errichtung von neun Windenergieanlagen (WEA 1 - 9).

Am Standort befinden sich keine weiteren benachbarten WEA.

Die vom Auftraggeber übermittelten Daten zur Windparkkonfiguration und die Schutzobjekte sind in Tabelle 3.3.1 bzw. Abbildung 3.3.1 dargestellt.

In der Umgebung befinden sich die Bundesstraße B246, die Kreisstraße K6708 sowie die Feldstraße Fünfeichenmühle, welche im Rahmen dieser Untersuchung als Schutzobjekte definiert wurden (siehe Abbildung 3.3.1).

Die WEA 1 – 9 liegen in unmittelbarer Nähe zu den Schutzobjekten und werden im Folgenden hinsichtlich einer Gefährdung durch Eiswurf und Eisfall betrachtet.

3.2 Winddaten am Standort

Die relativen Häufigkeiten der Windrichtung und Windgeschwindigkeiten am Standort wurden /3.1/ entnommen und sind in Tabelle 3.2.1dargestellt.

Die vorliegenden Daten werden als richtig und repräsentativ für die freie Anströmung am Standort Schierenberg vorausgesetzt.

Tabelle 3.2.1: Winddaten am Standort (f: Häufigkeit der Windrichtung; A und k: Skalen- und Formparameter der Weibull-Verteilung).

Wind- Datensatz Nr.	Parameter	Z	ONN	ONO	0	080	oss	S	SSW	WSW	W	WNW	NNN	Koordinaten (UTM ETRS89/WGS84 Zone 33)	4 Zone 33)
	A [m/s]	5.5	5.2	5.6	9.9	7.0	6.4	7.0	7.7	0.6	9.1	7.2	6.1	Höhe über Grund [m]	169
П	k [-]	2.15	2.19	2.28	2.57	2.90	2.77	2.62	2.68	2.72	2.46	2.45	2.22	Ost	33469719
	f (100%=1)	0.043	0.039	0.043	0.073	0.100	990.0	0.069	0.100	0.163	0.162	980.0	0.053	Nord	5775604
	A [m/s]	5.4	5.2	5.5	6.5	7.0	6.3	6.9	9.7	8.9	8.9	7.2	6.1	Höhe über Grund [m]	169
7	k [-]	2.15	2.19	2.28	2.57	2.89	2.77	2.62	2.68	2.72	2.46	2.44	2.22	Ost	33470176
	f (100%=1)	0.044	0.040	0.043	0.073	0.100	0.066	0.069	0.101	0.164	0.162	0.086	0.053	Nord	5775430
	A [m/s]	5.4	5.2	5.5	6.5	7.0	6.4	7.0	7.6	0.6	8.9	7.2	6.1	Höhe über Grund [m]	169
В	k [-]	2.15	2.19	2.28	2.56	2.89	2.77	2.62	2.68	2.72	2.46	2.45	2.22	Ost	33470194
	f (100%=1)	0.044	0.039	0.043	0.071	0.101	0.067	0.070	0.101	0.162	0.161	0.087	0.054	Nord	5775863
	A [m/s]	5.5	5.2	5.5	6.5	7.1	6.5	7.1	7.6	9.1	8.7	7.3	6.3	Höhe über Grund [m]	169
4	k [-]	2.15	2.19	2.28	2.56	2.88	2.76	2.62	2.68	2.72	2.47	2.44	2.22	Ost	33470257
	f (100%=1)	0.045	0.039	0.042	0.070	0.101	0.068	0.072	0.101	0.159	0.159	0.088	0.055	Nord	5776416
	A [m/s]	5.6	5.2	5.4	6.5	7.2	9.9	7.2	7.8	0.6	8.7	7.4	6.4	Höhe über Grund [m]	169
ſΩ	k [-]	2.15	2.19	2.28	2.56	2.88	2.77	2.62	2.68	2.72	2.47	2.44	2.23	Ost	33470250
	f (100%=1)	0.045	0.039	0.041	0.07	0.101	690.0	0.073	0.102	0.158	0.158	0.088	0.056	Nord	5776945
	A [m/s]	5.6	5.2	5.4	6.4	7.1	6.7	7.2	7.7	8.8	8.7	7.3	6.3	Höhe über Grund [m]	169
9	k[-]	2.15	2.19	2.28	2.56	2.88	2.75	2.62	2.67	2.72	2.47	2.43	2.23	Ost	33470402
	f (100%=1)	0.045	0.039	0.041	690.0	0.101	0.070	0.074	0.102	0.156	0.156	60.0	0.057	Nord	5777418

Coito 22 mon

Gutachtliche Stellungnahme zu Risiken durch Eiswurf und Eisfall am Standort Schierenberg, Dezember 2021 für ABO Wind AG

Referenz-Nr.: F2E-2021-TGZ-018, Revision 1 - ungekürzte Fassung

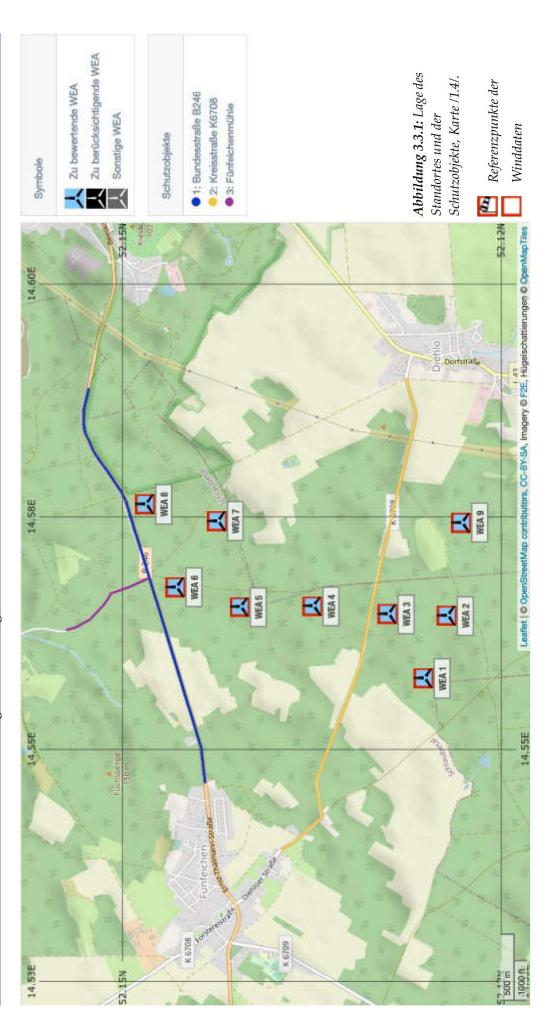
Wind- Datensatz Nr.	Parameter	z	ONN	ONO	0	oso	OSS	S	SSW	WSW	×	WNW	MNN	Koordinaten (UTM ETRS89/WGS84 Zone 33)	4 Zone 33)
	A [m/s]	5.5	5.2	5.5	9.9	7.2	9.9	7.1	7.6	0.6	8.9	7.4	6.2	Höhe über Grund [m]	169
_	k [-]	2.15	2.19	2.28	2.55	2.88	2.75	2.62	2.68	2.72	2.47	2.44	2.22	Ost	33470885
	f (100%=1)	0.044	0.039	0.042	0.071	0.102	0.068	0.071	0.100	0.159	0.161	0.089	0.055	Nord	5777111
	A [m/s]	5.6	5.4	5.6	9.9	7.4	6.7	7.3	7.9	9.2	9.1	7.4	6.3	Höhe über Grund [m]	169
8	k [-]	2.15	2.19	2.28	2.56	2.88	2.76	2.61	2.68	2.72	2.46	2.45	2.22	Ost	33471011
	f (100%=1)	0.044	0.039	0.042	0.071	0.101	0.067	0.071	0.101	0.161	0.16	0.087	0.055	Nord	5777640
	A [m/s]	5.5	5.2	5.5	9.9	7.2	6.5	7.0	7.5	8.8	8.8	7.3	6.2	Höhe über Grund [m]	169
6	k [-]	2.15	2.19	2.27	2.55	2.88	2.76	2.62	2.68	2.72	2.48	2.44	2.22	Ost	33470867
	f (100%=1)	0.044	0.038	0.042	0.071	0.102	890.0	0.070	0.099	0.158	0.162	0.090	0.055	Nord	5775318

Die Parameter der Weibull-Verteilung werden genutzt, um die Häufigkeitsverteilung der Windrichtungen auf die jeweiligen Windgeschwindigkeiten umzurechnen.

3.3 Windparkkonfiguration und Schutzobjekte

Referenz-Nr.: F2E-2021-TGZ-018, Revision 1 - ungekürzte Fassung

Tabelle 3.3.1: Windparkkonfiguration.


r											
	Wind-	Datensatz Nr.	1	7	3	4	ιC	9	7	8	6
	RD	[<u>w</u>]	150.0	150.0	150.0	150.0	150.0	150.0	150.0	150.0	150.0
	HZ]	[<u>w</u>]	169.0	169.0	169.0	169.0	169.0	169.0	169.0	169.0	169.0
	P_{N}	[MIW]	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
	WEA-Typ	1	V150								
	Hersteller		Vestas								
	Koordinaten (UTM ETRS89/WGS84 Zone 33)	North	5775604	5775430	5775863	5776416	5776945	5777418	5777111	5777640	5775318
		East	33469719	33470176	33470194	33470257	33470250	33470402	33470885	33471011	33470867
	Bezeichnung)	ABO 01	ABO 02	ABO 03	ABO 04	ABO 05	ABO 06	ABO 07	ABO 08	ABO 09
	Lfd. Nr.	WEA	1	2	3	4	rC	9	7	8	6
			-<	-<	-<	-<	-<	-<	-<	-<	-<

Alle Benennungen von WEA im Dokument beziehen sich auf die Nomenklatur von Spalte 2 (Lfd. Nr.) in Tabelle 3.3.1.

Gutachtliche Stellungnahme zu Risiken durch Eiswurf und Eisfall am Standort Schierenberg, Dezember 2021 für ABO Wind AG

Referenz-Nr.: F2E-2021-TGZ-018, Revision 1 - ungekürzte Fassung

Seite 25 von 41

Referenz-Nr.: F2E-2021-TGZ-018, Revision 1 - ungekürzte Fassung

3.4 Aufenthaltshäufigkeiten

Nach /3.2/ wurde am Zählpunkt auf der Bundesstraße B246 zwischen Schönfließ und Fünfeichen eine Verkehrsbelastung von 4833 Kfz pro Tag ermittelt.

Auf der Kreisstraße K6708 zwischen Diehlo und Fünfeichen existiert kein Zählpunkt. Aufgrund der Ortskenntnis des Auftraggebers wird von einem Zwanzigstel der Verkehrsbelastung der Bundesstraße B246 ausgegangen. Im Folgenden wird von einem Verkehrsaufkommen von 250 Kfz pro Tag und einem zusätzlichen Personenaufkommen von 20 Personen pro Tag auf der Kreisstraße K6708 ausgegangen.

Die Feldstraße Fünfeichenmühle führt zu einem z. Zt. geschlossenen Restaurant und Fischteichen. Das Verkehrsaufkommen auf der Feldstraße bei Vereisungsbedingungen wird mit 50 Kfz und 30 Fußgängern abgeschätzt.

Für die als kritische Individuen (siehe Kapitel 2.3.3) zu betrachtenden Fußgänger wird angenommen, dass ein individueller Fußgänger im Winter die Kreisstraße K6708 und die Feldstraße Fünfeichenmühle zweimal täglich mit einer Geschwindigkeit von 5km/h nutzt.

3.5 Standortspezifische Grenzwerte für das kollektive Risiko

Für Bundesautobahnen, Bundesstraßen und Landesstraßen wurden die Grenzwerte auf Basis des vorhandenen Unfallrisikos bestimmt (siehe Kapitel 2.3.2). Tabelle 3.5.1 listet die standortspezifisch ermittelten oberen Grenzwerte für ein inakzeptables Risiko. Die weiteren Risikobereiche gemäß Tabelle 2.3.3.1 liegen jeweils eine Zehnerpotenz niedriger und sind nicht extra aufgeführt.

Tabelle 3.5.1: Standortspezifische obere Risikogrenzwerte für das kollektive Risiko.

Schutzobjekt	Kollektives Personenrisiko Grenzwert für ein inakzeptables Risiko
Bundesstraße B246	> 4.37*10 ⁻³ (einmal in 229 Jahren)

Für Kreisstraßen und sonstige Straßen, für die das kollektive Risiko maßgeblich ist, gilt der pauschale Grenzwert für das kollektive Personenrisiko von 1.0*10⁻³ (siehe Kapitel 2.3.2).

3.6.1 WEA-interne Eiserkennungssysteme

3.6 Vereisungsrelevante WEA-Systeme

Die WEA 1 - 9 besitzen kein internes Eiserkennungssystem, das für die Bewertung von Risikoszenarien relevant ist.

3.6.2 Optionale Eiserkennungssysteme

Die WEA 1 - 9 können mit dem Eiserkennungssystem BLADEcontrol Ice Detector (BID) der Firma Weidmüller ausgestattet werden /3.3/. Hierbei werden zwei bestimmte Eigenfrequenzen an den Blättern gemessen. Wird eine Änderung der Frequenzen festgestellt, lässt dies auf Eisansatz schließen und die Anlage schaltet ab. Dieses System erkennt Eis auch im Trudelbetrieb, so dass die Anlage nach dem Abtauen selbstständig wieder in Betrieb genommen wird, soweit dies behördlich erlaubt ist.

Gemäß /3.4/ entspricht die Integration des Systems BLADEcontrol Ice Detector (BID) in Vestas-Anlagen den behördlichen Anforderungen für eine sichere Abschaltung bei Gefahr von Eisabwurf im laufenden Betrieb.

Das verwendete System zur Eiserkennung ist entsprechend der Richtlinie des Germanischen Lloyd für die Zertifizierung von Systemen zur Zustandsüberwachung von Windenergieanlagen /3.5/ typgeprüft /3.6/.

3.6.3 Systeme zur Prävention und Enteisung

Die betrachteten WEA sind nicht mit einem System zur Enteisung (de-icing) oder einem System zur Reduzierung von Vereisung (anti-icing) ausgestattet.

3.6.4 Betriebsführungssystem

Nach einer Abschaltung durch das Eiserkennungssystem geht die WEA in einen definierten Zustand. Angaben zu Trudeldrehzahlen, Blattstellung und Windnachführung der WEA wurden gemäß /3.7/ umgesetzt.

3.7 Risikoreduzierende Maßnahmen

Die in den Anhängen A und B dargestellten Ergebnisse berücksichtigen keine risikoreduzierenden Maßnahmen.

4 Durchgeführte Untersuchungen

4.1 Standortbesichtigung

Eine Standortbesichtigung ist im Rahmen der Bewertung des Risikos durch Eiswurf oder Eisfall nicht durch ein Regelwerk vorgeschrieben oder geregelt. Eine Standortbesichtigung empfiehlt sich, wenn die Situation vor Ort nicht ausreichend bekannt ist.

Im Rahmen der Standortbesichtigung werden die potentiellen Schutzobjekte vor Ort dokumentiert und besichtigt. Es werden Informationen zur Beschaffenheit der Schutzobjekte, wie z.B. Straßenbelag, Geschwindigkeitsbeschränkungen und Fahrverboten bei Verkehrswegen aufgenommen.

Werden im Rahmen der Standortbesichtigung weitere potentielle Schutzobjekte identifiziert, findet eine Berücksichtigung stets in Absprache mit dem Auftraggeber statt. Maßgeblich sind daher stets die in Kapitel 3.1 aufgeführten Schutzobjekte.

Die Standortbesichtigung dient nicht zur Bestimmung der Aufenthaltshäufigkeit von Personen in oder auf Schutzobjekten, der Bestimmung der Frequentierung von Verkehrswegen, der Bestimmung der Klimatologie des Standortes oder der Verifizierung der Windparkkonfiguration.

Der Standort Schierenberg wurde am 12.10.2020 besichtigt /3.8/. Die Ergebnisse der Standortbesichtigung sind in /3.8/ dokumentiert und werden soweit erforderlich in den weiteren Berechnungen berücksichtigt.

Werden im Rahmen der Standortbesichtigung weitere potentielle Schutzobjekte identifiziert, findet eine Berücksichtigung in Absprache mit dem Auftraggeber statt. Maßgeblich sind daher stets die in Kapitel 3.1 aufgeführten Schutzobjekte.

4.2 Vereisungsbedingungen am Standort

Die Vereisungshäufigkeit am Standort wurde entsprechend Kapitel 2.5 ermittelt.

Die Anzahl der insgesamt am Standort zu unterstellenden Eisstücke ergibt sich aus der Anzahl der Eisstücke pro Vereisungsereignis und der Anzahl der Vereisungstage.

Für die WEA ist konservativ davon auszugehen, dass es an allen Vereisungstagen zu einer vollständigen Vereisung der WEA kommt.

In Übereinstimmung mit /2.1/ kann die insgesamt zu berücksichtigende Eismasse abhängig von der Blattgeometrie anhand des Vereisungslastfalles der internationalen Richtlinie für WEA /2.4/ definiert werden. Unter Berücksichtigung der durchschnittli-

Seite 28 von 41

chen Masse der Eisstücke lässt sich daraus eine Anzahl Eisstücke pro Vereisung ableiten.

Damit ergeben sich am Standort Schierenberg die in Tabelle 4.2.1 dargestellten Vereisungsbedingungen.

Tabelle 4.2.1: Vereisungsbedingungen am Standort Schierenberg.

Lfd. Nr. WEA	Vereisungshäufig keit [%]	Vereisungstage pro Jahr	Eisstücke pro Jahr pro WEA Eisfall	Eisstücke pro Jahr pro WEA Eiswurf
1 - 9	2.1	7.7	1290	3870

4.3 Ermittlung der potentiellen Gefährdungsbereiche

Die potentiellen Gefährdungsbereiche der WEA vom 1.5fachen der Summe aus Nabenhöhe und Rotordurchmesser (siehe Kapitel 2.2) sind in Abbildung 4.3.1 dargestellt.

Abbildung 4.3.1: Potentielle Gefährdungsbereiche der WEA 1 - 9 und Schutzobjekte am Standort Schierenberg (Karte /1.4/).

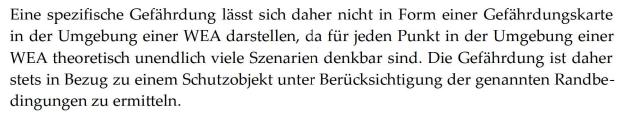
Im potentiellen Gefährdungsbereich der WEA 2, 5, 7 und 9 befinden sich keine der definierten Schutzobjekte. Eine weitere Betrachtung dieser WEA ist im Rahmen der Risikobewertung daher nicht erforderlich.

Für die zu bewertenden WEA sind die zu betrachtenden Schutzobjekte, die im potentiellen Gefährdungsbereich der WEA liegen, in Tabelle 4.3.1 aufgeführt.

Tabelle 4.3.1: Zu betrachtende Schutzobjekte.

	Lfd.Nr.	Donoi ale accesso	Pote	ntieller Gefährdungsbereich
	WEA	Bezeichnung	Radius [m]	Schutzobjekte im Bereich
人	1	Abo 01	478.5	Kreisstraße K6708
人	3	Abo 03	478.5	Kreisstraße K6708
人	4	Abo 04	478.5	Kreisstraße K6708
		A1 OC	450 E	Bundesstraße B246
人	6	Abo 06	478.5	Fünfeichenmühle
人	8	Abo 08	478.5	Bundesstraße B246

4.4 Eiswurf


Für die WEA 3, 6 und 8 ist aufgrund der Nähe zu den Schutzobjekten ein System zur Eiserkennung gemäß Kapitel 3.6 vorzusehen. Für diese WEA ist daher eine Gefährdung durch Eiswurf standortspezifisch nicht zu betrachten.

Eine Gefährdung durch Eiswurf für Personen in der Umgebung der WEA 1 und 4 ist standortspezifisch zu betrachten, wenn keines der in Kapitel 3.6 genannten Systeme zur Eiserkennung zu diesem Zweck genutzt wird.

Aus der in Kapitel 4.2 ermittelten Gesamtanzahl von Eisstücken, der Windgeschwindigkeitsverteilung gemäß Tabelle 3.2.1, der Geometrie und Betriebsweise der WEA sowie der Topografie am Standort, ergeben sich in der Umgebung einer WEA für jeden Punkt unterschiedliche Trefferhäufigkeiten von Eisstücken. Auf Basis dieser Trefferhäufigkeiten ist die spezifische Gefährdung von Personen abhängig von der Wegstrecke, die die Personen bzw. die mit Personen besetzten Fahrzeuge in der Umgebung der WEA nehmen, der Geschwindigkeit, mit der sie sich fortbewegen sowie der Häufigkeit, mit der ein bestimmter Weg genommen wird. Verkehrswege und andere Freiflächen bzw. Gebäude, die keinen Schutz gegen Eisstücke bieten, unterscheiden sich an dieser Stelle nur dahingehend, dass die Wegstrecke bei Verkehrswegen deutlich vorgegeben ist, während sie bei Freiflächen typischerweise durch eine allgemeine Aufenthaltshäufigkeit ersetzt wird.

für ABO Wind AG

Referenz-Nr.: F2E-2021-TGZ-018, Revision 1 - ungekürzte Fassung

Wie in Kapitel 2.3 dargestellt, erfolgt die Bewertung des individuellen und kollektiven Risikos durch eine Einteilung in vier Bereiche von inakzeptabel bis uneingeschränkt akzeptabel. Damit ergeben sich bezogen auf die betrachteten WEA und Schutzobjekte folgende Ergebnisse für das Szenario Eiswurf.

Es ist in Tabelle 4.4.1 jeweils nur das in Abhängigkeit von der Aufenthaltshäufigkeit von Personen zu betrachtende Risiko dargestellt (siehe Kapitel 2.3).

Da sich für das Schutzobjekt Kreisstraße K6708 das zu betrachtende Risiko nicht eindeutig festlegen lässt, werden sowohl das individuelle als auch das kollektive Risiko betrachtet.

Sind gemäß Kapitel 2.3.5 Risiken verschiedener WEA zu addieren, wird die Bewertung der addierten Risiken in Tabelle 4.4.1 gesondert aufgeführt.

Tabelle 4.4.1: Gefährdung durch Eiswurf am Standort Schierenberg.

Bewertung der	r Gefährdung durch I	Eiswurf aller Schutzobjek	te im Bereich der WEA
Lfd. Nr. WEA	Schutzobjekt	Kollektives Personenrisiko	Individuelles Personenrisiko
1	Kreisstraße K6708	*	*
4	Kreisstraße K6708	*	*

t Die Ergebnisse zeigen, dass das Schutzobjekt nicht von Eisstücken der WEA getroffen wird:

Details der zugrunde liegenden Berechnungen sind im Anhang A dargestellt.

4.5 Eisfall

Für die WEA 3, 6 und 8 ist aufgrund der Nähe zu den Schutzobjekten ein System zur Eiserkennung gemäß Kapitel 3.6 vorzusehen. Entsprechend Kapitel 2.2 besteht auch bei vorhandener funktionssicherer Eiserkennung stets ein Risiko durch Eisfall in der Umgebung einer WEA. Für diese WEA ist daher eine Gefährdung durch Eisfall standortspezifisch zu betrachten.

Bezüglich der Berechnung der Trefferhäufigkeiten und der Ermittlung der Gefährdung gelten die gleichen Anmerkungen wie in Kapitel 4.4 zum Szenario Eiswurf.

Wie in Kapitel 2.3 dargestellt, erfolgt die Bewertung des individuellen und kollek-

von 41

tiven Risikos durch eine Einteilung in vier Bereiche von inakzeptabel bis uneingeschränkt akzeptabel. Damit ergeben sich bezogen auf die betrachteten WEA folgende Ergebnisse für das Szenario Eisfall.

Es ist in Tabelle 4.5.1 jeweils nur das in Abhängigkeit von der Ausenthaltshäusigkeit von Personen zu betrachtende Risiko dargestellt (siehe Kapitel 2.3).

Da sich für das Schutzobjekt Kreisstraße K6708 das zu betrachtende Risiko nicht eindeutig festlegen lässt, werden sowohl das individuelle als auch das kollektive Risiko betrachtet.

Sind gemäß Kapitel 2.3.5 Risiken verschiedener WEA zu addieren, wird die Bewertung der addierten Risiken in Tabelle 4.5.1 gesondert aufgeführt.

Tabelle 4.5.1: Gefährdung durch Eisfall am Standort Schierenberg.

Bewertung der Gefährdung durch Eisfall aller Schutzobjekte im Bereich der WEA			
Lfd. Nr. WEA	Schutzobjekt	Kollektives Personenrisiko	Individuelles Personenrisiko
3	Kreisstraße K6708	akzeptabel - Maßnahmen sind in Betracht zu ziehen	akzeptabel - Maßnahmen in der Regel nicht erforderlich
6	Bundesstraße B246	akzeptabel - Maßnahmen sind in Betracht zu ziehen	
	Fünfeichenmühle		uneingeschränkt akzeptabel
8	Bundesstraße B246	akzeptabel - Maßnahmen sind in Betracht zu ziehen	

Details der zugrunde liegenden Berechnungen sind im Anhang B dargestellt.

5 Weitere Maßnahmen

Liegt das Risiko im inakzeptablen oder im oberen orangen ALARP-Bereich sind etablierte risikomindernde Maßnahmen umzusetzen (siehe Kapitel 2.3.4).

5.1 Eisfall

Da die für die WEA 3, 6 und 8 ermittelten Risiken bezüglich der Schutzobjekte im oberen ALARP-Bereich liegen, ist zu prüfen, ob weitere Maßnahmen in Betracht zu ziehen sind, um das Risiko noch weiter zu senken.

Für die WEA 3, 6 und 8 empfehlen wir nach Abschaltung auf Grund von Eisansatz den Rotor der WEA so auszurichten, dass möglichst wenige Eisstücke die jeweiligen Schutzobjekte treffen und entsprechend den Vorgaben des Herstellers die Λzimutpo-

sition des Rotors bis zur maximal möglichen Windgeschwindigkeit beizubehalten. Die erforderlichen Werte sind in Tabelle 5.1.1 dargestellt (zur Definition des Azimutwinkels siehe Abbildung 2.3.4.1).

Tabelle 5.1.1: Empfohlene Azimut-Positionen nach Abschaltung auf Grund von Eisansatz für den Rotor der WEA.

Lfd. Nr. WEA	Azimutwinkel bei Stillstand [°]
3	191
6	163
8	163

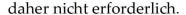
6 Zusammenfassung

Die Fluid & Energy Engineering GmbH & Co. KG ist beauftragt worden, die vorliegende Windparkkonfiguration hinsichtlich einer Gefährdung durch Eiswurf und Eisfall ausgehend von den stillstehenden (trudelnden) bzw. in Betrieb befindlichen WEA zu betrachten und zu bewerten.

Als Schutzobjekte wurden die Bundesstraße B246, die Kreisstraße K6708 sowie die Feldstraße Fünfeichenmühle in der Nachbarschaft der WEA definiert.

6.1 Potentielle Gefährdungsbereiche


Die potentiellen Gefährdungsbereiche der WEA 2, 5, 7 und 9 haben keine Überschneidung mit den Schutzobjekten Bundesstraße B246, Kreisstraße K6708 oder Fünfeichenmühlen. Eine weitere Betrachtung ist im Rahmen der Risikobewertung daher nicht erforderlich.


Die Gefährdungsbereiche der WEA 1, 3, 4, 6 und 8 überschneiden die Schutzobjekte Bundesstraße B246, Kreisstraße K6708 oder die Feldstraße Fünfeichenmühlen und sind daher in der weiteren Risikobewertung zu betrachten.

6.2 Eiswurf

Abschließend kann festgestellt werden, dass aufgrund der geforderten Systeme zur Eiserkennung eine Gefährdung durch Eiswurf von den betrachteten WEA 3, 6 und 8 ausgeschlossen werden kann.

Die Berechnungen zeigen, dass die Schutzobjekte nicht durch Eisstücke von den betrachteten WEA 1 und 4 getroffen werden. Eine weitere Betrachtung des Risikos ist

6.3 Eisfall

Für die WEA 1 und 4 kann abschließend festgestellt werden, dass im vorliegenden Fall das Risiko durch Eisfall bezüglich der Schutzobjekte durch die Bewertung des Risikos durch Eiswurf abgedeckt ist.

Für die WEA 3, 6 und 8 kann aufgrund der geforderten Systeme zur Eiserkennung eine Gefährdung durch Eiswurf von den betrachteten WEA ausgeschlossen werden.

Die abschließende Bewertung des Risikos durch Eisfall ist in Tabelle 6.3.1 für alle WEA bezüglich der relevanten Schutzobjekte dargestellt.

WEA, in deren potentiellen Gefährdungsbereich (siehe Tabelle 4.3.1) bzw. in deren standortspezifisch ermittelten Gefährdungsbereich (siehe Anhang B) keine Schutzobjekte liegen, sind in Tabelle 6.3.1 nicht mit aufgeführt.

Maßnahmen, die in den Berechnungen berücksichtigt wurden und entsprechend für die getroffene Aussage unabdingbar sind, werden in der Spalte "Maßnahmen - erforderlich" aufgeführt.

Maßnahmen, die umgesetzt werden sollten, weil das Risiko im oberen ALARP-Bereich (siehe Kapitel 2.3) liegt, werden in der Spalte "Maßnahmen - empfohlen" aufgeführt.

Tabelle 6.3.1: Bewertung des Eisfallrisikos.

Lfd. Nr.	d. Nr. Risiko-		Maßnahmen	
WEA	Schutzobjekt	bewertung	erforderlich	empfohlen
3	Kreisstraße K6708	akzeptabel		Kapitel 5
6	Bundesstraße B246	akzeptabel		Kapitel 5
	Fünfeichenmühle	akzeptabel		
8	Bundesstraße B246	akzeptabel		Kapitel 5

7 Formelzeichen und Abkürzungen

[m/s]
[-]
[m/s]
[m]
[°]

8 Literaturangaben

Allgemein

- /1.1/ Bengt Tammelin et. al.; Wind Energy Production in Cold climates; Meteorological publications No.41, Finnish Meteorological Institute, Helsinki, Finland, February 2000.
- /1.2/ International Energy Agency (IEA), IEA Wind Task 19, State-of-the-Art of Wind Energy in Cold Climates, Edition October 2012.
- /1.3/ Berichte der Bundesanstalt für Straßenwesen; Verkehrstechnik Heft V 291, Fahrleistungserhebung 2014 Inlandsfahrleistung und Unfallrisiko; Bergisch Gladbach, August 2017.
- /1.4/ OpenStreetMap und Mitwirkende; siehe Internet: http://www.openstreetmap.org, http://opendatacommons.org, http://creativecommons.org.
- /1.5/ Jarvis A., H.I. Reuter, A. Nelson, E. Guevara, 2006, Hole-filled seamless SRTM data V3, International Centre for Tropical Agriculture (CIAT).
- /1.6/ Bundesministerium für Verkehr, Bau und Stadtentwicklung; Mobilität in Deutschland 2008; Ergebnisbericht, Struktur Aufkommen Emissionen Trends; Bonn und Berlin, Februar 2010.
- /1.7/ Schneider J., Schlatter H. P.; Sicherheit und Zuverlässigkeit im Bauwesen Grundwissen für Ingenieure; 1. Auflage, B. G. Teubner, Stuttgart, 1994.
- Vichura, B., 2013. The Spatial Distribution of Icing in Germany Estimated by the Analysis of Weather Station Data and of Direct Measurements of Icing, Proceedings of the 15th International Workshop On Atmospheric Icing Of Structures (IWAIS 2013). Compusult Ltd., St. John's, Newfoundland and Labrador, September 8-11, 2013, pp. 303-309.
- /1.9/ HSE, Health and safety Executive. (n.d.); Risk analyses or 'predictive' aspects of comah safety reports guidance for explosives sites The COMAH Safety Report Process for Predictive Assessment of Explosives Sites, downloaded 2014-08-21; Retrieved from http://www.hse.gov.uk/comah/
- /1.10/ Oliver J., Creighton P.; Road Accidents, Bicycle injuries and helmet use: a systematic review and meta-analysis; International Journal of Epidemiology, 2017, 278-292.

Normen

- /2.1/ International Energy Agency (IEA), IEA Wind TCP Task 19; International Recommendations for Ice Fall and Ice Throw Risk Assessments; October 2018.
- /2.2/ Deutsches Institut für Bautechnik (DIBt), Muster-Liste der Technischen Baubestimmungen Fassung Juni 2015 bzw. Muster-Verwaltungsvorschrift Technische Baubestimmungen (MVV TB) Ausgabe 2019/1 mit Druckfehlerberichtigung vom 7. August 2020.
- /2.3/ DIN EN 50126; Bahnanwendungen Spezifikation und Nachweis der Zuverlässigkeit, Verfügbarkeit, Instandhaltbarkeit und Sicherheit (RAMS); Deutsches Institut für Normung e.V., März 2000.
- /2.4/ International Electrotechnical Commission (IEC); IEC 61400-1, Wind energy generation

Gutachtliche Stellungnahme zu Risiken durch Eiswurf und Eisfall am Standort Schierenberg, Dezember 2021 für ABO Wind AG

Seite 36 von 41

systems - Part 1: Design requirements; Edition 4, 2019-12; Geneva, Switzerland (Deutsche Fassung: Deutsches Institut für Normung e.V.; DIN EN IEC 61400-1 (VDE 0127-1); Windenergieanlagen – Teil 1: Auslegungsanforderungen (IEC 61400-1:2019); Dezember 2019; Berlin, Deutschland).

Projektspezifisch

- /3.1/ Ramboll Deutschland GmbH; WindPRO Ergebnisausdruck, PARK Analyse der Windverhältnisse, Projekt: 21-1-2104-000 Schierenberg Vorabschätzung; 18.11.2021; Kassel, Deutschland.
- /3.2/ LGB (Landesvermessung und Geobasisinformation Brandenburg); Straßennetzviewer, Verkehrsstärke 2015; siehe Internet: https://bb-viewer.geobasis-bb.de/strassennetz/, abgerufen am 16.10.20.
- /3.3/ Vestas Deutschland GmbH; Allgemeine Spezifikation BLADEcontrol Ice Detector, Rotor-blattvereisungsüberwachung, Dokument Nr.: 0027-7735.V05; 09.09.2016.
- /3.4/ DNV-GL; Gutachten Ice Detection System Integration des BLADEcontrol Ice Detector BID in die Steuerung von Vestas Windenergieanlagen; Report Nr.: 75172, Rev. 3, 19.03.2018.
- /3.5/ DNV GL AS; Certification of condition monitoring, DNVGL-SE-0439:2016-06; June 2016.
- /3.6/ DNV GL Renewables Certification; Type Certificate Ice Detection System BLADEcontrol Ice Detector (BID); Certificate No. TC-DNVGL-SE-0439-04314-1; Hamburg, 2020-10-20.
- /3.7/ Vestas Wind Systems AS; RPM curves, EnVentus, V150–6.0 MW 50/60 Hz; Document no.: 0098-0883 V0; 2021-01-29; Arhus, Denmark.
- /3.8/ Fluid & Energy Engineering GmbH & Co. KG; Dokumentation der Standortbesichtigung im Rahmen der Risikobewertung durch Eiswurf und Eisfall am Standort Schierenberg; Referenz-Nr.: F2E-2021-TGZ-018; Oktober 2020; Hamburg, Deutschland.

Anhang A: Detaillierte Berechnungsergebnisse Eiswurf

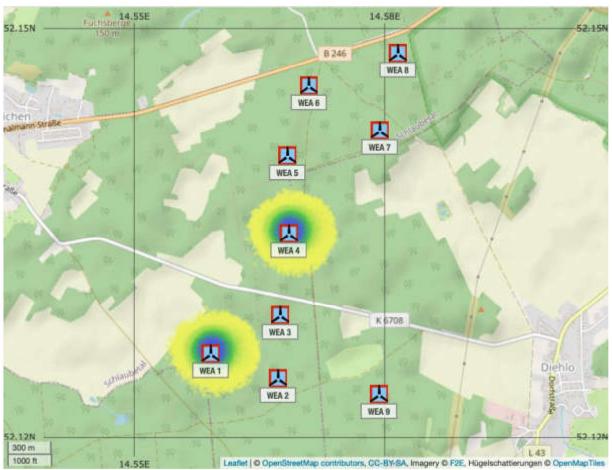

A.1 Berechnung der Auftreffhäufigkeiten

Tabelle A.1.1 listet die maximal erreichte Flugweite der Bruchstücke bezogen auf den Fußpunkt der WEA auf.

Tabelle A.1.1: Maximale Flugweite der betrachteten Eisstücke am Standort Schierenberg.

Lfd. Nr. WEA	Maximale Flugweite [m]
1	333.5
4	330.1

In der Abbildung A.1.1 sind die für die Umgebung der WEA resultierenden Treffer pro 16 Quadratmeter und Jahr dargestellt.

Abbildung A.1.1: Trefferhäufigkeiten von Eisstücken pro Rasterfläche (16m²) und Jahr in der Umgebung der WEA 1 und 4 am Standort Schierenberg (Karte /1.4/).

Seite 38 von 41

Referenz-Nr.: F2E-2021-TGZ-018, Revision 1 - ungekürzte Fassung

Aus den ermittelten Flugbahnen ergeben sich für die Schutzobjekte im Gefährdungsbereich der zu bewertenden WEA die in Tabelle A.2.1 aufgeführten Randbedingungen.

Tabelle A.2.1: Randbedingungen für die Bewertung von Sach- bzw. Personenschäden am Standort Schierenberg.

Lfd. Nr. WEA	Schutzobjekt	Anzahl Treffer pro Jahr
WEA 1	Kreisstraße K6708	0.0
WEA 4	Kreisstraße K6708	0.0

Die Kreisstraße K6708 wird nicht von Eisstücken getroffen.

Anhang B: Detaillierte Berechnungsergebnisse Eisfall

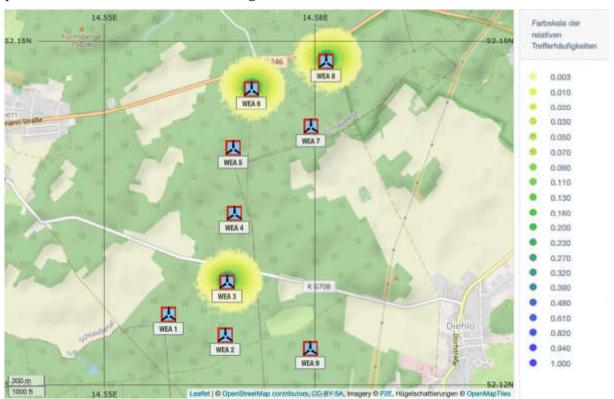
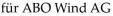

B.1 Berechnung der Auftreffhäufigkeiten

Tabelle B.1.1 listet die maximal erreichte Flugweite der Bruchstücke bezogen auf den Fußpunkt der WEA auf.


Tabelle B.1.1: Maximale Flugweite der betrachteten Eisstücke am Standort Schierenberg.

Lfd. Nr. WEA	Maximale Flugweite [m]
3	286.2
6	282.9
8	304.5

In der Abbildung B.1.1 sind die für die Umgebung der WEA resultierenden Treffer pro 16 Quadratmeter und Jahr dargestellt.

Abbildung B.1.1: Trefferhäufigkeiten von Eisstücken pro Rasterfläche (16m²) und Jahr in der Umgebung der WEA 3, 6 und 8 am Standort Schierenberg (Karte /1.4/).

Aus den ermittelten Flugbahnen ergeben sich für die Schutzobjekte im Gefährdungsbereich der zu bewertenden WEA die in Tabelle B.2.1 aufgeführten Randbedingungen.

Tabelle B.2.1: Randbedingungen für die Bewertung von Sach- bzw. Personenschäden am Standort Schierenberg.

Lfd. Nr. WEA	Schutzobjekt	Anzahl Treffer pro Jahr
3	Kreisstraße K6708	3.9
	Bundesstraße B246	1.3
6	Fünfeichenmühle	0.02
8	Bundesstraße B246	5.2

Für die Bewertung von Personenschäden wird davon ausgegangen, dass jedes Kfz im Mittel mit 1.5 Personen besetzt ist. Dies entspricht der durchschnittlichen Besetzungszahl von Pkw in Deutschland /1.6/. Eine infolge eines Treffers durch Eis resultierende Verkettung von Unfällen wurde nicht betrachtet.

Mit den genannten Ausführungen ergeben sich die in Tabelle B.2.2 aufgelisteten Unfallhäufigkeiten bzw. Risiken.

Das in Abhängigkeit von der Aufenthaltshäufigkeit von Personen zu betrachtende Risiko ist in Tabelle B.2.2 jeweils fett gedruckt.

Relevante Überschreitungen der Risikogrenzwerte gemäß Tabelle 2.3.3.1 bzw. Werte im ALARP-Bereich, die eventuell weitere Maßnahmen erfordern, sind in Tabelle B.2.2 jeweils kursiv gedruckt.

Gutachtliche Stellungnahme zu Risiken durch Eiswurf und Eisfall am Standort Schierenberg, Dezember 2021 für ABO Wind AG

Referenz-Nr.: F2E-2021-TGZ-018, Revision 1 - ungekürzte Fassung

Tabelle B.2.2: Kollektive und individuelle Risiken für Personenschäden am Standort Schierenberg.

Lfd. Nr. WEA	Schutzobjekt	Kollektives Personenrisiko	Individuelles Personenrisiko
3	Kreisstraße K6708	1.23*10 ⁻⁴ (einmal in 8100 Jahren)	6.30*10 ⁻⁷ (einmal in 1.5 Mio. Jahren)
6	Bundesstraße B246	9.92*10 ⁻⁴ (einmal in 1000 Jahren)	2.74*10 ⁻⁷ (einmal in 3.6 Mio. Jahren)
	Fünfeichenmühle	1.35*10 ⁻⁷ (einmal in 7.4 Mio. Jahren)	4.00*10 ⁻⁹ (einmal in 0.2 Mrd. Jahren)
8	Bundesstraße B246	3.90*10 ⁻³ (einmal in 257 Jahren)	1.08*10 ⁻⁶ (einmal in 930 000 Jahren)